1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <ctype.h> /* XXX for isupper () */
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register flavors. */
35 #include "arch-utils.h"
36 #include "solib-svr4.h"
41 #include "coff/internal.h"
44 /* Each OS has a different mechanism for accessing the various
45 registers stored in the sigcontext structure.
47 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
48 function pointer) which may be used to determine the addresses
49 of the various saved registers in the sigcontext structure.
51 For the ARM target, there are three parameters to this function.
52 The first is the pc value of the frame under consideration, the
53 second the stack pointer of this frame, and the last is the
54 register number to fetch.
56 If the tm.h file does not define this macro, then it's assumed that
57 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
60 When it comes time to multi-arching this code, see the identically
61 named machinery in ia64-tdep.c for an example of how it could be
62 done. It should not be necessary to modify the code below where
63 this macro is used. */
65 #ifdef SIGCONTEXT_REGISTER_ADDRESS
66 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
67 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
70 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
71 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
74 /* Macros for setting and testing a bit in a minimal symbol that marks
75 it as Thumb function. The MSB of the minimal symbol's "info" field
76 is used for this purpose. This field is already being used to store
77 the symbol size, so the assumption is that the symbol size cannot
80 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
81 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
82 MSYMBOL_SIZE Returns the size of the minimal symbol,
83 i.e. the "info" field with the "special" bit
86 #define MSYMBOL_SET_SPECIAL(msym) \
87 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 #define MSYMBOL_IS_SPECIAL(msym) \
91 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
93 #define MSYMBOL_SIZE(msym) \
94 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
96 /* This table matches the indicees assigned to enum arm_abi. Keep
99 static const char * const arm_abi_names[] =
102 "ARM EABI (version 1)",
103 "ARM EABI (version 2)",
113 /* Number of different reg name sets (options). */
114 static int num_flavor_options;
116 /* We have more registers than the disassembler as gdb can print the value
117 of special registers as well.
118 The general register names are overwritten by whatever is being used by
119 the disassembler at the moment. We also adjust the case of cpsr and fps. */
121 /* Initial value: Register names used in ARM's ISA documentation. */
122 static char * arm_register_name_strings[] =
123 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
124 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
125 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
126 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
127 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
128 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
129 "fps", "cpsr" }; /* 24 25 */
130 static char **arm_register_names = arm_register_name_strings;
132 /* Valid register name flavors. */
133 static const char **valid_flavors;
135 /* Disassembly flavor to use. Default to "std" register names. */
136 static const char *disassembly_flavor;
137 static int current_option; /* Index to that option in the opcodes table. */
139 /* This is used to keep the bfd arch_info in sync with the disassembly
141 static void set_disassembly_flavor_sfunc(char *, int,
142 struct cmd_list_element *);
143 static void set_disassembly_flavor (void);
145 static void convert_from_extended (void *ptr, void *dbl);
147 /* Define other aspects of the stack frame. We keep the offsets of
148 all saved registers, 'cause we need 'em a lot! We also keep the
149 current size of the stack frame, and the offset of the frame
150 pointer from the stack pointer (for frameless functions, and when
151 we're still in the prologue of a function with a frame) */
153 struct frame_extra_info
160 /* Addresses for calling Thumb functions have the bit 0 set.
161 Here are some macros to test, set, or clear bit 0 of addresses. */
162 #define IS_THUMB_ADDR(addr) ((addr) & 1)
163 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
164 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
167 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
169 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
172 /* Set to true if the 32-bit mode is in use. */
176 /* Flag set by arm_fix_call_dummy that tells whether the target
177 function is a Thumb function. This flag is checked by
178 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
179 its use in valops.c) to pass the function address as an additional
182 static int target_is_thumb;
184 /* Flag set by arm_fix_call_dummy that tells whether the calling
185 function is a Thumb function. This flag is checked by
186 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
188 static int caller_is_thumb;
190 /* Determine if the program counter specified in MEMADDR is in a Thumb
194 arm_pc_is_thumb (CORE_ADDR memaddr)
196 struct minimal_symbol *sym;
198 /* If bit 0 of the address is set, assume this is a Thumb address. */
199 if (IS_THUMB_ADDR (memaddr))
202 /* Thumb functions have a "special" bit set in minimal symbols. */
203 sym = lookup_minimal_symbol_by_pc (memaddr);
206 return (MSYMBOL_IS_SPECIAL (sym));
214 /* Determine if the program counter specified in MEMADDR is in a call
215 dummy being called from a Thumb function. */
218 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
220 CORE_ADDR sp = read_sp ();
222 /* FIXME: Until we switch for the new call dummy macros, this heuristic
223 is the best we can do. We are trying to determine if the pc is on
224 the stack, which (hopefully) will only happen in a call dummy.
225 We hope the current stack pointer is not so far alway from the dummy
226 frame location (true if we have not pushed large data structures or
227 gone too many levels deep) and that our 1024 is not enough to consider
228 code regions as part of the stack (true for most practical purposes) */
229 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
230 return caller_is_thumb;
235 /* Remove useless bits from addresses in a running program. */
237 arm_addr_bits_remove (CORE_ADDR val)
239 if (arm_pc_is_thumb (val))
240 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
242 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
245 /* When reading symbols, we need to zap the low bit of the address,
246 which may be set to 1 for Thumb functions. */
248 arm_smash_text_address (CORE_ADDR val)
253 /* Immediately after a function call, return the saved pc. Can't
254 always go through the frames for this because on some machines the
255 new frame is not set up until the new function executes some
259 arm_saved_pc_after_call (struct frame_info *frame)
261 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
264 /* Determine whether the function invocation represented by FI has a
265 frame on the stack associated with it. If it does return zero,
266 otherwise return 1. */
269 arm_frameless_function_invocation (struct frame_info *fi)
271 CORE_ADDR func_start, after_prologue;
274 /* Sometimes we have functions that do a little setup (like saving the
275 vN registers with the stmdb instruction, but DO NOT set up a frame.
276 The symbol table will report this as a prologue. However, it is
277 important not to try to parse these partial frames as frames, or we
278 will get really confused.
280 So I will demand 3 instructions between the start & end of the
281 prologue before I call it a real prologue, i.e. at least
286 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
287 after_prologue = SKIP_PROLOGUE (func_start);
289 /* There are some frameless functions whose first two instructions
290 follow the standard APCS form, in which case after_prologue will
291 be func_start + 8. */
293 frameless = (after_prologue < func_start + 12);
297 /* The address of the arguments in the frame. */
299 arm_frame_args_address (struct frame_info *fi)
304 /* The address of the local variables in the frame. */
306 arm_frame_locals_address (struct frame_info *fi)
311 /* The number of arguments being passed in the frame. */
313 arm_frame_num_args (struct frame_info *fi)
315 /* We have no way of knowing. */
319 /* A typical Thumb prologue looks like this:
323 Sometimes the latter instruction may be replaced by:
331 or, on tpcs, like this:
338 There is always one instruction of three classes:
343 When we have found at least one of each class we are done with the prolog.
344 Note that the "sub sp, #NN" before the push does not count.
348 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
350 CORE_ADDR current_pc;
351 int findmask = 0; /* findmask:
352 bit 0 - push { rlist }
353 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
354 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
357 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
359 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
361 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
363 findmask |= 1; /* push found */
365 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
367 if ((findmask & 1) == 0) /* before push ? */
370 findmask |= 4; /* add/sub sp found */
372 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
374 findmask |= 2; /* setting of r7 found */
376 else if (insn == 0x466f) /* mov r7, sp */
378 findmask |= 2; /* setting of r7 found */
380 else if (findmask == (4+2+1))
382 break; /* We have found one of each type of prologue instruction */
385 continue; /* something in the prolog that we don't care about or some
386 instruction from outside the prolog scheduled here for optimization */
392 /* Advance the PC across any function entry prologue instructions to reach
395 The APCS (ARM Procedure Call Standard) defines the following
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
408 arm_skip_prologue (CORE_ADDR pc)
412 CORE_ADDR func_addr, func_end;
414 struct symtab_and_line sal;
416 /* See what the symbol table says. */
418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
422 /* Found a function. */
423 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
424 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
426 /* Don't use this trick for assembly source files. */
427 sal = find_pc_line (func_addr, 0);
428 if ((sal.line != 0) && (sal.end < func_end))
433 /* Check if this is Thumb code. */
434 if (arm_pc_is_thumb (pc))
435 return thumb_skip_prologue (pc, func_end);
437 /* Can't find the prologue end in the symbol table, try it the hard way
438 by disassembling the instructions. */
440 inst = read_memory_integer (skip_pc, 4);
441 if (inst != 0xe1a0c00d) /* mov ip, sp */
445 inst = read_memory_integer (skip_pc, 4);
446 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
449 inst = read_memory_integer (skip_pc, 4);
452 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
456 inst = read_memory_integer (skip_pc, 4);
458 /* Any insns after this point may float into the code, if it makes
459 for better instruction scheduling, so we skip them only if we
460 find them, but still consdier the function to be frame-ful. */
462 /* We may have either one sfmfd instruction here, or several stfe
463 insns, depending on the version of floating point code we
465 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
468 inst = read_memory_integer (skip_pc, 4);
472 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
475 inst = read_memory_integer (skip_pc, 4);
479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
485 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
486 This function decodes a Thumb function prologue to determine:
487 1) the size of the stack frame
488 2) which registers are saved on it
489 3) the offsets of saved regs
490 4) the offset from the stack pointer to the frame pointer
491 This information is stored in the "extra" fields of the frame_info.
493 A typical Thumb function prologue would create this stack frame
494 (offsets relative to FP)
495 old SP -> 24 stack parameters
498 R7 -> 0 local variables (16 bytes)
499 SP -> -12 additional stack space (12 bytes)
500 The frame size would thus be 36 bytes, and the frame offset would be
501 12 bytes. The frame register is R7.
