1 /* Machine-dependent code which would otherwise be in infptrace.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
30 #include <sys/types.h>
33 #include <sys/param.h>
36 #include <sys/ioctl.h>
38 #include <sys/ptrace.h>
42 #define PT_ATTACH PTRACE_ATTACH
45 #define PT_DETACH PTRACE_DETACH
49 #include <sys/user.h> /* After a.out.h */
53 /* This function simply calls ptrace with the given arguments.
54 It exists so that all calls to ptrace are isolated in this
55 machine-dependent file. */
57 call_ptrace (request, pid, addr, data)
59 PTRACE_ARG3_TYPE addr;
62 return ptrace (request, pid, addr, data, 0);
66 /* For the rest of the file, use an extra level of indirection */
67 /* This lets us breakpoint usefully on call_ptrace. */
68 #define ptrace call_ptrace
71 /* This is used when GDB is exiting. It gives less chance of error.*/
76 if (inferior_pid == 0)
78 ptrace (PT_EXIT, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0, 0); /* PT_EXIT = PT_KILL ? */
85 kill_inferior_fast ();
86 target_mourn_inferior ();
89 /* Resume execution of the inferior process.
90 If STEP is nonzero, single-step it.
91 If SIGNAL is nonzero, give it that signal. */
94 child_resume (step, signal)
100 /* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where
101 it was. (If GDB wanted it to start some other way, we have already
102 written a new PC value to the child.) */
105 ptrace (PT_SINGLE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
107 ptrace (PT_CONTIN, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
110 perror_with_name ("ptrace");
114 /* Nonzero if we are debugging an attached process rather than
116 extern int attach_flag;
118 /* Start debugging the process whose number is PID. */
124 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0, 0);
126 perror_with_name ("ptrace");
131 /* Stop debugging the process whose number is PID
132 and continue it with signal number SIGNAL.
133 SIGNAL = 0 means just continue it. */
140 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
142 perror_with_name ("ptrace");
145 #endif /* ATTACH_DETACH */
147 #if !defined (FETCH_INFERIOR_REGISTERS)
149 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
150 to get the offset in the core file of the register values. */
151 #if defined (KERNEL_U_ADDR_BSD)
152 /* Get kernel_u_addr using BSD-style nlist(). */
153 CORE_ADDR kernel_u_addr;
155 #include <a.out.gnu.h> /* For struct nlist */
158 _initialize_kernel_u_addr ()
160 struct nlist names[2];
162 names[0].n_un.n_name = "_u";
163 names[1].n_un.n_name = NULL;
164 if (nlist ("/vmunix", names) == 0)
165 kernel_u_addr = names[0].n_value;
167 fatal ("Unable to get kernel u area address.");
169 #endif /* KERNEL_U_ADDR_BSD. */
171 #if defined (KERNEL_U_ADDR_HPUX)
172 /* Get kernel_u_addr using HPUX-style nlist(). */
173 CORE_ADDR kernel_u_addr;
178 unsigned char n_type;
179 unsigned char n_length;
183 static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
185 /* read the value of the u area from the hp-ux kernel */
186 void _initialize_kernel_u_addr ()
189 nlist ("/hp-ux", &nl);
190 kernel_u_addr = nl[0].n_value;
192 #endif /* KERNEL_U_ADDR_HPUX. */
194 #if !defined (offsetof)
195 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
198 /* U_REGS_OFFSET is the offset of the registers within the u area. */
199 #if !defined (U_REGS_OFFSET)
200 #define U_REGS_OFFSET \
201 ptrace (PT_READ_U, inferior_pid, \
202 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0, 0) \
206 /* Registers we shouldn't try to fetch. */
207 #if !defined (CANNOT_FETCH_REGISTER)
208 #define CANNOT_FETCH_REGISTER(regno) 0
211 /* Fetch one register. */
214 fetch_register (regno)
217 register unsigned int regaddr;
218 char buf[MAX_REGISTER_RAW_SIZE];
219 char mess[128]; /* For messages */
222 /* Offset of registers within the u area. */
225 if (CANNOT_FETCH_REGISTER (regno))
227 bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
228 supply_register (regno, buf);
232 offset = U_REGS_OFFSET;
234 regaddr = register_addr (regno, offset);
235 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
238 *(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid,
239 (PTRACE_ARG3_TYPE) regaddr, 0, 0);
240 regaddr += sizeof (int);
243 sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
244 perror_with_name (mess);
247 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
249 supply_register (regno, buf);
253 /* Fetch all registers, or just one, from the child process. */
256 fetch_inferior_registers (regno)
260 for (regno = 0; regno < NUM_REGS; regno++)
261 fetch_register (regno);
263 fetch_register (regno);
266 /* Registers we shouldn't try to store. */
267 #if !defined (CANNOT_STORE_REGISTER)
268 #define CANNOT_STORE_REGISTER(regno) 0
271 /* Store our register values back into the inferior.
