1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
37 #include "elf-vxworks.h"
39 /* Get the ECOFF swapping routines. */
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
50 (1) absolute addresses
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
82 /* The input bfd in which the symbol is defined. */
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
89 /* If abfd == NULL, an address that must be stored in the got. */
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
97 struct mips_elf_link_hash_entry *h;
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
113 /* This structure is used to hold .got information when linking. */
117 /* The global symbol in the GOT with the lowest index in the dynamic
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
146 /* Map an input bfd to a got in a multi-got link. */
148 struct mips_elf_bfd2got_hash {
150 struct mips_got_info *g;
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
156 struct mips_elf_got_per_bfd_arg
158 /* A hashtable that maps bfds to gots. */
160 /* The output bfd. */
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
182 unsigned int global_count;
185 /* Another structure used to pass arguments for got entries traversal. */
187 struct mips_elf_set_global_got_offset_arg
189 struct mips_got_info *g;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
198 struct mips_elf_count_tls_arg
200 struct bfd_link_info *info;
204 struct _mips_elf_section_data
206 struct bfd_elf_section_data elf;
209 struct mips_got_info *got_info;
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
220 struct mips_elf_hash_sort_data
222 /* The symbol in the global GOT with the lowest dynamic symbol table
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
240 struct mips_elf_link_hash_entry
242 struct elf_link_hash_entry root;
244 /* External symbol information. */
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
249 unsigned int possibly_dynamic_relocs;
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
259 bfd_boolean no_fn_stub;
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
289 #define GOT_TLS_LDM 2
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
303 /* MIPS ELF linker hash table. */
305 struct mips_elf_link_hash_table
307 struct elf_link_hash_table root;
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
357 /* Structure used to pass information to mips_elf_output_extsym. */
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
368 /* The names of the runtime procedure table symbols used on IRIX5. */
370 static const char * const mips_elf_dynsym_rtproc_names[] =
373 "_procedure_string_table",
374 "_procedure_table_size",
378 /* These structures are used to generate the .compact_rel section on
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
425 } Elf32_External_crinfo;
431 } Elf32_External_crinfo2;
433 /* These are the constants used to swap the bitfields in a crinfo. */
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
484 struct exception_info *exception_info;/* Pointer to exception array. */
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
496 static bfd_boolean mips_elf_stub_section_p
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
623 /* The maximum size of the GOT for it to be addressable using 16-bit
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
648 /* The name of the dynamic interpreter. This is put in the .interp
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
669 #define ELF_R_TYPE(bfd, i) \
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
707 We record any stubs that we find in the symbol table. */
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
713 /* The format of the first PLT entry in a VxWorks executable. */
714 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
723 /* The format of subsequent PLT entries. */
724 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
735 /* The format of the first PLT entry in a VxWorks shared object. */
736 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
745 /* The format of subsequent PLT entries. */
746 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
751 /* Look up an entry in a MIPS ELF linker hash table. */
753 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
758 /* Traverse a MIPS ELF linker hash table. */
760 #define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
766 /* Get the MIPS ELF linker hash table from a link_info structure. */
768 #define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
771 /* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
774 #define TP_OFFSET 0x7000
775 #define DTP_OFFSET 0x8000
778 dtprel_base (struct bfd_link_info *info)
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
787 tprel_base (struct bfd_link_info *info)
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
795 /* Create an entry in a MIPS ELF linker hash table. */
797 static struct bfd_hash_entry *
798 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
804 /* Allocate the structure if it has not already been allocated by a
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
809 return (struct bfd_hash_entry *) ret;
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
822 ret->possibly_dynamic_relocs = 0;
823 ret->readonly_reloc = FALSE;
824 ret->no_fn_stub = FALSE;
826 ret->need_fn_stub = FALSE;
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
829 ret->forced_local = FALSE;
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
832 ret->tls_type = GOT_NORMAL;
835 return (struct bfd_hash_entry *) ret;
839 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
841 if (!sec->used_by_bfd)
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
846 sdata = bfd_zalloc (abfd, amt);
849 sec->used_by_bfd = sdata;
852 return _bfd_elf_new_section_hook (abfd, sec);
855 /* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
859 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
863 const struct ecoff_debug_swap *swap;
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
869 ext_hdr = bfd_malloc (swap->external_hdr_size);
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
874 swap->external_hdr_size))
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
880 /* The symbolic header contains absolute file offsets and sizes to
882 #define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
888 debug->ptr = bfd_malloc (amt); \
889 if (debug->ptr == NULL) \
891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
917 if (debug->line != NULL)
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
931 if (debug->ssext != NULL)
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
942 /* Swap RPDR (runtime procedure table entry) for output. */
945 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
960 /* Create a runtime procedure table from the .mdebug section. */
963 mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
970 struct rpdr_ext *erp;
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
978 unsigned long sindex;
982 const char *no_name_func = _("static procedure (no name)");
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
992 sindex = strlen (no_name_func) + 1;
996 size = swap->external_pdr_size;
998 epdr = bfd_malloc (size * count);
1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1005 size = sizeof (RPDR);
1006 rp = rpdr = bfd_malloc (size * count);
1010 size = sizeof (char *);
1011 sv = bfd_malloc (size * count);
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
1017 esym = bfd_malloc (size * count);
1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1024 count = hdr->issMax;
1025 ss = bfd_malloc (count);
1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
1052 rtproc = bfd_alloc (abfd, size);
1055 mips_elf_hash_table (info)->procedure_count = 0;
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1075 /* Set the size and contents of .rtproc section. */
1077 s->contents = rtproc;
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
1081 s->map_head.link_order = NULL;
1110 /* Check the mips16 stubs for a particular symbol, and see if we can
1114 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
1126 h->fn_stub->size = 0;
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
1138 h->call_stub->size = 0;
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
1150 h->call_fp_stub->size = 0;
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1159 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1163 The format of these instructions is:
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1169 +-----------------------------------------------+
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1197 +--------+----------------------+
1201 +--------+----------------------+
1204 +----------+------+-------------+
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1227 EXTEND is the five bit value 11110. Major is the instruction
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1245 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1248 bfd_vma extend, insn, val;
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1263 val = extend << 16 | insn;
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1272 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1275 bfd_vma extend, insn, val;
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1292 insn = val & 0xffff;
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1305 bfd_reloc_status_type
1306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
1312 bfd_reloc_status_type status;
1314 if (bfd_is_com_section (symbol->section))
1317 relocation = symbol->value;
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1323 return bfd_reloc_outofrange;
1325 /* Set val to the offset into the section or symbol. */
1326 val = reloc_entry->addend;
1328 _bfd_mips_elf_sign_extend (val, 16);
1330 /* Adjust val for the final section location and GP value. If we
1331 are producing relocatable output, we don't want to do this for
1332 an external symbol. */
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1337 if (reloc_entry->howto->partial_inplace)
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1346 reloc_entry->addend = val;
1349 reloc_entry->address += input_section->output_offset;
1351 return bfd_reloc_ok;
1354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1361 struct mips_hi16 *next;
1363 asection *input_section;
1367 /* FIXME: This should not be a static variable. */
1369 static struct mips_hi16 *mips_hi16_list;
1371 /* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1380 bfd_reloc_status_type
1381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1386 struct mips_hi16 *n;
1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1389 return bfd_reloc_outofrange;
1391 n = bfd_malloc (sizeof *n);
1393 return bfd_reloc_outofrange;
1395 n->next = mips_hi16_list;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1404 return bfd_reloc_ok;
1407 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1411 bfd_reloc_status_type
1412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1432 bfd_reloc_status_type
1433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1441 return bfd_reloc_outofrange;
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1449 while (mips_hi16_list != NULL)
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1454 hi = mips_hi16_list;
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1471 if (ret != bfd_reloc_ok)
1474 mips_hi16_list = hi->next;
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1483 /* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1487 bfd_reloc_status_type
1488 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1497 relocatable = (output_bfd != NULL);
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1502 /* Build up the field adjustment in VAL. */
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1539 /* Add VAL to the relocation field. */
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1547 if (status != bfd_reloc_ok)
1552 reloc_entry->address += input_section->output_offset;
1554 return bfd_reloc_ok;
1557 /* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1561 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1569 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1577 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1589 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1603 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1608 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1620 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1631 /* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1638 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1651 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1663 /* Swap in an options header. */
1666 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1675 /* Swap out an options header. */
1678 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1687 /* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1691 sort_dynamic_relocs (const void *arg1, const void *arg2)
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1702 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1705 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
1725 /* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1740 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1742 struct extsym_info *einfo = data;
1744 asection *sec, *output_section;
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1749 if (h->root.indx == -2)
1751 else if ((h->root.def_dynamic
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
1761 FALSE, FALSE) == NULL))
1769 if (h->esym.ifd == -2)
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1784 /* Use undefined class. Also, set class and type for some
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1808 h->esym.asym.sc = scUndefined;
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1826 name = bfd_section_name (output_section->owner, output_section);
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1846 h->esym.asym.sc = scAbs;
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1871 h->esym.asym.value = 0;
1873 else if (h->root.needs_plt)
1875 struct mips_elf_link_hash_entry *hd = h;
1876 bfd_boolean no_fn_stub = h->no_fn_stub;
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1890 h->esym.asym.value = 0;
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1899 h->esym.asym.value = 0;
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1908 einfo->failed = TRUE;
1915 /* A comparison routine used to sort .gptab entries. */
1918 gptab_compare (const void *p1, const void *p2)
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1926 /* Functions to manage the got entry hash table. */
1928 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1931 static INLINE hashval_t
1932 mips_elf_hash_bfd_vma (bfd_vma addr)
1935 return addr + (addr >> 32);
1941 /* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1946 mips_elf_got_entry_hash (const void *entry_)
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1950 return entry->symndx
1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
1959 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1974 /* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1980 mips_elf_multi_got_entry_hash (const void *entry_)
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1984 return entry->symndx
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
1992 : entry->d.h->root.root.root.hash);
1996 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
2016 /* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
2021 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2037 | SEC_LINKER_CREATED
2040 || ! bfd_set_section_alignment (dynobj, sreloc,
2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2047 /* Returns the GOT section for ABFD. */
2050 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2059 /* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2063 static struct mips_got_info *
2064 mips_elf_got_info (bfd *abfd, asection **sgotp)
2067 struct mips_got_info *g;
2069 sgot = mips_elf_got_section (abfd, TRUE);
2070 BFD_ASSERT (sgot != NULL);
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
2073 BFD_ASSERT (g != NULL);
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2081 /* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2086 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2098 if ((info->shared || indx != 0)
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2107 if (tls_type & GOT_TLS_GD)
2114 if (tls_type & GOT_TLS_IE)
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2123 /* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2127 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2138 /* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2142 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2148 if (hm->tls_type & GOT_TLS_GD)
2150 if (hm->tls_type & GOT_TLS_IE)
2156 /* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2160 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2171 /* Output a simple dynamic relocation into SRELOC. */
2174 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2180 Elf_Internal_Rela rel[3];
2182 memset (rel, 0, sizeof (rel));
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2187 if (ABI_64_P (output_bfd))
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2202 /* Initialize a set of TLS GOT entries for one symbol. */
2205 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2215 bfd_boolean need_relocs = FALSE;
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2230 if (*tls_type_p & GOT_TLS_DONE)
2233 if ((info->shared || indx != 0)
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2245 /* Emit necessary relocations. */
2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2284 offset = got_offset;
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2305 if (*tls_type_p & GOT_TLS_LDM)
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2323 *tls_type_p |= GOT_TLS_DONE;
2326 /* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2332 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2350 if (r_type == R_MIPS_TLS_GD)
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2356 if (r_type == R_MIPS_TLS_LDM)
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2365 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2370 mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2392 return got_address - got_value;
2395 /* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
2402 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
2405 struct mips_elf_link_hash_entry *h, int r_type)
2408 struct mips_got_info *g;
2409 struct mips_got_entry *entry;
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
2415 r_symndx, h, r_type);
2419 if (TLS_RELOC_P (r_type))
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2431 return entry->gotidx;
2434 /* Returns the GOT index for the global symbol indicated by H. */
2437 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
2442 struct mips_got_info *g, *gg;
2443 long global_got_dynindx = 0;
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2448 struct mips_got_entry e, *p;
2450 BFD_ASSERT (h->dynindx >= 0);
2452 g = mips_elf_got_for_ibfd (g, ibfd);
2453 if (g->next != gg || TLS_RELOC_P (r_type))
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
2460 p = htab_find (g->got_entries, &e);
2462 BFD_ASSERT (p->gotidx > 0);
2464 if (TLS_RELOC_P (r_type))
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
2485 if (TLS_RELOC_P (r_type))
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2511 BFD_ASSERT (index < sgot->size);
2516 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
2524 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2528 struct mips_got_info *g;
2529 bfd_vma page, index;
2530 struct mips_got_entry *entry;
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
2537 NULL, R_MIPS_GOT_PAGE);
2542 index = entry->gotidx;
2545 *offsetp = value - entry->d.address;
2550 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
2556 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
2561 struct mips_got_info *g;
2562 struct mips_got_entry *entry;
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2569 value = mips_elf_high (value) << 16;
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
2577 return entry->gotidx;
2582 /* Returns the offset for the entry at the INDEXth position
2586 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
2591 struct mips_got_info *g;
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
2600 /* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2605 static struct mips_got_entry *
2606 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
2610 struct mips_elf_link_hash_entry *h,
2613 struct mips_got_entry entry, **loc;
2614 struct mips_got_info *g;
2615 struct mips_elf_link_hash_table *htab;
2617 htab = mips_elf_hash_table (info);
2621 entry.d.address = value;
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
2635 BFD_ASSERT (h == NULL || h->root.forced_local);
2636 if (TLS_RELOC_P (r_type))
2638 struct mips_got_entry *p;
2641 if (r_type == R_MIPS_TLS_LDM)
2643 entry.tls_type = GOT_TLS_LDM;
2649 entry.symndx = r_symndx;
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2675 memcpy (*loc, &entry, sizeof entry);
2677 if (g->assigned_gotno >= g->local_gotno)
2679 (*loc)->gotidx = -1;
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
2687 MIPS_ELF_PUT_WORD (abfd, value,
2688 (sgot->contents + entry.gotidx));
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2700 bfd_vma got_address;
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2720 /* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2728 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2734 dynobj = elf_hash_table (info)->dynobj;
2736 g = mips_elf_got_info (dynobj, NULL);
2739 hsd.max_unref_got_dynindx =
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2755 /* There should have been enough room in the symbol table to
2756 accommodate both the GOT and non-GOT symbols. */
2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
2763 g->global_gotsym = hsd.low;
2768 /* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2773 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2775 struct mips_elf_hash_sort_data *hsd = data;
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2780 /* Symbols without dynamic symbol table entries aren't interesting
2782 if (h->root.dynindx == -1)
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2789 if (h->root.got.offset == 2)
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2797 else if (h->root.got.offset != 1)
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2810 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2815 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
2820 struct mips_got_entry entry, **loc;
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2824 if (h->dynindx == -1)
2826 switch (ELF_ST_VISIBILITY (h->other))
2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
2852 (*loc)->tls_type |= tls_flag;
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2862 entry.tls_type = tls_flag;
2864 memcpy (*loc, &entry, sizeof entry);
2866 if (h->got.offset != MINUS_ONE)
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
2878 /* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2882 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
2886 struct mips_got_entry entry, **loc;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
2891 entry.tls_type = tls_flag;
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2900 (*loc)->tls_type |= tls_flag;
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2905 (*loc)->tls_type |= tls_flag;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2916 else if (tls_flag == GOT_TLS_GD)