503 The comments for thumb_skip_prolog() describe the algorithm we use to detect
504 the end of the prolog */
508 thumb_scan_prologue (struct frame_info *fi)
510 CORE_ADDR prologue_start;
511 CORE_ADDR prologue_end;
512 CORE_ADDR current_pc;
513 int saved_reg[16]; /* which register has been copied to register n? */
514 int findmask = 0; /* findmask:
515 bit 0 - push { rlist }
516 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
517 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
521 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
523 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
525 if (sal.line == 0) /* no line info, use current PC */
526 prologue_end = fi->pc;
527 else if (sal.end < prologue_end) /* next line begins after fn end */
528 prologue_end = sal.end; /* (probably means no prologue) */
531 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
532 /* 16 pushes, an add, and "mv fp,sp" */
534 prologue_end = min (prologue_end, fi->pc);
536 /* Initialize the saved register map. When register H is copied to
537 register L, we will put H in saved_reg[L]. */
538 for (i = 0; i < 16; i++)
541 /* Search the prologue looking for instructions that set up the
542 frame pointer, adjust the stack pointer, and save registers.
543 Do this until all basic prolog instructions are found. */
545 fi->extra_info->framesize = 0;
546 for (current_pc = prologue_start;
547 (current_pc < prologue_end) && ((findmask & 7) != 7);
554 insn = read_memory_unsigned_integer (current_pc, 2);
556 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
559 findmask |= 1; /* push found */
560 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
561 whether to save LR (R14). */
562 mask = (insn & 0xff) | ((insn & 0x100) << 6);
564 /* Calculate offsets of saved R0-R7 and LR. */
565 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
566 if (mask & (1 << regno))
568 fi->extra_info->framesize += 4;
569 fi->saved_regs[saved_reg[regno]] =
570 -(fi->extra_info->framesize);
571 saved_reg[regno] = regno; /* reset saved register map */
574 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
576 if ((findmask & 1) == 0) /* before push ? */
579 findmask |= 4; /* add/sub sp found */
581 offset = (insn & 0x7f) << 2; /* get scaled offset */
582 if (insn & 0x80) /* is it signed? (==subtracting) */
584 fi->extra_info->frameoffset += offset;
587 fi->extra_info->framesize -= offset;
589 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
591 findmask |= 2; /* setting of r7 found */
592 fi->extra_info->framereg = THUMB_FP_REGNUM;
593 /* get scaled offset */
594 fi->extra_info->frameoffset = (insn & 0xff) << 2;
596 else if (insn == 0x466f) /* mov r7, sp */
598 findmask |= 2; /* setting of r7 found */
599 fi->extra_info->framereg = THUMB_FP_REGNUM;
600 fi->extra_info->frameoffset = 0;
601 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
603 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
605 int lo_reg = insn & 7; /* dest. register (r0-r7) */
606 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
607 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
610 continue; /* something in the prolog that we don't care about or some
611 instruction from outside the prolog scheduled here for optimization */
615 /* Check if prologue for this frame's PC has already been scanned. If
616 it has, copy the relevant information about that prologue and
617 return non-zero. Otherwise do not copy anything and return zero.
619 The information saved in the cache includes:
620 * the frame register number;
621 * the size of the stack frame;
622 * the offsets of saved regs (relative to the old SP); and
623 * the offset from the stack pointer to the frame pointer
625 The cache contains only one entry, since this is adequate for the
626 typical sequence of prologue scan requests we get. When performing
627 a backtrace, GDB will usually ask to scan the same function twice
628 in a row (once to get the frame chain, and once to fill in the
629 extra frame information). */
631 static struct frame_info prologue_cache;
634 check_prologue_cache (struct frame_info *fi)
638 if (fi->pc == prologue_cache.pc)
640 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
641 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
642 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
643 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
644 fi->saved_regs[i] = prologue_cache.saved_regs[i];
652 /* Copy the prologue information from fi to the prologue cache. */
655 save_prologue_cache (struct frame_info *fi)
659 prologue_cache.pc = fi->pc;
660 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
661 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
662 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
664 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
665 prologue_cache.saved_regs[i] = fi->saved_regs[i];
669 /* This function decodes an ARM function prologue to determine:
670 1) the size of the stack frame
671 2) which registers are saved on it
672 3) the offsets of saved regs
673 4) the offset from the stack pointer to the frame pointer
674 This information is stored in the "extra" fields of the frame_info.
676 There are two basic forms for the ARM prologue. The fixed argument
677 function call will look like:
680 stmfd sp!, {fp, ip, lr, pc}
684 Which would create this stack frame (offsets relative to FP):
685 IP -> 4 (caller's stack)
686 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
687 -4 LR (return address in caller)
688 -8 IP (copy of caller's SP)
690 SP -> -28 Local variables
692 The frame size would thus be 32 bytes, and the frame offset would be
693 28 bytes. The stmfd call can also save any of the vN registers it
694 plans to use, which increases the frame size accordingly.
696 Note: The stored PC is 8 off of the STMFD instruction that stored it
697 because the ARM Store instructions always store PC + 8 when you read
700 A variable argument function call will look like:
703 stmfd sp!, {a1, a2, a3, a4}
704 stmfd sp!, {fp, ip, lr, pc}
707 Which would create this stack frame (offsets relative to FP):
708 IP -> 20 (caller's stack)
713 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
714 -4 LR (return address in caller)
715 -8 IP (copy of caller's SP)
717 SP -> -28 Local variables
719 The frame size would thus be 48 bytes, and the frame offset would be
722 There is another potential complication, which is that the optimizer
723 will try to separate the store of fp in the "stmfd" instruction from
724 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
725 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
727 Also, note, the original version of the ARM toolchain claimed that there
730 instruction at the end of the prologue. I have never seen GCC produce
731 this, and the ARM docs don't mention it. We still test for it below in
737 arm_scan_prologue (struct frame_info *fi)
739 int regno, sp_offset, fp_offset;
740 LONGEST return_value;
741 CORE_ADDR prologue_start, prologue_end, current_pc;
743 /* Check if this function is already in the cache of frame information. */
744 if (check_prologue_cache (fi))
747 /* Assume there is no frame until proven otherwise. */
748 fi->extra_info->framereg = ARM_SP_REGNUM;
749 fi->extra_info->framesize = 0;
750 fi->extra_info->frameoffset = 0;
752 /* Check for Thumb prologue. */
753 if (arm_pc_is_thumb (fi->pc))
755 thumb_scan_prologue (fi);
756 save_prologue_cache (fi);
760 /* Find the function prologue. If we can't find the function in
761 the symbol table, peek in the stack frame to find the PC. */
762 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
764 /* One way to find the end of the prologue (which works well
765 for unoptimized code) is to do the following:
767 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
770 prologue_end = fi->pc;
771 else if (sal.end < prologue_end)
772 prologue_end = sal.end;
774 This mechanism is very accurate so long as the optimizer
775 doesn't move any instructions from the function body into the
776 prologue. If this happens, sal.end will be the last
777 instruction in the first hunk of prologue code just before
778 the first instruction that the scheduler has moved from
779 the body to the prologue.
781 In order to make sure that we scan all of the prologue
782 instructions, we use a slightly less accurate mechanism which
783 may scan more than necessary. To help compensate for this
784 lack of accuracy, the prologue scanning loop below contains
785 several clauses which'll cause the loop to terminate early if
786 an implausible prologue instruction is encountered.
792 is a suitable endpoint since it accounts for the largest
793 possible prologue plus up to five instructions inserted by
796 if (prologue_end > prologue_start + 64)
798 prologue_end = prologue_start + 64; /* See above. */
803 /* Get address of the stmfd in the prologue of the callee; the saved
804 PC is the address of the stmfd + 8. */
805 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
809 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
810 prologue_end = prologue_start + 64; /* See above. */
814 /* Now search the prologue looking for instructions that set up the
815 frame pointer, adjust the stack pointer, and save registers.