272 If REGNO is -1, do this for all registers.
273 Otherwise, REGNO specifies which register (so we can save time). */
276 store_inferior_registers (regno)
279 register unsigned int regaddr;
281 extern char registers[];
284 unsigned int offset = U_REGS_OFFSET;
288 regaddr = register_addr (regno, offset);
289 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
292 ptrace (PT_WUAREA, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
293 *(int *) ®isters[REGISTER_BYTE (regno) + i], 0);
296 sprintf (buf, "writing register number %d(%d)", regno, i);
297 perror_with_name (buf);
299 regaddr += sizeof(int);
304 for (regno = 0; regno < NUM_REGS; regno++)
306 if (CANNOT_STORE_REGISTER (regno))
308 regaddr = register_addr (regno, offset);
309 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
312 ptrace (PT_WUAREA, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
313 *(int *) ®isters[REGISTER_BYTE (regno) + i], 0);
316 sprintf (buf, "writing register number %d(%d)", regno, i);
317 perror_with_name (buf);
319 regaddr += sizeof(int);
325 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
327 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
328 in the NEW_SUN_PTRACE case.
329 It ought to be straightforward. But it appears that writing did
330 not write the data that I specified. I cannot understand where
331 it got the data that it actually did write. */
333 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
334 to debugger memory starting at MYADDR. Copy to inferior if
337 Returns the length copied, which is either the LEN argument or zero.
338 This xfer function does not do partial moves, since child_ops
339 doesn't allow memory operations to cross below us in the target stack
343 child_xfer_memory (memaddr, myaddr, len, write, target)
348 struct target_ops *target; /* ignored */
351 /* Round starting address down to longword boundary. */
352 register CORE_ADDR addr = memaddr & - sizeof (int);
353 /* Round ending address up; get number of longwords that makes. */
355 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
356 /* Allocate buffer of that many longwords. */
357 register int *buffer = (int *) alloca (count * sizeof (int));
361 /* Fill start and end extra bytes of buffer with existing memory data. */
363 if (addr != memaddr || len < (int)sizeof (int)) {
364 /* Need part of initial word -- fetch it. */
365 buffer[0] = ptrace (PT_RIUSER, inferior_pid,
366 (PTRACE_ARG3_TYPE) addr, 0, 0);
369 if (count > 1) /* FIXME, avoid if even boundary */
372 = ptrace (PT_RIUSER, inferior_pid,
373 (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
377 /* Copy data to be written over corresponding part of buffer */
379 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
381 /* Write the entire buffer. */
383 for (i = 0; i < count; i++, addr += sizeof (int))
386 /* The HP-UX kernel crashes if you use PT_WDUSER to write into the text
387 segment. FIXME -- does it work to write into the data segment using
388 WIUSER, or do these idiots really expect us to figure out which segment
389 the address is in, so we can use a separate system call for it??! */
391 ptrace (PT_WDUSER, inferior_pid, (PTRACE_ARG3_TYPE) addr,
396 /* Using the appropriate one (I or D) is necessary for
397 Gould NP1, at least. */
399 ptrace (PT_WIUSER, inferior_pid, (PTRACE_ARG3_TYPE) addr,
408 /* Read all the longwords */
409 for (i = 0; i < count; i++, addr += sizeof (int))
412 buffer[i] = ptrace (PT_RIUSER, inferior_pid,
413 (PTRACE_ARG3_TYPE) addr, 0, 0);
419 /* Copy appropriate bytes out of the buffer. */
420 bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);