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2920 g->tls_ldm_offset = MINUS_TWO;
2926 entry.gotidx = g->local_gotno++;
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2935 memcpy (*loc, &entry, sizeof entry);
2940 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2943 mips_elf_bfd2got_entry_hash (const void *entry_)
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2948 return entry->bfd->id;
2951 /* Check whether two hash entries have the same bfd. */
2954 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2961 return e1->bfd == e2->bfd;
2964 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2965 be the master GOT data. */
2967 static struct mips_got_info *
2968 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2970 struct mips_elf_bfd2got_hash e, *p;
2976 p = htab_find (g->bfd2got, &e);
2977 return p ? p->g : NULL;
2980 /* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2985 mips_elf_make_got_per_bfd (void **entryp, void *p)
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3027 g->assigned_gotno = -1;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3032 mips_elf_multi_got_entry_eq, NULL);
3033 if (g->got_entries == NULL)
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3050 if (entry->tls_type)
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3054 if (entry->tls_type & GOT_TLS_IE)
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3065 /* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3073 mips_elf_merge_gots (void **bfd2got_, void *p)
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
3080 unsigned int tcount = bfd2got->g->tls_gotno;
3081 unsigned int maxcnt = arg->max_count;
3082 bfd_boolean too_many_for_tls = FALSE;
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3093 too_many_for_tls = TRUE;
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
3113 int old_tcount = arg->primary->tls_gotno;
3115 bfd2got->g = arg->primary;
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3120 if (arg->obfd == NULL)
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3132 arg->primary_count = arg->primary->local_gotno
3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
3142 int old_tcount = arg->current->tls_gotno;
3144 bfd2got->g = arg->current;
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3149 if (arg->obfd == NULL)
3152 htab_delete (g->got_entries);
3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3158 arg->current_count = arg->current->local_gotno
3159 + arg->current->global_gotno + arg->current->tls_gotno;
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
3169 arg->current_count = lcount + gcount + 2 * tcount;
3175 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
3179 mips_elf_initialize_tls_index (void **entryp, void *p)
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3191 if (entry->symndx == -1 && g->next == NULL)
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3202 if (entry->tls_type & GOT_TLS_LDM)
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3209 entry->gotidx = g->tls_ldm_offset;
3212 g->tls_ldm_offset = next_index;
3214 entry->gotidx = next_index;
3217 /* Account for the entries we've just allocated. */
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3226 /* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3237 marked as not eligible for lazy resolution through a function
3240 mips_elf_set_global_got_offset (void **entryp, void *p)
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3252 if (entry->abfd != NULL && entry->symndx == -1
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
3258 BFD_ASSERT (g->global_gotsym == NULL);
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
3265 ++arg->needed_relocs;
3268 entry->d.h->root.got.offset = arg->value;
3274 /* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3277 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3289 /* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3296 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3301 if (entry->abfd != NULL && entry->symndx == -1)
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3309 if (entry->d.h == h)
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3325 *(htab_t *)p = NULL;
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3335 /* Turn indirect got entries in a got_entries table into their final
3338 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3344 got_entries = g->got_entries;
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3350 while (got_entries == NULL);
3353 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3356 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3358 if (g->bfd2got == NULL)
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3365 BFD_ASSERT (g->next);
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
3373 /* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3377 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3387 mips_elf_bfd2got_entry_eq, NULL);
3388 if (g->bfd2got == NULL)
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3407 / MIPS_ELF_GOT_SIZE (abfd))
3408 - MIPS_RESERVED_GOTNO (info) - pages);
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3412 got_per_bfd_arg.global_count = g->global_gotno;
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3421 /* If we do not find any suitable primary GOT, create an empty one. */
3422 if (got_per_bfd_arg.primary == NULL)
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
3432 g->next->tls_gotno = 0;
3433 g->next->assigned_gotno = 0;
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
3439 if (g->next->got_entries == NULL)
3441 g->next->bfd2got = NULL;
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3447 /* GG is now the master GOT, and G is the primary GOT. */
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3457 struct mips_elf_bfd2got_hash *bfdgot;
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3470 BFD_ASSERT (*bfdgotp == NULL);
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
3541 struct mips_got_info *gn;
3543 assign += MIPS_RESERVED_GOTNO (info);
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3570 got->size = (gg->next->local_gotno
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3578 /* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3581 static const Elf_Internal_Rela *
3582 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
3586 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3588 while (relocation < relend)
3590 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3591 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3602 /* Return whether a relocation is against a local symbol. */
3605 mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3619 if (r_symndx < extsymoff)
3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3634 if (h->root.forced_local)
3641 /* Sign-extend VALUE, which has the indicated number of BITS. */
3644 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3653 /* Return non-zero if the indicated VALUE has overflowed the maximum
3654 range expressible by a signed number with the indicated number of
3658 mips_elf_overflow_p (bfd_vma value, int bits)
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
3673 /* Calculate the %high function. */
3676 mips_elf_high (bfd_vma value)
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3681 /* Calculate the %higher function. */
3684 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3694 /* Calculate the %highest function. */
3697 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3707 /* Create the .compact_rel section. */
3710 mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3714 register asection *s;
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3727 s->size = sizeof (Elf32_External_compact_rel);
3733 /* Create the .got section to hold the global offset table. */
3736 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
3742 struct bfd_link_hash_entry *bh;
3743 struct mips_got_info *g;
3745 struct mips_elf_link_hash_table *htab;
3747 htab = mips_elf_hash_table (info);
3749 /* This function may be called more than once. */
3750 s = mips_elf_got_section (abfd, TRUE);
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3762 flags |= SEC_EXCLUDE;
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
3768 || ! bfd_set_section_alignment (abfd, s, 4))
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3780 h = (struct elf_link_hash_entry *) bh;
3783 h->type = STT_OBJECT;
3784 elf_hash_table (info)->hgot = h;
3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3790 amt = sizeof (struct mips_got_info);
3791 g = bfd_alloc (abfd, amt);
3794 g->global_gotsym = NULL;
3795 g->global_gotno = 0;
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3801 g->tls_ldm_offset = MINUS_ONE;
3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3803 mips_elf_got_entry_eq, NULL);
3804 if (g->got_entries == NULL)
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3824 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3829 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3831 return (mips_elf_hash_table (info)->is_vxworks
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3837 /* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3850 static bfd_reloc_status_type
3851 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
3861 /* The eventual value we will return. */
3863 /* The address of the symbol against which the relocation is
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
3882 /* TRUE if the symbol referred to by this relocation is a local
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
3890 Elf_Internal_Shdr *symtab_hdr;
3892 unsigned long r_symndx;
3894 /* TRUE if overflow occurred during the calculation of the
3895 relocation value. */
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
3899 struct mips_elf_link_hash_table *htab;
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3912 /* Assume that there will be no overflow. */
3913 overflowed_p = FALSE;
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3919 local_sections, FALSE);
3920 was_local_p = local_p;
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3930 /* Figure out the value of the symbol. */
3933 Elf_Internal_Sym *sym;
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3938 symbol = sec->output_section->vma + sec->output_offset;
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
3941 symbol += sym->st_value;
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3947 addend += sec->output_section->vma + sec->output_offset;
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3959 *namep = bfd_section_name (input_bfd, sec);
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
3980 if (strcmp (*namep, "_gp_disp") == 0
3981 && ! NEWABI_P (input_bfd))
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3987 return bfd_reloc_notsupported;
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4011 symbol = h->root.root.u.def.value;
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
4053 return bfd_reloc_undefined;
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4063 if (r_type != R_MIPS16_26 && !info->relocatable
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4076 BFD_ASSERT (h->need_fn_stub);
4080 symbol = sec->output_section->vma + sec->output_offset;
4081 /* The target is 16-bit, but the stub isn't. */
4082 target_is_16_bit_code_p = FALSE;
4084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4085 need to redirect the call to the stub. */
4086 else if (r_type == R_MIPS16_26 && !info->relocatable
4088 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4089 && !target_is_16_bit_code_p)
4091 /* If both call_stub and call_fp_stub are defined, we can figure
4092 out which one to use by seeing which one appears in the input
4094 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4099 for (o = input_bfd->sections; o != NULL; o = o->next)
4101 if (CONST_STRNEQ (bfd_get_section_name (input_bfd, o),
4104 sec = h->call_fp_stub;
4111 else if (h->call_stub != NULL)
4114 sec = h->call_fp_stub;
4116 BFD_ASSERT (sec->size > 0);
4117 symbol = sec->output_section->vma + sec->output_offset;
4120 /* Calls from 16-bit code to 32-bit code and vice versa require the
4121 special jalx instruction. */
4122 *require_jalxp = (!info->relocatable
4123 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4124 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4126 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4127 local_sections, TRUE);
4129 /* If we haven't already determined the GOT offset, or the GP value,
4130 and we're going to need it, get it now. */
4133 case R_MIPS_GOT_PAGE:
4134 case R_MIPS_GOT_OFST:
4135 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4137 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4138 if (local_p || r_type == R_MIPS_GOT_OFST)
4144 case R_MIPS_GOT_DISP:
4145 case R_MIPS_GOT_HI16:
4146 case R_MIPS_CALL_HI16:
4147 case R_MIPS_GOT_LO16:
4148 case R_MIPS_CALL_LO16:
4150 case R_MIPS_TLS_GOTTPREL:
4151 case R_MIPS_TLS_LDM:
4152 /* Find the index into the GOT where this value is located. */
4153 if (r_type == R_MIPS_TLS_LDM)
4155 g = mips_elf_local_got_index (abfd, input_bfd, info,
4156 sec, 0, 0, NULL, r_type);
4158 return bfd_reloc_outofrange;
4162 /* On VxWorks, CALL relocations should refer to the .got.plt
4163 entry, which is initialized to point at the PLT stub. */
4164 if (htab->is_vxworks
4165 && (r_type == R_MIPS_CALL_HI16
4166 || r_type == R_MIPS_CALL_LO16
4167 || r_type == R_MIPS_CALL16))
4169 BFD_ASSERT (addend == 0);
4170 BFD_ASSERT (h->root.needs_plt);
4171 g = mips_elf_gotplt_index (info, &h->root);
4175 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4176 GOT_PAGE relocation that decays to GOT_DISP because the
4177 symbol turns out to be global. The addend is then added
4179 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4180 g = mips_elf_global_got_index (dynobj, input_bfd,
4181 &h->root, r_type, info);
4182 if (h->tls_type == GOT_NORMAL
4183 && (! elf_hash_table(info)->dynamic_sections_created
4185 && (info->symbolic || h->root.forced_local)
4186 && h->root.def_regular)))
4188 /* This is a static link or a -Bsymbolic link. The
4189 symbol is defined locally, or was forced to be local.
4190 We must initialize this entry in the GOT. */
4191 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4192 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4196 else if (!htab->is_vxworks
4197 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4198 /* The calculation below does not involve "g". */
4202 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4203 symbol + addend, r_symndx, h, r_type);
4205 return bfd_reloc_outofrange;
4208 /* Convert GOT indices to actual offsets. */
4209 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4214 case R_MIPS_GPREL16:
4215 case R_MIPS_GPREL32:
4216 case R_MIPS_LITERAL:
4219 case R_MIPS16_GPREL:
4220 gp0 = _bfd_get_gp_value (input_bfd);
4221 gp = _bfd_get_gp_value (abfd);
4223 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4234 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4235 symbols are resolved by the loader. Add them to .rela.dyn. */
4236 if (h != NULL && is_gott_symbol (info, &h->root))
4238 Elf_Internal_Rela outrel;
4242 s = mips_elf_rel_dyn_section (info, FALSE);
4243 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4245 outrel.r_offset = (input_section->output_section->vma
4246 + input_section->output_offset
4247 + relocation->r_offset);
4248 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4249 outrel.r_addend = addend;
4250 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4252 return bfd_reloc_ok;
4255 /* Figure out what kind of relocation is being performed. */
4259 return bfd_reloc_continue;
4262 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4263 overflowed_p = mips_elf_overflow_p (value, 16);
4270 || (!htab->is_vxworks
4271 && htab->root.dynamic_sections_created
4273 && h->root.def_dynamic
4274 && !h->root.def_regular))
4276 && (input_section->flags & SEC_ALLOC) != 0)
4278 /* If we're creating a shared library, or this relocation is
4279 against a symbol in a shared library, then we can't know
4280 where the symbol will end up. So, we create a relocation
4281 record in the output, and leave the job up to the dynamic
4284 In VxWorks executables, references to external symbols
4285 are handled using copy relocs or PLT stubs, so there's
4286 no need to add a dynamic relocation here. */
4288 if (!mips_elf_create_dynamic_relocation (abfd,
4296 return bfd_reloc_undefined;
4300 if (r_type != R_MIPS_REL32)
4301 value = symbol + addend;
4305 value &= howto->dst_mask;
4309 value = symbol + addend - p;
4310 value &= howto->dst_mask;
4314 /* The calculation for R_MIPS16_26 is just the same as for an
4315 R_MIPS_26. It's only the storage of the relocated field into
4316 the output file that's different. That's handled in
4317 mips_elf_perform_relocation. So, we just fall through to the
4318 R_MIPS_26 case here. */
4321 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4324 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4325 if (h->root.root.type != bfd_link_hash_undefweak)
4326 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4328 value &= howto->dst_mask;
4331 case R_MIPS_TLS_DTPREL_HI16:
4332 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4336 case R_MIPS_TLS_DTPREL_LO16:
4337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4340 case R_MIPS_TLS_TPREL_HI16:
4341 value = (mips_elf_high (addend + symbol - tprel_base (info))
4345 case R_MIPS_TLS_TPREL_LO16:
4346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4353 value = mips_elf_high (addend + symbol);
4354 value &= howto->dst_mask;
4358 /* For MIPS16 ABI code we generate this sequence
4359 0: li $v0,%hi(_gp_disp)
4360 4: addiupc $v1,%lo(_gp_disp)
4364 So the offsets of hi and lo relocs are the same, but the
4365 $pc is four higher than $t9 would be, so reduce
4366 both reloc addends by 4. */
4367 if (r_type == R_MIPS16_HI16)
4368 value = mips_elf_high (addend + gp - p - 4);
4370 value = mips_elf_high (addend + gp - p);
4371 overflowed_p = mips_elf_overflow_p (value, 16);
4378 value = (symbol + addend) & howto->dst_mask;
4381 /* See the comment for R_MIPS16_HI16 above for the reason
4382 for this conditional. */
4383 if (r_type == R_MIPS16_LO16)
4384 value = addend + gp - p;
4386 value = addend + gp - p + 4;
4387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4388 for overflow. But, on, say, IRIX5, relocations against
4389 _gp_disp are normally generated from the .cpload
4390 pseudo-op. It generates code that normally looks like
4393 lui $gp,%hi(_gp_disp)
4394 addiu $gp,$gp,%lo(_gp_disp)
4397 Here $t9 holds the address of the function being called,
4398 as required by the MIPS ELF ABI. The R_MIPS_LO16
4399 relocation can easily overflow in this situation, but the
4400 R_MIPS_HI16 relocation will handle the overflow.
4401 Therefore, we consider this a bug in the MIPS ABI, and do
4402 not check for overflow here. */
4406 case R_MIPS_LITERAL:
4407 /* Because we don't merge literal sections, we can handle this
4408 just like R_MIPS_GPREL16. In the long run, we should merge
4409 shared literals, and then we will need to additional work
4414 case R_MIPS16_GPREL:
4415 /* The R_MIPS16_GPREL performs the same calculation as
4416 R_MIPS_GPREL16, but stores the relocated bits in a different
4417 order. We don't need to do anything special here; the
4418 differences are handled in mips_elf_perform_relocation. */
4419 case R_MIPS_GPREL16:
4420 /* Only sign-extend the addend if it was extracted from the
4421 instruction. If the addend was separate, leave it alone,
4422 otherwise we may lose significant bits. */
4423 if (howto->partial_inplace)
4424 addend = _bfd_mips_elf_sign_extend (addend, 16);
4425 value = symbol + addend - gp;
4426 /* If the symbol was local, any earlier relocatable links will
4427 have adjusted its addend with the gp offset, so compensate
4428 for that now. Don't do it for symbols forced local in this
4429 link, though, since they won't have had the gp offset applied
4433 overflowed_p = mips_elf_overflow_p (value, 16);
4438 /* VxWorks does not have separate local and global semantics for
4439 R_MIPS_GOT16; every relocation evaluates to "G". */
4440 if (!htab->is_vxworks && local_p)
4444 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4445 local_sections, FALSE);
4446 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4447 symbol + addend, forced);
4448 if (value == MINUS_ONE)
4449 return bfd_reloc_outofrange;
4451 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4459 case R_MIPS_TLS_GOTTPREL:
4460 case R_MIPS_TLS_LDM:
4461 case R_MIPS_GOT_DISP:
4464 overflowed_p = mips_elf_overflow_p (value, 16);
4467 case R_MIPS_GPREL32:
4468 value = (addend + symbol + gp0 - gp);
4470 value &= howto->dst_mask;
4474 case R_MIPS_GNU_REL16_S2:
4475 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4476 overflowed_p = mips_elf_overflow_p (value, 18);
4477 value >>= howto->rightshift;
4478 value &= howto->dst_mask;
4481 case R_MIPS_GOT_HI16:
4482 case R_MIPS_CALL_HI16:
4483 /* We're allowed to handle these two relocations identically.
4484 The dynamic linker is allowed to handle the CALL relocations
4485 differently by creating a lazy evaluation stub. */
4487 value = mips_elf_high (value);
4488 value &= howto->dst_mask;
4491 case R_MIPS_GOT_LO16:
4492 case R_MIPS_CALL_LO16:
4493 value = g & howto->dst_mask;
4496 case R_MIPS_GOT_PAGE:
4497 /* GOT_PAGE relocations that reference non-local symbols decay
4498 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4502 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4503 symbol + addend, NULL);
4504 if (value == MINUS_ONE)
4505 return bfd_reloc_outofrange;
4506 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4510 case R_MIPS_GOT_OFST:
4512 mips_elf_got_page (abfd, input_bfd, info, sec,
4513 symbol + addend, &value);
4516 overflowed_p = mips_elf_overflow_p (value, 16);
4520 value = symbol - addend;
4521 value &= howto->dst_mask;
4525 value = mips_elf_higher (addend + symbol);
4526 value &= howto->dst_mask;
4529 case R_MIPS_HIGHEST:
4530 value = mips_elf_highest (addend + symbol);
4531 value &= howto->dst_mask;
4534 case R_MIPS_SCN_DISP:
4535 value = symbol + addend - sec->output_offset;
4536 value &= howto->dst_mask;
4540 /* This relocation is only a hint. In some cases, we optimize
4541 it into a bal instruction. But we don't try to optimize
4542 branches to the PLT; that will wind up wasting time. */
4543 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4544 return bfd_reloc_continue;
4545 value = symbol + addend;
4549 case R_MIPS_GNU_VTINHERIT:
4550 case R_MIPS_GNU_VTENTRY:
4551 /* We don't do anything with these at present. */
4552 return bfd_reloc_continue;
4555 /* An unrecognized relocation type. */
4556 return bfd_reloc_notsupported;
4559 /* Store the VALUE for our caller. */
4561 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4564 /* Obtain the field relocated by RELOCATION. */
4567 mips_elf_obtain_contents (reloc_howto_type *howto,
4568 const Elf_Internal_Rela *relocation,
4569 bfd *input_bfd, bfd_byte *contents)
4572 bfd_byte *location = contents + relocation->r_offset;
4574 /* Obtain the bytes. */
4575 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4580 /* It has been determined that the result of the RELOCATION is the
4581 VALUE. Use HOWTO to place VALUE into the output file at the
4582 appropriate position. The SECTION is the section to which the
4583 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4584 for the relocation must be either JAL or JALX, and it is
4585 unconditionally converted to JALX.