817 Be careful, however, and if it doesn't look like a prologue,
818 don't try to scan it. If, for instance, a frameless function
819 begins with stmfd sp!, then we will tell ourselves there is
820 a frame, which will confuse stack traceback, as well ad"finish"
821 and other operations that rely on a knowledge of the stack
824 In the APCS, the prologue should start with "mov ip, sp" so
825 if we don't see this as the first insn, we will stop. [Note:
826 This doesn't seem to be true any longer, so it's now an optional
827 part of the prologue. - Kevin Buettner, 2001-11-20] */
829 sp_offset = fp_offset = 0;
831 if (read_memory_unsigned_integer (prologue_start, 4)
832 == 0xe1a0c00d) /* mov ip, sp */
833 current_pc = prologue_start + 4;
835 current_pc = prologue_start;
837 for (; current_pc < prologue_end; current_pc += 4)
839 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
841 if ((insn & 0xffff0000) == 0xe92d0000)
842 /* stmfd sp!, {..., fp, ip, lr, pc}
844 stmfd sp!, {a1, a2, a3, a4} */
846 int mask = insn & 0xffff;
848 /* Calculate offsets of saved registers. */
849 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
850 if (mask & (1 << regno))
853 fi->saved_regs[regno] = sp_offset;
856 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
858 unsigned imm = insn & 0xff; /* immediate value */
859 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
860 imm = (imm >> rot) | (imm << (32 - rot));
862 fi->extra_info->framereg = ARM_FP_REGNUM;
864 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
866 unsigned imm = insn & 0xff; /* immediate value */
867 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
868 imm = (imm >> rot) | (imm << (32 - rot));
871 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
874 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
875 fi->saved_regs[regno] = sp_offset;
877 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
880 unsigned int fp_start_reg, fp_bound_reg;
882 if ((insn & 0x800) == 0x800) /* N0 is set */
884 if ((insn & 0x40000) == 0x40000) /* N1 is set */
891 if ((insn & 0x40000) == 0x40000) /* N1 is set */
897 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
898 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
899 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
902 fi->saved_regs[fp_start_reg++] = sp_offset;
905 else if ((insn & 0xf0000000) != 0xe0000000)
906 break; /* Condition not true, exit early */
907 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
908 break; /* Don't scan past a block load */
910 /* The optimizer might shove anything into the prologue,
911 so we just skip what we don't recognize. */
915 /* The frame size is just the negative of the offset (from the original SP)
916 of the last thing thing we pushed on the stack. The frame offset is
917 [new FP] - [new SP]. */
918 fi->extra_info->framesize = -sp_offset;
919 if (fi->extra_info->framereg == ARM_FP_REGNUM)
920 fi->extra_info->frameoffset = fp_offset - sp_offset;
922 fi->extra_info->frameoffset = 0;
924 save_prologue_cache (fi);
927 /* Find REGNUM on the stack. Otherwise, it's in an active register.
928 One thing we might want to do here is to check REGNUM against the
929 clobber mask, and somehow flag it as invalid if it isn't saved on
930 the stack somewhere. This would provide a graceful failure mode
931 when trying to get the value of caller-saves registers for an inner
935 arm_find_callers_reg (struct frame_info *fi, int regnum)
937 for (; fi; fi = fi->next)
939 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
940 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
941 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
944 if (fi->saved_regs[regnum] != 0)
945 return read_memory_integer (fi->saved_regs[regnum],
946 REGISTER_RAW_SIZE (regnum));
947 return read_register (regnum);
949 /* Function: frame_chain Given a GDB frame, determine the address of
950 the calling function's frame. This will be used to create a new
951 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC
952 will be called for the new frame. For ARM, we save the frame size
953 when we initialize the frame_info. */
956 arm_frame_chain (struct frame_info *fi)
958 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
959 CORE_ADDR fn_start, callers_pc, fp;
961 /* is this a dummy frame? */
962 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
963 return fi->frame; /* dummy frame same as caller's frame */
965 /* is caller-of-this a dummy frame? */
966 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
967 fp = arm_find_callers_reg (fi, ARM_FP_REGNUM);
968 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
969 return fp; /* dummy frame's frame may bear no relation to ours */
971 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
972 if (fn_start == entry_point_address ())
973 return 0; /* in _start fn, don't chain further */
975 CORE_ADDR caller_pc, fn_start;
976 int framereg = fi->extra_info->framereg;
978 if (fi->pc < LOWEST_PC)
981 /* If the caller is the startup code, we're at the end of the chain. */
982 caller_pc = FRAME_SAVED_PC (fi);
983 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
984 if (fn_start == entry_point_address ())
987 /* If the caller is Thumb and the caller is ARM, or vice versa,
988 the frame register of the caller is different from ours.
989 So we must scan the prologue of the caller to determine its
990 frame register number. */
991 /* XXX Fixme, we should try to do this without creating a temporary
993 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
995 struct frame_info caller_fi;
996 struct cleanup *old_chain;
998 /* Create a temporary frame suitable for scanning the caller's
1000 memset (&caller_fi, 0, sizeof (caller_fi));
1001 caller_fi.extra_info = (struct frame_extra_info *)
1002 xcalloc (1, sizeof (struct frame_extra_info));
1003 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1004 caller_fi.saved_regs = (CORE_ADDR *)
1005 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1006 make_cleanup (xfree, caller_fi.saved_regs);
1008 /* Now, scan the prologue and obtain the frame register. */
1009 caller_fi.pc = caller_pc;
1010 arm_scan_prologue (&caller_fi);
1011 framereg = caller_fi.extra_info->framereg;
1013 /* Deallocate the storage associated with the temporary frame
1015 do_cleanups (old_chain);
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
1021 return arm_find_callers_reg (fi, framereg);
1023 return fi->frame + fi->extra_info->framesize;
1026 /* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1036 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1041 if (fi->saved_regs == NULL)
1042 frame_saved_regs_zalloc (fi);
1044 fi->extra_info = (struct frame_extra_info *)
1045 frame_obstack_alloc (sizeof (struct frame_extra_info));
1047 fi->extra_info->framesize = 0;
1048 fi->extra_info->frameoffset = 0;
1049 fi->extra_info->framereg = 0;
1052 fi->pc = FRAME_SAVED_PC (fi->next);
1054 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
1056 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1057 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1059 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1060 by assuming it's always FP. */
1061 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
1063 fi->extra_info->framesize = 0;
1064 fi->extra_info->frameoffset = 0;
1070 /* Compute stack pointer for this frame. We use this value for both the
1071 sigtramp and call dummy cases. */
1075 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1076 + fi->next->extra_info->framesize);
1078 /* Determine whether or not we're in a sigtramp frame.
1079 Unfortunately, it isn't sufficient to test
1080 fi->signal_handler_caller because this value is sometimes set
1081 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1082 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1083 to use the sigcontext addresses for the saved registers.
1085 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1086 the name of the function, the code below will have to be changed
1087 to first fetch the name of the function and then pass this name
1090 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1091 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
1093 for (reg = 0; reg < NUM_REGS; reg++)
1094 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
1096 /* FIXME: What about thumb mode? */
1097 fi->extra_info->framereg = ARM_SP_REGNUM;
1099 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1100 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1101 fi->extra_info->framesize = 0;
1102 fi->extra_info->frameoffset = 0;
1105 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1108 CORE_ADDR callers_sp;
1110 /* Set rp point at the high end of the saved registers. */
1111 rp = fi->frame - REGISTER_SIZE;
1113 /* Fill in addresses of saved registers. */
1114 fi->saved_regs[ARM_PS_REGNUM] = rp;
1115 rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM);
1116 for (reg = ARM_PC_REGNUM; reg >= 0; reg--)
1118 fi->saved_regs[reg] = rp;
1119 rp -= REGISTER_RAW_SIZE (reg);
1122 callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM],
1123 REGISTER_RAW_SIZE (ARM_SP_REGNUM));
1124 fi->extra_info->framereg = ARM_FP_REGNUM;
1125 fi->extra_info->framesize = callers_sp - sp;
1126 fi->extra_info->frameoffset = fi->frame - sp;
1130 arm_scan_prologue (fi);
1133 /* this is the innermost frame? */
1134 fi->frame = read_register (fi->extra_info->framereg);
1135 else if (fi->extra_info->framereg == ARM_FP_REGNUM
1136 || fi->extra_info->framereg == THUMB_FP_REGNUM)
1138 /* not the innermost frame */
1139 /* If we have an FP, the callee saved it. */
1140 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
1142 read_memory_integer (fi->next
1143 ->saved_regs[fi->extra_info->framereg], 4);
1145 /* If we were called by a frameless fn. then our frame is
1146 still in the frame pointer register on the board... */
1147 fi->frame = read_fp ();
1150 /* Calculate actual addresses of saved registers using offsets
1151 determined by arm_scan_prologue. */
1152 for (reg = 0; reg < NUM_REGS; reg++)
1153 if (fi->saved_regs[reg] != 0)
1154 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1155 - fi->extra_info->frameoffset);
1160 /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
1161 is saved in the stack anywhere, otherwise we get it from the
1164 The old definition of this function was a macro:
1165 #define FRAME_SAVED_PC(FRAME) \
1166 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1169 arm_frame_saved_pc (struct frame_info *fi)
1171 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1172 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1173 return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
1176 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1179 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1180 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
1184 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
1185 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1189 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1190 Examine the Program Status Register to decide which state we're in. */
1195 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1196 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1198 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
1201 /* Store into a struct frame_saved_regs the addresses of the saved
1202 registers of frame described by FRAME_INFO. This includes special
1203 registers such as PC and FP saved in special ways in the stack
1204 frame. SP is even more special: the address we return for it IS
1205 the sp for the next frame. */
1208 arm_frame_init_saved_regs (struct frame_info *fip)
1211 if (fip->saved_regs)
1214 arm_init_extra_frame_info (0, fip);
1217 /* Push an empty stack frame, to record the current PC, etc. */
1220 arm_push_dummy_frame (void)
1222 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
1223 CORE_ADDR sp = old_sp;
1224 CORE_ADDR fp, prologue_start;
1227 /* Push the two dummy prologue instructions in reverse order,
1228 so that they'll be in the correct low-to-high order in memory. */
1229 /* sub fp, ip, #4 */
1230 sp = push_word (sp, 0xe24cb004);
1231 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1232 prologue_start = sp = push_word (sp, 0xe92ddfff);
1234 /* Push a pointer to the dummy prologue + 12, because when stm
1235 instruction stores the PC, it stores the address of the stm
1236 instruction itself plus 12. */
1237 fp = sp = push_word (sp, prologue_start + 12);
1239 /* Push the processor status. */
1240 sp = push_word (sp, read_register (ARM_PS_REGNUM));
1242 /* Push all 16 registers starting with r15. */
1243 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
1244 sp = push_word (sp, read_register (regnum));
1246 /* Update fp (for both Thumb and ARM) and sp. */
1247 write_register (ARM_FP_REGNUM, fp);
1248 write_register (THUMB_FP_REGNUM, fp);
1249 write_register (ARM_SP_REGNUM, sp);
1252 /* CALL_DUMMY_WORDS:
1253 This sequence of words is the instructions
1259 Note this is 12 bytes. */
1261 static LONGEST arm_call_dummy_words[] =
1263 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1266 /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1267 breakpoint to the proper address in the call dummy, so that
1268 `finish' after a stop in a call dummy works.
