1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
59 #include "completer.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "filestuff.h"
74 #include <sys/types.h>
76 typedef struct symbol *symbolp;
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
93 static const struct objfile_data *dwarf2_objfile_data_key;
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
102 /* A descriptor for dwarf sections.
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
118 struct dwarf2_section_info
122 /* If this is a real section, the bfd section. */
124 /* If this is a virtual section, pointer to the containing ("real")
126 struct dwarf2_section_info *containing_section;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
149 DEF_VEC_I (offset_type);
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
177 /* Index data format version. */
180 /* The total length of the buffer. */
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
204 int nr_uniq_abbrev_tables;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
214 struct dwarf2_per_objfile
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
229 VEC (dwarf2_section_info_def) *types;
232 struct objfile *objfile;
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
238 /* The number of compilation units in ALL_COMP_UNITS. */
241 /* The number of .debug_types-related CUs. */
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
260 /* Type unit statistics, to see how well the scaling improvements
262 struct tu_stats tu_stats;
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
272 /* Non-zero if we've check for whether there is a DWP file. */
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
282 /* A flag indicating wether this objfile has a section loaded at a
284 int has_section_at_zero;
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
302 /* Set during partial symbol reading, to prevent queueing of full
304 int reading_partial_symbols;
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
320 /* Default names of the debugging sections. */
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
343 /* List of DWO/DWP sections. */
345 static const struct dwop_section_names
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
374 /* local data types */
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
405 /* The type to which the method is attached, i.e., its parent class. */
408 /* The index of the method in the type's function fieldlists. */
411 /* The index of the method in the fieldlist. */
414 /* The name of the DIE. */
417 /* The DIE associated with this method. */
418 struct die_info *die;
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
424 /* Internal state when decoding a particular compilation unit. */
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
436 /* Non-zero if base_address has been set. */
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
443 const char *producer;
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
478 /* How many compilation units ago was this CU last referenced? */
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
485 /* Full DIEs if read in. */
486 struct die_info *dies;
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
512 struct dwo_unit *dwo_unit;
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
553 unsigned int processing_has_namespace_info : 1;
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
560 struct dwarf2_per_cu_data
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
565 If the DIE refers to a DWO file, this is always of the original die,
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
583 unsigned int is_debug_types : 1;
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
607 struct dwarf2_section_info *section;
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
651 /* Entry in the signatured_types hash table. */
653 struct signatured_type
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
659 struct dwarf2_per_cu_data per_cu;
661 /* The type's signature. */
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
696 struct stmt_list_hash
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
708 struct type_unit_group
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
735 /* The symbol tables for this TU (obtained from the files listed in
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
746 /* These sections are what may appear in a (real or virtual) DWO file. */
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
762 /* CUs/TUs in DWP/DWO files. */
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
789 enum dwp_v2_section_ids
794 /* Data for one DWO file.
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
837 /* These sections are what may appear in a DWP file. */
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
867 struct virtual_v1_dwo_sections
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
885 struct virtual_v2_dwo_sections
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
911 /* Contents of DWP hash tables. */
913 struct dwp_hash_table
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
922 const gdb_byte *indices;
926 /* This is indexed by column number and gives the id of the section
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
942 /* Data for one DWP file. */
946 /* Name of the file. */
949 /* File format version. */
955 /* Section info for this file. */
956 struct dwp_sections sections;
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
974 /* This represents a '.dwz' file. */
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
995 struct die_reader_specs
997 /* The bfd of die_section. */
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 int included_p; /* Non-zero if referenced by the Line Number Program. */
1034 struct symtab *symtab; /* The associated symbol table, if any. */
1037 /* The line number information for a compilation unit (found in the
1038 .debug_line section) begins with a "statement program header",
1039 which contains the following information. */
1042 /* Offset of line number information in .debug_line section. */
1045 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1046 unsigned offset_in_dwz : 1;
1048 unsigned int total_length;
1049 unsigned short version;
1050 unsigned int header_length;
1051 unsigned char minimum_instruction_length;
1052 unsigned char maximum_ops_per_instruction;
1053 unsigned char default_is_stmt;
1055 unsigned char line_range;
1056 unsigned char opcode_base;
1058 /* standard_opcode_lengths[i] is the number of operands for the
1059 standard opcode whose value is i. This means that
1060 standard_opcode_lengths[0] is unused, and the last meaningful
1061 element is standard_opcode_lengths[opcode_base - 1]. */
1062 unsigned char *standard_opcode_lengths;
1064 /* The include_directories table. NOTE! These strings are not
1065 allocated with xmalloc; instead, they are pointers into
1066 debug_line_buffer. If you try to free them, `free' will get
1068 unsigned int num_include_dirs, include_dirs_size;
1069 const char **include_dirs;
1071 /* The file_names table. NOTE! These strings are not allocated
1072 with xmalloc; instead, they are pointers into debug_line_buffer.
1073 Don't try to free them directly. */
1074 unsigned int num_file_names, file_names_size;
1075 struct file_entry *file_names;
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start, *statement_program_end;
1082 /* When we construct a partial symbol table entry we only
1083 need this much information. */
1084 struct partial_die_info
1086 /* Offset of this DIE. */
1089 /* DWARF-2 tag for this DIE. */
1090 ENUM_BITFIELD(dwarf_tag) tag : 16;
1092 /* Assorted flags describing the data found in this DIE. */
1093 unsigned int has_children : 1;
1094 unsigned int is_external : 1;
1095 unsigned int is_declaration : 1;
1096 unsigned int has_type : 1;
1097 unsigned int has_specification : 1;
1098 unsigned int has_pc_info : 1;
1099 unsigned int may_be_inlined : 1;
1101 /* Flag set if the SCOPE field of this structure has been
1103 unsigned int scope_set : 1;
1105 /* Flag set if the DIE has a byte_size attribute. */
1106 unsigned int has_byte_size : 1;
1108 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1109 unsigned int has_const_value : 1;
1111 /* Flag set if any of the DIE's children are template arguments. */
1112 unsigned int has_template_arguments : 1;
1114 /* Flag set if fixup_partial_die has been called on this die. */
1115 unsigned int fixup_called : 1;
1117 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1118 unsigned int is_dwz : 1;
1120 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1121 unsigned int spec_is_dwz : 1;
1123 /* The name of this DIE. Normally the value of DW_AT_name, but
1124 sometimes a default name for unnamed DIEs. */
1127 /* The linkage name, if present. */
1128 const char *linkage_name;
1130 /* The scope to prepend to our children. This is generally
1131 allocated on the comp_unit_obstack, so will disappear
1132 when this compilation unit leaves the cache. */
1135 /* Some data associated with the partial DIE. The tag determines
1136 which field is live. */
1139 /* The location description associated with this DIE, if any. */
1140 struct dwarf_block *locdesc;
1141 /* The offset of an import, for DW_TAG_imported_unit. */
1145 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1149 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1150 DW_AT_sibling, if any. */
1151 /* NOTE: This member isn't strictly necessary, read_partial_die could
1152 return DW_AT_sibling values to its caller load_partial_dies. */
1153 const gdb_byte *sibling;
1155 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1156 DW_AT_specification (or DW_AT_abstract_origin or
1157 DW_AT_extension). */
1158 sect_offset spec_offset;
1160 /* Pointers to this DIE's parent, first child, and next sibling,
1162 struct partial_die_info *die_parent, *die_child, *die_sibling;
1165 /* This data structure holds the information of an abbrev. */
1168 unsigned int number; /* number identifying abbrev */
1169 enum dwarf_tag tag; /* dwarf tag */
1170 unsigned short has_children; /* boolean */
1171 unsigned short num_attrs; /* number of attributes */
1172 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1173 struct abbrev_info *next; /* next in chain */
1178 ENUM_BITFIELD(dwarf_attribute) name : 16;
1179 ENUM_BITFIELD(dwarf_form) form : 16;
1182 /* Size of abbrev_table.abbrev_hash_table. */
1183 #define ABBREV_HASH_SIZE 121
1185 /* Top level data structure to contain an abbreviation table. */
1189 /* Where the abbrev table came from.
1190 This is used as a sanity check when the table is used. */
1193 /* Storage for the abbrev table. */
1194 struct obstack abbrev_obstack;
1196 /* Hash table of abbrevs.
1197 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1198 It could be statically allocated, but the previous code didn't so we
1200 struct abbrev_info **abbrevs;
1203 /* Attributes have a name and a value. */
1206 ENUM_BITFIELD(dwarf_attribute) name : 16;
1207 ENUM_BITFIELD(dwarf_form) form : 15;
1209 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1210 field should be in u.str (existing only for DW_STRING) but it is kept
1211 here for better struct attribute alignment. */
1212 unsigned int string_is_canonical : 1;
1217 struct dwarf_block *blk;
1226 /* This data structure holds a complete die structure. */
1229 /* DWARF-2 tag for this DIE. */
1230 ENUM_BITFIELD(dwarf_tag) tag : 16;
1232 /* Number of attributes */
1233 unsigned char num_attrs;
1235 /* True if we're presently building the full type name for the
1236 type derived from this DIE. */
1237 unsigned char building_fullname : 1;
1239 /* True if this die is in process. PR 16581. */
1240 unsigned char in_process : 1;
1243 unsigned int abbrev;
1245 /* Offset in .debug_info or .debug_types section. */
1248 /* The dies in a compilation unit form an n-ary tree. PARENT
1249 points to this die's parent; CHILD points to the first child of
1250 this node; and all the children of a given node are chained
1251 together via their SIBLING fields. */
1252 struct die_info *child; /* Its first child, if any. */
1253 struct die_info *sibling; /* Its next sibling, if any. */
1254 struct die_info *parent; /* Its parent, if any. */
1256 /* An array of attributes, with NUM_ATTRS elements. There may be
1257 zero, but it's not common and zero-sized arrays are not
1258 sufficiently portable C. */
1259 struct attribute attrs[1];
1262 /* Get at parts of an attribute structure. */
1264 #define DW_STRING(attr) ((attr)->u.str)
1265 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1266 #define DW_UNSND(attr) ((attr)->u.unsnd)
1267 #define DW_BLOCK(attr) ((attr)->u.blk)
1268 #define DW_SND(attr) ((attr)->u.snd)
1269 #define DW_ADDR(attr) ((attr)->u.addr)
1270 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1272 /* Blocks are a bunch of untyped bytes. */
1277 /* Valid only if SIZE is not zero. */
1278 const gdb_byte *data;
1281 #ifndef ATTR_ALLOC_CHUNK
1282 #define ATTR_ALLOC_CHUNK 4
1285 /* Allocate fields for structs, unions and enums in this size. */
1286 #ifndef DW_FIELD_ALLOC_CHUNK
1287 #define DW_FIELD_ALLOC_CHUNK 4
1290 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1291 but this would require a corresponding change in unpack_field_as_long
1293 static int bits_per_byte = 8;
1297 struct nextfield *next;
1305 struct nextfnfield *next;
1306 struct fn_field fnfield;
1313 struct nextfnfield *head;
1316 struct typedef_field_list
1318 struct typedef_field field;
1319 struct typedef_field_list *next;
1322 /* The routines that read and process dies for a C struct or C++ class
1323 pass lists of data member fields and lists of member function fields
1324 in an instance of a field_info structure, as defined below. */
1327 /* List of data member and baseclasses fields. */
1328 struct nextfield *fields, *baseclasses;
1330 /* Number of fields (including baseclasses). */
1333 /* Number of baseclasses. */
1336 /* Set if the accesibility of one of the fields is not public. */
1337 int non_public_fields;
1339 /* Member function fields array, entries are allocated in the order they
1340 are encountered in the object file. */
1341 struct nextfnfield *fnfields;
1343 /* Member function fieldlist array, contains name of possibly overloaded
1344 member function, number of overloaded member functions and a pointer
1345 to the head of the member function field chain. */
1346 struct fnfieldlist *fnfieldlists;
1348 /* Number of entries in the fnfieldlists array. */
1351 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1352 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1353 struct typedef_field_list *typedef_field_list;
1354 unsigned typedef_field_list_count;
1357 /* One item on the queue of compilation units to read in full symbols
1359 struct dwarf2_queue_item
1361 struct dwarf2_per_cu_data *per_cu;
1362 enum language pretend_language;
1363 struct dwarf2_queue_item *next;
1366 /* The current queue. */
1367 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1369 /* Loaded secondary compilation units are kept in memory until they
1370 have not been referenced for the processing of this many
1371 compilation units. Set this to zero to disable caching. Cache
1372 sizes of up to at least twenty will improve startup time for
1373 typical inter-CU-reference binaries, at an obvious memory cost. */
1374 static int dwarf2_max_cache_age = 5;
1376 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1377 struct cmd_list_element *c, const char *value)
1379 fprintf_filtered (file, _("The upper bound on the age of cached "
1380 "dwarf2 compilation units is %s.\n"),
1384 /* local function prototypes */
1386 static const char *get_section_name (const struct dwarf2_section_info *);
1388 static const char *get_section_file_name (const struct dwarf2_section_info *);
1390 static void dwarf2_locate_sections (bfd *, asection *, void *);
1392 static void dwarf2_find_base_address (struct die_info *die,
1393 struct dwarf2_cu *cu);
1395 static struct partial_symtab *create_partial_symtab
1396 (struct dwarf2_per_cu_data *per_cu, const char *name);
1398 static void dwarf2_build_psymtabs_hard (struct objfile *);
1400 static void scan_partial_symbols (struct partial_die_info *,
1401 CORE_ADDR *, CORE_ADDR *,
1402 int, struct dwarf2_cu *);
1404 static void add_partial_symbol (struct partial_die_info *,
1405 struct dwarf2_cu *);
1407 static void add_partial_namespace (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1409 int set_addrmap, struct dwarf2_cu *cu);
1411 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1412 CORE_ADDR *highpc, int set_addrmap,
1413 struct dwarf2_cu *cu);
1415 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1416 struct dwarf2_cu *cu);
1418 static void add_partial_subprogram (struct partial_die_info *pdi,
1419 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1420 int need_pc, struct dwarf2_cu *cu);
1422 static void dwarf2_read_symtab (struct partial_symtab *,
1425 static void psymtab_to_symtab_1 (struct partial_symtab *);
1427 static struct abbrev_info *abbrev_table_lookup_abbrev
1428 (const struct abbrev_table *, unsigned int);
1430 static struct abbrev_table *abbrev_table_read_table
1431 (struct dwarf2_section_info *, sect_offset);
1433 static void abbrev_table_free (struct abbrev_table *);
1435 static void abbrev_table_free_cleanup (void *);
1437 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1438 struct dwarf2_section_info *);
1440 static void dwarf2_free_abbrev_table (void *);
1442 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1444 static struct partial_die_info *load_partial_dies
1445 (const struct die_reader_specs *, const gdb_byte *, int);
1447 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1448 struct partial_die_info *,
1449 struct abbrev_info *,
1453 static struct partial_die_info *find_partial_die (sect_offset, int,
1454 struct dwarf2_cu *);
1456 static void fixup_partial_die (struct partial_die_info *,
1457 struct dwarf2_cu *);
1459 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1460 struct attribute *, struct attr_abbrev *,
1463 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1465 static int read_1_signed_byte (bfd *, const gdb_byte *);
1467 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1469 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1471 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1473 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1476 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1478 static LONGEST read_checked_initial_length_and_offset
1479 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1480 unsigned int *, unsigned int *);
1482 static LONGEST read_offset (bfd *, const gdb_byte *,
1483 const struct comp_unit_head *,
1486 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1488 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1491 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1493 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1495 static const char *read_indirect_string (bfd *, const gdb_byte *,
1496 const struct comp_unit_head *,
1499 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1501 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1503 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1505 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1509 static const char *read_str_index (const struct die_reader_specs *reader,
1510 ULONGEST str_index);
1512 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1514 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1515 struct dwarf2_cu *);
1517 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1520 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1521 struct dwarf2_cu *cu);
1523 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1525 static struct die_info *die_specification (struct die_info *die,
1526 struct dwarf2_cu **);
1528 static void free_line_header (struct line_header *lh);
1530 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1531 struct dwarf2_cu *cu);
1533 static void dwarf_decode_lines (struct line_header *, const char *,
1534 struct dwarf2_cu *, struct partial_symtab *,
1535 CORE_ADDR, int decode_mapping);
1537 static void dwarf2_start_subfile (const char *, const char *);
1539 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1540 const char *, const char *,
1543 static struct symbol *new_symbol (struct die_info *, struct type *,
1544 struct dwarf2_cu *);
1546 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1547 struct dwarf2_cu *, struct symbol *);
1549 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1550 struct dwarf2_cu *);
1552 static void dwarf2_const_value_attr (const struct attribute *attr,
1555 struct obstack *obstack,
1556 struct dwarf2_cu *cu, LONGEST *value,
1557 const gdb_byte **bytes,
1558 struct dwarf2_locexpr_baton **baton);
1560 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1562 static int need_gnat_info (struct dwarf2_cu *);
1564 static struct type *die_descriptive_type (struct die_info *,
1565 struct dwarf2_cu *);
1567 static void set_descriptive_type (struct type *, struct die_info *,
1568 struct dwarf2_cu *);
1570 static struct type *die_containing_type (struct die_info *,
1571 struct dwarf2_cu *);
1573 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1574 struct dwarf2_cu *);
1576 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1578 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1580 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1582 static char *typename_concat (struct obstack *obs, const char *prefix,
1583 const char *suffix, int physname,
1584 struct dwarf2_cu *cu);
1586 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1588 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1590 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1592 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1594 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1596 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1597 struct dwarf2_cu *, struct partial_symtab *);
1599 static int dwarf2_get_pc_bounds (struct die_info *,
1600 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1601 struct partial_symtab *);
1603 static void get_scope_pc_bounds (struct die_info *,
1604 CORE_ADDR *, CORE_ADDR *,
1605 struct dwarf2_cu *);
1607 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1608 CORE_ADDR, struct dwarf2_cu *);
1610 static void dwarf2_add_field (struct field_info *, struct die_info *,
1611 struct dwarf2_cu *);
1613 static void dwarf2_attach_fields_to_type (struct field_info *,
1614 struct type *, struct dwarf2_cu *);
1616 static void dwarf2_add_member_fn (struct field_info *,
1617 struct die_info *, struct type *,
1618 struct dwarf2_cu *);
1620 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1622 struct dwarf2_cu *);
1624 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1626 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1628 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1630 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1632 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1634 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1636 static struct type *read_module_type (struct die_info *die,
1637 struct dwarf2_cu *cu);
1639 static const char *namespace_name (struct die_info *die,
1640 int *is_anonymous, struct dwarf2_cu *);
1642 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1644 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1646 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1647 struct dwarf2_cu *);
1649 static struct die_info *read_die_and_siblings_1
1650 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1653 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1654 const gdb_byte *info_ptr,
1655 const gdb_byte **new_info_ptr,
1656 struct die_info *parent);
1658 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1659 struct die_info **, const gdb_byte *,
1662 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1663 struct die_info **, const gdb_byte *,
1666 static void process_die (struct die_info *, struct dwarf2_cu *);
1668 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1671 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1673 static const char *dwarf2_full_name (const char *name,
1674 struct die_info *die,
1675 struct dwarf2_cu *cu);
1677 static const char *dwarf2_physname (const char *name, struct die_info *die,
1678 struct dwarf2_cu *cu);
1680 static struct die_info *dwarf2_extension (struct die_info *die,
1681 struct dwarf2_cu **);
1683 static const char *dwarf_tag_name (unsigned int);
1685 static const char *dwarf_attr_name (unsigned int);
1687 static const char *dwarf_form_name (unsigned int);
1689 static char *dwarf_bool_name (unsigned int);
1691 static const char *dwarf_type_encoding_name (unsigned int);
1693 static struct die_info *sibling_die (struct die_info *);
1695 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1697 static void dump_die_for_error (struct die_info *);
1699 static void dump_die_1 (struct ui_file *, int level, int max_level,
1702 /*static*/ void dump_die (struct die_info *, int max_level);
1704 static void store_in_ref_table (struct die_info *,
1705 struct dwarf2_cu *);
1707 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1709 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1711 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1712 const struct attribute *,
1713 struct dwarf2_cu **);
1715 static struct die_info *follow_die_ref (struct die_info *,
1716 const struct attribute *,
1717 struct dwarf2_cu **);
1719 static struct die_info *follow_die_sig (struct die_info *,
1720 const struct attribute *,
1721 struct dwarf2_cu **);
1723 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1724 struct dwarf2_cu *);
1726 static struct type *get_DW_AT_signature_type (struct die_info *,
1727 const struct attribute *,
1728 struct dwarf2_cu *);
1730 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1732 static void read_signatured_type (struct signatured_type *);
1734 /* memory allocation interface */
1736 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1738 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1740 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1742 static int attr_form_is_block (const struct attribute *);
1744 static int attr_form_is_section_offset (const struct attribute *);
1746 static int attr_form_is_constant (const struct attribute *);
1748 static int attr_form_is_ref (const struct attribute *);
1750 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1751 struct dwarf2_loclist_baton *baton,
1752 const struct attribute *attr);
1754 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1756 struct dwarf2_cu *cu,
1759 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1760 const gdb_byte *info_ptr,
1761 struct abbrev_info *abbrev);
1763 static void free_stack_comp_unit (void *);
1765 static hashval_t partial_die_hash (const void *item);
1767 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1769 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1770 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1772 static void init_one_comp_unit (struct dwarf2_cu *cu,
1773 struct dwarf2_per_cu_data *per_cu);
1775 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1776 struct die_info *comp_unit_die,
1777 enum language pretend_language);
1779 static void free_heap_comp_unit (void *);
1781 static void free_cached_comp_units (void *);
1783 static void age_cached_comp_units (void);
1785 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1787 static struct type *set_die_type (struct die_info *, struct type *,
1788 struct dwarf2_cu *);
1790 static void create_all_comp_units (struct objfile *);
1792 static int create_all_type_units (struct objfile *);
1794 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1797 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1800 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1803 static void dwarf2_add_dependence (struct dwarf2_cu *,
1804 struct dwarf2_per_cu_data *);
1806 static void dwarf2_mark (struct dwarf2_cu *);
1808 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1810 static struct type *get_die_type_at_offset (sect_offset,
1811 struct dwarf2_per_cu_data *);
1813 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1815 static void dwarf2_release_queue (void *dummy);
1817 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1818 enum language pretend_language);
1820 static void process_queue (void);
1822 static void find_file_and_directory (struct die_info *die,
1823 struct dwarf2_cu *cu,
1824 const char **name, const char **comp_dir);
1826 static char *file_full_name (int file, struct line_header *lh,
1827 const char *comp_dir);
1829 static const gdb_byte *read_and_check_comp_unit_head
1830 (struct comp_unit_head *header,
1831 struct dwarf2_section_info *section,
1832 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1833 int is_debug_types_section);
1835 static void init_cutu_and_read_dies
1836 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1837 int use_existing_cu, int keep,
1838 die_reader_func_ftype *die_reader_func, void *data);
1840 static void init_cutu_and_read_dies_simple
1841 (struct dwarf2_per_cu_data *this_cu,
1842 die_reader_func_ftype *die_reader_func, void *data);
1844 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1846 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1848 static struct dwo_unit *lookup_dwo_unit_in_dwp
1849 (struct dwp_file *dwp_file, const char *comp_dir,
1850 ULONGEST signature, int is_debug_types);
1852 static struct dwp_file *get_dwp_file (void);
1854 static struct dwo_unit *lookup_dwo_comp_unit
1855 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1857 static struct dwo_unit *lookup_dwo_type_unit
1858 (struct signatured_type *, const char *, const char *);
1860 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1862 static void free_dwo_file_cleanup (void *);
1864 static void process_cu_includes (void);
1866 static void check_producer (struct dwarf2_cu *cu);
1868 static void free_line_header_voidp (void *arg);
1870 /* Various complaints about symbol reading that don't abort the process. */
1873 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1875 complaint (&symfile_complaints,
1876 _("statement list doesn't fit in .debug_line section"));
1880 dwarf2_debug_line_missing_file_complaint (void)
1882 complaint (&symfile_complaints,
1883 _(".debug_line section has line data without a file"));
1887 dwarf2_debug_line_missing_end_sequence_complaint (void)
1889 complaint (&symfile_complaints,
1890 _(".debug_line section has line "
1891 "program sequence without an end"));
1895 dwarf2_complex_location_expr_complaint (void)
1897 complaint (&symfile_complaints, _("location expression too complex"));
1901 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1904 complaint (&symfile_complaints,
1905 _("const value length mismatch for '%s', got %d, expected %d"),
1910 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1912 complaint (&symfile_complaints,
1913 _("debug info runs off end of %s section"
1915 get_section_name (section),
1916 get_section_file_name (section));
1920 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1922 complaint (&symfile_complaints,
1923 _("macro debug info contains a "
1924 "malformed macro definition:\n`%s'"),
1929 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1931 complaint (&symfile_complaints,
1932 _("invalid attribute class or form for '%s' in '%s'"),
1936 /* Hash function for line_header_hash. */
1939 line_header_hash (const struct line_header *ofs)
1941 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1944 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1947 line_header_hash_voidp (const void *item)
1949 const struct line_header *ofs = item;
1951 return line_header_hash (ofs);
1954 /* Equality function for line_header_hash. */
1957 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1959 const struct line_header *ofs_lhs = item_lhs;
1960 const struct line_header *ofs_rhs = item_rhs;
1962 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1963 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1969 /* Convert VALUE between big- and little-endian. */
1971 byte_swap (offset_type value)
1975 result = (value & 0xff) << 24;
1976 result |= (value & 0xff00) << 8;
1977 result |= (value & 0xff0000) >> 8;
1978 result |= (value & 0xff000000) >> 24;
1982 #define MAYBE_SWAP(V) byte_swap (V)
1985 #define MAYBE_SWAP(V) (V)
1986 #endif /* WORDS_BIGENDIAN */
1988 /* Read the given attribute value as an address, taking the attribute's
1989 form into account. */
1992 attr_value_as_address (struct attribute *attr)
1996 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1998 /* Aside from a few clearly defined exceptions, attributes that
1999 contain an address must always be in DW_FORM_addr form.
2000 Unfortunately, some compilers happen to be violating this
2001 requirement by encoding addresses using other forms, such
2002 as DW_FORM_data4 for example. For those broken compilers,
2003 we try to do our best, without any guarantee of success,
2004 to interpret the address correctly. It would also be nice
2005 to generate a complaint, but that would require us to maintain
2006 a list of legitimate cases where a non-address form is allowed,
2007 as well as update callers to pass in at least the CU's DWARF
2008 version. This is more overhead than what we're willing to
2009 expand for a pretty rare case. */
2010 addr = DW_UNSND (attr);
2013 addr = DW_ADDR (attr);
2018 /* The suffix for an index file. */
2019 #define INDEX_SUFFIX ".gdb-index"
2021 /* Try to locate the sections we need for DWARF 2 debugging
2022 information and return true if we have enough to do something.
2023 NAMES points to the dwarf2 section names, or is NULL if the standard
2024 ELF names are used. */
2027 dwarf2_has_info (struct objfile *objfile,
2028 const struct dwarf2_debug_sections *names)
2030 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2031 if (!dwarf2_per_objfile)
2033 /* Initialize per-objfile state. */
2034 struct dwarf2_per_objfile *data
2035 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2037 memset (data, 0, sizeof (*data));
2038 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2039 dwarf2_per_objfile = data;
2041 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2043 dwarf2_per_objfile->objfile = objfile;
2045 return (!dwarf2_per_objfile->info.is_virtual
2046 && dwarf2_per_objfile->info.s.asection != NULL
2047 && !dwarf2_per_objfile->abbrev.is_virtual
2048 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2051 /* Return the containing section of virtual section SECTION. */
2053 static struct dwarf2_section_info *
2054 get_containing_section (const struct dwarf2_section_info *section)
2056 gdb_assert (section->is_virtual);
2057 return section->s.containing_section;
2060 /* Return the bfd owner of SECTION. */
2063 get_section_bfd_owner (const struct dwarf2_section_info *section)
2065 if (section->is_virtual)
2067 section = get_containing_section (section);
2068 gdb_assert (!section->is_virtual);
2070 return section->s.asection->owner;
2073 /* Return the bfd section of SECTION.
2074 Returns NULL if the section is not present. */
2077 get_section_bfd_section (const struct dwarf2_section_info *section)
2079 if (section->is_virtual)
2081 section = get_containing_section (section);
2082 gdb_assert (!section->is_virtual);
2084 return section->s.asection;
2087 /* Return the name of SECTION. */
2090 get_section_name (const struct dwarf2_section_info *section)
2092 asection *sectp = get_section_bfd_section (section);
2094 gdb_assert (sectp != NULL);
2095 return bfd_section_name (get_section_bfd_owner (section), sectp);
2098 /* Return the name of the file SECTION is in. */
2101 get_section_file_name (const struct dwarf2_section_info *section)
2103 bfd *abfd = get_section_bfd_owner (section);
2105 return bfd_get_filename (abfd);
2108 /* Return the id of SECTION.
2109 Returns 0 if SECTION doesn't exist. */
2112 get_section_id (const struct dwarf2_section_info *section)
2114 asection *sectp = get_section_bfd_section (section);
2121 /* Return the flags of SECTION.
2122 SECTION (or containing section if this is a virtual section) must exist. */
2125 get_section_flags (const struct dwarf2_section_info *section)
2127 asection *sectp = get_section_bfd_section (section);
2129 gdb_assert (sectp != NULL);
2130 return bfd_get_section_flags (sectp->owner, sectp);
2133 /* When loading sections, we look either for uncompressed section or for
2134 compressed section names. */
2137 section_is_p (const char *section_name,
2138 const struct dwarf2_section_names *names)
2140 if (names->normal != NULL
2141 && strcmp (section_name, names->normal) == 0)
2143 if (names->compressed != NULL
2144 && strcmp (section_name, names->compressed) == 0)
2149 /* This function is mapped across the sections and remembers the
2150 offset and size of each of the debugging sections we are interested
2154 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2156 const struct dwarf2_debug_sections *names;
2157 flagword aflag = bfd_get_section_flags (abfd, sectp);
2160 names = &dwarf2_elf_names;
2162 names = (const struct dwarf2_debug_sections *) vnames;
2164 if ((aflag & SEC_HAS_CONTENTS) == 0)
2167 else if (section_is_p (sectp->name, &names->info))
2169 dwarf2_per_objfile->info.s.asection = sectp;
2170 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2172 else if (section_is_p (sectp->name, &names->abbrev))
2174 dwarf2_per_objfile->abbrev.s.asection = sectp;
2175 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2177 else if (section_is_p (sectp->name, &names->line))
2179 dwarf2_per_objfile->line.s.asection = sectp;
2180 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2182 else if (section_is_p (sectp->name, &names->loc))
2184 dwarf2_per_objfile->loc.s.asection = sectp;
2185 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2187 else if (section_is_p (sectp->name, &names->macinfo))
2189 dwarf2_per_objfile->macinfo.s.asection = sectp;
2190 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2192 else if (section_is_p (sectp->name, &names->macro))
2194 dwarf2_per_objfile->macro.s.asection = sectp;
2195 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2197 else if (section_is_p (sectp->name, &names->str))
2199 dwarf2_per_objfile->str.s.asection = sectp;
2200 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2202 else if (section_is_p (sectp->name, &names->addr))
2204 dwarf2_per_objfile->addr.s.asection = sectp;
2205 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2207 else if (section_is_p (sectp->name, &names->frame))
2209 dwarf2_per_objfile->frame.s.asection = sectp;
2210 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2212 else if (section_is_p (sectp->name, &names->eh_frame))
2214 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2215 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2217 else if (section_is_p (sectp->name, &names->ranges))
2219 dwarf2_per_objfile->ranges.s.asection = sectp;
2220 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2222 else if (section_is_p (sectp->name, &names->types))
2224 struct dwarf2_section_info type_section;
2226 memset (&type_section, 0, sizeof (type_section));
2227 type_section.s.asection = sectp;
2228 type_section.size = bfd_get_section_size (sectp);
2230 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2233 else if (section_is_p (sectp->name, &names->gdb_index))
2235 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2236 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2239 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2240 && bfd_section_vma (abfd, sectp) == 0)
2241 dwarf2_per_objfile->has_section_at_zero = 1;
2244 /* A helper function that decides whether a section is empty,
2248 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2250 if (section->is_virtual)
2251 return section->size == 0;
2252 return section->s.asection == NULL || section->size == 0;
2255 /* Read the contents of the section INFO.
2256 OBJFILE is the main object file, but not necessarily the file where
2257 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2259 If the section is compressed, uncompress it before returning. */
2262 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2266 gdb_byte *buf, *retbuf;
2270 info->buffer = NULL;
2273 if (dwarf2_section_empty_p (info))
2276 sectp = get_section_bfd_section (info);
2278 /* If this is a virtual section we need to read in the real one first. */
2279 if (info->is_virtual)
2281 struct dwarf2_section_info *containing_section =
2282 get_containing_section (info);
2284 gdb_assert (sectp != NULL);
2285 if ((sectp->flags & SEC_RELOC) != 0)
2287 error (_("Dwarf Error: DWP format V2 with relocations is not"
2288 " supported in section %s [in module %s]"),
2289 get_section_name (info), get_section_file_name (info));
2291 dwarf2_read_section (objfile, containing_section);
2292 /* Other code should have already caught virtual sections that don't
2294 gdb_assert (info->virtual_offset + info->size
2295 <= containing_section->size);
2296 /* If the real section is empty or there was a problem reading the
2297 section we shouldn't get here. */
2298 gdb_assert (containing_section->buffer != NULL);
2299 info->buffer = containing_section->buffer + info->virtual_offset;
2303 /* If the section has relocations, we must read it ourselves.
2304 Otherwise we attach it to the BFD. */
2305 if ((sectp->flags & SEC_RELOC) == 0)
2307 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2311 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2314 /* When debugging .o files, we may need to apply relocations; see
2315 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2316 We never compress sections in .o files, so we only need to
2317 try this when the section is not compressed. */
2318 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2321 info->buffer = retbuf;
2325 abfd = get_section_bfd_owner (info);
2326 gdb_assert (abfd != NULL);
2328 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2329 || bfd_bread (buf, info->size, abfd) != info->size)
2331 error (_("Dwarf Error: Can't read DWARF data"
2332 " in section %s [in module %s]"),
2333 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2337 /* A helper function that returns the size of a section in a safe way.
2338 If you are positive that the section has been read before using the
2339 size, then it is safe to refer to the dwarf2_section_info object's
2340 "size" field directly. In other cases, you must call this
2341 function, because for compressed sections the size field is not set
2342 correctly until the section has been read. */
2344 static bfd_size_type
2345 dwarf2_section_size (struct objfile *objfile,
2346 struct dwarf2_section_info *info)
2349 dwarf2_read_section (objfile, info);
2353 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2357 dwarf2_get_section_info (struct objfile *objfile,
2358 enum dwarf2_section_enum sect,
2359 asection **sectp, const gdb_byte **bufp,
2360 bfd_size_type *sizep)
2362 struct dwarf2_per_objfile *data
2363 = objfile_data (objfile, dwarf2_objfile_data_key);
2364 struct dwarf2_section_info *info;
2366 /* We may see an objfile without any DWARF, in which case we just
2377 case DWARF2_DEBUG_FRAME:
2378 info = &data->frame;
2380 case DWARF2_EH_FRAME:
2381 info = &data->eh_frame;
2384 gdb_assert_not_reached ("unexpected section");
2387 dwarf2_read_section (objfile, info);
2389 *sectp = get_section_bfd_section (info);
2390 *bufp = info->buffer;
2391 *sizep = info->size;
2394 /* A helper function to find the sections for a .dwz file. */
2397 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2399 struct dwz_file *dwz_file = arg;
2401 /* Note that we only support the standard ELF names, because .dwz
2402 is ELF-only (at the time of writing). */
2403 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2405 dwz_file->abbrev.s.asection = sectp;
2406 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2408 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2410 dwz_file->info.s.asection = sectp;
2411 dwz_file->info.size = bfd_get_section_size (sectp);
2413 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2415 dwz_file->str.s.asection = sectp;
2416 dwz_file->str.size = bfd_get_section_size (sectp);
2418 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2420 dwz_file->line.s.asection = sectp;
2421 dwz_file->line.size = bfd_get_section_size (sectp);
2423 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2425 dwz_file->macro.s.asection = sectp;
2426 dwz_file->macro.size = bfd_get_section_size (sectp);
2428 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2430 dwz_file->gdb_index.s.asection = sectp;
2431 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2435 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2436 there is no .gnu_debugaltlink section in the file. Error if there
2437 is such a section but the file cannot be found. */
2439 static struct dwz_file *
2440 dwarf2_get_dwz_file (void)
2444 struct cleanup *cleanup;
2445 const char *filename;
2446 struct dwz_file *result;
2447 bfd_size_type buildid_len_arg;
2451 if (dwarf2_per_objfile->dwz_file != NULL)
2452 return dwarf2_per_objfile->dwz_file;
2454 bfd_set_error (bfd_error_no_error);
2455 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2456 &buildid_len_arg, &buildid);
2459 if (bfd_get_error () == bfd_error_no_error)
2461 error (_("could not read '.gnu_debugaltlink' section: %s"),
2462 bfd_errmsg (bfd_get_error ()));
2464 cleanup = make_cleanup (xfree, data);
2465 make_cleanup (xfree, buildid);
2467 buildid_len = (size_t) buildid_len_arg;
2469 filename = (const char *) data;
2470 if (!IS_ABSOLUTE_PATH (filename))
2472 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2475 make_cleanup (xfree, abs);
2476 abs = ldirname (abs);
2477 make_cleanup (xfree, abs);
2479 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2480 make_cleanup (xfree, rel);
2484 /* First try the file name given in the section. If that doesn't
2485 work, try to use the build-id instead. */
2486 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2487 if (dwz_bfd != NULL)
2489 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2491 gdb_bfd_unref (dwz_bfd);
2496 if (dwz_bfd == NULL)
2497 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2499 if (dwz_bfd == NULL)
2500 error (_("could not find '.gnu_debugaltlink' file for %s"),
2501 objfile_name (dwarf2_per_objfile->objfile));
2503 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2505 result->dwz_bfd = dwz_bfd;
2507 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2509 do_cleanups (cleanup);
2511 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2512 dwarf2_per_objfile->dwz_file = result;
2516 /* DWARF quick_symbols_functions support. */
2518 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2519 unique line tables, so we maintain a separate table of all .debug_line
2520 derived entries to support the sharing.
2521 All the quick functions need is the list of file names. We discard the
2522 line_header when we're done and don't need to record it here. */
2523 struct quick_file_names
2525 /* The data used to construct the hash key. */
2526 struct stmt_list_hash hash;
2528 /* The number of entries in file_names, real_names. */
2529 unsigned int num_file_names;
2531 /* The file names from the line table, after being run through
2533 const char **file_names;
2535 /* The file names from the line table after being run through
2536 gdb_realpath. These are computed lazily. */
2537 const char **real_names;
2540 /* When using the index (and thus not using psymtabs), each CU has an
2541 object of this type. This is used to hold information needed by
2542 the various "quick" methods. */
2543 struct dwarf2_per_cu_quick_data
2545 /* The file table. This can be NULL if there was no file table
2546 or it's currently not read in.
2547 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2548 struct quick_file_names *file_names;
2550 /* The corresponding symbol table. This is NULL if symbols for this
2551 CU have not yet been read. */
2552 struct compunit_symtab *compunit_symtab;
2554 /* A temporary mark bit used when iterating over all CUs in
2555 expand_symtabs_matching. */
2556 unsigned int mark : 1;
2558 /* True if we've tried to read the file table and found there isn't one.
2559 There will be no point in trying to read it again next time. */
2560 unsigned int no_file_data : 1;
2563 /* Utility hash function for a stmt_list_hash. */
2566 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2570 if (stmt_list_hash->dwo_unit != NULL)
2571 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2572 v += stmt_list_hash->line_offset.sect_off;
2576 /* Utility equality function for a stmt_list_hash. */
2579 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2580 const struct stmt_list_hash *rhs)
2582 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2584 if (lhs->dwo_unit != NULL
2585 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2588 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2591 /* Hash function for a quick_file_names. */
2594 hash_file_name_entry (const void *e)
2596 const struct quick_file_names *file_data = e;
2598 return hash_stmt_list_entry (&file_data->hash);
2601 /* Equality function for a quick_file_names. */
2604 eq_file_name_entry (const void *a, const void *b)
2606 const struct quick_file_names *ea = a;
2607 const struct quick_file_names *eb = b;
2609 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2612 /* Delete function for a quick_file_names. */
2615 delete_file_name_entry (void *e)
2617 struct quick_file_names *file_data = e;
2620 for (i = 0; i < file_data->num_file_names; ++i)
2622 xfree ((void*) file_data->file_names[i]);
2623 if (file_data->real_names)
2624 xfree ((void*) file_data->real_names[i]);
2627 /* The space for the struct itself lives on objfile_obstack,
2628 so we don't free it here. */
2631 /* Create a quick_file_names hash table. */
2634 create_quick_file_names_table (unsigned int nr_initial_entries)
2636 return htab_create_alloc (nr_initial_entries,
2637 hash_file_name_entry, eq_file_name_entry,
2638 delete_file_name_entry, xcalloc, xfree);
2641 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2642 have to be created afterwards. You should call age_cached_comp_units after
2643 processing PER_CU->CU. dw2_setup must have been already called. */
2646 load_cu (struct dwarf2_per_cu_data *per_cu)
2648 if (per_cu->is_debug_types)
2649 load_full_type_unit (per_cu);
2651 load_full_comp_unit (per_cu, language_minimal);
2653 gdb_assert (per_cu->cu != NULL);
2655 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2658 /* Read in the symbols for PER_CU. */
2661 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2663 struct cleanup *back_to;
2665 /* Skip type_unit_groups, reading the type units they contain
2666 is handled elsewhere. */
2667 if (IS_TYPE_UNIT_GROUP (per_cu))
2670 back_to = make_cleanup (dwarf2_release_queue, NULL);
2672 if (dwarf2_per_objfile->using_index
2673 ? per_cu->v.quick->compunit_symtab == NULL
2674 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2676 queue_comp_unit (per_cu, language_minimal);
2679 /* If we just loaded a CU from a DWO, and we're working with an index
2680 that may badly handle TUs, load all the TUs in that DWO as well.
2681 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2682 if (!per_cu->is_debug_types
2683 && per_cu->cu->dwo_unit != NULL
2684 && dwarf2_per_objfile->index_table != NULL
2685 && dwarf2_per_objfile->index_table->version <= 7
2686 /* DWP files aren't supported yet. */
2687 && get_dwp_file () == NULL)
2688 queue_and_load_all_dwo_tus (per_cu);
2693 /* Age the cache, releasing compilation units that have not
2694 been used recently. */
2695 age_cached_comp_units ();
2697 do_cleanups (back_to);
2700 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2701 the objfile from which this CU came. Returns the resulting symbol
2704 static struct compunit_symtab *
2705 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2707 gdb_assert (dwarf2_per_objfile->using_index);
2708 if (!per_cu->v.quick->compunit_symtab)
2710 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2711 increment_reading_symtab ();
2712 dw2_do_instantiate_symtab (per_cu);
2713 process_cu_includes ();
2714 do_cleanups (back_to);
2717 return per_cu->v.quick->compunit_symtab;
2720 /* Return the CU/TU given its index.
2722 This is intended for loops like:
2724 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2725 + dwarf2_per_objfile->n_type_units); ++i)
2727 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2733 static struct dwarf2_per_cu_data *
2734 dw2_get_cutu (int index)
2736 if (index >= dwarf2_per_objfile->n_comp_units)
2738 index -= dwarf2_per_objfile->n_comp_units;
2739 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2740 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2743 return dwarf2_per_objfile->all_comp_units[index];
2746 /* Return the CU given its index.
2747 This differs from dw2_get_cutu in that it's for when you know INDEX
2750 static struct dwarf2_per_cu_data *
2751 dw2_get_cu (int index)
2753 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2755 return dwarf2_per_objfile->all_comp_units[index];
2758 /* A helper for create_cus_from_index that handles a given list of
2762 create_cus_from_index_list (struct objfile *objfile,
2763 const gdb_byte *cu_list, offset_type n_elements,
2764 struct dwarf2_section_info *section,
2770 for (i = 0; i < n_elements; i += 2)
2772 struct dwarf2_per_cu_data *the_cu;
2773 ULONGEST offset, length;
2775 gdb_static_assert (sizeof (ULONGEST) >= 8);
2776 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2777 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2780 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2781 struct dwarf2_per_cu_data);
2782 the_cu->offset.sect_off = offset;
2783 the_cu->length = length;
2784 the_cu->objfile = objfile;
2785 the_cu->section = section;
2786 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2787 struct dwarf2_per_cu_quick_data);
2788 the_cu->is_dwz = is_dwz;
2789 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2793 /* Read the CU list from the mapped index, and use it to create all
2794 the CU objects for this objfile. */
2797 create_cus_from_index (struct objfile *objfile,
2798 const gdb_byte *cu_list, offset_type cu_list_elements,
2799 const gdb_byte *dwz_list, offset_type dwz_elements)
2801 struct dwz_file *dwz;
2803 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2804 dwarf2_per_objfile->all_comp_units
2805 = obstack_alloc (&objfile->objfile_obstack,
2806 dwarf2_per_objfile->n_comp_units
2807 * sizeof (struct dwarf2_per_cu_data *));
2809 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2810 &dwarf2_per_objfile->info, 0, 0);
2812 if (dwz_elements == 0)
2815 dwz = dwarf2_get_dwz_file ();
2816 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2817 cu_list_elements / 2);
2820 /* Create the signatured type hash table from the index. */
2823 create_signatured_type_table_from_index (struct objfile *objfile,
2824 struct dwarf2_section_info *section,
2825 const gdb_byte *bytes,
2826 offset_type elements)
2829 htab_t sig_types_hash;
2831 dwarf2_per_objfile->n_type_units
2832 = dwarf2_per_objfile->n_allocated_type_units
2834 dwarf2_per_objfile->all_type_units
2835 = xmalloc (dwarf2_per_objfile->n_type_units
2836 * sizeof (struct signatured_type *));
2838 sig_types_hash = allocate_signatured_type_table (objfile);
2840 for (i = 0; i < elements; i += 3)
2842 struct signatured_type *sig_type;
2843 ULONGEST offset, type_offset_in_tu, signature;
2846 gdb_static_assert (sizeof (ULONGEST) >= 8);
2847 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2848 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2850 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2853 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2854 struct signatured_type);
2855 sig_type->signature = signature;
2856 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2857 sig_type->per_cu.is_debug_types = 1;
2858 sig_type->per_cu.section = section;
2859 sig_type->per_cu.offset.sect_off = offset;
2860 sig_type->per_cu.objfile = objfile;
2861 sig_type->per_cu.v.quick
2862 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2863 struct dwarf2_per_cu_quick_data);
2865 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2868 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2871 dwarf2_per_objfile->signatured_types = sig_types_hash;
2874 /* Read the address map data from the mapped index, and use it to
2875 populate the objfile's psymtabs_addrmap. */
2878 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2881 const gdb_byte *iter, *end;
2882 struct obstack temp_obstack;
2883 struct addrmap *mutable_map;
2884 struct cleanup *cleanup;
2887 obstack_init (&temp_obstack);
2888 cleanup = make_cleanup_obstack_free (&temp_obstack);
2889 mutable_map = addrmap_create_mutable (&temp_obstack);
2891 iter = index->address_table;
2892 end = iter + index->address_table_size;
2894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2898 ULONGEST hi, lo, cu_index;
2899 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2901 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2903 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2908 complaint (&symfile_complaints,
2909 _(".gdb_index address table has invalid range (%s - %s)"),
2910 hex_string (lo), hex_string (hi));
2914 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2916 complaint (&symfile_complaints,
2917 _(".gdb_index address table has invalid CU number %u"),
2918 (unsigned) cu_index);
2922 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2923 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2924 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2927 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2928 &objfile->objfile_obstack);
2929 do_cleanups (cleanup);
2932 /* The hash function for strings in the mapped index. This is the same as
2933 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2934 implementation. This is necessary because the hash function is tied to the
2935 format of the mapped index file. The hash values do not have to match with
2938 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2941 mapped_index_string_hash (int index_version, const void *p)
2943 const unsigned char *str = (const unsigned char *) p;
2947 while ((c = *str++) != 0)
2949 if (index_version >= 5)
2951 r = r * 67 + c - 113;
2957 /* Find a slot in the mapped index INDEX for the object named NAME.
2958 If NAME is found, set *VEC_OUT to point to the CU vector in the
2959 constant pool and return 1. If NAME cannot be found, return 0. */
2962 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2963 offset_type **vec_out)
2965 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2967 offset_type slot, step;
2968 int (*cmp) (const char *, const char *);
2970 if (current_language->la_language == language_cplus
2971 || current_language->la_language == language_java
2972 || current_language->la_language == language_fortran)
2974 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2977 if (strchr (name, '(') != NULL)
2979 char *without_params = cp_remove_params (name);
2981 if (without_params != NULL)
2983 make_cleanup (xfree, without_params);
2984 name = without_params;
2989 /* Index version 4 did not support case insensitive searches. But the
2990 indices for case insensitive languages are built in lowercase, therefore
2991 simulate our NAME being searched is also lowercased. */
2992 hash = mapped_index_string_hash ((index->version == 4
2993 && case_sensitivity == case_sensitive_off
2994 ? 5 : index->version),
2997 slot = hash & (index->symbol_table_slots - 1);
2998 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2999 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3003 /* Convert a slot number to an offset into the table. */
3004 offset_type i = 2 * slot;
3006 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3008 do_cleanups (back_to);
3012 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3013 if (!cmp (name, str))
3015 *vec_out = (offset_type *) (index->constant_pool
3016 + MAYBE_SWAP (index->symbol_table[i + 1]));
3017 do_cleanups (back_to);
3021 slot = (slot + step) & (index->symbol_table_slots - 1);
3025 /* A helper function that reads the .gdb_index from SECTION and fills
3026 in MAP. FILENAME is the name of the file containing the section;
3027 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3028 ok to use deprecated sections.
3030 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3031 out parameters that are filled in with information about the CU and
3032 TU lists in the section.
3034 Returns 1 if all went well, 0 otherwise. */
3037 read_index_from_section (struct objfile *objfile,
3038 const char *filename,
3040 struct dwarf2_section_info *section,
3041 struct mapped_index *map,
3042 const gdb_byte **cu_list,
3043 offset_type *cu_list_elements,
3044 const gdb_byte **types_list,
3045 offset_type *types_list_elements)
3047 const gdb_byte *addr;
3048 offset_type version;
3049 offset_type *metadata;
3052 if (dwarf2_section_empty_p (section))
3055 /* Older elfutils strip versions could keep the section in the main
3056 executable while splitting it for the separate debug info file. */
3057 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3060 dwarf2_read_section (objfile, section);
3062 addr = section->buffer;
3063 /* Version check. */
3064 version = MAYBE_SWAP (*(offset_type *) addr);
3065 /* Versions earlier than 3 emitted every copy of a psymbol. This
3066 causes the index to behave very poorly for certain requests. Version 3
3067 contained incomplete addrmap. So, it seems better to just ignore such
3071 static int warning_printed = 0;
3072 if (!warning_printed)
3074 warning (_("Skipping obsolete .gdb_index section in %s."),
3076 warning_printed = 1;
3080 /* Index version 4 uses a different hash function than index version
3083 Versions earlier than 6 did not emit psymbols for inlined
3084 functions. Using these files will cause GDB not to be able to
3085 set breakpoints on inlined functions by name, so we ignore these
3086 indices unless the user has done
3087 "set use-deprecated-index-sections on". */
3088 if (version < 6 && !deprecated_ok)
3090 static int warning_printed = 0;
3091 if (!warning_printed)
3094 Skipping deprecated .gdb_index section in %s.\n\
3095 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3096 to use the section anyway."),
3098 warning_printed = 1;
3102 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3103 of the TU (for symbols coming from TUs),
3104 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3105 Plus gold-generated indices can have duplicate entries for global symbols,
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3107 These are just performance bugs, and we can't distinguish gdb-generated
3108 indices from gold-generated ones, so issue no warning here. */
3110 /* Indexes with higher version than the one supported by GDB may be no
3111 longer backward compatible. */
3115 map->version = version;
3116 map->total_size = section->size;
3118 metadata = (offset_type *) (addr + sizeof (offset_type));
3121 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3122 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3126 *types_list = addr + MAYBE_SWAP (metadata[i]);
3127 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3132 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3133 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3134 - MAYBE_SWAP (metadata[i]));
3137 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3138 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3139 - MAYBE_SWAP (metadata[i]))
3140 / (2 * sizeof (offset_type)));
3143 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3149 /* Read the index file. If everything went ok, initialize the "quick"
3150 elements of all the CUs and return 1. Otherwise, return 0. */
3153 dwarf2_read_index (struct objfile *objfile)
3155 struct mapped_index local_map, *map;
3156 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3157 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3158 struct dwz_file *dwz;
3160 if (!read_index_from_section (objfile, objfile_name (objfile),
3161 use_deprecated_index_sections,
3162 &dwarf2_per_objfile->gdb_index, &local_map,
3163 &cu_list, &cu_list_elements,
3164 &types_list, &types_list_elements))
3167 /* Don't use the index if it's empty. */
3168 if (local_map.symbol_table_slots == 0)
3171 /* If there is a .dwz file, read it so we can get its CU list as
3173 dwz = dwarf2_get_dwz_file ();
3176 struct mapped_index dwz_map;
3177 const gdb_byte *dwz_types_ignore;
3178 offset_type dwz_types_elements_ignore;
3180 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3182 &dwz->gdb_index, &dwz_map,
3183 &dwz_list, &dwz_list_elements,
3185 &dwz_types_elements_ignore))
3187 warning (_("could not read '.gdb_index' section from %s; skipping"),
3188 bfd_get_filename (dwz->dwz_bfd));
3193 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3196 if (types_list_elements)
3198 struct dwarf2_section_info *section;
3200 /* We can only handle a single .debug_types when we have an
3202 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3205 section = VEC_index (dwarf2_section_info_def,
3206 dwarf2_per_objfile->types, 0);
3208 create_signatured_type_table_from_index (objfile, section, types_list,
3209 types_list_elements);
3212 create_addrmap_from_index (objfile, &local_map);
3214 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3217 dwarf2_per_objfile->index_table = map;
3218 dwarf2_per_objfile->using_index = 1;
3219 dwarf2_per_objfile->quick_file_names_table =
3220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3225 /* A helper for the "quick" functions which sets the global
3226 dwarf2_per_objfile according to OBJFILE. */
3229 dw2_setup (struct objfile *objfile)
3231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3232 gdb_assert (dwarf2_per_objfile);
3235 /* die_reader_func for dw2_get_file_names. */
3238 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3239 const gdb_byte *info_ptr,
3240 struct die_info *comp_unit_die,
3244 struct dwarf2_cu *cu = reader->cu;
3245 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3246 struct objfile *objfile = dwarf2_per_objfile->objfile;
3247 struct dwarf2_per_cu_data *lh_cu;
3248 struct line_header *lh;
3249 struct attribute *attr;
3251 const char *name, *comp_dir;
3253 struct quick_file_names *qfn;
3254 unsigned int line_offset;
3256 gdb_assert (! this_cu->is_debug_types);
3258 /* Our callers never want to match partial units -- instead they
3259 will match the enclosing full CU. */
3260 if (comp_unit_die->tag == DW_TAG_partial_unit)
3262 this_cu->v.quick->no_file_data = 1;
3271 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3274 struct quick_file_names find_entry;
3276 line_offset = DW_UNSND (attr);
3278 /* We may have already read in this line header (TU line header sharing).
3279 If we have we're done. */
3280 find_entry.hash.dwo_unit = cu->dwo_unit;
3281 find_entry.hash.line_offset.sect_off = line_offset;
3282 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3283 &find_entry, INSERT);
3286 lh_cu->v.quick->file_names = *slot;
3290 lh = dwarf_decode_line_header (line_offset, cu);
3294 lh_cu->v.quick->no_file_data = 1;
3298 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3299 qfn->hash.dwo_unit = cu->dwo_unit;
3300 qfn->hash.line_offset.sect_off = line_offset;
3301 gdb_assert (slot != NULL);
3304 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3306 qfn->num_file_names = lh->num_file_names;
3307 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3308 lh->num_file_names * sizeof (char *));
3309 for (i = 0; i < lh->num_file_names; ++i)
3310 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3311 qfn->real_names = NULL;
3313 free_line_header (lh);
3315 lh_cu->v.quick->file_names = qfn;
3318 /* A helper for the "quick" functions which attempts to read the line
3319 table for THIS_CU. */
3321 static struct quick_file_names *
3322 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3324 /* This should never be called for TUs. */
3325 gdb_assert (! this_cu->is_debug_types);
3326 /* Nor type unit groups. */
3327 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3329 if (this_cu->v.quick->file_names != NULL)
3330 return this_cu->v.quick->file_names;
3331 /* If we know there is no line data, no point in looking again. */
3332 if (this_cu->v.quick->no_file_data)
3335 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3337 if (this_cu->v.quick->no_file_data)
3339 return this_cu->v.quick->file_names;
3342 /* A helper for the "quick" functions which computes and caches the
3343 real path for a given file name from the line table. */
3346 dw2_get_real_path (struct objfile *objfile,
3347 struct quick_file_names *qfn, int index)
3349 if (qfn->real_names == NULL)
3350 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3351 qfn->num_file_names, const char *);
3353 if (qfn->real_names[index] == NULL)
3354 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3356 return qfn->real_names[index];
3359 static struct symtab *
3360 dw2_find_last_source_symtab (struct objfile *objfile)
3362 struct compunit_symtab *cust;
3365 dw2_setup (objfile);
3366 index = dwarf2_per_objfile->n_comp_units - 1;
3367 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3370 return compunit_primary_filetab (cust);
3373 /* Traversal function for dw2_forget_cached_source_info. */
3376 dw2_free_cached_file_names (void **slot, void *info)
3378 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3380 if (file_data->real_names)
3384 for (i = 0; i < file_data->num_file_names; ++i)
3386 xfree ((void*) file_data->real_names[i]);
3387 file_data->real_names[i] = NULL;
3395 dw2_forget_cached_source_info (struct objfile *objfile)
3397 dw2_setup (objfile);
3399 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3400 dw2_free_cached_file_names, NULL);
3403 /* Helper function for dw2_map_symtabs_matching_filename that expands
3404 the symtabs and calls the iterator. */
3407 dw2_map_expand_apply (struct objfile *objfile,
3408 struct dwarf2_per_cu_data *per_cu,
3409 const char *name, const char *real_path,
3410 int (*callback) (struct symtab *, void *),
3413 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3415 /* Don't visit already-expanded CUs. */
3416 if (per_cu->v.quick->compunit_symtab)
3419 /* This may expand more than one symtab, and we want to iterate over
3421 dw2_instantiate_symtab (per_cu);
3423 return iterate_over_some_symtabs (name, real_path, callback, data,
3424 objfile->compunit_symtabs, last_made);
3427 /* Implementation of the map_symtabs_matching_filename method. */
3430 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3431 const char *real_path,
3432 int (*callback) (struct symtab *, void *),
3436 const char *name_basename = lbasename (name);
3438 dw2_setup (objfile);
3440 /* The rule is CUs specify all the files, including those used by
3441 any TU, so there's no need to scan TUs here. */
3443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3446 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3447 struct quick_file_names *file_data;
3449 /* We only need to look at symtabs not already expanded. */
3450 if (per_cu->v.quick->compunit_symtab)
3453 file_data = dw2_get_file_names (per_cu);
3454 if (file_data == NULL)
3457 for (j = 0; j < file_data->num_file_names; ++j)
3459 const char *this_name = file_data->file_names[j];
3460 const char *this_real_name;
3462 if (compare_filenames_for_search (this_name, name))
3464 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3470 /* Before we invoke realpath, which can get expensive when many
3471 files are involved, do a quick comparison of the basenames. */
3472 if (! basenames_may_differ
3473 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3476 this_real_name = dw2_get_real_path (objfile, file_data, j);
3477 if (compare_filenames_for_search (this_real_name, name))
3479 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3485 if (real_path != NULL)
3487 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3488 gdb_assert (IS_ABSOLUTE_PATH (name));
3489 if (this_real_name != NULL
3490 && FILENAME_CMP (real_path, this_real_name) == 0)
3492 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3504 /* Struct used to manage iterating over all CUs looking for a symbol. */
3506 struct dw2_symtab_iterator
3508 /* The internalized form of .gdb_index. */
3509 struct mapped_index *index;
3510 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3511 int want_specific_block;
3512 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3513 Unused if !WANT_SPECIFIC_BLOCK. */
3515 /* The kind of symbol we're looking for. */
3517 /* The list of CUs from the index entry of the symbol,
3518 or NULL if not found. */
3520 /* The next element in VEC to look at. */
3522 /* The number of elements in VEC, or zero if there is no match. */
3524 /* Have we seen a global version of the symbol?
3525 If so we can ignore all further global instances.
3526 This is to work around gold/15646, inefficient gold-generated
3531 /* Initialize the index symtab iterator ITER.
3532 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3533 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3536 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3537 struct mapped_index *index,
3538 int want_specific_block,
3543 iter->index = index;
3544 iter->want_specific_block = want_specific_block;
3545 iter->block_index = block_index;
3546 iter->domain = domain;
3548 iter->global_seen = 0;
3550 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3551 iter->length = MAYBE_SWAP (*iter->vec);
3559 /* Return the next matching CU or NULL if there are no more. */
3561 static struct dwarf2_per_cu_data *
3562 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3564 for ( ; iter->next < iter->length; ++iter->next)
3566 offset_type cu_index_and_attrs =
3567 MAYBE_SWAP (iter->vec[iter->next + 1]);
3568 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3569 struct dwarf2_per_cu_data *per_cu;
3570 int want_static = iter->block_index != GLOBAL_BLOCK;
3571 /* This value is only valid for index versions >= 7. */
3572 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3573 gdb_index_symbol_kind symbol_kind =
3574 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3575 /* Only check the symbol attributes if they're present.
3576 Indices prior to version 7 don't record them,
3577 and indices >= 7 may elide them for certain symbols
3578 (gold does this). */
3580 (iter->index->version >= 7
3581 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3583 /* Don't crash on bad data. */
3584 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3585 + dwarf2_per_objfile->n_type_units))
3587 complaint (&symfile_complaints,
3588 _(".gdb_index entry has bad CU index"
3590 objfile_name (dwarf2_per_objfile->objfile));
3594 per_cu = dw2_get_cutu (cu_index);
3596 /* Skip if already read in. */
3597 if (per_cu->v.quick->compunit_symtab)
3600 /* Check static vs global. */
3603 if (iter->want_specific_block
3604 && want_static != is_static)
3606 /* Work around gold/15646. */
3607 if (!is_static && iter->global_seen)
3610 iter->global_seen = 1;
3613 /* Only check the symbol's kind if it has one. */
3616 switch (iter->domain)
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3621 /* Some types are also in VAR_DOMAIN. */
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3626 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3645 static struct compunit_symtab *
3646 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3647 const char *name, domain_enum domain)
3649 struct compunit_symtab *stab_best = NULL;
3650 struct mapped_index *index;
3652 dw2_setup (objfile);
3654 index = dwarf2_per_objfile->index_table;
3656 /* index is NULL if OBJF_READNOW. */
3659 struct dw2_symtab_iterator iter;
3660 struct dwarf2_per_cu_data *per_cu;
3662 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3664 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3666 struct symbol *sym = NULL;
3667 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3668 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3669 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3671 /* Some caution must be observed with overloaded functions
3672 and methods, since the index will not contain any overload
3673 information (but NAME might contain it). */
3674 sym = block_lookup_symbol (block, name, domain);
3676 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3678 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3684 /* Keep looking through other CUs. */
3692 dw2_print_stats (struct objfile *objfile)
3694 int i, total, count;
3696 dw2_setup (objfile);
3697 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3699 for (i = 0; i < total; ++i)
3701 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3703 if (!per_cu->v.quick->compunit_symtab)
3706 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3707 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3710 /* This dumps minimal information about the index.
3711 It is called via "mt print objfiles".
3712 One use is to verify .gdb_index has been loaded by the
3713 gdb.dwarf2/gdb-index.exp testcase. */
3716 dw2_dump (struct objfile *objfile)
3718 dw2_setup (objfile);
3719 gdb_assert (dwarf2_per_objfile->using_index);
3720 printf_filtered (".gdb_index:");
3721 if (dwarf2_per_objfile->index_table != NULL)
3723 printf_filtered (" version %d\n",
3724 dwarf2_per_objfile->index_table->version);
3727 printf_filtered (" faked for \"readnow\"\n");
3728 printf_filtered ("\n");
3732 dw2_relocate (struct objfile *objfile,
3733 const struct section_offsets *new_offsets,
3734 const struct section_offsets *delta)
3736 /* There's nothing to relocate here. */
3740 dw2_expand_symtabs_for_function (struct objfile *objfile,
3741 const char *func_name)
3743 struct mapped_index *index;
3745 dw2_setup (objfile);
3747 index = dwarf2_per_objfile->index_table;
3749 /* index is NULL if OBJF_READNOW. */
3752 struct dw2_symtab_iterator iter;
3753 struct dwarf2_per_cu_data *per_cu;
3755 /* Note: It doesn't matter what we pass for block_index here. */
3756 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3759 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3760 dw2_instantiate_symtab (per_cu);
3765 dw2_expand_all_symtabs (struct objfile *objfile)
3769 dw2_setup (objfile);
3771 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3772 + dwarf2_per_objfile->n_type_units); ++i)
3774 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3776 dw2_instantiate_symtab (per_cu);
3781 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3782 const char *fullname)
3786 dw2_setup (objfile);
3788 /* We don't need to consider type units here.