4587 Returns FALSE if anything goes wrong. */
4590 mips_elf_perform_relocation (struct bfd_link_info *info,
4591 reloc_howto_type *howto,
4592 const Elf_Internal_Rela *relocation,
4593 bfd_vma value, bfd *input_bfd,
4594 asection *input_section, bfd_byte *contents,
4595 bfd_boolean require_jalx)
4599 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4601 /* Figure out where the relocation is occurring. */
4602 location = contents + relocation->r_offset;
4604 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4606 /* Obtain the current value. */
4607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4609 /* Clear the field we are setting. */
4610 x &= ~howto->dst_mask;
4612 /* Set the field. */
4613 x |= (value & howto->dst_mask);
4615 /* If required, turn JAL into JALX. */
4619 bfd_vma opcode = x >> 26;
4620 bfd_vma jalx_opcode;
4622 /* Check to see if the opcode is already JAL or JALX. */
4623 if (r_type == R_MIPS16_26)
4625 ok = ((opcode == 0x6) || (opcode == 0x7));
4630 ok = ((opcode == 0x3) || (opcode == 0x1d));
4634 /* If the opcode is not JAL or JALX, there's a problem. */
4637 (*_bfd_error_handler)
4638 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4641 (unsigned long) relocation->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
4646 /* Make this the JALX opcode. */
4647 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4650 /* On the RM9000, bal is faster than jal, because bal uses branch
4651 prediction hardware. If we are linking for the RM9000, and we
4652 see jal, and bal fits, use it instead. Note that this
4653 transformation should be safe for all architectures. */
4654 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4655 && !info->relocatable
4657 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4658 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4664 addr = (input_section->output_section->vma
4665 + input_section->output_offset
4666 + relocation->r_offset
4668 if (r_type == R_MIPS_26)
4669 dest = (value << 2) | ((addr >> 28) << 28);
4673 if (off <= 0x1ffff && off >= -0x20000)
4674 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4677 /* Put the value into the output. */
4678 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4680 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4686 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4689 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4691 const char *name = bfd_get_section_name (abfd, section);
4693 return (CONST_STRNEQ (name, FN_STUB)
4694 || CONST_STRNEQ (name, CALL_STUB)
4695 || CONST_STRNEQ (name, CALL_FP_STUB));
4698 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4701 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4705 struct mips_elf_link_hash_table *htab;
4707 htab = mips_elf_hash_table (info);
4708 s = mips_elf_rel_dyn_section (info, FALSE);
4709 BFD_ASSERT (s != NULL);
4711 if (htab->is_vxworks)
4712 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4717 /* Make room for a null element. */
4718 s->size += MIPS_ELF_REL_SIZE (abfd);
4721 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4725 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4726 is the original relocation, which is now being transformed into a
4727 dynamic relocation. The ADDENDP is adjusted if necessary; the
4728 caller should store the result in place of the original addend. */
4731 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4732 struct bfd_link_info *info,
4733 const Elf_Internal_Rela *rel,
4734 struct mips_elf_link_hash_entry *h,
4735 asection *sec, bfd_vma symbol,
4736 bfd_vma *addendp, asection *input_section)
4738 Elf_Internal_Rela outrel[3];
4743 bfd_boolean defined_p;
4744 struct mips_elf_link_hash_table *htab;
4746 htab = mips_elf_hash_table (info);
4747 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4748 dynobj = elf_hash_table (info)->dynobj;
4749 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4750 BFD_ASSERT (sreloc != NULL);
4751 BFD_ASSERT (sreloc->contents != NULL);
4752 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4755 outrel[0].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4757 outrel[1].r_offset =
4758 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4759 outrel[2].r_offset =
4760 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4762 if (outrel[0].r_offset == MINUS_ONE)
4763 /* The relocation field has been deleted. */
4766 if (outrel[0].r_offset == MINUS_TWO)
4768 /* The relocation field has been converted into a relative value of
4769 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4770 the field to be fully relocated, so add in the symbol's value. */
4775 /* We must now calculate the dynamic symbol table index to use
4776 in the relocation. */
4778 && (!h->root.def_regular
4779 || (info->shared && !info->symbolic && !h->root.forced_local)))
4781 indx = h->root.dynindx;
4782 if (SGI_COMPAT (output_bfd))
4783 defined_p = h->root.def_regular;
4785 /* ??? glibc's ld.so just adds the final GOT entry to the
4786 relocation field. It therefore treats relocs against
4787 defined symbols in the same way as relocs against
4788 undefined symbols. */
4793 if (sec != NULL && bfd_is_abs_section (sec))
4795 else if (sec == NULL || sec->owner == NULL)
4797 bfd_set_error (bfd_error_bad_value);
4802 indx = elf_section_data (sec->output_section)->dynindx;
4805 asection *osec = htab->root.text_index_section;
4806 indx = elf_section_data (osec)->dynindx;
4812 /* Instead of generating a relocation using the section
4813 symbol, we may as well make it a fully relative
4814 relocation. We want to avoid generating relocations to
4815 local symbols because we used to generate them
4816 incorrectly, without adding the original symbol value,
4817 which is mandated by the ABI for section symbols. In
4818 order to give dynamic loaders and applications time to
4819 phase out the incorrect use, we refrain from emitting
4820 section-relative relocations. It's not like they're
4821 useful, after all. This should be a bit more efficient
4823 /* ??? Although this behavior is compatible with glibc's ld.so,
4824 the ABI says that relocations against STN_UNDEF should have
4825 a symbol value of 0. Irix rld honors this, so relocations
4826 against STN_UNDEF have no effect. */
4827 if (!SGI_COMPAT (output_bfd))
4832 /* If the relocation was previously an absolute relocation and
4833 this symbol will not be referred to by the relocation, we must
4834 adjust it by the value we give it in the dynamic symbol table.
4835 Otherwise leave the job up to the dynamic linker. */
4836 if (defined_p && r_type != R_MIPS_REL32)
4839 if (htab->is_vxworks)
4840 /* VxWorks uses non-relative relocations for this. */
4841 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4843 /* The relocation is always an REL32 relocation because we don't
4844 know where the shared library will wind up at load-time. */
4845 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4848 /* For strict adherence to the ABI specification, we should
4849 generate a R_MIPS_64 relocation record by itself before the
4850 _REL32/_64 record as well, such that the addend is read in as
4851 a 64-bit value (REL32 is a 32-bit relocation, after all).
4852 However, since none of the existing ELF64 MIPS dynamic
4853 loaders seems to care, we don't waste space with these
4854 artificial relocations. If this turns out to not be true,
4855 mips_elf_allocate_dynamic_relocation() should be tweaked so
4856 as to make room for a pair of dynamic relocations per
4857 invocation if ABI_64_P, and here we should generate an
4858 additional relocation record with R_MIPS_64 by itself for a
4859 NULL symbol before this relocation record. */
4860 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4861 ABI_64_P (output_bfd)
4864 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4866 /* Adjust the output offset of the relocation to reference the
4867 correct location in the output file. */
4868 outrel[0].r_offset += (input_section->output_section->vma
4869 + input_section->output_offset);
4870 outrel[1].r_offset += (input_section->output_section->vma
4871 + input_section->output_offset);
4872 outrel[2].r_offset += (input_section->output_section->vma
4873 + input_section->output_offset);
4875 /* Put the relocation back out. We have to use the special
4876 relocation outputter in the 64-bit case since the 64-bit
4877 relocation format is non-standard. */
4878 if (ABI_64_P (output_bfd))
4880 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4881 (output_bfd, &outrel[0],
4883 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4885 else if (htab->is_vxworks)
4887 /* VxWorks uses RELA rather than REL dynamic relocations. */
4888 outrel[0].r_addend = *addendp;
4889 bfd_elf32_swap_reloca_out
4890 (output_bfd, &outrel[0],
4892 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4895 bfd_elf32_swap_reloc_out
4896 (output_bfd, &outrel[0],
4897 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4899 /* We've now added another relocation. */
4900 ++sreloc->reloc_count;
4902 /* Make sure the output section is writable. The dynamic linker
4903 will be writing to it. */
4904 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4907 /* On IRIX5, make an entry of compact relocation info. */
4908 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4910 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4915 Elf32_crinfo cptrel;
4917 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4918 cptrel.vaddr = (rel->r_offset
4919 + input_section->output_section->vma
4920 + input_section->output_offset);
4921 if (r_type == R_MIPS_REL32)
4922 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4924 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4925 mips_elf_set_cr_dist2to (cptrel, 0);
4926 cptrel.konst = *addendp;
4928 cr = (scpt->contents
4929 + sizeof (Elf32_External_compact_rel));
4930 mips_elf_set_cr_relvaddr (cptrel, 0);
4931 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4932 ((Elf32_External_crinfo *) cr
4933 + scpt->reloc_count));
4934 ++scpt->reloc_count;
4938 /* If we've written this relocation for a readonly section,
4939 we need to set DF_TEXTREL again, so that we do not delete the
4941 if (MIPS_ELF_READONLY_SECTION (input_section))
4942 info->flags |= DF_TEXTREL;
4947 /* Return the MACH for a MIPS e_flags value. */
4950 _bfd_elf_mips_mach (flagword flags)
4952 switch (flags & EF_MIPS_MACH)
4954 case E_MIPS_MACH_3900:
4955 return bfd_mach_mips3900;
4957 case E_MIPS_MACH_4010:
4958 return bfd_mach_mips4010;
4960 case E_MIPS_MACH_4100:
4961 return bfd_mach_mips4100;
4963 case E_MIPS_MACH_4111:
4964 return bfd_mach_mips4111;
4966 case E_MIPS_MACH_4120:
4967 return bfd_mach_mips4120;
4969 case E_MIPS_MACH_4650:
4970 return bfd_mach_mips4650;
4972 case E_MIPS_MACH_5400:
4973 return bfd_mach_mips5400;
4975 case E_MIPS_MACH_5500:
4976 return bfd_mach_mips5500;
4978 case E_MIPS_MACH_9000:
4979 return bfd_mach_mips9000;
4981 case E_MIPS_MACH_SB1:
4982 return bfd_mach_mips_sb1;
4985 switch (flags & EF_MIPS_ARCH)
4989 return bfd_mach_mips3000;
4992 return bfd_mach_mips6000;
4995 return bfd_mach_mips4000;
4998 return bfd_mach_mips8000;
5001 return bfd_mach_mips5;
5003 case E_MIPS_ARCH_32:
5004 return bfd_mach_mipsisa32;
5006 case E_MIPS_ARCH_64:
5007 return bfd_mach_mipsisa64;
5009 case E_MIPS_ARCH_32R2:
5010 return bfd_mach_mipsisa32r2;
5012 case E_MIPS_ARCH_64R2:
5013 return bfd_mach_mipsisa64r2;
5020 /* Return printable name for ABI. */
5022 static INLINE char *
5023 elf_mips_abi_name (bfd *abfd)
5027 flags = elf_elfheader (abfd)->e_flags;
5028 switch (flags & EF_MIPS_ABI)
5031 if (ABI_N32_P (abfd))
5033 else if (ABI_64_P (abfd))
5037 case E_MIPS_ABI_O32:
5039 case E_MIPS_ABI_O64:
5041 case E_MIPS_ABI_EABI32:
5043 case E_MIPS_ABI_EABI64:
5046 return "unknown abi";
5050 /* MIPS ELF uses two common sections. One is the usual one, and the
5051 other is for small objects. All the small objects are kept
5052 together, and then referenced via the gp pointer, which yields
5053 faster assembler code. This is what we use for the small common
5054 section. This approach is copied from ecoff.c. */
5055 static asection mips_elf_scom_section;
5056 static asymbol mips_elf_scom_symbol;
5057 static asymbol *mips_elf_scom_symbol_ptr;
5059 /* MIPS ELF also uses an acommon section, which represents an
5060 allocated common symbol which may be overridden by a
5061 definition in a shared library. */
5062 static asection mips_elf_acom_section;
5063 static asymbol mips_elf_acom_symbol;
5064 static asymbol *mips_elf_acom_symbol_ptr;
5066 /* Handle the special MIPS section numbers that a symbol may use.
5067 This is used for both the 32-bit and the 64-bit ABI. */
5070 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5072 elf_symbol_type *elfsym;
5074 elfsym = (elf_symbol_type *) asym;
5075 switch (elfsym->internal_elf_sym.st_shndx)
5077 case SHN_MIPS_ACOMMON:
5078 /* This section is used in a dynamically linked executable file.
5079 It is an allocated common section. The dynamic linker can
5080 either resolve these symbols to something in a shared
5081 library, or it can just leave them here. For our purposes,
5082 we can consider these symbols to be in a new section. */
5083 if (mips_elf_acom_section.name == NULL)
5085 /* Initialize the acommon section. */
5086 mips_elf_acom_section.name = ".acommon";
5087 mips_elf_acom_section.flags = SEC_ALLOC;
5088 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5089 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5090 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5091 mips_elf_acom_symbol.name = ".acommon";
5092 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5093 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5094 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5096 asym->section = &mips_elf_acom_section;
5100 /* Common symbols less than the GP size are automatically
5101 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5102 if (asym->value > elf_gp_size (abfd)
5103 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5104 || IRIX_COMPAT (abfd) == ict_irix6)
5107 case SHN_MIPS_SCOMMON:
5108 if (mips_elf_scom_section.name == NULL)
5110 /* Initialize the small common section. */
5111 mips_elf_scom_section.name = ".scommon";
5112 mips_elf_scom_section.flags = SEC_IS_COMMON;
5113 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5114 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5115 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5116 mips_elf_scom_symbol.name = ".scommon";
5117 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5118 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5119 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5121 asym->section = &mips_elf_scom_section;
5122 asym->value = elfsym->internal_elf_sym.st_size;
5125 case SHN_MIPS_SUNDEFINED:
5126 asym->section = bfd_und_section_ptr;
5131 asection *section = bfd_get_section_by_name (abfd, ".text");
5133 BFD_ASSERT (SGI_COMPAT (abfd));
5134 if (section != NULL)
5136 asym->section = section;
5137 /* MIPS_TEXT is a bit special, the address is not an offset
5138 to the base of the .text section. So substract the section
5139 base address to make it an offset. */
5140 asym->value -= section->vma;
5147 asection *section = bfd_get_section_by_name (abfd, ".data");
5149 BFD_ASSERT (SGI_COMPAT (abfd));
5150 if (section != NULL)
5152 asym->section = section;
5153 /* MIPS_DATA is a bit special, the address is not an offset
5154 to the base of the .data section. So substract the section
5155 base address to make it an offset. */
5156 asym->value -= section->vma;
5163 /* Implement elf_backend_eh_frame_address_size. This differs from
5164 the default in the way it handles EABI64.
5166 EABI64 was originally specified as an LP64 ABI, and that is what
5167 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5168 historically accepted the combination of -mabi=eabi and -mlong32,
5169 and this ILP32 variation has become semi-official over time.
5170 Both forms use elf32 and have pointer-sized FDE addresses.
5172 If an EABI object was generated by GCC 4.0 or above, it will have
5173 an empty .gcc_compiled_longXX section, where XX is the size of longs
5174 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5175 have no special marking to distinguish them from LP64 objects.
5177 We don't want users of the official LP64 ABI to be punished for the
5178 existence of the ILP32 variant, but at the same time, we don't want
5179 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5180 We therefore take the following approach:
5182 - If ABFD contains a .gcc_compiled_longXX section, use it to
5183 determine the pointer size.
5185 - Otherwise check the type of the first relocation. Assume that
5186 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5190 The second check is enough to detect LP64 objects generated by pre-4.0
5191 compilers because, in the kind of output generated by those compilers,
5192 the first relocation will be associated with either a CIE personality
5193 routine or an FDE start address. Furthermore, the compilers never
5194 used a special (non-pointer) encoding for this ABI.
5196 Checking the relocation type should also be safe because there is no
5197 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5201 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5203 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5205 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5207 bfd_boolean long32_p, long64_p;
5209 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5210 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5211 if (long32_p && long64_p)
5218 if (sec->reloc_count > 0
5219 && elf_section_data (sec)->relocs != NULL
5220 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5229 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5230 relocations against two unnamed section symbols to resolve to the
5231 same address. For example, if we have code like:
5233 lw $4,%got_disp(.data)($gp)
5234 lw $25,%got_disp(.text)($gp)
5237 then the linker will resolve both relocations to .data and the program
5238 will jump there rather than to .text.