1270 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1271 optimal solution, but the call to arm_fix_call_dummy is immediately
1272 followed by a call to run_stack_dummy, which is the only function
1273 where call_dummy_breakpoint_offset is actually used. */
1277 arm_set_call_dummy_breakpoint_offset (void)
1279 if (caller_is_thumb)
1280 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1282 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1285 /* Fix up the call dummy, based on whether the processor is currently
1286 in Thumb or ARM mode, and whether the target function is Thumb or
1287 ARM. There are three different situations requiring three
1290 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1291 been copied into the dummy parameter to this function.
1292 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1293 "mov pc,r4" instruction patched to be a "bx r4" instead.
1294 * Thumb calling anything: uses the Thumb dummy defined below, which
1295 works for calling both ARM and Thumb functions.
1297 All three call dummies expect to receive the target function
1298 address in R4, with the low bit set if it's a Thumb function. */
1301 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1302 struct value **args, struct type *type, int gcc_p)
1304 static short thumb_dummy[4] =
1306 0xf000, 0xf801, /* bl label */
1307 0xdf18, /* swi 24 */
1308 0x4720, /* label: bx r4 */
1310 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1312 /* Set flag indicating whether the current PC is in a Thumb function. */
1313 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1314 arm_set_call_dummy_breakpoint_offset ();
1316 /* If the target function is Thumb, set the low bit of the function
1317 address. And if the CPU is currently in ARM mode, patch the
1318 second instruction of call dummy to use a BX instruction to
1319 switch to Thumb mode. */
1320 target_is_thumb = arm_pc_is_thumb (fun);
1321 if (target_is_thumb)
1324 if (!caller_is_thumb)
1325 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1328 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1329 instead of the ARM one that's already been copied. This will
1330 work for both Thumb and ARM target functions. */
1331 if (caller_is_thumb)
1335 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1337 for (i = 0; i < len; i++)
1339 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1340 p += sizeof (thumb_dummy[0]);
1344 /* Put the target address in r4; the call dummy will copy this to
1346 write_register (4, fun);
1351 This function does not support passing parameters using the FPA
1352 variant of the APCS. It passes any floating point arguments in the
1353 general registers and/or on the stack. */
1356 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1357 int struct_return, CORE_ADDR struct_addr)
1360 int argnum, argreg, nstack_size;
1362 /* Walk through the list of args and determine how large a temporary
1363 stack is required. Need to take care here as structs may be
1364 passed on the stack, and we have to to push them. */
1365 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1366 if (struct_return) /* The struct address goes in A1. */
1367 nstack_size += REGISTER_SIZE;
1369 /* Walk through the arguments and add their size to nstack_size. */
1370 for (argnum = 0; argnum < nargs; argnum++)
1373 struct type *arg_type;
1375 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1376 len = TYPE_LENGTH (arg_type);
1381 /* Allocate room on the stack, and initialize our stack frame
1384 if (nstack_size > 0)
1390 /* Initialize the integer argument register pointer. */
1391 argreg = ARM_A1_REGNUM;
1393 /* The struct_return pointer occupies the first parameter passing
1396 write_register (argreg++, struct_addr);
1398 /* Process arguments from left to right. Store as many as allowed
1399 in the parameter passing registers (A1-A4), and save the rest on
1400 the temporary stack. */
1401 for (argnum = 0; argnum < nargs; argnum++)
1406 enum type_code typecode;
1407 struct type *arg_type, *target_type;
1409 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1410 target_type = TYPE_TARGET_TYPE (arg_type);
1411 len = TYPE_LENGTH (arg_type);
1412 typecode = TYPE_CODE (arg_type);
1413 val = (char *) VALUE_CONTENTS (args[argnum]);
1416 /* I don't know why this code was disable. The only logical use
1417 for a function pointer is to call that function, so setting
1418 the mode bit is perfectly fine. FN */
1419 /* If the argument is a pointer to a function, and it is a Thumb
1420 function, set the low bit of the pointer. */
1421 if (TYPE_CODE_PTR == typecode
1422 && NULL != target_type
1423 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1425 CORE_ADDR regval = extract_address (val, len);
1426 if (arm_pc_is_thumb (regval))
1427 store_address (val, len, MAKE_THUMB_ADDR (regval));
1430 /* Copy the argument to general registers or the stack in
1431 register-sized pieces. Large arguments are split between
1432 registers and stack. */
1435 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1437 if (argreg <= ARM_LAST_ARG_REGNUM)
1439 /* It's an argument being passed in a general register. */
1440 regval = extract_address (val, partial_len);
1441 write_register (argreg++, regval);
1445 /* Push the arguments onto the stack. */
1446 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1447 fp += REGISTER_SIZE;
1455 /* Return adjusted stack pointer. */
1459 /* Pop the current frame. So long as the frame info has been initialized
1460 properly (see arm_init_extra_frame_info), this code works for dummy frames
1461 as well as regular frames. I.e, there's no need to have a special case
1462 for dummy frames. */
1464 arm_pop_frame (void)
1467 struct frame_info *frame = get_current_frame ();
1468 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1469 + frame->extra_info->framesize);
1471 for (regnum = 0; regnum < NUM_REGS; regnum++)
1472 if (frame->saved_regs[regnum] != 0)
1473 write_register (regnum,
1474 read_memory_integer (frame->saved_regs[regnum],
1475 REGISTER_RAW_SIZE (regnum)));
1477 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1478 write_register (ARM_SP_REGNUM, old_SP);
1480 flush_cached_frames ();
1484 print_fpu_flags (int flags)
1486 if (flags & (1 << 0))
1487 fputs ("IVO ", stdout);
1488 if (flags & (1 << 1))
1489 fputs ("DVZ ", stdout);
1490 if (flags & (1 << 2))
1491 fputs ("OFL ", stdout);
1492 if (flags & (1 << 3))
1493 fputs ("UFL ", stdout);
1494 if (flags & (1 << 4))
1495 fputs ("INX ", stdout);
1499 /* Print interesting information about the floating point processor
1500 (if present) or emulator. */
1502 arm_print_float_info (void)
1504 register unsigned long status = read_register (ARM_FPS_REGNUM);
1507 type = (status >> 24) & 127;
1508 printf ("%s FPU type %d\n",
1509 (status & (1 << 31)) ? "Hardware" : "Software",
1511 fputs ("mask: ", stdout);
1512 print_fpu_flags (status >> 16);
1513 fputs ("flags: ", stdout);
1514 print_fpu_flags (status);
1517 /* Return the GDB type object for the "standard" data type of data in
1520 static struct type *
1521 arm_register_type (int regnum)
1523 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1525 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1526 return builtin_type_arm_ext_big;
1528 return builtin_type_arm_ext_littlebyte_bigword;
1531 return builtin_type_int32;
1534 /* Index within `registers' of the first byte of the space for
1538 arm_register_byte (int regnum)
1540 if (regnum < ARM_F0_REGNUM)
1541 return regnum * INT_REGISTER_RAW_SIZE;
1542 else if (regnum < ARM_PS_REGNUM)
1543 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1544 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1546 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1547 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1548 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1551 /* Number of bytes of storage in the actual machine representation for
1552 register N. All registers are 4 bytes, except fp0 - fp7, which are
1553 12 bytes in length. */
1556 arm_register_raw_size (int regnum)
1558 if (regnum < ARM_F0_REGNUM)
1559 return INT_REGISTER_RAW_SIZE;
1560 else if (regnum < ARM_FPS_REGNUM)
1561 return FP_REGISTER_RAW_SIZE;
1563 return STATUS_REGISTER_SIZE;
1566 /* Number of bytes of storage in a program's representation
1569 arm_register_virtual_size (int regnum)
1571 if (regnum < ARM_F0_REGNUM)
1572 return INT_REGISTER_VIRTUAL_SIZE;
1573 else if (regnum < ARM_FPS_REGNUM)
1574 return FP_REGISTER_VIRTUAL_SIZE;
1576 return STATUS_REGISTER_SIZE;
1580 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1581 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1582 It is thought that this is is the floating-point register format on
1583 little-endian systems. */
1586 convert_from_extended (void *ptr, void *dbl)
1589 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1590 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1592 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1594 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
1598 convert_to_extended (void *dbl, void *ptr)