3789 This is only called for examining code, e.g. expand_line_sal.
3790 There can be an order of magnitude (or more) more type units
3791 than comp units, and we avoid them if we can. */
3793 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3796 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3797 struct quick_file_names *file_data;
3799 /* We only need to look at symtabs not already expanded. */
3800 if (per_cu->v.quick->compunit_symtab)
3803 file_data = dw2_get_file_names (per_cu);
3804 if (file_data == NULL)
3807 for (j = 0; j < file_data->num_file_names; ++j)
3809 const char *this_fullname = file_data->file_names[j];
3811 if (filename_cmp (this_fullname, fullname) == 0)
3813 dw2_instantiate_symtab (per_cu);
3821 dw2_map_matching_symbols (struct objfile *objfile,
3822 const char * name, domain_enum domain,
3824 int (*callback) (struct block *,
3825 struct symbol *, void *),
3826 void *data, symbol_compare_ftype *match,
3827 symbol_compare_ftype *ordered_compare)
3829 /* Currently unimplemented; used for Ada. The function can be called if the
3830 current language is Ada for a non-Ada objfile using GNU index. As Ada
3831 does not look for non-Ada symbols this function should just return. */
3835 dw2_expand_symtabs_matching
3836 (struct objfile *objfile,
3837 expand_symtabs_file_matcher_ftype *file_matcher,
3838 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3839 expand_symtabs_exp_notify_ftype *expansion_notify,
3840 enum search_domain kind,
3845 struct mapped_index *index;
3847 dw2_setup (objfile);
3849 /* index_table is NULL if OBJF_READNOW. */
3850 if (!dwarf2_per_objfile->index_table)
3852 index = dwarf2_per_objfile->index_table;
3854 if (file_matcher != NULL)
3856 struct cleanup *cleanup;
3857 htab_t visited_found, visited_not_found;
3859 visited_found = htab_create_alloc (10,
3860 htab_hash_pointer, htab_eq_pointer,
3861 NULL, xcalloc, xfree);
3862 cleanup = make_cleanup_htab_delete (visited_found);
3863 visited_not_found = htab_create_alloc (10,
3864 htab_hash_pointer, htab_eq_pointer,
3865 NULL, xcalloc, xfree);
3866 make_cleanup_htab_delete (visited_not_found);
3868 /* The rule is CUs specify all the files, including those used by
3869 any TU, so there's no need to scan TUs here. */
3871 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3874 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3875 struct quick_file_names *file_data;
3880 per_cu->v.quick->mark = 0;
3882 /* We only need to look at symtabs not already expanded. */
3883 if (per_cu->v.quick->compunit_symtab)
3886 file_data = dw2_get_file_names (per_cu);
3887 if (file_data == NULL)
3890 if (htab_find (visited_not_found, file_data) != NULL)
3892 else if (htab_find (visited_found, file_data) != NULL)
3894 per_cu->v.quick->mark = 1;
3898 for (j = 0; j < file_data->num_file_names; ++j)
3900 const char *this_real_name;
3902 if (file_matcher (file_data->file_names[j], data, 0))
3904 per_cu->v.quick->mark = 1;
3908 /* Before we invoke realpath, which can get expensive when many
3909 files are involved, do a quick comparison of the basenames. */
3910 if (!basenames_may_differ
3911 && !file_matcher (lbasename (file_data->file_names[j]),
3915 this_real_name = dw2_get_real_path (objfile, file_data, j);
3916 if (file_matcher (this_real_name, data, 0))
3918 per_cu->v.quick->mark = 1;
3923 slot = htab_find_slot (per_cu->v.quick->mark
3925 : visited_not_found,
3930 do_cleanups (cleanup);
3933 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3935 offset_type idx = 2 * iter;
3937 offset_type *vec, vec_len, vec_idx;
3938 int global_seen = 0;
3942 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3945 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3947 if (! (*symbol_matcher) (name, data))
3950 /* The name was matched, now expand corresponding CUs that were
3952 vec = (offset_type *) (index->constant_pool
3953 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3954 vec_len = MAYBE_SWAP (vec[0]);
3955 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3957 struct dwarf2_per_cu_data *per_cu;
3958 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3969 (index->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972 /* Work around gold/15646. */
3975 if (!is_static && global_seen)
3981 /* Only check the symbol's kind if it has one. */
3986 case VARIABLES_DOMAIN:
3987 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3990 case FUNCTIONS_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4003 /* Don't crash on bad data. */
4004 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4005 + dwarf2_per_objfile->n_type_units))
4007 complaint (&symfile_complaints,
4008 _(".gdb_index entry has bad CU index"
4009 " [in module %s]"), objfile_name (objfile));
4013 per_cu = dw2_get_cutu (cu_index);
4014 if (file_matcher == NULL || per_cu->v.quick->mark)
4016 int symtab_was_null =
4017 (per_cu->v.quick->compunit_symtab == NULL);
4019 dw2_instantiate_symtab (per_cu);
4021 if (expansion_notify != NULL
4023 && per_cu->v.quick->compunit_symtab != NULL)
4025 expansion_notify (per_cu->v.quick->compunit_symtab,
4033 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4036 static struct compunit_symtab *
4037 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4042 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4043 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4046 if (cust->includes == NULL)
4049 for (i = 0; cust->includes[i]; ++i)
4051 struct compunit_symtab *s = cust->includes[i];
4053 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4061 static struct compunit_symtab *
4062 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4063 struct bound_minimal_symbol msymbol,
4065 struct obj_section *section,
4068 struct dwarf2_per_cu_data *data;
4069 struct compunit_symtab *result;
4071 dw2_setup (objfile);
4073 if (!objfile->psymtabs_addrmap)
4076 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4080 if (warn_if_readin && data->v.quick->compunit_symtab)
4081 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4082 paddress (get_objfile_arch (objfile), pc));
4085 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4087 gdb_assert (result != NULL);
4092 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4093 void *data, int need_fullname)
4096 struct cleanup *cleanup;
4097 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4098 NULL, xcalloc, xfree);
4100 cleanup = make_cleanup_htab_delete (visited);
4101 dw2_setup (objfile);
4103 /* The rule is CUs specify all the files, including those used by
4104 any TU, so there's no need to scan TUs here.
4105 We can ignore file names coming from already-expanded CUs. */
4107 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4109 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4111 if (per_cu->v.quick->compunit_symtab)
4113 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4116 *slot = per_cu->v.quick->file_names;
4120 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4124 struct quick_file_names *file_data;
4127 /* We only need to look at symtabs not already expanded. */
4128 if (per_cu->v.quick->compunit_symtab)
4131 file_data = dw2_get_file_names (per_cu);
4132 if (file_data == NULL)
4135 slot = htab_find_slot (visited, file_data, INSERT);
4138 /* Already visited. */
4143 for (j = 0; j < file_data->num_file_names; ++j)
4145 const char *this_real_name;
4148 this_real_name = dw2_get_real_path (objfile, file_data, j);
4150 this_real_name = NULL;
4151 (*fun) (file_data->file_names[j], this_real_name, data);
4155 do_cleanups (cleanup);
4159 dw2_has_symbols (struct objfile *objfile)
4164 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4167 dw2_find_last_source_symtab,
4168 dw2_forget_cached_source_info,
4169 dw2_map_symtabs_matching_filename,
4174 dw2_expand_symtabs_for_function,
4175 dw2_expand_all_symtabs,
4176 dw2_expand_symtabs_with_fullname,
4177 dw2_map_matching_symbols,
4178 dw2_expand_symtabs_matching,
4179 dw2_find_pc_sect_compunit_symtab,
4180 dw2_map_symbol_filenames
4183 /* Initialize for reading DWARF for this objfile. Return 0 if this
4184 file will use psymtabs, or 1 if using the GNU index. */
4187 dwarf2_initialize_objfile (struct objfile *objfile)
4189 /* If we're about to read full symbols, don't bother with the
4190 indices. In this case we also don't care if some other debug
4191 format is making psymtabs, because they are all about to be
4193 if ((objfile->flags & OBJF_READNOW))
4197 dwarf2_per_objfile->using_index = 1;
4198 create_all_comp_units (objfile);
4199 create_all_type_units (objfile);
4200 dwarf2_per_objfile->quick_file_names_table =
4201 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4203 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4204 + dwarf2_per_objfile->n_type_units); ++i)
4206 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4208 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4209 struct dwarf2_per_cu_quick_data);
4212 /* Return 1 so that gdb sees the "quick" functions. However,
4213 these functions will be no-ops because we will have expanded
4218 if (dwarf2_read_index (objfile))
4226 /* Build a partial symbol table. */
4229 dwarf2_build_psymtabs (struct objfile *objfile)
4232 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4234 init_psymbol_list (objfile, 1024);
4239 /* This isn't really ideal: all the data we allocate on the
4240 objfile's obstack is still uselessly kept around. However,
4241 freeing it seems unsafe. */
4242 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4244 dwarf2_build_psymtabs_hard (objfile);
4245 discard_cleanups (cleanups);
4247 CATCH (except, RETURN_MASK_ERROR)
4249 exception_print (gdb_stderr, except);
4254 /* Return the total length of the CU described by HEADER. */
4257 get_cu_length (const struct comp_unit_head *header)
4259 return header->initial_length_size + header->length;
4262 /* Return TRUE if OFFSET is within CU_HEADER. */
4265 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4267 sect_offset bottom = { cu_header->offset.sect_off };
4268 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4270 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4273 /* Find the base address of the compilation unit for range lists and
4274 location lists. It will normally be specified by DW_AT_low_pc.
4275 In DWARF-3 draft 4, the base address could be overridden by
4276 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4277 compilation units with discontinuous ranges. */
4280 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4282 struct attribute *attr;
4285 cu->base_address = 0;
4287 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4290 cu->base_address = attr_value_as_address (attr);
4295 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4298 cu->base_address = attr_value_as_address (attr);
4304 /* Read in the comp unit header information from the debug_info at info_ptr.
4305 NOTE: This leaves members offset, first_die_offset to be filled in
4308 static const gdb_byte *
4309 read_comp_unit_head (struct comp_unit_head *cu_header,
4310 const gdb_byte *info_ptr, bfd *abfd)
4313 unsigned int bytes_read;
4315 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4316 cu_header->initial_length_size = bytes_read;
4317 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4318 info_ptr += bytes_read;
4319 cu_header->version = read_2_bytes (abfd, info_ptr);
4321 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4323 info_ptr += bytes_read;
4324 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4326 signed_addr = bfd_get_sign_extend_vma (abfd);
4327 if (signed_addr < 0)
4328 internal_error (__FILE__, __LINE__,
4329 _("read_comp_unit_head: dwarf from non elf file"));
4330 cu_header->signed_addr_p = signed_addr;
4335 /* Helper function that returns the proper abbrev section for
4338 static struct dwarf2_section_info *
4339 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4341 struct dwarf2_section_info *abbrev;
4343 if (this_cu->is_dwz)
4344 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4346 abbrev = &dwarf2_per_objfile->abbrev;
4351 /* Subroutine of read_and_check_comp_unit_head and
4352 read_and_check_type_unit_head to simplify them.
4353 Perform various error checking on the header. */
4356 error_check_comp_unit_head (struct comp_unit_head *header,
4357 struct dwarf2_section_info *section,
4358 struct dwarf2_section_info *abbrev_section)
4360 bfd *abfd = get_section_bfd_owner (section);
4361 const char *filename = get_section_file_name (section);
4363 if (header->version != 2 && header->version != 3 && header->version != 4)
4364 error (_("Dwarf Error: wrong version in compilation unit header "
4365 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4368 if (header->abbrev_offset.sect_off
4369 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4370 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4371 "(offset 0x%lx + 6) [in module %s]"),
4372 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4375 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4376 avoid potential 32-bit overflow. */
4377 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4379 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4380 "(offset 0x%lx + 0) [in module %s]"),
4381 (long) header->length, (long) header->offset.sect_off,
4385 /* Read in a CU/TU header and perform some basic error checking.
4386 The contents of the header are stored in HEADER.
4387 The result is a pointer to the start of the first DIE. */
4389 static const gdb_byte *
4390 read_and_check_comp_unit_head (struct comp_unit_head *header,
4391 struct dwarf2_section_info *section,
4392 struct dwarf2_section_info *abbrev_section,
4393 const gdb_byte *info_ptr,
4394 int is_debug_types_section)
4396 const gdb_byte *beg_of_comp_unit = info_ptr;
4397 bfd *abfd = get_section_bfd_owner (section);
4399 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4401 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4403 /* If we're reading a type unit, skip over the signature and
4404 type_offset fields. */
4405 if (is_debug_types_section)
4406 info_ptr += 8 /*signature*/ + header->offset_size;
4408 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4410 error_check_comp_unit_head (header, section, abbrev_section);
4415 /* Read in the types comp unit header information from .debug_types entry at
4416 types_ptr. The result is a pointer to one past the end of the header. */
4418 static const gdb_byte *
4419 read_and_check_type_unit_head (struct comp_unit_head *header,
4420 struct dwarf2_section_info *section,
4421 struct dwarf2_section_info *abbrev_section,
4422 const gdb_byte *info_ptr,
4423 ULONGEST *signature,
4424 cu_offset *type_offset_in_tu)
4426 const gdb_byte *beg_of_comp_unit = info_ptr;
4427 bfd *abfd = get_section_bfd_owner (section);
4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
4435 if (signature != NULL)
4436 *signature = read_8_bytes (abfd, info_ptr);
4438 if (type_offset_in_tu != NULL)
4439 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4440 header->offset_size);
4441 info_ptr += header->offset_size;
4443 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4445 error_check_comp_unit_head (header, section, abbrev_section);
4450 /* Fetch the abbreviation table offset from a comp or type unit header. */
4453 read_abbrev_offset (struct dwarf2_section_info *section,
4456 bfd *abfd = get_section_bfd_owner (section);
4457 const gdb_byte *info_ptr;
4458 unsigned int length, initial_length_size, offset_size;
4459 sect_offset abbrev_offset;
4461 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4462 info_ptr = section->buffer + offset.sect_off;
4463 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4464 offset_size = initial_length_size == 4 ? 4 : 8;
4465 info_ptr += initial_length_size + 2 /*version*/;
4466 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4467 return abbrev_offset;
4470 /* Allocate a new partial symtab for file named NAME and mark this new
4471 partial symtab as being an include of PST. */
4474 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4475 struct objfile *objfile)
4477 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4479 if (!IS_ABSOLUTE_PATH (subpst->filename))
4481 /* It shares objfile->objfile_obstack. */
4482 subpst->dirname = pst->dirname;
4485 subpst->section_offsets = pst->section_offsets;
4486 subpst->textlow = 0;
4487 subpst->texthigh = 0;
4489 subpst->dependencies = (struct partial_symtab **)
4490 obstack_alloc (&objfile->objfile_obstack,
4491 sizeof (struct partial_symtab *));
4492 subpst->dependencies[0] = pst;
4493 subpst->number_of_dependencies = 1;
4495 subpst->globals_offset = 0;
4496 subpst->n_global_syms = 0;
4497 subpst->statics_offset = 0;
4498 subpst->n_static_syms = 0;
4499 subpst->compunit_symtab = NULL;
4500 subpst->read_symtab = pst->read_symtab;
4503 /* No private part is necessary for include psymtabs. This property
4504 can be used to differentiate between such include psymtabs and
4505 the regular ones. */
4506 subpst->read_symtab_private = NULL;
4509 /* Read the Line Number Program data and extract the list of files
4510 included by the source file represented by PST. Build an include
4511 partial symtab for each of these included files. */
4514 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4515 struct die_info *die,
4516 struct partial_symtab *pst)
4518 struct line_header *lh = NULL;
4519 struct attribute *attr;
4521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4523 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4525 return; /* No linetable, so no includes. */
4527 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4528 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4530 free_line_header (lh);
4534 hash_signatured_type (const void *item)
4536 const struct signatured_type *sig_type = item;
4538 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4539 return sig_type->signature;
4543 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4545 const struct signatured_type *lhs = item_lhs;
4546 const struct signatured_type *rhs = item_rhs;
4548 return lhs->signature == rhs->signature;
4551 /* Allocate a hash table for signatured types. */
4554 allocate_signatured_type_table (struct objfile *objfile)
4556 return htab_create_alloc_ex (41,
4557 hash_signatured_type,
4560 &objfile->objfile_obstack,
4561 hashtab_obstack_allocate,
4562 dummy_obstack_deallocate);
4565 /* A helper function to add a signatured type CU to a table. */
4568 add_signatured_type_cu_to_table (void **slot, void *datum)
4570 struct signatured_type *sigt = *slot;
4571 struct signatured_type ***datap = datum;
4579 /* Create the hash table of all entries in the .debug_types
4580 (or .debug_types.dwo) section(s).
4581 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4582 otherwise it is NULL.
4584 The result is a pointer to the hash table or NULL if there are no types.
4586 Note: This function processes DWO files only, not DWP files. */
4589 create_debug_types_hash_table (struct dwo_file *dwo_file,
4590 VEC (dwarf2_section_info_def) *types)
4592 struct objfile *objfile = dwarf2_per_objfile->objfile;
4593 htab_t types_htab = NULL;
4595 struct dwarf2_section_info *section;
4596 struct dwarf2_section_info *abbrev_section;
4598 if (VEC_empty (dwarf2_section_info_def, types))
4601 abbrev_section = (dwo_file != NULL
4602 ? &dwo_file->sections.abbrev
4603 : &dwarf2_per_objfile->abbrev);
4605 if (dwarf2_read_debug)
4606 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4607 dwo_file ? ".dwo" : "",
4608 get_section_file_name (abbrev_section));
4611 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4615 const gdb_byte *info_ptr, *end_ptr;
4617 dwarf2_read_section (objfile, section);
4618 info_ptr = section->buffer;
4620 if (info_ptr == NULL)
4623 /* We can't set abfd until now because the section may be empty or
4624 not present, in which case the bfd is unknown. */
4625 abfd = get_section_bfd_owner (section);
4627 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4628 because we don't need to read any dies: the signature is in the
4631 end_ptr = info_ptr + section->size;
4632 while (info_ptr < end_ptr)
4635 cu_offset type_offset_in_tu;
4637 struct signatured_type *sig_type;
4638 struct dwo_unit *dwo_tu;
4640 const gdb_byte *ptr = info_ptr;
4641 struct comp_unit_head header;
4642 unsigned int length;
4644 offset.sect_off = ptr - section->buffer;
4646 /* We need to read the type's signature in order to build the hash
4647 table, but we don't need anything else just yet. */
4649 ptr = read_and_check_type_unit_head (&header, section,
4650 abbrev_section, ptr,
4651 &signature, &type_offset_in_tu);
4653 length = get_cu_length (&header);
4655 /* Skip dummy type units. */
4656 if (ptr >= info_ptr + length
4657 || peek_abbrev_code (abfd, ptr) == 0)
4663 if (types_htab == NULL)
4666 types_htab = allocate_dwo_unit_table (objfile);
4668 types_htab = allocate_signatured_type_table (objfile);
4674 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4676 dwo_tu->dwo_file = dwo_file;
4677 dwo_tu->signature = signature;
4678 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4679 dwo_tu->section = section;
4680 dwo_tu->offset = offset;
4681 dwo_tu->length = length;
4685 /* N.B.: type_offset is not usable if this type uses a DWO file.
4686 The real type_offset is in the DWO file. */
4688 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4689 struct signatured_type);
4690 sig_type->signature = signature;
4691 sig_type->type_offset_in_tu = type_offset_in_tu;
4692 sig_type->per_cu.objfile = objfile;
4693 sig_type->per_cu.is_debug_types = 1;
4694 sig_type->per_cu.section = section;
4695 sig_type->per_cu.offset = offset;
4696 sig_type->per_cu.length = length;
4699 slot = htab_find_slot (types_htab,
4700 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4702 gdb_assert (slot != NULL);
4705 sect_offset dup_offset;
4709 const struct dwo_unit *dup_tu = *slot;
4711 dup_offset = dup_tu->offset;
4715 const struct signatured_type *dup_tu = *slot;
4717 dup_offset = dup_tu->per_cu.offset;
4720 complaint (&symfile_complaints,
4721 _("debug type entry at offset 0x%x is duplicate to"
4722 " the entry at offset 0x%x, signature %s"),
4723 offset.sect_off, dup_offset.sect_off,
4724 hex_string (signature));
4726 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4728 if (dwarf2_read_debug > 1)
4729 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4731 hex_string (signature));
4740 /* Create the hash table of all entries in the .debug_types section,
4741 and initialize all_type_units.
4742 The result is zero if there is an error (e.g. missing .debug_types section),
4743 otherwise non-zero. */
4746 create_all_type_units (struct objfile *objfile)
4749 struct signatured_type **iter;
4751 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4752 if (types_htab == NULL)
4754 dwarf2_per_objfile->signatured_types = NULL;
4758 dwarf2_per_objfile->signatured_types = types_htab;
4760 dwarf2_per_objfile->n_type_units
4761 = dwarf2_per_objfile->n_allocated_type_units
4762 = htab_elements (types_htab);
4763 dwarf2_per_objfile->all_type_units
4764 = xmalloc (dwarf2_per_objfile->n_type_units
4765 * sizeof (struct signatured_type *));
4766 iter = &dwarf2_per_objfile->all_type_units[0];
4767 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4768 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4769 == dwarf2_per_objfile->n_type_units);
4774 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4775 If SLOT is non-NULL, it is the entry to use in the hash table.
4776 Otherwise we find one. */
4778 static struct signatured_type *
4779 add_type_unit (ULONGEST sig, void **slot)
4781 struct objfile *objfile = dwarf2_per_objfile->objfile;
4782 int n_type_units = dwarf2_per_objfile->n_type_units;
4783 struct signatured_type *sig_type;
4785 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4787 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4789 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4790 dwarf2_per_objfile->n_allocated_type_units = 1;
4791 dwarf2_per_objfile->n_allocated_type_units *= 2;
4792 dwarf2_per_objfile->all_type_units
4793 = xrealloc (dwarf2_per_objfile->all_type_units,
4794 dwarf2_per_objfile->n_allocated_type_units
4795 * sizeof (struct signatured_type *));
4796 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4798 dwarf2_per_objfile->n_type_units = n_type_units;
4800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4801 struct signatured_type);
4802 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4803 sig_type->signature = sig;
4804 sig_type->per_cu.is_debug_types = 1;
4805 if (dwarf2_per_objfile->using_index)
4807 sig_type->per_cu.v.quick =
4808 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4809 struct dwarf2_per_cu_quick_data);
4814 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 gdb_assert (*slot == NULL);
4819 /* The rest of sig_type must be filled in by the caller. */
4823 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4824 Fill in SIG_ENTRY with DWO_ENTRY. */
4827 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4828 struct signatured_type *sig_entry,
4829 struct dwo_unit *dwo_entry)
4831 /* Make sure we're not clobbering something we don't expect to. */
4832 gdb_assert (! sig_entry->per_cu.queued);
4833 gdb_assert (sig_entry->per_cu.cu == NULL);
4834 if (dwarf2_per_objfile->using_index)
4836 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4837 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4840 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4841 gdb_assert (sig_entry->signature == dwo_entry->signature);
4842 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4843 gdb_assert (sig_entry->type_unit_group == NULL);
4844 gdb_assert (sig_entry->dwo_unit == NULL);
4846 sig_entry->per_cu.section = dwo_entry->section;
4847 sig_entry->per_cu.offset = dwo_entry->offset;
4848 sig_entry->per_cu.length = dwo_entry->length;
4849 sig_entry->per_cu.reading_dwo_directly = 1;
4850 sig_entry->per_cu.objfile = objfile;
4851 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4852 sig_entry->dwo_unit = dwo_entry;
4855 /* Subroutine of lookup_signatured_type.
4856 If we haven't read the TU yet, create the signatured_type data structure
4857 for a TU to be read in directly from a DWO file, bypassing the stub.
4858 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4859 using .gdb_index, then when reading a CU we want to stay in the DWO file
4860 containing that CU. Otherwise we could end up reading several other DWO
4861 files (due to comdat folding) to process the transitive closure of all the
4862 mentioned TUs, and that can be slow. The current DWO file will have every
4863 type signature that it needs.
4864 We only do this for .gdb_index because in the psymtab case we already have
4865 to read all the DWOs to build the type unit groups. */
4867 static struct signatured_type *
4868 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4870 struct objfile *objfile = dwarf2_per_objfile->objfile;
4871 struct dwo_file *dwo_file;
4872 struct dwo_unit find_dwo_entry, *dwo_entry;
4873 struct signatured_type find_sig_entry, *sig_entry;
4876 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4878 /* If TU skeletons have been removed then we may not have read in any
4880 if (dwarf2_per_objfile->signatured_types == NULL)
4882 dwarf2_per_objfile->signatured_types
4883 = allocate_signatured_type_table (objfile);
4886 /* We only ever need to read in one copy of a signatured type.
4887 Use the global signatured_types array to do our own comdat-folding
4888 of types. If this is the first time we're reading this TU, and
4889 the TU has an entry in .gdb_index, replace the recorded data from
4890 .gdb_index with this TU. */
4892 find_sig_entry.signature = sig;
4893 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4894 &find_sig_entry, INSERT);
4897 /* We can get here with the TU already read, *or* in the process of being
4898 read. Don't reassign the global entry to point to this DWO if that's
4899 the case. Also note that if the TU is already being read, it may not
4900 have come from a DWO, the program may be a mix of Fission-compiled
4901 code and non-Fission-compiled code. */
4903 /* Have we already tried to read this TU?
4904 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4905 needn't exist in the global table yet). */
4906 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4909 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4910 dwo_unit of the TU itself. */
4911 dwo_file = cu->dwo_unit->dwo_file;
4913 /* Ok, this is the first time we're reading this TU. */
4914 if (dwo_file->tus == NULL)
4916 find_dwo_entry.signature = sig;
4917 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4918 if (dwo_entry == NULL)
4921 /* If the global table doesn't have an entry for this TU, add one. */
4922 if (sig_entry == NULL)
4923 sig_entry = add_type_unit (sig, slot);
4925 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4926 sig_entry->per_cu.tu_read = 1;
4930 /* Subroutine of lookup_signatured_type.
4931 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4932 then try the DWP file. If the TU stub (skeleton) has been removed then
4933 it won't be in .gdb_index. */
4935 static struct signatured_type *
4936 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4938 struct objfile *objfile = dwarf2_per_objfile->objfile;
4939 struct dwp_file *dwp_file = get_dwp_file ();
4940 struct dwo_unit *dwo_entry;
4941 struct signatured_type find_sig_entry, *sig_entry;
4944 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4945 gdb_assert (dwp_file != NULL);
4947 /* If TU skeletons have been removed then we may not have read in any
4949 if (dwarf2_per_objfile->signatured_types == NULL)
4951 dwarf2_per_objfile->signatured_types
4952 = allocate_signatured_type_table (objfile);
4955 find_sig_entry.signature = sig;
4956 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4957 &find_sig_entry, INSERT);
4960 /* Have we already tried to read this TU?
4961 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4962 needn't exist in the global table yet). */
4963 if (sig_entry != NULL)
4966 if (dwp_file->tus == NULL)
4968 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4969 sig, 1 /* is_debug_types */);
4970 if (dwo_entry == NULL)
4973 sig_entry = add_type_unit (sig, slot);
4974 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4979 /* Lookup a signature based type for DW_FORM_ref_sig8.
4980 Returns NULL if signature SIG is not present in the table.
4981 It is up to the caller to complain about this. */
4983 static struct signatured_type *
4984 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4987 && dwarf2_per_objfile->using_index)
4989 /* We're in a DWO/DWP file, and we're using .gdb_index.
4990 These cases require special processing. */
4991 if (get_dwp_file () == NULL)
4992 return lookup_dwo_signatured_type (cu, sig);
4994 return lookup_dwp_signatured_type (cu, sig);
4998 struct signatured_type find_entry, *entry;
5000 if (dwarf2_per_objfile->signatured_types == NULL)
5002 find_entry.signature = sig;
5003 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5008 /* Low level DIE reading support. */
5010 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5013 init_cu_die_reader (struct die_reader_specs *reader,
5014 struct dwarf2_cu *cu,
5015 struct dwarf2_section_info *section,
5016 struct dwo_file *dwo_file)
5018 gdb_assert (section->readin && section->buffer != NULL);
5019 reader->abfd = get_section_bfd_owner (section);
5021 reader->dwo_file = dwo_file;
5022 reader->die_section = section;
5023 reader->buffer = section->buffer;
5024 reader->buffer_end = section->buffer + section->size;
5025 reader->comp_dir = NULL;
5028 /* Subroutine of init_cutu_and_read_dies to simplify it.
5029 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5030 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5033 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5034 from it to the DIE in the DWO. If NULL we are skipping the stub.
5035 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5036 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5037 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5038 STUB_COMP_DIR may be non-NULL.
5039 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5040 are filled in with the info of the DIE from the DWO file.
5041 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5042 provided an abbrev table to use.
5043 The result is non-zero if a valid (non-dummy) DIE was found. */
5046 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5047 struct dwo_unit *dwo_unit,
5048 int abbrev_table_provided,
5049 struct die_info *stub_comp_unit_die,
5050 const char *stub_comp_dir,
5051 struct die_reader_specs *result_reader,
5052 const gdb_byte **result_info_ptr,
5053 struct die_info **result_comp_unit_die,
5054 int *result_has_children)
5056 struct objfile *objfile = dwarf2_per_objfile->objfile;
5057 struct dwarf2_cu *cu = this_cu->cu;
5058 struct dwarf2_section_info *section;
5060 const gdb_byte *begin_info_ptr, *info_ptr;
5061 ULONGEST signature; /* Or dwo_id. */
5062 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5063 int i,num_extra_attrs;
5064 struct dwarf2_section_info *dwo_abbrev_section;
5065 struct attribute *attr;
5066 struct die_info *comp_unit_die;
5068 /* At most one of these may be provided. */
5069 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5071 /* These attributes aren't processed until later:
5072 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5073 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5074 referenced later. However, these attributes are found in the stub
5075 which we won't have later. In order to not impose this complication
5076 on the rest of the code, we read them here and copy them to the
5085 if (stub_comp_unit_die != NULL)
5087 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5089 if (! this_cu->is_debug_types)
5090 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5091 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5092 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5093 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5094 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5096 /* There should be a DW_AT_addr_base attribute here (if needed).
5097 We need the value before we can process DW_FORM_GNU_addr_index. */
5099 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5101 cu->addr_base = DW_UNSND (attr);
5103 /* There should be a DW_AT_ranges_base attribute here (if needed).
5104 We need the value before we can process DW_AT_ranges. */
5105 cu->ranges_base = 0;
5106 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5108 cu->ranges_base = DW_UNSND (attr);
5110 else if (stub_comp_dir != NULL)
5112 /* Reconstruct the comp_dir attribute to simplify the code below. */
5113 comp_dir = (struct attribute *)
5114 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5115 comp_dir->name = DW_AT_comp_dir;
5116 comp_dir->form = DW_FORM_string;
5117 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5118 DW_STRING (comp_dir) = stub_comp_dir;
5121 /* Set up for reading the DWO CU/TU. */
5122 cu->dwo_unit = dwo_unit;
5123 section = dwo_unit->section;
5124 dwarf2_read_section (objfile, section);
5125 abfd = get_section_bfd_owner (section);
5126 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5127 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5128 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5130 if (this_cu->is_debug_types)
5132 ULONGEST header_signature;
5133 cu_offset type_offset_in_tu;
5134 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5136 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5140 &type_offset_in_tu);
5141 /* This is not an assert because it can be caused by bad debug info. */
5142 if (sig_type->signature != header_signature)
5144 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5145 " TU at offset 0x%x [in module %s]"),
5146 hex_string (sig_type->signature),
5147 hex_string (header_signature),
5148 dwo_unit->offset.sect_off,
5149 bfd_get_filename (abfd));
5151 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5152 /* For DWOs coming from DWP files, we don't know the CU length
5153 nor the type's offset in the TU until now. */
5154 dwo_unit->length = get_cu_length (&cu->header);
5155 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5157 /* Establish the type offset that can be used to lookup the type.
5158 For DWO files, we don't know it until now. */
5159 sig_type->type_offset_in_section.sect_off =
5160 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5164 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5167 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5168 /* For DWOs coming from DWP files, we don't know the CU length
5170 dwo_unit->length = get_cu_length (&cu->header);
5173 /* Replace the CU's original abbrev table with the DWO's.
5174 Reminder: We can't read the abbrev table until we've read the header. */
5175 if (abbrev_table_provided)
5177 /* Don't free the provided abbrev table, the caller of
5178 init_cutu_and_read_dies owns it. */
5179 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5180 /* Ensure the DWO abbrev table gets freed. */
5181 make_cleanup (dwarf2_free_abbrev_table, cu);
5185 dwarf2_free_abbrev_table (cu);
5186 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5187 /* Leave any existing abbrev table cleanup as is. */
5190 /* Read in the die, but leave space to copy over the attributes
5191 from the stub. This has the benefit of simplifying the rest of
5192 the code - all the work to maintain the illusion of a single
5193 DW_TAG_{compile,type}_unit DIE is done here. */
5194 num_extra_attrs = ((stmt_list != NULL)
5198 + (comp_dir != NULL));
5199 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5200 result_has_children, num_extra_attrs);
5202 /* Copy over the attributes from the stub to the DIE we just read in. */
5203 comp_unit_die = *result_comp_unit_die;
5204 i = comp_unit_die->num_attrs;
5205 if (stmt_list != NULL)
5206 comp_unit_die->attrs[i++] = *stmt_list;
5208 comp_unit_die->attrs[i++] = *low_pc;
5209 if (high_pc != NULL)
5210 comp_unit_die->attrs[i++] = *high_pc;
5212 comp_unit_die->attrs[i++] = *ranges;
5213 if (comp_dir != NULL)
5214 comp_unit_die->attrs[i++] = *comp_dir;
5215 comp_unit_die->num_attrs += num_extra_attrs;
5217 if (dwarf2_die_debug)
5219 fprintf_unfiltered (gdb_stdlog,
5220 "Read die from %s@0x%x of %s:\n",
5221 get_section_name (section),
5222 (unsigned) (begin_info_ptr - section->buffer),
5223 bfd_get_filename (abfd));
5224 dump_die (comp_unit_die, dwarf2_die_debug);
5227 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5228 TUs by skipping the stub and going directly to the entry in the DWO file.
5229 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5230 to get it via circuitous means. Blech. */
5231 if (comp_dir != NULL)
5232 result_reader->comp_dir = DW_STRING (comp_dir);
5234 /* Skip dummy compilation units. */
5235 if (info_ptr >= begin_info_ptr + dwo_unit->length
5236 || peek_abbrev_code (abfd, info_ptr) == 0)
5239 *result_info_ptr = info_ptr;
5243 /* Subroutine of init_cutu_and_read_dies to simplify it.
5244 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5245 Returns NULL if the specified DWO unit cannot be found. */
5247 static struct dwo_unit *
5248 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5249 struct die_info *comp_unit_die)
5251 struct dwarf2_cu *cu = this_cu->cu;
5252 struct attribute *attr;
5254 struct dwo_unit *dwo_unit;
5255 const char *comp_dir, *dwo_name;
5257 gdb_assert (cu != NULL);
5259 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5260 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5261 gdb_assert (attr != NULL);
5262 dwo_name = DW_STRING (attr);
5264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5266 comp_dir = DW_STRING (attr);
5268 if (this_cu->is_debug_types)
5270 struct signatured_type *sig_type;
5272 /* Since this_cu is the first member of struct signatured_type,
5273 we can go from a pointer to one to a pointer to the other. */
5274 sig_type = (struct signatured_type *) this_cu;
5275 signature = sig_type->signature;
5276 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5280 struct attribute *attr;
5282 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5284 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5286 dwo_name, objfile_name (this_cu->objfile));
5287 signature = DW_UNSND (attr);
5288 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5295 /* Subroutine of init_cutu_and_read_dies to simplify it.
5296 See it for a description of the parameters.
5297 Read a TU directly from a DWO file, bypassing the stub.
5299 Note: This function could be a little bit simpler if we shared cleanups
5300 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5301 to do, so we keep this function self-contained. Or we could move this
5302 into our caller, but it's complex enough already. */
5305 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5306 int use_existing_cu, int keep,
5307 die_reader_func_ftype *die_reader_func,
5310 struct dwarf2_cu *cu;
5311 struct signatured_type *sig_type;
5312 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5313 struct die_reader_specs reader;
5314 const gdb_byte *info_ptr;
5315 struct die_info *comp_unit_die;
5318 /* Verify we can do the following downcast, and that we have the
5320 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5321 sig_type = (struct signatured_type *) this_cu;
5322 gdb_assert (sig_type->dwo_unit != NULL);
5324 cleanups = make_cleanup (null_cleanup, NULL);
5326 if (use_existing_cu && this_cu->cu != NULL)
5328 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5330 /* There's no need to do the rereading_dwo_cu handling that
5331 init_cutu_and_read_dies does since we don't read the stub. */
5335 /* If !use_existing_cu, this_cu->cu must be NULL. */
5336 gdb_assert (this_cu->cu == NULL);
5337 cu = xmalloc (sizeof (*cu));
5338 init_one_comp_unit (cu, this_cu);
5339 /* If an error occurs while loading, release our storage. */
5340 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5343 /* A future optimization, if needed, would be to use an existing
5344 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5345 could share abbrev tables. */
5347 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5348 0 /* abbrev_table_provided */,
5349 NULL /* stub_comp_unit_die */,
5350 sig_type->dwo_unit->dwo_file->comp_dir,
5352 &comp_unit_die, &has_children) == 0)
5355 do_cleanups (cleanups);
5359 /* All the "real" work is done here. */
5360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5362 /* This duplicates the code in init_cutu_and_read_dies,
5363 but the alternative is making the latter more complex.
5364 This function is only for the special case of using DWO files directly:
5365 no point in overly complicating the general case just to handle this. */
5366 if (free_cu_cleanup != NULL)
5370 /* We've successfully allocated this compilation unit. Let our
5371 caller clean it up when finished with it. */
5372 discard_cleanups (free_cu_cleanup);
5374 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5375 So we have to manually free the abbrev table. */
5376 dwarf2_free_abbrev_table (cu);
5378 /* Link this CU into read_in_chain. */
5379 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5380 dwarf2_per_objfile->read_in_chain = this_cu;
5383 do_cleanups (free_cu_cleanup);
5386 do_cleanups (cleanups);
5389 /* Initialize a CU (or TU) and read its DIEs.
5390 If the CU defers to a DWO file, read the DWO file as well.
5392 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5393 Otherwise the table specified in the comp unit header is read in and used.
5394 This is an optimization for when we already have the abbrev table.
5396 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5397 Otherwise, a new CU is allocated with xmalloc.
5399 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5400 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5402 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5403 linker) then DIE_READER_FUNC will not get called. */
5406 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5407 struct abbrev_table *abbrev_table,
5408 int use_existing_cu, int keep,
5409 die_reader_func_ftype *die_reader_func,
5412 struct objfile *objfile = dwarf2_per_objfile->objfile;
5413 struct dwarf2_section_info *section = this_cu->section;
5414 bfd *abfd = get_section_bfd_owner (section);
5415 struct dwarf2_cu *cu;
5416 const gdb_byte *begin_info_ptr, *info_ptr;
5417 struct die_reader_specs reader;
5418 struct die_info *comp_unit_die;
5420 struct attribute *attr;
5421 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5422 struct signatured_type *sig_type = NULL;
5423 struct dwarf2_section_info *abbrev_section;
5424 /* Non-zero if CU currently points to a DWO file and we need to
5425 reread it. When this happens we need to reread the skeleton die
5426 before we can reread the DWO file (this only applies to CUs, not TUs). */
5427 int rereading_dwo_cu = 0;
5429 if (dwarf2_die_debug)
5430 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5431 this_cu->is_debug_types ? "type" : "comp",
5432 this_cu->offset.sect_off);
5434 if (use_existing_cu)
5437 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5438 file (instead of going through the stub), short-circuit all of this. */
5439 if (this_cu->reading_dwo_directly)
5441 /* Narrow down the scope of possibilities to have to understand. */
5442 gdb_assert (this_cu->is_debug_types);
5443 gdb_assert (abbrev_table == NULL);
5444 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5445 die_reader_func, data);
5449 cleanups = make_cleanup (null_cleanup, NULL);
5451 /* This is cheap if the section is already read in. */
5452 dwarf2_read_section (objfile, section);
5454 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5456 abbrev_section = get_abbrev_section_for_cu (this_cu);
5458 if (use_existing_cu && this_cu->cu != NULL)
5461 /* If this CU is from a DWO file we need to start over, we need to
5462 refetch the attributes from the skeleton CU.
5463 This could be optimized by retrieving those attributes from when we
5464 were here the first time: the previous comp_unit_die was stored in
5465 comp_unit_obstack. But there's no data yet that we need this
5467 if (cu->dwo_unit != NULL)
5468 rereading_dwo_cu = 1;
5472 /* If !use_existing_cu, this_cu->cu must be NULL. */
5473 gdb_assert (this_cu->cu == NULL);
5474 cu = xmalloc (sizeof (*cu));
5475 init_one_comp_unit (cu, this_cu);
5476 /* If an error occurs while loading, release our storage. */
5477 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5480 /* Get the header. */
5481 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5483 /* We already have the header, there's no need to read it in again. */
5484 info_ptr += cu->header.first_die_offset.cu_off;
5488 if (this_cu->is_debug_types)
5491 cu_offset type_offset_in_tu;
5493 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5494 abbrev_section, info_ptr,
5496 &type_offset_in_tu);
5498 /* Since per_cu is the first member of struct signatured_type,
5499 we can go from a pointer to one to a pointer to the other. */
5500 sig_type = (struct signatured_type *) this_cu;
5501 gdb_assert (sig_type->signature == signature);
5502 gdb_assert (sig_type->type_offset_in_tu.cu_off
5503 == type_offset_in_tu.cu_off);
5504 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5506 /* LENGTH has not been set yet for type units if we're
5507 using .gdb_index. */
5508 this_cu->length = get_cu_length (&cu->header);
5510 /* Establish the type offset that can be used to lookup the type. */
5511 sig_type->type_offset_in_section.sect_off =
5512 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5516 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5520 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5521 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5525 /* Skip dummy compilation units. */
5526 if (info_ptr >= begin_info_ptr + this_cu->length
5527 || peek_abbrev_code (abfd, info_ptr) == 0)
5529 do_cleanups (cleanups);
5533 /* If we don't have them yet, read the abbrevs for this compilation unit.
5534 And if we need to read them now, make sure they're freed when we're
5535 done. Note that it's important that if the CU had an abbrev table
5536 on entry we don't free it when we're done: Somewhere up the call stack
5537 it may be in use. */
5538 if (abbrev_table != NULL)
5540 gdb_assert (cu->abbrev_table == NULL);
5541 gdb_assert (cu->header.abbrev_offset.sect_off
5542 == abbrev_table->offset.sect_off);
5543 cu->abbrev_table = abbrev_table;
5545 else if (cu->abbrev_table == NULL)
5547 dwarf2_read_abbrevs (cu, abbrev_section);
5548 make_cleanup (dwarf2_free_abbrev_table, cu);
5550 else if (rereading_dwo_cu)
5552 dwarf2_free_abbrev_table (cu);
5553 dwarf2_read_abbrevs (cu, abbrev_section);
5556 /* Read the top level CU/TU die. */
5557 init_cu_die_reader (&reader, cu, section, NULL);
5558 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5560 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5562 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5563 DWO CU, that this test will fail (the attribute will not be present). */
5564 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5567 struct dwo_unit *dwo_unit;
5568 struct die_info *dwo_comp_unit_die;
5572 complaint (&symfile_complaints,
5573 _("compilation unit with DW_AT_GNU_dwo_name"
5574 " has children (offset 0x%x) [in module %s]"),
5575 this_cu->offset.sect_off, bfd_get_filename (abfd));
5577 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5578 if (dwo_unit != NULL)
5580 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5581 abbrev_table != NULL,
5582 comp_unit_die, NULL,
5584 &dwo_comp_unit_die, &has_children) == 0)
5587 do_cleanups (cleanups);
5590 comp_unit_die = dwo_comp_unit_die;
5594 /* Yikes, we couldn't find the rest of the DIE, we only have
5595 the stub. A complaint has already been logged. There's
5596 not much more we can do except pass on the stub DIE to
5597 die_reader_func. We don't want to throw an error on bad
5602 /* All of the above is setup for this call. Yikes. */
5603 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5605 /* Done, clean up. */
5606 if (free_cu_cleanup != NULL)
5610 /* We've successfully allocated this compilation unit. Let our
5611 caller clean it up when finished with it. */
5612 discard_cleanups (free_cu_cleanup);
5614 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5615 So we have to manually free the abbrev table. */
5616 dwarf2_free_abbrev_table (cu);
5618 /* Link this CU into read_in_chain. */
5619 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5620 dwarf2_per_objfile->read_in_chain = this_cu;
5623 do_cleanups (free_cu_cleanup);
5626 do_cleanups (cleanups);
5629 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5630 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5631 to have already done the lookup to find the DWO file).
5633 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5634 THIS_CU->is_debug_types, but nothing else.
5636 We fill in THIS_CU->length.
5638 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5639 linker) then DIE_READER_FUNC will not get called.
5641 THIS_CU->cu is always freed when done.
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU. */
5646 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5647 struct dwo_file *dwo_file,
5648 die_reader_func_ftype *die_reader_func,
5651 struct objfile *objfile = dwarf2_per_objfile->objfile;
5652 struct dwarf2_section_info *section = this_cu->section;
5653 bfd *abfd = get_section_bfd_owner (section);
5654 struct dwarf2_section_info *abbrev_section;
5655 struct dwarf2_cu cu;
5656 const gdb_byte *begin_info_ptr, *info_ptr;
5657 struct die_reader_specs reader;
5658 struct cleanup *cleanups;
5659 struct die_info *comp_unit_die;
5662 if (dwarf2_die_debug)
5663 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5664 this_cu->is_debug_types ? "type" : "comp",
5665 this_cu->offset.sect_off);
5667 gdb_assert (this_cu->cu == NULL);
5669 abbrev_section = (dwo_file != NULL
5670 ? &dwo_file->sections.abbrev
5671 : get_abbrev_section_for_cu (this_cu));
5673 /* This is cheap if the section is already read in. */
5674 dwarf2_read_section (objfile, section);
5676 init_one_comp_unit (&cu, this_cu);
5678 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5680 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5681 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5682 abbrev_section, info_ptr,
5683 this_cu->is_debug_types);
5685 this_cu->length = get_cu_length (&cu.header);
5687 /* Skip dummy compilation units. */
5688 if (info_ptr >= begin_info_ptr + this_cu->length
5689 || peek_abbrev_code (abfd, info_ptr) == 0)
5691 do_cleanups (cleanups);
5695 dwarf2_read_abbrevs (&cu, abbrev_section);
5696 make_cleanup (dwarf2_free_abbrev_table, &cu);
5698 init_cu_die_reader (&reader, &cu, section, dwo_file);
5699 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5701 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5703 do_cleanups (cleanups);
5706 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5707 does not lookup the specified DWO file.
5708 This cannot be used to read DWO files.
5710 THIS_CU->cu is always freed when done.
5711 This is done in order to not leave THIS_CU->cu in a state where we have
5712 to care whether it refers to the "main" CU or the DWO CU.
5713 We can revisit this if the data shows there's a performance issue. */
5716 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5717 die_reader_func_ftype *die_reader_func,
5720 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5723 /* Type Unit Groups.
5725 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5726 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5727 so that all types coming from the same compilation (.o file) are grouped
5728 together. A future step could be to put the types in the same symtab as
5729 the CU the types ultimately came from. */
5732 hash_type_unit_group (const void *item)
5734 const struct type_unit_group *tu_group = item;
5736 return hash_stmt_list_entry (&tu_group->hash);
5740 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5742 const struct type_unit_group *lhs = item_lhs;
5743 const struct type_unit_group *rhs = item_rhs;
5745 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5748 /* Allocate a hash table for type unit groups. */
5751 allocate_type_unit_groups_table (void)
5753 return htab_create_alloc_ex (3,
5754 hash_type_unit_group,
5757 &dwarf2_per_objfile->objfile->objfile_obstack,
5758 hashtab_obstack_allocate,
5759 dummy_obstack_deallocate);
5762 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5763 partial symtabs. We combine several TUs per psymtab to not let the size
5764 of any one psymtab grow too big. */
5765 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5766 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5768 /* Helper routine for get_type_unit_group.
5769 Create the type_unit_group object used to hold one or more TUs. */
5771 static struct type_unit_group *
5772 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5774 struct objfile *objfile = dwarf2_per_objfile->objfile;
5775 struct dwarf2_per_cu_data *per_cu;
5776 struct type_unit_group *tu_group;
5778 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5779 struct type_unit_group);
5780 per_cu = &tu_group->per_cu;
5781 per_cu->objfile = objfile;
5783 if (dwarf2_per_objfile->using_index)
5785 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5786 struct dwarf2_per_cu_quick_data);
5790 unsigned int line_offset = line_offset_struct.sect_off;
5791 struct partial_symtab *pst;
5794 /* Give the symtab a useful name for debug purposes. */
5795 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5796 name = xstrprintf ("<type_units_%d>",
5797 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5799 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5801 pst = create_partial_symtab (per_cu, name);
5807 tu_group->hash.dwo_unit = cu->dwo_unit;
5808 tu_group->hash.line_offset = line_offset_struct;
5813 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5814 STMT_LIST is a DW_AT_stmt_list attribute. */
5816 static struct type_unit_group *
5817 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5819 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5820 struct type_unit_group *tu_group;
5822 unsigned int line_offset;
5823 struct type_unit_group type_unit_group_for_lookup;
5825 if (dwarf2_per_objfile->type_unit_groups == NULL)
5827 dwarf2_per_objfile->type_unit_groups =
5828 allocate_type_unit_groups_table ();
5831 /* Do we need to create a new group, or can we use an existing one? */
5835 line_offset = DW_UNSND (stmt_list);
5836 ++tu_stats->nr_symtab_sharers;
5840 /* Ugh, no stmt_list. Rare, but we have to handle it.
5841 We can do various things here like create one group per TU or
5842 spread them over multiple groups to split up the expansion work.
5843 To avoid worst case scenarios (too many groups or too large groups)
5844 we, umm, group them in bunches. */
5845 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5846 | (tu_stats->nr_stmt_less_type_units
5847 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5848 ++tu_stats->nr_stmt_less_type_units;
5851 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5852 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5853 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5854 &type_unit_group_for_lookup, INSERT);
5858 gdb_assert (tu_group != NULL);
5862 sect_offset line_offset_struct;
5864 line_offset_struct.sect_off = line_offset;
5865 tu_group = create_type_unit_group (cu, line_offset_struct);
5867 ++tu_stats->nr_symtabs;
5873 /* Partial symbol tables. */
5875 /* Create a psymtab named NAME and assign it to PER_CU.
5877 The caller must fill in the following details:
5878 dirname, textlow, texthigh. */
5880 static struct partial_symtab *
5881 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5883 struct objfile *objfile = per_cu->objfile;
5884 struct partial_symtab *pst;
5886 pst = start_psymtab_common (objfile, objfile->section_offsets,
5888 objfile->global_psymbols.next,
5889 objfile->static_psymbols.next);
5891 pst->psymtabs_addrmap_supported = 1;
5893 /* This is the glue that links PST into GDB's symbol API. */
5894 pst->read_symtab_private = per_cu;
5895 pst->read_symtab = dwarf2_read_symtab;
5896 per_cu->v.psymtab = pst;
5901 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5904 struct process_psymtab_comp_unit_data
5906 /* True if we are reading a DW_TAG_partial_unit. */
5908 int want_partial_unit;
5910 /* The "pretend" language that is used if the CU doesn't declare a
5913 enum language pretend_language;
5916 /* die_reader_func for process_psymtab_comp_unit. */
5919 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5920 const gdb_byte *info_ptr,
5921 struct die_info *comp_unit_die,
5925 struct dwarf2_cu *cu = reader->cu;
5926 struct objfile *objfile = cu->objfile;
5927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5928 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5929 struct attribute *attr;
5931 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5932 struct partial_symtab *pst;
5934 const char *filename;
5935 struct process_psymtab_comp_unit_data *info = data;
5937 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5940 gdb_assert (! per_cu->is_debug_types);
5942 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5944 cu->list_in_scope = &file_symbols;
5946 /* Allocate a new partial symbol table structure. */
5947 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5948 if (attr == NULL || !DW_STRING (attr))
5951 filename = DW_STRING (attr);
5953 pst = create_partial_symtab (per_cu, filename);
5955 /* This must be done before calling dwarf2_build_include_psymtabs. */
5956 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5958 pst->dirname = DW_STRING (attr);
5960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5962 dwarf2_find_base_address (comp_unit_die, cu);
5964 /* Possibly set the default values of LOWPC and HIGHPC from
5966 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5967 &best_highpc, cu, pst);
5968 if (has_pc_info == 1 && best_lowpc < best_highpc)
5969 /* Store the contiguous range if it is not empty; it can be empty for
5970 CUs with no code. */
5971 addrmap_set_empty (objfile->psymtabs_addrmap,
5972 gdbarch_adjust_dwarf2_addr (gdbarch,
5973 best_lowpc + baseaddr),
5974 gdbarch_adjust_dwarf2_addr (gdbarch,
5975 best_highpc + baseaddr) - 1,
5978 /* Check if comp unit has_children.
5979 If so, read the rest of the partial symbols from this comp unit.
5980 If not, there's no more debug_info for this comp unit. */
5983 struct partial_die_info *first_die;
5984 CORE_ADDR lowpc, highpc;
5986 lowpc = ((CORE_ADDR) -1);
5987 highpc = ((CORE_ADDR) 0);
5989 first_die = load_partial_dies (reader, info_ptr, 1);
5991 scan_partial_symbols (first_die, &lowpc, &highpc,
5994 /* If we didn't find a lowpc, set it to highpc to avoid
5995 complaints from `maint check'. */
5996 if (lowpc == ((CORE_ADDR) -1))
5999 /* If the compilation unit didn't have an explicit address range,
6000 then use the information extracted from its child dies. */
6004 best_highpc = highpc;
6007 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6008 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6010 pst->n_global_syms = objfile->global_psymbols.next -
6011 (objfile->global_psymbols.list + pst->globals_offset);
6012 pst->n_static_syms = objfile->static_psymbols.next -
6013 (objfile->static_psymbols.list + pst->statics_offset);
6014 sort_pst_symbols (objfile, pst);
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6024 pst->number_of_dependencies = len;
6025 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6026 len * sizeof (struct symtab *));
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6031 pst->dependencies[i] = iter->v.psymtab;
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6040 if (dwarf2_read_debug)
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6063 struct process_psymtab_comp_unit_data info;
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6084 /* Reader function for build_type_psymtabs. */
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6126 pst->n_global_syms = objfile->global_psymbols.next -
6127 (objfile->global_psymbols.list + pst->globals_offset);
6128 pst->n_static_syms = objfile->static_psymbols.next -
6129 (objfile->static_psymbols.list + pst->statics_offset);
6130 sort_pst_symbols (objfile, pst);
6133 /* Struct used to sort TUs by their abbreviation table offset. */
6135 struct tu_abbrev_offset
6137 struct signatured_type *sig_type;
6138 sect_offset abbrev_offset;
6141 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6144 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6146 const struct tu_abbrev_offset * const *a = ap;
6147 const struct tu_abbrev_offset * const *b = bp;
6148 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6149 unsigned int boff = (*b)->abbrev_offset.sect_off;
6151 return (aoff > boff) - (aoff < boff);
6154 /* Efficiently read all the type units.
6155 This does the bulk of the work for build_type_psymtabs.
6157 The efficiency is because we sort TUs by the abbrev table they use and
6158 only read each abbrev table once. In one program there are 200K TUs
6159 sharing 8K abbrev tables.
6161 The main purpose of this function is to support building the
6162 dwarf2_per_objfile->type_unit_groups table.
6163 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6164 can collapse the search space by grouping them by stmt_list.
6165 The savings can be significant, in the same program from above the 200K TUs
6166 share 8K stmt_list tables.
6168 FUNC is expected to call get_type_unit_group, which will create the
6169 struct type_unit_group if necessary and add it to
6170 dwarf2_per_objfile->type_unit_groups. */
6173 build_type_psymtabs_1 (void)
6175 struct objfile *objfile = dwarf2_per_objfile->objfile;
6176 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6177 struct cleanup *cleanups;
6178 struct abbrev_table *abbrev_table;
6179 sect_offset abbrev_offset;
6180 struct tu_abbrev_offset *sorted_by_abbrev;
6181 struct type_unit_group **iter;
6184 /* It's up to the caller to not call us multiple times. */
6185 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6187 if (dwarf2_per_objfile->n_type_units == 0)
6190 /* TUs typically share abbrev tables, and there can be way more TUs than
6191 abbrev tables. Sort by abbrev table to reduce the number of times we
6192 read each abbrev table in.
6193 Alternatives are to punt or to maintain a cache of abbrev tables.
6194 This is simpler and efficient enough for now.
6196 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6197 symtab to use). Typically TUs with the same abbrev offset have the same
6198 stmt_list value too so in practice this should work well.
6200 The basic algorithm here is:
6202 sort TUs by abbrev table
6203 for each TU with same abbrev table:
6204 read abbrev table if first user
6205 read TU top level DIE
6206 [IWBN if DWO skeletons had DW_AT_stmt_list]
6209 if (dwarf2_read_debug)
6210 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6212 /* Sort in a separate table to maintain the order of all_type_units
6213 for .gdb_index: TU indices directly index all_type_units. */
6214 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6215 dwarf2_per_objfile->n_type_units);
6216 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6218 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6220 sorted_by_abbrev[i].sig_type = sig_type;
6221 sorted_by_abbrev[i].abbrev_offset =
6222 read_abbrev_offset (sig_type->per_cu.section,
6223 sig_type->per_cu.offset);
6225 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6226 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6227 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6229 abbrev_offset.sect_off = ~(unsigned) 0;
6230 abbrev_table = NULL;
6231 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6233 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6235 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6237 /* Switch to the next abbrev table if necessary. */
6238 if (abbrev_table == NULL
6239 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6241 if (abbrev_table != NULL)
6243 abbrev_table_free (abbrev_table);
6244 /* Reset to NULL in case abbrev_table_read_table throws
6245 an error: abbrev_table_free_cleanup will get called. */
6246 abbrev_table = NULL;
6248 abbrev_offset = tu->abbrev_offset;
6250 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6252 ++tu_stats->nr_uniq_abbrev_tables;
6255 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6256 build_type_psymtabs_reader, NULL);
6259 do_cleanups (cleanups);
6262 /* Print collected type unit statistics. */
6265 print_tu_stats (void)
6267 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6269 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6271 dwarf2_per_objfile->n_type_units);
6272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6273 tu_stats->nr_uniq_abbrev_tables);
6274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6275 tu_stats->nr_symtabs);
6276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6277 tu_stats->nr_symtab_sharers);
6278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6279 tu_stats->nr_stmt_less_type_units);
6280 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6281 tu_stats->nr_all_type_units_reallocs);
6284 /* Traversal function for build_type_psymtabs. */
6287 build_type_psymtab_dependencies (void **slot, void *info)
6289 struct objfile *objfile = dwarf2_per_objfile->objfile;
6290 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6291 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6292 struct partial_symtab *pst = per_cu->v.psymtab;
6293 int len = VEC_length (sig_type_ptr, tu_group->tus);
6294 struct signatured_type *iter;
6297 gdb_assert (len > 0);
6298 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6300 pst->number_of_dependencies = len;
6301 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6302 len * sizeof (struct psymtab *));
6304 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6307 gdb_assert (iter->per_cu.is_debug_types);
6308 pst->dependencies[i] = iter->per_cu.v.psymtab;
6309 iter->type_unit_group = tu_group;
6312 VEC_free (sig_type_ptr, tu_group->tus);
6317 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6318 Build partial symbol tables for the .debug_types comp-units. */
6321 build_type_psymtabs (struct objfile *objfile)
6323 if (! create_all_type_units (objfile))
6326 build_type_psymtabs_1 ();
6329 /* Traversal function for process_skeletonless_type_unit.
6330 Read a TU in a DWO file and build partial symbols for it. */
6333 process_skeletonless_type_unit (void **slot, void *info)
6335 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6336 struct objfile *objfile = info;
6337 struct signatured_type find_entry, *entry;
6339 /* If this TU doesn't exist in the global table, add it and read it in. */
6341 if (dwarf2_per_objfile->signatured_types == NULL)
6343 dwarf2_per_objfile->signatured_types
6344 = allocate_signatured_type_table (objfile);
6347 find_entry.signature = dwo_unit->signature;
6348 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6350 /* If we've already seen this type there's nothing to do. What's happening
6351 is we're doing our own version of comdat-folding here. */
6355 /* This does the job that create_all_type_units would have done for
6357 entry = add_type_unit (dwo_unit->signature, slot);
6358 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6361 /* This does the job that build_type_psymtabs_1 would have done. */
6362 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6363 build_type_psymtabs_reader, NULL);
6368 /* Traversal function for process_skeletonless_type_units. */
6371 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6373 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6375 if (dwo_file->tus != NULL)
6377 htab_traverse_noresize (dwo_file->tus,
6378 process_skeletonless_type_unit, info);
6384 /* Scan all TUs of DWO files, verifying we've processed them.
6385 This is needed in case a TU was emitted without its skeleton.
6386 Note: This can't be done until we know what all the DWO files are. */
6389 process_skeletonless_type_units (struct objfile *objfile)
6391 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6392 if (get_dwp_file () == NULL
6393 && dwarf2_per_objfile->dwo_files != NULL)
6395 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6396 process_dwo_file_for_skeletonless_type_units,
6401 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6404 psymtabs_addrmap_cleanup (void *o)
6406 struct objfile *objfile = o;
6408 objfile->psymtabs_addrmap = NULL;
6411 /* Compute the 'user' field for each psymtab in OBJFILE. */
6414 set_partial_user (struct objfile *objfile)
6418 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6420 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6421 struct partial_symtab *pst = per_cu->v.psymtab;
6427 for (j = 0; j < pst->number_of_dependencies; ++j)
6429 /* Set the 'user' field only if it is not already set. */
6430 if (pst->dependencies[j]->user == NULL)
6431 pst->dependencies[j]->user = pst;
6436 /* Build the partial symbol table by doing a quick pass through the
6437 .debug_info and .debug_abbrev sections. */
6440 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6442 struct cleanup *back_to, *addrmap_cleanup;
6443 struct obstack temp_obstack;
6446 if (dwarf2_read_debug)
6448 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6449 objfile_name (objfile));
6452 dwarf2_per_objfile->reading_partial_symbols = 1;
6454 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6456 /* Any cached compilation units will be linked by the per-objfile
6457 read_in_chain. Make sure to free them when we're done. */
6458 back_to = make_cleanup (free_cached_comp_units, NULL);
6460 build_type_psymtabs (objfile);
6462 create_all_comp_units (objfile);
6464 /* Create a temporary address map on a temporary obstack. We later
6465 copy this to the final obstack. */
6466 obstack_init (&temp_obstack);
6467 make_cleanup_obstack_free (&temp_obstack);
6468 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6469 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6471 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6473 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6475 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6478 /* This has to wait until we read the CUs, we need the list of DWOs. */
6479 process_skeletonless_type_units (objfile);
6481 /* Now that all TUs have been processed we can fill in the dependencies. */
6482 if (dwarf2_per_objfile->type_unit_groups != NULL)
6484 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6485 build_type_psymtab_dependencies, NULL);
6488 if (dwarf2_read_debug)
6491 set_partial_user (objfile);
6493 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6494 &objfile->objfile_obstack);
6495 discard_cleanups (addrmap_cleanup);
6497 do_cleanups (back_to);
6499 if (dwarf2_read_debug)
6500 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6501 objfile_name (objfile));
6504 /* die_reader_func for load_partial_comp_unit. */
6507 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6508 const gdb_byte *info_ptr,
6509 struct die_info *comp_unit_die,
6513 struct dwarf2_cu *cu = reader->cu;
6515 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6517 /* Check if comp unit has_children.
6518 If so, read the rest of the partial symbols from this comp unit.
6519 If not, there's no more debug_info for this comp unit. */
6521 load_partial_dies (reader, info_ptr, 0);
6524 /* Load the partial DIEs for a secondary CU into memory.
6525 This is also used when rereading a primary CU with load_all_dies. */
6528 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6530 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6531 load_partial_comp_unit_reader, NULL);
6535 read_comp_units_from_section (struct objfile *objfile,
6536 struct dwarf2_section_info *section,
6537 unsigned int is_dwz,
6540 struct dwarf2_per_cu_data ***all_comp_units)
6542 const gdb_byte *info_ptr;
6543 bfd *abfd = get_section_bfd_owner (section);
6545 if (dwarf2_read_debug)
6546 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6547 get_section_name (section),
6548 get_section_file_name (section));
6550 dwarf2_read_section (objfile, section);
6552 info_ptr = section->buffer;
6554 while (info_ptr < section->buffer + section->size)
6556 unsigned int length, initial_length_size;
6557 struct dwarf2_per_cu_data *this_cu;
6560 offset.sect_off = info_ptr - section->buffer;
6562 /* Read just enough information to find out where the next
6563 compilation unit is. */
6564 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6566 /* Save the compilation unit for later lookup. */
6567 this_cu = obstack_alloc (&objfile->objfile_obstack,
6568 sizeof (struct dwarf2_per_cu_data));
6569 memset (this_cu, 0, sizeof (*this_cu));
6570 this_cu->offset = offset;
6571 this_cu->length = length + initial_length_size;
6572 this_cu->is_dwz = is_dwz;
6573 this_cu->objfile = objfile;
6574 this_cu->section = section;
6576 if (*n_comp_units == *n_allocated)
6579 *all_comp_units = xrealloc (*all_comp_units,
6581 * sizeof (struct dwarf2_per_cu_data *));
6583 (*all_comp_units)[*n_comp_units] = this_cu;
6586 info_ptr = info_ptr + this_cu->length;
6590 /* Create a list of all compilation units in OBJFILE.
6591 This is only done for -readnow and building partial symtabs. */
6594 create_all_comp_units (struct objfile *objfile)
6598 struct dwarf2_per_cu_data **all_comp_units;
6599 struct dwz_file *dwz;
6603 all_comp_units = xmalloc (n_allocated
6604 * sizeof (struct dwarf2_per_cu_data *));
6606 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6607 &n_allocated, &n_comp_units, &all_comp_units);
6609 dwz = dwarf2_get_dwz_file ();
6611 read_comp_units_from_section (objfile, &dwz->info, 1,
6612 &n_allocated, &n_comp_units,
6615 dwarf2_per_objfile->all_comp_units
6616 = obstack_alloc (&objfile->objfile_obstack,
6617 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6618 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6619 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6620 xfree (all_comp_units);
6621 dwarf2_per_objfile->n_comp_units = n_comp_units;
6624 /* Process all loaded DIEs for compilation unit CU, starting at
6625 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6626 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6627 DW_AT_ranges). See the comments of add_partial_subprogram on how
6628 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6631 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6632 CORE_ADDR *highpc, int set_addrmap,
6633 struct dwarf2_cu *cu)
6635 struct partial_die_info *pdi;
6637 /* Now, march along the PDI's, descending into ones which have
6638 interesting children but skipping the children of the other ones,
6639 until we reach the end of the compilation unit. */
6645 fixup_partial_die (pdi, cu);
6647 /* Anonymous namespaces or modules have no name but have interesting
6648 children, so we need to look at them. Ditto for anonymous
6651 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6652 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6653 || pdi->tag == DW_TAG_imported_unit)
6657 case DW_TAG_subprogram:
6658 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6660 case DW_TAG_constant:
6661 case DW_TAG_variable:
6662 case DW_TAG_typedef:
6663 case DW_TAG_union_type:
6664 if (!pdi->is_declaration)
6666 add_partial_symbol (pdi, cu);
6669 case DW_TAG_class_type:
6670 case DW_TAG_interface_type:
6671 case DW_TAG_structure_type:
6672 if (!pdi->is_declaration)
6674 add_partial_symbol (pdi, cu);
6677 case DW_TAG_enumeration_type:
6678 if (!pdi->is_declaration)
6679 add_partial_enumeration (pdi, cu);
6681 case DW_TAG_base_type:
6682 case DW_TAG_subrange_type:
6683 /* File scope base type definitions are added to the partial
6685 add_partial_symbol (pdi, cu);
6687 case DW_TAG_namespace:
6688 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6691 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6693 case DW_TAG_imported_unit:
6695 struct dwarf2_per_cu_data *per_cu;
6697 /* For now we don't handle imported units in type units. */
6698 if (cu->per_cu->is_debug_types)
6700 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6701 " supported in type units [in module %s]"),
6702 objfile_name (cu->objfile));
6705 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6709 /* Go read the partial unit, if needed. */
6710 if (per_cu->v.psymtab == NULL)
6711 process_psymtab_comp_unit (per_cu, 1, cu->language);
6713 VEC_safe_push (dwarf2_per_cu_ptr,
6714 cu->per_cu->imported_symtabs, per_cu);
6717 case DW_TAG_imported_declaration:
6718 add_partial_symbol (pdi, cu);
6725 /* If the die has a sibling, skip to the sibling. */
6727 pdi = pdi->die_sibling;
6731 /* Functions used to compute the fully scoped name of a partial DIE.