5240 We can work around this problem by giving names to local section symbols.
5241 This is also what the MIPSpro tools do. */
5244 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5246 return SGI_COMPAT (abfd);
5249 /* Work over a section just before writing it out. This routine is
5250 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5251 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5255 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5257 if (hdr->sh_type == SHT_MIPS_REGINFO
5258 && hdr->sh_size > 0)
5262 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5263 BFD_ASSERT (hdr->contents == NULL);
5266 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5269 H_PUT_32 (abfd, elf_gp (abfd), buf);
5270 if (bfd_bwrite (buf, 4, abfd) != 4)
5274 if (hdr->sh_type == SHT_MIPS_OPTIONS
5275 && hdr->bfd_section != NULL
5276 && mips_elf_section_data (hdr->bfd_section) != NULL
5277 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5279 bfd_byte *contents, *l, *lend;
5281 /* We stored the section contents in the tdata field in the
5282 set_section_contents routine. We save the section contents
5283 so that we don't have to read them again.
5284 At this point we know that elf_gp is set, so we can look
5285 through the section contents to see if there is an
5286 ODK_REGINFO structure. */
5288 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5290 lend = contents + hdr->sh_size;
5291 while (l + sizeof (Elf_External_Options) <= lend)
5293 Elf_Internal_Options intopt;
5295 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5297 if (intopt.size < sizeof (Elf_External_Options))
5299 (*_bfd_error_handler)
5300 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5301 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5304 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5311 + sizeof (Elf_External_Options)
5312 + (sizeof (Elf64_External_RegInfo) - 8)),
5315 H_PUT_64 (abfd, elf_gp (abfd), buf);
5316 if (bfd_bwrite (buf, 8, abfd) != 8)
5319 else if (intopt.kind == ODK_REGINFO)
5326 + sizeof (Elf_External_Options)
5327 + (sizeof (Elf32_External_RegInfo) - 4)),
5330 H_PUT_32 (abfd, elf_gp (abfd), buf);
5331 if (bfd_bwrite (buf, 4, abfd) != 4)
5338 if (hdr->bfd_section != NULL)
5340 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5342 if (strcmp (name, ".sdata") == 0
5343 || strcmp (name, ".lit8") == 0
5344 || strcmp (name, ".lit4") == 0)
5346 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5347 hdr->sh_type = SHT_PROGBITS;
5349 else if (strcmp (name, ".sbss") == 0)
5351 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5352 hdr->sh_type = SHT_NOBITS;
5354 else if (strcmp (name, ".srdata") == 0)
5356 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5357 hdr->sh_type = SHT_PROGBITS;
5359 else if (strcmp (name, ".compact_rel") == 0)
5362 hdr->sh_type = SHT_PROGBITS;
5364 else if (strcmp (name, ".rtproc") == 0)
5366 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5368 unsigned int adjust;
5370 adjust = hdr->sh_size % hdr->sh_addralign;
5372 hdr->sh_size += hdr->sh_addralign - adjust;
5380 /* Handle a MIPS specific section when reading an object file. This
5381 is called when elfcode.h finds a section with an unknown type.
5382 This routine supports both the 32-bit and 64-bit ELF ABI.
5384 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5388 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5389 Elf_Internal_Shdr *hdr,
5395 /* There ought to be a place to keep ELF backend specific flags, but
5396 at the moment there isn't one. We just keep track of the
5397 sections by their name, instead. Fortunately, the ABI gives
5398 suggested names for all the MIPS specific sections, so we will
5399 probably get away with this. */
5400 switch (hdr->sh_type)
5402 case SHT_MIPS_LIBLIST:
5403 if (strcmp (name, ".liblist") != 0)
5407 if (strcmp (name, ".msym") != 0)
5410 case SHT_MIPS_CONFLICT:
5411 if (strcmp (name, ".conflict") != 0)
5414 case SHT_MIPS_GPTAB:
5415 if (! CONST_STRNEQ (name, ".gptab."))
5418 case SHT_MIPS_UCODE:
5419 if (strcmp (name, ".ucode") != 0)
5422 case SHT_MIPS_DEBUG:
5423 if (strcmp (name, ".mdebug") != 0)
5425 flags = SEC_DEBUGGING;
5427 case SHT_MIPS_REGINFO:
5428 if (strcmp (name, ".reginfo") != 0
5429 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5431 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5433 case SHT_MIPS_IFACE:
5434 if (strcmp (name, ".MIPS.interfaces") != 0)
5437 case SHT_MIPS_CONTENT:
5438 if (! CONST_STRNEQ (name, ".MIPS.content"))
5441 case SHT_MIPS_OPTIONS:
5442 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5445 case SHT_MIPS_DWARF:
5446 if (! CONST_STRNEQ (name, ".debug_"))
5449 case SHT_MIPS_SYMBOL_LIB:
5450 if (strcmp (name, ".MIPS.symlib") != 0)
5453 case SHT_MIPS_EVENTS:
5454 if (! CONST_STRNEQ (name, ".MIPS.events")
5455 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5462 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5467 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5468 (bfd_get_section_flags (abfd,
5474 /* FIXME: We should record sh_info for a .gptab section. */
5476 /* For a .reginfo section, set the gp value in the tdata information
5477 from the contents of this section. We need the gp value while
5478 processing relocs, so we just get it now. The .reginfo section
5479 is not used in the 64-bit MIPS ELF ABI. */
5480 if (hdr->sh_type == SHT_MIPS_REGINFO)
5482 Elf32_External_RegInfo ext;
5485 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5486 &ext, 0, sizeof ext))
5488 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5489 elf_gp (abfd) = s.ri_gp_value;
5492 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5493 set the gp value based on what we find. We may see both
5494 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5495 they should agree. */
5496 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5498 bfd_byte *contents, *l, *lend;
5500 contents = bfd_malloc (hdr->sh_size);
5501 if (contents == NULL)
5503 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5510 lend = contents + hdr->sh_size;
5511 while (l + sizeof (Elf_External_Options) <= lend)
5513 Elf_Internal_Options intopt;
5515 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5517 if (intopt.size < sizeof (Elf_External_Options))
5519 (*_bfd_error_handler)
5520 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5521 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5524 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5526 Elf64_Internal_RegInfo intreg;
5528 bfd_mips_elf64_swap_reginfo_in
5530 ((Elf64_External_RegInfo *)
5531 (l + sizeof (Elf_External_Options))),
5533 elf_gp (abfd) = intreg.ri_gp_value;
5535 else if (intopt.kind == ODK_REGINFO)
5537 Elf32_RegInfo intreg;
5539 bfd_mips_elf32_swap_reginfo_in
5541 ((Elf32_External_RegInfo *)
5542 (l + sizeof (Elf_External_Options))),
5544 elf_gp (abfd) = intreg.ri_gp_value;
5554 /* Set the correct type for a MIPS ELF section. We do this by the
5555 section name, which is a hack, but ought to work. This routine is
5556 used by both the 32-bit and the 64-bit ABI. */
5559 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5561 register const char *name;
5562 unsigned int sh_type;
5564 name = bfd_get_section_name (abfd, sec);
5565 sh_type = hdr->sh_type;
5567 if (strcmp (name, ".liblist") == 0)
5569 hdr->sh_type = SHT_MIPS_LIBLIST;
5570 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5571 /* The sh_link field is set in final_write_processing. */
5573 else if (strcmp (name, ".conflict") == 0)
5574 hdr->sh_type = SHT_MIPS_CONFLICT;
5575 else if (CONST_STRNEQ (name, ".gptab."))
5577 hdr->sh_type = SHT_MIPS_GPTAB;
5578 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5579 /* The sh_info field is set in final_write_processing. */
5581 else if (strcmp (name, ".ucode") == 0)
5582 hdr->sh_type = SHT_MIPS_UCODE;
5583 else if (strcmp (name, ".mdebug") == 0)
5585 hdr->sh_type = SHT_MIPS_DEBUG;
5586 /* In a shared object on IRIX 5.3, the .mdebug section has an
5587 entsize of 0. FIXME: Does this matter? */
5588 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5589 hdr->sh_entsize = 0;
5591 hdr->sh_entsize = 1;
5593 else if (strcmp (name, ".reginfo") == 0)
5595 hdr->sh_type = SHT_MIPS_REGINFO;
5596 /* In a shared object on IRIX 5.3, the .reginfo section has an
5597 entsize of 0x18. FIXME: Does this matter? */
5598 if (SGI_COMPAT (abfd))
5600 if ((abfd->flags & DYNAMIC) != 0)
5601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5603 hdr->sh_entsize = 1;
5606 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5608 else if (SGI_COMPAT (abfd)
5609 && (strcmp (name, ".hash") == 0
5610 || strcmp (name, ".dynamic") == 0
5611 || strcmp (name, ".dynstr") == 0))
5613 if (SGI_COMPAT (abfd))
5614 hdr->sh_entsize = 0;
5616 /* This isn't how the IRIX6 linker behaves. */
5617 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5620 else if (strcmp (name, ".got") == 0
5621 || strcmp (name, ".srdata") == 0
5622 || strcmp (name, ".sdata") == 0
5623 || strcmp (name, ".sbss") == 0
5624 || strcmp (name, ".lit4") == 0
5625 || strcmp (name, ".lit8") == 0)
5626 hdr->sh_flags |= SHF_MIPS_GPREL;
5627 else if (strcmp (name, ".MIPS.interfaces") == 0)
5629 hdr->sh_type = SHT_MIPS_IFACE;
5630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5632 else if (CONST_STRNEQ (name, ".MIPS.content"))
5634 hdr->sh_type = SHT_MIPS_CONTENT;
5635 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5636 /* The sh_info field is set in final_write_processing. */
5638 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5640 hdr->sh_type = SHT_MIPS_OPTIONS;
5641 hdr->sh_entsize = 1;
5642 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5644 else if (CONST_STRNEQ (name, ".debug_"))
5645 hdr->sh_type = SHT_MIPS_DWARF;
5646 else if (strcmp (name, ".MIPS.symlib") == 0)
5648 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5649 /* The sh_link and sh_info fields are set in
5650 final_write_processing. */
5652 else if (CONST_STRNEQ (name, ".MIPS.events")
5653 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5655 hdr->sh_type = SHT_MIPS_EVENTS;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5657 /* The sh_link field is set in final_write_processing. */
5659 else if (strcmp (name, ".msym") == 0)
5661 hdr->sh_type = SHT_MIPS_MSYM;
5662 hdr->sh_flags |= SHF_ALLOC;
5663 hdr->sh_entsize = 8;
5666 /* In the unlikely event a special section is empty it has to lose its
5667 special meaning. This may happen e.g. when using `strip' with the
5668 "--only-keep-debug" option. */
5669 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5670 hdr->sh_type = sh_type;
5672 /* The generic elf_fake_sections will set up REL_HDR using the default
5673 kind of relocations. We used to set up a second header for the
5674 non-default kind of relocations here, but only NewABI would use
5675 these, and the IRIX ld doesn't like resulting empty RELA sections.
5676 Thus we create those header only on demand now. */
5681 /* Given a BFD section, try to locate the corresponding ELF section
5682 index. This is used by both the 32-bit and the 64-bit ABI.
5683 Actually, it's not clear to me that the 64-bit ABI supports these,
5684 but for non-PIC objects we will certainly want support for at least
5685 the .scommon section. */
5688 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5689 asection *sec, int *retval)
5691 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5693 *retval = SHN_MIPS_SCOMMON;
5696 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5698 *retval = SHN_MIPS_ACOMMON;
5704 /* Hook called by the linker routine which adds symbols from an object
5705 file. We must handle the special MIPS section numbers here. */
5708 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5709 Elf_Internal_Sym *sym, const char **namep,
5710 flagword *flagsp ATTRIBUTE_UNUSED,
5711 asection **secp, bfd_vma *valp)
5713 if (SGI_COMPAT (abfd)
5714 && (abfd->flags & DYNAMIC) != 0
5715 && strcmp (*namep, "_rld_new_interface") == 0)
5717 /* Skip IRIX5 rld entry name. */
5722 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5723 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5724 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5725 a magic symbol resolved by the linker, we ignore this bogus definition
5726 of _gp_disp. New ABI objects do not suffer from this problem so this
5727 is not done for them. */
5729 && (sym->st_shndx == SHN_ABS)
5730 && (strcmp (*namep, "_gp_disp") == 0))
5736 switch (sym->st_shndx)
5739 /* Common symbols less than the GP size are automatically
5740 treated as SHN_MIPS_SCOMMON symbols. */
5741 if (sym->st_size > elf_gp_size (abfd)
5742 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5743 || IRIX_COMPAT (abfd) == ict_irix6)
5746 case SHN_MIPS_SCOMMON:
5747 *secp = bfd_make_section_old_way (abfd, ".scommon");
5748 (*secp)->flags |= SEC_IS_COMMON;
5749 *valp = sym->st_size;
5753 /* This section is used in a shared object. */
5754 if (elf_tdata (abfd)->elf_text_section == NULL)
5756 asymbol *elf_text_symbol;
5757 asection *elf_text_section;
5758 bfd_size_type amt = sizeof (asection);
5760 elf_text_section = bfd_zalloc (abfd, amt);
5761 if (elf_text_section == NULL)
5764 amt = sizeof (asymbol);
5765 elf_text_symbol = bfd_zalloc (abfd, amt);
5766 if (elf_text_symbol == NULL)
5769 /* Initialize the section. */
5771 elf_tdata (abfd)->elf_text_section = elf_text_section;
5772 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5774 elf_text_section->symbol = elf_text_symbol;
5775 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5777 elf_text_section->name = ".text";
5778 elf_text_section->flags = SEC_NO_FLAGS;
5779 elf_text_section->output_section = NULL;
5780 elf_text_section->owner = abfd;
5781 elf_text_symbol->name = ".text";
5782 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5783 elf_text_symbol->section = elf_text_section;
5785 /* This code used to do *secp = bfd_und_section_ptr if
5786 info->shared. I don't know why, and that doesn't make sense,
5787 so I took it out. */
5788 *secp = elf_tdata (abfd)->elf_text_section;
5791 case SHN_MIPS_ACOMMON:
5792 /* Fall through. XXX Can we treat this as allocated data? */
5794 /* This section is used in a shared object. */
5795 if (elf_tdata (abfd)->elf_data_section == NULL)
5797 asymbol *elf_data_symbol;
5798 asection *elf_data_section;
5799 bfd_size_type amt = sizeof (asection);
5801 elf_data_section = bfd_zalloc (abfd, amt);
5802 if (elf_data_section == NULL)
5805 amt = sizeof (asymbol);
5806 elf_data_symbol = bfd_zalloc (abfd, amt);
5807 if (elf_data_symbol == NULL)
5810 /* Initialize the section. */
5812 elf_tdata (abfd)->elf_data_section = elf_data_section;
5813 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5815 elf_data_section->symbol = elf_data_symbol;
5816 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5818 elf_data_section->name = ".data";
5819 elf_data_section->flags = SEC_NO_FLAGS;
5820 elf_data_section->output_section = NULL;
5821 elf_data_section->owner = abfd;
5822 elf_data_symbol->name = ".data";
5823 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5824 elf_data_symbol->section = elf_data_section;
5826 /* This code used to do *secp = bfd_und_section_ptr if
5827 info->shared. I don't know why, and that doesn't make sense,
5828 so I took it out. */
5829 *secp = elf_tdata (abfd)->elf_data_section;
5832 case SHN_MIPS_SUNDEFINED:
5833 *secp = bfd_und_section_ptr;
5837 if (SGI_COMPAT (abfd)
5839 && info->hash->creator == abfd->xvec
5840 && strcmp (*namep, "__rld_obj_head") == 0)
5842 struct elf_link_hash_entry *h;
5843 struct bfd_link_hash_entry *bh;
5845 /* Mark __rld_obj_head as dynamic. */
5847 if (! (_bfd_generic_link_add_one_symbol
5848 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5849 get_elf_backend_data (abfd)->collect, &bh)))
5852 h = (struct elf_link_hash_entry *) bh;
5855 h->type = STT_OBJECT;
5857 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5860 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5863 /* If this is a mips16 text symbol, add 1 to the value to make it
5864 odd. This will cause something like .word SYM to come up with
5865 the right value when it is loaded into the PC. */
5866 if (sym->st_other == STO_MIPS16)
5872 /* This hook function is called before the linker writes out a global
5873 symbol. We mark symbols as small common if appropriate. This is
5874 also where we undo the increment of the value for a mips16 symbol. */
5877 _bfd_mips_elf_link_output_symbol_hook
5878 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5879 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5880 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5882 /* If we see a common symbol, which implies a relocatable link, then
5883 if a symbol was small common in an input file, mark it as small
5884 common in the output file. */
5885 if (sym->st_shndx == SHN_COMMON
5886 && strcmp (input_sec->name, ".scommon") == 0)
5887 sym->st_shndx = SHN_MIPS_SCOMMON;
5889 if (sym->st_other == STO_MIPS16)
5890 sym->st_value &= ~1;
5895 /* Functions for the dynamic linker. */
5897 /* Create dynamic sections when linking against a dynamic object. */
5900 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5902 struct elf_link_hash_entry *h;
5903 struct bfd_link_hash_entry *bh;
5905 register asection *s;
5906 const char * const *namep;
5907 struct mips_elf_link_hash_table *htab;
5909 htab = mips_elf_hash_table (info);
5910 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5911 | SEC_LINKER_CREATED | SEC_READONLY);
5913 /* The psABI requires a read-only .dynamic section, but the VxWorks