1601 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
1602 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1603 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1605 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1610 condition_true (unsigned long cond, unsigned long status_reg)
1612 if (cond == INST_AL || cond == INST_NV)
1618 return ((status_reg & FLAG_Z) != 0);
1620 return ((status_reg & FLAG_Z) == 0);
1622 return ((status_reg & FLAG_C) != 0);
1624 return ((status_reg & FLAG_C) == 0);
1626 return ((status_reg & FLAG_N) != 0);
1628 return ((status_reg & FLAG_N) == 0);
1630 return ((status_reg & FLAG_V) != 0);
1632 return ((status_reg & FLAG_V) == 0);
1634 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1636 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1638 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1640 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1642 return (((status_reg & FLAG_Z) == 0) &&
1643 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1645 return (((status_reg & FLAG_Z) != 0) ||
1646 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1651 /* Support routines for single stepping. Calculate the next PC value. */
1652 #define submask(x) ((1L << ((x) + 1)) - 1)
1653 #define bit(obj,st) (((obj) >> (st)) & 1)
1654 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1655 #define sbits(obj,st,fn) \
1656 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1657 #define BranchDest(addr,instr) \
1658 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1661 static unsigned long
1662 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1663 unsigned long status_reg)
1665 unsigned long res, shift;
1666 int rm = bits (inst, 0, 3);
1667 unsigned long shifttype = bits (inst, 5, 6);
1671 int rs = bits (inst, 8, 11);
1672 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1675 shift = bits (inst, 7, 11);
1678 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1679 + (bit (inst, 4) ? 12 : 8))
1680 : read_register (rm));
1685 res = shift >= 32 ? 0 : res << shift;
1689 res = shift >= 32 ? 0 : res >> shift;
1695 res = ((res & 0x80000000L)
1696 ? ~((~res) >> shift) : res >> shift);
1699 case 3: /* ROR/RRX */
1702 res = (res >> 1) | (carry ? 0x80000000L : 0);
1704 res = (res >> shift) | (res << (32 - shift));
1708 return res & 0xffffffff;
1711 /* Return number of 1-bits in VAL. */
1714 bitcount (unsigned long val)
1717 for (nbits = 0; val != 0; nbits++)
1718 val &= val - 1; /* delete rightmost 1-bit in val */
1723 thumb_get_next_pc (CORE_ADDR pc)
1725 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1726 unsigned short inst1 = read_memory_integer (pc, 2);
1727 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1728 unsigned long offset;
1730 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1734 /* Fetch the saved PC from the stack. It's stored above
1735 all of the other registers. */
1736 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1737 sp = read_register (ARM_SP_REGNUM);
1738 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1739 nextpc = ADDR_BITS_REMOVE (nextpc);
1741 error ("Infinite loop detected");
1743 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1745 unsigned long status = read_register (ARM_PS_REGNUM);
1746 unsigned long cond = bits (inst1, 8, 11);
1747 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1748 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1750 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1752 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1754 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1756 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1757 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1758 nextpc = pc_val + offset;
1765 arm_get_next_pc (CORE_ADDR pc)
1767 unsigned long pc_val;
1768 unsigned long this_instr;
1769 unsigned long status;
1772 if (arm_pc_is_thumb (pc))
1773 return thumb_get_next_pc (pc);
1775 pc_val = (unsigned long) pc;
1776 this_instr = read_memory_integer (pc, 4);
1777 status = read_register (ARM_PS_REGNUM);
1778 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1780 if (condition_true (bits (this_instr, 28, 31), status))
1782 switch (bits (this_instr, 24, 27))
1785 case 0x1: /* data processing */
1789 unsigned long operand1, operand2, result = 0;
1793 if (bits (this_instr, 12, 15) != 15)
1796 if (bits (this_instr, 22, 25) == 0
1797 && bits (this_instr, 4, 7) == 9) /* multiply */
1798 error ("Illegal update to pc in instruction");
1800 /* Multiply into PC */
1801 c = (status & FLAG_C) ? 1 : 0;
1802 rn = bits (this_instr, 16, 19);
1803 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1805 if (bit (this_instr, 25))
1807 unsigned long immval = bits (this_instr, 0, 7);
1808 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1809 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1812 else /* operand 2 is a shifted register */
1813 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1815 switch (bits (this_instr, 21, 24))
1818 result = operand1 & operand2;
1822 result = operand1 ^ operand2;
1826 result = operand1 - operand2;
1830 result = operand2 - operand1;
1834 result = operand1 + operand2;
1838 result = operand1 + operand2 + c;
1842 result = operand1 - operand2 + c;
1846 result = operand2 - operand1 + c;
1852 case 0xb: /* tst, teq, cmp, cmn */
1853 result = (unsigned long) nextpc;
1857 result = operand1 | operand2;
1861 /* Always step into a function. */
1866 result = operand1 & ~operand2;
1873 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1876 error ("Infinite loop detected");
1881 case 0x5: /* data transfer */
1884 if (bit (this_instr, 20))
1887 if (bits (this_instr, 12, 15) == 15)
1893 if (bit (this_instr, 22))
1894 error ("Illegal update to pc in instruction");
1896 /* byte write to PC */
1897 rn = bits (this_instr, 16, 19);
1898 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1899 if (bit (this_instr, 24))
1902 int c = (status & FLAG_C) ? 1 : 0;
1903 unsigned long offset =
1904 (bit (this_instr, 25)
1905 ? shifted_reg_val (this_instr, c, pc_val, status)
1906 : bits (this_instr, 0, 11));
1908 if (bit (this_instr, 23))
1913 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1916 nextpc = ADDR_BITS_REMOVE (nextpc);
1919 error ("Infinite loop detected");
1925 case 0x9: /* block transfer */
1926 if (bit (this_instr, 20))
1929 if (bit (this_instr, 15))
1934 if (bit (this_instr, 23))
1937 unsigned long reglist = bits (this_instr, 0, 14);
1938 offset = bitcount (reglist) * 4;
1939 if (bit (this_instr, 24)) /* pre */
1942 else if (bit (this_instr, 24))
1946 unsigned long rn_val =
1947 read_register (bits (this_instr, 16, 19));
1949 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1953 nextpc = ADDR_BITS_REMOVE (nextpc);
1955 error ("Infinite loop detected");
1960 case 0xb: /* branch & link */
1961 case 0xa: /* branch */
1963 nextpc = BranchDest (pc, this_instr);
1965 nextpc = ADDR_BITS_REMOVE (nextpc);
1967 error ("Infinite loop detected");
1973 case 0xe: /* coproc ops */
1978 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1986 /* single_step() is called just before we want to resume the inferior,
1987 if we want to single-step it but there is no hardware or kernel
1988 single-step support. We find the target of the coming instruction
1991 single_step is also called just after the inferior stops. If we had
1992 set up a simulated single-step, we undo our damage. */
1995 arm_software_single_step (enum target_signal sig, int insert_bpt)
1997 static int next_pc; /* State between setting and unsetting. */
1998 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2002 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
2003 target_insert_breakpoint (next_pc, break_mem);
2006 target_remove_breakpoint (next_pc, break_mem);
2009 #include "bfd-in2.h"
2010 #include "libcoff.h"
2013 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2015 if (arm_pc_is_thumb (memaddr))
2017 static asymbol *asym;
2018 static combined_entry_type ce;
2019 static struct coff_symbol_struct csym;
2020 static struct _bfd fake_bfd;
2021 static bfd_target fake_target;
2023 if (csym.native == NULL)
2025 /* Create a fake symbol vector containing a Thumb symbol. This is
2026 solely so that the code in print_insn_little_arm() and
2027 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
2028 of a Thumb symbol and switch to decoding Thumb instructions. */
2030 fake_target.flavour = bfd_target_coff_flavour;
2031 fake_bfd.xvec = &fake_target;
2032 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2034 csym.symbol.the_bfd = &fake_bfd;
2035 csym.symbol.name = "fake";
2036 asym = (asymbol *) & csym;
2039 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2040 info->symbols = &asym;
2043 info->symbols = NULL;
2045 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2046 return print_insn_big_arm (memaddr, info);
2048 return print_insn_little_arm (memaddr, info);
2051 /* The following define instruction sequences that will cause ARM
2052 cpu's to take an undefined instruction trap. These are used to
2053 signal a breakpoint to GDB.