6733 Normally, this is simple. For C++, the parent DIE's fully scoped
6734 name is concatenated with "::" and the partial DIE's name. For
6735 Java, the same thing occurs except that "." is used instead of "::".
6736 Enumerators are an exception; they use the scope of their parent
6737 enumeration type, i.e. the name of the enumeration type is not
6738 prepended to the enumerator.
6740 There are two complexities. One is DW_AT_specification; in this
6741 case "parent" means the parent of the target of the specification,
6742 instead of the direct parent of the DIE. The other is compilers
6743 which do not emit DW_TAG_namespace; in this case we try to guess
6744 the fully qualified name of structure types from their members'
6745 linkage names. This must be done using the DIE's children rather
6746 than the children of any DW_AT_specification target. We only need
6747 to do this for structures at the top level, i.e. if the target of
6748 any DW_AT_specification (if any; otherwise the DIE itself) does not
6751 /* Compute the scope prefix associated with PDI's parent, in
6752 compilation unit CU. The result will be allocated on CU's
6753 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6754 field. NULL is returned if no prefix is necessary. */
6756 partial_die_parent_scope (struct partial_die_info *pdi,
6757 struct dwarf2_cu *cu)
6759 const char *grandparent_scope;
6760 struct partial_die_info *parent, *real_pdi;
6762 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6763 then this means the parent of the specification DIE. */
6766 while (real_pdi->has_specification)
6767 real_pdi = find_partial_die (real_pdi->spec_offset,
6768 real_pdi->spec_is_dwz, cu);
6770 parent = real_pdi->die_parent;
6774 if (parent->scope_set)
6775 return parent->scope;
6777 fixup_partial_die (parent, cu);
6779 grandparent_scope = partial_die_parent_scope (parent, cu);
6781 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6782 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6783 Work around this problem here. */
6784 if (cu->language == language_cplus
6785 && parent->tag == DW_TAG_namespace
6786 && strcmp (parent->name, "::") == 0
6787 && grandparent_scope == NULL)
6789 parent->scope = NULL;
6790 parent->scope_set = 1;
6794 if (pdi->tag == DW_TAG_enumerator)
6795 /* Enumerators should not get the name of the enumeration as a prefix. */
6796 parent->scope = grandparent_scope;
6797 else if (parent->tag == DW_TAG_namespace
6798 || parent->tag == DW_TAG_module
6799 || parent->tag == DW_TAG_structure_type
6800 || parent->tag == DW_TAG_class_type
6801 || parent->tag == DW_TAG_interface_type
6802 || parent->tag == DW_TAG_union_type
6803 || parent->tag == DW_TAG_enumeration_type)
6805 if (grandparent_scope == NULL)
6806 parent->scope = parent->name;
6808 parent->scope = typename_concat (&cu->comp_unit_obstack,
6810 parent->name, 0, cu);
6814 /* FIXME drow/2004-04-01: What should we be doing with
6815 function-local names? For partial symbols, we should probably be
6817 complaint (&symfile_complaints,
6818 _("unhandled containing DIE tag %d for DIE at %d"),
6819 parent->tag, pdi->offset.sect_off);
6820 parent->scope = grandparent_scope;
6823 parent->scope_set = 1;
6824 return parent->scope;
6827 /* Return the fully scoped name associated with PDI, from compilation unit
6828 CU. The result will be allocated with malloc. */
6831 partial_die_full_name (struct partial_die_info *pdi,
6832 struct dwarf2_cu *cu)
6834 const char *parent_scope;
6836 /* If this is a template instantiation, we can not work out the
6837 template arguments from partial DIEs. So, unfortunately, we have
6838 to go through the full DIEs. At least any work we do building
6839 types here will be reused if full symbols are loaded later. */
6840 if (pdi->has_template_arguments)
6842 fixup_partial_die (pdi, cu);
6844 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6846 struct die_info *die;
6847 struct attribute attr;
6848 struct dwarf2_cu *ref_cu = cu;
6850 /* DW_FORM_ref_addr is using section offset. */
6852 attr.form = DW_FORM_ref_addr;
6853 attr.u.unsnd = pdi->offset.sect_off;
6854 die = follow_die_ref (NULL, &attr, &ref_cu);
6856 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6860 parent_scope = partial_die_parent_scope (pdi, cu);
6861 if (parent_scope == NULL)
6864 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6868 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6870 struct objfile *objfile = cu->objfile;
6871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6873 const char *actual_name = NULL;
6875 char *built_actual_name;
6877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6879 built_actual_name = partial_die_full_name (pdi, cu);
6880 if (built_actual_name != NULL)
6881 actual_name = built_actual_name;
6883 if (actual_name == NULL)
6884 actual_name = pdi->name;
6888 case DW_TAG_subprogram:
6889 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6890 if (pdi->is_external || cu->language == language_ada)
6892 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6893 of the global scope. But in Ada, we want to be able to access
6894 nested procedures globally. So all Ada subprograms are stored
6895 in the global scope. */
6896 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6898 add_psymbol_to_list (actual_name, strlen (actual_name),
6899 built_actual_name != NULL,
6900 VAR_DOMAIN, LOC_BLOCK,
6901 &objfile->global_psymbols,
6902 0, addr, cu->language, objfile);
6906 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6908 add_psymbol_to_list (actual_name, strlen (actual_name),
6909 built_actual_name != NULL,
6910 VAR_DOMAIN, LOC_BLOCK,
6911 &objfile->static_psymbols,
6912 0, addr, cu->language, objfile);
6915 case DW_TAG_constant:
6917 struct psymbol_allocation_list *list;
6919 if (pdi->is_external)
6920 list = &objfile->global_psymbols;
6922 list = &objfile->static_psymbols;
6923 add_psymbol_to_list (actual_name, strlen (actual_name),
6924 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6925 list, 0, 0, cu->language, objfile);
6928 case DW_TAG_variable:
6930 addr = decode_locdesc (pdi->d.locdesc, cu);
6934 && !dwarf2_per_objfile->has_section_at_zero)
6936 /* A global or static variable may also have been stripped
6937 out by the linker if unused, in which case its address
6938 will be nullified; do not add such variables into partial
6939 symbol table then. */
6941 else if (pdi->is_external)
6944 Don't enter into the minimal symbol tables as there is
6945 a minimal symbol table entry from the ELF symbols already.
6946 Enter into partial symbol table if it has a location
6947 descriptor or a type.
6948 If the location descriptor is missing, new_symbol will create
6949 a LOC_UNRESOLVED symbol, the address of the variable will then
6950 be determined from the minimal symbol table whenever the variable
6952 The address for the partial symbol table entry is not
6953 used by GDB, but it comes in handy for debugging partial symbol
6956 if (pdi->d.locdesc || pdi->has_type)
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_STATIC,
6960 &objfile->global_psymbols,
6962 cu->language, objfile);
6966 int has_loc = pdi->d.locdesc != NULL;
6968 /* Static Variable. Skip symbols whose value we cannot know (those
6969 without location descriptors or constant values). */
6970 if (!has_loc && !pdi->has_const_value)
6972 xfree (built_actual_name);
6976 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6977 mst_file_data, objfile); */
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6983 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6984 cu->language, objfile);
6987 case DW_TAG_typedef:
6988 case DW_TAG_base_type:
6989 case DW_TAG_subrange_type:
6990 add_psymbol_to_list (actual_name, strlen (actual_name),
6991 built_actual_name != NULL,
6992 VAR_DOMAIN, LOC_TYPEDEF,
6993 &objfile->static_psymbols,
6994 0, (CORE_ADDR) 0, cu->language, objfile);
6996 case DW_TAG_imported_declaration:
6997 case DW_TAG_namespace:
6998 add_psymbol_to_list (actual_name, strlen (actual_name),
6999 built_actual_name != NULL,
7000 VAR_DOMAIN, LOC_TYPEDEF,
7001 &objfile->global_psymbols,
7002 0, (CORE_ADDR) 0, cu->language, objfile);
7005 add_psymbol_to_list (actual_name, strlen (actual_name),
7006 built_actual_name != NULL,
7007 MODULE_DOMAIN, LOC_TYPEDEF,
7008 &objfile->global_psymbols,
7009 0, (CORE_ADDR) 0, cu->language, objfile);
7011 case DW_TAG_class_type:
7012 case DW_TAG_interface_type:
7013 case DW_TAG_structure_type:
7014 case DW_TAG_union_type:
7015 case DW_TAG_enumeration_type:
7016 /* Skip external references. The DWARF standard says in the section
7017 about "Structure, Union, and Class Type Entries": "An incomplete
7018 structure, union or class type is represented by a structure,
7019 union or class entry that does not have a byte size attribute
7020 and that has a DW_AT_declaration attribute." */
7021 if (!pdi->has_byte_size && pdi->is_declaration)
7023 xfree (built_actual_name);
7027 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7028 static vs. global. */
7029 add_psymbol_to_list (actual_name, strlen (actual_name),
7030 built_actual_name != NULL,
7031 STRUCT_DOMAIN, LOC_TYPEDEF,
7032 (cu->language == language_cplus
7033 || cu->language == language_java)
7034 ? &objfile->global_psymbols
7035 : &objfile->static_psymbols,
7036 0, (CORE_ADDR) 0, cu->language, objfile);
7039 case DW_TAG_enumerator:
7040 add_psymbol_to_list (actual_name, strlen (actual_name),
7041 built_actual_name != NULL,
7042 VAR_DOMAIN, LOC_CONST,
7043 (cu->language == language_cplus
7044 || cu->language == language_java)
7045 ? &objfile->global_psymbols
7046 : &objfile->static_psymbols,
7047 0, (CORE_ADDR) 0, cu->language, objfile);
7053 xfree (built_actual_name);
7056 /* Read a partial die corresponding to a namespace; also, add a symbol
7057 corresponding to that namespace to the symbol table. NAMESPACE is
7058 the name of the enclosing namespace. */
7061 add_partial_namespace (struct partial_die_info *pdi,
7062 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7063 int set_addrmap, struct dwarf2_cu *cu)
7065 /* Add a symbol for the namespace. */
7067 add_partial_symbol (pdi, cu);
7069 /* Now scan partial symbols in that namespace. */
7071 if (pdi->has_children)
7072 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7075 /* Read a partial die corresponding to a Fortran module. */
7078 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7079 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7081 /* Add a symbol for the namespace. */
7083 add_partial_symbol (pdi, cu);
7085 /* Now scan partial symbols in that module. */
7087 if (pdi->has_children)
7088 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7091 /* Read a partial die corresponding to a subprogram and create a partial
7092 symbol for that subprogram. When the CU language allows it, this
7093 routine also defines a partial symbol for each nested subprogram
7094 that this subprogram contains. If SET_ADDRMAP is true, record the
7095 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7096 and highest PC values found in PDI.
7098 PDI may also be a lexical block, in which case we simply search
7099 recursively for subprograms defined inside that lexical block.
7100 Again, this is only performed when the CU language allows this
7101 type of definitions. */
7104 add_partial_subprogram (struct partial_die_info *pdi,
7105 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7106 int set_addrmap, struct dwarf2_cu *cu)
7108 if (pdi->tag == DW_TAG_subprogram)
7110 if (pdi->has_pc_info)
7112 if (pdi->lowpc < *lowpc)
7113 *lowpc = pdi->lowpc;
7114 if (pdi->highpc > *highpc)
7115 *highpc = pdi->highpc;
7118 struct objfile *objfile = cu->objfile;
7119 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 baseaddr = ANOFFSET (objfile->section_offsets,
7125 SECT_OFF_TEXT (objfile));
7126 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7127 pdi->lowpc + baseaddr);
7128 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7129 pdi->highpc + baseaddr);
7130 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7131 cu->per_cu->v.psymtab);
7135 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7137 if (!pdi->is_declaration)
7138 /* Ignore subprogram DIEs that do not have a name, they are
7139 illegal. Do not emit a complaint at this point, we will
7140 do so when we convert this psymtab into a symtab. */
7142 add_partial_symbol (pdi, cu);
7146 if (! pdi->has_children)
7149 if (cu->language == language_ada)
7151 pdi = pdi->die_child;
7154 fixup_partial_die (pdi, cu);
7155 if (pdi->tag == DW_TAG_subprogram
7156 || pdi->tag == DW_TAG_lexical_block)
7157 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7158 pdi = pdi->die_sibling;
7163 /* Read a partial die corresponding to an enumeration type. */
7166 add_partial_enumeration (struct partial_die_info *enum_pdi,
7167 struct dwarf2_cu *cu)
7169 struct partial_die_info *pdi;
7171 if (enum_pdi->name != NULL)
7172 add_partial_symbol (enum_pdi, cu);
7174 pdi = enum_pdi->die_child;
7177 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7178 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7180 add_partial_symbol (pdi, cu);
7181 pdi = pdi->die_sibling;
7185 /* Return the initial uleb128 in the die at INFO_PTR. */
7188 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7190 unsigned int bytes_read;
7192 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7195 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7196 Return the corresponding abbrev, or NULL if the number is zero (indicating
7197 an empty DIE). In either case *BYTES_READ will be set to the length of
7198 the initial number. */
7200 static struct abbrev_info *
7201 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7202 struct dwarf2_cu *cu)
7204 bfd *abfd = cu->objfile->obfd;
7205 unsigned int abbrev_number;
7206 struct abbrev_info *abbrev;
7208 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7210 if (abbrev_number == 0)
7213 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7216 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7217 " at offset 0x%x [in module %s]"),
7218 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7219 cu->header.offset.sect_off, bfd_get_filename (abfd));
7225 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7226 Returns a pointer to the end of a series of DIEs, terminated by an empty
7227 DIE. Any children of the skipped DIEs will also be skipped. */
7229 static const gdb_byte *
7230 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7232 struct dwarf2_cu *cu = reader->cu;
7233 struct abbrev_info *abbrev;
7234 unsigned int bytes_read;
7238 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7240 return info_ptr + bytes_read;
7242 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7247 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7248 abbrev corresponding to that skipped uleb128 should be passed in
7249 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7252 static const gdb_byte *
7253 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7254 struct abbrev_info *abbrev)
7256 unsigned int bytes_read;
7257 struct attribute attr;
7258 bfd *abfd = reader->abfd;
7259 struct dwarf2_cu *cu = reader->cu;
7260 const gdb_byte *buffer = reader->buffer;
7261 const gdb_byte *buffer_end = reader->buffer_end;
7262 const gdb_byte *start_info_ptr = info_ptr;
7263 unsigned int form, i;
7265 for (i = 0; i < abbrev->num_attrs; i++)
7267 /* The only abbrev we care about is DW_AT_sibling. */
7268 if (abbrev->attrs[i].name == DW_AT_sibling)
7270 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7271 if (attr.form == DW_FORM_ref_addr)
7272 complaint (&symfile_complaints,
7273 _("ignoring absolute DW_AT_sibling"));
7276 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7277 const gdb_byte *sibling_ptr = buffer + off;
7279 if (sibling_ptr < info_ptr)
7280 complaint (&symfile_complaints,
7281 _("DW_AT_sibling points backwards"));
7282 else if (sibling_ptr > reader->buffer_end)
7283 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7289 /* If it isn't DW_AT_sibling, skip this attribute. */
7290 form = abbrev->attrs[i].form;
7294 case DW_FORM_ref_addr:
7295 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7296 and later it is offset sized. */
7297 if (cu->header.version == 2)
7298 info_ptr += cu->header.addr_size;
7300 info_ptr += cu->header.offset_size;
7302 case DW_FORM_GNU_ref_alt:
7303 info_ptr += cu->header.offset_size;
7306 info_ptr += cu->header.addr_size;
7313 case DW_FORM_flag_present:
7325 case DW_FORM_ref_sig8:
7328 case DW_FORM_string:
7329 read_direct_string (abfd, info_ptr, &bytes_read);
7330 info_ptr += bytes_read;
7332 case DW_FORM_sec_offset:
7334 case DW_FORM_GNU_strp_alt:
7335 info_ptr += cu->header.offset_size;
7337 case DW_FORM_exprloc:
7339 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7340 info_ptr += bytes_read;
7342 case DW_FORM_block1:
7343 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7345 case DW_FORM_block2:
7346 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7348 case DW_FORM_block4:
7349 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7353 case DW_FORM_ref_udata:
7354 case DW_FORM_GNU_addr_index:
7355 case DW_FORM_GNU_str_index:
7356 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7358 case DW_FORM_indirect:
7359 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7360 info_ptr += bytes_read;
7361 /* We need to continue parsing from here, so just go back to
7363 goto skip_attribute;
7366 error (_("Dwarf Error: Cannot handle %s "
7367 "in DWARF reader [in module %s]"),
7368 dwarf_form_name (form),
7369 bfd_get_filename (abfd));
7373 if (abbrev->has_children)
7374 return skip_children (reader, info_ptr);
7379 /* Locate ORIG_PDI's sibling.
7380 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7382 static const gdb_byte *
7383 locate_pdi_sibling (const struct die_reader_specs *reader,
7384 struct partial_die_info *orig_pdi,
7385 const gdb_byte *info_ptr)
7387 /* Do we know the sibling already? */
7389 if (orig_pdi->sibling)
7390 return orig_pdi->sibling;
7392 /* Are there any children to deal with? */
7394 if (!orig_pdi->has_children)
7397 /* Skip the children the long way. */
7399 return skip_children (reader, info_ptr);
7402 /* Expand this partial symbol table into a full symbol table. SELF is
7406 dwarf2_read_symtab (struct partial_symtab *self,
7407 struct objfile *objfile)
7411 warning (_("bug: psymtab for %s is already read in."),
7418 printf_filtered (_("Reading in symbols for %s..."),
7420 gdb_flush (gdb_stdout);
7423 /* Restore our global data. */
7424 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7426 /* If this psymtab is constructed from a debug-only objfile, the
7427 has_section_at_zero flag will not necessarily be correct. We
7428 can get the correct value for this flag by looking at the data
7429 associated with the (presumably stripped) associated objfile. */
7430 if (objfile->separate_debug_objfile_backlink)
7432 struct dwarf2_per_objfile *dpo_backlink
7433 = objfile_data (objfile->separate_debug_objfile_backlink,
7434 dwarf2_objfile_data_key);
7436 dwarf2_per_objfile->has_section_at_zero
7437 = dpo_backlink->has_section_at_zero;
7440 dwarf2_per_objfile->reading_partial_symbols = 0;
7442 psymtab_to_symtab_1 (self);
7444 /* Finish up the debug error message. */
7446 printf_filtered (_("done.\n"));
7449 process_cu_includes ();
7452 /* Reading in full CUs. */
7454 /* Add PER_CU to the queue. */
7457 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7458 enum language pretend_language)
7460 struct dwarf2_queue_item *item;
7463 item = xmalloc (sizeof (*item));
7464 item->per_cu = per_cu;
7465 item->pretend_language = pretend_language;
7468 if (dwarf2_queue == NULL)
7469 dwarf2_queue = item;
7471 dwarf2_queue_tail->next = item;
7473 dwarf2_queue_tail = item;
7476 /* If PER_CU is not yet queued, add it to the queue.
7477 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7479 The result is non-zero if PER_CU was queued, otherwise the result is zero
7480 meaning either PER_CU is already queued or it is already loaded.
7482 N.B. There is an invariant here that if a CU is queued then it is loaded.
7483 The caller is required to load PER_CU if we return non-zero. */
7486 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7487 struct dwarf2_per_cu_data *per_cu,
7488 enum language pretend_language)
7490 /* We may arrive here during partial symbol reading, if we need full
7491 DIEs to process an unusual case (e.g. template arguments). Do
7492 not queue PER_CU, just tell our caller to load its DIEs. */
7493 if (dwarf2_per_objfile->reading_partial_symbols)
7495 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7500 /* Mark the dependence relation so that we don't flush PER_CU
7502 if (dependent_cu != NULL)
7503 dwarf2_add_dependence (dependent_cu, per_cu);
7505 /* If it's already on the queue, we have nothing to do. */
7509 /* If the compilation unit is already loaded, just mark it as
7511 if (per_cu->cu != NULL)
7513 per_cu->cu->last_used = 0;
7517 /* Add it to the queue. */
7518 queue_comp_unit (per_cu, pretend_language);
7523 /* Process the queue. */
7526 process_queue (void)
7528 struct dwarf2_queue_item *item, *next_item;
7530 if (dwarf2_read_debug)
7532 fprintf_unfiltered (gdb_stdlog,
7533 "Expanding one or more symtabs of objfile %s ...\n",
7534 objfile_name (dwarf2_per_objfile->objfile));
7537 /* The queue starts out with one item, but following a DIE reference
7538 may load a new CU, adding it to the end of the queue. */
7539 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7541 if (dwarf2_per_objfile->using_index
7542 ? !item->per_cu->v.quick->compunit_symtab
7543 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7545 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7546 unsigned int debug_print_threshold;
7549 if (per_cu->is_debug_types)
7551 struct signatured_type *sig_type =
7552 (struct signatured_type *) per_cu;
7554 sprintf (buf, "TU %s at offset 0x%x",
7555 hex_string (sig_type->signature),
7556 per_cu->offset.sect_off);
7557 /* There can be 100s of TUs.
7558 Only print them in verbose mode. */
7559 debug_print_threshold = 2;
7563 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7564 debug_print_threshold = 1;
7567 if (dwarf2_read_debug >= debug_print_threshold)
7568 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7570 if (per_cu->is_debug_types)
7571 process_full_type_unit (per_cu, item->pretend_language);
7573 process_full_comp_unit (per_cu, item->pretend_language);
7575 if (dwarf2_read_debug >= debug_print_threshold)
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7579 item->per_cu->queued = 0;
7580 next_item = item->next;
7584 dwarf2_queue_tail = NULL;
7586 if (dwarf2_read_debug)
7588 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7589 objfile_name (dwarf2_per_objfile->objfile));
7593 /* Free all allocated queue entries. This function only releases anything if
7594 an error was thrown; if the queue was processed then it would have been
7595 freed as we went along. */
7598 dwarf2_release_queue (void *dummy)
7600 struct dwarf2_queue_item *item, *last;
7602 item = dwarf2_queue;
7605 /* Anything still marked queued is likely to be in an
7606 inconsistent state, so discard it. */
7607 if (item->per_cu->queued)
7609 if (item->per_cu->cu != NULL)
7610 free_one_cached_comp_unit (item->per_cu);
7611 item->per_cu->queued = 0;
7619 dwarf2_queue = dwarf2_queue_tail = NULL;
7622 /* Read in full symbols for PST, and anything it depends on. */
7625 psymtab_to_symtab_1 (struct partial_symtab *pst)
7627 struct dwarf2_per_cu_data *per_cu;
7633 for (i = 0; i < pst->number_of_dependencies; i++)
7634 if (!pst->dependencies[i]->readin
7635 && pst->dependencies[i]->user == NULL)
7637 /* Inform about additional files that need to be read in. */
7640 /* FIXME: i18n: Need to make this a single string. */
7641 fputs_filtered (" ", gdb_stdout);
7643 fputs_filtered ("and ", gdb_stdout);
7645 printf_filtered ("%s...", pst->dependencies[i]->filename);
7646 wrap_here (""); /* Flush output. */
7647 gdb_flush (gdb_stdout);
7649 psymtab_to_symtab_1 (pst->dependencies[i]);
7652 per_cu = pst->read_symtab_private;
7656 /* It's an include file, no symbols to read for it.
7657 Everything is in the parent symtab. */
7662 dw2_do_instantiate_symtab (per_cu);
7665 /* Trivial hash function for die_info: the hash value of a DIE
7666 is its offset in .debug_info for this objfile. */
7669 die_hash (const void *item)
7671 const struct die_info *die = item;
7673 return die->offset.sect_off;
7676 /* Trivial comparison function for die_info structures: two DIEs
7677 are equal if they have the same offset. */
7680 die_eq (const void *item_lhs, const void *item_rhs)
7682 const struct die_info *die_lhs = item_lhs;
7683 const struct die_info *die_rhs = item_rhs;
7685 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7688 /* die_reader_func for load_full_comp_unit.
7689 This is identical to read_signatured_type_reader,
7690 but is kept separate for now. */
7693 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7694 const gdb_byte *info_ptr,
7695 struct die_info *comp_unit_die,
7699 struct dwarf2_cu *cu = reader->cu;
7700 enum language *language_ptr = data;
7702 gdb_assert (cu->die_hash == NULL);
7704 htab_create_alloc_ex (cu->header.length / 12,
7708 &cu->comp_unit_obstack,
7709 hashtab_obstack_allocate,
7710 dummy_obstack_deallocate);
7713 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7714 &info_ptr, comp_unit_die);
7715 cu->dies = comp_unit_die;
7716 /* comp_unit_die is not stored in die_hash, no need. */
7718 /* We try not to read any attributes in this function, because not
7719 all CUs needed for references have been loaded yet, and symbol
7720 table processing isn't initialized. But we have to set the CU language,
7721 or we won't be able to build types correctly.
7722 Similarly, if we do not read the producer, we can not apply
7723 producer-specific interpretation. */
7724 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7727 /* Load the DIEs associated with PER_CU into memory. */
7730 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7731 enum language pretend_language)
7733 gdb_assert (! this_cu->is_debug_types);
7735 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7736 load_full_comp_unit_reader, &pretend_language);
7739 /* Add a DIE to the delayed physname list. */
7742 add_to_method_list (struct type *type, int fnfield_index, int index,
7743 const char *name, struct die_info *die,
7744 struct dwarf2_cu *cu)
7746 struct delayed_method_info mi;
7748 mi.fnfield_index = fnfield_index;
7752 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7755 /* A cleanup for freeing the delayed method list. */
7758 free_delayed_list (void *ptr)
7760 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7761 if (cu->method_list != NULL)
7763 VEC_free (delayed_method_info, cu->method_list);
7764 cu->method_list = NULL;
7768 /* Compute the physnames of any methods on the CU's method list.
7770 The computation of method physnames is delayed in order to avoid the
7771 (bad) condition that one of the method's formal parameters is of an as yet
7775 compute_delayed_physnames (struct dwarf2_cu *cu)
7778 struct delayed_method_info *mi;
7779 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7781 const char *physname;
7782 struct fn_fieldlist *fn_flp
7783 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7784 physname = dwarf2_physname (mi->name, mi->die, cu);
7785 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7786 = physname ? physname : "";
7790 /* Go objects should be embedded in a DW_TAG_module DIE,
7791 and it's not clear if/how imported objects will appear.
7792 To keep Go support simple until that's worked out,
7793 go back through what we've read and create something usable.
7794 We could do this while processing each DIE, and feels kinda cleaner,
7795 but that way is more invasive.
7796 This is to, for example, allow the user to type "p var" or "b main"
7797 without having to specify the package name, and allow lookups
7798 of module.object to work in contexts that use the expression
7802 fixup_go_packaging (struct dwarf2_cu *cu)
7804 char *package_name = NULL;
7805 struct pending *list;
7808 for (list = global_symbols; list != NULL; list = list->next)
7810 for (i = 0; i < list->nsyms; ++i)
7812 struct symbol *sym = list->symbol[i];
7814 if (SYMBOL_LANGUAGE (sym) == language_go
7815 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7817 char *this_package_name = go_symbol_package_name (sym);
7819 if (this_package_name == NULL)
7821 if (package_name == NULL)
7822 package_name = this_package_name;
7825 if (strcmp (package_name, this_package_name) != 0)
7826 complaint (&symfile_complaints,
7827 _("Symtab %s has objects from two different Go packages: %s and %s"),
7828 (symbol_symtab (sym) != NULL
7829 ? symtab_to_filename_for_display
7830 (symbol_symtab (sym))
7831 : objfile_name (cu->objfile)),
7832 this_package_name, package_name);
7833 xfree (this_package_name);
7839 if (package_name != NULL)
7841 struct objfile *objfile = cu->objfile;
7842 const char *saved_package_name
7843 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7845 strlen (package_name));
7846 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7847 saved_package_name, objfile);
7850 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7852 sym = allocate_symbol (objfile);
7853 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7854 SYMBOL_SET_NAMES (sym, saved_package_name,
7855 strlen (saved_package_name), 0, objfile);
7856 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7857 e.g., "main" finds the "main" module and not C's main(). */
7858 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7859 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7860 SYMBOL_TYPE (sym) = type;
7862 add_symbol_to_list (sym, &global_symbols);
7864 xfree (package_name);
7868 /* Return the symtab for PER_CU. This works properly regardless of
7869 whether we're using the index or psymtabs. */
7871 static struct compunit_symtab *
7872 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7874 return (dwarf2_per_objfile->using_index
7875 ? per_cu->v.quick->compunit_symtab
7876 : per_cu->v.psymtab->compunit_symtab);
7879 /* A helper function for computing the list of all symbol tables
7880 included by PER_CU. */
7883 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7884 htab_t all_children, htab_t all_type_symtabs,
7885 struct dwarf2_per_cu_data *per_cu,
7886 struct compunit_symtab *immediate_parent)
7890 struct compunit_symtab *cust;
7891 struct dwarf2_per_cu_data *iter;
7893 slot = htab_find_slot (all_children, per_cu, INSERT);
7896 /* This inclusion and its children have been processed. */
7901 /* Only add a CU if it has a symbol table. */
7902 cust = get_compunit_symtab (per_cu);
7905 /* If this is a type unit only add its symbol table if we haven't
7906 seen it yet (type unit per_cu's can share symtabs). */
7907 if (per_cu->is_debug_types)
7909 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7913 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7914 if (cust->user == NULL)
7915 cust->user = immediate_parent;
7920 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7921 if (cust->user == NULL)
7922 cust->user = immediate_parent;
7927 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7930 recursively_compute_inclusions (result, all_children,
7931 all_type_symtabs, iter, cust);
7935 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7939 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7941 gdb_assert (! per_cu->is_debug_types);
7943 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7946 struct dwarf2_per_cu_data *per_cu_iter;
7947 struct compunit_symtab *compunit_symtab_iter;
7948 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7949 htab_t all_children, all_type_symtabs;
7950 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7952 /* If we don't have a symtab, we can just skip this case. */
7956 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7957 NULL, xcalloc, xfree);
7958 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7962 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7966 recursively_compute_inclusions (&result_symtabs, all_children,
7967 all_type_symtabs, per_cu_iter,
7971 /* Now we have a transitive closure of all the included symtabs. */
7972 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7974 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7975 (len + 1) * sizeof (struct symtab *));
7977 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7978 compunit_symtab_iter);
7980 cust->includes[ix] = compunit_symtab_iter;
7981 cust->includes[len] = NULL;
7983 VEC_free (compunit_symtab_ptr, result_symtabs);
7984 htab_delete (all_children);
7985 htab_delete (all_type_symtabs);
7989 /* Compute the 'includes' field for the symtabs of all the CUs we just
7993 process_cu_includes (void)
7996 struct dwarf2_per_cu_data *iter;
7999 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8003 if (! iter->is_debug_types)
8004 compute_compunit_symtab_includes (iter);
8007 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8010 /* Generate full symbol information for PER_CU, whose DIEs have
8011 already been loaded into memory. */
8014 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8015 enum language pretend_language)
8017 struct dwarf2_cu *cu = per_cu->cu;
8018 struct objfile *objfile = per_cu->objfile;
8019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8020 CORE_ADDR lowpc, highpc;
8021 struct compunit_symtab *cust;
8022 struct cleanup *back_to, *delayed_list_cleanup;
8024 struct block *static_block;
8027 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8030 back_to = make_cleanup (really_free_pendings, NULL);
8031 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8033 cu->list_in_scope = &file_symbols;
8035 cu->language = pretend_language;
8036 cu->language_defn = language_def (cu->language);
8038 /* Do line number decoding in read_file_scope () */
8039 process_die (cu->dies, cu);
8041 /* For now fudge the Go package. */
8042 if (cu->language == language_go)
8043 fixup_go_packaging (cu);
8045 /* Now that we have processed all the DIEs in the CU, all the types
8046 should be complete, and it should now be safe to compute all of the
8048 compute_delayed_physnames (cu);
8049 do_cleanups (delayed_list_cleanup);
8051 /* Some compilers don't define a DW_AT_high_pc attribute for the
8052 compilation unit. If the DW_AT_high_pc is missing, synthesize
8053 it, by scanning the DIE's below the compilation unit. */
8054 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8056 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8057 static_block = end_symtab_get_static_block (addr, 0, 1);
8059 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8060 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8061 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8062 addrmap to help ensure it has an accurate map of pc values belonging to
8064 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8066 cust = end_symtab_from_static_block (static_block,
8067 SECT_OFF_TEXT (objfile), 0);
8071 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8073 /* Set symtab language to language from DW_AT_language. If the
8074 compilation is from a C file generated by language preprocessors, do
8075 not set the language if it was already deduced by start_subfile. */
8076 if (!(cu->language == language_c
8077 && COMPUNIT_FILETABS (cust)->language != language_c))
8078 COMPUNIT_FILETABS (cust)->language = cu->language;
8080 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8081 produce DW_AT_location with location lists but it can be possibly
8082 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8083 there were bugs in prologue debug info, fixed later in GCC-4.5
8084 by "unwind info for epilogues" patch (which is not directly related).
8086 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8087 needed, it would be wrong due to missing DW_AT_producer there.
8089 Still one can confuse GDB by using non-standard GCC compilation
8090 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8092 if (cu->has_loclist && gcc_4_minor >= 5)
8093 cust->locations_valid = 1;
8095 if (gcc_4_minor >= 5)
8096 cust->epilogue_unwind_valid = 1;
8098 cust->call_site_htab = cu->call_site_htab;
8101 if (dwarf2_per_objfile->using_index)
8102 per_cu->v.quick->compunit_symtab = cust;
8105 struct partial_symtab *pst = per_cu->v.psymtab;
8106 pst->compunit_symtab = cust;
8110 /* Push it for inclusion processing later. */
8111 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8113 do_cleanups (back_to);
8116 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8117 already been loaded into memory. */
8120 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8121 enum language pretend_language)
8123 struct dwarf2_cu *cu = per_cu->cu;
8124 struct objfile *objfile = per_cu->objfile;
8125 struct compunit_symtab *cust;
8126 struct cleanup *back_to, *delayed_list_cleanup;
8127 struct signatured_type *sig_type;
8129 gdb_assert (per_cu->is_debug_types);
8130 sig_type = (struct signatured_type *) per_cu;
8133 back_to = make_cleanup (really_free_pendings, NULL);
8134 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8136 cu->list_in_scope = &file_symbols;
8138 cu->language = pretend_language;
8139 cu->language_defn = language_def (cu->language);
8141 /* The symbol tables are set up in read_type_unit_scope. */
8142 process_die (cu->dies, cu);
8144 /* For now fudge the Go package. */
8145 if (cu->language == language_go)
8146 fixup_go_packaging (cu);
8148 /* Now that we have processed all the DIEs in the CU, all the types
8149 should be complete, and it should now be safe to compute all of the
8151 compute_delayed_physnames (cu);
8152 do_cleanups (delayed_list_cleanup);
8154 /* TUs share symbol tables.
8155 If this is the first TU to use this symtab, complete the construction
8156 of it with end_expandable_symtab. Otherwise, complete the addition of
8157 this TU's symbols to the existing symtab. */
8158 if (sig_type->type_unit_group->compunit_symtab == NULL)
8160 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8161 sig_type->type_unit_group->compunit_symtab = cust;
8165 /* Set symtab language to language from DW_AT_language. If the
8166 compilation is from a C file generated by language preprocessors,
8167 do not set the language if it was already deduced by
8169 if (!(cu->language == language_c
8170 && COMPUNIT_FILETABS (cust)->language != language_c))
8171 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 augment_type_symtab ();
8177 cust = sig_type->type_unit_group->compunit_symtab;
8180 if (dwarf2_per_objfile->using_index)
8181 per_cu->v.quick->compunit_symtab = cust;
8184 struct partial_symtab *pst = per_cu->v.psymtab;
8185 pst->compunit_symtab = cust;
8189 do_cleanups (back_to);
8192 /* Process an imported unit DIE. */
8195 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8197 struct attribute *attr;
8199 /* For now we don't handle imported units in type units. */
8200 if (cu->per_cu->is_debug_types)
8202 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8203 " supported in type units [in module %s]"),
8204 objfile_name (cu->objfile));
8207 attr = dwarf2_attr (die, DW_AT_import, cu);
8210 struct dwarf2_per_cu_data *per_cu;
8211 struct symtab *imported_symtab;
8215 offset = dwarf2_get_ref_die_offset (attr);
8216 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8217 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8219 /* If necessary, add it to the queue and load its DIEs. */
8220 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8221 load_full_comp_unit (per_cu, cu->language);
8223 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 /* Reset the in_process bit of a die. */
8231 reset_die_in_process (void *arg)
8233 struct die_info *die = arg;
8235 die->in_process = 0;
8238 /* Process a die and its children. */
8241 process_die (struct die_info *die, struct dwarf2_cu *cu)
8243 struct cleanup *in_process;
8245 /* We should only be processing those not already in process. */
8246 gdb_assert (!die->in_process);
8248 die->in_process = 1;
8249 in_process = make_cleanup (reset_die_in_process,die);
8253 case DW_TAG_padding:
8255 case DW_TAG_compile_unit:
8256 case DW_TAG_partial_unit:
8257 read_file_scope (die, cu);
8259 case DW_TAG_type_unit:
8260 read_type_unit_scope (die, cu);
8262 case DW_TAG_subprogram:
8263 case DW_TAG_inlined_subroutine:
8264 read_func_scope (die, cu);
8266 case DW_TAG_lexical_block:
8267 case DW_TAG_try_block:
8268 case DW_TAG_catch_block:
8269 read_lexical_block_scope (die, cu);
8271 case DW_TAG_GNU_call_site:
8272 read_call_site_scope (die, cu);
8274 case DW_TAG_class_type:
8275 case DW_TAG_interface_type:
8276 case DW_TAG_structure_type:
8277 case DW_TAG_union_type:
8278 process_structure_scope (die, cu);
8280 case DW_TAG_enumeration_type:
8281 process_enumeration_scope (die, cu);
8284 /* These dies have a type, but processing them does not create
8285 a symbol or recurse to process the children. Therefore we can
8286 read them on-demand through read_type_die. */
8287 case DW_TAG_subroutine_type:
8288 case DW_TAG_set_type:
8289 case DW_TAG_array_type:
8290 case DW_TAG_pointer_type:
8291 case DW_TAG_ptr_to_member_type:
8292 case DW_TAG_reference_type:
8293 case DW_TAG_string_type:
8296 case DW_TAG_base_type:
8297 case DW_TAG_subrange_type:
8298 case DW_TAG_typedef:
8299 /* Add a typedef symbol for the type definition, if it has a
8301 new_symbol (die, read_type_die (die, cu), cu);
8303 case DW_TAG_common_block:
8304 read_common_block (die, cu);
8306 case DW_TAG_common_inclusion:
8308 case DW_TAG_namespace:
8309 cu->processing_has_namespace_info = 1;
8310 read_namespace (die, cu);
8313 cu->processing_has_namespace_info = 1;
8314 read_module (die, cu);
8316 case DW_TAG_imported_declaration:
8317 cu->processing_has_namespace_info = 1;
8318 if (read_namespace_alias (die, cu))
8320 /* The declaration is not a global namespace alias: fall through. */
8321 case DW_TAG_imported_module:
8322 cu->processing_has_namespace_info = 1;
8323 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8324 || cu->language != language_fortran))
8325 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8326 dwarf_tag_name (die->tag));
8327 read_import_statement (die, cu);
8330 case DW_TAG_imported_unit:
8331 process_imported_unit_die (die, cu);
8335 new_symbol (die, NULL, cu);
8339 do_cleanups (in_process);
8342 /* DWARF name computation. */
8344 /* A helper function for dwarf2_compute_name which determines whether DIE
8345 needs to have the name of the scope prepended to the name listed in the
8349 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8351 struct attribute *attr;
8355 case DW_TAG_namespace:
8356 case DW_TAG_typedef:
8357 case DW_TAG_class_type:
8358 case DW_TAG_interface_type:
8359 case DW_TAG_structure_type:
8360 case DW_TAG_union_type:
8361 case DW_TAG_enumeration_type:
8362 case DW_TAG_enumerator:
8363 case DW_TAG_subprogram:
8365 case DW_TAG_imported_declaration:
8368 case DW_TAG_variable:
8369 case DW_TAG_constant:
8370 /* We only need to prefix "globally" visible variables. These include
8371 any variable marked with DW_AT_external or any variable that
8372 lives in a namespace. [Variables in anonymous namespaces
8373 require prefixing, but they are not DW_AT_external.] */
8375 if (dwarf2_attr (die, DW_AT_specification, cu))
8377 struct dwarf2_cu *spec_cu = cu;
8379 return die_needs_namespace (die_specification (die, &spec_cu),
8383 attr = dwarf2_attr (die, DW_AT_external, cu);
8384 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8385 && die->parent->tag != DW_TAG_module)
8387 /* A variable in a lexical block of some kind does not need a
8388 namespace, even though in C++ such variables may be external
8389 and have a mangled name. */
8390 if (die->parent->tag == DW_TAG_lexical_block
8391 || die->parent->tag == DW_TAG_try_block
8392 || die->parent->tag == DW_TAG_catch_block
8393 || die->parent->tag == DW_TAG_subprogram)
8402 /* Retrieve the last character from a mem_file. */
8405 do_ui_file_peek_last (void *object, const char *buffer, long length)
8407 char *last_char_p = (char *) object;
8410 *last_char_p = buffer[length - 1];
8413 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8414 compute the physname for the object, which include a method's:
8415 - formal parameters (C++/Java),
8416 - receiver type (Go),
8417 - return type (Java).
8419 The term "physname" is a bit confusing.
8420 For C++, for example, it is the demangled name.
8421 For Go, for example, it's the mangled name.
8423 For Ada, return the DIE's linkage name rather than the fully qualified
8424 name. PHYSNAME is ignored..
8426 The result is allocated on the objfile_obstack and canonicalized. */
8429 dwarf2_compute_name (const char *name,
8430 struct die_info *die, struct dwarf2_cu *cu,
8433 struct objfile *objfile = cu->objfile;
8436 name = dwarf2_name (die, cu);
8438 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8439 compute it by typename_concat inside GDB. */
8440 if (cu->language == language_ada
8441 || (cu->language == language_fortran && physname))
8443 /* For Ada unit, we prefer the linkage name over the name, as
8444 the former contains the exported name, which the user expects
8445 to be able to reference. Ideally, we want the user to be able
8446 to reference this entity using either natural or linkage name,
8447 but we haven't started looking at this enhancement yet. */
8448 struct attribute *attr;
8450 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8452 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8453 if (attr && DW_STRING (attr))
8454 return DW_STRING (attr);
8457 /* These are the only languages we know how to qualify names in. */
8459 && (cu->language == language_cplus || cu->language == language_java
8460 || cu->language == language_fortran))
8462 if (die_needs_namespace (die, cu))
8466 struct ui_file *buf;
8467 char *intermediate_name;
8468 const char *canonical_name = NULL;
8470 prefix = determine_prefix (die, cu);
8471 buf = mem_fileopen ();
8472 if (*prefix != '\0')
8474 char *prefixed_name = typename_concat (NULL, prefix, name,
8477 fputs_unfiltered (prefixed_name, buf);
8478 xfree (prefixed_name);
8481 fputs_unfiltered (name, buf);
8483 /* Template parameters may be specified in the DIE's DW_AT_name, or
8484 as children with DW_TAG_template_type_param or
8485 DW_TAG_value_type_param. If the latter, add them to the name
8486 here. If the name already has template parameters, then
8487 skip this step; some versions of GCC emit both, and
8488 it is more efficient to use the pre-computed name.
8490 Something to keep in mind about this process: it is very
8491 unlikely, or in some cases downright impossible, to produce
8492 something that will match the mangled name of a function.
8493 If the definition of the function has the same debug info,
8494 we should be able to match up with it anyway. But fallbacks
8495 using the minimal symbol, for instance to find a method
8496 implemented in a stripped copy of libstdc++, will not work.
8497 If we do not have debug info for the definition, we will have to
8498 match them up some other way.
8500 When we do name matching there is a related problem with function
8501 templates; two instantiated function templates are allowed to
8502 differ only by their return types, which we do not add here. */
8504 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8506 struct attribute *attr;
8507 struct die_info *child;
8510 die->building_fullname = 1;
8512 for (child = die->child; child != NULL; child = child->sibling)
8516 const gdb_byte *bytes;
8517 struct dwarf2_locexpr_baton *baton;
8520 if (child->tag != DW_TAG_template_type_param
8521 && child->tag != DW_TAG_template_value_param)
8526 fputs_unfiltered ("<", buf);
8530 fputs_unfiltered (", ", buf);
8532 attr = dwarf2_attr (child, DW_AT_type, cu);
8535 complaint (&symfile_complaints,
8536 _("template parameter missing DW_AT_type"));
8537 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8540 type = die_type (child, cu);
8542 if (child->tag == DW_TAG_template_type_param)
8544 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8548 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8551 complaint (&symfile_complaints,
8552 _("template parameter missing "
8553 "DW_AT_const_value"));
8554 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8558 dwarf2_const_value_attr (attr, type, name,
8559 &cu->comp_unit_obstack, cu,
8560 &value, &bytes, &baton);
8562 if (TYPE_NOSIGN (type))
8563 /* GDB prints characters as NUMBER 'CHAR'. If that's
8564 changed, this can use value_print instead. */
8565 c_printchar (value, type, buf);
8568 struct value_print_options opts;
8571 v = dwarf2_evaluate_loc_desc (type, NULL,
8575 else if (bytes != NULL)
8577 v = allocate_value (type);
8578 memcpy (value_contents_writeable (v), bytes,
8579 TYPE_LENGTH (type));
8582 v = value_from_longest (type, value);
8584 /* Specify decimal so that we do not depend on
8586 get_formatted_print_options (&opts, 'd');
8588 value_print (v, buf, &opts);
8594 die->building_fullname = 0;
8598 /* Close the argument list, with a space if necessary
8599 (nested templates). */
8600 char last_char = '\0';
8601 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8602 if (last_char == '>')
8603 fputs_unfiltered (" >", buf);
8605 fputs_unfiltered (">", buf);
8609 /* For Java and C++ methods, append formal parameter type
8610 information, if PHYSNAME. */
8612 if (physname && die->tag == DW_TAG_subprogram
8613 && (cu->language == language_cplus
8614 || cu->language == language_java))
8616 struct type *type = read_type_die (die, cu);
8618 c_type_print_args (type, buf, 1, cu->language,
8619 &type_print_raw_options);
8621 if (cu->language == language_java)
8623 /* For java, we must append the return type to method
8625 if (die->tag == DW_TAG_subprogram)
8626 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8627 0, 0, &type_print_raw_options);
8629 else if (cu->language == language_cplus)
8631 /* Assume that an artificial first parameter is
8632 "this", but do not crash if it is not. RealView
8633 marks unnamed (and thus unused) parameters as
8634 artificial; there is no way to differentiate
8636 if (TYPE_NFIELDS (type) > 0
8637 && TYPE_FIELD_ARTIFICIAL (type, 0)
8638 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8639 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8641 fputs_unfiltered (" const", buf);
8645 intermediate_name = ui_file_xstrdup (buf, &length);
8646 ui_file_delete (buf);
8648 if (cu->language == language_cplus)
8650 = dwarf2_canonicalize_name (intermediate_name, cu,
8651 &objfile->per_bfd->storage_obstack);
8653 /* If we only computed INTERMEDIATE_NAME, or if
8654 INTERMEDIATE_NAME is already canonical, then we need to
8655 copy it to the appropriate obstack. */
8656 if (canonical_name == NULL || canonical_name == intermediate_name)
8657 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8659 strlen (intermediate_name));
8661 name = canonical_name;
8663 xfree (intermediate_name);
8670 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8671 If scope qualifiers are appropriate they will be added. The result
8672 will be allocated on the storage_obstack, or NULL if the DIE does
8673 not have a name. NAME may either be from a previous call to
8674 dwarf2_name or NULL.
8676 The output string will be canonicalized (if C++/Java). */
8679 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8681 return dwarf2_compute_name (name, die, cu, 0);
8684 /* Construct a physname for the given DIE in CU. NAME may either be
8685 from a previous call to dwarf2_name or NULL. The result will be
8686 allocated on the objfile_objstack or NULL if the DIE does not have a
8689 The output string will be canonicalized (if C++/Java). */
8692 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8694 struct objfile *objfile = cu->objfile;
8695 struct attribute *attr;
8696 const char *retval, *mangled = NULL, *canon = NULL;
8697 struct cleanup *back_to;
8700 /* In this case dwarf2_compute_name is just a shortcut not building anything
8702 if (!die_needs_namespace (die, cu))
8703 return dwarf2_compute_name (name, die, cu, 1);
8705 back_to = make_cleanup (null_cleanup, NULL);
8707 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8709 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8711 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8713 if (attr && DW_STRING (attr))
8717 mangled = DW_STRING (attr);
8719 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8720 type. It is easier for GDB users to search for such functions as
8721 `name(params)' than `long name(params)'. In such case the minimal
8722 symbol names do not match the full symbol names but for template
8723 functions there is never a need to look up their definition from their
8724 declaration so the only disadvantage remains the minimal symbol
8725 variant `long name(params)' does not have the proper inferior type.
8728 if (cu->language == language_go)
8730 /* This is a lie, but we already lie to the caller new_symbol_full.
8731 new_symbol_full assumes we return the mangled name.
8732 This just undoes that lie until things are cleaned up. */
8737 demangled = gdb_demangle (mangled,
8738 (DMGL_PARAMS | DMGL_ANSI
8739 | (cu->language == language_java
8740 ? DMGL_JAVA | DMGL_RET_POSTFIX
8745 make_cleanup (xfree, demangled);
8755 if (canon == NULL || check_physname)
8757 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8759 if (canon != NULL && strcmp (physname, canon) != 0)
8761 /* It may not mean a bug in GDB. The compiler could also
8762 compute DW_AT_linkage_name incorrectly. But in such case
8763 GDB would need to be bug-to-bug compatible. */
8765 complaint (&symfile_complaints,
8766 _("Computed physname <%s> does not match demangled <%s> "
8767 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8768 physname, canon, mangled, die->offset.sect_off,
8769 objfile_name (objfile));
8771 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8772 is available here - over computed PHYSNAME. It is safer
8773 against both buggy GDB and buggy compilers. */
8787 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8788 retval, strlen (retval));
8790 do_cleanups (back_to);
8794 /* Inspect DIE in CU for a namespace alias. If one exists, record
8795 a new symbol for it.
8797 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8800 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8802 struct attribute *attr;
8804 /* If the die does not have a name, this is not a namespace
8806 attr = dwarf2_attr (die, DW_AT_name, cu);
8810 struct die_info *d = die;
8811 struct dwarf2_cu *imported_cu = cu;
8813 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8814 keep inspecting DIEs until we hit the underlying import. */
8815 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8816 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8818 attr = dwarf2_attr (d, DW_AT_import, cu);
8822 d = follow_die_ref (d, attr, &imported_cu);
8823 if (d->tag != DW_TAG_imported_declaration)
8827 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8829 complaint (&symfile_complaints,
8830 _("DIE at 0x%x has too many recursively imported "
8831 "declarations"), d->offset.sect_off);
8838 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8840 type = get_die_type_at_offset (offset, cu->per_cu);
8841 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8843 /* This declaration is a global namespace alias. Add
8844 a symbol for it whose type is the aliased namespace. */
8845 new_symbol (die, type, cu);
8854 /* Read the import statement specified by the given die and record it. */
8857 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8859 struct objfile *objfile = cu->objfile;
8860 struct attribute *import_attr;
8861 struct die_info *imported_die, *child_die;
8862 struct dwarf2_cu *imported_cu;
8863 const char *imported_name;
8864 const char *imported_name_prefix;
8865 const char *canonical_name;
8866 const char *import_alias;
8867 const char *imported_declaration = NULL;
8868 const char *import_prefix;
8869 VEC (const_char_ptr) *excludes = NULL;
8870 struct cleanup *cleanups;
8872 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8873 if (import_attr == NULL)
8875 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8876 dwarf_tag_name (die->tag));
8881 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8882 imported_name = dwarf2_name (imported_die, imported_cu);
8883 if (imported_name == NULL)
8885 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8887 The import in the following code:
8901 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8902 <52> DW_AT_decl_file : 1
8903 <53> DW_AT_decl_line : 6
8904 <54> DW_AT_import : <0x75>
8905 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8907 <5b> DW_AT_decl_file : 1
8908 <5c> DW_AT_decl_line : 2
8909 <5d> DW_AT_type : <0x6e>
8911 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8912 <76> DW_AT_byte_size : 4
8913 <77> DW_AT_encoding : 5 (signed)
8915 imports the wrong die ( 0x75 instead of 0x58 ).
8916 This case will be ignored until the gcc bug is fixed. */
8920 /* Figure out the local name after import. */
8921 import_alias = dwarf2_name (die, cu);
8923 /* Figure out where the statement is being imported to. */
8924 import_prefix = determine_prefix (die, cu);
8926 /* Figure out what the scope of the imported die is and prepend it
8927 to the name of the imported die. */
8928 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8930 if (imported_die->tag != DW_TAG_namespace
8931 && imported_die->tag != DW_TAG_module)
8933 imported_declaration = imported_name;
8934 canonical_name = imported_name_prefix;
8936 else if (strlen (imported_name_prefix) > 0)
8937 canonical_name = obconcat (&objfile->objfile_obstack,
8938 imported_name_prefix, "::", imported_name,
8941 canonical_name = imported_name;
8943 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8945 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8946 for (child_die = die->child; child_die && child_die->tag;
8947 child_die = sibling_die (child_die))
8949 /* DWARF-4: A Fortran use statement with a “rename list” may be
8950 represented by an imported module entry with an import attribute
8951 referring to the module and owned entries corresponding to those
8952 entities that are renamed as part of being imported. */
8954 if (child_die->tag != DW_TAG_imported_declaration)
8956 complaint (&symfile_complaints,
8957 _("child DW_TAG_imported_declaration expected "
8958 "- DIE at 0x%x [in module %s]"),
8959 child_die->offset.sect_off, objfile_name (objfile));
8963 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8964 if (import_attr == NULL)
8966 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8967 dwarf_tag_name (child_die->tag));
8972 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8974 imported_name = dwarf2_name (imported_die, imported_cu);
8975 if (imported_name == NULL)
8977 complaint (&symfile_complaints,
8978 _("child DW_TAG_imported_declaration has unknown "
8979 "imported name - DIE at 0x%x [in module %s]"),
8980 child_die->offset.sect_off, objfile_name (objfile));
8984 VEC_safe_push (const_char_ptr, excludes, imported_name);
8986 process_die (child_die, cu);
8989 cp_add_using_directive (import_prefix,
8992 imported_declaration,
8995 &objfile->objfile_obstack);
8997 do_cleanups (cleanups);
9000 /* Cleanup function for handle_DW_AT_stmt_list. */
9003 free_cu_line_header (void *arg)
9005 struct dwarf2_cu *cu = arg;
9007 free_line_header (cu->line_header);
9008 cu->line_header = NULL;
9011 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9012 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9013 this, it was first present in GCC release 4.3.0. */
9016 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9018 if (!cu->checked_producer)
9019 check_producer (cu);
9021 return cu->producer_is_gcc_lt_4_3;
9025 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9026 const char **name, const char **comp_dir)
9028 struct attribute *attr;
9033 /* Find the filename. Do not use dwarf2_name here, since the filename
9034 is not a source language identifier. */
9035 attr = dwarf2_attr (die, DW_AT_name, cu);
9038 *name = DW_STRING (attr);
9041 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9043 *comp_dir = DW_STRING (attr);
9044 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9045 && IS_ABSOLUTE_PATH (*name))
9047 char *d = ldirname (*name);
9051 make_cleanup (xfree, d);
9053 if (*comp_dir != NULL)
9055 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9056 directory, get rid of it. */
9057 char *cp = strchr (*comp_dir, ':');
9059 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9064 *name = "<unknown>";
9067 /* Handle DW_AT_stmt_list for a compilation unit.
9068 DIE is the DW_TAG_compile_unit die for CU.
9069 COMP_DIR is the compilation directory. LOWPC is passed to
9070 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9073 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9074 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9076 struct objfile *objfile = dwarf2_per_objfile->objfile;
9077 struct attribute *attr;
9078 unsigned int line_offset;
9079 struct line_header line_header_local;
9080 hashval_t line_header_local_hash;
9085 gdb_assert (! cu->per_cu->is_debug_types);
9087 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9091 line_offset = DW_UNSND (attr);
9093 /* The line header hash table is only created if needed (it exists to
9094 prevent redundant reading of the line table for partial_units).
9095 If we're given a partial_unit, we'll need it. If we're given a
9096 compile_unit, then use the line header hash table if it's already
9097 created, but don't create one just yet. */
9099 if (dwarf2_per_objfile->line_header_hash == NULL
9100 && die->tag == DW_TAG_partial_unit)
9102 dwarf2_per_objfile->line_header_hash
9103 = htab_create_alloc_ex (127, line_header_hash_voidp,
9104 line_header_eq_voidp,
9105 free_line_header_voidp,
9106 &objfile->objfile_obstack,
9107 hashtab_obstack_allocate,
9108 dummy_obstack_deallocate);
9111 line_header_local.offset.sect_off = line_offset;
9112 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9113 line_header_local_hash = line_header_hash (&line_header_local);
9114 if (dwarf2_per_objfile->line_header_hash != NULL)
9116 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9118 line_header_local_hash, NO_INSERT);
9120 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9121 is not present in *SLOT (since if there is something in *SLOT then
9122 it will be for a partial_unit). */
9123 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9125 gdb_assert (*slot != NULL);
9126 cu->line_header = *slot;
9131 /* dwarf_decode_line_header does not yet provide sufficient information.
9132 We always have to call also dwarf_decode_lines for it. */
9133 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9134 if (cu->line_header == NULL)
9137 if (dwarf2_per_objfile->line_header_hash == NULL)
9141 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9143 line_header_local_hash, INSERT);
9144 gdb_assert (slot != NULL);
9146 if (slot != NULL && *slot == NULL)
9148 /* This newly decoded line number information unit will be owned
9149 by line_header_hash hash table. */
9150 *slot = cu->line_header;
9154 /* We cannot free any current entry in (*slot) as that struct line_header
9155 may be already used by multiple CUs. Create only temporary decoded
9156 line_header for this CU - it may happen at most once for each line
9157 number information unit. And if we're not using line_header_hash
9158 then this is what we want as well. */
9159 gdb_assert (die->tag != DW_TAG_partial_unit);
9160 make_cleanup (free_cu_line_header, cu);
9162 decode_mapping = (die->tag != DW_TAG_partial_unit);
9163 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9167 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9170 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9172 struct objfile *objfile = dwarf2_per_objfile->objfile;
9173 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9174 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9175 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9176 CORE_ADDR highpc = ((CORE_ADDR) 0);
9177 struct attribute *attr;
9178 const char *name = NULL;
9179 const char *comp_dir = NULL;
9180 struct die_info *child_die;
9181 bfd *abfd = objfile->obfd;
9184 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9186 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9188 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9189 from finish_block. */
9190 if (lowpc == ((CORE_ADDR) -1))
9192 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9194 find_file_and_directory (die, cu, &name, &comp_dir);
9196 prepare_one_comp_unit (cu, die, cu->language);
9198 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9199 standardised yet. As a workaround for the language detection we fall
9200 back to the DW_AT_producer string. */
9201 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9202 cu->language = language_opencl;
9204 /* Similar hack for Go. */
9205 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9206 set_cu_language (DW_LANG_Go, cu);
9208 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9210 /* Decode line number information if present. We do this before
9211 processing child DIEs, so that the line header table is available
9212 for DW_AT_decl_file. */
9213 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9215 /* Process all dies in compilation unit. */
9216 if (die->child != NULL)
9218 child_die = die->child;
9219 while (child_die && child_die->tag)
9221 process_die (child_die, cu);
9222 child_die = sibling_die (child_die);
9226 /* Decode macro information, if present. Dwarf 2 macro information
9227 refers to information in the line number info statement program
9228 header, so we can only read it if we've read the header
9230 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9231 if (attr && cu->line_header)
9233 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9234 complaint (&symfile_complaints,
9235 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9237 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9241 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9242 if (attr && cu->line_header)
9244 unsigned int macro_offset = DW_UNSND (attr);
9246 dwarf_decode_macros (cu, macro_offset, 0);
9250 do_cleanups (back_to);
9253 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9254 Create the set of symtabs used by this TU, or if this TU is sharing
9255 symtabs with another TU and the symtabs have already been created
9256 then restore those symtabs in the line header.
9257 We don't need the pc/line-number mapping for type units. */
9260 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9264 struct type_unit_group *tu_group;
9266 struct line_header *lh;
9267 struct attribute *attr;
9268 unsigned int i, line_offset;
9269 struct signatured_type *sig_type;
9271 gdb_assert (per_cu->is_debug_types);
9272 sig_type = (struct signatured_type *) per_cu;
9274 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9276 /* If we're using .gdb_index (includes -readnow) then
9277 per_cu->type_unit_group may not have been set up yet. */
9278 if (sig_type->type_unit_group == NULL)
9279 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9280 tu_group = sig_type->type_unit_group;
9282 /* If we've already processed this stmt_list there's no real need to
9283 do it again, we could fake it and just recreate the part we need
9284 (file name,index -> symtab mapping). If data shows this optimization
9285 is useful we can do it then. */
9286 first_time = tu_group->compunit_symtab == NULL;
9288 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9293 line_offset = DW_UNSND (attr);
9294 lh = dwarf_decode_line_header (line_offset, cu);
9299 dwarf2_start_symtab (cu, "", NULL, 0);
9302 gdb_assert (tu_group->symtabs == NULL);
9303 restart_symtab (tu_group->compunit_symtab, "", 0);
9308 cu->line_header = lh;
9309 make_cleanup (free_cu_line_header, cu);
9313 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9315 tu_group->num_symtabs = lh->num_file_names;
9316 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9318 for (i = 0; i < lh->num_file_names; ++i)
9320 const char *dir = NULL;
9321 struct file_entry *fe = &lh->file_names[i];
9324 dir = lh->include_dirs[fe->dir_index - 1];
9325 dwarf2_start_subfile (fe->name, dir);
9327 if (current_subfile->symtab == NULL)
9329 /* NOTE: start_subfile will recognize when it's been passed
9330 a file it has already seen. So we can't assume there's a
9331 simple mapping from lh->file_names to subfiles, plus
9332 lh->file_names may contain dups. */
9333 current_subfile->symtab
9334 = allocate_symtab (cust, current_subfile->name);
9337 fe->symtab = current_subfile->symtab;
9338 tu_group->symtabs[i] = fe->symtab;
9343 restart_symtab (tu_group->compunit_symtab, "", 0);
9345 for (i = 0; i < lh->num_file_names; ++i)
9347 struct file_entry *fe = &lh->file_names[i];
9349 fe->symtab = tu_group->symtabs[i];
9353 /* The main symtab is allocated last. Type units don't have DW_AT_name
9354 so they don't have a "real" (so to speak) symtab anyway.
9355 There is later code that will assign the main symtab to all symbols
9356 that don't have one. We need to handle the case of a symbol with a
9357 missing symtab (DW_AT_decl_file) anyway. */
9360 /* Process DW_TAG_type_unit.
9361 For TUs we want to skip the first top level sibling if it's not the
9362 actual type being defined by this TU. In this case the first top
9363 level sibling is there to provide context only. */
9366 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9368 struct die_info *child_die;
9370 prepare_one_comp_unit (cu, die, language_minimal);
9372 /* Initialize (or reinitialize) the machinery for building symtabs.
9373 We do this before processing child DIEs, so that the line header table
9374 is available for DW_AT_decl_file. */
9375 setup_type_unit_groups (die, cu);
9377 if (die->child != NULL)
9379 child_die = die->child;
9380 while (child_die && child_die->tag)
9382 process_die (child_die, cu);
9383 child_die = sibling_die (child_die);
9390 http://gcc.gnu.org/wiki/DebugFission
9391 http://gcc.gnu.org/wiki/DebugFissionDWP
9393 To simplify handling of both DWO files ("object" files with the DWARF info)
9394 and DWP files (a file with the DWOs packaged up into one file), we treat
9395 DWP files as having a collection of virtual DWO files. */
9398 hash_dwo_file (const void *item)
9400 const struct dwo_file *dwo_file = item;
9403 hash = htab_hash_string (dwo_file->dwo_name);
9404 if (dwo_file->comp_dir != NULL)
9405 hash += htab_hash_string (dwo_file->comp_dir);
9410 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9412 const struct dwo_file *lhs = item_lhs;
9413 const struct dwo_file *rhs = item_rhs;
9415 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9417 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9418 return lhs->comp_dir == rhs->comp_dir;
9419 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9422 /* Allocate a hash table for DWO files. */
9425 allocate_dwo_file_hash_table (void)
9427 struct objfile *objfile = dwarf2_per_objfile->objfile;
9429 return htab_create_alloc_ex (41,
9433 &objfile->objfile_obstack,
9434 hashtab_obstack_allocate,
9435 dummy_obstack_deallocate);
9438 /* Lookup DWO file DWO_NAME. */
9441 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9443 struct dwo_file find_entry;
9446 if (dwarf2_per_objfile->dwo_files == NULL)
9447 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9449 memset (&find_entry, 0, sizeof (find_entry));
9450 find_entry.dwo_name = dwo_name;
9451 find_entry.comp_dir = comp_dir;
9452 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9458 hash_dwo_unit (const void *item)
9460 const struct dwo_unit *dwo_unit = item;
9462 /* This drops the top 32 bits of the id, but is ok for a hash. */
9463 return dwo_unit->signature;
9467 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9469 const struct dwo_unit *lhs = item_lhs;
9470 const struct dwo_unit *rhs = item_rhs;
9472 /* The signature is assumed to be unique within the DWO file.
9473 So while object file CU dwo_id's always have the value zero,
9474 that's OK, assuming each object file DWO file has only one CU,
9475 and that's the rule for now. */
9476 return lhs->signature == rhs->signature;
9479 /* Allocate a hash table for DWO CUs,TUs.
9480 There is one of these tables for each of CUs,TUs for each DWO file. */
9483 allocate_dwo_unit_table (struct objfile *objfile)
9485 /* Start out with a pretty small number.