5915 if (!htab->is_vxworks)
5917 s = bfd_get_section_by_name (abfd, ".dynamic");
5920 if (! bfd_set_section_flags (abfd, s, flags))
5925 /* We need to create .got section. */
5926 if (! mips_elf_create_got_section (abfd, info, FALSE))
5929 if (! mips_elf_rel_dyn_section (info, TRUE))
5932 /* Create .stub section. */
5933 if (bfd_get_section_by_name (abfd,
5934 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5936 s = bfd_make_section_with_flags (abfd,
5937 MIPS_ELF_STUB_SECTION_NAME (abfd),
5940 || ! bfd_set_section_alignment (abfd, s,
5941 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5945 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5947 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5949 s = bfd_make_section_with_flags (abfd, ".rld_map",
5950 flags &~ (flagword) SEC_READONLY);
5952 || ! bfd_set_section_alignment (abfd, s,
5953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5957 /* On IRIX5, we adjust add some additional symbols and change the
5958 alignments of several sections. There is no ABI documentation
5959 indicating that this is necessary on IRIX6, nor any evidence that
5960 the linker takes such action. */
5961 if (IRIX_COMPAT (abfd) == ict_irix5)
5963 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5966 if (! (_bfd_generic_link_add_one_symbol
5967 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5968 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5971 h = (struct elf_link_hash_entry *) bh;
5974 h->type = STT_SECTION;
5976 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5980 /* We need to create a .compact_rel section. */
5981 if (SGI_COMPAT (abfd))
5983 if (!mips_elf_create_compact_rel_section (abfd, info))
5987 /* Change alignments of some sections. */
5988 s = bfd_get_section_by_name (abfd, ".hash");
5990 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5991 s = bfd_get_section_by_name (abfd, ".dynsym");
5993 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5994 s = bfd_get_section_by_name (abfd, ".dynstr");
5996 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5997 s = bfd_get_section_by_name (abfd, ".reginfo");
5999 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6000 s = bfd_get_section_by_name (abfd, ".dynamic");
6002 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6009 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6011 if (!(_bfd_generic_link_add_one_symbol
6012 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6013 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6016 h = (struct elf_link_hash_entry *) bh;
6019 h->type = STT_SECTION;
6021 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6024 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6026 /* __rld_map is a four byte word located in the .data section
6027 and is filled in by the rtld to contain a pointer to
6028 the _r_debug structure. Its symbol value will be set in
6029 _bfd_mips_elf_finish_dynamic_symbol. */
6030 s = bfd_get_section_by_name (abfd, ".rld_map");
6031 BFD_ASSERT (s != NULL);
6033 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6035 if (!(_bfd_generic_link_add_one_symbol
6036 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6037 get_elf_backend_data (abfd)->collect, &bh)))
6040 h = (struct elf_link_hash_entry *) bh;
6043 h->type = STT_OBJECT;
6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6050 if (htab->is_vxworks)
6052 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6053 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6054 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6057 /* Cache the sections created above. */
6058 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6059 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6060 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6061 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6063 || (!htab->srelbss && !info->shared)
6068 /* Do the usual VxWorks handling. */
6069 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6072 /* Work out the PLT sizes. */
6075 htab->plt_header_size
6076 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6077 htab->plt_entry_size
6078 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6082 htab->plt_header_size
6083 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6084 htab->plt_entry_size
6085 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6092 /* Look through the relocs for a section during the first phase, and
6093 allocate space in the global offset table. */
6096 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6097 asection *sec, const Elf_Internal_Rela *relocs)
6101 Elf_Internal_Shdr *symtab_hdr;
6102 struct elf_link_hash_entry **sym_hashes;
6103 struct mips_got_info *g;
6105 const Elf_Internal_Rela *rel;
6106 const Elf_Internal_Rela *rel_end;
6109 const struct elf_backend_data *bed;
6110 struct mips_elf_link_hash_table *htab;
6112 if (info->relocatable)
6115 htab = mips_elf_hash_table (info);
6116 dynobj = elf_hash_table (info)->dynobj;
6117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6118 sym_hashes = elf_sym_hashes (abfd);
6119 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6121 /* Check for the mips16 stub sections. */
6123 name = bfd_get_section_name (abfd, sec);
6124 if (CONST_STRNEQ (name, FN_STUB))
6126 unsigned long r_symndx;
6128 /* Look at the relocation information to figure out which symbol
6131 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6133 if (r_symndx < extsymoff
6134 || sym_hashes[r_symndx - extsymoff] == NULL)
6138 /* This stub is for a local symbol. This stub will only be
6139 needed if there is some relocation in this BFD, other
6140 than a 16 bit function call, which refers to this symbol. */
6141 for (o = abfd->sections; o != NULL; o = o->next)
6143 Elf_Internal_Rela *sec_relocs;
6144 const Elf_Internal_Rela *r, *rend;
6146 /* We can ignore stub sections when looking for relocs. */
6147 if ((o->flags & SEC_RELOC) == 0
6148 || o->reloc_count == 0
6149 || CONST_STRNEQ (bfd_get_section_name (abfd, o), FN_STUB)
6150 || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_STUB)
6151 || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_FP_STUB))
6155 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6157 if (sec_relocs == NULL)
6160 rend = sec_relocs + o->reloc_count;
6161 for (r = sec_relocs; r < rend; r++)
6162 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6163 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6166 if (elf_section_data (o)->relocs != sec_relocs)
6175 /* There is no non-call reloc for this stub, so we do
6176 not need it. Since this function is called before
6177 the linker maps input sections to output sections, we
6178 can easily discard it by setting the SEC_EXCLUDE
6180 sec->flags |= SEC_EXCLUDE;
6184 /* Record this stub in an array of local symbol stubs for
6186 if (elf_tdata (abfd)->local_stubs == NULL)
6188 unsigned long symcount;
6192 if (elf_bad_symtab (abfd))
6193 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6195 symcount = symtab_hdr->sh_info;
6196 amt = symcount * sizeof (asection *);
6197 n = bfd_zalloc (abfd, amt);
6200 elf_tdata (abfd)->local_stubs = n;
6203 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6205 /* We don't need to set mips16_stubs_seen in this case.
6206 That flag is used to see whether we need to look through
6207 the global symbol table for stubs. We don't need to set
6208 it here, because we just have a local stub. */
6212 struct mips_elf_link_hash_entry *h;
6214 h = ((struct mips_elf_link_hash_entry *)
6215 sym_hashes[r_symndx - extsymoff]);
6217 while (h->root.root.type == bfd_link_hash_indirect
6218 || h->root.root.type == bfd_link_hash_warning)
6219 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6221 /* H is the symbol this stub is for. */
6224 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6227 else if (CONST_STRNEQ (name, CALL_STUB)
6228 || CONST_STRNEQ (name, CALL_FP_STUB))
6230 unsigned long r_symndx;
6231 struct mips_elf_link_hash_entry *h;
6234 /* Look at the relocation information to figure out which symbol
6237 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6239 if (r_symndx < extsymoff
6240 || sym_hashes[r_symndx - extsymoff] == NULL)
6242 /* This stub was actually built for a static symbol defined
6243 in the same file. We assume that all static symbols in
6244 mips16 code are themselves mips16, so we can simply
6245 discard this stub. Since this function is called before
6246 the linker maps input sections to output sections, we can
6247 easily discard it by setting the SEC_EXCLUDE flag. */
6248 sec->flags |= SEC_EXCLUDE;
6252 h = ((struct mips_elf_link_hash_entry *)
6253 sym_hashes[r_symndx - extsymoff]);
6255 /* H is the symbol this stub is for. */
6257 if (CONST_STRNEQ (name, CALL_FP_STUB))
6258 loc = &h->call_fp_stub;
6260 loc = &h->call_stub;
6262 /* If we already have an appropriate stub for this function, we
6263 don't need another one, so we can discard this one. Since
6264 this function is called before the linker maps input sections
6265 to output sections, we can easily discard it by setting the
6266 SEC_EXCLUDE flag. We can also discard this section if we
6267 happen to already know that this is a mips16 function; it is
6268 not necessary to check this here, as it is checked later, but
6269 it is slightly faster to check now. */
6270 if (*loc != NULL || h->root.other == STO_MIPS16)
6272 sec->flags |= SEC_EXCLUDE;
6277 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6287 sgot = mips_elf_got_section (dynobj, FALSE);
6292 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6293 g = mips_elf_section_data (sgot)->u.got_info;
6294 BFD_ASSERT (g != NULL);
6299 bed = get_elf_backend_data (abfd);
6300 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6301 for (rel = relocs; rel < rel_end; ++rel)
6303 unsigned long r_symndx;
6304 unsigned int r_type;
6305 struct elf_link_hash_entry *h;
6307 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6308 r_type = ELF_R_TYPE (abfd, rel->r_info);
6310 if (r_symndx < extsymoff)
6312 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6314 (*_bfd_error_handler)
6315 (_("%B: Malformed reloc detected for section %s"),
6317 bfd_set_error (bfd_error_bad_value);
6322 h = sym_hashes[r_symndx - extsymoff];
6324 /* This may be an indirect symbol created because of a version. */
6327 while (h->root.type == bfd_link_hash_indirect)
6328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6332 /* Some relocs require a global offset table. */
6333 if (dynobj == NULL || sgot == NULL)
6339 case R_MIPS_CALL_HI16:
6340 case R_MIPS_CALL_LO16:
6341 case R_MIPS_GOT_HI16:
6342 case R_MIPS_GOT_LO16:
6343 case R_MIPS_GOT_PAGE:
6344 case R_MIPS_GOT_OFST:
6345 case R_MIPS_GOT_DISP:
6346 case R_MIPS_TLS_GOTTPREL:
6348 case R_MIPS_TLS_LDM:
6350 elf_hash_table (info)->dynobj = dynobj = abfd;
6351 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6353 g = mips_elf_got_info (dynobj, &sgot);
6354 if (htab->is_vxworks && !info->shared)
6356 (*_bfd_error_handler)
6357 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6358 abfd, (unsigned long) rel->r_offset);
6359 bfd_set_error (bfd_error_bad_value);
6367 /* In VxWorks executables, references to external symbols
6368 are handled using copy relocs or PLT stubs, so there's
6369 no need to add a dynamic relocation here. */
6371 && (info->shared || (h != NULL && !htab->is_vxworks))
6372 && (sec->flags & SEC_ALLOC) != 0)
6373 elf_hash_table (info)->dynobj = dynobj = abfd;
6383 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6385 /* Relocations against the special VxWorks __GOTT_BASE__ and
6386 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6387 room for them in .rela.dyn. */
6388 if (is_gott_symbol (info, h))
6392 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6396 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6399 else if (r_type == R_MIPS_CALL_LO16
6400 || r_type == R_MIPS_GOT_LO16
6401 || r_type == R_MIPS_GOT_DISP
6402 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6404 /* We may need a local GOT entry for this relocation. We
6405 don't count R_MIPS_GOT_PAGE because we can estimate the
6406 maximum number of pages needed by looking at the size of
6407 the segment. Similar comments apply to R_MIPS_GOT16 and
6408 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6409 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6410 R_MIPS_CALL_HI16 because these are always followed by an
6411 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6412 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6413 rel->r_addend, g, 0))
6422 (*_bfd_error_handler)
6423 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6424 abfd, (unsigned long) rel->r_offset);
6425 bfd_set_error (bfd_error_bad_value);
6430 case R_MIPS_CALL_HI16:
6431 case R_MIPS_CALL_LO16:
6434 /* VxWorks call relocations point the function's .got.plt
6435 entry, which will be allocated by adjust_dynamic_symbol.
6436 Otherwise, this symbol requires a global GOT entry. */
6437 if (!htab->is_vxworks
6438 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6441 /* We need a stub, not a plt entry for the undefined
6442 function. But we record it as if it needs plt. See
6443 _bfd_elf_adjust_dynamic_symbol. */
6449 case R_MIPS_GOT_PAGE:
6450 /* If this is a global, overridable symbol, GOT_PAGE will
6451 decay to GOT_DISP, so we'll need a GOT entry for it. */
6456 struct mips_elf_link_hash_entry *hmips =
6457 (struct mips_elf_link_hash_entry *) h;
6459 while (hmips->root.root.type == bfd_link_hash_indirect
6460 || hmips->root.root.type == bfd_link_hash_warning)
6461 hmips = (struct mips_elf_link_hash_entry *)
6462 hmips->root.root.u.i.link;
6464 if (hmips->root.def_regular
6465 && ! (info->shared && ! info->symbolic
6466 && ! hmips->root.forced_local))
6472 case R_MIPS_GOT_HI16:
6473 case R_MIPS_GOT_LO16:
6474 case R_MIPS_GOT_DISP:
6475 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6479 case R_MIPS_TLS_GOTTPREL:
6481 info->flags |= DF_STATIC_TLS;
6484 case R_MIPS_TLS_LDM:
6485 if (r_type == R_MIPS_TLS_LDM)
6493 /* This symbol requires a global offset table entry, or two
6494 for TLS GD relocations. */
6496 unsigned char flag = (r_type == R_MIPS_TLS_GD
6498 : r_type == R_MIPS_TLS_LDM
6503 struct mips_elf_link_hash_entry *hmips =
6504 (struct mips_elf_link_hash_entry *) h;
6505 hmips->tls_type |= flag;
6507 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6512 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6515 rel->r_addend, g, flag))
6524 /* In VxWorks executables, references to external symbols
6525 are handled using copy relocs or PLT stubs, so there's
6526 no need to add a .rela.dyn entry for this relocation. */
6527 if ((info->shared || (h != NULL && !htab->is_vxworks))
6528 && (sec->flags & SEC_ALLOC) != 0)
6532 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6538 /* When creating a shared object, we must copy these
6539 reloc types into the output file as R_MIPS_REL32
6540 relocs. Make room for this reloc in .rel(a).dyn. */
6541 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6542 if (MIPS_ELF_READONLY_SECTION (sec))
6543 /* We tell the dynamic linker that there are
6544 relocations against the text segment. */
6545 info->flags |= DF_TEXTREL;
6549 struct mips_elf_link_hash_entry *hmips;
6551 /* We only need to copy this reloc if the symbol is
6552 defined in a dynamic object. */
6553 hmips = (struct mips_elf_link_hash_entry *) h;
6554 ++hmips->possibly_dynamic_relocs;
6555 if (MIPS_ELF_READONLY_SECTION (sec))
6556 /* We need it to tell the dynamic linker if there
6557 are relocations against the text segment. */
6558 hmips->readonly_reloc = TRUE;
6561 /* Even though we don't directly need a GOT entry for
6562 this symbol, a symbol must have a dynamic symbol
6563 table index greater that DT_MIPS_GOTSYM if there are
6564 dynamic relocations against it. This does not apply
6565 to VxWorks, which does not have the usual coupling
6566 between global GOT entries and .dynsym entries. */
6567 if (h != NULL && !htab->is_vxworks)
6570 elf_hash_table (info)->dynobj = dynobj = abfd;
6571 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6573 g = mips_elf_got_info (dynobj, &sgot);
6574 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6579 if (SGI_COMPAT (abfd))
6580 mips_elf_hash_table (info)->compact_rel_size +=
6581 sizeof (Elf32_External_crinfo);
6586 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6591 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6594 case R_MIPS_GPREL16:
6595 case R_MIPS_LITERAL:
6596 case R_MIPS_GPREL32:
6597 if (SGI_COMPAT (abfd))
6598 mips_elf_hash_table (info)->compact_rel_size +=
6599 sizeof (Elf32_External_crinfo);
6602 /* This relocation describes the C++ object vtable hierarchy.
6603 Reconstruct it for later use during GC. */
6604 case R_MIPS_GNU_VTINHERIT:
6605 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6609 /* This relocation describes which C++ vtable entries are actually
6610 used. Record for later use during GC. */
6611 case R_MIPS_GNU_VTENTRY:
6612 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6620 /* We must not create a stub for a symbol that has relocations
6621 related to taking the function's address. This doesn't apply to
6622 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6623 a normal .got entry. */
6624 if (!htab->is_vxworks && h != NULL)
6628 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6631 case R_MIPS_CALL_HI16:
6632 case R_MIPS_CALL_LO16:
6637 /* If this reloc is not a 16 bit call, and it has a global
6638 symbol, then we will need the fn_stub if there is one.