2055 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2056 modes. A different instruction is required for each mode. The ARM
2057 cpu's can also be big or little endian. Thus four different
2058 instructions are needed to support all cases.
2060 Note: ARMv4 defines several new instructions that will take the
2061 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2062 not in fact add the new instructions. The new undefined
2063 instructions in ARMv4 are all instructions that had no defined
2064 behaviour in earlier chips. There is no guarantee that they will
2065 raise an exception, but may be treated as NOP's. In practice, it
2066 may only safe to rely on instructions matching:
2068 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2069 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2070 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2072 Even this may only true if the condition predicate is true. The
2073 following use a condition predicate of ALWAYS so it is always TRUE.
2075 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2076 and NetBSD all use a software interrupt rather than an undefined
2077 instruction to force a trap. This can be handled by by the
2078 abi-specific code during establishment of the gdbarch vector. */
2081 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2082 override these definitions. */
2083 #ifndef ARM_LE_BREAKPOINT
2084 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2086 #ifndef ARM_BE_BREAKPOINT
2087 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2089 #ifndef THUMB_LE_BREAKPOINT
2090 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2092 #ifndef THUMB_BE_BREAKPOINT
2093 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2096 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2097 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2098 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2099 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2101 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2102 the program counter value to determine whether a 16-bit or 32-bit
2103 breakpoint should be used. It returns a pointer to a string of
2104 bytes that encode a breakpoint instruction, stores the length of
2105 the string to *lenptr, and adjusts the program counter (if
2106 necessary) to point to the actual memory location where the
2107 breakpoint should be inserted. */
2109 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2110 breakpoints and storing their handles instread of what was in
2111 memory. It is nice that this is the same size as a handle -
2112 otherwise remote-rdp will have to change. */
2115 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2117 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2119 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2121 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2122 *lenptr = tdep->thumb_breakpoint_size;
2123 return tdep->thumb_breakpoint;
2127 *lenptr = tdep->arm_breakpoint_size;
2128 return tdep->arm_breakpoint;
2132 /* Extract from an array REGBUF containing the (raw) register state a
2133 function return value of type TYPE, and copy that, in virtual
2134 format, into VALBUF. */
2137 arm_extract_return_value (struct type *type,
2138 char regbuf[REGISTER_BYTES],
2141 if (TYPE_CODE_FLT == TYPE_CODE (type))
2143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2145 switch (tdep->fp_model)
2148 convert_from_extended (®buf[REGISTER_BYTE (ARM_F0_REGNUM)],
2152 case ARM_FLOAT_SOFT:
2153 case ARM_FLOAT_SOFT_VFP:
2154 memcpy (valbuf, ®buf[REGISTER_BYTE (ARM_A1_REGNUM)],
2155 TYPE_LENGTH (type));
2160 (__FILE__, __LINE__,
2161 "arm_extract_return_value: Floating point model not supported");
2166 memcpy (valbuf, ®buf[REGISTER_BYTE (ARM_A1_REGNUM)],
2167 TYPE_LENGTH (type));
2170 /* Extract from an array REGBUF containing the (raw) register state
2171 the address in which a function should return its structure value. */
2174 arm_extract_struct_value_address (char *regbuf)
2176 return extract_address (regbuf, REGISTER_RAW_SIZE(ARM_A1_REGNUM));
2179 /* Will a function return an aggregate type in memory or in a
2180 register? Return 0 if an aggregate type can be returned in a
2181 register, 1 if it must be returned in memory. */
2184 arm_use_struct_convention (int gcc_p, struct type *type)
2187 register enum type_code code;
2189 /* In the ARM ABI, "integer" like aggregate types are returned in
2190 registers. For an aggregate type to be integer like, its size
2191 must be less than or equal to REGISTER_SIZE and the offset of
2192 each addressable subfield must be zero. Note that bit fields are
2193 not addressable, and all addressable subfields of unions always
2194 start at offset zero.
2196 This function is based on the behaviour of GCC 2.95.1.
2197 See: gcc/arm.c: arm_return_in_memory() for details.
2199 Note: All versions of GCC before GCC 2.95.2 do not set up the
2200 parameters correctly for a function returning the following
2201 structure: struct { float f;}; This should be returned in memory,
2202 not a register. Richard Earnshaw sent me a patch, but I do not
2203 know of any way to detect if a function like the above has been
2204 compiled with the correct calling convention. */
2206 /* All aggregate types that won't fit in a register must be returned
2208 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2213 /* The only aggregate types that can be returned in a register are
2214 structs and unions. Arrays must be returned in memory. */
2215 code = TYPE_CODE (type);
2216 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2221 /* Assume all other aggregate types can be returned in a register.
2222 Run a check for structures, unions and arrays. */
2225 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2228 /* Need to check if this struct/union is "integer" like. For
2229 this to be true, its size must be less than or equal to
2230 REGISTER_SIZE and the offset of each addressable subfield
2231 must be zero. Note that bit fields are not addressable, and
2232 unions always start at offset zero. If any of the subfields
2233 is a floating point type, the struct/union cannot be an
2236 /* For each field in the object, check:
2237 1) Is it FP? --> yes, nRc = 1;
2238 2) Is it addressable (bitpos != 0) and
2239 not packed (bitsize == 0)?
2243 for (i = 0; i < TYPE_NFIELDS (type); i++)
2245 enum type_code field_type_code;
2246 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2248 /* Is it a floating point type field? */
2249 if (field_type_code == TYPE_CODE_FLT)
2255 /* If bitpos != 0, then we have to care about it. */
2256 if (TYPE_FIELD_BITPOS (type, i) != 0)
2258 /* Bitfields are not addressable. If the field bitsize is
2259 zero, then the field is not packed. Hence it cannot be
2260 a bitfield or any other packed type. */
2261 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2273 /* Write into appropriate registers a function return value of type
2274 TYPE, given in virtual format. */
2277 arm_store_return_value (struct type *type, char *valbuf)
2279 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2281 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2282 char buf[MAX_REGISTER_RAW_SIZE];
2284 switch (tdep->fp_model)
2288 convert_to_extended (valbuf, buf);
2289 write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2290 MAX_REGISTER_RAW_SIZE);
2293 case ARM_FLOAT_SOFT:
2294 case ARM_FLOAT_SOFT_VFP:
2295 write_register_bytes (ARM_A1_REGNUM, valbuf, TYPE_LENGTH (type));
2300 (__FILE__, __LINE__,
2301 "arm_store_return_value: Floating point model not supported");
2306 write_register_bytes (ARM_A1_REGNUM, valbuf, TYPE_LENGTH (type));
2309 /* Store the address of the place in which to copy the structure the
2310 subroutine will return. This is called from call_function. */
2313 arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2315 write_register (ARM_A1_REGNUM, addr);
2319 arm_get_longjmp_target (CORE_ADDR *pc)
2322 char buf[INT_REGISTER_RAW_SIZE];
2323 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2325 jb_addr = read_register (ARM_A1_REGNUM);
2327 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2328 INT_REGISTER_RAW_SIZE))
2331 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2335 /* Return non-zero if the PC is inside a thumb call thunk. */
2338 arm_in_call_stub (CORE_ADDR pc, char *name)
2340 CORE_ADDR start_addr;
2342 /* Find the starting address of the function containing the PC. If
2343 the caller didn't give us a name, look it up at the same time. */
2344 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2347 return strncmp (name, "_call_via_r", 11) == 0;
2350 /* If PC is in a Thumb call or return stub, return the address of the
2351 target PC, which is in a register. The thunk functions are called
2352 _called_via_xx, where x is the register name. The possible names
2353 are r0-r9, sl, fp, ip, sp, and lr. */
2356 arm_skip_stub (CORE_ADDR pc)
2359 CORE_ADDR start_addr;
2361 /* Find the starting address and name of the function containing the PC. */
2362 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2365 /* Call thunks always start with "_call_via_". */
2366 if (strncmp (name, "_call_via_", 10) == 0)
2368 /* Use the name suffix to determine which register contains the
2370 static char *table[15] =
2371 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2372 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2376 for (regno = 0; regno <= 14; regno++)
2377 if (strcmp (&name[10], table[regno]) == 0)
2378 return read_register (regno);
2381 return 0; /* not a stub */
2384 /* If the user changes the register disassembly flavor used for info register
2385 and other commands, we have to also switch the flavor used in opcodes
2386 for disassembly output.