9486 Generally DWO files contain only one CU and maybe some TUs. */
9487 return htab_create_alloc_ex (3,
9491 &objfile->objfile_obstack,
9492 hashtab_obstack_allocate,
9493 dummy_obstack_deallocate);
9496 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9498 struct create_dwo_cu_data
9500 struct dwo_file *dwo_file;
9501 struct dwo_unit dwo_unit;
9504 /* die_reader_func for create_dwo_cu. */
9507 create_dwo_cu_reader (const struct die_reader_specs *reader,
9508 const gdb_byte *info_ptr,
9509 struct die_info *comp_unit_die,
9513 struct dwarf2_cu *cu = reader->cu;
9514 struct objfile *objfile = dwarf2_per_objfile->objfile;
9515 sect_offset offset = cu->per_cu->offset;
9516 struct dwarf2_section_info *section = cu->per_cu->section;
9517 struct create_dwo_cu_data *data = datap;
9518 struct dwo_file *dwo_file = data->dwo_file;
9519 struct dwo_unit *dwo_unit = &data->dwo_unit;
9520 struct attribute *attr;
9522 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9525 complaint (&symfile_complaints,
9526 _("Dwarf Error: debug entry at offset 0x%x is missing"
9527 " its dwo_id [in module %s]"),
9528 offset.sect_off, dwo_file->dwo_name);
9532 dwo_unit->dwo_file = dwo_file;
9533 dwo_unit->signature = DW_UNSND (attr);
9534 dwo_unit->section = section;
9535 dwo_unit->offset = offset;
9536 dwo_unit->length = cu->per_cu->length;
9538 if (dwarf2_read_debug)
9539 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9540 offset.sect_off, hex_string (dwo_unit->signature));
9543 /* Create the dwo_unit for the lone CU in DWO_FILE.
9544 Note: This function processes DWO files only, not DWP files. */
9546 static struct dwo_unit *
9547 create_dwo_cu (struct dwo_file *dwo_file)
9549 struct objfile *objfile = dwarf2_per_objfile->objfile;
9550 struct dwarf2_section_info *section = &dwo_file->sections.info;
9553 const gdb_byte *info_ptr, *end_ptr;
9554 struct create_dwo_cu_data create_dwo_cu_data;
9555 struct dwo_unit *dwo_unit;
9557 dwarf2_read_section (objfile, section);
9558 info_ptr = section->buffer;
9560 if (info_ptr == NULL)
9563 /* We can't set abfd until now because the section may be empty or
9564 not present, in which case section->asection will be NULL. */
9565 abfd = get_section_bfd_owner (section);
9567 if (dwarf2_read_debug)
9569 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9570 get_section_name (section),
9571 get_section_file_name (section));
9574 create_dwo_cu_data.dwo_file = dwo_file;
9577 end_ptr = info_ptr + section->size;
9578 while (info_ptr < end_ptr)
9580 struct dwarf2_per_cu_data per_cu;
9582 memset (&create_dwo_cu_data.dwo_unit, 0,
9583 sizeof (create_dwo_cu_data.dwo_unit));
9584 memset (&per_cu, 0, sizeof (per_cu));
9585 per_cu.objfile = objfile;
9586 per_cu.is_debug_types = 0;
9587 per_cu.offset.sect_off = info_ptr - section->buffer;
9588 per_cu.section = section;
9590 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9591 create_dwo_cu_reader,
9592 &create_dwo_cu_data);
9594 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9596 /* If we've already found one, complain. We only support one
9597 because having more than one requires hacking the dwo_name of
9598 each to match, which is highly unlikely to happen. */
9599 if (dwo_unit != NULL)
9601 complaint (&symfile_complaints,
9602 _("Multiple CUs in DWO file %s [in module %s]"),
9603 dwo_file->dwo_name, objfile_name (objfile));
9607 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9608 *dwo_unit = create_dwo_cu_data.dwo_unit;
9611 info_ptr += per_cu.length;
9617 /* DWP file .debug_{cu,tu}_index section format:
9618 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622 Both index sections have the same format, and serve to map a 64-bit
9623 signature to a set of section numbers. Each section begins with a header,
9624 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9625 indexes, and a pool of 32-bit section numbers. The index sections will be
9626 aligned at 8-byte boundaries in the file.
9628 The index section header consists of:
9630 V, 32 bit version number
9632 N, 32 bit number of compilation units or type units in the index
9633 M, 32 bit number of slots in the hash table
9635 Numbers are recorded using the byte order of the application binary.
9637 The hash table begins at offset 16 in the section, and consists of an array
9638 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9639 order of the application binary). Unused slots in the hash table are 0.
9640 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9642 The parallel table begins immediately after the hash table
9643 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9644 array of 32-bit indexes (using the byte order of the application binary),
9645 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9646 table contains a 32-bit index into the pool of section numbers. For unused
9647 hash table slots, the corresponding entry in the parallel table will be 0.
9649 The pool of section numbers begins immediately following the hash table
9650 (at offset 16 + 12 * M from the beginning of the section). The pool of
9651 section numbers consists of an array of 32-bit words (using the byte order
9652 of the application binary). Each item in the array is indexed starting
9653 from 0. The hash table entry provides the index of the first section
9654 number in the set. Additional section numbers in the set follow, and the
9655 set is terminated by a 0 entry (section number 0 is not used in ELF).
9657 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9658 section must be the first entry in the set, and the .debug_abbrev.dwo must
9659 be the second entry. Other members of the set may follow in any order.
9665 DWP Version 2 combines all the .debug_info, etc. sections into one,
9666 and the entries in the index tables are now offsets into these sections.
9667 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9670 Index Section Contents:
9672 Hash Table of Signatures dwp_hash_table.hash_table
9673 Parallel Table of Indices dwp_hash_table.unit_table
9674 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9675 Table of Section Sizes dwp_hash_table.v2.sizes
9677 The index section header consists of:
9679 V, 32 bit version number
9680 L, 32 bit number of columns in the table of section offsets
9681 N, 32 bit number of compilation units or type units in the index
9682 M, 32 bit number of slots in the hash table
9684 Numbers are recorded using the byte order of the application binary.
9686 The hash table has the same format as version 1.
9687 The parallel table of indices has the same format as version 1,
9688 except that the entries are origin-1 indices into the table of sections
9689 offsets and the table of section sizes.
9691 The table of offsets begins immediately following the parallel table
9692 (at offset 16 + 12 * M from the beginning of the section). The table is
9693 a two-dimensional array of 32-bit words (using the byte order of the
9694 application binary), with L columns and N+1 rows, in row-major order.
9695 Each row in the array is indexed starting from 0. The first row provides
9696 a key to the remaining rows: each column in this row provides an identifier
9697 for a debug section, and the offsets in the same column of subsequent rows
9698 refer to that section. The section identifiers are:
9700 DW_SECT_INFO 1 .debug_info.dwo
9701 DW_SECT_TYPES 2 .debug_types.dwo
9702 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9703 DW_SECT_LINE 4 .debug_line.dwo
9704 DW_SECT_LOC 5 .debug_loc.dwo
9705 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9706 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9707 DW_SECT_MACRO 8 .debug_macro.dwo
9709 The offsets provided by the CU and TU index sections are the base offsets
9710 for the contributions made by each CU or TU to the corresponding section
9711 in the package file. Each CU and TU header contains an abbrev_offset
9712 field, used to find the abbreviations table for that CU or TU within the
9713 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9714 be interpreted as relative to the base offset given in the index section.
9715 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9716 should be interpreted as relative to the base offset for .debug_line.dwo,
9717 and offsets into other debug sections obtained from DWARF attributes should
9718 also be interpreted as relative to the corresponding base offset.
9720 The table of sizes begins immediately following the table of offsets.
9721 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9722 with L columns and N rows, in row-major order. Each row in the array is
9723 indexed starting from 1 (row 0 is shared by the two tables).
9727 Hash table lookup is handled the same in version 1 and 2:
9729 We assume that N and M will not exceed 2^32 - 1.
9730 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9732 Given a 64-bit compilation unit signature or a type signature S, an entry
9733 in the hash table is located as follows:
9735 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9736 the low-order k bits all set to 1.
9738 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9740 3) If the hash table entry at index H matches the signature, use that
9741 entry. If the hash table entry at index H is unused (all zeroes),
9742 terminate the search: the signature is not present in the table.
9744 4) Let H = (H + H') modulo M. Repeat at Step 3.
9746 Because M > N and H' and M are relatively prime, the search is guaranteed
9747 to stop at an unused slot or find the match. */
9749 /* Create a hash table to map DWO IDs to their CU/TU entry in
9750 .debug_{info,types}.dwo in DWP_FILE.
9751 Returns NULL if there isn't one.
9752 Note: This function processes DWP files only, not DWO files. */
9754 static struct dwp_hash_table *
9755 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9757 struct objfile *objfile = dwarf2_per_objfile->objfile;
9758 bfd *dbfd = dwp_file->dbfd;
9759 const gdb_byte *index_ptr, *index_end;
9760 struct dwarf2_section_info *index;
9761 uint32_t version, nr_columns, nr_units, nr_slots;
9762 struct dwp_hash_table *htab;
9765 index = &dwp_file->sections.tu_index;
9767 index = &dwp_file->sections.cu_index;
9769 if (dwarf2_section_empty_p (index))
9771 dwarf2_read_section (objfile, index);
9773 index_ptr = index->buffer;
9774 index_end = index_ptr + index->size;
9776 version = read_4_bytes (dbfd, index_ptr);
9779 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 nr_units = read_4_bytes (dbfd, index_ptr);
9785 nr_slots = read_4_bytes (dbfd, index_ptr);
9788 if (version != 1 && version != 2)
9790 error (_("Dwarf Error: unsupported DWP file version (%s)"
9792 pulongest (version), dwp_file->name);
9794 if (nr_slots != (nr_slots & -nr_slots))
9796 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9797 " is not power of 2 [in module %s]"),
9798 pulongest (nr_slots), dwp_file->name);
9801 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9802 htab->version = version;
9803 htab->nr_columns = nr_columns;
9804 htab->nr_units = nr_units;
9805 htab->nr_slots = nr_slots;
9806 htab->hash_table = index_ptr;
9807 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9809 /* Exit early if the table is empty. */
9810 if (nr_slots == 0 || nr_units == 0
9811 || (version == 2 && nr_columns == 0))
9813 /* All must be zero. */
9814 if (nr_slots != 0 || nr_units != 0
9815 || (version == 2 && nr_columns != 0))
9817 complaint (&symfile_complaints,
9818 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9819 " all zero [in modules %s]"),
9827 htab->section_pool.v1.indices =
9828 htab->unit_table + sizeof (uint32_t) * nr_slots;
9829 /* It's harder to decide whether the section is too small in v1.
9830 V1 is deprecated anyway so we punt. */
9834 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9835 int *ids = htab->section_pool.v2.section_ids;
9836 /* Reverse map for error checking. */
9837 int ids_seen[DW_SECT_MAX + 1];
9842 error (_("Dwarf Error: bad DWP hash table, too few columns"
9843 " in section table [in module %s]"),
9846 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9848 error (_("Dwarf Error: bad DWP hash table, too many columns"
9849 " in section table [in module %s]"),
9852 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9853 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9854 for (i = 0; i < nr_columns; ++i)
9856 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9858 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9860 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9861 " in section table [in module %s]"),
9862 id, dwp_file->name);
9864 if (ids_seen[id] != -1)
9866 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9867 " id %d in section table [in module %s]"),
9868 id, dwp_file->name);
9873 /* Must have exactly one info or types section. */
9874 if (((ids_seen[DW_SECT_INFO] != -1)
9875 + (ids_seen[DW_SECT_TYPES] != -1))
9878 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9879 " DWO info/types section [in module %s]"),
9882 /* Must have an abbrev section. */
9883 if (ids_seen[DW_SECT_ABBREV] == -1)
9885 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9886 " section [in module %s]"),
9889 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9890 htab->section_pool.v2.sizes =
9891 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9892 * nr_units * nr_columns);
9893 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9894 * nr_units * nr_columns))
9897 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9906 /* Update SECTIONS with the data from SECTP.
9908 This function is like the other "locate" section routines that are
9909 passed to bfd_map_over_sections, but in this context the sections to
9910 read comes from the DWP V1 hash table, not the full ELF section table.
9912 The result is non-zero for success, or zero if an error was found. */
9915 locate_v1_virtual_dwo_sections (asection *sectp,
9916 struct virtual_v1_dwo_sections *sections)
9918 const struct dwop_section_names *names = &dwop_section_names;
9920 if (section_is_p (sectp->name, &names->abbrev_dwo))
9922 /* There can be only one. */
9923 if (sections->abbrev.s.asection != NULL)
9925 sections->abbrev.s.asection = sectp;
9926 sections->abbrev.size = bfd_get_section_size (sectp);
9928 else if (section_is_p (sectp->name, &names->info_dwo)
9929 || section_is_p (sectp->name, &names->types_dwo))
9931 /* There can be only one. */
9932 if (sections->info_or_types.s.asection != NULL)
9934 sections->info_or_types.s.asection = sectp;
9935 sections->info_or_types.size = bfd_get_section_size (sectp);
9937 else if (section_is_p (sectp->name, &names->line_dwo))
9939 /* There can be only one. */
9940 if (sections->line.s.asection != NULL)
9942 sections->line.s.asection = sectp;
9943 sections->line.size = bfd_get_section_size (sectp);
9945 else if (section_is_p (sectp->name, &names->loc_dwo))
9947 /* There can be only one. */
9948 if (sections->loc.s.asection != NULL)
9950 sections->loc.s.asection = sectp;
9951 sections->loc.size = bfd_get_section_size (sectp);
9953 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9955 /* There can be only one. */
9956 if (sections->macinfo.s.asection != NULL)
9958 sections->macinfo.s.asection = sectp;
9959 sections->macinfo.size = bfd_get_section_size (sectp);
9961 else if (section_is_p (sectp->name, &names->macro_dwo))
9963 /* There can be only one. */
9964 if (sections->macro.s.asection != NULL)
9966 sections->macro.s.asection = sectp;
9967 sections->macro.size = bfd_get_section_size (sectp);
9969 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9971 /* There can be only one. */
9972 if (sections->str_offsets.s.asection != NULL)
9974 sections->str_offsets.s.asection = sectp;
9975 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 /* No other kind of section is valid. */
9986 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9987 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9988 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9989 This is for DWP version 1 files. */
9991 static struct dwo_unit *
9992 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9993 uint32_t unit_index,
9994 const char *comp_dir,
9995 ULONGEST signature, int is_debug_types)
9997 struct objfile *objfile = dwarf2_per_objfile->objfile;
9998 const struct dwp_hash_table *dwp_htab =
9999 is_debug_types ? dwp_file->tus : dwp_file->cus;
10000 bfd *dbfd = dwp_file->dbfd;
10001 const char *kind = is_debug_types ? "TU" : "CU";
10002 struct dwo_file *dwo_file;
10003 struct dwo_unit *dwo_unit;
10004 struct virtual_v1_dwo_sections sections;
10005 void **dwo_file_slot;
10006 char *virtual_dwo_name;
10007 struct dwarf2_section_info *cutu;
10008 struct cleanup *cleanups;
10011 gdb_assert (dwp_file->version == 1);
10013 if (dwarf2_read_debug)
10015 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10017 pulongest (unit_index), hex_string (signature),
10021 /* Fetch the sections of this DWO unit.
10022 Put a limit on the number of sections we look for so that bad data
10023 doesn't cause us to loop forever. */
10025 #define MAX_NR_V1_DWO_SECTIONS \
10026 (1 /* .debug_info or .debug_types */ \
10027 + 1 /* .debug_abbrev */ \
10028 + 1 /* .debug_line */ \
10029 + 1 /* .debug_loc */ \
10030 + 1 /* .debug_str_offsets */ \
10031 + 1 /* .debug_macro or .debug_macinfo */ \
10032 + 1 /* trailing zero */)
10034 memset (§ions, 0, sizeof (sections));
10035 cleanups = make_cleanup (null_cleanup, 0);
10037 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10040 uint32_t section_nr =
10041 read_4_bytes (dbfd,
10042 dwp_htab->section_pool.v1.indices
10043 + (unit_index + i) * sizeof (uint32_t));
10045 if (section_nr == 0)
10047 if (section_nr >= dwp_file->num_sections)
10049 error (_("Dwarf Error: bad DWP hash table, section number too large"
10050 " [in module %s]"),
10054 sectp = dwp_file->elf_sections[section_nr];
10055 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
10057 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10058 " [in module %s]"),
10064 || dwarf2_section_empty_p (§ions.info_or_types)
10065 || dwarf2_section_empty_p (§ions.abbrev))
10067 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10068 " [in module %s]"),
10071 if (i == MAX_NR_V1_DWO_SECTIONS)
10073 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10074 " [in module %s]"),
10078 /* It's easier for the rest of the code if we fake a struct dwo_file and
10079 have dwo_unit "live" in that. At least for now.
10081 The DWP file can be made up of a random collection of CUs and TUs.
10082 However, for each CU + set of TUs that came from the same original DWO
10083 file, we can combine them back into a virtual DWO file to save space
10084 (fewer struct dwo_file objects to allocate). Remember that for really
10085 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10088 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10089 get_section_id (§ions.abbrev),
10090 get_section_id (§ions.line),
10091 get_section_id (§ions.loc),
10092 get_section_id (§ions.str_offsets));
10093 make_cleanup (xfree, virtual_dwo_name);
10094 /* Can we use an existing virtual DWO file? */
10095 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10096 /* Create one if necessary. */
10097 if (*dwo_file_slot == NULL)
10099 if (dwarf2_read_debug)
10101 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10104 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10105 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10107 strlen (virtual_dwo_name));
10108 dwo_file->comp_dir = comp_dir;
10109 dwo_file->sections.abbrev = sections.abbrev;
10110 dwo_file->sections.line = sections.line;
10111 dwo_file->sections.loc = sections.loc;
10112 dwo_file->sections.macinfo = sections.macinfo;
10113 dwo_file->sections.macro = sections.macro;
10114 dwo_file->sections.str_offsets = sections.str_offsets;
10115 /* The "str" section is global to the entire DWP file. */
10116 dwo_file->sections.str = dwp_file->sections.str;
10117 /* The info or types section is assigned below to dwo_unit,
10118 there's no need to record it in dwo_file.
10119 Also, we can't simply record type sections in dwo_file because
10120 we record a pointer into the vector in dwo_unit. As we collect more
10121 types we'll grow the vector and eventually have to reallocate space
10122 for it, invalidating all copies of pointers into the previous
10124 *dwo_file_slot = dwo_file;
10128 if (dwarf2_read_debug)
10130 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10133 dwo_file = *dwo_file_slot;
10135 do_cleanups (cleanups);
10137 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10138 dwo_unit->dwo_file = dwo_file;
10139 dwo_unit->signature = signature;
10140 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10141 sizeof (struct dwarf2_section_info));
10142 *dwo_unit->section = sections.info_or_types;
10143 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10148 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10149 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10150 piece within that section used by a TU/CU, return a virtual section
10151 of just that piece. */
10153 static struct dwarf2_section_info
10154 create_dwp_v2_section (struct dwarf2_section_info *section,
10155 bfd_size_type offset, bfd_size_type size)
10157 struct dwarf2_section_info result;
10160 gdb_assert (section != NULL);
10161 gdb_assert (!section->is_virtual);
10163 memset (&result, 0, sizeof (result));
10164 result.s.containing_section = section;
10165 result.is_virtual = 1;
10170 sectp = get_section_bfd_section (section);
10172 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10173 bounds of the real section. This is a pretty-rare event, so just
10174 flag an error (easier) instead of a warning and trying to cope. */
10176 || offset + size > bfd_get_section_size (sectp))
10178 bfd *abfd = sectp->owner;
10180 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10181 " in section %s [in module %s]"),
10182 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10183 objfile_name (dwarf2_per_objfile->objfile));
10186 result.virtual_offset = offset;
10187 result.size = size;
10191 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10192 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10193 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10194 This is for DWP version 2 files. */
10196 static struct dwo_unit *
10197 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10198 uint32_t unit_index,
10199 const char *comp_dir,
10200 ULONGEST signature, int is_debug_types)
10202 struct objfile *objfile = dwarf2_per_objfile->objfile;
10203 const struct dwp_hash_table *dwp_htab =
10204 is_debug_types ? dwp_file->tus : dwp_file->cus;
10205 bfd *dbfd = dwp_file->dbfd;
10206 const char *kind = is_debug_types ? "TU" : "CU";
10207 struct dwo_file *dwo_file;
10208 struct dwo_unit *dwo_unit;
10209 struct virtual_v2_dwo_sections sections;
10210 void **dwo_file_slot;
10211 char *virtual_dwo_name;
10212 struct dwarf2_section_info *cutu;
10213 struct cleanup *cleanups;
10216 gdb_assert (dwp_file->version == 2);
10218 if (dwarf2_read_debug)
10220 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10222 pulongest (unit_index), hex_string (signature),
10226 /* Fetch the section offsets of this DWO unit. */
10228 memset (§ions, 0, sizeof (sections));
10229 cleanups = make_cleanup (null_cleanup, 0);
10231 for (i = 0; i < dwp_htab->nr_columns; ++i)
10233 uint32_t offset = read_4_bytes (dbfd,
10234 dwp_htab->section_pool.v2.offsets
10235 + (((unit_index - 1) * dwp_htab->nr_columns
10237 * sizeof (uint32_t)));
10238 uint32_t size = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.sizes
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10242 * sizeof (uint32_t)));
10244 switch (dwp_htab->section_pool.v2.section_ids[i])
10247 case DW_SECT_TYPES:
10248 sections.info_or_types_offset = offset;
10249 sections.info_or_types_size = size;
10251 case DW_SECT_ABBREV:
10252 sections.abbrev_offset = offset;
10253 sections.abbrev_size = size;
10256 sections.line_offset = offset;
10257 sections.line_size = size;
10260 sections.loc_offset = offset;
10261 sections.loc_size = size;
10263 case DW_SECT_STR_OFFSETS:
10264 sections.str_offsets_offset = offset;
10265 sections.str_offsets_size = size;
10267 case DW_SECT_MACINFO:
10268 sections.macinfo_offset = offset;
10269 sections.macinfo_size = size;
10271 case DW_SECT_MACRO:
10272 sections.macro_offset = offset;
10273 sections.macro_size = size;
10278 /* It's easier for the rest of the code if we fake a struct dwo_file and
10279 have dwo_unit "live" in that. At least for now.
10281 The DWP file can be made up of a random collection of CUs and TUs.
10282 However, for each CU + set of TUs that came from the same original DWO
10283 file, we can combine them back into a virtual DWO file to save space
10284 (fewer struct dwo_file objects to allocate). Remember that for really
10285 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10288 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10289 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10290 (long) (sections.line_size ? sections.line_offset : 0),
10291 (long) (sections.loc_size ? sections.loc_offset : 0),
10292 (long) (sections.str_offsets_size
10293 ? sections.str_offsets_offset : 0));
10294 make_cleanup (xfree, virtual_dwo_name);
10295 /* Can we use an existing virtual DWO file? */
10296 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10297 /* Create one if necessary. */
10298 if (*dwo_file_slot == NULL)
10300 if (dwarf2_read_debug)
10302 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10305 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10306 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10308 strlen (virtual_dwo_name));
10309 dwo_file->comp_dir = comp_dir;
10310 dwo_file->sections.abbrev =
10311 create_dwp_v2_section (&dwp_file->sections.abbrev,
10312 sections.abbrev_offset, sections.abbrev_size);
10313 dwo_file->sections.line =
10314 create_dwp_v2_section (&dwp_file->sections.line,
10315 sections.line_offset, sections.line_size);
10316 dwo_file->sections.loc =
10317 create_dwp_v2_section (&dwp_file->sections.loc,
10318 sections.loc_offset, sections.loc_size);
10319 dwo_file->sections.macinfo =
10320 create_dwp_v2_section (&dwp_file->sections.macinfo,
10321 sections.macinfo_offset, sections.macinfo_size);
10322 dwo_file->sections.macro =
10323 create_dwp_v2_section (&dwp_file->sections.macro,
10324 sections.macro_offset, sections.macro_size);
10325 dwo_file->sections.str_offsets =
10326 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10327 sections.str_offsets_offset,
10328 sections.str_offsets_size);
10329 /* The "str" section is global to the entire DWP file. */
10330 dwo_file->sections.str = dwp_file->sections.str;
10331 /* The info or types section is assigned below to dwo_unit,
10332 there's no need to record it in dwo_file.
10333 Also, we can't simply record type sections in dwo_file because
10334 we record a pointer into the vector in dwo_unit. As we collect more
10335 types we'll grow the vector and eventually have to reallocate space
10336 for it, invalidating all copies of pointers into the previous
10338 *dwo_file_slot = dwo_file;
10342 if (dwarf2_read_debug)
10344 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10347 dwo_file = *dwo_file_slot;
10349 do_cleanups (cleanups);
10351 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10352 dwo_unit->dwo_file = dwo_file;
10353 dwo_unit->signature = signature;
10354 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10355 sizeof (struct dwarf2_section_info));
10356 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10357 ? &dwp_file->sections.types
10358 : &dwp_file->sections.info,
10359 sections.info_or_types_offset,
10360 sections.info_or_types_size);
10361 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10366 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10367 Returns NULL if the signature isn't found. */
10369 static struct dwo_unit *
10370 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10371 ULONGEST signature, int is_debug_types)
10373 const struct dwp_hash_table *dwp_htab =
10374 is_debug_types ? dwp_file->tus : dwp_file->cus;
10375 bfd *dbfd = dwp_file->dbfd;
10376 uint32_t mask = dwp_htab->nr_slots - 1;
10377 uint32_t hash = signature & mask;
10378 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10381 struct dwo_unit find_dwo_cu, *dwo_cu;
10383 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10384 find_dwo_cu.signature = signature;
10385 slot = htab_find_slot (is_debug_types
10386 ? dwp_file->loaded_tus
10387 : dwp_file->loaded_cus,
10388 &find_dwo_cu, INSERT);
10393 /* Use a for loop so that we don't loop forever on bad debug info. */
10394 for (i = 0; i < dwp_htab->nr_slots; ++i)
10396 ULONGEST signature_in_table;
10398 signature_in_table =
10399 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10400 if (signature_in_table == signature)
10402 uint32_t unit_index =
10403 read_4_bytes (dbfd,
10404 dwp_htab->unit_table + hash * sizeof (uint32_t));
10406 if (dwp_file->version == 1)
10408 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10409 comp_dir, signature,
10414 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10415 comp_dir, signature,
10420 if (signature_in_table == 0)
10422 hash = (hash + hash2) & mask;
10425 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10426 " [in module %s]"),
10430 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10431 Open the file specified by FILE_NAME and hand it off to BFD for
10432 preliminary analysis. Return a newly initialized bfd *, which
10433 includes a canonicalized copy of FILE_NAME.
10434 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10435 SEARCH_CWD is true if the current directory is to be searched.
10436 It will be searched before debug-file-directory.
10437 If successful, the file is added to the bfd include table of the
10438 objfile's bfd (see gdb_bfd_record_inclusion).
10439 If unable to find/open the file, return NULL.
10440 NOTE: This function is derived from symfile_bfd_open. */
10443 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10447 char *absolute_name;
10448 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10449 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10450 to debug_file_directory. */
10452 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10456 if (*debug_file_directory != '\0')
10457 search_path = concat (".", dirname_separator_string,
10458 debug_file_directory, NULL);
10460 search_path = xstrdup (".");
10463 search_path = xstrdup (debug_file_directory);
10465 flags = OPF_RETURN_REALPATH;
10467 flags |= OPF_SEARCH_IN_PATH;
10468 desc = openp (search_path, flags, file_name,
10469 O_RDONLY | O_BINARY, &absolute_name);
10470 xfree (search_path);
10474 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10475 xfree (absolute_name);
10476 if (sym_bfd == NULL)
10478 bfd_set_cacheable (sym_bfd, 1);
10480 if (!bfd_check_format (sym_bfd, bfd_object))
10482 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10486 /* Success. Record the bfd as having been included by the objfile's bfd.
10487 This is important because things like demangled_names_hash lives in the
10488 objfile's per_bfd space and may have references to things like symbol
10489 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10490 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10495 /* Try to open DWO file FILE_NAME.
10496 COMP_DIR is the DW_AT_comp_dir attribute.
10497 The result is the bfd handle of the file.
10498 If there is a problem finding or opening the file, return NULL.
10499 Upon success, the canonicalized path of the file is stored in the bfd,
10500 same as symfile_bfd_open. */
10503 open_dwo_file (const char *file_name, const char *comp_dir)
10507 if (IS_ABSOLUTE_PATH (file_name))
10508 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10510 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10512 if (comp_dir != NULL)
10514 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10516 /* NOTE: If comp_dir is a relative path, this will also try the
10517 search path, which seems useful. */
10518 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10519 xfree (path_to_try);
10524 /* That didn't work, try debug-file-directory, which, despite its name,
10525 is a list of paths. */
10527 if (*debug_file_directory == '\0')
10530 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10533 /* This function is mapped across the sections and remembers the offset and
10534 size of each of the DWO debugging sections we are interested in. */
10537 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10539 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10540 const struct dwop_section_names *names = &dwop_section_names;
10542 if (section_is_p (sectp->name, &names->abbrev_dwo))
10544 dwo_sections->abbrev.s.asection = sectp;
10545 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10547 else if (section_is_p (sectp->name, &names->info_dwo))
10549 dwo_sections->info.s.asection = sectp;
10550 dwo_sections->info.size = bfd_get_section_size (sectp);
10552 else if (section_is_p (sectp->name, &names->line_dwo))
10554 dwo_sections->line.s.asection = sectp;
10555 dwo_sections->line.size = bfd_get_section_size (sectp);
10557 else if (section_is_p (sectp->name, &names->loc_dwo))
10559 dwo_sections->loc.s.asection = sectp;
10560 dwo_sections->loc.size = bfd_get_section_size (sectp);
10562 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10564 dwo_sections->macinfo.s.asection = sectp;
10565 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10567 else if (section_is_p (sectp->name, &names->macro_dwo))
10569 dwo_sections->macro.s.asection = sectp;
10570 dwo_sections->macro.size = bfd_get_section_size (sectp);
10572 else if (section_is_p (sectp->name, &names->str_dwo))
10574 dwo_sections->str.s.asection = sectp;
10575 dwo_sections->str.size = bfd_get_section_size (sectp);
10577 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10579 dwo_sections->str_offsets.s.asection = sectp;
10580 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10582 else if (section_is_p (sectp->name, &names->types_dwo))
10584 struct dwarf2_section_info type_section;
10586 memset (&type_section, 0, sizeof (type_section));
10587 type_section.s.asection = sectp;
10588 type_section.size = bfd_get_section_size (sectp);
10589 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10594 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10595 by PER_CU. This is for the non-DWP case.
10596 The result is NULL if DWO_NAME can't be found. */
10598 static struct dwo_file *
10599 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10600 const char *dwo_name, const char *comp_dir)
10602 struct objfile *objfile = dwarf2_per_objfile->objfile;
10603 struct dwo_file *dwo_file;
10605 struct cleanup *cleanups;
10607 dbfd = open_dwo_file (dwo_name, comp_dir);
10610 if (dwarf2_read_debug)
10611 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10614 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10615 dwo_file->dwo_name = dwo_name;
10616 dwo_file->comp_dir = comp_dir;
10617 dwo_file->dbfd = dbfd;
10619 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10621 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10623 dwo_file->cu = create_dwo_cu (dwo_file);
10625 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10626 dwo_file->sections.types);
10628 discard_cleanups (cleanups);
10630 if (dwarf2_read_debug)
10631 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10636 /* This function is mapped across the sections and remembers the offset and
10637 size of each of the DWP debugging sections common to version 1 and 2 that
10638 we are interested in. */
10641 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10642 void *dwp_file_ptr)
10644 struct dwp_file *dwp_file = dwp_file_ptr;
10645 const struct dwop_section_names *names = &dwop_section_names;
10646 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10648 /* Record the ELF section number for later lookup: this is what the
10649 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10650 gdb_assert (elf_section_nr < dwp_file->num_sections);
10651 dwp_file->elf_sections[elf_section_nr] = sectp;
10653 /* Look for specific sections that we need. */
10654 if (section_is_p (sectp->name, &names->str_dwo))
10656 dwp_file->sections.str.s.asection = sectp;
10657 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10659 else if (section_is_p (sectp->name, &names->cu_index))
10661 dwp_file->sections.cu_index.s.asection = sectp;
10662 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10664 else if (section_is_p (sectp->name, &names->tu_index))
10666 dwp_file->sections.tu_index.s.asection = sectp;
10667 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10671 /* This function is mapped across the sections and remembers the offset and
10672 size of each of the DWP version 2 debugging sections that we are interested
10673 in. This is split into a separate function because we don't know if we
10674 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10677 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10679 struct dwp_file *dwp_file = dwp_file_ptr;
10680 const struct dwop_section_names *names = &dwop_section_names;
10681 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10683 /* Record the ELF section number for later lookup: this is what the
10684 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10685 gdb_assert (elf_section_nr < dwp_file->num_sections);
10686 dwp_file->elf_sections[elf_section_nr] = sectp;
10688 /* Look for specific sections that we need. */
10689 if (section_is_p (sectp->name, &names->abbrev_dwo))
10691 dwp_file->sections.abbrev.s.asection = sectp;
10692 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10694 else if (section_is_p (sectp->name, &names->info_dwo))
10696 dwp_file->sections.info.s.asection = sectp;
10697 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10699 else if (section_is_p (sectp->name, &names->line_dwo))
10701 dwp_file->sections.line.s.asection = sectp;
10702 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10704 else if (section_is_p (sectp->name, &names->loc_dwo))
10706 dwp_file->sections.loc.s.asection = sectp;
10707 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10709 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10711 dwp_file->sections.macinfo.s.asection = sectp;
10712 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10714 else if (section_is_p (sectp->name, &names->macro_dwo))
10716 dwp_file->sections.macro.s.asection = sectp;
10717 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10719 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10721 dwp_file->sections.str_offsets.s.asection = sectp;
10722 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10724 else if (section_is_p (sectp->name, &names->types_dwo))
10726 dwp_file->sections.types.s.asection = sectp;
10727 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10731 /* Hash function for dwp_file loaded CUs/TUs. */
10734 hash_dwp_loaded_cutus (const void *item)
10736 const struct dwo_unit *dwo_unit = item;
10738 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10739 return dwo_unit->signature;
10742 /* Equality function for dwp_file loaded CUs/TUs. */
10745 eq_dwp_loaded_cutus (const void *a, const void *b)
10747 const struct dwo_unit *dua = a;
10748 const struct dwo_unit *dub = b;
10750 return dua->signature == dub->signature;
10753 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10756 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10758 return htab_create_alloc_ex (3,
10759 hash_dwp_loaded_cutus,
10760 eq_dwp_loaded_cutus,
10762 &objfile->objfile_obstack,
10763 hashtab_obstack_allocate,
10764 dummy_obstack_deallocate);
10767 /* Try to open DWP file FILE_NAME.
10768 The result is the bfd handle of the file.
10769 If there is a problem finding or opening the file, return NULL.
10770 Upon success, the canonicalized path of the file is stored in the bfd,
10771 same as symfile_bfd_open. */
10774 open_dwp_file (const char *file_name)
10778 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10782 /* Work around upstream bug 15652.
10783 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10784 [Whether that's a "bug" is debatable, but it is getting in our way.]
10785 We have no real idea where the dwp file is, because gdb's realpath-ing
10786 of the executable's path may have discarded the needed info.
10787 [IWBN if the dwp file name was recorded in the executable, akin to
10788 .gnu_debuglink, but that doesn't exist yet.]
10789 Strip the directory from FILE_NAME and search again. */
10790 if (*debug_file_directory != '\0')
10792 /* Don't implicitly search the current directory here.
10793 If the user wants to search "." to handle this case,
10794 it must be added to debug-file-directory. */
10795 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10802 /* Initialize the use of the DWP file for the current objfile.
10803 By convention the name of the DWP file is ${objfile}.dwp.
10804 The result is NULL if it can't be found. */
10806 static struct dwp_file *
10807 open_and_init_dwp_file (void)
10809 struct objfile *objfile = dwarf2_per_objfile->objfile;
10810 struct dwp_file *dwp_file;
10813 struct cleanup *cleanups;
10815 /* Try to find first .dwp for the binary file before any symbolic links
10817 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10818 cleanups = make_cleanup (xfree, dwp_name);
10820 dbfd = open_dwp_file (dwp_name);
10822 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10824 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10825 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10826 make_cleanup (xfree, dwp_name);
10827 dbfd = open_dwp_file (dwp_name);
10832 if (dwarf2_read_debug)
10833 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10834 do_cleanups (cleanups);
10837 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10838 dwp_file->name = bfd_get_filename (dbfd);
10839 dwp_file->dbfd = dbfd;
10840 do_cleanups (cleanups);
10842 /* +1: section 0 is unused */
10843 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10844 dwp_file->elf_sections =
10845 OBSTACK_CALLOC (&objfile->objfile_obstack,
10846 dwp_file->num_sections, asection *);
10848 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10850 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10852 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10854 /* The DWP file version is stored in the hash table. Oh well. */
10855 if (dwp_file->cus->version != dwp_file->tus->version)
10857 /* Technically speaking, we should try to limp along, but this is
10858 pretty bizarre. We use pulongest here because that's the established
10859 portability solution (e.g, we cannot use %u for uint32_t). */
10860 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10861 " TU version %s [in DWP file %s]"),
10862 pulongest (dwp_file->cus->version),
10863 pulongest (dwp_file->tus->version), dwp_name);
10865 dwp_file->version = dwp_file->cus->version;
10867 if (dwp_file->version == 2)
10868 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10870 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10871 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10873 if (dwarf2_read_debug)
10875 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10876 fprintf_unfiltered (gdb_stdlog,
10877 " %s CUs, %s TUs\n",
10878 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10879 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10885 /* Wrapper around open_and_init_dwp_file, only open it once. */
10887 static struct dwp_file *
10888 get_dwp_file (void)
10890 if (! dwarf2_per_objfile->dwp_checked)
10892 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10893 dwarf2_per_objfile->dwp_checked = 1;
10895 return dwarf2_per_objfile->dwp_file;
10898 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10899 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10900 or in the DWP file for the objfile, referenced by THIS_UNIT.
10901 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10902 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10904 This is called, for example, when wanting to read a variable with a
10905 complex location. Therefore we don't want to do file i/o for every call.
10906 Therefore we don't want to look for a DWO file on every call.
10907 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10908 then we check if we've already seen DWO_NAME, and only THEN do we check
10911 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10912 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10914 static struct dwo_unit *
10915 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10916 const char *dwo_name, const char *comp_dir,
10917 ULONGEST signature, int is_debug_types)
10919 struct objfile *objfile = dwarf2_per_objfile->objfile;
10920 const char *kind = is_debug_types ? "TU" : "CU";
10921 void **dwo_file_slot;
10922 struct dwo_file *dwo_file;
10923 struct dwp_file *dwp_file;
10925 /* First see if there's a DWP file.
10926 If we have a DWP file but didn't find the DWO inside it, don't
10927 look for the original DWO file. It makes gdb behave differently
10928 depending on whether one is debugging in the build tree. */
10930 dwp_file = get_dwp_file ();
10931 if (dwp_file != NULL)
10933 const struct dwp_hash_table *dwp_htab =
10934 is_debug_types ? dwp_file->tus : dwp_file->cus;
10936 if (dwp_htab != NULL)
10938 struct dwo_unit *dwo_cutu =
10939 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10940 signature, is_debug_types);
10942 if (dwo_cutu != NULL)
10944 if (dwarf2_read_debug)
10946 fprintf_unfiltered (gdb_stdlog,
10947 "Virtual DWO %s %s found: @%s\n",
10948 kind, hex_string (signature),
10949 host_address_to_string (dwo_cutu));
10957 /* No DWP file, look for the DWO file. */
10959 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10960 if (*dwo_file_slot == NULL)
10962 /* Read in the file and build a table of the CUs/TUs it contains. */
10963 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10965 /* NOTE: This will be NULL if unable to open the file. */
10966 dwo_file = *dwo_file_slot;
10968 if (dwo_file != NULL)
10970 struct dwo_unit *dwo_cutu = NULL;
10972 if (is_debug_types && dwo_file->tus)
10974 struct dwo_unit find_dwo_cutu;
10976 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10977 find_dwo_cutu.signature = signature;
10978 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10980 else if (!is_debug_types && dwo_file->cu)
10982 if (signature == dwo_file->cu->signature)
10983 dwo_cutu = dwo_file->cu;
10986 if (dwo_cutu != NULL)
10988 if (dwarf2_read_debug)
10990 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10991 kind, dwo_name, hex_string (signature),
10992 host_address_to_string (dwo_cutu));
10999 /* We didn't find it. This could mean a dwo_id mismatch, or
11000 someone deleted the DWO/DWP file, or the search path isn't set up
11001 correctly to find the file. */
11003 if (dwarf2_read_debug)
11005 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11006 kind, dwo_name, hex_string (signature));
11009 /* This is a warning and not a complaint because it can be caused by
11010 pilot error (e.g., user accidentally deleting the DWO). */
11012 /* Print the name of the DWP file if we looked there, helps the user
11013 better diagnose the problem. */
11014 char *dwp_text = NULL;
11015 struct cleanup *cleanups;
11017 if (dwp_file != NULL)
11018 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11019 cleanups = make_cleanup (xfree, dwp_text);
11021 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11022 " [in module %s]"),
11023 kind, dwo_name, hex_string (signature),
11024 dwp_text != NULL ? dwp_text : "",
11025 this_unit->is_debug_types ? "TU" : "CU",
11026 this_unit->offset.sect_off, objfile_name (objfile));
11028 do_cleanups (cleanups);
11033 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11034 See lookup_dwo_cutu_unit for details. */
11036 static struct dwo_unit *
11037 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11038 const char *dwo_name, const char *comp_dir,
11039 ULONGEST signature)
11041 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11044 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11045 See lookup_dwo_cutu_unit for details. */
11047 static struct dwo_unit *
11048 lookup_dwo_type_unit (struct signatured_type *this_tu,
11049 const char *dwo_name, const char *comp_dir)
11051 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11054 /* Traversal function for queue_and_load_all_dwo_tus. */
11057 queue_and_load_dwo_tu (void **slot, void *info)
11059 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11060 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11061 ULONGEST signature = dwo_unit->signature;
11062 struct signatured_type *sig_type =
11063 lookup_dwo_signatured_type (per_cu->cu, signature);
11065 if (sig_type != NULL)
11067 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11069 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11070 a real dependency of PER_CU on SIG_TYPE. That is detected later
11071 while processing PER_CU. */
11072 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11073 load_full_type_unit (sig_cu);
11074 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11080 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11081 The DWO may have the only definition of the type, though it may not be
11082 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11083 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11086 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11088 struct dwo_unit *dwo_unit;
11089 struct dwo_file *dwo_file;
11091 gdb_assert (!per_cu->is_debug_types);
11092 gdb_assert (get_dwp_file () == NULL);
11093 gdb_assert (per_cu->cu != NULL);
11095 dwo_unit = per_cu->cu->dwo_unit;
11096 gdb_assert (dwo_unit != NULL);
11098 dwo_file = dwo_unit->dwo_file;
11099 if (dwo_file->tus != NULL)
11100 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11103 /* Free all resources associated with DWO_FILE.
11104 Close the DWO file and munmap the sections.
11105 All memory should be on the objfile obstack. */
11108 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11111 struct dwarf2_section_info *section;
11113 /* Note: dbfd is NULL for virtual DWO files. */
11114 gdb_bfd_unref (dwo_file->dbfd);
11116 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11119 /* Wrapper for free_dwo_file for use in cleanups. */
11122 free_dwo_file_cleanup (void *arg)
11124 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11125 struct objfile *objfile = dwarf2_per_objfile->objfile;
11127 free_dwo_file (dwo_file, objfile);
11130 /* Traversal function for free_dwo_files. */
11133 free_dwo_file_from_slot (void **slot, void *info)
11135 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11136 struct objfile *objfile = (struct objfile *) info;
11138 free_dwo_file (dwo_file, objfile);
11143 /* Free all resources associated with DWO_FILES. */
11146 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11148 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11151 /* Read in various DIEs. */
11153 /* qsort helper for inherit_abstract_dies. */
11156 unsigned_int_compar (const void *ap, const void *bp)
11158 unsigned int a = *(unsigned int *) ap;
11159 unsigned int b = *(unsigned int *) bp;
11161 return (a > b) - (b > a);
11164 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11165 Inherit only the children of the DW_AT_abstract_origin DIE not being
11166 already referenced by DW_AT_abstract_origin from the children of the
11170 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11172 struct die_info *child_die;
11173 unsigned die_children_count;
11174 /* CU offsets which were referenced by children of the current DIE. */
11175 sect_offset *offsets;
11176 sect_offset *offsets_end, *offsetp;
11177 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11178 struct die_info *origin_die;
11179 /* Iterator of the ORIGIN_DIE children. */
11180 struct die_info *origin_child_die;
11181 struct cleanup *cleanups;
11182 struct attribute *attr;
11183 struct dwarf2_cu *origin_cu;
11184 struct pending **origin_previous_list_in_scope;
11186 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11190 /* Note that following die references may follow to a die in a
11194 origin_die = follow_die_ref (die, attr, &origin_cu);
11196 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11198 origin_previous_list_in_scope = origin_cu->list_in_scope;
11199 origin_cu->list_in_scope = cu->list_in_scope;
11201 if (die->tag != origin_die->tag
11202 && !(die->tag == DW_TAG_inlined_subroutine
11203 && origin_die->tag == DW_TAG_subprogram))
11204 complaint (&symfile_complaints,
11205 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11206 die->offset.sect_off, origin_die->offset.sect_off);
11208 child_die = die->child;
11209 die_children_count = 0;
11210 while (child_die && child_die->tag)
11212 child_die = sibling_die (child_die);
11213 die_children_count++;
11215 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11216 cleanups = make_cleanup (xfree, offsets);
11218 offsets_end = offsets;
11219 for (child_die = die->child;
11220 child_die && child_die->tag;
11221 child_die = sibling_die (child_die))
11223 struct die_info *child_origin_die;
11224 struct dwarf2_cu *child_origin_cu;
11226 /* We are trying to process concrete instance entries:
11227 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11228 it's not relevant to our analysis here. i.e. detecting DIEs that are
11229 present in the abstract instance but not referenced in the concrete
11231 if (child_die->tag == DW_TAG_GNU_call_site)
11234 /* For each CHILD_DIE, find the corresponding child of
11235 ORIGIN_DIE. If there is more than one layer of
11236 DW_AT_abstract_origin, follow them all; there shouldn't be,
11237 but GCC versions at least through 4.4 generate this (GCC PR
11239 child_origin_die = child_die;
11240 child_origin_cu = cu;
11243 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11247 child_origin_die = follow_die_ref (child_origin_die, attr,
11251 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11252 counterpart may exist. */
11253 if (child_origin_die != child_die)
11255 if (child_die->tag != child_origin_die->tag
11256 && !(child_die->tag == DW_TAG_inlined_subroutine
11257 && child_origin_die->tag == DW_TAG_subprogram))
11258 complaint (&symfile_complaints,
11259 _("Child DIE 0x%x and its abstract origin 0x%x have "
11260 "different tags"), child_die->offset.sect_off,
11261 child_origin_die->offset.sect_off);
11262 if (child_origin_die->parent != origin_die)
11263 complaint (&symfile_complaints,
11264 _("Child DIE 0x%x and its abstract origin 0x%x have "
11265 "different parents"), child_die->offset.sect_off,
11266 child_origin_die->offset.sect_off);
11268 *offsets_end++ = child_origin_die->offset;
11271 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11272 unsigned_int_compar);
11273 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11274 if (offsetp[-1].sect_off == offsetp->sect_off)
11275 complaint (&symfile_complaints,
11276 _("Multiple children of DIE 0x%x refer "
11277 "to DIE 0x%x as their abstract origin"),
11278 die->offset.sect_off, offsetp->sect_off);
11281 origin_child_die = origin_die->child;
11282 while (origin_child_die && origin_child_die->tag)
11284 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11285 while (offsetp < offsets_end
11286 && offsetp->sect_off < origin_child_die->offset.sect_off)
11288 if (offsetp >= offsets_end
11289 || offsetp->sect_off > origin_child_die->offset.sect_off)
11291 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11292 Check whether we're already processing ORIGIN_CHILD_DIE.
11293 This can happen with mutually referenced abstract_origins.
11295 if (!origin_child_die->in_process)
11296 process_die (origin_child_die, origin_cu);
11298 origin_child_die = sibling_die (origin_child_die);
11300 origin_cu->list_in_scope = origin_previous_list_in_scope;
11302 do_cleanups (cleanups);
11306 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11308 struct objfile *objfile = cu->objfile;
11309 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11310 struct context_stack *newobj;
11313 struct die_info *child_die;
11314 struct attribute *attr, *call_line, *call_file;
11316 CORE_ADDR baseaddr;
11317 struct block *block;
11318 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11319 VEC (symbolp) *template_args = NULL;
11320 struct template_symbol *templ_func = NULL;
11324 /* If we do not have call site information, we can't show the
11325 caller of this inlined function. That's too confusing, so
11326 only use the scope for local variables. */
11327 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11328 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11329 if (call_line == NULL || call_file == NULL)
11331 read_lexical_block_scope (die, cu);
11336 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11338 name = dwarf2_name (die, cu);
11340 /* Ignore functions with missing or empty names. These are actually
11341 illegal according to the DWARF standard. */
11344 complaint (&symfile_complaints,
11345 _("missing name for subprogram DIE at %d"),
11346 die->offset.sect_off);
11350 /* Ignore functions with missing or invalid low and high pc attributes. */
11351 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11353 attr = dwarf2_attr (die, DW_AT_external, cu);
11354 if (!attr || !DW_UNSND (attr))
11355 complaint (&symfile_complaints,
11356 _("cannot get low and high bounds "
11357 "for subprogram DIE at %d"),
11358 die->offset.sect_off);
11362 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11363 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11365 /* If we have any template arguments, then we must allocate a
11366 different sort of symbol. */
11367 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11369 if (child_die->tag == DW_TAG_template_type_param
11370 || child_die->tag == DW_TAG_template_value_param)
11372 templ_func = allocate_template_symbol (objfile);
11373 templ_func->base.is_cplus_template_function = 1;
11378 newobj = push_context (0, lowpc);
11379 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11380 (struct symbol *) templ_func);
11382 /* If there is a location expression for DW_AT_frame_base, record
11384 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11386 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11388 cu->list_in_scope = &local_symbols;
11390 if (die->child != NULL)
11392 child_die = die->child;
11393 while (child_die && child_die->tag)
11395 if (child_die->tag == DW_TAG_template_type_param
11396 || child_die->tag == DW_TAG_template_value_param)
11398 struct symbol *arg = new_symbol (child_die, NULL, cu);
11401 VEC_safe_push (symbolp, template_args, arg);
11404 process_die (child_die, cu);
11405 child_die = sibling_die (child_die);
11409 inherit_abstract_dies (die, cu);
11411 /* If we have a DW_AT_specification, we might need to import using
11412 directives from the context of the specification DIE. See the
11413 comment in determine_prefix. */
11414 if (cu->language == language_cplus
11415 && dwarf2_attr (die, DW_AT_specification, cu))
11417 struct dwarf2_cu *spec_cu = cu;
11418 struct die_info *spec_die = die_specification (die, &spec_cu);
11422 child_die = spec_die->child;
11423 while (child_die && child_die->tag)
11425 if (child_die->tag == DW_TAG_imported_module)
11426 process_die (child_die, spec_cu);
11427 child_die = sibling_die (child_die);
11430 /* In some cases, GCC generates specification DIEs that
11431 themselves contain DW_AT_specification attributes. */
11432 spec_die = die_specification (spec_die, &spec_cu);
11436 newobj = pop_context ();
11437 /* Make a block for the local symbols within. */
11438 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11441 /* For C++, set the block's scope. */
11442 if ((cu->language == language_cplus || cu->language == language_fortran)
11443 && cu->processing_has_namespace_info)
11444 block_set_scope (block, determine_prefix (die, cu),
11445 &objfile->objfile_obstack);
11447 /* If we have address ranges, record them. */
11448 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11450 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11452 /* Attach template arguments to function. */
11453 if (! VEC_empty (symbolp, template_args))
11455 gdb_assert (templ_func != NULL);
11457 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11458 templ_func->template_arguments
11459 = obstack_alloc (&objfile->objfile_obstack,
11460 (templ_func->n_template_arguments
11461 * sizeof (struct symbol *)));
11462 memcpy (templ_func->template_arguments,
11463 VEC_address (symbolp, template_args),
11464 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11465 VEC_free (symbolp, template_args);
11468 /* In C++, we can have functions nested inside functions (e.g., when
11469 a function declares a class that has methods). This means that
11470 when we finish processing a function scope, we may need to go
11471 back to building a containing block's symbol lists. */
11472 local_symbols = newobj->locals;
11473 using_directives = newobj->using_directives;
11475 /* If we've finished processing a top-level function, subsequent
11476 symbols go in the file symbol list. */
11477 if (outermost_context_p ())
11478 cu->list_in_scope = &file_symbols;
11481 /* Process all the DIES contained within a lexical block scope. Start
11482 a new scope, process the dies, and then close the scope. */
11485 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11487 struct objfile *objfile = cu->objfile;
11488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11489 struct context_stack *newobj;
11490 CORE_ADDR lowpc, highpc;
11491 struct die_info *child_die;
11492 CORE_ADDR baseaddr;
11494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11496 /* Ignore blocks with missing or invalid low and high pc attributes. */
11497 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11498 as multiple lexical blocks? Handling children in a sane way would
11499 be nasty. Might be easier to properly extend generic blocks to
11500 describe ranges. */
11501 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11503 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11504 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11506 push_context (0, lowpc);
11507 if (die->child != NULL)
11509 child_die = die->child;
11510 while (child_die && child_die->tag)
11512 process_die (child_die, cu);
11513 child_die = sibling_die (child_die);
11516 inherit_abstract_dies (die, cu);
11517 newobj = pop_context ();
11519 if (local_symbols != NULL || using_directives != NULL)
11521 struct block *block
11522 = finish_block (0, &local_symbols, newobj->old_blocks,
11523 newobj->start_addr, highpc);
11525 /* Note that recording ranges after traversing children, as we
11526 do here, means that recording a parent's ranges entails
11527 walking across all its children's ranges as they appear in
11528 the address map, which is quadratic behavior.
11530 It would be nicer to record the parent's ranges before
11531 traversing its children, simply overriding whatever you find
11532 there. But since we don't even decide whether to create a
11533 block until after we've traversed its children, that's hard
11535 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11537 local_symbols = newobj->locals;
11538 using_directives = newobj->using_directives;
11541 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11544 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11546 struct objfile *objfile = cu->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 CORE_ADDR pc, baseaddr;
11549 struct attribute *attr;
11550 struct call_site *call_site, call_site_local;
11553 struct die_info *child_die;
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11557 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11560 complaint (&symfile_complaints,
11561 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11562 "DIE 0x%x [in module %s]"),
11563 die->offset.sect_off, objfile_name (objfile));
11566 pc = attr_value_as_address (attr) + baseaddr;
11567 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11569 if (cu->call_site_htab == NULL)
11570 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11571 NULL, &objfile->objfile_obstack,
11572 hashtab_obstack_allocate, NULL);
11573 call_site_local.pc = pc;
11574 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11577 complaint (&symfile_complaints,
11578 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11579 "DIE 0x%x [in module %s]"),
11580 paddress (gdbarch, pc), die->offset.sect_off,
11581 objfile_name (objfile));
11585 /* Count parameters at the caller. */
11588 for (child_die = die->child; child_die && child_die->tag;
11589 child_die = sibling_die (child_die))
11591 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11593 complaint (&symfile_complaints,
11594 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11595 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11596 child_die->tag, child_die->offset.sect_off,
11597 objfile_name (objfile));
11604 call_site = obstack_alloc (&objfile->objfile_obstack,
11605 (sizeof (*call_site)
11606 + (sizeof (*call_site->parameter)
11607 * (nparams - 1))));
11609 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11610 call_site->pc = pc;
11612 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11614 struct die_info *func_die;
11616 /* Skip also over DW_TAG_inlined_subroutine. */
11617 for (func_die = die->parent;
11618 func_die && func_die->tag != DW_TAG_subprogram
11619 && func_die->tag != DW_TAG_subroutine_type;
11620 func_die = func_die->parent);
11622 /* DW_AT_GNU_all_call_sites is a superset
11623 of DW_AT_GNU_all_tail_call_sites. */
11625 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11626 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11628 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11629 not complete. But keep CALL_SITE for look ups via call_site_htab,
11630 both the initial caller containing the real return address PC and
11631 the final callee containing the current PC of a chain of tail
11632 calls do not need to have the tail call list complete. But any
11633 function candidate for a virtual tail call frame searched via
11634 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11635 determined unambiguously. */
11639 struct type *func_type = NULL;
11642 func_type = get_die_type (func_die, cu);
11643 if (func_type != NULL)
11645 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11647 /* Enlist this call site to the function. */
11648 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11649 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11652 complaint (&symfile_complaints,
11653 _("Cannot find function owning DW_TAG_GNU_call_site "
11654 "DIE 0x%x [in module %s]"),
11655 die->offset.sect_off, objfile_name (objfile));
11659 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11661 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11662 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11663 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11664 /* Keep NULL DWARF_BLOCK. */;
11665 else if (attr_form_is_block (attr))
11667 struct dwarf2_locexpr_baton *dlbaton;
11669 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11670 dlbaton->data = DW_BLOCK (attr)->data;
11671 dlbaton->size = DW_BLOCK (attr)->size;
11672 dlbaton->per_cu = cu->per_cu;
11674 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11676 else if (attr_form_is_ref (attr))
11678 struct dwarf2_cu *target_cu = cu;
11679 struct die_info *target_die;
11681 target_die = follow_die_ref (die, attr, &target_cu);
11682 gdb_assert (target_cu->objfile == objfile);
11683 if (die_is_declaration (target_die, target_cu))
11685 const char *target_physname = NULL;
11686 struct attribute *target_attr;
11688 /* Prefer the mangled name; otherwise compute the demangled one. */
11689 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11690 if (target_attr == NULL)
11691 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11693 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11694 target_physname = DW_STRING (target_attr);
11696 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11697 if (target_physname == NULL)
11698 complaint (&symfile_complaints,
11699 _("DW_AT_GNU_call_site_target target DIE has invalid "
11700 "physname, for referencing DIE 0x%x [in module %s]"),
11701 die->offset.sect_off, objfile_name (objfile));
11703 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11709 /* DW_AT_entry_pc should be preferred. */
11710 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11711 complaint (&symfile_complaints,
11712 _("DW_AT_GNU_call_site_target target DIE has invalid "
11713 "low pc, for referencing DIE 0x%x [in module %s]"),
11714 die->offset.sect_off, objfile_name (objfile));
11717 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11718 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11723 complaint (&symfile_complaints,
11724 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11725 "block nor reference, for DIE 0x%x [in module %s]"),
11726 die->offset.sect_off, objfile_name (objfile));
11728 call_site->per_cu = cu->per_cu;
11730 for (child_die = die->child;
11731 child_die && child_die->tag;
11732 child_die = sibling_die (child_die))
11734 struct call_site_parameter *parameter;
11735 struct attribute *loc, *origin;
11737 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11739 /* Already printed the complaint above. */
11743 gdb_assert (call_site->parameter_count < nparams);
11744 parameter = &call_site->parameter[call_site->parameter_count];
11746 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11747 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11748 register is contained in DW_AT_GNU_call_site_value. */
11750 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11751 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11752 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11754 sect_offset offset;
11756 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11757 offset = dwarf2_get_ref_die_offset (origin);
11758 if (!offset_in_cu_p (&cu->header, offset))
11760 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11761 binding can be done only inside one CU. Such referenced DIE
11762 therefore cannot be even moved to DW_TAG_partial_unit. */
11763 complaint (&symfile_complaints,
11764 _("DW_AT_abstract_origin offset is not in CU for "
11765 "DW_TAG_GNU_call_site child DIE 0x%x "
11767 child_die->offset.sect_off, objfile_name (objfile));
11770 parameter->u.param_offset.cu_off = (offset.sect_off
11771 - cu->header.offset.sect_off);
11773 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11775 complaint (&symfile_complaints,
11776 _("No DW_FORM_block* DW_AT_location for "
11777 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11778 child_die->offset.sect_off, objfile_name (objfile));
11783 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11784 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11785 if (parameter->u.dwarf_reg != -1)
11786 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11787 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11788 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11789 ¶meter->u.fb_offset))
11790 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11793 complaint (&symfile_complaints,
11794 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11795 "for DW_FORM_block* DW_AT_location is supported for "
11796 "DW_TAG_GNU_call_site child DIE 0x%x "
11798 child_die->offset.sect_off, objfile_name (objfile));
11803 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11804 if (!attr_form_is_block (attr))
11806 complaint (&symfile_complaints,
11807 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11808 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11809 child_die->offset.sect_off, objfile_name (objfile));
11812 parameter->value = DW_BLOCK (attr)->data;
11813 parameter->value_size = DW_BLOCK (attr)->size;
11815 /* Parameters are not pre-cleared by memset above. */
11816 parameter->data_value = NULL;
11817 parameter->data_value_size = 0;
11818 call_site->parameter_count++;
11820 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11823 if (!attr_form_is_block (attr))
11824 complaint (&symfile_complaints,
11825 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11826 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11827 child_die->offset.sect_off, objfile_name (objfile));
11830 parameter->data_value = DW_BLOCK (attr)->data;
11831 parameter->data_value_size = DW_BLOCK (attr)->size;
11837 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11838 Return 1 if the attributes are present and valid, otherwise, return 0.
11839 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11842 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11843 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11844 struct partial_symtab *ranges_pst)
11846 struct objfile *objfile = cu->objfile;
11847 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11848 struct comp_unit_head *cu_header = &cu->header;
11849 bfd *obfd = objfile->obfd;
11850 unsigned int addr_size = cu_header->addr_size;
11851 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11852 /* Base address selection entry. */
11855 unsigned int dummy;
11856 const gdb_byte *buffer;
11860 CORE_ADDR high = 0;
11861 CORE_ADDR baseaddr;
11863 found_base = cu->base_known;
11864 base = cu->base_address;
11866 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11867 if (offset >= dwarf2_per_objfile->ranges.size)
11869 complaint (&symfile_complaints,
11870 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11874 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11876 /* Read in the largest possible address. */
11877 marker = read_address (obfd, buffer, cu, &dummy);
11878 if ((marker & mask) == mask)
11880 /* If we found the largest possible address, then
11881 read the base address. */
11882 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11883 buffer += 2 * addr_size;
11884 offset += 2 * addr_size;
11890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11894 CORE_ADDR range_beginning, range_end;
11896 range_beginning = read_address (obfd, buffer, cu, &dummy);
11897 buffer += addr_size;
11898 range_end = read_address (obfd, buffer, cu, &dummy);
11899 buffer += addr_size;
11900 offset += 2 * addr_size;
11902 /* An end of list marker is a pair of zero addresses. */
11903 if (range_beginning == 0 && range_end == 0)
11904 /* Found the end of list entry. */
11907 /* Each base address selection entry is a pair of 2 values.
11908 The first is the largest possible address, the second is
11909 the base address. Check for a base address here. */
11910 if ((range_beginning & mask) == mask)
11912 /* If we found the largest possible address, then
11913 read the base address. */
11914 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11921 /* We have no valid base address for the ranges
11923 complaint (&symfile_complaints,
11924 _("Invalid .debug_ranges data (no base address)"));
11928 if (range_beginning > range_end)
11930 /* Inverted range entries are invalid. */
11931 complaint (&symfile_complaints,
11932 _("Invalid .debug_ranges data (inverted range)"));
11936 /* Empty range entries have no effect. */
11937 if (range_beginning == range_end)
11940 range_beginning += base;
11943 /* A not-uncommon case of bad debug info.
11944 Don't pollute the addrmap with bad data. */
11945 if (range_beginning + baseaddr == 0
11946 && !dwarf2_per_objfile->has_section_at_zero)
11948 complaint (&symfile_complaints,
11949 _(".debug_ranges entry has start address of zero"
11950 " [in module %s]"), objfile_name (objfile));
11954 if (ranges_pst != NULL)
11959 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11960 range_beginning + baseaddr);
11961 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11962 range_end + baseaddr);
11963 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11967 /* FIXME: This is recording everything as a low-high
11968 segment of consecutive addresses. We should have a
11969 data structure for discontiguous block ranges
11973 low = range_beginning;
11979 if (range_beginning < low)
11980 low = range_beginning;
11981 if (range_end > high)
11987 /* If the first entry is an end-of-list marker, the range
11988 describes an empty scope, i.e. no instructions. */
11994 *high_return = high;
11998 /* Get low and high pc attributes from a die. Return 1 if the attributes
11999 are present and valid, otherwise, return 0. Return -1 if the range is
12000 discontinuous, i.e. derived from DW_AT_ranges information. */
12003 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12004 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12005 struct partial_symtab *pst)
12007 struct attribute *attr;
12008 struct attribute *attr_high;
12010 CORE_ADDR high = 0;
12013 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12016 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12019 low = attr_value_as_address (attr);
12020 high = attr_value_as_address (attr_high);
12021 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12025 /* Found high w/o low attribute. */
12028 /* Found consecutive range of addresses. */
12033 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12036 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12037 We take advantage of the fact that DW_AT_ranges does not appear
12038 in DW_TAG_compile_unit of DWO files. */
12039 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12040 unsigned int ranges_offset = (DW_UNSND (attr)
12041 + (need_ranges_base
12045 /* Value of the DW_AT_ranges attribute is the offset in the
12046 .debug_ranges section. */
12047 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12049 /* Found discontinuous range of addresses. */
12054 /* read_partial_die has also the strict LOW < HIGH requirement. */
12058 /* When using the GNU linker, .gnu.linkonce. sections are used to
12059 eliminate duplicate copies of functions and vtables and such.
12060 The linker will arbitrarily choose one and discard the others.
12061 The AT_*_pc values for such functions refer to local labels in
12062 these sections. If the section from that file was discarded, the
12063 labels are not in the output, so the relocs get a value of 0.
12064 If this is a discarded function, mark the pc bounds as invalid,
12065 so that GDB will ignore it. */
12066 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12075 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12076 its low and high PC addresses. Do nothing if these addresses could not
12077 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12078 and HIGHPC to the high address if greater than HIGHPC. */
12081 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12082 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12083 struct dwarf2_cu *cu)
12085 CORE_ADDR low, high;
12086 struct die_info *child = die->child;
12088 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12090 *lowpc = min (*lowpc, low);
12091 *highpc = max (*highpc, high);
12094 /* If the language does not allow nested subprograms (either inside
12095 subprograms or lexical blocks), we're done. */
12096 if (cu->language != language_ada)
12099 /* Check all the children of the given DIE. If it contains nested
12100 subprograms, then check their pc bounds. Likewise, we need to
12101 check lexical blocks as well, as they may also contain subprogram
12103 while (child && child->tag)
12105 if (child->tag == DW_TAG_subprogram
12106 || child->tag == DW_TAG_lexical_block)
12107 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12108 child = sibling_die (child);
12112 /* Get the low and high pc's represented by the scope DIE, and store
12113 them in *LOWPC and *HIGHPC. If the correct values can't be
12114 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12117 get_scope_pc_bounds (struct die_info *die,
12118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12119 struct dwarf2_cu *cu)
12121 CORE_ADDR best_low = (CORE_ADDR) -1;
12122 CORE_ADDR best_high = (CORE_ADDR) 0;
12123 CORE_ADDR current_low, current_high;
12125 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
12127 best_low = current_low;
12128 best_high = current_high;
12132 struct die_info *child = die->child;
12134 while (child && child->tag)
12136 switch (child->tag) {
12137 case DW_TAG_subprogram:
12138 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12140 case DW_TAG_namespace:
12141 case DW_TAG_module:
12142 /* FIXME: carlton/2004-01-16: Should we do this for
12143 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12144 that current GCC's always emit the DIEs corresponding
12145 to definitions of methods of classes as children of a
12146 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12147 the DIEs giving the declarations, which could be
12148 anywhere). But I don't see any reason why the
12149 standards says that they have to be there. */
12150 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
12152 if (current_low != ((CORE_ADDR) -1))
12154 best_low = min (best_low, current_low);
12155 best_high = max (best_high, current_high);
12163 child = sibling_die (child);
12168 *highpc = best_high;
12171 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12175 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12176 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12178 struct objfile *objfile = cu->objfile;
12179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12180 struct attribute *attr;
12181 struct attribute *attr_high;
12183 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12186 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12189 CORE_ADDR low = attr_value_as_address (attr);
12190 CORE_ADDR high = attr_value_as_address (attr_high);
12192 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12195 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12196 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12197 record_block_range (block, low, high - 1);
12201 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12204 bfd *obfd = objfile->obfd;
12205 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12206 We take advantage of the fact that DW_AT_ranges does not appear
12207 in DW_TAG_compile_unit of DWO files. */
12208 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12210 /* The value of the DW_AT_ranges attribute is the offset of the
12211 address range list in the .debug_ranges section. */
12212 unsigned long offset = (DW_UNSND (attr)
12213 + (need_ranges_base ? cu->ranges_base : 0));
12214 const gdb_byte *buffer;
12216 /* For some target architectures, but not others, the
12217 read_address function sign-extends the addresses it returns.