6639 References from a stub section do not count. */
6641 && r_type != R_MIPS16_26
6642 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), FN_STUB)
6643 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_STUB)
6644 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_FP_STUB))
6646 struct mips_elf_link_hash_entry *mh;
6648 mh = (struct mips_elf_link_hash_entry *) h;
6649 mh->need_fn_stub = TRUE;
6657 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6658 struct bfd_link_info *link_info,
6661 Elf_Internal_Rela *internal_relocs;
6662 Elf_Internal_Rela *irel, *irelend;
6663 Elf_Internal_Shdr *symtab_hdr;
6664 bfd_byte *contents = NULL;
6666 bfd_boolean changed_contents = FALSE;
6667 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6668 Elf_Internal_Sym *isymbuf = NULL;
6670 /* We are not currently changing any sizes, so only one pass. */
6673 if (link_info->relocatable)
6676 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6677 link_info->keep_memory);
6678 if (internal_relocs == NULL)
6681 irelend = internal_relocs + sec->reloc_count
6682 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6683 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6684 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6686 for (irel = internal_relocs; irel < irelend; irel++)
6689 bfd_signed_vma sym_offset;
6690 unsigned int r_type;
6691 unsigned long r_symndx;
6693 unsigned long instruction;
6695 /* Turn jalr into bgezal, and jr into beq, if they're marked
6696 with a JALR relocation, that indicate where they jump to.
6697 This saves some pipeline bubbles. */
6698 r_type = ELF_R_TYPE (abfd, irel->r_info);
6699 if (r_type != R_MIPS_JALR)
6702 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6703 /* Compute the address of the jump target. */
6704 if (r_symndx >= extsymoff)
6706 struct mips_elf_link_hash_entry *h
6707 = ((struct mips_elf_link_hash_entry *)
6708 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6710 while (h->root.root.type == bfd_link_hash_indirect
6711 || h->root.root.type == bfd_link_hash_warning)
6712 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6714 /* If a symbol is undefined, or if it may be overridden,
6716 if (! ((h->root.root.type == bfd_link_hash_defined
6717 || h->root.root.type == bfd_link_hash_defweak)
6718 && h->root.root.u.def.section)
6719 || (link_info->shared && ! link_info->symbolic
6720 && !h->root.forced_local))
6723 sym_sec = h->root.root.u.def.section;
6724 if (sym_sec->output_section)
6725 symval = (h->root.root.u.def.value
6726 + sym_sec->output_section->vma
6727 + sym_sec->output_offset);
6729 symval = h->root.root.u.def.value;
6733 Elf_Internal_Sym *isym;
6735 /* Read this BFD's symbols if we haven't done so already. */
6736 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6738 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6739 if (isymbuf == NULL)
6740 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6741 symtab_hdr->sh_info, 0,
6743 if (isymbuf == NULL)
6747 isym = isymbuf + r_symndx;
6748 if (isym->st_shndx == SHN_UNDEF)
6750 else if (isym->st_shndx == SHN_ABS)
6751 sym_sec = bfd_abs_section_ptr;
6752 else if (isym->st_shndx == SHN_COMMON)
6753 sym_sec = bfd_com_section_ptr;
6756 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6757 symval = isym->st_value
6758 + sym_sec->output_section->vma
6759 + sym_sec->output_offset;
6762 /* Compute branch offset, from delay slot of the jump to the
6764 sym_offset = (symval + irel->r_addend)
6765 - (sec_start + irel->r_offset + 4);
6767 /* Branch offset must be properly aligned. */
6768 if ((sym_offset & 3) != 0)
6773 /* Check that it's in range. */
6774 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6777 /* Get the section contents if we haven't done so already. */
6778 if (contents == NULL)
6780 /* Get cached copy if it exists. */
6781 if (elf_section_data (sec)->this_hdr.contents != NULL)
6782 contents = elf_section_data (sec)->this_hdr.contents;
6785 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6790 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6792 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6793 if ((instruction & 0xfc1fffff) == 0x0000f809)
6794 instruction = 0x04110000;
6795 /* If it was jr <reg>, turn it into b <target>. */
6796 else if ((instruction & 0xfc1fffff) == 0x00000008)
6797 instruction = 0x10000000;
6801 instruction |= (sym_offset & 0xffff);
6802 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6803 changed_contents = TRUE;
6806 if (contents != NULL
6807 && elf_section_data (sec)->this_hdr.contents != contents)
6809 if (!changed_contents && !link_info->keep_memory)
6813 /* Cache the section contents for elf_link_input_bfd. */
6814 elf_section_data (sec)->this_hdr.contents = contents;
6820 if (contents != NULL
6821 && elf_section_data (sec)->this_hdr.contents != contents)
6826 /* Adjust a symbol defined by a dynamic object and referenced by a
6827 regular object. The current definition is in some section of the
6828 dynamic object, but we're not including those sections. We have to
6829 change the definition to something the rest of the link can
6833 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6834 struct elf_link_hash_entry *h)
6837 struct mips_elf_link_hash_entry *hmips;
6839 struct mips_elf_link_hash_table *htab;
6841 htab = mips_elf_hash_table (info);
6842 dynobj = elf_hash_table (info)->dynobj;
6844 /* Make sure we know what is going on here. */
6845 BFD_ASSERT (dynobj != NULL
6847 || h->u.weakdef != NULL
6850 && !h->def_regular)));
6852 /* If this symbol is defined in a dynamic object, we need to copy
6853 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6855 hmips = (struct mips_elf_link_hash_entry *) h;
6856 if (! info->relocatable
6857 && hmips->possibly_dynamic_relocs != 0
6858 && (h->root.type == bfd_link_hash_defweak
6859 || !h->def_regular))
6861 mips_elf_allocate_dynamic_relocations
6862 (dynobj, info, hmips->possibly_dynamic_relocs);
6863 if (hmips->readonly_reloc)
6864 /* We tell the dynamic linker that there are relocations
6865 against the text segment. */
6866 info->flags |= DF_TEXTREL;
6869 /* For a function, create a stub, if allowed. */
6870 if (! hmips->no_fn_stub
6873 if (! elf_hash_table (info)->dynamic_sections_created)
6876 /* If this symbol is not defined in a regular file, then set
6877 the symbol to the stub location. This is required to make
6878 function pointers compare as equal between the normal
6879 executable and the shared library. */
6880 if (!h->def_regular)
6882 /* We need .stub section. */
6883 s = bfd_get_section_by_name (dynobj,
6884 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6885 BFD_ASSERT (s != NULL);
6887 h->root.u.def.section = s;
6888 h->root.u.def.value = s->size;
6890 /* XXX Write this stub address somewhere. */
6891 h->plt.offset = s->size;
6893 /* Make room for this stub code. */
6894 s->size += htab->function_stub_size;
6896 /* The last half word of the stub will be filled with the index
6897 of this symbol in .dynsym section. */
6901 else if ((h->type == STT_FUNC)
6904 /* This will set the entry for this symbol in the GOT to 0, and
6905 the dynamic linker will take care of this. */
6906 h->root.u.def.value = 0;
6910 /* If this is a weak symbol, and there is a real definition, the
6911 processor independent code will have arranged for us to see the
6912 real definition first, and we can just use the same value. */
6913 if (h->u.weakdef != NULL)
6915 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6916 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6917 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6918 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6922 /* This is a reference to a symbol defined by a dynamic object which
6923 is not a function. */
6928 /* Likewise, for VxWorks. */
6931 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6932 struct elf_link_hash_entry *h)
6935 struct mips_elf_link_hash_entry *hmips;
6936 struct mips_elf_link_hash_table *htab;
6937 unsigned int power_of_two;
6939 htab = mips_elf_hash_table (info);
6940 dynobj = elf_hash_table (info)->dynobj;
6941 hmips = (struct mips_elf_link_hash_entry *) h;
6943 /* Make sure we know what is going on here. */
6944 BFD_ASSERT (dynobj != NULL
6947 || h->u.weakdef != NULL
6950 && !h->def_regular)));
6952 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6953 either (a) we want to branch to the symbol or (b) we're linking an
6954 executable that needs a canonical function address. In the latter
6955 case, the canonical address will be the address of the executable's
6957 if ((hmips->is_branch_target
6959 && h->type == STT_FUNC
6960 && hmips->is_relocation_target))
6964 && !h->forced_local)
6967 /* Locally-binding symbols do not need a PLT stub; we can refer to
6968 the functions directly. */
6969 else if (h->needs_plt
6970 && (SYMBOL_CALLS_LOCAL (info, h)
6971 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6972 && h->root.type == bfd_link_hash_undefweak)))
6980 /* If this is the first symbol to need a PLT entry, allocate room
6981 for the header, and for the header's .rela.plt.unloaded entries. */
6982 if (htab->splt->size == 0)
6984 htab->splt->size += htab->plt_header_size;
6986 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6989 /* Assign the next .plt entry to this symbol. */
6990 h->plt.offset = htab->splt->size;
6991 htab->splt->size += htab->plt_entry_size;
6993 /* If the output file has no definition of the symbol, set the
6994 symbol's value to the address of the stub. For executables,
6995 point at the PLT load stub rather than the lazy resolution stub;
6996 this stub will become the canonical function address. */
6997 if (!h->def_regular)
6999 h->root.u.def.section = htab->splt;
7000 h->root.u.def.value = h->plt.offset;
7002 h->root.u.def.value += 8;
7005 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7006 htab->sgotplt->size += 4;
7007 htab->srelplt->size += sizeof (Elf32_External_Rela);
7009 /* Make room for the .rela.plt.unloaded relocations. */
7011 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7016 /* If a function symbol is defined by a dynamic object, and we do not
7017 need a PLT stub for it, the symbol's value should be zero. */
7018 if (h->type == STT_FUNC
7023 h->root.u.def.value = 0;
7027 /* If this is a weak symbol, and there is a real definition, the
7028 processor independent code will have arranged for us to see the
7029 real definition first, and we can just use the same value. */
7030 if (h->u.weakdef != NULL)
7032 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7033 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7034 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7035 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7039 /* This is a reference to a symbol defined by a dynamic object which
7040 is not a function. */
7044 /* We must allocate the symbol in our .dynbss section, which will
7045 become part of the .bss section of the executable. There will be
7046 an entry for this symbol in the .dynsym section. The dynamic
7047 object will contain position independent code, so all references
7048 from the dynamic object to this symbol will go through the global
7049 offset table. The dynamic linker will use the .dynsym entry to
7050 determine the address it must put in the global offset table, so
7051 both the dynamic object and the regular object will refer to the
7052 same memory location for the variable. */
7054 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7056 htab->srelbss->size += sizeof (Elf32_External_Rela);
7060 /* We need to figure out the alignment required for this symbol. */
7061 power_of_two = bfd_log2 (h->size);
7062 if (power_of_two > 4)
7065 /* Apply the required alignment. */
7066 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7067 (bfd_size_type) 1 << power_of_two);
7068 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7069 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7072 /* Define the symbol as being at this point in the section. */
7073 h->root.u.def.section = htab->sdynbss;
7074 h->root.u.def.value = htab->sdynbss->size;
7076 /* Increment the section size to make room for the symbol. */
7077 htab->sdynbss->size += h->size;
7082 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7083 The number might be exact or a worst-case estimate, depending on how
7084 much information is available to elf_backend_omit_section_dynsym at
7085 the current linking stage. */
7087 static bfd_size_type
7088 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7090 bfd_size_type count;
7093 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7096 const struct elf_backend_data *bed;
7098 bed = get_elf_backend_data (output_bfd);
7099 for (p = output_bfd->sections; p ; p = p->next)
7100 if ((p->flags & SEC_EXCLUDE) == 0
7101 && (p->flags & SEC_ALLOC) != 0
7102 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7108 /* This function is called after all the input files have been read,
7109 and the input sections have been assigned to output sections. We
7110 check for any mips16 stub sections that we can discard. */
7113 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7114 struct bfd_link_info *info)
7120 struct mips_got_info *g;
7122 bfd_size_type loadable_size = 0;
7123 bfd_size_type local_gotno;
7124 bfd_size_type dynsymcount;
7126 struct mips_elf_count_tls_arg count_tls_arg;
7127 struct mips_elf_link_hash_table *htab;
7129 htab = mips_elf_hash_table (info);
7131 /* The .reginfo section has a fixed size. */
7132 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7134 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7136 if (! (info->relocatable
7137 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7138 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7139 mips_elf_check_mips16_stubs, NULL);
7141 dynobj = elf_hash_table (info)->dynobj;
7143 /* Relocatable links don't have it. */
7146 g = mips_elf_got_info (dynobj, &s);
7150 /* Calculate the total loadable size of the output. That
7151 will give us the maximum number of GOT_PAGE entries
7153 for (sub = info->input_bfds; sub; sub = sub->link_next)
7155 asection *subsection;
7157 for (subsection = sub->sections;
7159 subsection = subsection->next)
7161 if ((subsection->flags & SEC_ALLOC) == 0)
7163 loadable_size += ((subsection->size + 0xf)
7164 &~ (bfd_size_type) 0xf);
7168 /* There has to be a global GOT entry for every symbol with
7169 a dynamic symbol table index of DT_MIPS_GOTSYM or
7170 higher. Therefore, it make sense to put those symbols
7171 that need GOT entries at the end of the symbol table. We
7173 if (! mips_elf_sort_hash_table (info, 1))
7176 if (g->global_gotsym != NULL)
7177 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7179 /* If there are no global symbols, or none requiring
7180 relocations, then GLOBAL_GOTSYM will be NULL. */
7183 /* Get a worst-case estimate of the number of dynamic symbols needed.
7184 At this point, dynsymcount does not account for section symbols
7185 and count_section_dynsyms may overestimate the number that will
7187 dynsymcount = (elf_hash_table (info)->dynsymcount
7188 + count_section_dynsyms (output_bfd, info));
7190 /* Determine the size of one stub entry. */
7191 htab->function_stub_size = (dynsymcount > 0x10000
7192 ? MIPS_FUNCTION_STUB_BIG_SIZE
7193 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7195 /* In the worst case, we'll get one stub per dynamic symbol, plus
7196 one to account for the dummy entry at the end required by IRIX
7198 loadable_size += htab->function_stub_size * (i + 1);
7200 if (htab->is_vxworks)
7201 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7202 relocations against local symbols evaluate to "G", and the EABI does
7203 not include R_MIPS_GOT_PAGE. */
7206 /* Assume there are two loadable segments consisting of contiguous
7207 sections. Is 5 enough? */
7208 local_gotno = (loadable_size >> 16) + 5;
7210 g->local_gotno += local_gotno;
7211 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7213 g->global_gotno = i;
7214 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7216 /* We need to calculate tls_gotno for global symbols at this point
7217 instead of building it up earlier, to avoid doublecounting
7218 entries for one global symbol from multiple input files. */
7219 count_tls_arg.info = info;
7220 count_tls_arg.needed = 0;
7221 elf_link_hash_traverse (elf_hash_table (info),
7222 mips_elf_count_global_tls_entries,
7224 g->tls_gotno += count_tls_arg.needed;
7225 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7227 mips_elf_resolve_final_got_entries (g);
7229 /* VxWorks does not support multiple GOTs. It initializes $gp to
7230 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7232 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7234 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7239 /* Set up TLS entries for the first GOT. */
7240 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7241 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7247 /* Set the sizes of the dynamic sections. */
7250 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7251 struct bfd_link_info *info)
7254 asection *s, *sreldyn;
7255 bfd_boolean reltext;
7256 struct mips_elf_link_hash_table *htab;
7258 htab = mips_elf_hash_table (info);
7259 dynobj = elf_hash_table (info)->dynobj;
7260 BFD_ASSERT (dynobj != NULL);
7262 if (elf_hash_table (info)->dynamic_sections_created)
7264 /* Set the contents of the .interp section to the interpreter. */
7265 if (info->executable)
7267 s = bfd_get_section_by_name (dynobj, ".interp");
7268 BFD_ASSERT (s != NULL);
7270 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7272 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7276 /* The check_relocs and adjust_dynamic_symbol entry points have
7277 determined the sizes of the various dynamic sections. Allocate
7281 for (s = dynobj->sections; s != NULL; s = s->next)
7285 /* It's OK to base decisions on the section name, because none
7286 of the dynobj section names depend upon the input files. */
7287 name = bfd_get_section_name (dynobj, s);
7289 if ((s->flags & SEC_LINKER_CREATED) == 0)
7292 if (CONST_STRNEQ (name, ".rel"))
7296 const char *outname;
7299 /* If this relocation section applies to a read only
7300 section, then we probably need a DT_TEXTREL entry.