2387 This function is run in the set disassembly_flavor command, and does that. */
2390 set_disassembly_flavor_sfunc (char *args, int from_tty,
2391 struct cmd_list_element *c)
2393 set_disassembly_flavor ();
2396 /* Return the ARM register name corresponding to register I. */
2398 arm_register_name (int i)
2400 return arm_register_names[i];
2404 set_disassembly_flavor (void)
2406 const char *setname, *setdesc, **regnames;
2409 /* Find the flavor that the user wants in the opcodes table. */
2411 numregs = get_arm_regnames (current, &setname, &setdesc, ®names);
2412 while ((disassembly_flavor != setname)
2413 && (current < num_flavor_options))
2414 get_arm_regnames (++current, &setname, &setdesc, ®names);
2415 current_option = current;
2417 /* Fill our copy. */
2418 for (j = 0; j < numregs; j++)
2419 arm_register_names[j] = (char *) regnames[j];
2422 if (isupper (*regnames[ARM_PC_REGNUM]))
2424 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2425 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2429 arm_register_names[ARM_FPS_REGNUM] = "fps";
2430 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2433 /* Synchronize the disassembler. */
2434 set_arm_regname_option (current);
2437 /* arm_othernames implements the "othernames" command. This is kind
2438 of hacky, and I prefer the set-show disassembly-flavor which is
2439 also used for the x86 gdb. I will keep this around, however, in
2440 case anyone is actually using it. */
2443 arm_othernames (char *names, int n)
2445 /* Circle through the various flavors. */
2446 current_option = (current_option + 1) % num_flavor_options;
2448 disassembly_flavor = valid_flavors[current_option];
2449 set_disassembly_flavor ();
2452 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2453 for ARM linux targets using the struct offsets defined in <link.h>.
2454 Note, however, that link.h is not actually referred to in this file.
2455 Instead, the relevant structs offsets were obtained from examining
2456 link.h. (We can't refer to link.h from this file because the host
2457 system won't necessarily have it, or if it does, the structs which
2458 it defines will refer to the host system, not the target.) */
2460 struct link_map_offsets *
2461 arm_linux_svr4_fetch_link_map_offsets (void)
2463 static struct link_map_offsets lmo;
2464 static struct link_map_offsets *lmp = 0;
2470 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2473 lmo.r_map_offset = 4;
2476 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2479 lmo.l_addr_offset = 0;
2480 lmo.l_addr_size = 4;
2482 lmo.l_name_offset = 4;
2483 lmo.l_name_size = 4;
2485 lmo.l_next_offset = 12;
2486 lmo.l_next_size = 4;
2488 lmo.l_prev_offset = 16;
2489 lmo.l_prev_size = 4;
2495 /* Test whether the coff symbol specific value corresponds to a Thumb
2499 coff_sym_is_thumb (int val)
2501 return (val == C_THUMBEXT ||
2502 val == C_THUMBSTAT ||
2503 val == C_THUMBEXTFUNC ||
2504 val == C_THUMBSTATFUNC ||
2505 val == C_THUMBLABEL);
2508 /* arm_coff_make_msymbol_special()
2509 arm_elf_make_msymbol_special()
2511 These functions test whether the COFF or ELF symbol corresponds to
2512 an address in thumb code, and set a "special" bit in a minimal
2513 symbol to indicate that it does. */
2516 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2518 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2520 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2522 MSYMBOL_SET_SPECIAL (msym);
2526 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2528 if (coff_sym_is_thumb (val))
2529 MSYMBOL_SET_SPECIAL (msym);
2534 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2536 enum arm_abi *os_ident_ptr = obj;
2538 unsigned int sectsize;
2540 name = bfd_get_section_name (abfd, sect);
2541 sectsize = bfd_section_size (abfd, sect);
2543 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2545 unsigned int name_length, data_length, note_type;
2548 /* If the section is larger than this, it's probably not what we are
2553 note = alloca (sectsize);
2555 bfd_get_section_contents (abfd, sect, note,
2556 (file_ptr) 0, (bfd_size_type) sectsize);
2558 name_length = bfd_h_get_32 (abfd, note);
2559 data_length = bfd_h_get_32 (abfd, note + 4);
2560 note_type = bfd_h_get_32 (abfd, note + 8);
2562 if (name_length == 4 && data_length == 16 && note_type == 1
2563 && strcmp (note + 12, "GNU") == 0)
2565 int os_number = bfd_h_get_32 (abfd, note + 16);
2567 /* The case numbers are from abi-tags in glibc. */
2571 *os_ident_ptr = ARM_ABI_LINUX;
2576 (__FILE__, __LINE__,
2577 "process_note_abi_sections: Hurd objects not supported");
2582 (__FILE__, __LINE__,
2583 "process_note_abi_sections: Solaris objects not supported");
2588 (__FILE__, __LINE__,
2589 "process_note_abi_sections: unknown OS number %d",
2595 /* NetBSD uses a similar trick. */
2596 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
2598 unsigned int name_length, desc_length, note_type;
2601 /* If the section is larger than this, it's probably not what we are
2606 note = alloca (sectsize);
2608 bfd_get_section_contents (abfd, sect, note,
2609 (file_ptr) 0, (bfd_size_type) sectsize);
2611 name_length = bfd_h_get_32 (abfd, note);
2612 desc_length = bfd_h_get_32 (abfd, note + 4);
2613 note_type = bfd_h_get_32 (abfd, note + 8);
2615 if (name_length == 7 && desc_length == 4 && note_type == 1
2616 && strcmp (note + 12, "NetBSD") == 0)
2617 /* XXX Should we check the version here?
2618 Probably not necessary yet. */
2619 *os_ident_ptr = ARM_ABI_NETBSD_ELF;
2623 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2624 executables. If it's not an ELF executable or if the OS/ABI couldn't
2625 be determined, simply return -1. */
2628 get_elfosabi (bfd *abfd)
2631 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2633 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2635 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2636 that we're on a SYSV system. However, GNU/Linux uses a note section
2637 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2638 have to check the note sections too.
2640 GNU/ARM tools set the EI_OSABI field to ELFOSABI_ARM, so handle that
2642 if (elfosabi == 0 || elfosabi == ELFOSABI_ARM)
2644 bfd_map_over_sections (abfd,
2645 process_note_abi_tag_sections,
2649 if (arm_abi != ARM_ABI_UNKNOWN)
2655 /* Existing ARM Tools don't set this field, so look at the EI_FLAGS
2656 field for more information. */
2658 switch (EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags))
2660 case EF_ARM_EABI_VER1:
2661 return ARM_ABI_EABI_V1;
2663 case EF_ARM_EABI_VER2:
2664 return ARM_ABI_EABI_V2;
2666 case EF_ARM_EABI_UNKNOWN:
2667 /* Assume GNU tools. */
2668 return ARM_ABI_APCS;
2671 internal_error (__FILE__, __LINE__,
2672 "get_elfosabi: Unknown ARM EABI version 0x%lx",
2673 EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags));
2678 case ELFOSABI_NETBSD:
2679 return ARM_ABI_NETBSD_ELF;
2681 case ELFOSABI_FREEBSD:
2682 return ARM_ABI_FREEBSD;
2684 case ELFOSABI_LINUX:
2685 return ARM_ABI_LINUX;
2688 /* Assume GNU tools with the old APCS abi. */
2689 return ARM_ABI_APCS;
2694 return ARM_ABI_UNKNOWN;
2697 struct arm_abi_handler
2699 struct arm_abi_handler *next;
2701 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
2704 struct arm_abi_handler *arm_abi_handler_list = NULL;
2707 arm_gdbarch_register_os_abi (enum arm_abi abi,
2708 void (*init_abi)(struct gdbarch_info,
2711 struct arm_abi_handler **handler_p;
2713 for (handler_p = &arm_abi_handler_list; *handler_p != NULL;
2714 handler_p = &(*handler_p)->next)
2716 if ((*handler_p)->abi == abi)
2719 (__FILE__, __LINE__,
2720 "arm_gdbarch_register_os_abi: A handler for this ABI variant (%d)"
2721 " has already been registered", (int)abi);
2722 /* If user wants to continue, override previous definition. */
2723 (*handler_p)->init_abi = init_abi;
2729 = (struct arm_abi_handler *) xmalloc (sizeof (struct arm_abi_handler));
2730 (*handler_p)->next = NULL;
2731 (*handler_p)->abi = abi;
2732 (*handler_p)->init_abi = init_abi;
2735 /* Initialize the current architecture based on INFO. If possible, re-use an
2736 architecture from ARCHES, which is a list of architectures already created
2737 during this debugging session.