12218 To recognize base address selection entries, we need a
12220 unsigned int addr_size = cu->header.addr_size;
12221 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12223 /* The base address, to which the next pair is relative. Note
12224 that this 'base' is a DWARF concept: most entries in a range
12225 list are relative, to reduce the number of relocs against the
12226 debugging information. This is separate from this function's
12227 'baseaddr' argument, which GDB uses to relocate debugging
12228 information from a shared library based on the address at
12229 which the library was loaded. */
12230 CORE_ADDR base = cu->base_address;
12231 int base_known = cu->base_known;
12233 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12234 if (offset >= dwarf2_per_objfile->ranges.size)
12236 complaint (&symfile_complaints,
12237 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12241 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12245 unsigned int bytes_read;
12246 CORE_ADDR start, end;
12248 start = read_address (obfd, buffer, cu, &bytes_read);
12249 buffer += bytes_read;
12250 end = read_address (obfd, buffer, cu, &bytes_read);
12251 buffer += bytes_read;
12253 /* Did we find the end of the range list? */
12254 if (start == 0 && end == 0)
12257 /* Did we find a base address selection entry? */
12258 else if ((start & base_select_mask) == base_select_mask)
12264 /* We found an ordinary address range. */
12269 complaint (&symfile_complaints,
12270 _("Invalid .debug_ranges data "
12271 "(no base address)"));
12277 /* Inverted range entries are invalid. */
12278 complaint (&symfile_complaints,
12279 _("Invalid .debug_ranges data "
12280 "(inverted range)"));
12284 /* Empty range entries have no effect. */
12288 start += base + baseaddr;
12289 end += base + baseaddr;
12291 /* A not-uncommon case of bad debug info.
12292 Don't pollute the addrmap with bad data. */
12293 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12295 complaint (&symfile_complaints,
12296 _(".debug_ranges entry has start address of zero"
12297 " [in module %s]"), objfile_name (objfile));
12301 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12302 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12303 record_block_range (block, start, end - 1);
12309 /* Check whether the producer field indicates either of GCC < 4.6, or the
12310 Intel C/C++ compiler, and cache the result in CU. */
12313 check_producer (struct dwarf2_cu *cu)
12318 if (cu->producer == NULL)
12320 /* For unknown compilers expect their behavior is DWARF version
12323 GCC started to support .debug_types sections by -gdwarf-4 since
12324 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12325 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12326 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12327 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12329 else if (producer_is_gcc (cu->producer, &major, &minor))
12331 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12332 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12334 else if (startswith (cu->producer, "Intel(R) C"))
12335 cu->producer_is_icc = 1;
12338 /* For other non-GCC compilers, expect their behavior is DWARF version
12342 cu->checked_producer = 1;
12345 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12346 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12347 during 4.6.0 experimental. */
12350 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12352 if (!cu->checked_producer)
12353 check_producer (cu);
12355 return cu->producer_is_gxx_lt_4_6;
12358 /* Return the default accessibility type if it is not overriden by
12359 DW_AT_accessibility. */
12361 static enum dwarf_access_attribute
12362 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12364 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12366 /* The default DWARF 2 accessibility for members is public, the default
12367 accessibility for inheritance is private. */
12369 if (die->tag != DW_TAG_inheritance)
12370 return DW_ACCESS_public;
12372 return DW_ACCESS_private;
12376 /* DWARF 3+ defines the default accessibility a different way. The same
12377 rules apply now for DW_TAG_inheritance as for the members and it only
12378 depends on the container kind. */
12380 if (die->parent->tag == DW_TAG_class_type)
12381 return DW_ACCESS_private;
12383 return DW_ACCESS_public;
12387 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12388 offset. If the attribute was not found return 0, otherwise return
12389 1. If it was found but could not properly be handled, set *OFFSET
12393 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12396 struct attribute *attr;
12398 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12403 /* Note that we do not check for a section offset first here.
12404 This is because DW_AT_data_member_location is new in DWARF 4,
12405 so if we see it, we can assume that a constant form is really
12406 a constant and not a section offset. */
12407 if (attr_form_is_constant (attr))
12408 *offset = dwarf2_get_attr_constant_value (attr, 0);
12409 else if (attr_form_is_section_offset (attr))
12410 dwarf2_complex_location_expr_complaint ();
12411 else if (attr_form_is_block (attr))
12412 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12414 dwarf2_complex_location_expr_complaint ();
12422 /* Add an aggregate field to the field list. */
12425 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
12428 struct objfile *objfile = cu->objfile;
12429 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12430 struct nextfield *new_field;
12431 struct attribute *attr;
12433 const char *fieldname = "";
12435 /* Allocate a new field list entry and link it in. */
12436 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12437 make_cleanup (xfree, new_field);
12438 memset (new_field, 0, sizeof (struct nextfield));
12440 if (die->tag == DW_TAG_inheritance)
12442 new_field->next = fip->baseclasses;
12443 fip->baseclasses = new_field;
12447 new_field->next = fip->fields;
12448 fip->fields = new_field;
12452 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12454 new_field->accessibility = DW_UNSND (attr);
12456 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12457 if (new_field->accessibility != DW_ACCESS_public)
12458 fip->non_public_fields = 1;
12460 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12462 new_field->virtuality = DW_UNSND (attr);
12464 new_field->virtuality = DW_VIRTUALITY_none;
12466 fp = &new_field->field;
12468 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12472 /* Data member other than a C++ static data member. */
12474 /* Get type of field. */
12475 fp->type = die_type (die, cu);
12477 SET_FIELD_BITPOS (*fp, 0);
12479 /* Get bit size of field (zero if none). */
12480 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12483 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12487 FIELD_BITSIZE (*fp) = 0;
12490 /* Get bit offset of field. */
12491 if (handle_data_member_location (die, cu, &offset))
12492 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12493 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12496 if (gdbarch_bits_big_endian (gdbarch))
12498 /* For big endian bits, the DW_AT_bit_offset gives the
12499 additional bit offset from the MSB of the containing
12500 anonymous object to the MSB of the field. We don't
12501 have to do anything special since we don't need to
12502 know the size of the anonymous object. */
12503 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12507 /* For little endian bits, compute the bit offset to the
12508 MSB of the anonymous object, subtract off the number of
12509 bits from the MSB of the field to the MSB of the
12510 object, and then subtract off the number of bits of
12511 the field itself. The result is the bit offset of
12512 the LSB of the field. */
12513 int anonymous_size;
12514 int bit_offset = DW_UNSND (attr);
12516 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12519 /* The size of the anonymous object containing
12520 the bit field is explicit, so use the
12521 indicated size (in bytes). */
12522 anonymous_size = DW_UNSND (attr);
12526 /* The size of the anonymous object containing
12527 the bit field must be inferred from the type
12528 attribute of the data member containing the
12530 anonymous_size = TYPE_LENGTH (fp->type);
12532 SET_FIELD_BITPOS (*fp,
12533 (FIELD_BITPOS (*fp)
12534 + anonymous_size * bits_per_byte
12535 - bit_offset - FIELD_BITSIZE (*fp)));
12539 /* Get name of field. */
12540 fieldname = dwarf2_name (die, cu);
12541 if (fieldname == NULL)
12544 /* The name is already allocated along with this objfile, so we don't
12545 need to duplicate it for the type. */
12546 fp->name = fieldname;
12548 /* Change accessibility for artificial fields (e.g. virtual table
12549 pointer or virtual base class pointer) to private. */
12550 if (dwarf2_attr (die, DW_AT_artificial, cu))
12552 FIELD_ARTIFICIAL (*fp) = 1;
12553 new_field->accessibility = DW_ACCESS_private;
12554 fip->non_public_fields = 1;
12557 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12559 /* C++ static member. */
12561 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12562 is a declaration, but all versions of G++ as of this writing
12563 (so through at least 3.2.1) incorrectly generate
12564 DW_TAG_variable tags. */
12566 const char *physname;
12568 /* Get name of field. */
12569 fieldname = dwarf2_name (die, cu);
12570 if (fieldname == NULL)
12573 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12575 /* Only create a symbol if this is an external value.
12576 new_symbol checks this and puts the value in the global symbol
12577 table, which we want. If it is not external, new_symbol
12578 will try to put the value in cu->list_in_scope which is wrong. */
12579 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12581 /* A static const member, not much different than an enum as far as
12582 we're concerned, except that we can support more types. */
12583 new_symbol (die, NULL, cu);
12586 /* Get physical name. */
12587 physname = dwarf2_physname (fieldname, die, cu);
12589 /* The name is already allocated along with this objfile, so we don't
12590 need to duplicate it for the type. */
12591 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12592 FIELD_TYPE (*fp) = die_type (die, cu);
12593 FIELD_NAME (*fp) = fieldname;
12595 else if (die->tag == DW_TAG_inheritance)
12599 /* C++ base class field. */
12600 if (handle_data_member_location (die, cu, &offset))
12601 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12602 FIELD_BITSIZE (*fp) = 0;
12603 FIELD_TYPE (*fp) = die_type (die, cu);
12604 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12605 fip->nbaseclasses++;
12609 /* Add a typedef defined in the scope of the FIP's class. */
12612 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12613 struct dwarf2_cu *cu)
12615 struct objfile *objfile = cu->objfile;
12616 struct typedef_field_list *new_field;
12617 struct attribute *attr;
12618 struct typedef_field *fp;
12619 char *fieldname = "";
12621 /* Allocate a new field list entry and link it in. */
12622 new_field = xzalloc (sizeof (*new_field));
12623 make_cleanup (xfree, new_field);
12625 gdb_assert (die->tag == DW_TAG_typedef);
12627 fp = &new_field->field;
12629 /* Get name of field. */
12630 fp->name = dwarf2_name (die, cu);
12631 if (fp->name == NULL)
12634 fp->type = read_type_die (die, cu);
12636 new_field->next = fip->typedef_field_list;
12637 fip->typedef_field_list = new_field;
12638 fip->typedef_field_list_count++;
12641 /* Create the vector of fields, and attach it to the type. */
12644 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12645 struct dwarf2_cu *cu)
12647 int nfields = fip->nfields;
12649 /* Record the field count, allocate space for the array of fields,
12650 and create blank accessibility bitfields if necessary. */
12651 TYPE_NFIELDS (type) = nfields;
12652 TYPE_FIELDS (type) = (struct field *)
12653 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12654 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12656 if (fip->non_public_fields && cu->language != language_ada)
12658 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12660 TYPE_FIELD_PRIVATE_BITS (type) =
12661 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12662 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12664 TYPE_FIELD_PROTECTED_BITS (type) =
12665 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12666 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12668 TYPE_FIELD_IGNORE_BITS (type) =
12669 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12670 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12673 /* If the type has baseclasses, allocate and clear a bit vector for
12674 TYPE_FIELD_VIRTUAL_BITS. */
12675 if (fip->nbaseclasses && cu->language != language_ada)
12677 int num_bytes = B_BYTES (fip->nbaseclasses);
12678 unsigned char *pointer;
12680 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12681 pointer = TYPE_ALLOC (type, num_bytes);
12682 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12683 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12684 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12687 /* Copy the saved-up fields into the field vector. Start from the head of
12688 the list, adding to the tail of the field array, so that they end up in
12689 the same order in the array in which they were added to the list. */
12690 while (nfields-- > 0)
12692 struct nextfield *fieldp;
12696 fieldp = fip->fields;
12697 fip->fields = fieldp->next;
12701 fieldp = fip->baseclasses;
12702 fip->baseclasses = fieldp->next;
12705 TYPE_FIELD (type, nfields) = fieldp->field;
12706 switch (fieldp->accessibility)
12708 case DW_ACCESS_private:
12709 if (cu->language != language_ada)
12710 SET_TYPE_FIELD_PRIVATE (type, nfields);
12713 case DW_ACCESS_protected:
12714 if (cu->language != language_ada)
12715 SET_TYPE_FIELD_PROTECTED (type, nfields);
12718 case DW_ACCESS_public:
12722 /* Unknown accessibility. Complain and treat it as public. */
12724 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12725 fieldp->accessibility);
12729 if (nfields < fip->nbaseclasses)
12731 switch (fieldp->virtuality)
12733 case DW_VIRTUALITY_virtual:
12734 case DW_VIRTUALITY_pure_virtual:
12735 if (cu->language == language_ada)
12736 error (_("unexpected virtuality in component of Ada type"));
12737 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12744 /* Return true if this member function is a constructor, false
12748 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12750 const char *fieldname;
12751 const char *type_name;
12754 if (die->parent == NULL)
12757 if (die->parent->tag != DW_TAG_structure_type
12758 && die->parent->tag != DW_TAG_union_type
12759 && die->parent->tag != DW_TAG_class_type)
12762 fieldname = dwarf2_name (die, cu);
12763 type_name = dwarf2_name (die->parent, cu);
12764 if (fieldname == NULL || type_name == NULL)
12767 len = strlen (fieldname);
12768 return (strncmp (fieldname, type_name, len) == 0
12769 && (type_name[len] == '\0' || type_name[len] == '<'));
12772 /* Add a member function to the proper fieldlist. */
12775 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12776 struct type *type, struct dwarf2_cu *cu)
12778 struct objfile *objfile = cu->objfile;
12779 struct attribute *attr;
12780 struct fnfieldlist *flp;
12782 struct fn_field *fnp;
12783 const char *fieldname;
12784 struct nextfnfield *new_fnfield;
12785 struct type *this_type;
12786 enum dwarf_access_attribute accessibility;
12788 if (cu->language == language_ada)
12789 error (_("unexpected member function in Ada type"));
12791 /* Get name of member function. */
12792 fieldname = dwarf2_name (die, cu);
12793 if (fieldname == NULL)
12796 /* Look up member function name in fieldlist. */
12797 for (i = 0; i < fip->nfnfields; i++)
12799 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12803 /* Create new list element if necessary. */
12804 if (i < fip->nfnfields)
12805 flp = &fip->fnfieldlists[i];
12808 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12810 fip->fnfieldlists = (struct fnfieldlist *)
12811 xrealloc (fip->fnfieldlists,
12812 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12813 * sizeof (struct fnfieldlist));
12814 if (fip->nfnfields == 0)
12815 make_cleanup (free_current_contents, &fip->fnfieldlists);
12817 flp = &fip->fnfieldlists[fip->nfnfields];
12818 flp->name = fieldname;
12821 i = fip->nfnfields++;
12824 /* Create a new member function field and chain it to the field list
12826 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12827 make_cleanup (xfree, new_fnfield);
12828 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12829 new_fnfield->next = flp->head;
12830 flp->head = new_fnfield;
12833 /* Fill in the member function field info. */
12834 fnp = &new_fnfield->fnfield;
12836 /* Delay processing of the physname until later. */
12837 if (cu->language == language_cplus || cu->language == language_java)
12839 add_to_method_list (type, i, flp->length - 1, fieldname,
12844 const char *physname = dwarf2_physname (fieldname, die, cu);
12845 fnp->physname = physname ? physname : "";
12848 fnp->type = alloc_type (objfile);
12849 this_type = read_type_die (die, cu);
12850 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12852 int nparams = TYPE_NFIELDS (this_type);
12854 /* TYPE is the domain of this method, and THIS_TYPE is the type
12855 of the method itself (TYPE_CODE_METHOD). */
12856 smash_to_method_type (fnp->type, type,
12857 TYPE_TARGET_TYPE (this_type),
12858 TYPE_FIELDS (this_type),
12859 TYPE_NFIELDS (this_type),
12860 TYPE_VARARGS (this_type));
12862 /* Handle static member functions.
12863 Dwarf2 has no clean way to discern C++ static and non-static
12864 member functions. G++ helps GDB by marking the first
12865 parameter for non-static member functions (which is the this
12866 pointer) as artificial. We obtain this information from
12867 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12868 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12869 fnp->voffset = VOFFSET_STATIC;
12872 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12873 dwarf2_full_name (fieldname, die, cu));
12875 /* Get fcontext from DW_AT_containing_type if present. */
12876 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12877 fnp->fcontext = die_containing_type (die, cu);
12879 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12880 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12882 /* Get accessibility. */
12883 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12885 accessibility = DW_UNSND (attr);
12887 accessibility = dwarf2_default_access_attribute (die, cu);
12888 switch (accessibility)
12890 case DW_ACCESS_private:
12891 fnp->is_private = 1;
12893 case DW_ACCESS_protected:
12894 fnp->is_protected = 1;
12898 /* Check for artificial methods. */
12899 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12900 if (attr && DW_UNSND (attr) != 0)
12901 fnp->is_artificial = 1;
12903 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12905 /* Get index in virtual function table if it is a virtual member
12906 function. For older versions of GCC, this is an offset in the
12907 appropriate virtual table, as specified by DW_AT_containing_type.
12908 For everyone else, it is an expression to be evaluated relative
12909 to the object address. */
12911 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12914 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12916 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12918 /* Old-style GCC. */
12919 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12921 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12922 || (DW_BLOCK (attr)->size > 1
12923 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12924 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12926 struct dwarf_block blk;
12929 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12931 blk.size = DW_BLOCK (attr)->size - offset;
12932 blk.data = DW_BLOCK (attr)->data + offset;
12933 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12934 if ((fnp->voffset % cu->header.addr_size) != 0)
12935 dwarf2_complex_location_expr_complaint ();
12937 fnp->voffset /= cu->header.addr_size;
12941 dwarf2_complex_location_expr_complaint ();
12943 if (!fnp->fcontext)
12945 /* If there is no `this' field and no DW_AT_containing_type,
12946 we cannot actually find a base class context for the
12948 if (TYPE_NFIELDS (this_type) == 0
12949 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12951 complaint (&symfile_complaints,
12952 _("cannot determine context for virtual member "
12953 "function \"%s\" (offset %d)"),
12954 fieldname, die->offset.sect_off);
12959 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12963 else if (attr_form_is_section_offset (attr))
12965 dwarf2_complex_location_expr_complaint ();
12969 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12975 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12976 if (attr && DW_UNSND (attr))
12978 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12979 complaint (&symfile_complaints,
12980 _("Member function \"%s\" (offset %d) is virtual "
12981 "but the vtable offset is not specified"),
12982 fieldname, die->offset.sect_off);
12983 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12984 TYPE_CPLUS_DYNAMIC (type) = 1;
12989 /* Create the vector of member function fields, and attach it to the type. */
12992 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12993 struct dwarf2_cu *cu)
12995 struct fnfieldlist *flp;
12998 if (cu->language == language_ada)
12999 error (_("unexpected member functions in Ada type"));
13001 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13002 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13003 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13005 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13007 struct nextfnfield *nfp = flp->head;
13008 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13011 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13012 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13013 fn_flp->fn_fields = (struct fn_field *)
13014 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13015 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13016 fn_flp->fn_fields[k] = nfp->fnfield;
13019 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13022 /* Returns non-zero if NAME is the name of a vtable member in CU's
13023 language, zero otherwise. */
13025 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13027 static const char vptr[] = "_vptr";
13028 static const char vtable[] = "vtable";
13030 /* Look for the C++ and Java forms of the vtable. */
13031 if ((cu->language == language_java
13032 && startswith (name, vtable))
13033 || (startswith (name, vptr)
13034 && is_cplus_marker (name[sizeof (vptr) - 1])))
13040 /* GCC outputs unnamed structures that are really pointers to member
13041 functions, with the ABI-specified layout. If TYPE describes
13042 such a structure, smash it into a member function type.
13044 GCC shouldn't do this; it should just output pointer to member DIEs.
13045 This is GCC PR debug/28767. */
13048 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13050 struct type *pfn_type, *self_type, *new_type;
13052 /* Check for a structure with no name and two children. */
13053 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13056 /* Check for __pfn and __delta members. */
13057 if (TYPE_FIELD_NAME (type, 0) == NULL
13058 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13059 || TYPE_FIELD_NAME (type, 1) == NULL
13060 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13063 /* Find the type of the method. */
13064 pfn_type = TYPE_FIELD_TYPE (type, 0);
13065 if (pfn_type == NULL
13066 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13067 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13070 /* Look for the "this" argument. */
13071 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13072 if (TYPE_NFIELDS (pfn_type) == 0
13073 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13074 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13077 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13078 new_type = alloc_type (objfile);
13079 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13080 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13081 TYPE_VARARGS (pfn_type));
13082 smash_to_methodptr_type (type, new_type);
13085 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13089 producer_is_icc (struct dwarf2_cu *cu)
13091 if (!cu->checked_producer)
13092 check_producer (cu);
13094 return cu->producer_is_icc;
13097 /* Called when we find the DIE that starts a structure or union scope
13098 (definition) to create a type for the structure or union. Fill in
13099 the type's name and general properties; the members will not be
13100 processed until process_structure_scope. A symbol table entry for
13101 the type will also not be done until process_structure_scope (assuming
13102 the type has a name).
13104 NOTE: we need to call these functions regardless of whether or not the
13105 DIE has a DW_AT_name attribute, since it might be an anonymous
13106 structure or union. This gets the type entered into our set of
13107 user defined types. */
13109 static struct type *
13110 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13112 struct objfile *objfile = cu->objfile;
13114 struct attribute *attr;
13117 /* If the definition of this type lives in .debug_types, read that type.
13118 Don't follow DW_AT_specification though, that will take us back up
13119 the chain and we want to go down. */
13120 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13123 type = get_DW_AT_signature_type (die, attr, cu);
13125 /* The type's CU may not be the same as CU.
13126 Ensure TYPE is recorded with CU in die_type_hash. */
13127 return set_die_type (die, type, cu);
13130 type = alloc_type (objfile);
13131 INIT_CPLUS_SPECIFIC (type);
13133 name = dwarf2_name (die, cu);
13136 if (cu->language == language_cplus
13137 || cu->language == language_java)
13139 const char *full_name = dwarf2_full_name (name, die, cu);
13141 /* dwarf2_full_name might have already finished building the DIE's
13142 type. If so, there is no need to continue. */
13143 if (get_die_type (die, cu) != NULL)
13144 return get_die_type (die, cu);
13146 TYPE_TAG_NAME (type) = full_name;
13147 if (die->tag == DW_TAG_structure_type
13148 || die->tag == DW_TAG_class_type)
13149 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13153 /* The name is already allocated along with this objfile, so
13154 we don't need to duplicate it for the type. */
13155 TYPE_TAG_NAME (type) = name;
13156 if (die->tag == DW_TAG_class_type)
13157 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13161 if (die->tag == DW_TAG_structure_type)
13163 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13165 else if (die->tag == DW_TAG_union_type)
13167 TYPE_CODE (type) = TYPE_CODE_UNION;
13171 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13174 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13175 TYPE_DECLARED_CLASS (type) = 1;
13177 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13180 TYPE_LENGTH (type) = DW_UNSND (attr);
13184 TYPE_LENGTH (type) = 0;
13187 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13189 /* ICC does not output the required DW_AT_declaration
13190 on incomplete types, but gives them a size of zero. */
13191 TYPE_STUB (type) = 1;
13194 TYPE_STUB_SUPPORTED (type) = 1;
13196 if (die_is_declaration (die, cu))
13197 TYPE_STUB (type) = 1;
13198 else if (attr == NULL && die->child == NULL
13199 && producer_is_realview (cu->producer))
13200 /* RealView does not output the required DW_AT_declaration
13201 on incomplete types. */
13202 TYPE_STUB (type) = 1;
13204 /* We need to add the type field to the die immediately so we don't
13205 infinitely recurse when dealing with pointers to the structure
13206 type within the structure itself. */
13207 set_die_type (die, type, cu);
13209 /* set_die_type should be already done. */
13210 set_descriptive_type (type, die, cu);
13215 /* Finish creating a structure or union type, including filling in
13216 its members and creating a symbol for it. */
13219 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13221 struct objfile *objfile = cu->objfile;
13222 struct die_info *child_die;
13225 type = get_die_type (die, cu);
13227 type = read_structure_type (die, cu);
13229 if (die->child != NULL && ! die_is_declaration (die, cu))
13231 struct field_info fi;
13232 VEC (symbolp) *template_args = NULL;
13233 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13235 memset (&fi, 0, sizeof (struct field_info));
13237 child_die = die->child;
13239 while (child_die && child_die->tag)
13241 if (child_die->tag == DW_TAG_member
13242 || child_die->tag == DW_TAG_variable)
13244 /* NOTE: carlton/2002-11-05: A C++ static data member
13245 should be a DW_TAG_member that is a declaration, but
13246 all versions of G++ as of this writing (so through at
13247 least 3.2.1) incorrectly generate DW_TAG_variable
13248 tags for them instead. */
13249 dwarf2_add_field (&fi, child_die, cu);
13251 else if (child_die->tag == DW_TAG_subprogram)
13253 /* C++ member function. */
13254 dwarf2_add_member_fn (&fi, child_die, type, cu);
13256 else if (child_die->tag == DW_TAG_inheritance)
13258 /* C++ base class field. */
13259 dwarf2_add_field (&fi, child_die, cu);
13261 else if (child_die->tag == DW_TAG_typedef)
13262 dwarf2_add_typedef (&fi, child_die, cu);
13263 else if (child_die->tag == DW_TAG_template_type_param
13264 || child_die->tag == DW_TAG_template_value_param)
13266 struct symbol *arg = new_symbol (child_die, NULL, cu);
13269 VEC_safe_push (symbolp, template_args, arg);
13272 child_die = sibling_die (child_die);
13275 /* Attach template arguments to type. */
13276 if (! VEC_empty (symbolp, template_args))
13278 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13279 TYPE_N_TEMPLATE_ARGUMENTS (type)
13280 = VEC_length (symbolp, template_args);
13281 TYPE_TEMPLATE_ARGUMENTS (type)
13282 = obstack_alloc (&objfile->objfile_obstack,
13283 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13284 * sizeof (struct symbol *)));
13285 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13286 VEC_address (symbolp, template_args),
13287 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13288 * sizeof (struct symbol *)));
13289 VEC_free (symbolp, template_args);
13292 /* Attach fields and member functions to the type. */
13294 dwarf2_attach_fields_to_type (&fi, type, cu);
13297 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13299 /* Get the type which refers to the base class (possibly this
13300 class itself) which contains the vtable pointer for the current
13301 class from the DW_AT_containing_type attribute. This use of
13302 DW_AT_containing_type is a GNU extension. */
13304 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13306 struct type *t = die_containing_type (die, cu);
13308 set_type_vptr_basetype (type, t);
13313 /* Our own class provides vtbl ptr. */
13314 for (i = TYPE_NFIELDS (t) - 1;
13315 i >= TYPE_N_BASECLASSES (t);
13318 const char *fieldname = TYPE_FIELD_NAME (t, i);
13320 if (is_vtable_name (fieldname, cu))
13322 set_type_vptr_fieldno (type, i);
13327 /* Complain if virtual function table field not found. */
13328 if (i < TYPE_N_BASECLASSES (t))
13329 complaint (&symfile_complaints,
13330 _("virtual function table pointer "
13331 "not found when defining class '%s'"),
13332 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13337 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13340 else if (cu->producer
13341 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13343 /* The IBM XLC compiler does not provide direct indication
13344 of the containing type, but the vtable pointer is
13345 always named __vfp. */
13349 for (i = TYPE_NFIELDS (type) - 1;
13350 i >= TYPE_N_BASECLASSES (type);
13353 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13355 set_type_vptr_fieldno (type, i);
13356 set_type_vptr_basetype (type, type);
13363 /* Copy fi.typedef_field_list linked list elements content into the
13364 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13365 if (fi.typedef_field_list)
13367 int i = fi.typedef_field_list_count;
13369 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13370 TYPE_TYPEDEF_FIELD_ARRAY (type)
13371 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13372 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13374 /* Reverse the list order to keep the debug info elements order. */
13377 struct typedef_field *dest, *src;
13379 dest = &TYPE_TYPEDEF_FIELD (type, i);
13380 src = &fi.typedef_field_list->field;
13381 fi.typedef_field_list = fi.typedef_field_list->next;
13386 do_cleanups (back_to);
13388 if (HAVE_CPLUS_STRUCT (type))
13389 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13392 quirk_gcc_member_function_pointer (type, objfile);
13394 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13395 snapshots) has been known to create a die giving a declaration
13396 for a class that has, as a child, a die giving a definition for a
13397 nested class. So we have to process our children even if the
13398 current die is a declaration. Normally, of course, a declaration
13399 won't have any children at all. */
13401 child_die = die->child;
13403 while (child_die != NULL && child_die->tag)
13405 if (child_die->tag == DW_TAG_member
13406 || child_die->tag == DW_TAG_variable
13407 || child_die->tag == DW_TAG_inheritance
13408 || child_die->tag == DW_TAG_template_value_param
13409 || child_die->tag == DW_TAG_template_type_param)
13414 process_die (child_die, cu);
13416 child_die = sibling_die (child_die);
13419 /* Do not consider external references. According to the DWARF standard,
13420 these DIEs are identified by the fact that they have no byte_size
13421 attribute, and a declaration attribute. */
13422 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13423 || !die_is_declaration (die, cu))
13424 new_symbol (die, type, cu);
13427 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13428 update TYPE using some information only available in DIE's children. */
13431 update_enumeration_type_from_children (struct die_info *die,
13433 struct dwarf2_cu *cu)
13435 struct obstack obstack;
13436 struct die_info *child_die;
13437 int unsigned_enum = 1;
13440 struct cleanup *old_chain;
13442 obstack_init (&obstack);
13443 old_chain = make_cleanup_obstack_free (&obstack);
13445 for (child_die = die->child;
13446 child_die != NULL && child_die->tag;
13447 child_die = sibling_die (child_die))
13449 struct attribute *attr;
13451 const gdb_byte *bytes;
13452 struct dwarf2_locexpr_baton *baton;
13455 if (child_die->tag != DW_TAG_enumerator)
13458 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13462 name = dwarf2_name (child_die, cu);
13464 name = "<anonymous enumerator>";
13466 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13467 &value, &bytes, &baton);
13473 else if ((mask & value) != 0)
13478 /* If we already know that the enum type is neither unsigned, nor
13479 a flag type, no need to look at the rest of the enumerates. */
13480 if (!unsigned_enum && !flag_enum)
13485 TYPE_UNSIGNED (type) = 1;
13487 TYPE_FLAG_ENUM (type) = 1;
13489 do_cleanups (old_chain);
13492 /* Given a DW_AT_enumeration_type die, set its type. We do not
13493 complete the type's fields yet, or create any symbols. */
13495 static struct type *
13496 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13498 struct objfile *objfile = cu->objfile;
13500 struct attribute *attr;
13503 /* If the definition of this type lives in .debug_types, read that type.
13504 Don't follow DW_AT_specification though, that will take us back up
13505 the chain and we want to go down. */
13506 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13509 type = get_DW_AT_signature_type (die, attr, cu);
13511 /* The type's CU may not be the same as CU.
13512 Ensure TYPE is recorded with CU in die_type_hash. */
13513 return set_die_type (die, type, cu);
13516 type = alloc_type (objfile);
13518 TYPE_CODE (type) = TYPE_CODE_ENUM;
13519 name = dwarf2_full_name (NULL, die, cu);
13521 TYPE_TAG_NAME (type) = name;
13523 attr = dwarf2_attr (die, DW_AT_type, cu);
13526 struct type *underlying_type = die_type (die, cu);
13528 TYPE_TARGET_TYPE (type) = underlying_type;
13531 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13534 TYPE_LENGTH (type) = DW_UNSND (attr);
13538 TYPE_LENGTH (type) = 0;
13541 /* The enumeration DIE can be incomplete. In Ada, any type can be
13542 declared as private in the package spec, and then defined only
13543 inside the package body. Such types are known as Taft Amendment
13544 Types. When another package uses such a type, an incomplete DIE
13545 may be generated by the compiler. */
13546 if (die_is_declaration (die, cu))
13547 TYPE_STUB (type) = 1;
13549 /* Finish the creation of this type by using the enum's children.
13550 We must call this even when the underlying type has been provided
13551 so that we can determine if we're looking at a "flag" enum. */
13552 update_enumeration_type_from_children (die, type, cu);
13554 /* If this type has an underlying type that is not a stub, then we
13555 may use its attributes. We always use the "unsigned" attribute
13556 in this situation, because ordinarily we guess whether the type
13557 is unsigned -- but the guess can be wrong and the underlying type
13558 can tell us the reality. However, we defer to a local size
13559 attribute if one exists, because this lets the compiler override
13560 the underlying type if needed. */
13561 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13563 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13564 if (TYPE_LENGTH (type) == 0)
13565 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13568 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13570 return set_die_type (die, type, cu);
13573 /* Given a pointer to a die which begins an enumeration, process all
13574 the dies that define the members of the enumeration, and create the
13575 symbol for the enumeration type.
13577 NOTE: We reverse the order of the element list. */
13580 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13582 struct type *this_type;
13584 this_type = get_die_type (die, cu);
13585 if (this_type == NULL)
13586 this_type = read_enumeration_type (die, cu);
13588 if (die->child != NULL)
13590 struct die_info *child_die;
13591 struct symbol *sym;
13592 struct field *fields = NULL;
13593 int num_fields = 0;
13596 child_die = die->child;
13597 while (child_die && child_die->tag)
13599 if (child_die->tag != DW_TAG_enumerator)
13601 process_die (child_die, cu);
13605 name = dwarf2_name (child_die, cu);
13608 sym = new_symbol (child_die, this_type, cu);
13610 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13612 fields = (struct field *)
13614 (num_fields + DW_FIELD_ALLOC_CHUNK)
13615 * sizeof (struct field));
13618 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13619 FIELD_TYPE (fields[num_fields]) = NULL;
13620 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13621 FIELD_BITSIZE (fields[num_fields]) = 0;
13627 child_die = sibling_die (child_die);
13632 TYPE_NFIELDS (this_type) = num_fields;
13633 TYPE_FIELDS (this_type) = (struct field *)
13634 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13635 memcpy (TYPE_FIELDS (this_type), fields,
13636 sizeof (struct field) * num_fields);
13641 /* If we are reading an enum from a .debug_types unit, and the enum
13642 is a declaration, and the enum is not the signatured type in the
13643 unit, then we do not want to add a symbol for it. Adding a
13644 symbol would in some cases obscure the true definition of the
13645 enum, giving users an incomplete type when the definition is
13646 actually available. Note that we do not want to do this for all
13647 enums which are just declarations, because C++0x allows forward
13648 enum declarations. */
13649 if (cu->per_cu->is_debug_types
13650 && die_is_declaration (die, cu))
13652 struct signatured_type *sig_type;
13654 sig_type = (struct signatured_type *) cu->per_cu;
13655 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13656 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13660 new_symbol (die, this_type, cu);
13663 /* Extract all information from a DW_TAG_array_type DIE and put it in
13664 the DIE's type field. For now, this only handles one dimensional
13667 static struct type *
13668 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13670 struct objfile *objfile = cu->objfile;
13671 struct die_info *child_die;
13673 struct type *element_type, *range_type, *index_type;
13674 struct type **range_types = NULL;
13675 struct attribute *attr;
13677 struct cleanup *back_to;
13679 unsigned int bit_stride = 0;
13681 element_type = die_type (die, cu);
13683 /* The die_type call above may have already set the type for this DIE. */
13684 type = get_die_type (die, cu);
13688 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13690 bit_stride = DW_UNSND (attr) * 8;
13692 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13694 bit_stride = DW_UNSND (attr);
13696 /* Irix 6.2 native cc creates array types without children for
13697 arrays with unspecified length. */
13698 if (die->child == NULL)
13700 index_type = objfile_type (objfile)->builtin_int;
13701 range_type = create_static_range_type (NULL, index_type, 0, -1);
13702 type = create_array_type_with_stride (NULL, element_type, range_type,
13704 return set_die_type (die, type, cu);
13707 back_to = make_cleanup (null_cleanup, NULL);
13708 child_die = die->child;
13709 while (child_die && child_die->tag)
13711 if (child_die->tag == DW_TAG_subrange_type)
13713 struct type *child_type = read_type_die (child_die, cu);
13715 if (child_type != NULL)
13717 /* The range type was succesfully read. Save it for the
13718 array type creation. */
13719 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13721 range_types = (struct type **)
13722 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13723 * sizeof (struct type *));
13725 make_cleanup (free_current_contents, &range_types);
13727 range_types[ndim++] = child_type;
13730 child_die = sibling_die (child_die);
13733 /* Dwarf2 dimensions are output from left to right, create the
13734 necessary array types in backwards order. */
13736 type = element_type;
13738 if (read_array_order (die, cu) == DW_ORD_col_major)
13743 type = create_array_type_with_stride (NULL, type, range_types[i++],
13749 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13753 /* Understand Dwarf2 support for vector types (like they occur on
13754 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13755 array type. This is not part of the Dwarf2/3 standard yet, but a
13756 custom vendor extension. The main difference between a regular
13757 array and the vector variant is that vectors are passed by value
13759 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13761 make_vector_type (type);
13763 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13764 implementation may choose to implement triple vectors using this
13766 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13769 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13770 TYPE_LENGTH (type) = DW_UNSND (attr);
13772 complaint (&symfile_complaints,
13773 _("DW_AT_byte_size for array type smaller "
13774 "than the total size of elements"));
13777 name = dwarf2_name (die, cu);
13779 TYPE_NAME (type) = name;
13781 /* Install the type in the die. */
13782 set_die_type (die, type, cu);
13784 /* set_die_type should be already done. */
13785 set_descriptive_type (type, die, cu);
13787 do_cleanups (back_to);
13792 static enum dwarf_array_dim_ordering
13793 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13795 struct attribute *attr;
13797 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13799 if (attr) return DW_SND (attr);
13801 /* GNU F77 is a special case, as at 08/2004 array type info is the
13802 opposite order to the dwarf2 specification, but data is still
13803 laid out as per normal fortran.
13805 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13806 version checking. */
13808 if (cu->language == language_fortran
13809 && cu->producer && strstr (cu->producer, "GNU F77"))
13811 return DW_ORD_row_major;
13814 switch (cu->language_defn->la_array_ordering)
13816 case array_column_major:
13817 return DW_ORD_col_major;
13818 case array_row_major:
13820 return DW_ORD_row_major;
13824 /* Extract all information from a DW_TAG_set_type DIE and put it in
13825 the DIE's type field. */
13827 static struct type *
13828 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13830 struct type *domain_type, *set_type;
13831 struct attribute *attr;
13833 domain_type = die_type (die, cu);
13835 /* The die_type call above may have already set the type for this DIE. */
13836 set_type = get_die_type (die, cu);
13840 set_type = create_set_type (NULL, domain_type);
13842 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13844 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13846 return set_die_type (die, set_type, cu);
13849 /* A helper for read_common_block that creates a locexpr baton.
13850 SYM is the symbol which we are marking as computed.
13851 COMMON_DIE is the DIE for the common block.
13852 COMMON_LOC is the location expression attribute for the common
13854 MEMBER_LOC is the location expression attribute for the particular
13855 member of the common block that we are processing.
13856 CU is the CU from which the above come. */
13859 mark_common_block_symbol_computed (struct symbol *sym,
13860 struct die_info *common_die,
13861 struct attribute *common_loc,
13862 struct attribute *member_loc,
13863 struct dwarf2_cu *cu)
13865 struct objfile *objfile = dwarf2_per_objfile->objfile;
13866 struct dwarf2_locexpr_baton *baton;
13868 unsigned int cu_off;
13869 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13870 LONGEST offset = 0;
13872 gdb_assert (common_loc && member_loc);
13873 gdb_assert (attr_form_is_block (common_loc));
13874 gdb_assert (attr_form_is_block (member_loc)
13875 || attr_form_is_constant (member_loc));
13877 baton = obstack_alloc (&objfile->objfile_obstack,
13878 sizeof (struct dwarf2_locexpr_baton));
13879 baton->per_cu = cu->per_cu;
13880 gdb_assert (baton->per_cu);
13882 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13884 if (attr_form_is_constant (member_loc))
13886 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13887 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13890 baton->size += DW_BLOCK (member_loc)->size;
13892 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13895 *ptr++ = DW_OP_call4;
13896 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13897 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13900 if (attr_form_is_constant (member_loc))
13902 *ptr++ = DW_OP_addr;
13903 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13904 ptr += cu->header.addr_size;
13908 /* We have to copy the data here, because DW_OP_call4 will only
13909 use a DW_AT_location attribute. */
13910 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13911 ptr += DW_BLOCK (member_loc)->size;
13914 *ptr++ = DW_OP_plus;
13915 gdb_assert (ptr - baton->data == baton->size);
13917 SYMBOL_LOCATION_BATON (sym) = baton;
13918 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13921 /* Create appropriate locally-scoped variables for all the
13922 DW_TAG_common_block entries. Also create a struct common_block
13923 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13924 is used to sepate the common blocks name namespace from regular
13928 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13930 struct attribute *attr;
13932 attr = dwarf2_attr (die, DW_AT_location, cu);
13935 /* Support the .debug_loc offsets. */
13936 if (attr_form_is_block (attr))
13940 else if (attr_form_is_section_offset (attr))
13942 dwarf2_complex_location_expr_complaint ();
13947 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13948 "common block member");
13953 if (die->child != NULL)
13955 struct objfile *objfile = cu->objfile;
13956 struct die_info *child_die;
13957 size_t n_entries = 0, size;
13958 struct common_block *common_block;
13959 struct symbol *sym;
13961 for (child_die = die->child;
13962 child_die && child_die->tag;
13963 child_die = sibling_die (child_die))
13966 size = (sizeof (struct common_block)
13967 + (n_entries - 1) * sizeof (struct symbol *));
13968 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13969 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13970 common_block->n_entries = 0;
13972 for (child_die = die->child;
13973 child_die && child_die->tag;
13974 child_die = sibling_die (child_die))
13976 /* Create the symbol in the DW_TAG_common_block block in the current
13978 sym = new_symbol (child_die, NULL, cu);
13981 struct attribute *member_loc;
13983 common_block->contents[common_block->n_entries++] = sym;
13985 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13989 /* GDB has handled this for a long time, but it is
13990 not specified by DWARF. It seems to have been
13991 emitted by gfortran at least as recently as:
13992 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13993 complaint (&symfile_complaints,
13994 _("Variable in common block has "
13995 "DW_AT_data_member_location "
13996 "- DIE at 0x%x [in module %s]"),
13997 child_die->offset.sect_off,
13998 objfile_name (cu->objfile));
14000 if (attr_form_is_section_offset (member_loc))
14001 dwarf2_complex_location_expr_complaint ();
14002 else if (attr_form_is_constant (member_loc)
14003 || attr_form_is_block (member_loc))
14006 mark_common_block_symbol_computed (sym, die, attr,
14010 dwarf2_complex_location_expr_complaint ();
14015 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14016 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14020 /* Create a type for a C++ namespace. */
14022 static struct type *
14023 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14025 struct objfile *objfile = cu->objfile;
14026 const char *previous_prefix, *name;
14030 /* For extensions, reuse the type of the original namespace. */
14031 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14033 struct die_info *ext_die;
14034 struct dwarf2_cu *ext_cu = cu;
14036 ext_die = dwarf2_extension (die, &ext_cu);
14037 type = read_type_die (ext_die, ext_cu);
14039 /* EXT_CU may not be the same as CU.
14040 Ensure TYPE is recorded with CU in die_type_hash. */
14041 return set_die_type (die, type, cu);
14044 name = namespace_name (die, &is_anonymous, cu);
14046 /* Now build the name of the current namespace. */
14048 previous_prefix = determine_prefix (die, cu);
14049 if (previous_prefix[0] != '\0')
14050 name = typename_concat (&objfile->objfile_obstack,
14051 previous_prefix, name, 0, cu);
14053 /* Create the type. */
14054 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14056 TYPE_NAME (type) = name;
14057 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14059 return set_die_type (die, type, cu);
14062 /* Read a C++ namespace. */
14065 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14067 struct objfile *objfile = cu->objfile;
14070 /* Add a symbol associated to this if we haven't seen the namespace
14071 before. Also, add a using directive if it's an anonymous
14074 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14078 type = read_type_die (die, cu);
14079 new_symbol (die, type, cu);
14081 namespace_name (die, &is_anonymous, cu);
14084 const char *previous_prefix = determine_prefix (die, cu);
14086 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14087 NULL, NULL, 0, &objfile->objfile_obstack);
14091 if (die->child != NULL)
14093 struct die_info *child_die = die->child;
14095 while (child_die && child_die->tag)
14097 process_die (child_die, cu);
14098 child_die = sibling_die (child_die);
14103 /* Read a Fortran module as type. This DIE can be only a declaration used for
14104 imported module. Still we need that type as local Fortran "use ... only"
14105 declaration imports depend on the created type in determine_prefix. */
14107 static struct type *
14108 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14110 struct objfile *objfile = cu->objfile;
14111 const char *module_name;
14114 module_name = dwarf2_name (die, cu);
14116 complaint (&symfile_complaints,
14117 _("DW_TAG_module has no name, offset 0x%x"),
14118 die->offset.sect_off);
14119 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14121 /* determine_prefix uses TYPE_TAG_NAME. */
14122 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14124 return set_die_type (die, type, cu);
14127 /* Read a Fortran module. */
14130 read_module (struct die_info *die, struct dwarf2_cu *cu)
14132 struct die_info *child_die = die->child;
14135 type = read_type_die (die, cu);
14136 new_symbol (die, type, cu);
14138 while (child_die && child_die->tag)
14140 process_die (child_die, cu);
14141 child_die = sibling_die (child_die);
14145 /* Return the name of the namespace represented by DIE. Set
14146 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14149 static const char *
14150 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14152 struct die_info *current_die;
14153 const char *name = NULL;
14155 /* Loop through the extensions until we find a name. */
14157 for (current_die = die;
14158 current_die != NULL;
14159 current_die = dwarf2_extension (die, &cu))
14161 /* We don't use dwarf2_name here so that we can detect the absence
14162 of a name -> anonymous namespace. */
14163 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14166 name = DW_STRING (attr);
14171 /* Is it an anonymous namespace? */
14173 *is_anonymous = (name == NULL);
14175 name = CP_ANONYMOUS_NAMESPACE_STR;
14180 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14181 the user defined type vector. */
14183 static struct type *
14184 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14186 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14187 struct comp_unit_head *cu_header = &cu->header;
14189 struct attribute *attr_byte_size;
14190 struct attribute *attr_address_class;
14191 int byte_size, addr_class;
14192 struct type *target_type;
14194 target_type = die_type (die, cu);
14196 /* The die_type call above may have already set the type for this DIE. */
14197 type = get_die_type (die, cu);
14201 type = lookup_pointer_type (target_type);
14203 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14204 if (attr_byte_size)
14205 byte_size = DW_UNSND (attr_byte_size);
14207 byte_size = cu_header->addr_size;
14209 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14210 if (attr_address_class)
14211 addr_class = DW_UNSND (attr_address_class);
14213 addr_class = DW_ADDR_none;
14215 /* If the pointer size or address class is different than the
14216 default, create a type variant marked as such and set the
14217 length accordingly. */
14218 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14220 if (gdbarch_address_class_type_flags_p (gdbarch))
14224 type_flags = gdbarch_address_class_type_flags
14225 (gdbarch, byte_size, addr_class);
14226 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14228 type = make_type_with_address_space (type, type_flags);
14230 else if (TYPE_LENGTH (type) != byte_size)
14232 complaint (&symfile_complaints,
14233 _("invalid pointer size %d"), byte_size);
14237 /* Should we also complain about unhandled address classes? */
14241 TYPE_LENGTH (type) = byte_size;
14242 return set_die_type (die, type, cu);
14245 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14246 the user defined type vector. */
14248 static struct type *
14249 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14252 struct type *to_type;
14253 struct type *domain;
14255 to_type = die_type (die, cu);
14256 domain = die_containing_type (die, cu);
14258 /* The calls above may have already set the type for this DIE. */
14259 type = get_die_type (die, cu);
14263 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14264 type = lookup_methodptr_type (to_type);
14265 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14267 struct type *new_type = alloc_type (cu->objfile);
14269 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14270 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14271 TYPE_VARARGS (to_type));
14272 type = lookup_methodptr_type (new_type);
14275 type = lookup_memberptr_type (to_type, domain);
14277 return set_die_type (die, type, cu);
14280 /* Extract all information from a DW_TAG_reference_type DIE and add to
14281 the user defined type vector. */
14283 static struct type *
14284 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14286 struct comp_unit_head *cu_header = &cu->header;
14287 struct type *type, *target_type;
14288 struct attribute *attr;
14290 target_type = die_type (die, cu);
14292 /* The die_type call above may have already set the type for this DIE. */
14293 type = get_die_type (die, cu);
14297 type = lookup_reference_type (target_type);
14298 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14301 TYPE_LENGTH (type) = DW_UNSND (attr);
14305 TYPE_LENGTH (type) = cu_header->addr_size;
14307 return set_die_type (die, type, cu);
14310 /* Add the given cv-qualifiers to the element type of the array. GCC
14311 outputs DWARF type qualifiers that apply to an array, not the
14312 element type. But GDB relies on the array element type to carry
14313 the cv-qualifiers. This mimics section 6.7.3 of the C99
14316 static struct type *
14317 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14318 struct type *base_type, int cnst, int voltl)
14320 struct type *el_type, *inner_array;
14322 base_type = copy_type (base_type);
14323 inner_array = base_type;
14325 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14327 TYPE_TARGET_TYPE (inner_array) =
14328 copy_type (TYPE_TARGET_TYPE (inner_array));
14329 inner_array = TYPE_TARGET_TYPE (inner_array);
14332 el_type = TYPE_TARGET_TYPE (inner_array);
14333 cnst |= TYPE_CONST (el_type);
14334 voltl |= TYPE_VOLATILE (el_type);
14335 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14337 return set_die_type (die, base_type, cu);
14340 static struct type *
14341 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14343 struct type *base_type, *cv_type;
14345 base_type = die_type (die, cu);
14347 /* The die_type call above may have already set the type for this DIE. */
14348 cv_type = get_die_type (die, cu);
14352 /* In case the const qualifier is applied to an array type, the element type
14353 is so qualified, not the array type (section 6.7.3 of C99). */
14354 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14355 return add_array_cv_type (die, cu, base_type, 1, 0);
14357 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14358 return set_die_type (die, cv_type, cu);
14361 static struct type *
14362 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14364 struct type *base_type, *cv_type;
14366 base_type = die_type (die, cu);
14368 /* The die_type call above may have already set the type for this DIE. */
14369 cv_type = get_die_type (die, cu);
14373 /* In case the volatile qualifier is applied to an array type, the
14374 element type is so qualified, not the array type (section 6.7.3
14376 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14377 return add_array_cv_type (die, cu, base_type, 0, 1);
14379 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14380 return set_die_type (die, cv_type, cu);
14383 /* Handle DW_TAG_restrict_type. */
14385 static struct type *
14386 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14388 struct type *base_type, *cv_type;
14390 base_type = die_type (die, cu);
14392 /* The die_type call above may have already set the type for this DIE. */
14393 cv_type = get_die_type (die, cu);
14397 cv_type = make_restrict_type (base_type);
14398 return set_die_type (die, cv_type, cu);
14401 /* Handle DW_TAG_atomic_type. */
14403 static struct type *
14404 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14406 struct type *base_type, *cv_type;
14408 base_type = die_type (die, cu);
14410 /* The die_type call above may have already set the type for this DIE. */
14411 cv_type = get_die_type (die, cu);
14415 cv_type = make_atomic_type (base_type);
14416 return set_die_type (die, cv_type, cu);
14419 /* Extract all information from a DW_TAG_string_type DIE and add to
14420 the user defined type vector. It isn't really a user defined type,
14421 but it behaves like one, with other DIE's using an AT_user_def_type
14422 attribute to reference it. */
14424 static struct type *
14425 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14427 struct objfile *objfile = cu->objfile;
14428 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14429 struct type *type, *range_type, *index_type, *char_type;
14430 struct attribute *attr;
14431 unsigned int length;
14433 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14436 length = DW_UNSND (attr);
14440 /* Check for the DW_AT_byte_size attribute. */
14441 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14444 length = DW_UNSND (attr);
14452 index_type = objfile_type (objfile)->builtin_int;
14453 range_type = create_static_range_type (NULL, index_type, 1, length);
14454 char_type = language_string_char_type (cu->language_defn, gdbarch);
14455 type = create_string_type (NULL, char_type, range_type);
14457 return set_die_type (die, type, cu);
14460 /* Assuming that DIE corresponds to a function, returns nonzero
14461 if the function is prototyped. */
14464 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14466 struct attribute *attr;
14468 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14469 if (attr && (DW_UNSND (attr) != 0))
14472 /* The DWARF standard implies that the DW_AT_prototyped attribute
14473 is only meaninful for C, but the concept also extends to other
14474 languages that allow unprototyped functions (Eg: Objective C).
14475 For all other languages, assume that functions are always
14477 if (cu->language != language_c
14478 && cu->language != language_objc
14479 && cu->language != language_opencl)
14482 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14483 prototyped and unprototyped functions; default to prototyped,
14484 since that is more common in modern code (and RealView warns
14485 about unprototyped functions). */
14486 if (producer_is_realview (cu->producer))
14492 /* Handle DIES due to C code like:
14496 int (*funcp)(int a, long l);
14500 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14502 static struct type *
14503 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14505 struct objfile *objfile = cu->objfile;
14506 struct type *type; /* Type that this function returns. */
14507 struct type *ftype; /* Function that returns above type. */
14508 struct attribute *attr;
14510 type = die_type (die, cu);
14512 /* The die_type call above may have already set the type for this DIE. */
14513 ftype = get_die_type (die, cu);
14517 ftype = lookup_function_type (type);
14519 if (prototyped_function_p (die, cu))
14520 TYPE_PROTOTYPED (ftype) = 1;
14522 /* Store the calling convention in the type if it's available in
14523 the subroutine die. Otherwise set the calling convention to
14524 the default value DW_CC_normal. */
14525 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14527 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14528 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14529 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14531 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14533 /* Record whether the function returns normally to its caller or not
14534 if the DWARF producer set that information. */
14535 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14536 if (attr && (DW_UNSND (attr) != 0))
14537 TYPE_NO_RETURN (ftype) = 1;
14539 /* We need to add the subroutine type to the die immediately so
14540 we don't infinitely recurse when dealing with parameters
14541 declared as the same subroutine type. */
14542 set_die_type (die, ftype, cu);
14544 if (die->child != NULL)
14546 struct type *void_type = objfile_type (objfile)->builtin_void;
14547 struct die_info *child_die;
14548 int nparams, iparams;
14550 /* Count the number of parameters.
14551 FIXME: GDB currently ignores vararg functions, but knows about
14552 vararg member functions. */
14554 child_die = die->child;
14555 while (child_die && child_die->tag)
14557 if (child_die->tag == DW_TAG_formal_parameter)
14559 else if (child_die->tag == DW_TAG_unspecified_parameters)
14560 TYPE_VARARGS (ftype) = 1;
14561 child_die = sibling_die (child_die);
14564 /* Allocate storage for parameters and fill them in. */
14565 TYPE_NFIELDS (ftype) = nparams;
14566 TYPE_FIELDS (ftype) = (struct field *)
14567 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14569 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14570 even if we error out during the parameters reading below. */
14571 for (iparams = 0; iparams < nparams; iparams++)
14572 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14575 child_die = die->child;
14576 while (child_die && child_die->tag)
14578 if (child_die->tag == DW_TAG_formal_parameter)
14580 struct type *arg_type;
14582 /* DWARF version 2 has no clean way to discern C++
14583 static and non-static member functions. G++ helps
14584 GDB by marking the first parameter for non-static
14585 member functions (which is the this pointer) as
14586 artificial. We pass this information to
14587 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14589 DWARF version 3 added DW_AT_object_pointer, which GCC
14590 4.5 does not yet generate. */
14591 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14593 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14596 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14598 /* GCC/43521: In java, the formal parameter
14599 "this" is sometimes not marked with DW_AT_artificial. */
14600 if (cu->language == language_java)
14602 const char *name = dwarf2_name (child_die, cu);
14604 if (name && !strcmp (name, "this"))
14605 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14608 arg_type = die_type (child_die, cu);
14610 /* RealView does not mark THIS as const, which the testsuite
14611 expects. GCC marks THIS as const in method definitions,
14612 but not in the class specifications (GCC PR 43053). */
14613 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14614 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14617 struct dwarf2_cu *arg_cu = cu;
14618 const char *name = dwarf2_name (child_die, cu);
14620 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14623 /* If the compiler emits this, use it. */
14624 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14627 else if (name && strcmp (name, "this") == 0)
14628 /* Function definitions will have the argument names. */
14630 else if (name == NULL && iparams == 0)
14631 /* Declarations may not have the names, so like
14632 elsewhere in GDB, assume an artificial first
14633 argument is "this". */
14637 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14641 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14644 child_die = sibling_die (child_die);
14651 static struct type *
14652 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14654 struct objfile *objfile = cu->objfile;
14655 const char *name = NULL;
14656 struct type *this_type, *target_type;
14658 name = dwarf2_full_name (NULL, die, cu);
14659 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14660 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14661 TYPE_NAME (this_type) = name;
14662 set_die_type (die, this_type, cu);
14663 target_type = die_type (die, cu);
14664 if (target_type != this_type)
14665 TYPE_TARGET_TYPE (this_type) = target_type;
14668 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14669 spec and cause infinite loops in GDB. */
14670 complaint (&symfile_complaints,
14671 _("Self-referential DW_TAG_typedef "
14672 "- DIE at 0x%x [in module %s]"),
14673 die->offset.sect_off, objfile_name (objfile));
14674 TYPE_TARGET_TYPE (this_type) = NULL;
14679 /* Find a representation of a given base type and install
14680 it in the TYPE field of the die. */
14682 static struct type *
14683 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14685 struct objfile *objfile = cu->objfile;
14687 struct attribute *attr;
14688 int encoding = 0, size = 0;
14690 enum type_code code = TYPE_CODE_INT;
14691 int type_flags = 0;
14692 struct type *target_type = NULL;
14694 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14697 encoding = DW_UNSND (attr);
14699 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14702 size = DW_UNSND (attr);
14704 name = dwarf2_name (die, cu);
14707 complaint (&symfile_complaints,
14708 _("DW_AT_name missing from DW_TAG_base_type"));
14713 case DW_ATE_address:
14714 /* Turn DW_ATE_address into a void * pointer. */
14715 code = TYPE_CODE_PTR;
14716 type_flags |= TYPE_FLAG_UNSIGNED;
14717 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14719 case DW_ATE_boolean:
14720 code = TYPE_CODE_BOOL;
14721 type_flags |= TYPE_FLAG_UNSIGNED;
14723 case DW_ATE_complex_float:
14724 code = TYPE_CODE_COMPLEX;
14725 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14727 case DW_ATE_decimal_float:
14728 code = TYPE_CODE_DECFLOAT;
14731 code = TYPE_CODE_FLT;
14733 case DW_ATE_signed:
14735 case DW_ATE_unsigned:
14736 type_flags |= TYPE_FLAG_UNSIGNED;
14737 if (cu->language == language_fortran
14739 && startswith (name, "character("))
14740 code = TYPE_CODE_CHAR;
14742 case DW_ATE_signed_char:
14743 if (cu->language == language_ada || cu->language == language_m2
14744 || cu->language == language_pascal
14745 || cu->language == language_fortran)
14746 code = TYPE_CODE_CHAR;
14748 case DW_ATE_unsigned_char:
14749 if (cu->language == language_ada || cu->language == language_m2
14750 || cu->language == language_pascal
14751 || cu->language == language_fortran)
14752 code = TYPE_CODE_CHAR;
14753 type_flags |= TYPE_FLAG_UNSIGNED;
14756 /* We just treat this as an integer and then recognize the
14757 type by name elsewhere. */
14761 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14762 dwarf_type_encoding_name (encoding));
14766 type = init_type (code, size, type_flags, NULL, objfile);
14767 TYPE_NAME (type) = name;
14768 TYPE_TARGET_TYPE (type) = target_type;
14770 if (name && strcmp (name, "char") == 0)
14771 TYPE_NOSIGN (type) = 1;
14773 return set_die_type (die, type, cu);
14776 /* Parse dwarf attribute if it's a block, reference or constant and put the
14777 resulting value of the attribute into struct bound_prop.
14778 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14781 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14782 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14784 struct dwarf2_property_baton *baton;
14785 struct obstack *obstack = &cu->objfile->objfile_obstack;
14787 if (attr == NULL || prop == NULL)
14790 if (attr_form_is_block (attr))
14792 baton = obstack_alloc (obstack, sizeof (*baton));
14793 baton->referenced_type = NULL;
14794 baton->locexpr.per_cu = cu->per_cu;
14795 baton->locexpr.size = DW_BLOCK (attr)->size;
14796 baton->locexpr.data = DW_BLOCK (attr)->data;
14797 prop->data.baton = baton;
14798 prop->kind = PROP_LOCEXPR;
14799 gdb_assert (prop->data.baton != NULL);
14801 else if (attr_form_is_ref (attr))
14803 struct dwarf2_cu *target_cu = cu;
14804 struct die_info *target_die;
14805 struct attribute *target_attr;
14807 target_die = follow_die_ref (die, attr, &target_cu);
14808 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14809 if (target_attr == NULL)
14810 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14812 if (target_attr == NULL)
14815 switch (target_attr->name)
14817 case DW_AT_location:
14818 if (attr_form_is_section_offset (target_attr))
14820 baton = obstack_alloc (obstack, sizeof (*baton));
14821 baton->referenced_type = die_type (target_die, target_cu);
14822 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14823 prop->data.baton = baton;
14824 prop->kind = PROP_LOCLIST;
14825 gdb_assert (prop->data.baton != NULL);
14827 else if (attr_form_is_block (target_attr))
14829 baton = obstack_alloc (obstack, sizeof (*baton));
14830 baton->referenced_type = die_type (target_die, target_cu);
14831 baton->locexpr.per_cu = cu->per_cu;
14832 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14833 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14834 prop->data.baton = baton;
14835 prop->kind = PROP_LOCEXPR;
14836 gdb_assert (prop->data.baton != NULL);
14840 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14841 "dynamic property");
14845 case DW_AT_data_member_location:
14849 if (!handle_data_member_location (target_die, target_cu,
14853 baton = obstack_alloc (obstack, sizeof (*baton));
14854 baton->referenced_type = read_type_die (target_die->parent,
14856 baton->offset_info.offset = offset;
14857 baton->offset_info.type = die_type (target_die, target_cu);
14858 prop->data.baton = baton;
14859 prop->kind = PROP_ADDR_OFFSET;
14864 else if (attr_form_is_constant (attr))
14866 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14867 prop->kind = PROP_CONST;
14871 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14872 dwarf2_name (die, cu));
14879 /* Read the given DW_AT_subrange DIE. */
14881 static struct type *
14882 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14884 struct type *base_type, *orig_base_type;
14885 struct type *range_type;
14886 struct attribute *attr;
14887 struct dynamic_prop low, high;
14888 int low_default_is_valid;
14889 int high_bound_is_count = 0;
14891 LONGEST negative_mask;
14893 orig_base_type = die_type (die, cu);
14894 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14895 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14896 creating the range type, but we use the result of check_typedef
14897 when examining properties of the type. */
14898 base_type = check_typedef (orig_base_type);
14900 /* The die_type call above may have already set the type for this DIE. */
14901 range_type = get_die_type (die, cu);
14905 low.kind = PROP_CONST;
14906 high.kind = PROP_CONST;
14907 high.data.const_val = 0;
14909 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14910 omitting DW_AT_lower_bound. */
14911 switch (cu->language)
14914 case language_cplus:
14915 low.data.const_val = 0;
14916 low_default_is_valid = 1;
14918 case language_fortran:
14919 low.data.const_val = 1;
14920 low_default_is_valid = 1;
14923 case language_java:
14924 case language_objc:
14925 low.data.const_val = 0;
14926 low_default_is_valid = (cu->header.version >= 4);
14930 case language_pascal:
14931 low.data.const_val = 1;
14932 low_default_is_valid = (cu->header.version >= 4);
14935 low.data.const_val = 0;
14936 low_default_is_valid = 0;
14940 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14942 attr_to_dynamic_prop (attr, die, cu, &low);
14943 else if (!low_default_is_valid)
14944 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14945 "- DIE at 0x%x [in module %s]"),
14946 die->offset.sect_off, objfile_name (cu->objfile));
14948 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14949 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14951 attr = dwarf2_attr (die, DW_AT_count, cu);
14952 if (attr_to_dynamic_prop (attr, die, cu, &high))
14954 /* If bounds are constant do the final calculation here. */
14955 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14956 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14958 high_bound_is_count = 1;
14962 /* Dwarf-2 specifications explicitly allows to create subrange types
14963 without specifying a base type.
14964 In that case, the base type must be set to the type of
14965 the lower bound, upper bound or count, in that order, if any of these
14966 three attributes references an object that has a type.