7301 If the relocation section is .rel(a).dyn, we always
7302 assert a DT_TEXTREL entry rather than testing whether
7303 there exists a relocation to a read only section or
7305 outname = bfd_get_section_name (output_bfd,
7307 target = bfd_get_section_by_name (output_bfd, outname + 4);
7309 && (target->flags & SEC_READONLY) != 0
7310 && (target->flags & SEC_ALLOC) != 0)
7311 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7314 /* We use the reloc_count field as a counter if we need
7315 to copy relocs into the output file. */
7316 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7319 /* If combreloc is enabled, elf_link_sort_relocs() will
7320 sort relocations, but in a different way than we do,
7321 and before we're done creating relocations. Also, it
7322 will move them around between input sections'
7323 relocation's contents, so our sorting would be
7324 broken, so don't let it run. */
7325 info->combreloc = 0;
7328 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7330 /* Executables do not need a GOT. */
7333 /* Allocate relocations for all but the reserved entries. */
7334 struct mips_got_info *g;
7337 g = mips_elf_got_info (dynobj, NULL);
7338 count = (g->global_gotno
7340 - MIPS_RESERVED_GOTNO (info));
7341 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7344 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7346 /* _bfd_mips_elf_always_size_sections() has already done
7347 most of the work, but some symbols may have been mapped
7348 to versions that we must now resolve in the got_entries
7350 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7351 struct mips_got_info *g = gg;
7352 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7353 unsigned int needed_relocs = 0;
7357 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7358 set_got_offset_arg.info = info;
7360 /* NOTE 2005-02-03: How can this call, or the next, ever
7361 find any indirect entries to resolve? They were all
7362 resolved in mips_elf_multi_got. */
7363 mips_elf_resolve_final_got_entries (gg);
7364 for (g = gg->next; g && g->next != gg; g = g->next)
7366 unsigned int save_assign;
7368 mips_elf_resolve_final_got_entries (g);
7370 /* Assign offsets to global GOT entries. */
7371 save_assign = g->assigned_gotno;
7372 g->assigned_gotno = g->local_gotno;
7373 set_got_offset_arg.g = g;
7374 set_got_offset_arg.needed_relocs = 0;
7375 htab_traverse (g->got_entries,
7376 mips_elf_set_global_got_offset,
7377 &set_got_offset_arg);
7378 needed_relocs += set_got_offset_arg.needed_relocs;
7379 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7380 <= g->global_gotno);
7382 g->assigned_gotno = save_assign;
7385 needed_relocs += g->local_gotno - g->assigned_gotno;
7386 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7387 + g->next->global_gotno
7388 + g->next->tls_gotno
7389 + MIPS_RESERVED_GOTNO (info));
7395 struct mips_elf_count_tls_arg arg;
7399 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7401 elf_link_hash_traverse (elf_hash_table (info),
7402 mips_elf_count_global_tls_relocs,
7405 needed_relocs += arg.needed;
7409 mips_elf_allocate_dynamic_relocations (dynobj, info,
7412 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7414 /* IRIX rld assumes that the function stub isn't at the end
7415 of .text section. So put a dummy. XXX */
7416 s->size += htab->function_stub_size;
7418 else if (! info->shared
7419 && ! mips_elf_hash_table (info)->use_rld_obj_head
7420 && CONST_STRNEQ (name, ".rld_map"))
7422 /* We add a room for __rld_map. It will be filled in by the
7423 rtld to contain a pointer to the _r_debug structure. */
7426 else if (SGI_COMPAT (output_bfd)
7427 && CONST_STRNEQ (name, ".compact_rel"))
7428 s->size += mips_elf_hash_table (info)->compact_rel_size;
7429 else if (! CONST_STRNEQ (name, ".init")
7430 && s != htab->sgotplt
7433 /* It's not one of our sections, so don't allocate space. */
7439 s->flags |= SEC_EXCLUDE;
7443 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7446 /* Allocate memory for this section last, since we may increase its
7448 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7454 /* Allocate memory for the section contents. */
7455 s->contents = bfd_zalloc (dynobj, s->size);
7456 if (s->contents == NULL)
7458 bfd_set_error (bfd_error_no_memory);
7463 /* Allocate memory for the .rel(a).dyn section. */
7464 if (sreldyn != NULL)
7466 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7467 if (sreldyn->contents == NULL)
7469 bfd_set_error (bfd_error_no_memory);
7474 if (elf_hash_table (info)->dynamic_sections_created)
7476 /* Add some entries to the .dynamic section. We fill in the
7477 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7478 must add the entries now so that we get the correct size for
7479 the .dynamic section. The DT_DEBUG entry is filled in by the
7480 dynamic linker and used by the debugger. */
7481 if (info->executable)
7483 /* SGI object has the equivalence of DT_DEBUG in the
7484 DT_MIPS_RLD_MAP entry. */
7485 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7487 if (!SGI_COMPAT (output_bfd))
7489 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7494 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7495 info->flags |= DF_TEXTREL;
7497 if ((info->flags & DF_TEXTREL) != 0)
7499 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7502 /* Clear the DF_TEXTREL flag. It will be set again if we
7503 write out an actual text relocation; we may not, because
7504 at this point we do not know whether e.g. any .eh_frame
7505 absolute relocations have been converted to PC-relative. */
7506 info->flags &= ~DF_TEXTREL;
7509 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7512 if (htab->is_vxworks)
7514 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7515 use any of the DT_MIPS_* tags. */
7516 if (mips_elf_rel_dyn_section (info, FALSE))
7518 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7521 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7524 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7527 if (htab->splt->size > 0)
7529 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7532 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7535 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7541 if (mips_elf_rel_dyn_section (info, FALSE))
7543 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7546 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7549 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7553 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7556 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7562 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7571 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7574 if (IRIX_COMPAT (dynobj) == ict_irix5
7575 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7578 if (IRIX_COMPAT (dynobj) == ict_irix6
7579 && (bfd_get_section_by_name
7580 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7581 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7589 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7590 Adjust its R_ADDEND field so that it is correct for the output file.
7591 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7592 and sections respectively; both use symbol indexes. */
7595 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7596 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7597 asection **local_sections, Elf_Internal_Rela *rel)
7599 unsigned int r_type, r_symndx;
7600 Elf_Internal_Sym *sym;
7603 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7605 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7606 if (r_type == R_MIPS16_GPREL
7607 || r_type == R_MIPS_GPREL16
7608 || r_type == R_MIPS_GPREL32
7609 || r_type == R_MIPS_LITERAL)
7611 rel->r_addend += _bfd_get_gp_value (input_bfd);
7612 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7615 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7616 sym = local_syms + r_symndx;
7618 /* Adjust REL's addend to account for section merging. */
7619 if (!info->relocatable)
7621 sec = local_sections[r_symndx];
7622 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7625 /* This would normally be done by the rela_normal code in elflink.c. */
7626 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7627 rel->r_addend += local_sections[r_symndx]->output_offset;
7631 /* Relocate a MIPS ELF section. */
7634 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7635 bfd *input_bfd, asection *input_section,
7636 bfd_byte *contents, Elf_Internal_Rela *relocs,
7637 Elf_Internal_Sym *local_syms,
7638 asection **local_sections)
7640 Elf_Internal_Rela *rel;
7641 const Elf_Internal_Rela *relend;
7643 bfd_boolean use_saved_addend_p = FALSE;
7644 const struct elf_backend_data *bed;
7646 bed = get_elf_backend_data (output_bfd);
7647 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7648 for (rel = relocs; rel < relend; ++rel)
7652 reloc_howto_type *howto;
7653 bfd_boolean require_jalx;
7654 /* TRUE if the relocation is a RELA relocation, rather than a
7656 bfd_boolean rela_relocation_p = TRUE;
7657 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7660 /* Find the relocation howto for this relocation. */
7661 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7663 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7664 64-bit code, but make sure all their addresses are in the
7665 lowermost or uppermost 32-bit section of the 64-bit address
7666 space. Thus, when they use an R_MIPS_64 they mean what is
7667 usually meant by R_MIPS_32, with the exception that the
7668 stored value is sign-extended to 64 bits. */
7669 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7671 /* On big-endian systems, we need to lie about the position
7673 if (bfd_big_endian (input_bfd))
7677 /* NewABI defaults to RELA relocations. */
7678 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7679 NEWABI_P (input_bfd)
7680 && (MIPS_RELOC_RELA_P
7681 (input_bfd, input_section,
7684 if (!use_saved_addend_p)
7686 Elf_Internal_Shdr *rel_hdr;
7688 /* If these relocations were originally of the REL variety,
7689 we must pull the addend out of the field that will be
7690 relocated. Otherwise, we simply use the contents of the
7691 RELA relocation. To determine which flavor or relocation
7692 this is, we depend on the fact that the INPUT_SECTION's
7693 REL_HDR is read before its REL_HDR2. */
7694 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7695 if ((size_t) (rel - relocs)
7696 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7697 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7698 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7700 bfd_byte *location = contents + rel->r_offset;
7702 /* Note that this is a REL relocation. */
7703 rela_relocation_p = FALSE;
7705 /* Get the addend, which is stored in the input file. */
7706 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7708 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7710 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7713 addend &= howto->src_mask;
7715 /* For some kinds of relocations, the ADDEND is a
7716 combination of the addend stored in two different
7718 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7719 || (r_type == R_MIPS_GOT16
7720 && mips_elf_local_relocation_p (input_bfd, rel,
7721 local_sections, FALSE)))
7724 const Elf_Internal_Rela *lo16_relocation;
7725 reloc_howto_type *lo16_howto;
7726 bfd_byte *lo16_location;
7729 if (r_type == R_MIPS16_HI16)
7730 lo16_type = R_MIPS16_LO16;
7732 lo16_type = R_MIPS_LO16;
7734 /* The combined value is the sum of the HI16 addend,
7735 left-shifted by sixteen bits, and the LO16
7736 addend, sign extended. (Usually, the code does
7737 a `lui' of the HI16 value, and then an `addiu' of
7740 Scan ahead to find a matching LO16 relocation.
7742 According to the MIPS ELF ABI, the R_MIPS_LO16
7743 relocation must be immediately following.
7744 However, for the IRIX6 ABI, the next relocation
7745 may be a composed relocation consisting of
7746 several relocations for the same address. In
7747 that case, the R_MIPS_LO16 relocation may occur
7748 as one of these. We permit a similar extension
7749 in general, as that is useful for GCC. */
7750 lo16_relocation = mips_elf_next_relocation (input_bfd,
7753 if (lo16_relocation == NULL)
7756 lo16_location = contents + lo16_relocation->r_offset;
7758 /* Obtain the addend kept there. */
7759 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7761 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7763 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7764 input_bfd, contents);
7765 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7767 l &= lo16_howto->src_mask;
7768 l <<= lo16_howto->rightshift;
7769 l = _bfd_mips_elf_sign_extend (l, 16);
7773 /* Compute the combined addend. */
7777 addend <<= howto->rightshift;
7780 addend = rel->r_addend;
7781 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7782 local_syms, local_sections, rel);
7785 if (info->relocatable)
7787 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7788 && bfd_big_endian (input_bfd))
7791 if (!rela_relocation_p && rel->r_addend)
7793 addend += rel->r_addend;
7794 if (r_type == R_MIPS_HI16
7795 || r_type == R_MIPS_GOT16)
7796 addend = mips_elf_high (addend);
7797 else if (r_type == R_MIPS_HIGHER)
7798 addend = mips_elf_higher (addend);
7799 else if (r_type == R_MIPS_HIGHEST)
7800 addend = mips_elf_highest (addend);
7802 addend >>= howto->rightshift;
7804 /* We use the source mask, rather than the destination
7805 mask because the place to which we are writing will be
7806 source of the addend in the final link. */
7807 addend &= howto->src_mask;
7809 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7810 /* See the comment above about using R_MIPS_64 in the 32-bit
7811 ABI. Here, we need to update the addend. It would be
7812 possible to get away with just using the R_MIPS_32 reloc
7813 but for endianness. */
7819 if (addend & ((bfd_vma) 1 << 31))
7821 sign_bits = ((bfd_vma) 1 << 32) - 1;
7828 /* If we don't know that we have a 64-bit type,
7829 do two separate stores. */
7830 if (bfd_big_endian (input_bfd))
7832 /* Store the sign-bits (which are most significant)
7834 low_bits = sign_bits;
7840 high_bits = sign_bits;
7842 bfd_put_32 (input_bfd, low_bits,
7843 contents + rel->r_offset);
7844 bfd_put_32 (input_bfd, high_bits,
7845 contents + rel->r_offset + 4);
7849 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7850 input_bfd, input_section,
7855 /* Go on to the next relocation. */
7859 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7860 relocations for the same offset. In that case we are
7861 supposed to treat the output of each relocation as the addend
7863 if (rel + 1 < relend
7864 && rel->r_offset == rel[1].r_offset
7865 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7866 use_saved_addend_p = TRUE;
7868 use_saved_addend_p = FALSE;
7870 /* Figure out what value we are supposed to relocate. */
7871 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7872 input_section, info, rel,
7873 addend, howto, local_syms,
7874 local_sections, &value,
7875 &name, &require_jalx,
7876 use_saved_addend_p))
7878 case bfd_reloc_continue:
7879 /* There's nothing to do. */
7882 case bfd_reloc_undefined:
7883 /* mips_elf_calculate_relocation already called the
7884 undefined_symbol callback. There's no real point in
7885 trying to perform the relocation at this point, so we
7886 just skip ahead to the next relocation. */
7889 case bfd_reloc_notsupported:
7890 msg = _("internal error: unsupported relocation error");
7891 info->callbacks->warning
7892 (info, msg, name, input_bfd, input_section, rel->r_offset);
7895 case bfd_reloc_overflow:
7896 if (use_saved_addend_p)
7897 /* Ignore overflow until we reach the last relocation for
7898 a given location. */
7902 BFD_ASSERT (name != NULL);
7903 if (! ((*info->callbacks->reloc_overflow)
7904 (info, NULL, name, howto->name, (bfd_vma) 0,
7905 input_bfd, input_section, rel->r_offset)))
7918 /* If we've got another relocation for the address, keep going
7919 until we reach the last one. */
7920 if (use_saved_addend_p)
7926 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7927 /* See the comment above about using R_MIPS_64 in the 32-bit
7928 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7929 that calculated the right value. Now, however, we
7930 sign-extend the 32-bit result to 64-bits, and store it as a
7931 64-bit value. We are especially generous here in that we
7932 go to extreme lengths to support this usage on systems with
7933 only a 32-bit VMA. */
7939 if (value & ((bfd_vma) 1 << 31))
7941 sign_bits = ((bfd_vma) 1 << 32) - 1;
7948 /* If we don't know that we have a 64-bit type,
7949 do two separate stores. */
7950 if (bfd_big_endian (input_bfd))
7952 /* Undo what we did above. */
7954 /* Store the sign-bits (which are most significant)
7956 low_bits = sign_bits;
7962 high_bits = sign_bits;
7964 bfd_put_32 (input_bfd, low_bits,
7965 contents + rel->r_offset);
7966 bfd_put_32 (input_bfd, high_bits,
7967 contents + rel->r_offset + 4);
7971 /* Actually perform the relocation. */
7972 if (! mips_elf_perform_relocation (info, howto, rel, value,
7973 input_bfd, input_section,
7974 contents, require_jalx))
7981 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7982 adjust it appropriately now. */
7985 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7986 const char *name, Elf_Internal_Sym *sym)
7988 /* The linker script takes care of providing names and values for
7989 these, but we must place them into the right sections. */
7990 static const char* const text_section_symbols[] = {
7993 "__dso_displacement",
7995 "__program_header_table",
7999 static const char* const data_section_symbols[] = {
8007 const char* const *p;
8010 for (i = 0; i < 2; ++i)
8011 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8014 if (strcmp (*p, name) == 0)
8016 /* All of these symbols are given type STT_SECTION by the
8018 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8019 sym->st_other = STO_PROTECTED;
8021 /* The IRIX linker puts these symbols in special sections. */
8023 sym->st_shndx = SHN_MIPS_TEXT;
8025 sym->st_shndx = SHN_MIPS_DATA;
8031 /* Finish up dynamic symbol handling. We set the contents of various
8032 dynamic sections here. */
8035 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8036 struct bfd_link_info *info,
8037 struct elf_link_hash_entry *h,
8038 Elf_Internal_Sym *sym)
8042 struct mips_got_info *g, *gg;
8045 struct mips_elf_link_hash_table *htab;
8047 htab = mips_elf_hash_table (info);
8048 dynobj = elf_hash_table (info)->dynobj;
8050 if (h->plt.offset != MINUS_ONE)
8053 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8055 /* This symbol has a stub. Set it up. */
8057 BFD_ASSERT (h->dynindx != -1);
8059 s = bfd_get_section_by_name (dynobj,
8060 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8061 BFD_ASSERT (s != NULL);
8063 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8064 || (h->dynindx <= 0xffff));
8066 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8067 sign extension at runtime in the stub, resulting in a negative
8069 if (h->dynindx & ~0x7fffffff)
8072 /* Fill the stub. */
8074 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8076 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8078 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8080 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8084 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8087 /* If a large stub is not required and sign extension is not a
8088 problem, then use legacy code in the stub. */
8089 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8090 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8091 else if (h->dynindx & ~0x7fff)
8092 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8094 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8097 BFD_ASSERT (h->plt.offset <= s->size);
8098 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8100 /* Mark the symbol as undefined. plt.offset != -1 occurs
8101 only for the referenced symbol. */
8102 sym->st_shndx = SHN_UNDEF;
8104 /* The run-time linker uses the st_value field of the symbol
8105 to reset the global offset table entry for this external
8106 to its stub address when unlinking a shared object. */
8107 sym->st_value = (s->output_section->vma + s->output_offset
8111 BFD_ASSERT (h->dynindx != -1
8112 || h->forced_local);
8114 sgot = mips_elf_got_section (dynobj, FALSE);