2739 Called e.g. at program startup, when reading a core file, and when reading
2742 static struct gdbarch *
2743 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2745 struct gdbarch_tdep *tdep;
2746 struct gdbarch *gdbarch;
2747 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2748 struct arm_abi_handler *abi_handler;
2750 /* Try to deterimine the ABI of the object we are loading. */
2752 if (info.abfd != NULL)
2754 switch (bfd_get_flavour (info.abfd))
2756 case bfd_target_elf_flavour:
2757 arm_abi = get_elfosabi (info.abfd);
2760 case bfd_target_aout_flavour:
2761 if (strcmp (bfd_get_target(info.abfd), "a.out-arm-netbsd") == 0)
2762 arm_abi = ARM_ABI_NETBSD_AOUT;
2764 /* Assume it's an old APCS-style ABI. */
2765 arm_abi = ARM_ABI_APCS;
2768 case bfd_target_coff_flavour:
2769 /* Assume it's an old APCS-style ABI. */
2771 arm_abi = ARM_ABI_APCS;
2775 /* Not sure what to do here, leave the ABI as unknown. */
2780 /* Find a candidate among extant architectures. */
2781 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2783 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2785 /* Make sure the ABI selection matches. */
2786 tdep = gdbarch_tdep (arches->gdbarch);
2787 if (tdep && tdep->arm_abi == arm_abi)
2788 return arches->gdbarch;
2791 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2792 gdbarch = gdbarch_alloc (&info, tdep);
2794 tdep->arm_abi = arm_abi;
2795 if (arm_abi < ARM_ABI_INVALID)
2796 tdep->abi_name = arm_abi_names[arm_abi];
2799 internal_error (__FILE__, __LINE__, "Invalid setting of arm_abi %d",
2801 tdep->abi_name = "<invalid>";
2804 /* This is the way it has always defaulted. */
2805 tdep->fp_model = ARM_FLOAT_FPA;
2808 switch (info.byte_order)
2810 case BFD_ENDIAN_BIG:
2811 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2812 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2813 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2814 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2818 case BFD_ENDIAN_LITTLE:
2819 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2820 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2821 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2822 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2827 internal_error (__FILE__, __LINE__,
2828 "arm_gdbarch_init: bad byte order for float format");
2831 /* On ARM targets char defaults to unsigned. */
2832 set_gdbarch_char_signed (gdbarch, 0);
2834 /* This should be low enough for everything. */
2835 tdep->lowest_pc = 0x20;
2836 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2838 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2840 /* Call dummy code. */
2841 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2842 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2843 /* We have to give this a value now, even though we will re-set it
2844 during each call to arm_fix_call_dummy. */
2845 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8);
2846 set_gdbarch_call_dummy_p (gdbarch, 1);
2847 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2849 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2850 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words));
2851 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2852 set_gdbarch_call_dummy_length (gdbarch, 0);
2854 set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy);
2856 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
2858 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2859 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2860 set_gdbarch_coerce_float_to_double (gdbarch,
2861 standard_coerce_float_to_double);
2863 /* Frame handling. */
2864 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
2865 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2866 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2867 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2868 set_gdbarch_frameless_function_invocation
2869 (gdbarch, arm_frameless_function_invocation);
2870 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2871 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2872 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2873 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2874 set_gdbarch_frame_args_skip (gdbarch, 0);
2875 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2876 set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame);
2877 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2879 /* Address manipulation. */
2880 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2881 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2883 /* Offset from address of function to start of its code. */
2884 set_gdbarch_function_start_offset (gdbarch, 0);
2886 /* Advance PC across function entry code. */
2887 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2889 /* Get the PC when a frame might not be available. */
2890 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2892 /* The stack grows downward. */
2893 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2895 /* Breakpoint manipulation. */
2896 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2897 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2899 /* Information about registers, etc. */
2900 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2901 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2902 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2903 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2904 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2905 set_gdbarch_register_bytes (gdbarch,
2906 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2907 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2908 + NUM_SREGS * STATUS_REGISTER_SIZE));
2909 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2910 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2911 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2912 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2913 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2914 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2916 /* Integer registers are 4 bytes. */
2917 set_gdbarch_register_size (gdbarch, 4);
2918 set_gdbarch_register_name (gdbarch, arm_register_name);
2920 /* Returning results. */
2921 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2922 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2923 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
2924 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2925 set_gdbarch_extract_struct_value_address (gdbarch,
2926 arm_extract_struct_value_address);
2928 /* Single stepping. */
2929 /* XXX For an RDI target we should ask the target if it can single-step. */
2930 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2932 /* Minsymbol frobbing. */
2933 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2934 set_gdbarch_coff_make_msymbol_special (gdbarch,
2935 arm_coff_make_msymbol_special);
2937 /* Hook in the ABI-specific overrides, if they have been registered. */
2938 if (arm_abi == ARM_ABI_UNKNOWN)
2940 /* Don't complain about not knowing the ABI variant if we don't
2941 have an inferior. */
2944 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2945 "Attempting to continue with the default ARM settings");
2949 for (abi_handler = arm_abi_handler_list; abi_handler != NULL;
2950 abi_handler = abi_handler->next)
2951 if (abi_handler->abi == arm_abi)
2955 abi_handler->init_abi (info, gdbarch);
2958 /* We assume that if GDB_MULTI_ARCH is less than
2959 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2960 overriding definitions in this file. */
2961 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2964 "A handler for the ABI variant \"%s\" is not built into this "
2965 "configuration of GDB. "
2966 "Attempting to continue with the default ARM settings",
2967 arm_abi_names[arm_abi]);
2971 /* Now we have tuned the configuration, set a few final things,
2972 based on what the OS ABI has told us. */
2974 if (tdep->jb_pc >= 0)
2975 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2977 /* Floating point sizes and format. */
2978 switch (info.byte_order)
2980 case BFD_ENDIAN_BIG:
2981 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2982 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2983 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2987 case BFD_ENDIAN_LITTLE:
2988 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2989 if (tdep->fp_model == ARM_FLOAT_VFP
2990 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
2992 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2993 set_gdbarch_long_double_format (gdbarch,
2994 &floatformat_ieee_double_little);
2998 set_gdbarch_double_format
2999 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3000 set_gdbarch_long_double_format
3001 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3006 internal_error (__FILE__, __LINE__,
3007 "arm_gdbarch_init: bad byte order for float format");
3010 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
3011 references the old architecture vector, not the one we are
3013 if (prologue_cache.saved_regs != NULL)
3014 xfree (prologue_cache.saved_regs);
3016 prologue_cache.saved_regs = (CORE_ADDR *)
3017 xcalloc (1, (sizeof (CORE_ADDR)
3018 * (gdbarch_num_regs (gdbarch) + NUM_PSEUDO_REGS)));
3024 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3026 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3031 if (tdep->abi_name != NULL)
3032 fprintf_unfiltered (file, "arm_dump_tdep: ABI = %s\n", tdep->abi_name);
3034 internal_error (__FILE__, __LINE__,
3035 "arm_dump_tdep: illegal setting of tdep->arm_abi (%d)",
3036 (int) tdep->arm_abi);
3038 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3039 (unsigned long) tdep->lowest_pc);
3043 arm_init_abi_eabi_v1 (struct gdbarch_info info,
3044 struct gdbarch *gdbarch)
3050 arm_init_abi_eabi_v2 (struct gdbarch_info info,
3051 struct gdbarch *gdbarch)
3057 arm_init_abi_apcs (struct gdbarch_info info,
3058 struct gdbarch *gdbarch)
3064 _initialize_arm_tdep (void)
3066 struct ui_file *stb;
3068 struct cmd_list_element *new_cmd;
3069 const char *setname;
3070 const char *setdesc;
3071 const char **regnames;
3073 static char *helptext;
3076 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3078 /* Register some ABI variants for embedded systems. */
3079 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V1, arm_init_abi_eabi_v1);
3080 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V2, arm_init_abi_eabi_v2);
3081 arm_gdbarch_register_os_abi (ARM_ABI_APCS, arm_init_abi_apcs);
3083 tm_print_insn = gdb_print_insn_arm;
3085 /* Get the number of possible sets of register names defined in opcodes. */
3086 num_flavor_options = get_arm_regname_num_options ();
3088 /* Sync the opcode insn printer with our register viewer: */
3089 parse_arm_disassembler_option ("reg-names-std");
3091 /* Begin creating the help text. */
3092 stb = mem_fileopen ();
3093 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3094 The valid values are:\n");
3096 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3097 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3098 for (i = 0; i < num_flavor_options; i++)
3100 numregs = get_arm_regnames (i, &setname, &setdesc, ®names);
3101 valid_flavors[i] = setname;
3102 fprintf_unfiltered (stb, "%s - %s\n", setname,
3104 /* Copy the default names (if found) and synchronize disassembler. */
3105 if (!strcmp (setname, "std"))
3107 disassembly_flavor = setname;
3109 for (j = 0; j < numregs; j++)
3110 arm_register_names[j] = (char *) regnames[j];
3111 set_arm_regname_option (i);
3114 /* Mark the end of valid options. */
3115 valid_flavors[num_flavor_options] = NULL;
3117 /* Finish the creation of the help text. */
3118 fprintf_unfiltered (stb, "The default is \"std\".");
3119 helptext = ui_file_xstrdup (stb, &length);
3120 ui_file_delete (stb);
3122 /* Add the disassembly-flavor command */
3123 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
3125 &disassembly_flavor,
3128 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
3129 add_show_from_set (new_cmd, &showlist);
3131 /* ??? Maybe this should be a boolean. */
3132 add_show_from_set (add_set_cmd ("apcs32", no_class,
3133 var_zinteger, (char *) &arm_apcs_32,
3134 "Set usage of ARM 32-bit mode.\n", &setlist),
3137 /* Add the deprecated "othernames" command */
3139 add_com ("othernames", class_obscure, arm_othernames,
3140 "Switch to the next set of register names.");
3142 /* Fill in the prologue_cache fields. */
3143 prologue_cache.saved_regs = NULL;
3144 prologue_cache.extra_info = (struct frame_extra_info *)
3145 xcalloc (1, sizeof (struct frame_extra_info));