14967 If no base type is found, the Dwarf-2 specifications say that
14968 a signed integer type of size equal to the size of an address should
14970 For the following C code: `extern char gdb_int [];'
14971 GCC produces an empty range DIE.
14972 FIXME: muller/2010-05-28: Possible references to object for low bound,
14973 high bound or count are not yet handled by this code. */
14974 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14976 struct objfile *objfile = cu->objfile;
14977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14978 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14979 struct type *int_type = objfile_type (objfile)->builtin_int;
14981 /* Test "int", "long int", and "long long int" objfile types,
14982 and select the first one having a size above or equal to the
14983 architecture address size. */
14984 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14985 base_type = int_type;
14988 int_type = objfile_type (objfile)->builtin_long;
14989 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14990 base_type = int_type;
14993 int_type = objfile_type (objfile)->builtin_long_long;
14994 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14995 base_type = int_type;
15000 /* Normally, the DWARF producers are expected to use a signed
15001 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15002 But this is unfortunately not always the case, as witnessed
15003 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15004 is used instead. To work around that ambiguity, we treat
15005 the bounds as signed, and thus sign-extend their values, when
15006 the base type is signed. */
15008 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15009 if (low.kind == PROP_CONST
15010 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15011 low.data.const_val |= negative_mask;
15012 if (high.kind == PROP_CONST
15013 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15014 high.data.const_val |= negative_mask;
15016 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15018 if (high_bound_is_count)
15019 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15021 /* Ada expects an empty array on no boundary attributes. */
15022 if (attr == NULL && cu->language != language_ada)
15023 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15025 name = dwarf2_name (die, cu);
15027 TYPE_NAME (range_type) = name;
15029 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15031 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15033 set_die_type (die, range_type, cu);
15035 /* set_die_type should be already done. */
15036 set_descriptive_type (range_type, die, cu);
15041 static struct type *
15042 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15046 /* For now, we only support the C meaning of an unspecified type: void. */
15048 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15049 TYPE_NAME (type) = dwarf2_name (die, cu);
15051 return set_die_type (die, type, cu);
15054 /* Read a single die and all its descendents. Set the die's sibling
15055 field to NULL; set other fields in the die correctly, and set all
15056 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15057 location of the info_ptr after reading all of those dies. PARENT
15058 is the parent of the die in question. */
15060 static struct die_info *
15061 read_die_and_children (const struct die_reader_specs *reader,
15062 const gdb_byte *info_ptr,
15063 const gdb_byte **new_info_ptr,
15064 struct die_info *parent)
15066 struct die_info *die;
15067 const gdb_byte *cur_ptr;
15070 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15073 *new_info_ptr = cur_ptr;
15076 store_in_ref_table (die, reader->cu);
15079 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15083 *new_info_ptr = cur_ptr;
15086 die->sibling = NULL;
15087 die->parent = parent;
15091 /* Read a die, all of its descendents, and all of its siblings; set
15092 all of the fields of all of the dies correctly. Arguments are as
15093 in read_die_and_children. */
15095 static struct die_info *
15096 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15097 const gdb_byte *info_ptr,
15098 const gdb_byte **new_info_ptr,
15099 struct die_info *parent)
15101 struct die_info *first_die, *last_sibling;
15102 const gdb_byte *cur_ptr;
15104 cur_ptr = info_ptr;
15105 first_die = last_sibling = NULL;
15109 struct die_info *die
15110 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15114 *new_info_ptr = cur_ptr;
15121 last_sibling->sibling = die;
15123 last_sibling = die;
15127 /* Read a die, all of its descendents, and all of its siblings; set
15128 all of the fields of all of the dies correctly. Arguments are as
15129 in read_die_and_children.
15130 This the main entry point for reading a DIE and all its children. */
15132 static struct die_info *
15133 read_die_and_siblings (const struct die_reader_specs *reader,
15134 const gdb_byte *info_ptr,
15135 const gdb_byte **new_info_ptr,
15136 struct die_info *parent)
15138 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15139 new_info_ptr, parent);
15141 if (dwarf2_die_debug)
15143 fprintf_unfiltered (gdb_stdlog,
15144 "Read die from %s@0x%x of %s:\n",
15145 get_section_name (reader->die_section),
15146 (unsigned) (info_ptr - reader->die_section->buffer),
15147 bfd_get_filename (reader->abfd));
15148 dump_die (die, dwarf2_die_debug);
15154 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15156 The caller is responsible for filling in the extra attributes
15157 and updating (*DIEP)->num_attrs.
15158 Set DIEP to point to a newly allocated die with its information,
15159 except for its child, sibling, and parent fields.
15160 Set HAS_CHILDREN to tell whether the die has children or not. */
15162 static const gdb_byte *
15163 read_full_die_1 (const struct die_reader_specs *reader,
15164 struct die_info **diep, const gdb_byte *info_ptr,
15165 int *has_children, int num_extra_attrs)
15167 unsigned int abbrev_number, bytes_read, i;
15168 sect_offset offset;
15169 struct abbrev_info *abbrev;
15170 struct die_info *die;
15171 struct dwarf2_cu *cu = reader->cu;
15172 bfd *abfd = reader->abfd;
15174 offset.sect_off = info_ptr - reader->buffer;
15175 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15176 info_ptr += bytes_read;
15177 if (!abbrev_number)
15184 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15186 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15188 bfd_get_filename (abfd));
15190 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15191 die->offset = offset;
15192 die->tag = abbrev->tag;
15193 die->abbrev = abbrev_number;
15195 /* Make the result usable.
15196 The caller needs to update num_attrs after adding the extra
15198 die->num_attrs = abbrev->num_attrs;
15200 for (i = 0; i < abbrev->num_attrs; ++i)
15201 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15205 *has_children = abbrev->has_children;
15209 /* Read a die and all its attributes.
15210 Set DIEP to point to a newly allocated die with its information,
15211 except for its child, sibling, and parent fields.
15212 Set HAS_CHILDREN to tell whether the die has children or not. */
15214 static const gdb_byte *
15215 read_full_die (const struct die_reader_specs *reader,
15216 struct die_info **diep, const gdb_byte *info_ptr,
15219 const gdb_byte *result;
15221 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15223 if (dwarf2_die_debug)
15225 fprintf_unfiltered (gdb_stdlog,
15226 "Read die from %s@0x%x of %s:\n",
15227 get_section_name (reader->die_section),
15228 (unsigned) (info_ptr - reader->die_section->buffer),
15229 bfd_get_filename (reader->abfd));
15230 dump_die (*diep, dwarf2_die_debug);
15236 /* Abbreviation tables.
15238 In DWARF version 2, the description of the debugging information is
15239 stored in a separate .debug_abbrev section. Before we read any
15240 dies from a section we read in all abbreviations and install them
15241 in a hash table. */
15243 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15245 static struct abbrev_info *
15246 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15248 struct abbrev_info *abbrev;
15250 abbrev = (struct abbrev_info *)
15251 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15252 memset (abbrev, 0, sizeof (struct abbrev_info));
15256 /* Add an abbreviation to the table. */
15259 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15260 unsigned int abbrev_number,
15261 struct abbrev_info *abbrev)
15263 unsigned int hash_number;
15265 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15266 abbrev->next = abbrev_table->abbrevs[hash_number];
15267 abbrev_table->abbrevs[hash_number] = abbrev;
15270 /* Look up an abbrev in the table.
15271 Returns NULL if the abbrev is not found. */
15273 static struct abbrev_info *
15274 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15275 unsigned int abbrev_number)
15277 unsigned int hash_number;
15278 struct abbrev_info *abbrev;
15280 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15281 abbrev = abbrev_table->abbrevs[hash_number];
15285 if (abbrev->number == abbrev_number)
15287 abbrev = abbrev->next;
15292 /* Read in an abbrev table. */
15294 static struct abbrev_table *
15295 abbrev_table_read_table (struct dwarf2_section_info *section,
15296 sect_offset offset)
15298 struct objfile *objfile = dwarf2_per_objfile->objfile;
15299 bfd *abfd = get_section_bfd_owner (section);
15300 struct abbrev_table *abbrev_table;
15301 const gdb_byte *abbrev_ptr;
15302 struct abbrev_info *cur_abbrev;
15303 unsigned int abbrev_number, bytes_read, abbrev_name;
15304 unsigned int abbrev_form;
15305 struct attr_abbrev *cur_attrs;
15306 unsigned int allocated_attrs;
15308 abbrev_table = XNEW (struct abbrev_table);
15309 abbrev_table->offset = offset;
15310 obstack_init (&abbrev_table->abbrev_obstack);
15311 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15313 * sizeof (struct abbrev_info *)));
15314 memset (abbrev_table->abbrevs, 0,
15315 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15317 dwarf2_read_section (objfile, section);
15318 abbrev_ptr = section->buffer + offset.sect_off;
15319 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15320 abbrev_ptr += bytes_read;
15322 allocated_attrs = ATTR_ALLOC_CHUNK;
15323 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15325 /* Loop until we reach an abbrev number of 0. */
15326 while (abbrev_number)
15328 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15330 /* read in abbrev header */
15331 cur_abbrev->number = abbrev_number;
15332 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15333 abbrev_ptr += bytes_read;
15334 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15337 /* now read in declarations */
15338 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15339 abbrev_ptr += bytes_read;
15340 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15341 abbrev_ptr += bytes_read;
15342 while (abbrev_name)
15344 if (cur_abbrev->num_attrs == allocated_attrs)
15346 allocated_attrs += ATTR_ALLOC_CHUNK;
15348 = xrealloc (cur_attrs, (allocated_attrs
15349 * sizeof (struct attr_abbrev)));
15352 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15353 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15354 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15355 abbrev_ptr += bytes_read;
15356 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15357 abbrev_ptr += bytes_read;
15360 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15361 (cur_abbrev->num_attrs
15362 * sizeof (struct attr_abbrev)));
15363 memcpy (cur_abbrev->attrs, cur_attrs,
15364 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15366 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15368 /* Get next abbreviation.
15369 Under Irix6 the abbreviations for a compilation unit are not
15370 always properly terminated with an abbrev number of 0.
15371 Exit loop if we encounter an abbreviation which we have
15372 already read (which means we are about to read the abbreviations
15373 for the next compile unit) or if the end of the abbreviation
15374 table is reached. */
15375 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15377 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15384 return abbrev_table;
15387 /* Free the resources held by ABBREV_TABLE. */
15390 abbrev_table_free (struct abbrev_table *abbrev_table)
15392 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15393 xfree (abbrev_table);
15396 /* Same as abbrev_table_free but as a cleanup.
15397 We pass in a pointer to the pointer to the table so that we can
15398 set the pointer to NULL when we're done. It also simplifies
15399 build_type_psymtabs_1. */
15402 abbrev_table_free_cleanup (void *table_ptr)
15404 struct abbrev_table **abbrev_table_ptr = table_ptr;
15406 if (*abbrev_table_ptr != NULL)
15407 abbrev_table_free (*abbrev_table_ptr);
15408 *abbrev_table_ptr = NULL;
15411 /* Read the abbrev table for CU from ABBREV_SECTION. */
15414 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15415 struct dwarf2_section_info *abbrev_section)
15418 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15421 /* Release the memory used by the abbrev table for a compilation unit. */
15424 dwarf2_free_abbrev_table (void *ptr_to_cu)
15426 struct dwarf2_cu *cu = ptr_to_cu;
15428 if (cu->abbrev_table != NULL)
15429 abbrev_table_free (cu->abbrev_table);
15430 /* Set this to NULL so that we SEGV if we try to read it later,
15431 and also because free_comp_unit verifies this is NULL. */
15432 cu->abbrev_table = NULL;
15435 /* Returns nonzero if TAG represents a type that we might generate a partial
15439 is_type_tag_for_partial (int tag)
15444 /* Some types that would be reasonable to generate partial symbols for,
15445 that we don't at present. */
15446 case DW_TAG_array_type:
15447 case DW_TAG_file_type:
15448 case DW_TAG_ptr_to_member_type:
15449 case DW_TAG_set_type:
15450 case DW_TAG_string_type:
15451 case DW_TAG_subroutine_type:
15453 case DW_TAG_base_type:
15454 case DW_TAG_class_type:
15455 case DW_TAG_interface_type:
15456 case DW_TAG_enumeration_type:
15457 case DW_TAG_structure_type:
15458 case DW_TAG_subrange_type:
15459 case DW_TAG_typedef:
15460 case DW_TAG_union_type:
15467 /* Load all DIEs that are interesting for partial symbols into memory. */
15469 static struct partial_die_info *
15470 load_partial_dies (const struct die_reader_specs *reader,
15471 const gdb_byte *info_ptr, int building_psymtab)
15473 struct dwarf2_cu *cu = reader->cu;
15474 struct objfile *objfile = cu->objfile;
15475 struct partial_die_info *part_die;
15476 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15477 struct abbrev_info *abbrev;
15478 unsigned int bytes_read;
15479 unsigned int load_all = 0;
15480 int nesting_level = 1;
15485 gdb_assert (cu->per_cu != NULL);
15486 if (cu->per_cu->load_all_dies)
15490 = htab_create_alloc_ex (cu->header.length / 12,
15494 &cu->comp_unit_obstack,
15495 hashtab_obstack_allocate,
15496 dummy_obstack_deallocate);
15498 part_die = obstack_alloc (&cu->comp_unit_obstack,
15499 sizeof (struct partial_die_info));
15503 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15505 /* A NULL abbrev means the end of a series of children. */
15506 if (abbrev == NULL)
15508 if (--nesting_level == 0)
15510 /* PART_DIE was probably the last thing allocated on the
15511 comp_unit_obstack, so we could call obstack_free
15512 here. We don't do that because the waste is small,
15513 and will be cleaned up when we're done with this
15514 compilation unit. This way, we're also more robust
15515 against other users of the comp_unit_obstack. */
15518 info_ptr += bytes_read;
15519 last_die = parent_die;
15520 parent_die = parent_die->die_parent;
15524 /* Check for template arguments. We never save these; if
15525 they're seen, we just mark the parent, and go on our way. */
15526 if (parent_die != NULL
15527 && cu->language == language_cplus
15528 && (abbrev->tag == DW_TAG_template_type_param
15529 || abbrev->tag == DW_TAG_template_value_param))
15531 parent_die->has_template_arguments = 1;
15535 /* We don't need a partial DIE for the template argument. */
15536 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15541 /* We only recurse into c++ subprograms looking for template arguments.
15542 Skip their other children. */
15544 && cu->language == language_cplus
15545 && parent_die != NULL
15546 && parent_die->tag == DW_TAG_subprogram)
15548 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15552 /* Check whether this DIE is interesting enough to save. Normally
15553 we would not be interested in members here, but there may be
15554 later variables referencing them via DW_AT_specification (for
15555 static members). */
15557 && !is_type_tag_for_partial (abbrev->tag)
15558 && abbrev->tag != DW_TAG_constant
15559 && abbrev->tag != DW_TAG_enumerator
15560 && abbrev->tag != DW_TAG_subprogram
15561 && abbrev->tag != DW_TAG_lexical_block
15562 && abbrev->tag != DW_TAG_variable
15563 && abbrev->tag != DW_TAG_namespace
15564 && abbrev->tag != DW_TAG_module
15565 && abbrev->tag != DW_TAG_member
15566 && abbrev->tag != DW_TAG_imported_unit
15567 && abbrev->tag != DW_TAG_imported_declaration)
15569 /* Otherwise we skip to the next sibling, if any. */
15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15574 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15577 /* This two-pass algorithm for processing partial symbols has a
15578 high cost in cache pressure. Thus, handle some simple cases
15579 here which cover the majority of C partial symbols. DIEs
15580 which neither have specification tags in them, nor could have
15581 specification tags elsewhere pointing at them, can simply be
15582 processed and discarded.
15584 This segment is also optional; scan_partial_symbols and
15585 add_partial_symbol will handle these DIEs if we chain
15586 them in normally. When compilers which do not emit large
15587 quantities of duplicate debug information are more common,
15588 this code can probably be removed. */
15590 /* Any complete simple types at the top level (pretty much all
15591 of them, for a language without namespaces), can be processed
15593 if (parent_die == NULL
15594 && part_die->has_specification == 0
15595 && part_die->is_declaration == 0
15596 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15597 || part_die->tag == DW_TAG_base_type
15598 || part_die->tag == DW_TAG_subrange_type))
15600 if (building_psymtab && part_die->name != NULL)
15601 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15602 VAR_DOMAIN, LOC_TYPEDEF,
15603 &objfile->static_psymbols,
15604 0, (CORE_ADDR) 0, cu->language, objfile);
15605 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15609 /* The exception for DW_TAG_typedef with has_children above is
15610 a workaround of GCC PR debug/47510. In the case of this complaint
15611 type_name_no_tag_or_error will error on such types later.
15613 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15614 it could not find the child DIEs referenced later, this is checked
15615 above. In correct DWARF DW_TAG_typedef should have no children. */
15617 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15618 complaint (&symfile_complaints,
15619 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15620 "- DIE at 0x%x [in module %s]"),
15621 part_die->offset.sect_off, objfile_name (objfile));
15623 /* If we're at the second level, and we're an enumerator, and
15624 our parent has no specification (meaning possibly lives in a
15625 namespace elsewhere), then we can add the partial symbol now
15626 instead of queueing it. */
15627 if (part_die->tag == DW_TAG_enumerator
15628 && parent_die != NULL
15629 && parent_die->die_parent == NULL
15630 && parent_die->tag == DW_TAG_enumeration_type
15631 && parent_die->has_specification == 0)
15633 if (part_die->name == NULL)
15634 complaint (&symfile_complaints,
15635 _("malformed enumerator DIE ignored"));
15636 else if (building_psymtab)
15637 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15638 VAR_DOMAIN, LOC_CONST,
15639 (cu->language == language_cplus
15640 || cu->language == language_java)
15641 ? &objfile->global_psymbols
15642 : &objfile->static_psymbols,
15643 0, (CORE_ADDR) 0, cu->language, objfile);
15645 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15649 /* We'll save this DIE so link it in. */
15650 part_die->die_parent = parent_die;
15651 part_die->die_sibling = NULL;
15652 part_die->die_child = NULL;
15654 if (last_die && last_die == parent_die)
15655 last_die->die_child = part_die;
15657 last_die->die_sibling = part_die;
15659 last_die = part_die;
15661 if (first_die == NULL)
15662 first_die = part_die;
15664 /* Maybe add the DIE to the hash table. Not all DIEs that we
15665 find interesting need to be in the hash table, because we
15666 also have the parent/sibling/child chains; only those that we
15667 might refer to by offset later during partial symbol reading.
15669 For now this means things that might have be the target of a
15670 DW_AT_specification, DW_AT_abstract_origin, or
15671 DW_AT_extension. DW_AT_extension will refer only to
15672 namespaces; DW_AT_abstract_origin refers to functions (and
15673 many things under the function DIE, but we do not recurse
15674 into function DIEs during partial symbol reading) and
15675 possibly variables as well; DW_AT_specification refers to
15676 declarations. Declarations ought to have the DW_AT_declaration
15677 flag. It happens that GCC forgets to put it in sometimes, but
15678 only for functions, not for types.
15680 Adding more things than necessary to the hash table is harmless
15681 except for the performance cost. Adding too few will result in
15682 wasted time in find_partial_die, when we reread the compilation
15683 unit with load_all_dies set. */
15686 || abbrev->tag == DW_TAG_constant
15687 || abbrev->tag == DW_TAG_subprogram
15688 || abbrev->tag == DW_TAG_variable
15689 || abbrev->tag == DW_TAG_namespace
15690 || part_die->is_declaration)
15694 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15695 part_die->offset.sect_off, INSERT);
15699 part_die = obstack_alloc (&cu->comp_unit_obstack,
15700 sizeof (struct partial_die_info));
15702 /* For some DIEs we want to follow their children (if any). For C
15703 we have no reason to follow the children of structures; for other
15704 languages we have to, so that we can get at method physnames
15705 to infer fully qualified class names, for DW_AT_specification,
15706 and for C++ template arguments. For C++, we also look one level
15707 inside functions to find template arguments (if the name of the
15708 function does not already contain the template arguments).
15710 For Ada, we need to scan the children of subprograms and lexical
15711 blocks as well because Ada allows the definition of nested
15712 entities that could be interesting for the debugger, such as
15713 nested subprograms for instance. */
15714 if (last_die->has_children
15716 || last_die->tag == DW_TAG_namespace
15717 || last_die->tag == DW_TAG_module
15718 || last_die->tag == DW_TAG_enumeration_type
15719 || (cu->language == language_cplus
15720 && last_die->tag == DW_TAG_subprogram
15721 && (last_die->name == NULL
15722 || strchr (last_die->name, '<') == NULL))
15723 || (cu->language != language_c
15724 && (last_die->tag == DW_TAG_class_type
15725 || last_die->tag == DW_TAG_interface_type
15726 || last_die->tag == DW_TAG_structure_type
15727 || last_die->tag == DW_TAG_union_type))
15728 || (cu->language == language_ada
15729 && (last_die->tag == DW_TAG_subprogram
15730 || last_die->tag == DW_TAG_lexical_block))))
15733 parent_die = last_die;
15737 /* Otherwise we skip to the next sibling, if any. */
15738 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15740 /* Back to the top, do it again. */
15744 /* Read a minimal amount of information into the minimal die structure. */
15746 static const gdb_byte *
15747 read_partial_die (const struct die_reader_specs *reader,
15748 struct partial_die_info *part_die,
15749 struct abbrev_info *abbrev, unsigned int abbrev_len,
15750 const gdb_byte *info_ptr)
15752 struct dwarf2_cu *cu = reader->cu;
15753 struct objfile *objfile = cu->objfile;
15754 const gdb_byte *buffer = reader->buffer;
15756 struct attribute attr;
15757 int has_low_pc_attr = 0;
15758 int has_high_pc_attr = 0;
15759 int high_pc_relative = 0;
15761 memset (part_die, 0, sizeof (struct partial_die_info));
15763 part_die->offset.sect_off = info_ptr - buffer;
15765 info_ptr += abbrev_len;
15767 if (abbrev == NULL)
15770 part_die->tag = abbrev->tag;
15771 part_die->has_children = abbrev->has_children;
15773 for (i = 0; i < abbrev->num_attrs; ++i)
15775 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15777 /* Store the data if it is of an attribute we want to keep in a
15778 partial symbol table. */
15782 switch (part_die->tag)
15784 case DW_TAG_compile_unit:
15785 case DW_TAG_partial_unit:
15786 case DW_TAG_type_unit:
15787 /* Compilation units have a DW_AT_name that is a filename, not
15788 a source language identifier. */
15789 case DW_TAG_enumeration_type:
15790 case DW_TAG_enumerator:
15791 /* These tags always have simple identifiers already; no need
15792 to canonicalize them. */
15793 part_die->name = DW_STRING (&attr);
15797 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15798 &objfile->per_bfd->storage_obstack);
15802 case DW_AT_linkage_name:
15803 case DW_AT_MIPS_linkage_name:
15804 /* Note that both forms of linkage name might appear. We
15805 assume they will be the same, and we only store the last
15807 if (cu->language == language_ada)
15808 part_die->name = DW_STRING (&attr);
15809 part_die->linkage_name = DW_STRING (&attr);
15812 has_low_pc_attr = 1;
15813 part_die->lowpc = attr_value_as_address (&attr);
15815 case DW_AT_high_pc:
15816 has_high_pc_attr = 1;
15817 part_die->highpc = attr_value_as_address (&attr);
15818 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15819 high_pc_relative = 1;
15821 case DW_AT_location:
15822 /* Support the .debug_loc offsets. */
15823 if (attr_form_is_block (&attr))
15825 part_die->d.locdesc = DW_BLOCK (&attr);
15827 else if (attr_form_is_section_offset (&attr))
15829 dwarf2_complex_location_expr_complaint ();
15833 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15834 "partial symbol information");
15837 case DW_AT_external:
15838 part_die->is_external = DW_UNSND (&attr);
15840 case DW_AT_declaration:
15841 part_die->is_declaration = DW_UNSND (&attr);
15844 part_die->has_type = 1;
15846 case DW_AT_abstract_origin:
15847 case DW_AT_specification:
15848 case DW_AT_extension:
15849 part_die->has_specification = 1;
15850 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15851 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15852 || cu->per_cu->is_dwz);
15854 case DW_AT_sibling:
15855 /* Ignore absolute siblings, they might point outside of
15856 the current compile unit. */
15857 if (attr.form == DW_FORM_ref_addr)
15858 complaint (&symfile_complaints,
15859 _("ignoring absolute DW_AT_sibling"));
15862 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15863 const gdb_byte *sibling_ptr = buffer + off;
15865 if (sibling_ptr < info_ptr)
15866 complaint (&symfile_complaints,
15867 _("DW_AT_sibling points backwards"));
15868 else if (sibling_ptr > reader->buffer_end)
15869 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15871 part_die->sibling = sibling_ptr;
15874 case DW_AT_byte_size:
15875 part_die->has_byte_size = 1;
15877 case DW_AT_const_value:
15878 part_die->has_const_value = 1;
15880 case DW_AT_calling_convention:
15881 /* DWARF doesn't provide a way to identify a program's source-level
15882 entry point. DW_AT_calling_convention attributes are only meant
15883 to describe functions' calling conventions.
15885 However, because it's a necessary piece of information in
15886 Fortran, and because DW_CC_program is the only piece of debugging
15887 information whose definition refers to a 'main program' at all,
15888 several compilers have begun marking Fortran main programs with
15889 DW_CC_program --- even when those functions use the standard
15890 calling conventions.
15892 So until DWARF specifies a way to provide this information and
15893 compilers pick up the new representation, we'll support this
15895 if (DW_UNSND (&attr) == DW_CC_program
15896 && cu->language == language_fortran)
15897 set_objfile_main_name (objfile, part_die->name, language_fortran);
15900 if (DW_UNSND (&attr) == DW_INL_inlined
15901 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15902 part_die->may_be_inlined = 1;
15906 if (part_die->tag == DW_TAG_imported_unit)
15908 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15909 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15910 || cu->per_cu->is_dwz);
15919 if (high_pc_relative)
15920 part_die->highpc += part_die->lowpc;
15922 if (has_low_pc_attr && has_high_pc_attr)
15924 /* When using the GNU linker, .gnu.linkonce. sections are used to
15925 eliminate duplicate copies of functions and vtables and such.
15926 The linker will arbitrarily choose one and discard the others.
15927 The AT_*_pc values for such functions refer to local labels in
15928 these sections. If the section from that file was discarded, the
15929 labels are not in the output, so the relocs get a value of 0.
15930 If this is a discarded function, mark the pc bounds as invalid,
15931 so that GDB will ignore it. */
15932 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15934 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15936 complaint (&symfile_complaints,
15937 _("DW_AT_low_pc %s is zero "
15938 "for DIE at 0x%x [in module %s]"),
15939 paddress (gdbarch, part_die->lowpc),
15940 part_die->offset.sect_off, objfile_name (objfile));
15942 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15943 else if (part_die->lowpc >= part_die->highpc)
15945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15947 complaint (&symfile_complaints,
15948 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15949 "for DIE at 0x%x [in module %s]"),
15950 paddress (gdbarch, part_die->lowpc),
15951 paddress (gdbarch, part_die->highpc),
15952 part_die->offset.sect_off, objfile_name (objfile));
15955 part_die->has_pc_info = 1;
15961 /* Find a cached partial DIE at OFFSET in CU. */
15963 static struct partial_die_info *
15964 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15966 struct partial_die_info *lookup_die = NULL;
15967 struct partial_die_info part_die;
15969 part_die.offset = offset;
15970 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15976 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15977 except in the case of .debug_types DIEs which do not reference
15978 outside their CU (they do however referencing other types via
15979 DW_FORM_ref_sig8). */
15981 static struct partial_die_info *
15982 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15984 struct objfile *objfile = cu->objfile;
15985 struct dwarf2_per_cu_data *per_cu = NULL;
15986 struct partial_die_info *pd = NULL;
15988 if (offset_in_dwz == cu->per_cu->is_dwz
15989 && offset_in_cu_p (&cu->header, offset))
15991 pd = find_partial_die_in_comp_unit (offset, cu);
15994 /* We missed recording what we needed.
15995 Load all dies and try again. */
15996 per_cu = cu->per_cu;
16000 /* TUs don't reference other CUs/TUs (except via type signatures). */
16001 if (cu->per_cu->is_debug_types)
16003 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16004 " external reference to offset 0x%lx [in module %s].\n"),
16005 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16006 bfd_get_filename (objfile->obfd));
16008 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16011 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16012 load_partial_comp_unit (per_cu);
16014 per_cu->cu->last_used = 0;
16015 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16018 /* If we didn't find it, and not all dies have been loaded,
16019 load them all and try again. */
16021 if (pd == NULL && per_cu->load_all_dies == 0)
16023 per_cu->load_all_dies = 1;
16025 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16026 THIS_CU->cu may already be in use. So we can't just free it and
16027 replace its DIEs with the ones we read in. Instead, we leave those
16028 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16029 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16031 load_partial_comp_unit (per_cu);
16033 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16037 internal_error (__FILE__, __LINE__,
16038 _("could not find partial DIE 0x%x "
16039 "in cache [from module %s]\n"),
16040 offset.sect_off, bfd_get_filename (objfile->obfd));
16044 /* See if we can figure out if the class lives in a namespace. We do
16045 this by looking for a member function; its demangled name will
16046 contain namespace info, if there is any. */
16049 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16050 struct dwarf2_cu *cu)
16052 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16053 what template types look like, because the demangler
16054 frequently doesn't give the same name as the debug info. We
16055 could fix this by only using the demangled name to get the
16056 prefix (but see comment in read_structure_type). */
16058 struct partial_die_info *real_pdi;
16059 struct partial_die_info *child_pdi;
16061 /* If this DIE (this DIE's specification, if any) has a parent, then
16062 we should not do this. We'll prepend the parent's fully qualified
16063 name when we create the partial symbol. */
16065 real_pdi = struct_pdi;
16066 while (real_pdi->has_specification)
16067 real_pdi = find_partial_die (real_pdi->spec_offset,
16068 real_pdi->spec_is_dwz, cu);
16070 if (real_pdi->die_parent != NULL)
16073 for (child_pdi = struct_pdi->die_child;
16075 child_pdi = child_pdi->die_sibling)
16077 if (child_pdi->tag == DW_TAG_subprogram
16078 && child_pdi->linkage_name != NULL)
16080 char *actual_class_name
16081 = language_class_name_from_physname (cu->language_defn,
16082 child_pdi->linkage_name);
16083 if (actual_class_name != NULL)
16086 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16088 strlen (actual_class_name));
16089 xfree (actual_class_name);
16096 /* Adjust PART_DIE before generating a symbol for it. This function
16097 may set the is_external flag or change the DIE's name. */
16100 fixup_partial_die (struct partial_die_info *part_die,
16101 struct dwarf2_cu *cu)
16103 /* Once we've fixed up a die, there's no point in doing so again.
16104 This also avoids a memory leak if we were to call
16105 guess_partial_die_structure_name multiple times. */
16106 if (part_die->fixup_called)
16109 /* If we found a reference attribute and the DIE has no name, try
16110 to find a name in the referred to DIE. */
16112 if (part_die->name == NULL && part_die->has_specification)
16114 struct partial_die_info *spec_die;
16116 spec_die = find_partial_die (part_die->spec_offset,
16117 part_die->spec_is_dwz, cu);
16119 fixup_partial_die (spec_die, cu);
16121 if (spec_die->name)
16123 part_die->name = spec_die->name;
16125 /* Copy DW_AT_external attribute if it is set. */
16126 if (spec_die->is_external)
16127 part_die->is_external = spec_die->is_external;
16131 /* Set default names for some unnamed DIEs. */
16133 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16134 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16136 /* If there is no parent die to provide a namespace, and there are
16137 children, see if we can determine the namespace from their linkage
16139 if (cu->language == language_cplus
16140 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16141 && part_die->die_parent == NULL
16142 && part_die->has_children
16143 && (part_die->tag == DW_TAG_class_type
16144 || part_die->tag == DW_TAG_structure_type
16145 || part_die->tag == DW_TAG_union_type))
16146 guess_partial_die_structure_name (part_die, cu);
16148 /* GCC might emit a nameless struct or union that has a linkage
16149 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16150 if (part_die->name == NULL
16151 && (part_die->tag == DW_TAG_class_type
16152 || part_die->tag == DW_TAG_interface_type
16153 || part_die->tag == DW_TAG_structure_type
16154 || part_die->tag == DW_TAG_union_type)
16155 && part_die->linkage_name != NULL)
16159 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16164 /* Strip any leading namespaces/classes, keep only the base name.
16165 DW_AT_name for named DIEs does not contain the prefixes. */
16166 base = strrchr (demangled, ':');
16167 if (base && base > demangled && base[-1] == ':')
16173 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16174 base, strlen (base));
16179 part_die->fixup_called = 1;
16182 /* Read an attribute value described by an attribute form. */
16184 static const gdb_byte *
16185 read_attribute_value (const struct die_reader_specs *reader,
16186 struct attribute *attr, unsigned form,
16187 const gdb_byte *info_ptr)
16189 struct dwarf2_cu *cu = reader->cu;
16190 struct objfile *objfile = cu->objfile;
16191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16192 bfd *abfd = reader->abfd;
16193 struct comp_unit_head *cu_header = &cu->header;
16194 unsigned int bytes_read;
16195 struct dwarf_block *blk;
16200 case DW_FORM_ref_addr:
16201 if (cu->header.version == 2)
16202 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16204 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16205 &cu->header, &bytes_read);
16206 info_ptr += bytes_read;
16208 case DW_FORM_GNU_ref_alt:
16209 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16210 info_ptr += bytes_read;
16213 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16214 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16215 info_ptr += bytes_read;
16217 case DW_FORM_block2:
16218 blk = dwarf_alloc_block (cu);
16219 blk->size = read_2_bytes (abfd, info_ptr);
16221 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16222 info_ptr += blk->size;
16223 DW_BLOCK (attr) = blk;
16225 case DW_FORM_block4:
16226 blk = dwarf_alloc_block (cu);
16227 blk->size = read_4_bytes (abfd, info_ptr);
16229 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16230 info_ptr += blk->size;
16231 DW_BLOCK (attr) = blk;
16233 case DW_FORM_data2:
16234 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16237 case DW_FORM_data4:
16238 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16241 case DW_FORM_data8:
16242 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16245 case DW_FORM_sec_offset:
16246 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16247 info_ptr += bytes_read;
16249 case DW_FORM_string:
16250 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16251 DW_STRING_IS_CANONICAL (attr) = 0;
16252 info_ptr += bytes_read;
16255 if (!cu->per_cu->is_dwz)
16257 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16259 DW_STRING_IS_CANONICAL (attr) = 0;
16260 info_ptr += bytes_read;
16264 case DW_FORM_GNU_strp_alt:
16266 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16267 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16270 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16271 DW_STRING_IS_CANONICAL (attr) = 0;
16272 info_ptr += bytes_read;
16275 case DW_FORM_exprloc:
16276 case DW_FORM_block:
16277 blk = dwarf_alloc_block (cu);
16278 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16279 info_ptr += bytes_read;
16280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16281 info_ptr += blk->size;
16282 DW_BLOCK (attr) = blk;
16284 case DW_FORM_block1:
16285 blk = dwarf_alloc_block (cu);
16286 blk->size = read_1_byte (abfd, info_ptr);
16288 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16289 info_ptr += blk->size;
16290 DW_BLOCK (attr) = blk;
16292 case DW_FORM_data1:
16293 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16297 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16300 case DW_FORM_flag_present:
16301 DW_UNSND (attr) = 1;
16303 case DW_FORM_sdata:
16304 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16305 info_ptr += bytes_read;
16307 case DW_FORM_udata:
16308 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16309 info_ptr += bytes_read;
16312 DW_UNSND (attr) = (cu->header.offset.sect_off
16313 + read_1_byte (abfd, info_ptr));
16317 DW_UNSND (attr) = (cu->header.offset.sect_off
16318 + read_2_bytes (abfd, info_ptr));
16322 DW_UNSND (attr) = (cu->header.offset.sect_off
16323 + read_4_bytes (abfd, info_ptr));
16327 DW_UNSND (attr) = (cu->header.offset.sect_off
16328 + read_8_bytes (abfd, info_ptr));
16331 case DW_FORM_ref_sig8:
16332 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16335 case DW_FORM_ref_udata:
16336 DW_UNSND (attr) = (cu->header.offset.sect_off
16337 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16338 info_ptr += bytes_read;
16340 case DW_FORM_indirect:
16341 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16342 info_ptr += bytes_read;
16343 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16345 case DW_FORM_GNU_addr_index:
16346 if (reader->dwo_file == NULL)
16348 /* For now flag a hard error.
16349 Later we can turn this into a complaint. */
16350 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16351 dwarf_form_name (form),
16352 bfd_get_filename (abfd));
16354 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16355 info_ptr += bytes_read;
16357 case DW_FORM_GNU_str_index:
16358 if (reader->dwo_file == NULL)
16360 /* For now flag a hard error.
16361 Later we can turn this into a complaint if warranted. */
16362 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16363 dwarf_form_name (form),
16364 bfd_get_filename (abfd));
16367 ULONGEST str_index =
16368 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16370 DW_STRING (attr) = read_str_index (reader, str_index);
16371 DW_STRING_IS_CANONICAL (attr) = 0;
16372 info_ptr += bytes_read;
16376 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16377 dwarf_form_name (form),
16378 bfd_get_filename (abfd));
16382 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16383 attr->form = DW_FORM_GNU_ref_alt;
16385 /* We have seen instances where the compiler tried to emit a byte
16386 size attribute of -1 which ended up being encoded as an unsigned
16387 0xffffffff. Although 0xffffffff is technically a valid size value,
16388 an object of this size seems pretty unlikely so we can relatively
16389 safely treat these cases as if the size attribute was invalid and
16390 treat them as zero by default. */
16391 if (attr->name == DW_AT_byte_size
16392 && form == DW_FORM_data4
16393 && DW_UNSND (attr) >= 0xffffffff)
16396 (&symfile_complaints,
16397 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16398 hex_string (DW_UNSND (attr)));
16399 DW_UNSND (attr) = 0;
16405 /* Read an attribute described by an abbreviated attribute. */
16407 static const gdb_byte *
16408 read_attribute (const struct die_reader_specs *reader,
16409 struct attribute *attr, struct attr_abbrev *abbrev,
16410 const gdb_byte *info_ptr)
16412 attr->name = abbrev->name;
16413 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16416 /* Read dwarf information from a buffer. */
16418 static unsigned int
16419 read_1_byte (bfd *abfd, const gdb_byte *buf)
16421 return bfd_get_8 (abfd, buf);
16425 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16427 return bfd_get_signed_8 (abfd, buf);
16430 static unsigned int
16431 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16433 return bfd_get_16 (abfd, buf);
16437 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16439 return bfd_get_signed_16 (abfd, buf);
16442 static unsigned int
16443 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16445 return bfd_get_32 (abfd, buf);
16449 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16451 return bfd_get_signed_32 (abfd, buf);
16455 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16457 return bfd_get_64 (abfd, buf);
16461 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16462 unsigned int *bytes_read)
16464 struct comp_unit_head *cu_header = &cu->header;
16465 CORE_ADDR retval = 0;
16467 if (cu_header->signed_addr_p)
16469 switch (cu_header->addr_size)
16472 retval = bfd_get_signed_16 (abfd, buf);
16475 retval = bfd_get_signed_32 (abfd, buf);
16478 retval = bfd_get_signed_64 (abfd, buf);
16481 internal_error (__FILE__, __LINE__,
16482 _("read_address: bad switch, signed [in module %s]"),
16483 bfd_get_filename (abfd));
16488 switch (cu_header->addr_size)
16491 retval = bfd_get_16 (abfd, buf);
16494 retval = bfd_get_32 (abfd, buf);
16497 retval = bfd_get_64 (abfd, buf);
16500 internal_error (__FILE__, __LINE__,
16501 _("read_address: bad switch, "
16502 "unsigned [in module %s]"),
16503 bfd_get_filename (abfd));
16507 *bytes_read = cu_header->addr_size;
16511 /* Read the initial length from a section. The (draft) DWARF 3
16512 specification allows the initial length to take up either 4 bytes
16513 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16514 bytes describe the length and all offsets will be 8 bytes in length
16517 An older, non-standard 64-bit format is also handled by this
16518 function. The older format in question stores the initial length
16519 as an 8-byte quantity without an escape value. Lengths greater
16520 than 2^32 aren't very common which means that the initial 4 bytes
16521 is almost always zero. Since a length value of zero doesn't make
16522 sense for the 32-bit format, this initial zero can be considered to
16523 be an escape value which indicates the presence of the older 64-bit
16524 format. As written, the code can't detect (old format) lengths
16525 greater than 4GB. If it becomes necessary to handle lengths
16526 somewhat larger than 4GB, we could allow other small values (such
16527 as the non-sensical values of 1, 2, and 3) to also be used as
16528 escape values indicating the presence of the old format.
16530 The value returned via bytes_read should be used to increment the
16531 relevant pointer after calling read_initial_length().
16533 [ Note: read_initial_length() and read_offset() are based on the
16534 document entitled "DWARF Debugging Information Format", revision
16535 3, draft 8, dated November 19, 2001. This document was obtained
16538 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16540 This document is only a draft and is subject to change. (So beware.)
16542 Details regarding the older, non-standard 64-bit format were
16543 determined empirically by examining 64-bit ELF files produced by
16544 the SGI toolchain on an IRIX 6.5 machine.
16546 - Kevin, July 16, 2002
16550 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16552 LONGEST length = bfd_get_32 (abfd, buf);
16554 if (length == 0xffffffff)
16556 length = bfd_get_64 (abfd, buf + 4);
16559 else if (length == 0)
16561 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16562 length = bfd_get_64 (abfd, buf);
16573 /* Cover function for read_initial_length.
16574 Returns the length of the object at BUF, and stores the size of the
16575 initial length in *BYTES_READ and stores the size that offsets will be in
16577 If the initial length size is not equivalent to that specified in
16578 CU_HEADER then issue a complaint.
16579 This is useful when reading non-comp-unit headers. */
16582 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16583 const struct comp_unit_head *cu_header,
16584 unsigned int *bytes_read,
16585 unsigned int *offset_size)
16587 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16589 gdb_assert (cu_header->initial_length_size == 4
16590 || cu_header->initial_length_size == 8
16591 || cu_header->initial_length_size == 12);
16593 if (cu_header->initial_length_size != *bytes_read)
16594 complaint (&symfile_complaints,
16595 _("intermixed 32-bit and 64-bit DWARF sections"));
16597 *offset_size = (*bytes_read == 4) ? 4 : 8;
16601 /* Read an offset from the data stream. The size of the offset is
16602 given by cu_header->offset_size. */
16605 read_offset (bfd *abfd, const gdb_byte *buf,
16606 const struct comp_unit_head *cu_header,
16607 unsigned int *bytes_read)
16609 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16611 *bytes_read = cu_header->offset_size;
16615 /* Read an offset from the data stream. */
16618 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16620 LONGEST retval = 0;
16622 switch (offset_size)
16625 retval = bfd_get_32 (abfd, buf);
16628 retval = bfd_get_64 (abfd, buf);
16631 internal_error (__FILE__, __LINE__,
16632 _("read_offset_1: bad switch [in module %s]"),
16633 bfd_get_filename (abfd));
16639 static const gdb_byte *
16640 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16642 /* If the size of a host char is 8 bits, we can return a pointer
16643 to the buffer, otherwise we have to copy the data to a buffer
16644 allocated on the temporary obstack. */
16645 gdb_assert (HOST_CHAR_BIT == 8);
16649 static const char *
16650 read_direct_string (bfd *abfd, const gdb_byte *buf,
16651 unsigned int *bytes_read_ptr)
16653 /* If the size of a host char is 8 bits, we can return a pointer
16654 to the string, otherwise we have to copy the string to a buffer
16655 allocated on the temporary obstack. */
16656 gdb_assert (HOST_CHAR_BIT == 8);
16659 *bytes_read_ptr = 1;
16662 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16663 return (const char *) buf;
16666 static const char *
16667 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16669 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16670 if (dwarf2_per_objfile->str.buffer == NULL)
16671 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16672 bfd_get_filename (abfd));
16673 if (str_offset >= dwarf2_per_objfile->str.size)
16674 error (_("DW_FORM_strp pointing outside of "
16675 ".debug_str section [in module %s]"),
16676 bfd_get_filename (abfd));
16677 gdb_assert (HOST_CHAR_BIT == 8);
16678 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16680 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16683 /* Read a string at offset STR_OFFSET in the .debug_str section from
16684 the .dwz file DWZ. Throw an error if the offset is too large. If
16685 the string consists of a single NUL byte, return NULL; otherwise
16686 return a pointer to the string. */
16688 static const char *
16689 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16691 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16693 if (dwz->str.buffer == NULL)
16694 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16695 "section [in module %s]"),
16696 bfd_get_filename (dwz->dwz_bfd));
16697 if (str_offset >= dwz->str.size)
16698 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16699 ".debug_str section [in module %s]"),
16700 bfd_get_filename (dwz->dwz_bfd));
16701 gdb_assert (HOST_CHAR_BIT == 8);
16702 if (dwz->str.buffer[str_offset] == '\0')
16704 return (const char *) (dwz->str.buffer + str_offset);
16707 static const char *
16708 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16709 const struct comp_unit_head *cu_header,
16710 unsigned int *bytes_read_ptr)
16712 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16714 return read_indirect_string_at_offset (abfd, str_offset);
16718 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16719 unsigned int *bytes_read_ptr)
16722 unsigned int num_read;
16724 unsigned char byte;
16732 byte = bfd_get_8 (abfd, buf);
16735 result |= ((ULONGEST) (byte & 127) << shift);
16736 if ((byte & 128) == 0)
16742 *bytes_read_ptr = num_read;
16747 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16748 unsigned int *bytes_read_ptr)
16751 int i, shift, num_read;
16752 unsigned char byte;
16760 byte = bfd_get_8 (abfd, buf);
16763 result |= ((LONGEST) (byte & 127) << shift);
16765 if ((byte & 128) == 0)
16770 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16771 result |= -(((LONGEST) 1) << shift);
16772 *bytes_read_ptr = num_read;
16776 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16777 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16778 ADDR_SIZE is the size of addresses from the CU header. */
16781 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16783 struct objfile *objfile = dwarf2_per_objfile->objfile;
16784 bfd *abfd = objfile->obfd;
16785 const gdb_byte *info_ptr;
16787 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16788 if (dwarf2_per_objfile->addr.buffer == NULL)
16789 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16790 objfile_name (objfile));
16791 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16792 error (_("DW_FORM_addr_index pointing outside of "
16793 ".debug_addr section [in module %s]"),
16794 objfile_name (objfile));
16795 info_ptr = (dwarf2_per_objfile->addr.buffer
16796 + addr_base + addr_index * addr_size);
16797 if (addr_size == 4)
16798 return bfd_get_32 (abfd, info_ptr);
16800 return bfd_get_64 (abfd, info_ptr);
16803 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16806 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16808 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16811 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16814 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16815 unsigned int *bytes_read)
16817 bfd *abfd = cu->objfile->obfd;
16818 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16820 return read_addr_index (cu, addr_index);
16823 /* Data structure to pass results from dwarf2_read_addr_index_reader
16824 back to dwarf2_read_addr_index. */
16826 struct dwarf2_read_addr_index_data
16828 ULONGEST addr_base;
16832 /* die_reader_func for dwarf2_read_addr_index. */
16835 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16836 const gdb_byte *info_ptr,
16837 struct die_info *comp_unit_die,
16841 struct dwarf2_cu *cu = reader->cu;
16842 struct dwarf2_read_addr_index_data *aidata =
16843 (struct dwarf2_read_addr_index_data *) data;
16845 aidata->addr_base = cu->addr_base;
16846 aidata->addr_size = cu->header.addr_size;
16849 /* Given an index in .debug_addr, fetch the value.
16850 NOTE: This can be called during dwarf expression evaluation,
16851 long after the debug information has been read, and thus per_cu->cu
16852 may no longer exist. */
16855 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16856 unsigned int addr_index)
16858 struct objfile *objfile = per_cu->objfile;
16859 struct dwarf2_cu *cu = per_cu->cu;
16860 ULONGEST addr_base;
16863 /* This is intended to be called from outside this file. */
16864 dw2_setup (objfile);
16866 /* We need addr_base and addr_size.
16867 If we don't have PER_CU->cu, we have to get it.
16868 Nasty, but the alternative is storing the needed info in PER_CU,
16869 which at this point doesn't seem justified: it's not clear how frequently
16870 it would get used and it would increase the size of every PER_CU.
16871 Entry points like dwarf2_per_cu_addr_size do a similar thing
16872 so we're not in uncharted territory here.
16873 Alas we need to be a bit more complicated as addr_base is contained
16876 We don't need to read the entire CU(/TU).
16877 We just need the header and top level die.
16879 IWBN to use the aging mechanism to let us lazily later discard the CU.
16880 For now we skip this optimization. */
16884 addr_base = cu->addr_base;
16885 addr_size = cu->header.addr_size;
16889 struct dwarf2_read_addr_index_data aidata;
16891 /* Note: We can't use init_cutu_and_read_dies_simple here,
16892 we need addr_base. */
16893 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16894 dwarf2_read_addr_index_reader, &aidata);
16895 addr_base = aidata.addr_base;
16896 addr_size = aidata.addr_size;
16899 return read_addr_index_1 (addr_index, addr_base, addr_size);
16902 /* Given a DW_FORM_GNU_str_index, fetch the string.
16903 This is only used by the Fission support. */
16905 static const char *
16906 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16908 struct objfile *objfile = dwarf2_per_objfile->objfile;
16909 const char *objf_name = objfile_name (objfile);
16910 bfd *abfd = objfile->obfd;
16911 struct dwarf2_cu *cu = reader->cu;
16912 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16913 struct dwarf2_section_info *str_offsets_section =
16914 &reader->dwo_file->sections.str_offsets;
16915 const gdb_byte *info_ptr;
16916 ULONGEST str_offset;
16917 static const char form_name[] = "DW_FORM_GNU_str_index";
16919 dwarf2_read_section (objfile, str_section);
16920 dwarf2_read_section (objfile, str_offsets_section);
16921 if (str_section->buffer == NULL)
16922 error (_("%s used without .debug_str.dwo section"
16923 " in CU at offset 0x%lx [in module %s]"),
16924 form_name, (long) cu->header.offset.sect_off, objf_name);
16925 if (str_offsets_section->buffer == NULL)
16926 error (_("%s used without .debug_str_offsets.dwo section"
16927 " in CU at offset 0x%lx [in module %s]"),
16928 form_name, (long) cu->header.offset.sect_off, objf_name);
16929 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16930 error (_("%s pointing outside of .debug_str_offsets.dwo"
16931 " section in CU at offset 0x%lx [in module %s]"),
16932 form_name, (long) cu->header.offset.sect_off, objf_name);
16933 info_ptr = (str_offsets_section->buffer
16934 + str_index * cu->header.offset_size);
16935 if (cu->header.offset_size == 4)
16936 str_offset = bfd_get_32 (abfd, info_ptr);
16938 str_offset = bfd_get_64 (abfd, info_ptr);
16939 if (str_offset >= str_section->size)
16940 error (_("Offset from %s pointing outside of"
16941 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16942 form_name, (long) cu->header.offset.sect_off, objf_name);
16943 return (const char *) (str_section->buffer + str_offset);
16946 /* Return the length of an LEB128 number in BUF. */
16949 leb128_size (const gdb_byte *buf)
16951 const gdb_byte *begin = buf;
16957 if ((byte & 128) == 0)
16958 return buf - begin;
16963 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16972 cu->language = language_c;
16974 case DW_LANG_C_plus_plus:
16975 case DW_LANG_C_plus_plus_11:
16976 case DW_LANG_C_plus_plus_14:
16977 cu->language = language_cplus;
16980 cu->language = language_d;
16982 case DW_LANG_Fortran77:
16983 case DW_LANG_Fortran90:
16984 case DW_LANG_Fortran95:
16985 case DW_LANG_Fortran03:
16986 case DW_LANG_Fortran08:
16987 cu->language = language_fortran;
16990 cu->language = language_go;
16992 case DW_LANG_Mips_Assembler:
16993 cu->language = language_asm;
16996 cu->language = language_java;
16998 case DW_LANG_Ada83:
16999 case DW_LANG_Ada95:
17000 cu->language = language_ada;
17002 case DW_LANG_Modula2:
17003 cu->language = language_m2;
17005 case DW_LANG_Pascal83:
17006 cu->language = language_pascal;
17009 cu->language = language_objc;
17011 case DW_LANG_Cobol74:
17012 case DW_LANG_Cobol85:
17014 cu->language = language_minimal;
17017 cu->language_defn = language_def (cu->language);
17020 /* Return the named attribute or NULL if not there. */
17022 static struct attribute *
17023 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17028 struct attribute *spec = NULL;
17030 for (i = 0; i < die->num_attrs; ++i)
17032 if (die->attrs[i].name == name)
17033 return &die->attrs[i];
17034 if (die->attrs[i].name == DW_AT_specification
17035 || die->attrs[i].name == DW_AT_abstract_origin)
17036 spec = &die->attrs[i];
17042 die = follow_die_ref (die, spec, &cu);
17048 /* Return the named attribute or NULL if not there,
17049 but do not follow DW_AT_specification, etc.
17050 This is for use in contexts where we're reading .debug_types dies.
17051 Following DW_AT_specification, DW_AT_abstract_origin will take us
17052 back up the chain, and we want to go down. */
17054 static struct attribute *
17055 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17059 for (i = 0; i < die->num_attrs; ++i)
17060 if (die->attrs[i].name == name)
17061 return &die->attrs[i];
17066 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17067 and holds a non-zero value. This function should only be used for
17068 DW_FORM_flag or DW_FORM_flag_present attributes. */
17071 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17073 struct attribute *attr = dwarf2_attr (die, name, cu);
17075 return (attr && DW_UNSND (attr));
17079 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17081 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17082 which value is non-zero. However, we have to be careful with
17083 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17084 (via dwarf2_flag_true_p) follows this attribute. So we may
17085 end up accidently finding a declaration attribute that belongs
17086 to a different DIE referenced by the specification attribute,
17087 even though the given DIE does not have a declaration attribute. */
17088 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17089 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17092 /* Return the die giving the specification for DIE, if there is
17093 one. *SPEC_CU is the CU containing DIE on input, and the CU
17094 containing the return value on output. If there is no
17095 specification, but there is an abstract origin, that is
17098 static struct die_info *
17099 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17101 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17104 if (spec_attr == NULL)
17105 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17107 if (spec_attr == NULL)
17110 return follow_die_ref (die, spec_attr, spec_cu);
17113 /* Free the line_header structure *LH, and any arrays and strings it
17115 NOTE: This is also used as a "cleanup" function. */
17118 free_line_header (struct line_header *lh)
17120 if (lh->standard_opcode_lengths)
17121 xfree (lh->standard_opcode_lengths);
17123 /* Remember that all the lh->file_names[i].name pointers are
17124 pointers into debug_line_buffer, and don't need to be freed. */
17125 if (lh->file_names)
17126 xfree (lh->file_names);
17128 /* Similarly for the include directory names. */
17129 if (lh->include_dirs)
17130 xfree (lh->include_dirs);
17135 /* Stub for free_line_header to match void * callback types. */
17138 free_line_header_voidp (void *arg)
17140 struct line_header *lh = arg;
17142 free_line_header (lh);
17145 /* Add an entry to LH's include directory table. */
17148 add_include_dir (struct line_header *lh, const char *include_dir)
17150 /* Grow the array if necessary. */
17151 if (lh->include_dirs_size == 0)
17153 lh->include_dirs_size = 1; /* for testing */
17154 lh->include_dirs = xmalloc (lh->include_dirs_size
17155 * sizeof (*lh->include_dirs));
17157 else if (lh->num_include_dirs >= lh->include_dirs_size)
17159 lh->include_dirs_size *= 2;
17160 lh->include_dirs = xrealloc (lh->include_dirs,
17161 (lh->include_dirs_size
17162 * sizeof (*lh->include_dirs)));
17165 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17168 /* Add an entry to LH's file name table. */
17171 add_file_name (struct line_header *lh,
17173 unsigned int dir_index,
17174 unsigned int mod_time,
17175 unsigned int length)
17177 struct file_entry *fe;
17179 /* Grow the array if necessary. */
17180 if (lh->file_names_size == 0)
17182 lh->file_names_size = 1; /* for testing */
17183 lh->file_names = xmalloc (lh->file_names_size
17184 * sizeof (*lh->file_names));
17186 else if (lh->num_file_names >= lh->file_names_size)
17188 lh->file_names_size *= 2;
17189 lh->file_names = xrealloc (lh->file_names,
17190 (lh->file_names_size
17191 * sizeof (*lh->file_names)));
17194 fe = &lh->file_names[lh->num_file_names++];
17196 fe->dir_index = dir_index;
17197 fe->mod_time = mod_time;
17198 fe->length = length;
17199 fe->included_p = 0;
17203 /* A convenience function to find the proper .debug_line section for a
17206 static struct dwarf2_section_info *
17207 get_debug_line_section (struct dwarf2_cu *cu)
17209 struct dwarf2_section_info *section;
17211 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17213 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17214 section = &cu->dwo_unit->dwo_file->sections.line;
17215 else if (cu->per_cu->is_dwz)
17217 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17219 section = &dwz->line;
17222 section = &dwarf2_per_objfile->line;
17227 /* Read the statement program header starting at OFFSET in
17228 .debug_line, or .debug_line.dwo. Return a pointer
17229 to a struct line_header, allocated using xmalloc.
17230 Returns NULL if there is a problem reading the header, e.g., if it
17231 has a version we don't understand.
17233 NOTE: the strings in the include directory and file name tables of
17234 the returned object point into the dwarf line section buffer,
17235 and must not be freed. */
17237 static struct line_header *
17238 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17240 struct cleanup *back_to;
17241 struct line_header *lh;
17242 const gdb_byte *line_ptr;
17243 unsigned int bytes_read, offset_size;
17245 const char *cur_dir, *cur_file;
17246 struct dwarf2_section_info *section;
17249 section = get_debug_line_section (cu);
17250 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17251 if (section->buffer == NULL)
17253 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17254 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17256 complaint (&symfile_complaints, _("missing .debug_line section"));
17260 /* We can't do this until we know the section is non-empty.
17261 Only then do we know we have such a section. */
17262 abfd = get_section_bfd_owner (section);
17264 /* Make sure that at least there's room for the total_length field.
17265 That could be 12 bytes long, but we're just going to fudge that. */
17266 if (offset + 4 >= section->size)
17268 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17272 lh = xmalloc (sizeof (*lh));
17273 memset (lh, 0, sizeof (*lh));
17274 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17277 lh->offset.sect_off = offset;
17278 lh->offset_in_dwz = cu->per_cu->is_dwz;
17280 line_ptr = section->buffer + offset;
17282 /* Read in the header. */
17284 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17285 &bytes_read, &offset_size);
17286 line_ptr += bytes_read;
17287 if (line_ptr + lh->total_length > (section->buffer + section->size))
17289 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17290 do_cleanups (back_to);
17293 lh->statement_program_end = line_ptr + lh->total_length;
17294 lh->version = read_2_bytes (abfd, line_ptr);
17296 if (lh->version > 4)
17298 /* This is a version we don't understand. The format could have
17299 changed in ways we don't handle properly so just punt. */
17300 complaint (&symfile_complaints,
17301 _("unsupported version in .debug_line section"));
17304 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17305 line_ptr += offset_size;
17306 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17308 if (lh->version >= 4)
17310 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17314 lh->maximum_ops_per_instruction = 1;
17316 if (lh->maximum_ops_per_instruction == 0)
17318 lh->maximum_ops_per_instruction = 1;
17319 complaint (&symfile_complaints,
17320 _("invalid maximum_ops_per_instruction "
17321 "in `.debug_line' section"));
17324 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17326 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17328 lh->line_range = read_1_byte (abfd, line_ptr);
17330 lh->opcode_base = read_1_byte (abfd, line_ptr);
17332 lh->standard_opcode_lengths
17333 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17335 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17336 for (i = 1; i < lh->opcode_base; ++i)
17338 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17342 /* Read directory table. */
17343 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17345 line_ptr += bytes_read;
17346 add_include_dir (lh, cur_dir);
17348 line_ptr += bytes_read;
17350 /* Read file name table. */
17351 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17353 unsigned int dir_index, mod_time, length;
17355 line_ptr += bytes_read;
17356 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17357 line_ptr += bytes_read;
17358 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17359 line_ptr += bytes_read;
17360 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17361 line_ptr += bytes_read;
17363 add_file_name (lh, cur_file, dir_index, mod_time, length);
17365 line_ptr += bytes_read;
17366 lh->statement_program_start = line_ptr;
17368 if (line_ptr > (section->buffer + section->size))
17369 complaint (&symfile_complaints,
17370 _("line number info header doesn't "
17371 "fit in `.debug_line' section"));
17373 discard_cleanups (back_to);
17377 /* Subroutine of dwarf_decode_lines to simplify it.
17378 Return the file name of the psymtab for included file FILE_INDEX
17379 in line header LH of PST.
17380 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17381 If space for the result is malloc'd, it will be freed by a cleanup.
17382 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17384 The function creates dangling cleanup registration. */
17386 static const char *
17387 psymtab_include_file_name (const struct line_header *lh, int file_index,
17388 const struct partial_symtab *pst,
17389 const char *comp_dir)
17391 const struct file_entry fe = lh->file_names [file_index];
17392 const char *include_name = fe.name;
17393 const char *include_name_to_compare = include_name;
17394 const char *dir_name = NULL;
17395 const char *pst_filename;
17396 char *copied_name = NULL;
17400 dir_name = lh->include_dirs[fe.dir_index - 1];
17402 if (!IS_ABSOLUTE_PATH (include_name)
17403 && (dir_name != NULL || comp_dir != NULL))
17405 /* Avoid creating a duplicate psymtab for PST.
17406 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17407 Before we do the comparison, however, we need to account
17408 for DIR_NAME and COMP_DIR.
17409 First prepend dir_name (if non-NULL). If we still don't
17410 have an absolute path prepend comp_dir (if non-NULL).
17411 However, the directory we record in the include-file's
17412 psymtab does not contain COMP_DIR (to match the
17413 corresponding symtab(s)).
17418 bash$ gcc -g ./hello.c
17419 include_name = "hello.c"
17421 DW_AT_comp_dir = comp_dir = "/tmp"
17422 DW_AT_name = "./hello.c"
17426 if (dir_name != NULL)
17428 char *tem = concat (dir_name, SLASH_STRING,
17429 include_name, (char *)NULL);
17431 make_cleanup (xfree, tem);
17432 include_name = tem;
17433 include_name_to_compare = include_name;
17435 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17437 char *tem = concat (comp_dir, SLASH_STRING,
17438 include_name, (char *)NULL);
17440 make_cleanup (xfree, tem);
17441 include_name_to_compare = tem;
17445 pst_filename = pst->filename;
17446 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17448 copied_name = concat (pst->dirname, SLASH_STRING,
17449 pst_filename, (char *)NULL);
17450 pst_filename = copied_name;
17453 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17455 if (copied_name != NULL)
17456 xfree (copied_name);
17460 return include_name;
17463 /* Ignore this record_line request. */
17466 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17471 /* Return non-zero if we should add LINE to the line number table.
17472 LINE is the line to add, LAST_LINE is the last line that was added,
17473 LAST_SUBFILE is the subfile for LAST_LINE.
17474 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17475 had a non-zero discriminator.
17477 We have to be careful in the presence of discriminators.
17478 E.g., for this line:
17480 for (i = 0; i < 100000; i++);
17482 clang can emit four line number entries for that one line,
17483 each with a different discriminator.
17484 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17486 However, we want gdb to coalesce all four entries into one.
17487 Otherwise the user could stepi into the middle of the line and
17488 gdb would get confused about whether the pc really was in the
17489 middle of the line.
17491 Things are further complicated by the fact that two consecutive
17492 line number entries for the same line is a heuristic used by gcc
17493 to denote the end of the prologue. So we can't just discard duplicate
17494 entries, we have to be selective about it. The heuristic we use is
17495 that we only collapse consecutive entries for the same line if at least
17496 one of those entries has a non-zero discriminator. PR 17276.
17498 Note: Addresses in the line number state machine can never go backwards
17499 within one sequence, thus this coalescing is ok. */
17502 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17503 int line_has_non_zero_discriminator,
17504 struct subfile *last_subfile)
17506 if (current_subfile != last_subfile)
17508 if (line != last_line)
17510 /* Same line for the same file that we've seen already.
17511 As a last check, for pr 17276, only record the line if the line
17512 has never had a non-zero discriminator. */
17513 if (!line_has_non_zero_discriminator)
17518 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17519 in the line table of subfile SUBFILE. */
17522 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17523 unsigned int line, CORE_ADDR address,
17524 record_line_ftype p_record_line)
17526 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17528 (*p_record_line) (subfile, line, addr);
17531 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17532 Mark the end of a set of line number records.
17533 The arguments are the same as for dwarf_record_line.
17534 If SUBFILE is NULL the request is ignored. */
17537 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17538 CORE_ADDR address, record_line_ftype p_record_line)
17540 if (subfile != NULL)
17541 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17544 /* Subroutine of dwarf_decode_lines to simplify it.
17545 Process the line number information in LH. */
17548 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17549 const int decode_for_pst_p, CORE_ADDR lowpc)
17551 const gdb_byte *line_ptr, *extended_end;
17552 const gdb_byte *line_end;
17553 unsigned int bytes_read, extended_len;
17554 unsigned char op_code, extended_op;
17555 CORE_ADDR baseaddr;
17556 struct objfile *objfile = cu->objfile;
17557 bfd *abfd = objfile->obfd;
17558 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17559 struct subfile *last_subfile = NULL;
17560 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17563 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17565 line_ptr = lh->statement_program_start;
17566 line_end = lh->statement_program_end;
17568 /* Read the statement sequences until there's nothing left. */
17569 while (line_ptr < line_end)
17571 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17572 on the initial 0 address as if there was a line entry for it
17573 so that the backend has a chance to adjust it and also record
17574 it in case it needs it. This is currently used by MIPS code,
17575 cf. `mips_adjust_dwarf2_line'. */
17576 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17577 unsigned int file = 1;
17578 unsigned int line = 1;
17579 int is_stmt = lh->default_is_stmt;
17580 int end_sequence = 0;
17581 unsigned char op_index = 0;
17582 unsigned int discriminator = 0;
17583 /* The last line number that was recorded, used to coalesce
17584 consecutive entries for the same line. This can happen, for
17585 example, when discriminators are present. PR 17276. */
17586 unsigned int last_line = 0;
17587 int line_has_non_zero_discriminator = 0;
17589 if (!decode_for_pst_p && lh->num_file_names >= file)
17591 /* Start a subfile for the current file of the state machine. */
17592 /* lh->include_dirs and lh->file_names are 0-based, but the
17593 directory and file name numbers in the statement program
17595 struct file_entry *fe = &lh->file_names[file - 1];
17596 const char *dir = NULL;
17599 dir = lh->include_dirs[fe->dir_index - 1];
17601 dwarf2_start_subfile (fe->name, dir);
17604 /* Decode the table. */
17605 while (!end_sequence)
17607 op_code = read_1_byte (abfd, line_ptr);
17609 if (line_ptr > line_end)
17611 dwarf2_debug_line_missing_end_sequence_complaint ();
17615 if (op_code >= lh->opcode_base)
17617 /* Special opcode. */
17618 unsigned char adj_opcode;
17619 CORE_ADDR addr_adj;
17622 adj_opcode = op_code - lh->opcode_base;
17623 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17624 / lh->maximum_ops_per_instruction)
17625 * lh->minimum_instruction_length);
17626 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17627 op_index = ((op_index + (adj_opcode / lh->line_range))
17628 % lh->maximum_ops_per_instruction);
17629 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17630 line += line_delta;
17631 if (line_delta != 0)
17632 line_has_non_zero_discriminator = discriminator != 0;
17633 if (lh->num_file_names < file || file == 0)
17634 dwarf2_debug_line_missing_file_complaint ();
17635 /* For now we ignore lines not starting on an
17636 instruction boundary. */
17637 else if (op_index == 0)
17639 lh->file_names[file - 1].included_p = 1;
17640 if (!decode_for_pst_p && is_stmt)
17642 if (last_subfile != current_subfile)
17644 dwarf_finish_line (gdbarch, last_subfile,
17645 address, p_record_line);
17647 if (dwarf_record_line_p (line, last_line,
17648 line_has_non_zero_discriminator,
17651 dwarf_record_line (gdbarch, current_subfile,
17652 line, address, p_record_line);
17654 last_subfile = current_subfile;
17660 else switch (op_code)
17662 case DW_LNS_extended_op:
17663 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17665 line_ptr += bytes_read;
17666 extended_end = line_ptr + extended_len;
17667 extended_op = read_1_byte (abfd, line_ptr);
17669 switch (extended_op)
17671 case DW_LNE_end_sequence:
17672 p_record_line = record_line;
17675 case DW_LNE_set_address:
17676 address = read_address (abfd, line_ptr, cu, &bytes_read);
17678 /* If address < lowpc then it's not a usable value, it's
17679 outside the pc range of the CU. However, we restrict
17680 the test to only address values of zero to preserve
17681 GDB's previous behaviour which is to handle the specific
17682 case of a function being GC'd by the linker. */
17683 if (address == 0 && address < lowpc)
17685 /* This line table is for a function which has been
17686 GCd by the linker. Ignore it. PR gdb/12528 */
17689 = line_ptr - get_debug_line_section (cu)->buffer;
17691 complaint (&symfile_complaints,
17692 _(".debug_line address at offset 0x%lx is 0 "
17694 line_offset, objfile_name (objfile));
17695 p_record_line = noop_record_line;
17696 /* Note: p_record_line is left as noop_record_line
17697 until we see DW_LNE_end_sequence. */
17701 line_ptr += bytes_read;
17702 address += baseaddr;
17703 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17705 case DW_LNE_define_file:
17707 const char *cur_file;
17708 unsigned int dir_index, mod_time, length;
17710 cur_file = read_direct_string (abfd, line_ptr,
17712 line_ptr += bytes_read;
17714 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17715 line_ptr += bytes_read;
17717 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17718 line_ptr += bytes_read;
17720 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17721 line_ptr += bytes_read;
17722 add_file_name (lh, cur_file, dir_index, mod_time, length);
17725 case DW_LNE_set_discriminator:
17726 /* The discriminator is not interesting to the debugger;
17727 just ignore it. We still need to check its value though:
17728 if there are consecutive entries for the same
17729 (non-prologue) line we want to coalesce them.
17731 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17733 line_has_non_zero_discriminator |= discriminator != 0;
17734 line_ptr += bytes_read;
17737 complaint (&symfile_complaints,
17738 _("mangled .debug_line section"));
17741 /* Make sure that we parsed the extended op correctly. If e.g.
17742 we expected a different address size than the producer used,
17743 we may have read the wrong number of bytes. */
17744 if (line_ptr != extended_end)
17746 complaint (&symfile_complaints,
17747 _("mangled .debug_line section"));
17752 if (lh->num_file_names < file || file == 0)
17753 dwarf2_debug_line_missing_file_complaint ();
17756 lh->file_names[file - 1].included_p = 1;
17757 if (!decode_for_pst_p && is_stmt)
17759 if (last_subfile != current_subfile)
17761 dwarf_finish_line (gdbarch, last_subfile,
17762 address, p_record_line);
17764 if (dwarf_record_line_p (line, last_line,
17765 line_has_non_zero_discriminator,
17768 dwarf_record_line (gdbarch, current_subfile,
17769 line, address, p_record_line);
17771 last_subfile = current_subfile;
17777 case DW_LNS_advance_pc:
17780 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17781 CORE_ADDR addr_adj;
17783 addr_adj = (((op_index + adjust)
17784 / lh->maximum_ops_per_instruction)
17785 * lh->minimum_instruction_length);
17786 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17787 op_index = ((op_index + adjust)
17788 % lh->maximum_ops_per_instruction);
17789 line_ptr += bytes_read;
17792 case DW_LNS_advance_line:
17795 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17797 line += line_delta;
17798 if (line_delta != 0)
17799 line_has_non_zero_discriminator = discriminator != 0;
17800 line_ptr += bytes_read;
17803 case DW_LNS_set_file:
17805 /* The arrays lh->include_dirs and lh->file_names are
17806 0-based, but the directory and file name numbers in
17807 the statement program are 1-based. */
17808 struct file_entry *fe;
17809 const char *dir = NULL;
17811 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17812 line_ptr += bytes_read;
17813 if (lh->num_file_names < file || file == 0)
17814 dwarf2_debug_line_missing_file_complaint ();
17817 fe = &lh->file_names[file - 1];
17819 dir = lh->include_dirs[fe->dir_index - 1];
17820 if (!decode_for_pst_p)
17822 last_subfile = current_subfile;
17823 line_has_non_zero_discriminator = discriminator != 0;
17824 dwarf2_start_subfile (fe->name, dir);
17829 case DW_LNS_set_column:
17830 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17831 line_ptr += bytes_read;
17833 case DW_LNS_negate_stmt:
17834 is_stmt = (!is_stmt);
17836 case DW_LNS_set_basic_block:
17838 /* Add to the address register of the state machine the
17839 address increment value corresponding to special opcode
17840 255. I.e., this value is scaled by the minimum
17841 instruction length since special opcode 255 would have
17842 scaled the increment. */
17843 case DW_LNS_const_add_pc:
17845 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17846 CORE_ADDR addr_adj;
17848 addr_adj = (((op_index + adjust)
17849 / lh->maximum_ops_per_instruction)
17850 * lh->minimum_instruction_length);
17851 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17852 op_index = ((op_index + adjust)
17853 % lh->maximum_ops_per_instruction);
17856 case DW_LNS_fixed_advance_pc:
17858 CORE_ADDR addr_adj;
17860 addr_adj = read_2_bytes (abfd, line_ptr);
17861 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17868 /* Unknown standard opcode, ignore it. */
17871 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17873 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17874 line_ptr += bytes_read;
17879 if (lh->num_file_names < file || file == 0)
17880 dwarf2_debug_line_missing_file_complaint ();
17883 lh->file_names[file - 1].included_p = 1;
17884 if (!decode_for_pst_p)
17886 dwarf_finish_line (gdbarch, current_subfile, address,
17893 /* Decode the Line Number Program (LNP) for the given line_header
17894 structure and CU. The actual information extracted and the type
17895 of structures created from the LNP depends on the value of PST.
17897 1. If PST is NULL, then this procedure uses the data from the program
17898 to create all necessary symbol tables, and their linetables.
17900 2. If PST is not NULL, this procedure reads the program to determine
17901 the list of files included by the unit represented by PST, and
17902 builds all the associated partial symbol tables.
17904 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17905 It is used for relative paths in the line table.
17906 NOTE: When processing partial symtabs (pst != NULL),
17907 comp_dir == pst->dirname.
17909 NOTE: It is important that psymtabs have the same file name (via strcmp)
17910 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17911 symtab we don't use it in the name of the psymtabs we create.
17912 E.g. expand_line_sal requires this when finding psymtabs to expand.
17913 A good testcase for this is mb-inline.exp.
17915 LOWPC is the lowest address in CU (or 0 if not known).
17917 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17918 for its PC<->lines mapping information. Otherwise only the filename
17919 table is read in. */
17922 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17923 struct dwarf2_cu *cu, struct partial_symtab *pst,
17924 CORE_ADDR lowpc, int decode_mapping)
17926 struct objfile *objfile = cu->objfile;
17927 const int decode_for_pst_p = (pst != NULL);
17929 if (decode_mapping)
17930 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17932 if (decode_for_pst_p)
17936 /* Now that we're done scanning the Line Header Program, we can
17937 create the psymtab of each included file. */
17938 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17939 if (lh->file_names[file_index].included_p == 1)
17941 const char *include_name =
17942 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17943 if (include_name != NULL)
17944 dwarf2_create_include_psymtab (include_name, pst, objfile);
17949 /* Make sure a symtab is created for every file, even files
17950 which contain only variables (i.e. no code with associated
17952 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17955 for (i = 0; i < lh->num_file_names; i++)
17957 const char *dir = NULL;
17958 struct file_entry *fe;
17960 fe = &lh->file_names[i];
17962 dir = lh->include_dirs[fe->dir_index - 1];
17963 dwarf2_start_subfile (fe->name, dir);
17965 if (current_subfile->symtab == NULL)
17967 current_subfile->symtab
17968 = allocate_symtab (cust, current_subfile->name);
17970 fe->symtab = current_subfile->symtab;
17975 /* Start a subfile for DWARF. FILENAME is the name of the file and
17976 DIRNAME the name of the source directory which contains FILENAME
17977 or NULL if not known.
17978 This routine tries to keep line numbers from identical absolute and
17979 relative file names in a common subfile.
17981 Using the `list' example from the GDB testsuite, which resides in
17982 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17983 of /srcdir/list0.c yields the following debugging information for list0.c:
17985 DW_AT_name: /srcdir/list0.c
17986 DW_AT_comp_dir: /compdir
17987 files.files[0].name: list0.h
17988 files.files[0].dir: /srcdir
17989 files.files[1].name: list0.c
17990 files.files[1].dir: /srcdir
17992 The line number information for list0.c has to end up in a single
17993 subfile, so that `break /srcdir/list0.c:1' works as expected.
17994 start_subfile will ensure that this happens provided that we pass the
17995 concatenation of files.files[1].dir and files.files[1].name as the
17999 dwarf2_start_subfile (const char *filename, const char *dirname)
18003 /* In order not to lose the line information directory,
18004 we concatenate it to the filename when it makes sense.
18005 Note that the Dwarf3 standard says (speaking of filenames in line
18006 information): ``The directory index is ignored for file names
18007 that represent full path names''. Thus ignoring dirname in the
18008 `else' branch below isn't an issue. */
18010 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18012 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18016 start_subfile (filename);
18022 /* Start a symtab for DWARF.
18023 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18025 static struct compunit_symtab *
18026 dwarf2_start_symtab (struct dwarf2_cu *cu,
18027 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18029 struct compunit_symtab *cust
18030 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18032 record_debugformat ("DWARF 2");
18033 record_producer (cu->producer);
18035 /* We assume that we're processing GCC output. */
18036 processing_gcc_compilation = 2;
18038 cu->processing_has_namespace_info = 0;
18044 var_decode_location (struct attribute *attr, struct symbol *sym,
18045 struct dwarf2_cu *cu)
18047 struct objfile *objfile = cu->objfile;
18048 struct comp_unit_head *cu_header = &cu->header;
18050 /* NOTE drow/2003-01-30: There used to be a comment and some special
18051 code here to turn a symbol with DW_AT_external and a
18052 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18053 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18054 with some versions of binutils) where shared libraries could have
18055 relocations against symbols in their debug information - the
18056 minimal symbol would have the right address, but the debug info
18057 would not. It's no longer necessary, because we will explicitly
18058 apply relocations when we read in the debug information now. */
18060 /* A DW_AT_location attribute with no contents indicates that a
18061 variable has been optimized away. */
18062 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18064 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18068 /* Handle one degenerate form of location expression specially, to
18069 preserve GDB's previous behavior when section offsets are
18070 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18071 then mark this symbol as LOC_STATIC. */
18073 if (attr_form_is_block (attr)
18074 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18075 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18076 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18077 && (DW_BLOCK (attr)->size
18078 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18080 unsigned int dummy;
18082 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18083 SYMBOL_VALUE_ADDRESS (sym) =
18084 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18086 SYMBOL_VALUE_ADDRESS (sym) =
18087 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18088 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18089 fixup_symbol_section (sym, objfile);
18090 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18091 SYMBOL_SECTION (sym));
18095 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18096 expression evaluator, and use LOC_COMPUTED only when necessary
18097 (i.e. when the value of a register or memory location is
18098 referenced, or a thread-local block, etc.). Then again, it might
18099 not be worthwhile. I'm assuming that it isn't unless performance
18100 or memory numbers show me otherwise. */
18102 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18104 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18105 cu->has_loclist = 1;
18108 /* Given a pointer to a DWARF information entry, figure out if we need
18109 to make a symbol table entry for it, and if so, create a new entry
18110 and return a pointer to it.
18111 If TYPE is NULL, determine symbol type from the die, otherwise
18112 used the passed type.
18113 If SPACE is not NULL, use it to hold the new symbol. If it is
18114 NULL, allocate a new symbol on the objfile's obstack. */
18116 static struct symbol *
18117 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18118 struct symbol *space)
18120 struct objfile *objfile = cu->objfile;
18121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18122 struct symbol *sym = NULL;
18124 struct attribute *attr = NULL;
18125 struct attribute *attr2 = NULL;
18126 CORE_ADDR baseaddr;
18127 struct pending **list_to_add = NULL;
18129 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18131 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18133 name = dwarf2_name (die, cu);
18136 const char *linkagename;
18137 int suppress_add = 0;
18142 sym = allocate_symbol (objfile);
18143 OBJSTAT (objfile, n_syms++);
18145 /* Cache this symbol's name and the name's demangled form (if any). */
18146 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18147 linkagename = dwarf2_physname (name, die, cu);
18148 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18150 /* Fortran does not have mangling standard and the mangling does differ
18151 between gfortran, iFort etc. */
18152 if (cu->language == language_fortran
18153 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18154 symbol_set_demangled_name (&(sym->ginfo),
18155 dwarf2_full_name (name, die, cu),
18158 /* Default assumptions.
18159 Use the passed type or decode it from the die. */
18160 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18161 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18163 SYMBOL_TYPE (sym) = type;
18165 SYMBOL_TYPE (sym) = die_type (die, cu);
18166 attr = dwarf2_attr (die,
18167 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18171 SYMBOL_LINE (sym) = DW_UNSND (attr);
18174 attr = dwarf2_attr (die,
18175 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18179 int file_index = DW_UNSND (attr);
18181 if (cu->line_header == NULL
18182 || file_index > cu->line_header->num_file_names)
18183 complaint (&symfile_complaints,
18184 _("file index out of range"));
18185 else if (file_index > 0)
18187 struct file_entry *fe;
18189 fe = &cu->line_header->file_names[file_index - 1];
18190 symbol_set_symtab (sym, fe->symtab);
18197 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18202 addr = attr_value_as_address (attr);
18203 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18204 SYMBOL_VALUE_ADDRESS (sym) = addr;
18206 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18207 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18208 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18209 add_symbol_to_list (sym, cu->list_in_scope);
18211 case DW_TAG_subprogram:
18212 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18214 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18215 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18216 if ((attr2 && (DW_UNSND (attr2) != 0))
18217 || cu->language == language_ada)
18219 /* Subprograms marked external are stored as a global symbol.
18220 Ada subprograms, whether marked external or not, are always
18221 stored as a global symbol, because we want to be able to
18222 access them globally. For instance, we want to be able
18223 to break on a nested subprogram without having to
18224 specify the context. */
18225 list_to_add = &global_symbols;
18229 list_to_add = cu->list_in_scope;
18232 case DW_TAG_inlined_subroutine:
18233 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18235 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18236 SYMBOL_INLINED (sym) = 1;
18237 list_to_add = cu->list_in_scope;
18239 case DW_TAG_template_value_param:
18241 /* Fall through. */
18242 case DW_TAG_constant:
18243 case DW_TAG_variable:
18244 case DW_TAG_member:
18245 /* Compilation with minimal debug info may result in
18246 variables with missing type entries. Change the
18247 misleading `void' type to something sensible. */
18248 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18250 = objfile_type (objfile)->nodebug_data_symbol;
18252 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18253 /* In the case of DW_TAG_member, we should only be called for
18254 static const members. */
18255 if (die->tag == DW_TAG_member)
18257 /* dwarf2_add_field uses die_is_declaration,
18258 so we do the same. */
18259 gdb_assert (die_is_declaration (die, cu));
18264 dwarf2_const_value (attr, sym, cu);
18265 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18268 if (attr2 && (DW_UNSND (attr2) != 0))
18269 list_to_add = &global_symbols;
18271 list_to_add = cu->list_in_scope;
18275 attr = dwarf2_attr (die, DW_AT_location, cu);
18278 var_decode_location (attr, sym, cu);
18279 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18281 /* Fortran explicitly imports any global symbols to the local
18282 scope by DW_TAG_common_block. */
18283 if (cu->language == language_fortran && die->parent
18284 && die->parent->tag == DW_TAG_common_block)
18287 if (SYMBOL_CLASS (sym) == LOC_STATIC
18288 && SYMBOL_VALUE_ADDRESS (sym) == 0
18289 && !dwarf2_per_objfile->has_section_at_zero)
18291 /* When a static variable is eliminated by the linker,
18292 the corresponding debug information is not stripped
18293 out, but the variable address is set to null;
18294 do not add such variables into symbol table. */
18296 else if (attr2 && (DW_UNSND (attr2) != 0))
18298 /* Workaround gfortran PR debug/40040 - it uses
18299 DW_AT_location for variables in -fPIC libraries which may
18300 get overriden by other libraries/executable and get
18301 a different address. Resolve it by the minimal symbol
18302 which may come from inferior's executable using copy
18303 relocation. Make this workaround only for gfortran as for
18304 other compilers GDB cannot guess the minimal symbol
18305 Fortran mangling kind. */
18306 if (cu->language == language_fortran && die->parent
18307 && die->parent->tag == DW_TAG_module
18309 && startswith (cu->producer, "GNU Fortran "))
18310 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18312 /* A variable with DW_AT_external is never static,
18313 but it may be block-scoped. */
18314 list_to_add = (cu->list_in_scope == &file_symbols
18315 ? &global_symbols : cu->list_in_scope);
18318 list_to_add = cu->list_in_scope;
18322 /* We do not know the address of this symbol.
18323 If it is an external symbol and we have type information
18324 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18325 The address of the variable will then be determined from
18326 the minimal symbol table whenever the variable is
18328 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18330 /* Fortran explicitly imports any global symbols to the local
18331 scope by DW_TAG_common_block. */
18332 if (cu->language == language_fortran && die->parent
18333 && die->parent->tag == DW_TAG_common_block)
18335 /* SYMBOL_CLASS doesn't matter here because
18336 read_common_block is going to reset it. */
18338 list_to_add = cu->list_in_scope;
18340 else if (attr2 && (DW_UNSND (attr2) != 0)
18341 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18343 /* A variable with DW_AT_external is never static, but it
18344 may be block-scoped. */
18345 list_to_add = (cu->list_in_scope == &file_symbols
18346 ? &global_symbols : cu->list_in_scope);
18348 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18350 else if (!die_is_declaration (die, cu))
18352 /* Use the default LOC_OPTIMIZED_OUT class. */
18353 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18355 list_to_add = cu->list_in_scope;
18359 case DW_TAG_formal_parameter:
18360 /* If we are inside a function, mark this as an argument. If
18361 not, we might be looking at an argument to an inlined function
18362 when we do not have enough information to show inlined frames;
18363 pretend it's a local variable in that case so that the user can
18365 if (context_stack_depth > 0
18366 && context_stack[context_stack_depth - 1].name != NULL)
18367 SYMBOL_IS_ARGUMENT (sym) = 1;
18368 attr = dwarf2_attr (die, DW_AT_location, cu);
18371 var_decode_location (attr, sym, cu);
18373 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18376 dwarf2_const_value (attr, sym, cu);
18379 list_to_add = cu->list_in_scope;
18381 case DW_TAG_unspecified_parameters:
18382 /* From varargs functions; gdb doesn't seem to have any
18383 interest in this information, so just ignore it for now.
18386 case DW_TAG_template_type_param:
18388 /* Fall through. */
18389 case DW_TAG_class_type:
18390 case DW_TAG_interface_type:
18391 case DW_TAG_structure_type:
18392 case DW_TAG_union_type:
18393 case DW_TAG_set_type:
18394 case DW_TAG_enumeration_type:
18395 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18396 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18399 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18400 really ever be static objects: otherwise, if you try
18401 to, say, break of a class's method and you're in a file
18402 which doesn't mention that class, it won't work unless
18403 the check for all static symbols in lookup_symbol_aux
18404 saves you. See the OtherFileClass tests in
18405 gdb.c++/namespace.exp. */
18409 list_to_add = (cu->list_in_scope == &file_symbols
18410 && (cu->language == language_cplus
18411 || cu->language == language_java)
18412 ? &global_symbols : cu->list_in_scope);
18414 /* The semantics of C++ state that "struct foo {
18415 ... }" also defines a typedef for "foo". A Java
18416 class declaration also defines a typedef for the
18418 if (cu->language == language_cplus
18419 || cu->language == language_java
18420 || cu->language == language_ada)
18422 /* The symbol's name is already allocated along
18423 with this objfile, so we don't need to
18424 duplicate it for the type. */
18425 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18426 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18431 case DW_TAG_typedef:
18432 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18434 list_to_add = cu->list_in_scope;
18436 case DW_TAG_base_type:
18437 case DW_TAG_subrange_type:
18438 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18440 list_to_add = cu->list_in_scope;
18442 case DW_TAG_enumerator:
18443 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18446 dwarf2_const_value (attr, sym, cu);
18449 /* NOTE: carlton/2003-11-10: See comment above in the
18450 DW_TAG_class_type, etc. block. */
18452 list_to_add = (cu->list_in_scope == &file_symbols
18453 && (cu->language == language_cplus
18454 || cu->language == language_java)
18455 ? &global_symbols : cu->list_in_scope);
18458 case DW_TAG_imported_declaration:
18459 case DW_TAG_namespace:
18460 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18461 list_to_add = &global_symbols;
18463 case DW_TAG_module:
18464 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18465 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18466 list_to_add = &global_symbols;
18468 case DW_TAG_common_block:
18469 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18470 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18471 add_symbol_to_list (sym, cu->list_in_scope);
18474 /* Not a tag we recognize. Hopefully we aren't processing
18475 trash data, but since we must specifically ignore things
18476 we don't recognize, there is nothing else we should do at
18478 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18479 dwarf_tag_name (die->tag));
18485 sym->hash_next = objfile->template_symbols;
18486 objfile->template_symbols = sym;
18487 list_to_add = NULL;
18490 if (list_to_add != NULL)
18491 add_symbol_to_list (sym, list_to_add);
18493 /* For the benefit of old versions of GCC, check for anonymous
18494 namespaces based on the demangled name. */
18495 if (!cu->processing_has_namespace_info
18496 && cu->language == language_cplus)
18497 cp_scan_for_anonymous_namespaces (sym, objfile);
18502 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18504 static struct symbol *
18505 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18507 return new_symbol_full (die, type, cu, NULL);
18510 /* Given an attr with a DW_FORM_dataN value in host byte order,
18511 zero-extend it as appropriate for the symbol's type. The DWARF
18512 standard (v4) is not entirely clear about the meaning of using
18513 DW_FORM_dataN for a constant with a signed type, where the type is
18514 wider than the data. The conclusion of a discussion on the DWARF
18515 list was that this is unspecified. We choose to always zero-extend
18516 because that is the interpretation long in use by GCC. */
18519 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18520 struct dwarf2_cu *cu, LONGEST *value, int bits)
18522 struct objfile *objfile = cu->objfile;
18523 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18524 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18525 LONGEST l = DW_UNSND (attr);
18527 if (bits < sizeof (*value) * 8)
18529 l &= ((LONGEST) 1 << bits) - 1;
18532 else if (bits == sizeof (*value) * 8)
18536 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18537 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18544 /* Read a constant value from an attribute. Either set *VALUE, or if
18545 the value does not fit in *VALUE, set *BYTES - either already
18546 allocated on the objfile obstack, or newly allocated on OBSTACK,
18547 or, set *BATON, if we translated the constant to a location
18551 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18552 const char *name, struct obstack *obstack,
18553 struct dwarf2_cu *cu,
18554 LONGEST *value, const gdb_byte **bytes,
18555 struct dwarf2_locexpr_baton **baton)
18557 struct objfile *objfile = cu->objfile;
18558 struct comp_unit_head *cu_header = &cu->header;
18559 struct dwarf_block *blk;
18560 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18561 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18567 switch (attr->form)
18570 case DW_FORM_GNU_addr_index:
18574 if (TYPE_LENGTH (type) != cu_header->addr_size)
18575 dwarf2_const_value_length_mismatch_complaint (name,
18576 cu_header->addr_size,
18577 TYPE_LENGTH (type));
18578 /* Symbols of this form are reasonably rare, so we just
18579 piggyback on the existing location code rather than writing
18580 a new implementation of symbol_computed_ops. */
18581 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18582 (*baton)->per_cu = cu->per_cu;
18583 gdb_assert ((*baton)->per_cu);
18585 (*baton)->size = 2 + cu_header->addr_size;
18586 data = obstack_alloc (obstack, (*baton)->size);
18587 (*baton)->data = data;
18589 data[0] = DW_OP_addr;
18590 store_unsigned_integer (&data[1], cu_header->addr_size,
18591 byte_order, DW_ADDR (attr));
18592 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18595 case DW_FORM_string:
18597 case DW_FORM_GNU_str_index:
18598 case DW_FORM_GNU_strp_alt:
18599 /* DW_STRING is already allocated on the objfile obstack, point
18601 *bytes = (const gdb_byte *) DW_STRING (attr);
18603 case DW_FORM_block1:
18604 case DW_FORM_block2:
18605 case DW_FORM_block4:
18606 case DW_FORM_block:
18607 case DW_FORM_exprloc:
18608 blk = DW_BLOCK (attr);
18609 if (TYPE_LENGTH (type) != blk->size)
18610 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18611 TYPE_LENGTH (type));
18612 *bytes = blk->data;
18615 /* The DW_AT_const_value attributes are supposed to carry the
18616 symbol's value "represented as it would be on the target
18617 architecture." By the time we get here, it's already been
18618 converted to host endianness, so we just need to sign- or
18619 zero-extend it as appropriate. */
18620 case DW_FORM_data1:
18621 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18623 case DW_FORM_data2:
18624 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18626 case DW_FORM_data4:
18627 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18629 case DW_FORM_data8:
18630 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18633 case DW_FORM_sdata:
18634 *value = DW_SND (attr);
18637 case DW_FORM_udata:
18638 *value = DW_UNSND (attr);
18642 complaint (&symfile_complaints,
18643 _("unsupported const value attribute form: '%s'"),
18644 dwarf_form_name (attr->form));
18651 /* Copy constant value from an attribute to a symbol. */
18654 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18655 struct dwarf2_cu *cu)
18657 struct objfile *objfile = cu->objfile;
18658 struct comp_unit_head *cu_header = &cu->header;
18660 const gdb_byte *bytes;
18661 struct dwarf2_locexpr_baton *baton;
18663 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18664 SYMBOL_PRINT_NAME (sym),
18665 &objfile->objfile_obstack, cu,
18666 &value, &bytes, &baton);
18670 SYMBOL_LOCATION_BATON (sym) = baton;
18671 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18673 else if (bytes != NULL)
18675 SYMBOL_VALUE_BYTES (sym) = bytes;
18676 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18680 SYMBOL_VALUE (sym) = value;
18681 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18685 /* Return the type of the die in question using its DW_AT_type attribute. */
18687 static struct type *
18688 die_type (struct die_info *die, struct dwarf2_cu *cu)
18690 struct attribute *type_attr;
18692 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18695 /* A missing DW_AT_type represents a void type. */
18696 return objfile_type (cu->objfile)->builtin_void;
18699 return lookup_die_type (die, type_attr, cu);
18702 /* True iff CU's producer generates GNAT Ada auxiliary information
18703 that allows to find parallel types through that information instead
18704 of having to do expensive parallel lookups by type name. */
18707 need_gnat_info (struct dwarf2_cu *cu)
18709 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18710 of GNAT produces this auxiliary information, without any indication
18711 that it is produced. Part of enhancing the FSF version of GNAT
18712 to produce that information will be to put in place an indicator
18713 that we can use in order to determine whether the descriptive type
18714 info is available or not. One suggestion that has been made is
18715 to use a new attribute, attached to the CU die. For now, assume
18716 that the descriptive type info is not available. */
18720 /* Return the auxiliary type of the die in question using its
18721 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18722 attribute is not present. */
18724 static struct type *
18725 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18727 struct attribute *type_attr;
18729 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18733 return lookup_die_type (die, type_attr, cu);
18736 /* If DIE has a descriptive_type attribute, then set the TYPE's
18737 descriptive type accordingly. */
18740 set_descriptive_type (struct type *type, struct die_info *die,
18741 struct dwarf2_cu *cu)
18743 struct type *descriptive_type = die_descriptive_type (die, cu);
18745 if (descriptive_type)
18747 ALLOCATE_GNAT_AUX_TYPE (type);
18748 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18752 /* Return the containing type of the die in question using its
18753 DW_AT_containing_type attribute. */
18755 static struct type *
18756 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18758 struct attribute *type_attr;
18760 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18762 error (_("Dwarf Error: Problem turning containing type into gdb type "
18763 "[in module %s]"), objfile_name (cu->objfile));
18765 return lookup_die_type (die, type_attr, cu);
18768 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18770 static struct type *
18771 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18773 struct objfile *objfile = dwarf2_per_objfile->objfile;
18774 char *message, *saved;
18776 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18777 objfile_name (objfile),
18778 cu->header.offset.sect_off,
18779 die->offset.sect_off);
18780 saved = obstack_copy0 (&objfile->objfile_obstack,
18781 message, strlen (message));
18784 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18787 /* Look up the type of DIE in CU using its type attribute ATTR.
18788 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18789 DW_AT_containing_type.
18790 If there is no type substitute an error marker. */
18792 static struct type *
18793 lookup_die_type (struct die_info *die, const struct attribute *attr,
18794 struct dwarf2_cu *cu)
18796 struct objfile *objfile = cu->objfile;
18797 struct type *this_type;
18799 gdb_assert (attr->name == DW_AT_type
18800 || attr->name == DW_AT_GNAT_descriptive_type
18801 || attr->name == DW_AT_containing_type);
18803 /* First see if we have it cached. */
18805 if (attr->form == DW_FORM_GNU_ref_alt)
18807 struct dwarf2_per_cu_data *per_cu;
18808 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18810 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18811 this_type = get_die_type_at_offset (offset, per_cu);
18813 else if (attr_form_is_ref (attr))
18815 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18817 this_type = get_die_type_at_offset (offset, cu->per_cu);
18819 else if (attr->form == DW_FORM_ref_sig8)
18821 ULONGEST signature = DW_SIGNATURE (attr);
18823 return get_signatured_type (die, signature, cu);
18827 complaint (&symfile_complaints,
18828 _("Dwarf Error: Bad type attribute %s in DIE"
18829 " at 0x%x [in module %s]"),
18830 dwarf_attr_name (attr->name), die->offset.sect_off,
18831 objfile_name (objfile));
18832 return build_error_marker_type (cu, die);
18835 /* If not cached we need to read it in. */
18837 if (this_type == NULL)
18839 struct die_info *type_die = NULL;
18840 struct dwarf2_cu *type_cu = cu;
18842 if (attr_form_is_ref (attr))
18843 type_die = follow_die_ref (die, attr, &type_cu);
18844 if (type_die == NULL)
18845 return build_error_marker_type (cu, die);
18846 /* If we find the type now, it's probably because the type came
18847 from an inter-CU reference and the type's CU got expanded before
18849 this_type = read_type_die (type_die, type_cu);
18852 /* If we still don't have a type use an error marker. */
18854 if (this_type == NULL)
18855 return build_error_marker_type (cu, die);
18860 /* Return the type in DIE, CU.
18861 Returns NULL for invalid types.
18863 This first does a lookup in die_type_hash,
18864 and only reads the die in if necessary.
18866 NOTE: This can be called when reading in partial or full symbols. */
18868 static struct type *
18869 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18871 struct type *this_type;
18873 this_type = get_die_type (die, cu);
18877 return read_type_die_1 (die, cu);
18880 /* Read the type in DIE, CU.
18881 Returns NULL for invalid types. */
18883 static struct type *
18884 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18886 struct type *this_type = NULL;
18890 case DW_TAG_class_type:
18891 case DW_TAG_interface_type:
18892 case DW_TAG_structure_type:
18893 case DW_TAG_union_type:
18894 this_type = read_structure_type (die, cu);
18896 case DW_TAG_enumeration_type:
18897 this_type = read_enumeration_type (die, cu);
18899 case DW_TAG_subprogram:
18900 case DW_TAG_subroutine_type:
18901 case DW_TAG_inlined_subroutine:
18902 this_type = read_subroutine_type (die, cu);
18904 case DW_TAG_array_type:
18905 this_type = read_array_type (die, cu);
18907 case DW_TAG_set_type:
18908 this_type = read_set_type (die, cu);
18910 case DW_TAG_pointer_type:
18911 this_type = read_tag_pointer_type (die, cu);
18913 case DW_TAG_ptr_to_member_type:
18914 this_type = read_tag_ptr_to_member_type (die, cu);
18916 case DW_TAG_reference_type:
18917 this_type = read_tag_reference_type (die, cu);
18919 case DW_TAG_const_type:
18920 this_type = read_tag_const_type (die, cu);
18922 case DW_TAG_volatile_type:
18923 this_type = read_tag_volatile_type (die, cu);
18925 case DW_TAG_restrict_type:
18926 this_type = read_tag_restrict_type (die, cu);
18928 case DW_TAG_string_type:
18929 this_type = read_tag_string_type (die, cu);
18931 case DW_TAG_typedef:
18932 this_type = read_typedef (die, cu);
18934 case DW_TAG_subrange_type:
18935 this_type = read_subrange_type (die, cu);
18937 case DW_TAG_base_type:
18938 this_type = read_base_type (die, cu);
18940 case DW_TAG_unspecified_type:
18941 this_type = read_unspecified_type (die, cu);
18943 case DW_TAG_namespace:
18944 this_type = read_namespace_type (die, cu);
18946 case DW_TAG_module:
18947 this_type = read_module_type (die, cu);
18949 case DW_TAG_atomic_type:
18950 this_type = read_tag_atomic_type (die, cu);
18953 complaint (&symfile_complaints,
18954 _("unexpected tag in read_type_die: '%s'"),
18955 dwarf_tag_name (die->tag));
18962 /* See if we can figure out if the class lives in a namespace. We do
18963 this by looking for a member function; its demangled name will
18964 contain namespace info, if there is any.
18965 Return the computed name or NULL.
18966 Space for the result is allocated on the objfile's obstack.
18967 This is the full-die version of guess_partial_die_structure_name.
18968 In this case we know DIE has no useful parent. */
18971 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18973 struct die_info *spec_die;
18974 struct dwarf2_cu *spec_cu;
18975 struct die_info *child;
18978 spec_die = die_specification (die, &spec_cu);
18979 if (spec_die != NULL)
18985 for (child = die->child;
18987 child = child->sibling)
18989 if (child->tag == DW_TAG_subprogram)
18991 struct attribute *attr;
18993 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18995 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18999 = language_class_name_from_physname (cu->language_defn,
19003 if (actual_name != NULL)
19005 const char *die_name = dwarf2_name (die, cu);
19007 if (die_name != NULL
19008 && strcmp (die_name, actual_name) != 0)
19010 /* Strip off the class name from the full name.
19011 We want the prefix. */
19012 int die_name_len = strlen (die_name);
19013 int actual_name_len = strlen (actual_name);
19015 /* Test for '::' as a sanity check. */
19016 if (actual_name_len > die_name_len + 2
19017 && actual_name[actual_name_len
19018 - die_name_len - 1] == ':')
19020 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19022 actual_name_len - die_name_len - 2);
19025 xfree (actual_name);
19034 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19035 prefix part in such case. See
19036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19039 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19041 struct attribute *attr;
19044 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19045 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19048 attr = dwarf2_attr (die, DW_AT_name, cu);
19049 if (attr != NULL && DW_STRING (attr) != NULL)
19052 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19054 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19055 if (attr == NULL || DW_STRING (attr) == NULL)
19058 /* dwarf2_name had to be already called. */
19059 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19061 /* Strip the base name, keep any leading namespaces/classes. */
19062 base = strrchr (DW_STRING (attr), ':');
19063 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19066 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19067 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19070 /* Return the name of the namespace/class that DIE is defined within,
19071 or "" if we can't tell. The caller should not xfree the result.
19073 For example, if we're within the method foo() in the following
19083 then determine_prefix on foo's die will return "N::C". */
19085 static const char *
19086 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19088 struct die_info *parent, *spec_die;
19089 struct dwarf2_cu *spec_cu;
19090 struct type *parent_type;
19093 if (cu->language != language_cplus && cu->language != language_java
19094 && cu->language != language_fortran)
19097 retval = anonymous_struct_prefix (die, cu);
19101 /* We have to be careful in the presence of DW_AT_specification.
19102 For example, with GCC 3.4, given the code
19106 // Definition of N::foo.
19110 then we'll have a tree of DIEs like this:
19112 1: DW_TAG_compile_unit
19113 2: DW_TAG_namespace // N
19114 3: DW_TAG_subprogram // declaration of N::foo
19115 4: DW_TAG_subprogram // definition of N::foo
19116 DW_AT_specification // refers to die #3
19118 Thus, when processing die #4, we have to pretend that we're in
19119 the context of its DW_AT_specification, namely the contex of die
19122 spec_die = die_specification (die, &spec_cu);
19123 if (spec_die == NULL)
19124 parent = die->parent;
19127 parent = spec_die->parent;
19131 if (parent == NULL)
19133 else if (parent->building_fullname)
19136 const char *parent_name;
19138 /* It has been seen on RealView 2.2 built binaries,
19139 DW_TAG_template_type_param types actually _defined_ as
19140 children of the parent class:
19143 template class <class Enum> Class{};
19144 Class<enum E> class_e;
19146 1: DW_TAG_class_type (Class)
19147 2: DW_TAG_enumeration_type (E)
19148 3: DW_TAG_enumerator (enum1:0)
19149 3: DW_TAG_enumerator (enum2:1)
19151 2: DW_TAG_template_type_param
19152 DW_AT_type DW_FORM_ref_udata (E)
19154 Besides being broken debug info, it can put GDB into an
19155 infinite loop. Consider:
19157 When we're building the full name for Class<E>, we'll start
19158 at Class, and go look over its template type parameters,
19159 finding E. We'll then try to build the full name of E, and
19160 reach here. We're now trying to build the full name of E,
19161 and look over the parent DIE for containing scope. In the
19162 broken case, if we followed the parent DIE of E, we'd again
19163 find Class, and once again go look at its template type
19164 arguments, etc., etc. Simply don't consider such parent die
19165 as source-level parent of this die (it can't be, the language
19166 doesn't allow it), and break the loop here. */
19167 name = dwarf2_name (die, cu);
19168 parent_name = dwarf2_name (parent, cu);
19169 complaint (&symfile_complaints,
19170 _("template param type '%s' defined within parent '%s'"),
19171 name ? name : "<unknown>",
19172 parent_name ? parent_name : "<unknown>");
19176 switch (parent->tag)
19178 case DW_TAG_namespace:
19179 parent_type = read_type_die (parent, cu);
19180 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19181 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19182 Work around this problem here. */
19183 if (cu->language == language_cplus
19184 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19186 /* We give a name to even anonymous namespaces. */
19187 return TYPE_TAG_NAME (parent_type);
19188 case DW_TAG_class_type:
19189 case DW_TAG_interface_type:
19190 case DW_TAG_structure_type:
19191 case DW_TAG_union_type:
19192 case DW_TAG_module:
19193 parent_type = read_type_die (parent, cu);
19194 if (TYPE_TAG_NAME (parent_type) != NULL)
19195 return TYPE_TAG_NAME (parent_type);
19197 /* An anonymous structure is only allowed non-static data
19198 members; no typedefs, no member functions, et cetera.
19199 So it does not need a prefix. */
19201 case DW_TAG_compile_unit:
19202 case DW_TAG_partial_unit:
19203 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19204 if (cu->language == language_cplus
19205 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19206 && die->child != NULL
19207 && (die->tag == DW_TAG_class_type
19208 || die->tag == DW_TAG_structure_type
19209 || die->tag == DW_TAG_union_type))
19211 char *name = guess_full_die_structure_name (die, cu);
19216 case DW_TAG_enumeration_type:
19217 parent_type = read_type_die (parent, cu);
19218 if (TYPE_DECLARED_CLASS (parent_type))
19220 if (TYPE_TAG_NAME (parent_type) != NULL)
19221 return TYPE_TAG_NAME (parent_type);
19224 /* Fall through. */
19226 return determine_prefix (parent, cu);
19230 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19231 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19232 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19233 an obconcat, otherwise allocate storage for the result. The CU argument is
19234 used to determine the language and hence, the appropriate separator. */
19236 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19239 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19240 int physname, struct dwarf2_cu *cu)
19242 const char *lead = "";
19245 if (suffix == NULL || suffix[0] == '\0'
19246 || prefix == NULL || prefix[0] == '\0')
19248 else if (cu->language == language_java)
19250 else if (cu->language == language_fortran && physname)
19252 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19253 DW_AT_MIPS_linkage_name is preferred and used instead. */
19261 if (prefix == NULL)
19263 if (suffix == NULL)
19269 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19271 strcpy (retval, lead);
19272 strcat (retval, prefix);
19273 strcat (retval, sep);
19274 strcat (retval, suffix);
19279 /* We have an obstack. */
19280 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19284 /* Return sibling of die, NULL if no sibling. */
19286 static struct die_info *
19287 sibling_die (struct die_info *die)
19289 return die->sibling;
19292 /* Get name of a die, return NULL if not found. */
19294 static const char *
19295 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19296 struct obstack *obstack)
19298 if (name && cu->language == language_cplus)
19300 char *canon_name = cp_canonicalize_string (name);
19302 if (canon_name != NULL)
19304 if (strcmp (canon_name, name) != 0)
19305 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19306 xfree (canon_name);
19313 /* Get name of a die, return NULL if not found.
19314 Anonymous namespaces are converted to their magic string. */
19316 static const char *
19317 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19319 struct attribute *attr;
19321 attr = dwarf2_attr (die, DW_AT_name, cu);
19322 if ((!attr || !DW_STRING (attr))
19323 && die->tag != DW_TAG_namespace
19324 && die->tag != DW_TAG_class_type
19325 && die->tag != DW_TAG_interface_type
19326 && die->tag != DW_TAG_structure_type
19327 && die->tag != DW_TAG_union_type)
19332 case DW_TAG_compile_unit:
19333 case DW_TAG_partial_unit:
19334 /* Compilation units have a DW_AT_name that is a filename, not
19335 a source language identifier. */
19336 case DW_TAG_enumeration_type:
19337 case DW_TAG_enumerator:
19338 /* These tags always have simple identifiers already; no need
19339 to canonicalize them. */
19340 return DW_STRING (attr);
19342 case DW_TAG_namespace:
19343 if (attr != NULL && DW_STRING (attr) != NULL)
19344 return DW_STRING (attr);
19345 return CP_ANONYMOUS_NAMESPACE_STR;
19347 case DW_TAG_subprogram:
19348 /* Java constructors will all be named "<init>", so return
19349 the class name when we see this special case. */
19350 if (cu->language == language_java
19351 && DW_STRING (attr) != NULL
19352 && strcmp (DW_STRING (attr), "<init>") == 0)
19354 struct dwarf2_cu *spec_cu = cu;
19355 struct die_info *spec_die;
19357 /* GCJ will output '<init>' for Java constructor names.
19358 For this special case, return the name of the parent class. */
19360 /* GCJ may output subprogram DIEs with AT_specification set.
19361 If so, use the name of the specified DIE. */
19362 spec_die = die_specification (die, &spec_cu);
19363 if (spec_die != NULL)
19364 return dwarf2_name (spec_die, spec_cu);
19369 if (die->tag == DW_TAG_class_type)
19370 return dwarf2_name (die, cu);
19372 while (die->tag != DW_TAG_compile_unit
19373 && die->tag != DW_TAG_partial_unit);
19377 case DW_TAG_class_type:
19378 case DW_TAG_interface_type:
19379 case DW_TAG_structure_type:
19380 case DW_TAG_union_type:
19381 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19382 structures or unions. These were of the form "._%d" in GCC 4.1,
19383 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19384 and GCC 4.4. We work around this problem by ignoring these. */
19385 if (attr && DW_STRING (attr)
19386 && (startswith (DW_STRING (attr), "._")
19387 || startswith (DW_STRING (attr), "<anonymous")))
19390 /* GCC might emit a nameless typedef that has a linkage name. See
19391 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19392 if (!attr || DW_STRING (attr) == NULL)
19394 char *demangled = NULL;
19396 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19398 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19400 if (attr == NULL || DW_STRING (attr) == NULL)
19403 /* Avoid demangling DW_STRING (attr) the second time on a second
19404 call for the same DIE. */
19405 if (!DW_STRING_IS_CANONICAL (attr))
19406 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19412 /* FIXME: we already did this for the partial symbol... */
19414 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19415 demangled, strlen (demangled));
19416 DW_STRING_IS_CANONICAL (attr) = 1;
19419 /* Strip any leading namespaces/classes, keep only the base name.
19420 DW_AT_name for named DIEs does not contain the prefixes. */
19421 base = strrchr (DW_STRING (attr), ':');
19422 if (base && base > DW_STRING (attr) && base[-1] == ':')
19425 return DW_STRING (attr);
19434 if (!DW_STRING_IS_CANONICAL (attr))
19437 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19438 &cu->objfile->per_bfd->storage_obstack);
19439 DW_STRING_IS_CANONICAL (attr) = 1;
19441 return DW_STRING (attr);
19444 /* Return the die that this die in an extension of, or NULL if there
19445 is none. *EXT_CU is the CU containing DIE on input, and the CU
19446 containing the return value on output. */
19448 static struct die_info *
19449 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19451 struct attribute *attr;
19453 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19457 return follow_die_ref (die, attr, ext_cu);
19460 /* Convert a DIE tag into its string name. */
19462 static const char *
19463 dwarf_tag_name (unsigned tag)
19465 const char *name = get_DW_TAG_name (tag);
19468 return "DW_TAG_<unknown>";
19473 /* Convert a DWARF attribute code into its string name. */
19475 static const char *
19476 dwarf_attr_name (unsigned attr)
19480 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19481 if (attr == DW_AT_MIPS_fde)
19482 return "DW_AT_MIPS_fde";
19484 if (attr == DW_AT_HP_block_index)
19485 return "DW_AT_HP_block_index";
19488 name = get_DW_AT_name (attr);
19491 return "DW_AT_<unknown>";
19496 /* Convert a DWARF value form code into its string name. */
19498 static const char *
19499 dwarf_form_name (unsigned form)
19501 const char *name = get_DW_FORM_name (form);
19504 return "DW_FORM_<unknown>";
19510 dwarf_bool_name (unsigned mybool)
19518 /* Convert a DWARF type code into its string name. */
19520 static const char *
19521 dwarf_type_encoding_name (unsigned enc)
19523 const char *name = get_DW_ATE_name (enc);
19526 return "DW_ATE_<unknown>";
19532 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19536 print_spaces (indent, f);
19537 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19538 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19540 if (die->parent != NULL)
19542 print_spaces (indent, f);
19543 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19544 die->parent->offset.sect_off);
19547 print_spaces (indent, f);
19548 fprintf_unfiltered (f, " has children: %s\n",
19549 dwarf_bool_name (die->child != NULL));
19551 print_spaces (indent, f);
19552 fprintf_unfiltered (f, " attributes:\n");
19554 for (i = 0; i < die->num_attrs; ++i)
19556 print_spaces (indent, f);
19557 fprintf_unfiltered (f, " %s (%s) ",
19558 dwarf_attr_name (die->attrs[i].name),
19559 dwarf_form_name (die->attrs[i].form));
19561 switch (die->attrs[i].form)
19564 case DW_FORM_GNU_addr_index:
19565 fprintf_unfiltered (f, "address: ");
19566 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19568 case DW_FORM_block2:
19569 case DW_FORM_block4:
19570 case DW_FORM_block:
19571 case DW_FORM_block1:
19572 fprintf_unfiltered (f, "block: size %s",
19573 pulongest (DW_BLOCK (&die->attrs[i])->size));
19575 case DW_FORM_exprloc:
19576 fprintf_unfiltered (f, "expression: size %s",
19577 pulongest (DW_BLOCK (&die->attrs[i])->size));
19579 case DW_FORM_ref_addr:
19580 fprintf_unfiltered (f, "ref address: ");
19581 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19583 case DW_FORM_GNU_ref_alt:
19584 fprintf_unfiltered (f, "alt ref address: ");
19585 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19591 case DW_FORM_ref_udata:
19592 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19593 (long) (DW_UNSND (&die->attrs[i])));
19595 case DW_FORM_data1:
19596 case DW_FORM_data2:
19597 case DW_FORM_data4:
19598 case DW_FORM_data8:
19599 case DW_FORM_udata:
19600 case DW_FORM_sdata:
19601 fprintf_unfiltered (f, "constant: %s",
19602 pulongest (DW_UNSND (&die->attrs[i])));
19604 case DW_FORM_sec_offset:
19605 fprintf_unfiltered (f, "section offset: %s",
19606 pulongest (DW_UNSND (&die->attrs[i])));
19608 case DW_FORM_ref_sig8:
19609 fprintf_unfiltered (f, "signature: %s",
19610 hex_string (DW_SIGNATURE (&die->attrs[i])));
19612 case DW_FORM_string:
19614 case DW_FORM_GNU_str_index:
19615 case DW_FORM_GNU_strp_alt:
19616 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19617 DW_STRING (&die->attrs[i])
19618 ? DW_STRING (&die->attrs[i]) : "",
19619 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19622 if (DW_UNSND (&die->attrs[i]))
19623 fprintf_unfiltered (f, "flag: TRUE");
19625 fprintf_unfiltered (f, "flag: FALSE");
19627 case DW_FORM_flag_present:
19628 fprintf_unfiltered (f, "flag: TRUE");
19630 case DW_FORM_indirect:
19631 /* The reader will have reduced the indirect form to
19632 the "base form" so this form should not occur. */
19633 fprintf_unfiltered (f,
19634 "unexpected attribute form: DW_FORM_indirect");
19637 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19638 die->attrs[i].form);
19641 fprintf_unfiltered (f, "\n");
19646 dump_die_for_error (struct die_info *die)
19648 dump_die_shallow (gdb_stderr, 0, die);
19652 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19654 int indent = level * 4;
19656 gdb_assert (die != NULL);
19658 if (level >= max_level)
19661 dump_die_shallow (f, indent, die);
19663 if (die->child != NULL)
19665 print_spaces (indent, f);
19666 fprintf_unfiltered (f, " Children:");
19667 if (level + 1 < max_level)
19669 fprintf_unfiltered (f, "\n");
19670 dump_die_1 (f, level + 1, max_level, die->child);
19674 fprintf_unfiltered (f,
19675 " [not printed, max nesting level reached]\n");
19679 if (die->sibling != NULL && level > 0)
19681 dump_die_1 (f, level, max_level, die->sibling);
19685 /* This is called from the pdie macro in gdbinit.in.
19686 It's not static so gcc will keep a copy callable from gdb. */
19689 dump_die (struct die_info *die, int max_level)
19691 dump_die_1 (gdb_stdlog, 0, max_level, die);
19695 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19699 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19705 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19709 dwarf2_get_ref_die_offset (const struct attribute *attr)
19711 sect_offset retval = { DW_UNSND (attr) };
19713 if (attr_form_is_ref (attr))
19716 retval.sect_off = 0;
19717 complaint (&symfile_complaints,
19718 _("unsupported die ref attribute form: '%s'"),
19719 dwarf_form_name (attr->form));
19723 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19724 * the value held by the attribute is not constant. */
19727 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19729 if (attr->form == DW_FORM_sdata)
19730 return DW_SND (attr);
19731 else if (attr->form == DW_FORM_udata
19732 || attr->form == DW_FORM_data1
19733 || attr->form == DW_FORM_data2
19734 || attr->form == DW_FORM_data4
19735 || attr->form == DW_FORM_data8)
19736 return DW_UNSND (attr);
19739 complaint (&symfile_complaints,
19740 _("Attribute value is not a constant (%s)"),
19741 dwarf_form_name (attr->form));
19742 return default_value;
19746 /* Follow reference or signature attribute ATTR of SRC_DIE.
19747 On entry *REF_CU is the CU of SRC_DIE.
19748 On exit *REF_CU is the CU of the result. */
19750 static struct die_info *
19751 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19752 struct dwarf2_cu **ref_cu)
19754 struct die_info *die;
19756 if (attr_form_is_ref (attr))
19757 die = follow_die_ref (src_die, attr, ref_cu);
19758 else if (attr->form == DW_FORM_ref_sig8)
19759 die = follow_die_sig (src_die, attr, ref_cu);
19762 dump_die_for_error (src_die);
19763 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19764 objfile_name ((*ref_cu)->objfile));
19770 /* Follow reference OFFSET.
19771 On entry *REF_CU is the CU of the source die referencing OFFSET.
19772 On exit *REF_CU is the CU of the result.
19773 Returns NULL if OFFSET is invalid. */
19775 static struct die_info *
19776 follow_die_offset (sect_offset offset, int offset_in_dwz,
19777 struct dwarf2_cu **ref_cu)
19779 struct die_info temp_die;
19780 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19782 gdb_assert (cu->per_cu != NULL);
19786 if (cu->per_cu->is_debug_types)
19788 /* .debug_types CUs cannot reference anything outside their CU.
19789 If they need to, they have to reference a signatured type via
19790 DW_FORM_ref_sig8. */
19791 if (! offset_in_cu_p (&cu->header, offset))
19794 else if (offset_in_dwz != cu->per_cu->is_dwz
19795 || ! offset_in_cu_p (&cu->header, offset))
19797 struct dwarf2_per_cu_data *per_cu;
19799 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19802 /* If necessary, add it to the queue and load its DIEs. */
19803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19804 load_full_comp_unit (per_cu, cu->language);
19806 target_cu = per_cu->cu;
19808 else if (cu->dies == NULL)
19810 /* We're loading full DIEs during partial symbol reading. */
19811 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19812 load_full_comp_unit (cu->per_cu, language_minimal);
19815 *ref_cu = target_cu;
19816 temp_die.offset = offset;
19817 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19820 /* Follow reference attribute ATTR of SRC_DIE.
19821 On entry *REF_CU is the CU of SRC_DIE.
19822 On exit *REF_CU is the CU of the result. */
19824 static struct die_info *
19825 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19826 struct dwarf2_cu **ref_cu)
19828 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19829 struct dwarf2_cu *cu = *ref_cu;
19830 struct die_info *die;
19832 die = follow_die_offset (offset,
19833 (attr->form == DW_FORM_GNU_ref_alt
19834 || cu->per_cu->is_dwz),
19837 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19838 "at 0x%x [in module %s]"),
19839 offset.sect_off, src_die->offset.sect_off,
19840 objfile_name (cu->objfile));
19845 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19846 Returned value is intended for DW_OP_call*. Returned
19847 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19849 struct dwarf2_locexpr_baton
19850 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19851 struct dwarf2_per_cu_data *per_cu,
19852 CORE_ADDR (*get_frame_pc) (void *baton),
19855 struct dwarf2_cu *cu;
19856 struct die_info *die;
19857 struct attribute *attr;
19858 struct dwarf2_locexpr_baton retval;
19860 dw2_setup (per_cu->objfile);
19862 if (per_cu->cu == NULL)
19866 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19868 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19869 offset.sect_off, objfile_name (per_cu->objfile));
19871 attr = dwarf2_attr (die, DW_AT_location, cu);
19874 /* DWARF: "If there is no such attribute, then there is no effect.".
19875 DATA is ignored if SIZE is 0. */
19877 retval.data = NULL;
19880 else if (attr_form_is_section_offset (attr))
19882 struct dwarf2_loclist_baton loclist_baton;
19883 CORE_ADDR pc = (*get_frame_pc) (baton);
19886 fill_in_loclist_baton (cu, &loclist_baton, attr);
19888 retval.data = dwarf2_find_location_expression (&loclist_baton,
19890 retval.size = size;
19894 if (!attr_form_is_block (attr))
19895 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19896 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19897 offset.sect_off, objfile_name (per_cu->objfile));
19899 retval.data = DW_BLOCK (attr)->data;
19900 retval.size = DW_BLOCK (attr)->size;
19902 retval.per_cu = cu->per_cu;
19904 age_cached_comp_units ();
19909 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19912 struct dwarf2_locexpr_baton
19913 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19914 struct dwarf2_per_cu_data *per_cu,
19915 CORE_ADDR (*get_frame_pc) (void *baton),
19918 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19920 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19923 /* Write a constant of a given type as target-ordered bytes into
19926 static const gdb_byte *
19927 write_constant_as_bytes (struct obstack *obstack,
19928 enum bfd_endian byte_order,
19935 *len = TYPE_LENGTH (type);
19936 result = obstack_alloc (obstack, *len);
19937 store_unsigned_integer (result, *len, byte_order, value);
19942 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19943 pointer to the constant bytes and set LEN to the length of the
19944 data. If memory is needed, allocate it on OBSTACK. If the DIE
19945 does not have a DW_AT_const_value, return NULL. */
19948 dwarf2_fetch_constant_bytes (sect_offset offset,
19949 struct dwarf2_per_cu_data *per_cu,
19950 struct obstack *obstack,
19953 struct dwarf2_cu *cu;
19954 struct die_info *die;
19955 struct attribute *attr;
19956 const gdb_byte *result = NULL;
19959 enum bfd_endian byte_order;
19961 dw2_setup (per_cu->objfile);
19963 if (per_cu->cu == NULL)
19967 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19969 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19970 offset.sect_off, objfile_name (per_cu->objfile));
19973 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19977 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19978 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19980 switch (attr->form)
19983 case DW_FORM_GNU_addr_index:
19987 *len = cu->header.addr_size;
19988 tem = obstack_alloc (obstack, *len);
19989 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19993 case DW_FORM_string:
19995 case DW_FORM_GNU_str_index:
19996 case DW_FORM_GNU_strp_alt:
19997 /* DW_STRING is already allocated on the objfile obstack, point
19999 result = (const gdb_byte *) DW_STRING (attr);
20000 *len = strlen (DW_STRING (attr));
20002 case DW_FORM_block1:
20003 case DW_FORM_block2:
20004 case DW_FORM_block4:
20005 case DW_FORM_block:
20006 case DW_FORM_exprloc:
20007 result = DW_BLOCK (attr)->data;
20008 *len = DW_BLOCK (attr)->size;
20011 /* The DW_AT_const_value attributes are supposed to carry the
20012 symbol's value "represented as it would be on the target
20013 architecture." By the time we get here, it's already been
20014 converted to host endianness, so we just need to sign- or
20015 zero-extend it as appropriate. */
20016 case DW_FORM_data1:
20017 type = die_type (die, cu);
20018 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20019 if (result == NULL)
20020 result = write_constant_as_bytes (obstack, byte_order,
20023 case DW_FORM_data2:
20024 type = die_type (die, cu);
20025 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20026 if (result == NULL)
20027 result = write_constant_as_bytes (obstack, byte_order,
20030 case DW_FORM_data4:
20031 type = die_type (die, cu);
20032 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20033 if (result == NULL)
20034 result = write_constant_as_bytes (obstack, byte_order,
20037 case DW_FORM_data8:
20038 type = die_type (die, cu);
20039 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20040 if (result == NULL)
20041 result = write_constant_as_bytes (obstack, byte_order,
20045 case DW_FORM_sdata:
20046 type = die_type (die, cu);
20047 result = write_constant_as_bytes (obstack, byte_order,
20048 type, DW_SND (attr), len);
20051 case DW_FORM_udata:
20052 type = die_type (die, cu);
20053 result = write_constant_as_bytes (obstack, byte_order,
20054 type, DW_UNSND (attr), len);
20058 complaint (&symfile_complaints,
20059 _("unsupported const value attribute form: '%s'"),
20060 dwarf_form_name (attr->form));
20067 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20071 dwarf2_get_die_type (cu_offset die_offset,
20072 struct dwarf2_per_cu_data *per_cu)
20074 sect_offset die_offset_sect;
20076 dw2_setup (per_cu->objfile);
20078 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20079 return get_die_type_at_offset (die_offset_sect, per_cu);
20082 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20083 On entry *REF_CU is the CU of SRC_DIE.
20084 On exit *REF_CU is the CU of the result.
20085 Returns NULL if the referenced DIE isn't found. */
20087 static struct die_info *
20088 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20089 struct dwarf2_cu **ref_cu)
20091 struct objfile *objfile = (*ref_cu)->objfile;
20092 struct die_info temp_die;
20093 struct dwarf2_cu *sig_cu;
20094 struct die_info *die;
20096 /* While it might be nice to assert sig_type->type == NULL here,
20097 we can get here for DW_AT_imported_declaration where we need
20098 the DIE not the type. */
20100 /* If necessary, add it to the queue and load its DIEs. */
20102 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20103 read_signatured_type (sig_type);
20105 sig_cu = sig_type->per_cu.cu;
20106 gdb_assert (sig_cu != NULL);
20107 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20108 temp_die.offset = sig_type->type_offset_in_section;
20109 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20110 temp_die.offset.sect_off);
20113 /* For .gdb_index version 7 keep track of included TUs.
20114 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20115 if (dwarf2_per_objfile->index_table != NULL
20116 && dwarf2_per_objfile->index_table->version <= 7)
20118 VEC_safe_push (dwarf2_per_cu_ptr,
20119 (*ref_cu)->per_cu->imported_symtabs,
20130 /* Follow signatured type referenced by ATTR in SRC_DIE.
20131 On entry *REF_CU is the CU of SRC_DIE.
20132 On exit *REF_CU is the CU of the result.
20133 The result is the DIE of the type.
20134 If the referenced type cannot be found an error is thrown. */
20136 static struct die_info *
20137 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20138 struct dwarf2_cu **ref_cu)
20140 ULONGEST signature = DW_SIGNATURE (attr);
20141 struct signatured_type *sig_type;
20142 struct die_info *die;
20144 gdb_assert (attr->form == DW_FORM_ref_sig8);
20146 sig_type = lookup_signatured_type (*ref_cu, signature);
20147 /* sig_type will be NULL if the signatured type is missing from
20149 if (sig_type == NULL)
20151 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20152 " from DIE at 0x%x [in module %s]"),
20153 hex_string (signature), src_die->offset.sect_off,
20154 objfile_name ((*ref_cu)->objfile));
20157 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20160 dump_die_for_error (src_die);
20161 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20162 " from DIE at 0x%x [in module %s]"),
20163 hex_string (signature), src_die->offset.sect_off,
20164 objfile_name ((*ref_cu)->objfile));
20170 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20171 reading in and processing the type unit if necessary. */
20173 static struct type *
20174 get_signatured_type (struct die_info *die, ULONGEST signature,
20175 struct dwarf2_cu *cu)
20177 struct signatured_type *sig_type;
20178 struct dwarf2_cu *type_cu;
20179 struct die_info *type_die;
20182 sig_type = lookup_signatured_type (cu, signature);
20183 /* sig_type will be NULL if the signatured type is missing from
20185 if (sig_type == NULL)
20187 complaint (&symfile_complaints,
20188 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20189 " from DIE at 0x%x [in module %s]"),
20190 hex_string (signature), die->offset.sect_off,
20191 objfile_name (dwarf2_per_objfile->objfile));
20192 return build_error_marker_type (cu, die);
20195 /* If we already know the type we're done. */
20196 if (sig_type->type != NULL)
20197 return sig_type->type;
20200 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20201 if (type_die != NULL)
20203 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20204 is created. This is important, for example, because for c++ classes
20205 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20206 type = read_type_die (type_die, type_cu);
20209 complaint (&symfile_complaints,
20210 _("Dwarf Error: Cannot build signatured type %s"
20211 " referenced from DIE at 0x%x [in module %s]"),
20212 hex_string (signature), die->offset.sect_off,
20213 objfile_name (dwarf2_per_objfile->objfile));
20214 type = build_error_marker_type (cu, die);
20219 complaint (&symfile_complaints,
20220 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20221 " from DIE at 0x%x [in module %s]"),
20222 hex_string (signature), die->offset.sect_off,
20223 objfile_name (dwarf2_per_objfile->objfile));
20224 type = build_error_marker_type (cu, die);
20226 sig_type->type = type;
20231 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20232 reading in and processing the type unit if necessary. */
20234 static struct type *
20235 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20236 struct dwarf2_cu *cu) /* ARI: editCase function */
20238 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20239 if (attr_form_is_ref (attr))
20241 struct dwarf2_cu *type_cu = cu;
20242 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20244 return read_type_die (type_die, type_cu);
20246 else if (attr->form == DW_FORM_ref_sig8)
20248 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20252 complaint (&symfile_complaints,
20253 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20254 " at 0x%x [in module %s]"),
20255 dwarf_form_name (attr->form), die->offset.sect_off,
20256 objfile_name (dwarf2_per_objfile->objfile));
20257 return build_error_marker_type (cu, die);
20261 /* Load the DIEs associated with type unit PER_CU into memory. */
20264 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20266 struct signatured_type *sig_type;
20268 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20269 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20271 /* We have the per_cu, but we need the signatured_type.
20272 Fortunately this is an easy translation. */
20273 gdb_assert (per_cu->is_debug_types);
20274 sig_type = (struct signatured_type *) per_cu;
20276 gdb_assert (per_cu->cu == NULL);
20278 read_signatured_type (sig_type);
20280 gdb_assert (per_cu->cu != NULL);
20283 /* die_reader_func for read_signatured_type.
20284 This is identical to load_full_comp_unit_reader,
20285 but is kept separate for now. */
20288 read_signatured_type_reader (const struct die_reader_specs *reader,
20289 const gdb_byte *info_ptr,
20290 struct die_info *comp_unit_die,
20294 struct dwarf2_cu *cu = reader->cu;
20296 gdb_assert (cu->die_hash == NULL);
20298 htab_create_alloc_ex (cu->header.length / 12,
20302 &cu->comp_unit_obstack,
20303 hashtab_obstack_allocate,
20304 dummy_obstack_deallocate);
20307 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20308 &info_ptr, comp_unit_die);
20309 cu->dies = comp_unit_die;
20310 /* comp_unit_die is not stored in die_hash, no need. */
20312 /* We try not to read any attributes in this function, because not
20313 all CUs needed for references have been loaded yet, and symbol
20314 table processing isn't initialized. But we have to set the CU language,
20315 or we won't be able to build types correctly.
20316 Similarly, if we do not read the producer, we can not apply
20317 producer-specific interpretation. */
20318 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20321 /* Read in a signatured type and build its CU and DIEs.
20322 If the type is a stub for the real type in a DWO file,
20323 read in the real type from the DWO file as well. */
20326 read_signatured_type (struct signatured_type *sig_type)
20328 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20330 gdb_assert (per_cu->is_debug_types);
20331 gdb_assert (per_cu->cu == NULL);
20333 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20334 read_signatured_type_reader, NULL);
20335 sig_type->per_cu.tu_read = 1;
20338 /* Decode simple location descriptions.
20339 Given a pointer to a dwarf block that defines a location, compute
20340 the location and return the value.
20342 NOTE drow/2003-11-18: This function is called in two situations
20343 now: for the address of static or global variables (partial symbols
20344 only) and for offsets into structures which are expected to be
20345 (more or less) constant. The partial symbol case should go away,
20346 and only the constant case should remain. That will let this
20347 function complain more accurately. A few special modes are allowed
20348 without complaint for global variables (for instance, global
20349 register values and thread-local values).
20351 A location description containing no operations indicates that the
20352 object is optimized out. The return value is 0 for that case.
20353 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20354 callers will only want a very basic result and this can become a
20357 Note that stack[0] is unused except as a default error return. */
20360 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20362 struct objfile *objfile = cu->objfile;
20364 size_t size = blk->size;
20365 const gdb_byte *data = blk->data;
20366 CORE_ADDR stack[64];
20368 unsigned int bytes_read, unsnd;
20374 stack[++stacki] = 0;
20413 stack[++stacki] = op - DW_OP_lit0;
20448 stack[++stacki] = op - DW_OP_reg0;
20450 dwarf2_complex_location_expr_complaint ();
20454 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20456 stack[++stacki] = unsnd;
20458 dwarf2_complex_location_expr_complaint ();
20462 stack[++stacki] = read_address (objfile->obfd, &data[i],
20467 case DW_OP_const1u:
20468 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20472 case DW_OP_const1s:
20473 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20477 case DW_OP_const2u:
20478 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20482 case DW_OP_const2s:
20483 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20487 case DW_OP_const4u:
20488 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20492 case DW_OP_const4s:
20493 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20497 case DW_OP_const8u:
20498 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20503 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20509 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20514 stack[stacki + 1] = stack[stacki];
20519 stack[stacki - 1] += stack[stacki];
20523 case DW_OP_plus_uconst:
20524 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20530 stack[stacki - 1] -= stack[stacki];
20535 /* If we're not the last op, then we definitely can't encode
20536 this using GDB's address_class enum. This is valid for partial
20537 global symbols, although the variable's address will be bogus
20540 dwarf2_complex_location_expr_complaint ();
20543 case DW_OP_GNU_push_tls_address:
20544 /* The top of the stack has the offset from the beginning
20545 of the thread control block at which the variable is located. */
20546 /* Nothing should follow this operator, so the top of stack would
20548 /* This is valid for partial global symbols, but the variable's
20549 address will be bogus in the psymtab. Make it always at least
20550 non-zero to not look as a variable garbage collected by linker
20551 which have DW_OP_addr 0. */
20553 dwarf2_complex_location_expr_complaint ();
20557 case DW_OP_GNU_uninit:
20560 case DW_OP_GNU_addr_index:
20561 case DW_OP_GNU_const_index:
20562 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20569 const char *name = get_DW_OP_name (op);
20572 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20575 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20579 return (stack[stacki]);
20582 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20583 outside of the allocated space. Also enforce minimum>0. */
20584 if (stacki >= ARRAY_SIZE (stack) - 1)
20586 complaint (&symfile_complaints,
20587 _("location description stack overflow"));
20593 complaint (&symfile_complaints,
20594 _("location description stack underflow"));
20598 return (stack[stacki]);
20601 /* memory allocation interface */
20603 static struct dwarf_block *
20604 dwarf_alloc_block (struct dwarf2_cu *cu)
20606 struct dwarf_block *blk;
20608 blk = (struct dwarf_block *)
20609 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20613 static struct die_info *
20614 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20616 struct die_info *die;
20617 size_t size = sizeof (struct die_info);
20620 size += (num_attrs - 1) * sizeof (struct attribute);
20622 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20623 memset (die, 0, sizeof (struct die_info));
20628 /* Macro support. */
20630 /* Return file name relative to the compilation directory of file number I in
20631 *LH's file name table. The result is allocated using xmalloc; the caller is
20632 responsible for freeing it. */
20635 file_file_name (int file, struct line_header *lh)
20637 /* Is the file number a valid index into the line header's file name
20638 table? Remember that file numbers start with one, not zero. */
20639 if (1 <= file && file <= lh->num_file_names)
20641 struct file_entry *fe = &lh->file_names[file - 1];
20643 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20644 return xstrdup (fe->name);
20645 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20650 /* The compiler produced a bogus file number. We can at least
20651 record the macro definitions made in the file, even if we
20652 won't be able to find the file by name. */
20653 char fake_name[80];
20655 xsnprintf (fake_name, sizeof (fake_name),
20656 "<bad macro file number %d>", file);
20658 complaint (&symfile_complaints,
20659 _("bad file number in macro information (%d)"),
20662 return xstrdup (fake_name);
20666 /* Return the full name of file number I in *LH's file name table.
20667 Use COMP_DIR as the name of the current directory of the
20668 compilation. The result is allocated using xmalloc; the caller is
20669 responsible for freeing it. */
20671 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20673 /* Is the file number a valid index into the line header's file name
20674 table? Remember that file numbers start with one, not zero. */
20675 if (1 <= file && file <= lh->num_file_names)
20677 char *relative = file_file_name (file, lh);
20679 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20681 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20684 return file_file_name (file, lh);
20688 static struct macro_source_file *
20689 macro_start_file (int file, int line,
20690 struct macro_source_file *current_file,
20691 struct line_header *lh)
20693 /* File name relative to the compilation directory of this source file. */
20694 char *file_name = file_file_name (file, lh);
20696 if (! current_file)
20698 /* Note: We don't create a macro table for this compilation unit
20699 at all until we actually get a filename. */
20700 struct macro_table *macro_table = get_macro_table ();
20702 /* If we have no current file, then this must be the start_file
20703 directive for the compilation unit's main source file. */
20704 current_file = macro_set_main (macro_table, file_name);
20705 macro_define_special (macro_table);
20708 current_file = macro_include (current_file, line, file_name);
20712 return current_file;
20716 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20717 followed by a null byte. */
20719 copy_string (const char *buf, int len)
20721 char *s = xmalloc (len + 1);
20723 memcpy (s, buf, len);
20729 static const char *
20730 consume_improper_spaces (const char *p, const char *body)
20734 complaint (&symfile_complaints,
20735 _("macro definition contains spaces "
20736 "in formal argument list:\n`%s'"),
20748 parse_macro_definition (struct macro_source_file *file, int line,
20753 /* The body string takes one of two forms. For object-like macro
20754 definitions, it should be:
20756 <macro name> " " <definition>
20758 For function-like macro definitions, it should be:
20760 <macro name> "() " <definition>
20762 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20764 Spaces may appear only where explicitly indicated, and in the
20767 The Dwarf 2 spec says that an object-like macro's name is always
20768 followed by a space, but versions of GCC around March 2002 omit
20769 the space when the macro's definition is the empty string.
20771 The Dwarf 2 spec says that there should be no spaces between the
20772 formal arguments in a function-like macro's formal argument list,
20773 but versions of GCC around March 2002 include spaces after the
20777 /* Find the extent of the macro name. The macro name is terminated
20778 by either a space or null character (for an object-like macro) or
20779 an opening paren (for a function-like macro). */
20780 for (p = body; *p; p++)
20781 if (*p == ' ' || *p == '(')
20784 if (*p == ' ' || *p == '\0')
20786 /* It's an object-like macro. */
20787 int name_len = p - body;
20788 char *name = copy_string (body, name_len);
20789 const char *replacement;
20792 replacement = body + name_len + 1;
20795 dwarf2_macro_malformed_definition_complaint (body);
20796 replacement = body + name_len;
20799 macro_define_object (file, line, name, replacement);
20803 else if (*p == '(')
20805 /* It's a function-like macro. */
20806 char *name = copy_string (body, p - body);
20809 char **argv = xmalloc (argv_size * sizeof (*argv));
20813 p = consume_improper_spaces (p, body);
20815 /* Parse the formal argument list. */
20816 while (*p && *p != ')')
20818 /* Find the extent of the current argument name. */
20819 const char *arg_start = p;
20821 while (*p && *p != ',' && *p != ')' && *p != ' ')
20824 if (! *p || p == arg_start)
20825 dwarf2_macro_malformed_definition_complaint (body);
20828 /* Make sure argv has room for the new argument. */
20829 if (argc >= argv_size)
20832 argv = xrealloc (argv, argv_size * sizeof (*argv));
20835 argv[argc++] = copy_string (arg_start, p - arg_start);
20838 p = consume_improper_spaces (p, body);
20840 /* Consume the comma, if present. */
20845 p = consume_improper_spaces (p, body);
20854 /* Perfectly formed definition, no complaints. */
20855 macro_define_function (file, line, name,
20856 argc, (const char **) argv,
20858 else if (*p == '\0')
20860 /* Complain, but do define it. */
20861 dwarf2_macro_malformed_definition_complaint (body);
20862 macro_define_function (file, line, name,
20863 argc, (const char **) argv,
20867 /* Just complain. */
20868 dwarf2_macro_malformed_definition_complaint (body);
20871 /* Just complain. */
20872 dwarf2_macro_malformed_definition_complaint (body);
20878 for (i = 0; i < argc; i++)
20884 dwarf2_macro_malformed_definition_complaint (body);
20887 /* Skip some bytes from BYTES according to the form given in FORM.
20888 Returns the new pointer. */
20890 static const gdb_byte *
20891 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20892 enum dwarf_form form,
20893 unsigned int offset_size,
20894 struct dwarf2_section_info *section)
20896 unsigned int bytes_read;
20900 case DW_FORM_data1:
20905 case DW_FORM_data2:
20909 case DW_FORM_data4:
20913 case DW_FORM_data8:
20917 case DW_FORM_string:
20918 read_direct_string (abfd, bytes, &bytes_read);
20919 bytes += bytes_read;
20922 case DW_FORM_sec_offset:
20924 case DW_FORM_GNU_strp_alt:
20925 bytes += offset_size;
20928 case DW_FORM_block:
20929 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20930 bytes += bytes_read;
20933 case DW_FORM_block1:
20934 bytes += 1 + read_1_byte (abfd, bytes);
20936 case DW_FORM_block2:
20937 bytes += 2 + read_2_bytes (abfd, bytes);
20939 case DW_FORM_block4:
20940 bytes += 4 + read_4_bytes (abfd, bytes);
20943 case DW_FORM_sdata:
20944 case DW_FORM_udata:
20945 case DW_FORM_GNU_addr_index:
20946 case DW_FORM_GNU_str_index:
20947 bytes = gdb_skip_leb128 (bytes, buffer_end);
20950 dwarf2_section_buffer_overflow_complaint (section);
20958 complaint (&symfile_complaints,
20959 _("invalid form 0x%x in `%s'"),
20960 form, get_section_name (section));
20968 /* A helper for dwarf_decode_macros that handles skipping an unknown
20969 opcode. Returns an updated pointer to the macro data buffer; or,
20970 on error, issues a complaint and returns NULL. */
20972 static const gdb_byte *
20973 skip_unknown_opcode (unsigned int opcode,
20974 const gdb_byte **opcode_definitions,
20975 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20977 unsigned int offset_size,
20978 struct dwarf2_section_info *section)
20980 unsigned int bytes_read, i;
20982 const gdb_byte *defn;
20984 if (opcode_definitions[opcode] == NULL)
20986 complaint (&symfile_complaints,
20987 _("unrecognized DW_MACFINO opcode 0x%x"),
20992 defn = opcode_definitions[opcode];
20993 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20994 defn += bytes_read;
20996 for (i = 0; i < arg; ++i)
20998 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21000 if (mac_ptr == NULL)
21002 /* skip_form_bytes already issued the complaint. */
21010 /* A helper function which parses the header of a macro section.
21011 If the macro section is the extended (for now called "GNU") type,
21012 then this updates *OFFSET_SIZE. Returns a pointer to just after
21013 the header, or issues a complaint and returns NULL on error. */
21015 static const gdb_byte *
21016 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21018 const gdb_byte *mac_ptr,
21019 unsigned int *offset_size,
21020 int section_is_gnu)
21022 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21024 if (section_is_gnu)
21026 unsigned int version, flags;
21028 version = read_2_bytes (abfd, mac_ptr);
21031 complaint (&symfile_complaints,
21032 _("unrecognized version `%d' in .debug_macro section"),
21038 flags = read_1_byte (abfd, mac_ptr);
21040 *offset_size = (flags & 1) ? 8 : 4;
21042 if ((flags & 2) != 0)
21043 /* We don't need the line table offset. */
21044 mac_ptr += *offset_size;
21046 /* Vendor opcode descriptions. */
21047 if ((flags & 4) != 0)
21049 unsigned int i, count;
21051 count = read_1_byte (abfd, mac_ptr);
21053 for (i = 0; i < count; ++i)
21055 unsigned int opcode, bytes_read;
21058 opcode = read_1_byte (abfd, mac_ptr);
21060 opcode_definitions[opcode] = mac_ptr;
21061 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21062 mac_ptr += bytes_read;
21071 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21072 including DW_MACRO_GNU_transparent_include. */
21075 dwarf_decode_macro_bytes (bfd *abfd,
21076 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21077 struct macro_source_file *current_file,
21078 struct line_header *lh,
21079 struct dwarf2_section_info *section,
21080 int section_is_gnu, int section_is_dwz,
21081 unsigned int offset_size,
21082 htab_t include_hash)
21084 struct objfile *objfile = dwarf2_per_objfile->objfile;
21085 enum dwarf_macro_record_type macinfo_type;
21086 int at_commandline;
21087 const gdb_byte *opcode_definitions[256];
21089 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21090 &offset_size, section_is_gnu);
21091 if (mac_ptr == NULL)
21093 /* We already issued a complaint. */
21097 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21098 GDB is still reading the definitions from command line. First
21099 DW_MACINFO_start_file will need to be ignored as it was already executed
21100 to create CURRENT_FILE for the main source holding also the command line
21101 definitions. On first met DW_MACINFO_start_file this flag is reset to
21102 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21104 at_commandline = 1;
21108 /* Do we at least have room for a macinfo type byte? */
21109 if (mac_ptr >= mac_end)
21111 dwarf2_section_buffer_overflow_complaint (section);
21115 macinfo_type = read_1_byte (abfd, mac_ptr);
21118 /* Note that we rely on the fact that the corresponding GNU and
21119 DWARF constants are the same. */
21120 switch (macinfo_type)
21122 /* A zero macinfo type indicates the end of the macro
21127 case DW_MACRO_GNU_define:
21128 case DW_MACRO_GNU_undef:
21129 case DW_MACRO_GNU_define_indirect:
21130 case DW_MACRO_GNU_undef_indirect:
21131 case DW_MACRO_GNU_define_indirect_alt:
21132 case DW_MACRO_GNU_undef_indirect_alt:
21134 unsigned int bytes_read;
21139 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21140 mac_ptr += bytes_read;
21142 if (macinfo_type == DW_MACRO_GNU_define
21143 || macinfo_type == DW_MACRO_GNU_undef)
21145 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21146 mac_ptr += bytes_read;
21150 LONGEST str_offset;
21152 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21153 mac_ptr += offset_size;
21155 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21156 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21159 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21161 body = read_indirect_string_from_dwz (dwz, str_offset);
21164 body = read_indirect_string_at_offset (abfd, str_offset);
21167 is_define = (macinfo_type == DW_MACRO_GNU_define
21168 || macinfo_type == DW_MACRO_GNU_define_indirect
21169 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21170 if (! current_file)
21172 /* DWARF violation as no main source is present. */
21173 complaint (&symfile_complaints,
21174 _("debug info with no main source gives macro %s "
21176 is_define ? _("definition") : _("undefinition"),
21180 if ((line == 0 && !at_commandline)
21181 || (line != 0 && at_commandline))
21182 complaint (&symfile_complaints,
21183 _("debug info gives %s macro %s with %s line %d: %s"),
21184 at_commandline ? _("command-line") : _("in-file"),
21185 is_define ? _("definition") : _("undefinition"),
21186 line == 0 ? _("zero") : _("non-zero"), line, body);
21189 parse_macro_definition (current_file, line, body);
21192 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21193 || macinfo_type == DW_MACRO_GNU_undef_indirect
21194 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21195 macro_undef (current_file, line, body);
21200 case DW_MACRO_GNU_start_file:
21202 unsigned int bytes_read;
21205 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21206 mac_ptr += bytes_read;
21207 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21208 mac_ptr += bytes_read;
21210 if ((line == 0 && !at_commandline)
21211 || (line != 0 && at_commandline))
21212 complaint (&symfile_complaints,
21213 _("debug info gives source %d included "
21214 "from %s at %s line %d"),
21215 file, at_commandline ? _("command-line") : _("file"),
21216 line == 0 ? _("zero") : _("non-zero"), line);
21218 if (at_commandline)
21220 /* This DW_MACRO_GNU_start_file was executed in the
21222 at_commandline = 0;
21225 current_file = macro_start_file (file, line, current_file, lh);
21229 case DW_MACRO_GNU_end_file:
21230 if (! current_file)
21231 complaint (&symfile_complaints,
21232 _("macro debug info has an unmatched "
21233 "`close_file' directive"));
21236 current_file = current_file->included_by;
21237 if (! current_file)
21239 enum dwarf_macro_record_type next_type;
21241 /* GCC circa March 2002 doesn't produce the zero
21242 type byte marking the end of the compilation
21243 unit. Complain if it's not there, but exit no
21246 /* Do we at least have room for a macinfo type byte? */
21247 if (mac_ptr >= mac_end)
21249 dwarf2_section_buffer_overflow_complaint (section);
21253 /* We don't increment mac_ptr here, so this is just
21255 next_type = read_1_byte (abfd, mac_ptr);
21256 if (next_type != 0)
21257 complaint (&symfile_complaints,
21258 _("no terminating 0-type entry for "
21259 "macros in `.debug_macinfo' section"));
21266 case DW_MACRO_GNU_transparent_include:
21267 case DW_MACRO_GNU_transparent_include_alt:
21271 bfd *include_bfd = abfd;
21272 struct dwarf2_section_info *include_section = section;
21273 struct dwarf2_section_info alt_section;
21274 const gdb_byte *include_mac_end = mac_end;
21275 int is_dwz = section_is_dwz;
21276 const gdb_byte *new_mac_ptr;
21278 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21279 mac_ptr += offset_size;
21281 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21283 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21285 dwarf2_read_section (objfile, &dwz->macro);
21287 include_section = &dwz->macro;
21288 include_bfd = get_section_bfd_owner (include_section);
21289 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21293 new_mac_ptr = include_section->buffer + offset;
21294 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21298 /* This has actually happened; see
21299 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21300 complaint (&symfile_complaints,
21301 _("recursive DW_MACRO_GNU_transparent_include in "
21302 ".debug_macro section"));
21306 *slot = (void *) new_mac_ptr;
21308 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21309 include_mac_end, current_file, lh,
21310 section, section_is_gnu, is_dwz,
21311 offset_size, include_hash);
21313 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21318 case DW_MACINFO_vendor_ext:
21319 if (!section_is_gnu)
21321 unsigned int bytes_read;
21324 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21325 mac_ptr += bytes_read;
21326 read_direct_string (abfd, mac_ptr, &bytes_read);
21327 mac_ptr += bytes_read;
21329 /* We don't recognize any vendor extensions. */
21335 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21336 mac_ptr, mac_end, abfd, offset_size,
21338 if (mac_ptr == NULL)
21342 } while (macinfo_type != 0);
21346 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21347 int section_is_gnu)
21349 struct objfile *objfile = dwarf2_per_objfile->objfile;
21350 struct line_header *lh = cu->line_header;
21352 const gdb_byte *mac_ptr, *mac_end;
21353 struct macro_source_file *current_file = 0;
21354 enum dwarf_macro_record_type macinfo_type;
21355 unsigned int offset_size = cu->header.offset_size;
21356 const gdb_byte *opcode_definitions[256];
21357 struct cleanup *cleanup;
21358 htab_t include_hash;
21360 struct dwarf2_section_info *section;
21361 const char *section_name;
21363 if (cu->dwo_unit != NULL)
21365 if (section_is_gnu)
21367 section = &cu->dwo_unit->dwo_file->sections.macro;
21368 section_name = ".debug_macro.dwo";
21372 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21373 section_name = ".debug_macinfo.dwo";
21378 if (section_is_gnu)
21380 section = &dwarf2_per_objfile->macro;
21381 section_name = ".debug_macro";
21385 section = &dwarf2_per_objfile->macinfo;
21386 section_name = ".debug_macinfo";
21390 dwarf2_read_section (objfile, section);
21391 if (section->buffer == NULL)
21393 complaint (&symfile_complaints, _("missing %s section"), section_name);
21396 abfd = get_section_bfd_owner (section);
21398 /* First pass: Find the name of the base filename.
21399 This filename is needed in order to process all macros whose definition
21400 (or undefinition) comes from the command line. These macros are defined
21401 before the first DW_MACINFO_start_file entry, and yet still need to be
21402 associated to the base file.
21404 To determine the base file name, we scan the macro definitions until we
21405 reach the first DW_MACINFO_start_file entry. We then initialize
21406 CURRENT_FILE accordingly so that any macro definition found before the
21407 first DW_MACINFO_start_file can still be associated to the base file. */
21409 mac_ptr = section->buffer + offset;
21410 mac_end = section->buffer + section->size;
21412 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21413 &offset_size, section_is_gnu);
21414 if (mac_ptr == NULL)
21416 /* We already issued a complaint. */
21422 /* Do we at least have room for a macinfo type byte? */
21423 if (mac_ptr >= mac_end)
21425 /* Complaint is printed during the second pass as GDB will probably
21426 stop the first pass earlier upon finding
21427 DW_MACINFO_start_file. */
21431 macinfo_type = read_1_byte (abfd, mac_ptr);
21434 /* Note that we rely on the fact that the corresponding GNU and
21435 DWARF constants are the same. */
21436 switch (macinfo_type)
21438 /* A zero macinfo type indicates the end of the macro
21443 case DW_MACRO_GNU_define:
21444 case DW_MACRO_GNU_undef:
21445 /* Only skip the data by MAC_PTR. */
21447 unsigned int bytes_read;
21449 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21450 mac_ptr += bytes_read;
21451 read_direct_string (abfd, mac_ptr, &bytes_read);
21452 mac_ptr += bytes_read;
21456 case DW_MACRO_GNU_start_file:
21458 unsigned int bytes_read;
21461 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21462 mac_ptr += bytes_read;
21463 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21464 mac_ptr += bytes_read;
21466 current_file = macro_start_file (file, line, current_file, lh);
21470 case DW_MACRO_GNU_end_file:
21471 /* No data to skip by MAC_PTR. */
21474 case DW_MACRO_GNU_define_indirect:
21475 case DW_MACRO_GNU_undef_indirect:
21476 case DW_MACRO_GNU_define_indirect_alt:
21477 case DW_MACRO_GNU_undef_indirect_alt:
21479 unsigned int bytes_read;
21481 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21482 mac_ptr += bytes_read;
21483 mac_ptr += offset_size;
21487 case DW_MACRO_GNU_transparent_include:
21488 case DW_MACRO_GNU_transparent_include_alt:
21489 /* Note that, according to the spec, a transparent include
21490 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21491 skip this opcode. */
21492 mac_ptr += offset_size;
21495 case DW_MACINFO_vendor_ext:
21496 /* Only skip the data by MAC_PTR. */
21497 if (!section_is_gnu)
21499 unsigned int bytes_read;
21501 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21502 mac_ptr += bytes_read;
21503 read_direct_string (abfd, mac_ptr, &bytes_read);
21504 mac_ptr += bytes_read;
21509 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21510 mac_ptr, mac_end, abfd, offset_size,
21512 if (mac_ptr == NULL)
21516 } while (macinfo_type != 0 && current_file == NULL);
21518 /* Second pass: Process all entries.
21520 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21521 command-line macro definitions/undefinitions. This flag is unset when we
21522 reach the first DW_MACINFO_start_file entry. */
21524 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21525 NULL, xcalloc, xfree);
21526 cleanup = make_cleanup_htab_delete (include_hash);
21527 mac_ptr = section->buffer + offset;
21528 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21529 *slot = (void *) mac_ptr;
21530 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21531 current_file, lh, section,
21532 section_is_gnu, 0, offset_size, include_hash);
21533 do_cleanups (cleanup);
21536 /* Check if the attribute's form is a DW_FORM_block*
21537 if so return true else false. */
21540 attr_form_is_block (const struct attribute *attr)
21542 return (attr == NULL ? 0 :
21543 attr->form == DW_FORM_block1
21544 || attr->form == DW_FORM_block2
21545 || attr->form == DW_FORM_block4
21546 || attr->form == DW_FORM_block
21547 || attr->form == DW_FORM_exprloc);
21550 /* Return non-zero if ATTR's value is a section offset --- classes
21551 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21552 You may use DW_UNSND (attr) to retrieve such offsets.
21554 Section 7.5.4, "Attribute Encodings", explains that no attribute
21555 may have a value that belongs to more than one of these classes; it
21556 would be ambiguous if we did, because we use the same forms for all
21560 attr_form_is_section_offset (const struct attribute *attr)
21562 return (attr->form == DW_FORM_data4
21563 || attr->form == DW_FORM_data8
21564 || attr->form == DW_FORM_sec_offset);
21567 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21568 zero otherwise. When this function returns true, you can apply
21569 dwarf2_get_attr_constant_value to it.
21571 However, note that for some attributes you must check
21572 attr_form_is_section_offset before using this test. DW_FORM_data4
21573 and DW_FORM_data8 are members of both the constant class, and of
21574 the classes that contain offsets into other debug sections
21575 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21576 that, if an attribute's can be either a constant or one of the
21577 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21578 taken as section offsets, not constants. */
21581 attr_form_is_constant (const struct attribute *attr)
21583 switch (attr->form)
21585 case DW_FORM_sdata:
21586 case DW_FORM_udata:
21587 case DW_FORM_data1:
21588 case DW_FORM_data2:
21589 case DW_FORM_data4:
21590 case DW_FORM_data8:
21598 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21599 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21602 attr_form_is_ref (const struct attribute *attr)
21604 switch (attr->form)
21606 case DW_FORM_ref_addr:
21611 case DW_FORM_ref_udata:
21612 case DW_FORM_GNU_ref_alt:
21619 /* Return the .debug_loc section to use for CU.
21620 For DWO files use .debug_loc.dwo. */
21622 static struct dwarf2_section_info *
21623 cu_debug_loc_section (struct dwarf2_cu *cu)
21626 return &cu->dwo_unit->dwo_file->sections.loc;
21627 return &dwarf2_per_objfile->loc;
21630 /* A helper function that fills in a dwarf2_loclist_baton. */
21633 fill_in_loclist_baton (struct dwarf2_cu *cu,
21634 struct dwarf2_loclist_baton *baton,
21635 const struct attribute *attr)
21637 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21639 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21641 baton->per_cu = cu->per_cu;
21642 gdb_assert (baton->per_cu);
21643 /* We don't know how long the location list is, but make sure we
21644 don't run off the edge of the section. */
21645 baton->size = section->size - DW_UNSND (attr);
21646 baton->data = section->buffer + DW_UNSND (attr);
21647 baton->base_address = cu->base_address;
21648 baton->from_dwo = cu->dwo_unit != NULL;
21652 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21653 struct dwarf2_cu *cu, int is_block)
21655 struct objfile *objfile = dwarf2_per_objfile->objfile;
21656 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21658 if (attr_form_is_section_offset (attr)
21659 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21660 the section. If so, fall through to the complaint in the
21662 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21664 struct dwarf2_loclist_baton *baton;
21666 baton = obstack_alloc (&objfile->objfile_obstack,
21667 sizeof (struct dwarf2_loclist_baton));
21669 fill_in_loclist_baton (cu, baton, attr);
21671 if (cu->base_known == 0)
21672 complaint (&symfile_complaints,
21673 _("Location list used without "
21674 "specifying the CU base address."));
21676 SYMBOL_ACLASS_INDEX (sym) = (is_block
21677 ? dwarf2_loclist_block_index
21678 : dwarf2_loclist_index);
21679 SYMBOL_LOCATION_BATON (sym) = baton;
21683 struct dwarf2_locexpr_baton *baton;
21685 baton = obstack_alloc (&objfile->objfile_obstack,
21686 sizeof (struct dwarf2_locexpr_baton));
21687 baton->per_cu = cu->per_cu;
21688 gdb_assert (baton->per_cu);
21690 if (attr_form_is_block (attr))
21692 /* Note that we're just copying the block's data pointer
21693 here, not the actual data. We're still pointing into the
21694 info_buffer for SYM's objfile; right now we never release
21695 that buffer, but when we do clean up properly this may
21697 baton->size = DW_BLOCK (attr)->size;
21698 baton->data = DW_BLOCK (attr)->data;
21702 dwarf2_invalid_attrib_class_complaint ("location description",
21703 SYMBOL_NATURAL_NAME (sym));
21707 SYMBOL_ACLASS_INDEX (sym) = (is_block
21708 ? dwarf2_locexpr_block_index
21709 : dwarf2_locexpr_index);
21710 SYMBOL_LOCATION_BATON (sym) = baton;
21714 /* Return the OBJFILE associated with the compilation unit CU. If CU
21715 came from a separate debuginfo file, then the master objfile is
21719 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21721 struct objfile *objfile = per_cu->objfile;
21723 /* Return the master objfile, so that we can report and look up the
21724 correct file containing this variable. */
21725 if (objfile->separate_debug_objfile_backlink)
21726 objfile = objfile->separate_debug_objfile_backlink;
21731 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21732 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21733 CU_HEADERP first. */
21735 static const struct comp_unit_head *
21736 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21737 struct dwarf2_per_cu_data *per_cu)
21739 const gdb_byte *info_ptr;
21742 return &per_cu->cu->header;
21744 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21746 memset (cu_headerp, 0, sizeof (*cu_headerp));
21747 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21752 /* Return the address size given in the compilation unit header for CU. */
21755 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21757 struct comp_unit_head cu_header_local;
21758 const struct comp_unit_head *cu_headerp;
21760 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21762 return cu_headerp->addr_size;
21765 /* Return the offset size given in the compilation unit header for CU. */
21768 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21770 struct comp_unit_head cu_header_local;
21771 const struct comp_unit_head *cu_headerp;
21773 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21775 return cu_headerp->offset_size;
21778 /* See its dwarf2loc.h declaration. */
21781 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21783 struct comp_unit_head cu_header_local;
21784 const struct comp_unit_head *cu_headerp;
21786 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21788 if (cu_headerp->version == 2)
21789 return cu_headerp->addr_size;
21791 return cu_headerp->offset_size;
21794 /* Return the text offset of the CU. The returned offset comes from
21795 this CU's objfile. If this objfile came from a separate debuginfo
21796 file, then the offset may be different from the corresponding
21797 offset in the parent objfile. */
21800 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21802 struct objfile *objfile = per_cu->objfile;
21804 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21807 /* Locate the .debug_info compilation unit from CU's objfile which contains
21808 the DIE at OFFSET. Raises an error on failure. */
21810 static struct dwarf2_per_cu_data *
21811 dwarf2_find_containing_comp_unit (sect_offset offset,
21812 unsigned int offset_in_dwz,
21813 struct objfile *objfile)
21815 struct dwarf2_per_cu_data *this_cu;
21817 const sect_offset *cu_off;
21820 high = dwarf2_per_objfile->n_comp_units - 1;
21823 struct dwarf2_per_cu_data *mid_cu;
21824 int mid = low + (high - low) / 2;
21826 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21827 cu_off = &mid_cu->offset;
21828 if (mid_cu->is_dwz > offset_in_dwz
21829 || (mid_cu->is_dwz == offset_in_dwz
21830 && cu_off->sect_off >= offset.sect_off))
21835 gdb_assert (low == high);
21836 this_cu = dwarf2_per_objfile->all_comp_units[low];
21837 cu_off = &this_cu->offset;
21838 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21840 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21841 error (_("Dwarf Error: could not find partial DIE containing "
21842 "offset 0x%lx [in module %s]"),
21843 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21845 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21846 <= offset.sect_off);
21847 return dwarf2_per_objfile->all_comp_units[low-1];
21851 this_cu = dwarf2_per_objfile->all_comp_units[low];
21852 if (low == dwarf2_per_objfile->n_comp_units - 1
21853 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21854 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21855 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21860 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21863 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21865 memset (cu, 0, sizeof (*cu));
21867 cu->per_cu = per_cu;
21868 cu->objfile = per_cu->objfile;
21869 obstack_init (&cu->comp_unit_obstack);
21872 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21875 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21876 enum language pretend_language)
21878 struct attribute *attr;
21880 /* Set the language we're debugging. */
21881 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21883 set_cu_language (DW_UNSND (attr), cu);
21886 cu->language = pretend_language;
21887 cu->language_defn = language_def (cu->language);
21890 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21892 cu->producer = DW_STRING (attr);
21895 /* Release one cached compilation unit, CU. We unlink it from the tree
21896 of compilation units, but we don't remove it from the read_in_chain;
21897 the caller is responsible for that.
21898 NOTE: DATA is a void * because this function is also used as a
21899 cleanup routine. */
21902 free_heap_comp_unit (void *data)
21904 struct dwarf2_cu *cu = data;
21906 gdb_assert (cu->per_cu != NULL);
21907 cu->per_cu->cu = NULL;
21910 obstack_free (&cu->comp_unit_obstack, NULL);
21915 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21916 when we're finished with it. We can't free the pointer itself, but be
21917 sure to unlink it from the cache. Also release any associated storage. */
21920 free_stack_comp_unit (void *data)
21922 struct dwarf2_cu *cu = data;
21924 gdb_assert (cu->per_cu != NULL);
21925 cu->per_cu->cu = NULL;
21928 obstack_free (&cu->comp_unit_obstack, NULL);
21929 cu->partial_dies = NULL;
21932 /* Free all cached compilation units. */
21935 free_cached_comp_units (void *data)
21937 struct dwarf2_per_cu_data *per_cu, **last_chain;
21939 per_cu = dwarf2_per_objfile->read_in_chain;
21940 last_chain = &dwarf2_per_objfile->read_in_chain;
21941 while (per_cu != NULL)
21943 struct dwarf2_per_cu_data *next_cu;
21945 next_cu = per_cu->cu->read_in_chain;
21947 free_heap_comp_unit (per_cu->cu);
21948 *last_chain = next_cu;
21954 /* Increase the age counter on each cached compilation unit, and free
21955 any that are too old. */
21958 age_cached_comp_units (void)
21960 struct dwarf2_per_cu_data *per_cu, **last_chain;
21962 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21963 per_cu = dwarf2_per_objfile->read_in_chain;
21964 while (per_cu != NULL)
21966 per_cu->cu->last_used ++;
21967 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21968 dwarf2_mark (per_cu->cu);
21969 per_cu = per_cu->cu->read_in_chain;
21972 per_cu = dwarf2_per_objfile->read_in_chain;
21973 last_chain = &dwarf2_per_objfile->read_in_chain;
21974 while (per_cu != NULL)
21976 struct dwarf2_per_cu_data *next_cu;
21978 next_cu = per_cu->cu->read_in_chain;
21980 if (!per_cu->cu->mark)
21982 free_heap_comp_unit (per_cu->cu);
21983 *last_chain = next_cu;
21986 last_chain = &per_cu->cu->read_in_chain;
21992 /* Remove a single compilation unit from the cache. */
21995 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21997 struct dwarf2_per_cu_data *per_cu, **last_chain;
21999 per_cu = dwarf2_per_objfile->read_in_chain;
22000 last_chain = &dwarf2_per_objfile->read_in_chain;
22001 while (per_cu != NULL)
22003 struct dwarf2_per_cu_data *next_cu;
22005 next_cu = per_cu->cu->read_in_chain;
22007 if (per_cu == target_per_cu)
22009 free_heap_comp_unit (per_cu->cu);
22011 *last_chain = next_cu;
22015 last_chain = &per_cu->cu->read_in_chain;
22021 /* Release all extra memory associated with OBJFILE. */
22024 dwarf2_free_objfile (struct objfile *objfile)
22026 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22028 if (dwarf2_per_objfile == NULL)
22031 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22032 free_cached_comp_units (NULL);
22034 if (dwarf2_per_objfile->quick_file_names_table)
22035 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22037 if (dwarf2_per_objfile->line_header_hash)
22038 htab_delete (dwarf2_per_objfile->line_header_hash);
22040 /* Everything else should be on the objfile obstack. */
22043 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22044 We store these in a hash table separate from the DIEs, and preserve them
22045 when the DIEs are flushed out of cache.
22047 The CU "per_cu" pointer is needed because offset alone is not enough to
22048 uniquely identify the type. A file may have multiple .debug_types sections,
22049 or the type may come from a DWO file. Furthermore, while it's more logical
22050 to use per_cu->section+offset, with Fission the section with the data is in
22051 the DWO file but we don't know that section at the point we need it.
22052 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22053 because we can enter the lookup routine, get_die_type_at_offset, from
22054 outside this file, and thus won't necessarily have PER_CU->cu.
22055 Fortunately, PER_CU is stable for the life of the objfile. */
22057 struct dwarf2_per_cu_offset_and_type
22059 const struct dwarf2_per_cu_data *per_cu;
22060 sect_offset offset;
22064 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22067 per_cu_offset_and_type_hash (const void *item)
22069 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22071 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22074 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22077 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22079 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22080 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22082 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22083 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22086 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22087 table if necessary. For convenience, return TYPE.
22089 The DIEs reading must have careful ordering to:
22090 * Not cause infite loops trying to read in DIEs as a prerequisite for
22091 reading current DIE.
22092 * Not trying to dereference contents of still incompletely read in types
22093 while reading in other DIEs.
22094 * Enable referencing still incompletely read in types just by a pointer to
22095 the type without accessing its fields.
22097 Therefore caller should follow these rules:
22098 * Try to fetch any prerequisite types we may need to build this DIE type
22099 before building the type and calling set_die_type.
22100 * After building type call set_die_type for current DIE as soon as
22101 possible before fetching more types to complete the current type.
22102 * Make the type as complete as possible before fetching more types. */
22104 static struct type *
22105 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22107 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22108 struct objfile *objfile = cu->objfile;
22109 struct attribute *attr;
22110 struct dynamic_prop prop;
22112 /* For Ada types, make sure that the gnat-specific data is always
22113 initialized (if not already set). There are a few types where
22114 we should not be doing so, because the type-specific area is
22115 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22116 where the type-specific area is used to store the floatformat).
22117 But this is not a problem, because the gnat-specific information
22118 is actually not needed for these types. */
22119 if (need_gnat_info (cu)
22120 && TYPE_CODE (type) != TYPE_CODE_FUNC
22121 && TYPE_CODE (type) != TYPE_CODE_FLT
22122 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22123 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22124 && TYPE_CODE (type) != TYPE_CODE_METHOD
22125 && !HAVE_GNAT_AUX_INFO (type))
22126 INIT_GNAT_SPECIFIC (type);
22128 /* Read DW_AT_data_location and set in type. */
22129 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22130 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22131 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22133 if (dwarf2_per_objfile->die_type_hash == NULL)
22135 dwarf2_per_objfile->die_type_hash =
22136 htab_create_alloc_ex (127,
22137 per_cu_offset_and_type_hash,
22138 per_cu_offset_and_type_eq,
22140 &objfile->objfile_obstack,
22141 hashtab_obstack_allocate,
22142 dummy_obstack_deallocate);
22145 ofs.per_cu = cu->per_cu;
22146 ofs.offset = die->offset;
22148 slot = (struct dwarf2_per_cu_offset_and_type **)
22149 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22151 complaint (&symfile_complaints,
22152 _("A problem internal to GDB: DIE 0x%x has type already set"),
22153 die->offset.sect_off);
22154 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22159 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22160 or return NULL if the die does not have a saved type. */
22162 static struct type *
22163 get_die_type_at_offset (sect_offset offset,
22164 struct dwarf2_per_cu_data *per_cu)
22166 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22168 if (dwarf2_per_objfile->die_type_hash == NULL)
22171 ofs.per_cu = per_cu;
22172 ofs.offset = offset;
22173 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22180 /* Look up the type for DIE in CU in die_type_hash,
22181 or return NULL if DIE does not have a saved type. */
22183 static struct type *
22184 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22186 return get_die_type_at_offset (die->offset, cu->per_cu);
22189 /* Add a dependence relationship from CU to REF_PER_CU. */
22192 dwarf2_add_dependence (struct dwarf2_cu *cu,
22193 struct dwarf2_per_cu_data *ref_per_cu)
22197 if (cu->dependencies == NULL)
22199 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22200 NULL, &cu->comp_unit_obstack,
22201 hashtab_obstack_allocate,
22202 dummy_obstack_deallocate);
22204 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22206 *slot = ref_per_cu;
22209 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22210 Set the mark field in every compilation unit in the
22211 cache that we must keep because we are keeping CU. */
22214 dwarf2_mark_helper (void **slot, void *data)
22216 struct dwarf2_per_cu_data *per_cu;
22218 per_cu = (struct dwarf2_per_cu_data *) *slot;
22220 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22221 reading of the chain. As such dependencies remain valid it is not much
22222 useful to track and undo them during QUIT cleanups. */
22223 if (per_cu->cu == NULL)
22226 if (per_cu->cu->mark)
22228 per_cu->cu->mark = 1;
22230 if (per_cu->cu->dependencies != NULL)
22231 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22236 /* Set the mark field in CU and in every other compilation unit in the
22237 cache that we must keep because we are keeping CU. */
22240 dwarf2_mark (struct dwarf2_cu *cu)
22245 if (cu->dependencies != NULL)
22246 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22250 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22254 per_cu->cu->mark = 0;
22255 per_cu = per_cu->cu->read_in_chain;
22259 /* Trivial hash function for partial_die_info: the hash value of a DIE
22260 is its offset in .debug_info for this objfile. */
22263 partial_die_hash (const void *item)
22265 const struct partial_die_info *part_die = item;
22267 return part_die->offset.sect_off;
22270 /* Trivial comparison function for partial_die_info structures: two DIEs
22271 are equal if they have the same offset. */
22274 partial_die_eq (const void *item_lhs, const void *item_rhs)
22276 const struct partial_die_info *part_die_lhs = item_lhs;
22277 const struct partial_die_info *part_die_rhs = item_rhs;
22279 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22282 static struct cmd_list_element *set_dwarf2_cmdlist;
22283 static struct cmd_list_element *show_dwarf2_cmdlist;
22286 set_dwarf2_cmd (char *args, int from_tty)
22288 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22293 show_dwarf2_cmd (char *args, int from_tty)
22295 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22298 /* Free data associated with OBJFILE, if necessary. */
22301 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22303 struct dwarf2_per_objfile *data = d;
22306 /* Make sure we don't accidentally use dwarf2_per_objfile while
22308 dwarf2_per_objfile = NULL;
22310 for (ix = 0; ix < data->n_comp_units; ++ix)
22311 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22313 for (ix = 0; ix < data->n_type_units; ++ix)
22314 VEC_free (dwarf2_per_cu_ptr,
22315 data->all_type_units[ix]->per_cu.imported_symtabs);
22316 xfree (data->all_type_units);
22318 VEC_free (dwarf2_section_info_def, data->types);
22320 if (data->dwo_files)
22321 free_dwo_files (data->dwo_files, objfile);
22322 if (data->dwp_file)
22323 gdb_bfd_unref (data->dwp_file->dbfd);
22325 if (data->dwz_file && data->dwz_file->dwz_bfd)
22326 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22330 /* The "save gdb-index" command. */
22332 /* The contents of the hash table we create when building the string
22334 struct strtab_entry
22336 offset_type offset;
22340 /* Hash function for a strtab_entry.
22342 Function is used only during write_hash_table so no index format backward
22343 compatibility is needed. */
22346 hash_strtab_entry (const void *e)
22348 const struct strtab_entry *entry = e;
22349 return mapped_index_string_hash (INT_MAX, entry->str);
22352 /* Equality function for a strtab_entry. */
22355 eq_strtab_entry (const void *a, const void *b)
22357 const struct strtab_entry *ea = a;
22358 const struct strtab_entry *eb = b;
22359 return !strcmp (ea->str, eb->str);
22362 /* Create a strtab_entry hash table. */
22365 create_strtab (void)
22367 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22368 xfree, xcalloc, xfree);
22371 /* Add a string to the constant pool. Return the string's offset in
22375 add_string (htab_t table, struct obstack *cpool, const char *str)
22378 struct strtab_entry entry;
22379 struct strtab_entry *result;
22382 slot = htab_find_slot (table, &entry, INSERT);
22387 result = XNEW (struct strtab_entry);
22388 result->offset = obstack_object_size (cpool);
22390 obstack_grow_str0 (cpool, str);
22393 return result->offset;
22396 /* An entry in the symbol table. */
22397 struct symtab_index_entry
22399 /* The name of the symbol. */
22401 /* The offset of the name in the constant pool. */
22402 offset_type index_offset;
22403 /* A sorted vector of the indices of all the CUs that hold an object
22405 VEC (offset_type) *cu_indices;
22408 /* The symbol table. This is a power-of-2-sized hash table. */
22409 struct mapped_symtab
22411 offset_type n_elements;
22413 struct symtab_index_entry **data;
22416 /* Hash function for a symtab_index_entry. */
22419 hash_symtab_entry (const void *e)
22421 const struct symtab_index_entry *entry = e;
22422 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22423 sizeof (offset_type) * VEC_length (offset_type,
22424 entry->cu_indices),
22428 /* Equality function for a symtab_index_entry. */
22431 eq_symtab_entry (const void *a, const void *b)
22433 const struct symtab_index_entry *ea = a;
22434 const struct symtab_index_entry *eb = b;
22435 int len = VEC_length (offset_type, ea->cu_indices);
22436 if (len != VEC_length (offset_type, eb->cu_indices))
22438 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22439 VEC_address (offset_type, eb->cu_indices),
22440 sizeof (offset_type) * len);
22443 /* Destroy a symtab_index_entry. */
22446 delete_symtab_entry (void *p)
22448 struct symtab_index_entry *entry = p;
22449 VEC_free (offset_type, entry->cu_indices);
22453 /* Create a hash table holding symtab_index_entry objects. */
22456 create_symbol_hash_table (void)
22458 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22459 delete_symtab_entry, xcalloc, xfree);
22462 /* Create a new mapped symtab object. */
22464 static struct mapped_symtab *
22465 create_mapped_symtab (void)
22467 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22468 symtab->n_elements = 0;
22469 symtab->size = 1024;
22470 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22474 /* Destroy a mapped_symtab. */
22477 cleanup_mapped_symtab (void *p)
22479 struct mapped_symtab *symtab = p;
22480 /* The contents of the array are freed when the other hash table is
22482 xfree (symtab->data);
22486 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22489 Function is used only during write_hash_table so no index format backward
22490 compatibility is needed. */
22492 static struct symtab_index_entry **
22493 find_slot (struct mapped_symtab *symtab, const char *name)
22495 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22497 index = hash & (symtab->size - 1);
22498 step = ((hash * 17) & (symtab->size - 1)) | 1;
22502 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22503 return &symtab->data[index];
22504 index = (index + step) & (symtab->size - 1);
22508 /* Expand SYMTAB's hash table. */
22511 hash_expand (struct mapped_symtab *symtab)
22513 offset_type old_size = symtab->size;
22515 struct symtab_index_entry **old_entries = symtab->data;
22518 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22520 for (i = 0; i < old_size; ++i)
22522 if (old_entries[i])
22524 struct symtab_index_entry **slot = find_slot (symtab,
22525 old_entries[i]->name);
22526 *slot = old_entries[i];
22530 xfree (old_entries);
22533 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22534 CU_INDEX is the index of the CU in which the symbol appears.
22535 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22538 add_index_entry (struct mapped_symtab *symtab, const char *name,
22539 int is_static, gdb_index_symbol_kind kind,
22540 offset_type cu_index)
22542 struct symtab_index_entry **slot;
22543 offset_type cu_index_and_attrs;
22545 ++symtab->n_elements;
22546 if (4 * symtab->n_elements / 3 >= symtab->size)
22547 hash_expand (symtab);
22549 slot = find_slot (symtab, name);
22552 *slot = XNEW (struct symtab_index_entry);
22553 (*slot)->name = name;
22554 /* index_offset is set later. */
22555 (*slot)->cu_indices = NULL;
22558 cu_index_and_attrs = 0;
22559 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22560 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22561 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22563 /* We don't want to record an index value twice as we want to avoid the
22565 We process all global symbols and then all static symbols
22566 (which would allow us to avoid the duplication by only having to check
22567 the last entry pushed), but a symbol could have multiple kinds in one CU.
22568 To keep things simple we don't worry about the duplication here and
22569 sort and uniqufy the list after we've processed all symbols. */
22570 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22573 /* qsort helper routine for uniquify_cu_indices. */
22576 offset_type_compare (const void *ap, const void *bp)
22578 offset_type a = *(offset_type *) ap;
22579 offset_type b = *(offset_type *) bp;
22581 return (a > b) - (b > a);
22584 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22587 uniquify_cu_indices (struct mapped_symtab *symtab)
22591 for (i = 0; i < symtab->size; ++i)
22593 struct symtab_index_entry *entry = symtab->data[i];
22596 && entry->cu_indices != NULL)
22598 unsigned int next_to_insert, next_to_check;
22599 offset_type last_value;
22601 qsort (VEC_address (offset_type, entry->cu_indices),
22602 VEC_length (offset_type, entry->cu_indices),
22603 sizeof (offset_type), offset_type_compare);
22605 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22606 next_to_insert = 1;
22607 for (next_to_check = 1;
22608 next_to_check < VEC_length (offset_type, entry->cu_indices);
22611 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22614 last_value = VEC_index (offset_type, entry->cu_indices,
22616 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22621 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22626 /* Add a vector of indices to the constant pool. */
22629 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22630 struct symtab_index_entry *entry)
22634 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22637 offset_type len = VEC_length (offset_type, entry->cu_indices);
22638 offset_type val = MAYBE_SWAP (len);
22643 entry->index_offset = obstack_object_size (cpool);
22645 obstack_grow (cpool, &val, sizeof (val));
22647 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22650 val = MAYBE_SWAP (iter);
22651 obstack_grow (cpool, &val, sizeof (val));
22656 struct symtab_index_entry *old_entry = *slot;
22657 entry->index_offset = old_entry->index_offset;
22660 return entry->index_offset;
22663 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22664 constant pool entries going into the obstack CPOOL. */
22667 write_hash_table (struct mapped_symtab *symtab,
22668 struct obstack *output, struct obstack *cpool)
22671 htab_t symbol_hash_table;
22674 symbol_hash_table = create_symbol_hash_table ();
22675 str_table = create_strtab ();
22677 /* We add all the index vectors to the constant pool first, to
22678 ensure alignment is ok. */
22679 for (i = 0; i < symtab->size; ++i)
22681 if (symtab->data[i])
22682 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22685 /* Now write out the hash table. */
22686 for (i = 0; i < symtab->size; ++i)
22688 offset_type str_off, vec_off;
22690 if (symtab->data[i])
22692 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22693 vec_off = symtab->data[i]->index_offset;
22697 /* While 0 is a valid constant pool index, it is not valid
22698 to have 0 for both offsets. */
22703 str_off = MAYBE_SWAP (str_off);
22704 vec_off = MAYBE_SWAP (vec_off);
22706 obstack_grow (output, &str_off, sizeof (str_off));
22707 obstack_grow (output, &vec_off, sizeof (vec_off));
22710 htab_delete (str_table);
22711 htab_delete (symbol_hash_table);
22714 /* Struct to map psymtab to CU index in the index file. */
22715 struct psymtab_cu_index_map
22717 struct partial_symtab *psymtab;
22718 unsigned int cu_index;
22722 hash_psymtab_cu_index (const void *item)
22724 const struct psymtab_cu_index_map *map = item;
22726 return htab_hash_pointer (map->psymtab);
22730 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22732 const struct psymtab_cu_index_map *lhs = item_lhs;
22733 const struct psymtab_cu_index_map *rhs = item_rhs;
22735 return lhs->psymtab == rhs->psymtab;
22738 /* Helper struct for building the address table. */
22739 struct addrmap_index_data
22741 struct objfile *objfile;
22742 struct obstack *addr_obstack;
22743 htab_t cu_index_htab;
22745 /* Non-zero if the previous_* fields are valid.
22746 We can't write an entry until we see the next entry (since it is only then
22747 that we know the end of the entry). */
22748 int previous_valid;
22749 /* Index of the CU in the table of all CUs in the index file. */
22750 unsigned int previous_cu_index;
22751 /* Start address of the CU. */
22752 CORE_ADDR previous_cu_start;
22755 /* Write an address entry to OBSTACK. */
22758 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22759 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22761 offset_type cu_index_to_write;
22763 CORE_ADDR baseaddr;
22765 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22767 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22768 obstack_grow (obstack, addr, 8);
22769 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22770 obstack_grow (obstack, addr, 8);
22771 cu_index_to_write = MAYBE_SWAP (cu_index);
22772 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22775 /* Worker function for traversing an addrmap to build the address table. */
22778 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22780 struct addrmap_index_data *data = datap;
22781 struct partial_symtab *pst = obj;
22783 if (data->previous_valid)
22784 add_address_entry (data->objfile, data->addr_obstack,
22785 data->previous_cu_start, start_addr,
22786 data->previous_cu_index);
22788 data->previous_cu_start = start_addr;
22791 struct psymtab_cu_index_map find_map, *map;
22792 find_map.psymtab = pst;
22793 map = htab_find (data->cu_index_htab, &find_map);
22794 gdb_assert (map != NULL);
22795 data->previous_cu_index = map->cu_index;
22796 data->previous_valid = 1;
22799 data->previous_valid = 0;
22804 /* Write OBJFILE's address map to OBSTACK.
22805 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22806 in the index file. */
22809 write_address_map (struct objfile *objfile, struct obstack *obstack,
22810 htab_t cu_index_htab)
22812 struct addrmap_index_data addrmap_index_data;
22814 /* When writing the address table, we have to cope with the fact that
22815 the addrmap iterator only provides the start of a region; we have to
22816 wait until the next invocation to get the start of the next region. */
22818 addrmap_index_data.objfile = objfile;
22819 addrmap_index_data.addr_obstack = obstack;
22820 addrmap_index_data.cu_index_htab = cu_index_htab;
22821 addrmap_index_data.previous_valid = 0;
22823 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22824 &addrmap_index_data);
22826 /* It's highly unlikely the last entry (end address = 0xff...ff)
22827 is valid, but we should still handle it.
22828 The end address is recorded as the start of the next region, but that
22829 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22831 if (addrmap_index_data.previous_valid)
22832 add_address_entry (objfile, obstack,
22833 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22834 addrmap_index_data.previous_cu_index);
22837 /* Return the symbol kind of PSYM. */
22839 static gdb_index_symbol_kind
22840 symbol_kind (struct partial_symbol *psym)
22842 domain_enum domain = PSYMBOL_DOMAIN (psym);
22843 enum address_class aclass = PSYMBOL_CLASS (psym);
22851 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22853 return GDB_INDEX_SYMBOL_KIND_TYPE;
22855 case LOC_CONST_BYTES:
22856 case LOC_OPTIMIZED_OUT:
22858 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22860 /* Note: It's currently impossible to recognize psyms as enum values
22861 short of reading the type info. For now punt. */
22862 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22864 /* There are other LOC_FOO values that one might want to classify
22865 as variables, but dwarf2read.c doesn't currently use them. */
22866 return GDB_INDEX_SYMBOL_KIND_OTHER;
22868 case STRUCT_DOMAIN:
22869 return GDB_INDEX_SYMBOL_KIND_TYPE;
22871 return GDB_INDEX_SYMBOL_KIND_OTHER;
22875 /* Add a list of partial symbols to SYMTAB. */
22878 write_psymbols (struct mapped_symtab *symtab,
22880 struct partial_symbol **psymp,
22882 offset_type cu_index,
22885 for (; count-- > 0; ++psymp)
22887 struct partial_symbol *psym = *psymp;
22890 if (SYMBOL_LANGUAGE (psym) == language_ada)
22891 error (_("Ada is not currently supported by the index"));
22893 /* Only add a given psymbol once. */
22894 slot = htab_find_slot (psyms_seen, psym, INSERT);
22897 gdb_index_symbol_kind kind = symbol_kind (psym);
22900 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22901 is_static, kind, cu_index);
22906 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22907 exception if there is an error. */
22910 write_obstack (FILE *file, struct obstack *obstack)
22912 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22914 != obstack_object_size (obstack))
22915 error (_("couldn't data write to file"));
22918 /* Unlink a file if the argument is not NULL. */
22921 unlink_if_set (void *p)
22923 char **filename = p;
22925 unlink (*filename);
22928 /* A helper struct used when iterating over debug_types. */
22929 struct signatured_type_index_data
22931 struct objfile *objfile;
22932 struct mapped_symtab *symtab;
22933 struct obstack *types_list;
22938 /* A helper function that writes a single signatured_type to an
22942 write_one_signatured_type (void **slot, void *d)
22944 struct signatured_type_index_data *info = d;
22945 struct signatured_type *entry = (struct signatured_type *) *slot;
22946 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22949 write_psymbols (info->symtab,
22951 info->objfile->global_psymbols.list
22952 + psymtab->globals_offset,
22953 psymtab->n_global_syms, info->cu_index,
22955 write_psymbols (info->symtab,
22957 info->objfile->static_psymbols.list
22958 + psymtab->statics_offset,
22959 psymtab->n_static_syms, info->cu_index,
22962 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22963 entry->per_cu.offset.sect_off);
22964 obstack_grow (info->types_list, val, 8);
22965 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22966 entry->type_offset_in_tu.cu_off);
22967 obstack_grow (info->types_list, val, 8);
22968 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22969 obstack_grow (info->types_list, val, 8);
22976 /* Recurse into all "included" dependencies and write their symbols as
22977 if they appeared in this psymtab. */
22980 recursively_write_psymbols (struct objfile *objfile,
22981 struct partial_symtab *psymtab,
22982 struct mapped_symtab *symtab,
22984 offset_type cu_index)
22988 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22989 if (psymtab->dependencies[i]->user != NULL)
22990 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22991 symtab, psyms_seen, cu_index);
22993 write_psymbols (symtab,
22995 objfile->global_psymbols.list + psymtab->globals_offset,
22996 psymtab->n_global_syms, cu_index,
22998 write_psymbols (symtab,
23000 objfile->static_psymbols.list + psymtab->statics_offset,
23001 psymtab->n_static_syms, cu_index,
23005 /* Create an index file for OBJFILE in the directory DIR. */
23008 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23010 struct cleanup *cleanup;
23011 char *filename, *cleanup_filename;
23012 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23013 struct obstack cu_list, types_cu_list;
23016 struct mapped_symtab *symtab;
23017 offset_type val, size_of_contents, total_len;
23020 htab_t cu_index_htab;
23021 struct psymtab_cu_index_map *psymtab_cu_index_map;
23023 if (dwarf2_per_objfile->using_index)
23024 error (_("Cannot use an index to create the index"));
23026 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23027 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23029 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23032 if (stat (objfile_name (objfile), &st) < 0)
23033 perror_with_name (objfile_name (objfile));
23035 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23036 INDEX_SUFFIX, (char *) NULL);
23037 cleanup = make_cleanup (xfree, filename);
23039 out_file = gdb_fopen_cloexec (filename, "wb");
23041 error (_("Can't open `%s' for writing"), filename);
23043 cleanup_filename = filename;
23044 make_cleanup (unlink_if_set, &cleanup_filename);
23046 symtab = create_mapped_symtab ();
23047 make_cleanup (cleanup_mapped_symtab, symtab);
23049 obstack_init (&addr_obstack);
23050 make_cleanup_obstack_free (&addr_obstack);
23052 obstack_init (&cu_list);
23053 make_cleanup_obstack_free (&cu_list);
23055 obstack_init (&types_cu_list);
23056 make_cleanup_obstack_free (&types_cu_list);
23058 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23059 NULL, xcalloc, xfree);
23060 make_cleanup_htab_delete (psyms_seen);
23062 /* While we're scanning CU's create a table that maps a psymtab pointer
23063 (which is what addrmap records) to its index (which is what is recorded
23064 in the index file). This will later be needed to write the address
23066 cu_index_htab = htab_create_alloc (100,
23067 hash_psymtab_cu_index,
23068 eq_psymtab_cu_index,
23069 NULL, xcalloc, xfree);
23070 make_cleanup_htab_delete (cu_index_htab);
23071 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23072 xmalloc (sizeof (struct psymtab_cu_index_map)
23073 * dwarf2_per_objfile->n_comp_units);
23074 make_cleanup (xfree, psymtab_cu_index_map);
23076 /* The CU list is already sorted, so we don't need to do additional
23077 work here. Also, the debug_types entries do not appear in
23078 all_comp_units, but only in their own hash table. */
23079 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23081 struct dwarf2_per_cu_data *per_cu
23082 = dwarf2_per_objfile->all_comp_units[i];
23083 struct partial_symtab *psymtab = per_cu->v.psymtab;
23085 struct psymtab_cu_index_map *map;
23088 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23089 It may be referenced from a local scope but in such case it does not
23090 need to be present in .gdb_index. */
23091 if (psymtab == NULL)
23094 if (psymtab->user == NULL)
23095 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23097 map = &psymtab_cu_index_map[i];
23098 map->psymtab = psymtab;
23100 slot = htab_find_slot (cu_index_htab, map, INSERT);
23101 gdb_assert (slot != NULL);
23102 gdb_assert (*slot == NULL);
23105 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23106 per_cu->offset.sect_off);
23107 obstack_grow (&cu_list, val, 8);
23108 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23109 obstack_grow (&cu_list, val, 8);
23112 /* Dump the address map. */
23113 write_address_map (objfile, &addr_obstack, cu_index_htab);
23115 /* Write out the .debug_type entries, if any. */
23116 if (dwarf2_per_objfile->signatured_types)
23118 struct signatured_type_index_data sig_data;
23120 sig_data.objfile = objfile;
23121 sig_data.symtab = symtab;
23122 sig_data.types_list = &types_cu_list;
23123 sig_data.psyms_seen = psyms_seen;
23124 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23125 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23126 write_one_signatured_type, &sig_data);
23129 /* Now that we've processed all symbols we can shrink their cu_indices
23131 uniquify_cu_indices (symtab);
23133 obstack_init (&constant_pool);
23134 make_cleanup_obstack_free (&constant_pool);
23135 obstack_init (&symtab_obstack);
23136 make_cleanup_obstack_free (&symtab_obstack);
23137 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23139 obstack_init (&contents);
23140 make_cleanup_obstack_free (&contents);
23141 size_of_contents = 6 * sizeof (offset_type);
23142 total_len = size_of_contents;
23144 /* The version number. */
23145 val = MAYBE_SWAP (8);
23146 obstack_grow (&contents, &val, sizeof (val));
23148 /* The offset of the CU list from the start of the file. */
23149 val = MAYBE_SWAP (total_len);
23150 obstack_grow (&contents, &val, sizeof (val));
23151 total_len += obstack_object_size (&cu_list);
23153 /* The offset of the types CU list from the start of the file. */
23154 val = MAYBE_SWAP (total_len);
23155 obstack_grow (&contents, &val, sizeof (val));
23156 total_len += obstack_object_size (&types_cu_list);
23158 /* The offset of the address table from the start of the file. */
23159 val = MAYBE_SWAP (total_len);
23160 obstack_grow (&contents, &val, sizeof (val));
23161 total_len += obstack_object_size (&addr_obstack);
23163 /* The offset of the symbol table from the start of the file. */
23164 val = MAYBE_SWAP (total_len);
23165 obstack_grow (&contents, &val, sizeof (val));
23166 total_len += obstack_object_size (&symtab_obstack);
23168 /* The offset of the constant pool from the start of the file. */
23169 val = MAYBE_SWAP (total_len);
23170 obstack_grow (&contents, &val, sizeof (val));
23171 total_len += obstack_object_size (&constant_pool);
23173 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23175 write_obstack (out_file, &contents);
23176 write_obstack (out_file, &cu_list);
23177 write_obstack (out_file, &types_cu_list);
23178 write_obstack (out_file, &addr_obstack);
23179 write_obstack (out_file, &symtab_obstack);
23180 write_obstack (out_file, &constant_pool);
23184 /* We want to keep the file, so we set cleanup_filename to NULL
23185 here. See unlink_if_set. */
23186 cleanup_filename = NULL;
23188 do_cleanups (cleanup);
23191 /* Implementation of the `save gdb-index' command.
23193 Note that the file format used by this command is documented in the
23194 GDB manual. Any changes here must be documented there. */
23197 save_gdb_index_command (char *arg, int from_tty)
23199 struct objfile *objfile;
23202 error (_("usage: save gdb-index DIRECTORY"));
23204 ALL_OBJFILES (objfile)
23208 /* If the objfile does not correspond to an actual file, skip it. */
23209 if (stat (objfile_name (objfile), &st) < 0)
23212 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23213 if (dwarf2_per_objfile)
23218 write_psymtabs_to_index (objfile, arg);
23220 CATCH (except, RETURN_MASK_ERROR)
23222 exception_fprintf (gdb_stderr, except,
23223 _("Error while writing index for `%s': "),
23224 objfile_name (objfile));
23233 int dwarf2_always_disassemble;
23236 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23237 struct cmd_list_element *c, const char *value)
23239 fprintf_filtered (file,
23240 _("Whether to always disassemble "
23241 "DWARF expressions is %s.\n"),
23246 show_check_physname (struct ui_file *file, int from_tty,
23247 struct cmd_list_element *c, const char *value)
23249 fprintf_filtered (file,
23250 _("Whether to check \"physname\" is %s.\n"),
23254 void _initialize_dwarf2_read (void);
23257 _initialize_dwarf2_read (void)
23259 struct cmd_list_element *c;
23261 dwarf2_objfile_data_key
23262 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23264 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23265 Set DWARF 2 specific variables.\n\
23266 Configure DWARF 2 variables such as the cache size"),
23267 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23268 0/*allow-unknown*/, &maintenance_set_cmdlist);
23270 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23271 Show DWARF 2 specific variables\n\
23272 Show DWARF 2 variables such as the cache size"),
23273 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23274 0/*allow-unknown*/, &maintenance_show_cmdlist);
23276 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23277 &dwarf2_max_cache_age, _("\
23278 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23279 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23280 A higher limit means that cached compilation units will be stored\n\
23281 in memory longer, and more total memory will be used. Zero disables\n\
23282 caching, which can slow down startup."),
23284 show_dwarf2_max_cache_age,
23285 &set_dwarf2_cmdlist,
23286 &show_dwarf2_cmdlist);
23288 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23289 &dwarf2_always_disassemble, _("\
23290 Set whether `info address' always disassembles DWARF expressions."), _("\
23291 Show whether `info address' always disassembles DWARF expressions."), _("\
23292 When enabled, DWARF expressions are always printed in an assembly-like\n\
23293 syntax. When disabled, expressions will be printed in a more\n\
23294 conversational style, when possible."),
23296 show_dwarf2_always_disassemble,
23297 &set_dwarf2_cmdlist,
23298 &show_dwarf2_cmdlist);
23300 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23301 Set debugging of the dwarf2 reader."), _("\
23302 Show debugging of the dwarf2 reader."), _("\
23303 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23304 reading and symtab expansion. A value of 1 (one) provides basic\n\
23305 information. A value greater than 1 provides more verbose information."),
23308 &setdebuglist, &showdebuglist);
23310 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23311 Set debugging of the dwarf2 DIE reader."), _("\
23312 Show debugging of the dwarf2 DIE reader."), _("\
23313 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23314 The value is the maximum depth to print."),
23317 &setdebuglist, &showdebuglist);
23319 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23320 Set cross-checking of \"physname\" code against demangler."), _("\
23321 Show cross-checking of \"physname\" code against demangler."), _("\
23322 When enabled, GDB's internal \"physname\" code is checked against\n\
23324 NULL, show_check_physname,
23325 &setdebuglist, &showdebuglist);
23327 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23328 no_class, &use_deprecated_index_sections, _("\
23329 Set whether to use deprecated gdb_index sections."), _("\
23330 Show whether to use deprecated gdb_index sections."), _("\
23331 When enabled, deprecated .gdb_index sections are used anyway.\n\
23332 Normally they are ignored either because of a missing feature or\n\
23333 performance issue.\n\
23334 Warning: This option must be enabled before gdb reads the file."),
23337 &setlist, &showlist);
23339 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23341 Save a gdb-index file.\n\
23342 Usage: save gdb-index DIRECTORY"),
23344 set_cmd_completer (c, filename_completer);
23346 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23347 &dwarf2_locexpr_funcs);
23348 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23349 &dwarf2_loclist_funcs);
23351 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23352 &dwarf2_block_frame_base_locexpr_funcs);
23353 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23354 &dwarf2_block_frame_base_loclist_funcs);