8115 BFD_ASSERT (sgot != NULL);
8116 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8117 g = mips_elf_section_data (sgot)->u.got_info;
8118 BFD_ASSERT (g != NULL);
8120 /* Run through the global symbol table, creating GOT entries for all
8121 the symbols that need them. */
8122 if (g->global_gotsym != NULL
8123 && h->dynindx >= g->global_gotsym->dynindx)
8128 value = sym->st_value;
8129 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8130 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8133 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8135 struct mips_got_entry e, *p;
8141 e.abfd = output_bfd;
8143 e.d.h = (struct mips_elf_link_hash_entry *)h;
8146 for (g = g->next; g->next != gg; g = g->next)
8149 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8154 || (elf_hash_table (info)->dynamic_sections_created
8156 && p->d.h->root.def_dynamic
8157 && !p->d.h->root.def_regular))
8159 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8160 the various compatibility problems, it's easier to mock
8161 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8162 mips_elf_create_dynamic_relocation to calculate the
8163 appropriate addend. */
8164 Elf_Internal_Rela rel[3];
8166 memset (rel, 0, sizeof (rel));
8167 if (ABI_64_P (output_bfd))
8168 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8170 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8171 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8174 if (! (mips_elf_create_dynamic_relocation
8175 (output_bfd, info, rel,
8176 e.d.h, NULL, sym->st_value, &entry, sgot)))
8180 entry = sym->st_value;
8181 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8186 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8187 name = h->root.root.string;
8188 if (strcmp (name, "_DYNAMIC") == 0
8189 || h == elf_hash_table (info)->hgot)
8190 sym->st_shndx = SHN_ABS;
8191 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8192 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8194 sym->st_shndx = SHN_ABS;
8195 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8198 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8200 sym->st_shndx = SHN_ABS;
8201 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8202 sym->st_value = elf_gp (output_bfd);
8204 else if (SGI_COMPAT (output_bfd))
8206 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8207 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8209 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8210 sym->st_other = STO_PROTECTED;
8212 sym->st_shndx = SHN_MIPS_DATA;
8214 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8216 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8217 sym->st_other = STO_PROTECTED;
8218 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8219 sym->st_shndx = SHN_ABS;
8221 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8223 if (h->type == STT_FUNC)
8224 sym->st_shndx = SHN_MIPS_TEXT;
8225 else if (h->type == STT_OBJECT)
8226 sym->st_shndx = SHN_MIPS_DATA;
8230 /* Handle the IRIX6-specific symbols. */
8231 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8232 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8236 if (! mips_elf_hash_table (info)->use_rld_obj_head
8237 && (strcmp (name, "__rld_map") == 0
8238 || strcmp (name, "__RLD_MAP") == 0))
8240 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8241 BFD_ASSERT (s != NULL);
8242 sym->st_value = s->output_section->vma + s->output_offset;
8243 bfd_put_32 (output_bfd, 0, s->contents);
8244 if (mips_elf_hash_table (info)->rld_value == 0)
8245 mips_elf_hash_table (info)->rld_value = sym->st_value;
8247 else if (mips_elf_hash_table (info)->use_rld_obj_head
8248 && strcmp (name, "__rld_obj_head") == 0)
8250 /* IRIX6 does not use a .rld_map section. */
8251 if (IRIX_COMPAT (output_bfd) == ict_irix5
8252 || IRIX_COMPAT (output_bfd) == ict_none)
8253 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8255 mips_elf_hash_table (info)->rld_value = sym->st_value;
8259 /* If this is a mips16 symbol, force the value to be even. */
8260 if (sym->st_other == STO_MIPS16)
8261 sym->st_value &= ~1;
8266 /* Likewise, for VxWorks. */
8269 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8270 struct bfd_link_info *info,
8271 struct elf_link_hash_entry *h,
8272 Elf_Internal_Sym *sym)
8276 struct mips_got_info *g;
8277 struct mips_elf_link_hash_table *htab;
8279 htab = mips_elf_hash_table (info);
8280 dynobj = elf_hash_table (info)->dynobj;
8282 if (h->plt.offset != (bfd_vma) -1)
8285 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8286 Elf_Internal_Rela rel;
8287 static const bfd_vma *plt_entry;
8289 BFD_ASSERT (h->dynindx != -1);
8290 BFD_ASSERT (htab->splt != NULL);
8291 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8293 /* Calculate the address of the .plt entry. */
8294 plt_address = (htab->splt->output_section->vma
8295 + htab->splt->output_offset
8298 /* Calculate the index of the entry. */
8299 plt_index = ((h->plt.offset - htab->plt_header_size)
8300 / htab->plt_entry_size);
8302 /* Calculate the address of the .got.plt entry. */
8303 got_address = (htab->sgotplt->output_section->vma
8304 + htab->sgotplt->output_offset
8307 /* Calculate the offset of the .got.plt entry from
8308 _GLOBAL_OFFSET_TABLE_. */
8309 got_offset = mips_elf_gotplt_index (info, h);
8311 /* Calculate the offset for the branch at the start of the PLT
8312 entry. The branch jumps to the beginning of .plt. */
8313 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8315 /* Fill in the initial value of the .got.plt entry. */
8316 bfd_put_32 (output_bfd, plt_address,
8317 htab->sgotplt->contents + plt_index * 4);
8319 /* Find out where the .plt entry should go. */
8320 loc = htab->splt->contents + h->plt.offset;
8324 plt_entry = mips_vxworks_shared_plt_entry;
8325 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8326 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8330 bfd_vma got_address_high, got_address_low;
8332 plt_entry = mips_vxworks_exec_plt_entry;
8333 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8334 got_address_low = got_address & 0xffff;
8336 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8337 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8338 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8339 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8340 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8341 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8342 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8343 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8345 loc = (htab->srelplt2->contents
8346 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8348 /* Emit a relocation for the .got.plt entry. */
8349 rel.r_offset = got_address;
8350 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8351 rel.r_addend = h->plt.offset;
8352 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8354 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8355 loc += sizeof (Elf32_External_Rela);
8356 rel.r_offset = plt_address + 8;
8357 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8358 rel.r_addend = got_offset;
8359 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8361 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8362 loc += sizeof (Elf32_External_Rela);
8364 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8365 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8368 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8369 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8370 rel.r_offset = got_address;
8371 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8373 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8375 if (!h->def_regular)
8376 sym->st_shndx = SHN_UNDEF;
8379 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8381 sgot = mips_elf_got_section (dynobj, FALSE);
8382 BFD_ASSERT (sgot != NULL);
8383 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8384 g = mips_elf_section_data (sgot)->u.got_info;
8385 BFD_ASSERT (g != NULL);
8387 /* See if this symbol has an entry in the GOT. */
8388 if (g->global_gotsym != NULL
8389 && h->dynindx >= g->global_gotsym->dynindx)
8392 Elf_Internal_Rela outrel;
8396 /* Install the symbol value in the GOT. */
8397 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8398 R_MIPS_GOT16, info);
8399 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8401 /* Add a dynamic relocation for it. */
8402 s = mips_elf_rel_dyn_section (info, FALSE);
8403 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8404 outrel.r_offset = (sgot->output_section->vma
8405 + sgot->output_offset
8407 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8408 outrel.r_addend = 0;
8409 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8412 /* Emit a copy reloc, if needed. */
8415 Elf_Internal_Rela rel;
8417 BFD_ASSERT (h->dynindx != -1);
8419 rel.r_offset = (h->root.u.def.section->output_section->vma
8420 + h->root.u.def.section->output_offset
8421 + h->root.u.def.value);
8422 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8424 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8425 htab->srelbss->contents
8426 + (htab->srelbss->reloc_count
8427 * sizeof (Elf32_External_Rela)));
8428 ++htab->srelbss->reloc_count;
8431 /* If this is a mips16 symbol, force the value to be even. */
8432 if (sym->st_other == STO_MIPS16)
8433 sym->st_value &= ~1;
8438 /* Install the PLT header for a VxWorks executable and finalize the
8439 contents of .rela.plt.unloaded. */
8442 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8444 Elf_Internal_Rela rela;
8446 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8447 static const bfd_vma *plt_entry;
8448 struct mips_elf_link_hash_table *htab;
8450 htab = mips_elf_hash_table (info);
8451 plt_entry = mips_vxworks_exec_plt0_entry;
8453 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8454 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8455 + htab->root.hgot->root.u.def.section->output_offset
8456 + htab->root.hgot->root.u.def.value);
8458 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8459 got_value_low = got_value & 0xffff;
8461 /* Calculate the address of the PLT header. */
8462 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8464 /* Install the PLT header. */
8465 loc = htab->splt->contents;
8466 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8467 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8468 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8469 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8470 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8471 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8473 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8474 loc = htab->srelplt2->contents;
8475 rela.r_offset = plt_address;
8476 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8478 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8479 loc += sizeof (Elf32_External_Rela);
8481 /* Output the relocation for the following addiu of
8482 %lo(_GLOBAL_OFFSET_TABLE_). */
8484 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8485 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8486 loc += sizeof (Elf32_External_Rela);
8488 /* Fix up the remaining relocations. They may have the wrong
8489 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8490 in which symbols were output. */
8491 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8493 Elf_Internal_Rela rel;
8495 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8496 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8497 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8498 loc += sizeof (Elf32_External_Rela);
8500 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8501 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8502 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8503 loc += sizeof (Elf32_External_Rela);
8505 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8506 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8508 loc += sizeof (Elf32_External_Rela);
8512 /* Install the PLT header for a VxWorks shared library. */
8515 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8518 struct mips_elf_link_hash_table *htab;
8520 htab = mips_elf_hash_table (info);
8522 /* We just need to copy the entry byte-by-byte. */
8523 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8524 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8525 htab->splt->contents + i * 4);
8528 /* Finish up the dynamic sections. */
8531 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8532 struct bfd_link_info *info)
8537 struct mips_got_info *gg, *g;
8538 struct mips_elf_link_hash_table *htab;
8540 htab = mips_elf_hash_table (info);
8541 dynobj = elf_hash_table (info)->dynobj;
8543 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8545 sgot = mips_elf_got_section (dynobj, FALSE);
8550 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8551 gg = mips_elf_section_data (sgot)->u.got_info;
8552 BFD_ASSERT (gg != NULL);
8553 g = mips_elf_got_for_ibfd (gg, output_bfd);
8554 BFD_ASSERT (g != NULL);
8557 if (elf_hash_table (info)->dynamic_sections_created)
8560 int dyn_to_skip = 0, dyn_skipped = 0;
8562 BFD_ASSERT (sdyn != NULL);
8563 BFD_ASSERT (g != NULL);
8565 for (b = sdyn->contents;
8566 b < sdyn->contents + sdyn->size;
8567 b += MIPS_ELF_DYN_SIZE (dynobj))
8569 Elf_Internal_Dyn dyn;
8573 bfd_boolean swap_out_p;
8575 /* Read in the current dynamic entry. */
8576 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8578 /* Assume that we're going to modify it and write it out. */
8584 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8588 BFD_ASSERT (htab->is_vxworks);
8589 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8593 /* Rewrite DT_STRSZ. */
8595 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8600 if (htab->is_vxworks)
8602 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8603 of the ".got" section in DYNOBJ. */
8604 s = bfd_get_section_by_name (dynobj, name);
8605 BFD_ASSERT (s != NULL);
8606 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8610 s = bfd_get_section_by_name (output_bfd, name);
8611 BFD_ASSERT (s != NULL);
8612 dyn.d_un.d_ptr = s->vma;
8616 case DT_MIPS_RLD_VERSION:
8617 dyn.d_un.d_val = 1; /* XXX */
8621 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8624 case DT_MIPS_TIME_STAMP:
8632 case DT_MIPS_ICHECKSUM:
8637 case DT_MIPS_IVERSION:
8642 case DT_MIPS_BASE_ADDRESS:
8643 s = output_bfd->sections;
8644 BFD_ASSERT (s != NULL);
8645 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8648 case DT_MIPS_LOCAL_GOTNO:
8649 dyn.d_un.d_val = g->local_gotno;
8652 case DT_MIPS_UNREFEXTNO:
8653 /* The index into the dynamic symbol table which is the
8654 entry of the first external symbol that is not
8655 referenced within the same object. */
8656 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8659 case DT_MIPS_GOTSYM:
8660 if (gg->global_gotsym)
8662 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8665 /* In case if we don't have global got symbols we default
8666 to setting DT_MIPS_GOTSYM to the same value as
8667 DT_MIPS_SYMTABNO, so we just fall through. */
8669 case DT_MIPS_SYMTABNO:
8671 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8672 s = bfd_get_section_by_name (output_bfd, name);
8673 BFD_ASSERT (s != NULL);
8675 dyn.d_un.d_val = s->size / elemsize;
8678 case DT_MIPS_HIPAGENO:
8679 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8682 case DT_MIPS_RLD_MAP:
8683 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8686 case DT_MIPS_OPTIONS:
8687 s = (bfd_get_section_by_name
8688 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8689 dyn.d_un.d_ptr = s->vma;
8693 BFD_ASSERT (htab->is_vxworks);
8694 /* The count does not include the JUMP_SLOT relocations. */
8696 dyn.d_un.d_val -= htab->srelplt->size;
8700 BFD_ASSERT (htab->is_vxworks);
8701 dyn.d_un.d_val = DT_RELA;
8705 BFD_ASSERT (htab->is_vxworks);
8706 dyn.d_un.d_val = htab->srelplt->size;
8710 BFD_ASSERT (htab->is_vxworks);
8711 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8712 + htab->srelplt->output_offset);
8716 /* If we didn't need any text relocations after all, delete
8718 if (!(info->flags & DF_TEXTREL))
8720 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8726 /* If we didn't need any text relocations after all, clear
8727 DF_TEXTREL from DT_FLAGS. */
8728 if (!(info->flags & DF_TEXTREL))
8729 dyn.d_un.d_val &= ~DF_TEXTREL;
8739 if (swap_out_p || dyn_skipped)
8740 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8741 (dynobj, &dyn, b - dyn_skipped);
8745 dyn_skipped += dyn_to_skip;
8750 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8751 if (dyn_skipped > 0)
8752 memset (b - dyn_skipped, 0, dyn_skipped);
8755 if (sgot != NULL && sgot->size > 0)
8757 if (htab->is_vxworks)
8759 /* The first entry of the global offset table points to the
8760 ".dynamic" section. The second is initialized by the
8761 loader and contains the shared library identifier.
8762 The third is also initialized by the loader and points
8763 to the lazy resolution stub. */
8764 MIPS_ELF_PUT_WORD (output_bfd,
8765 sdyn->output_offset + sdyn->output_section->vma,
8767 MIPS_ELF_PUT_WORD (output_bfd, 0,
8768 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8769 MIPS_ELF_PUT_WORD (output_bfd, 0,
8771 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8775 /* The first entry of the global offset table will be filled at
8776 runtime. The second entry will be used by some runtime loaders.
8777 This isn't the case of IRIX rld. */
8778 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8779 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8780 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8783 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8784 = MIPS_ELF_GOT_SIZE (output_bfd);
8787 /* Generate dynamic relocations for the non-primary gots. */
8788 if (gg != NULL && gg->next)
8790 Elf_Internal_Rela rel[3];
8793 memset (rel, 0, sizeof (rel));
8794 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8796 for (g = gg->next; g->next != gg; g = g->next)
8798 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8799 + g->next->tls_gotno;
8801 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8802 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8803 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8804 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8809 while (index < g->assigned_gotno)
8811 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8812 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8813 if (!(mips_elf_create_dynamic_relocation
8814 (output_bfd, info, rel, NULL,
8815 bfd_abs_section_ptr,
8818 BFD_ASSERT (addend == 0);
8823 /* The generation of dynamic relocations for the non-primary gots
8824 adds more dynamic relocations. We cannot count them until
8827 if (elf_hash_table (info)->dynamic_sections_created)
8830 bfd_boolean swap_out_p;
8832 BFD_ASSERT (sdyn != NULL);
8834 for (b = sdyn->contents;
8835 b < sdyn->contents + sdyn->size;
8836 b += MIPS_ELF_DYN_SIZE (dynobj))
8838 Elf_Internal_Dyn dyn;
8841 /* Read in the current dynamic entry. */
8842 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8844 /* Assume that we're going to modify it and write it out. */
8850 /* Reduce DT_RELSZ to account for any relocations we
8851 decided not to make. This is for the n64 irix rld,
8852 which doesn't seem to apply any relocations if there
8853 are trailing null entries. */
8854 s = mips_elf_rel_dyn_section (info, FALSE);
8855 dyn.d_un.d_val = (s->reloc_count
8856 * (ABI_64_P (output_bfd)
8857 ? sizeof (Elf64_Mips_External_Rel)
8858 : sizeof (Elf32_External_Rel)));
8867 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8874 Elf32_compact_rel cpt;
8876 if (SGI_COMPAT (output_bfd))
8878 /* Write .compact_rel section out. */
8879 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8883 cpt.num = s->reloc_count;
8885 cpt.offset = (s->output_section->filepos
8886 + sizeof (Elf32_External_compact_rel));
8889 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8890 ((Elf32_External_compact_rel *)
8893 /* Clean up a dummy stub function entry in .text. */
8894 s = bfd_get_section_by_name (dynobj,
8895 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8898 file_ptr dummy_offset;
8900 BFD_ASSERT (s->size >= htab->function_stub_size);
8901 dummy_offset = s->size - htab->function_stub_size;
8902 memset (s->contents + dummy_offset, 0,
8903 htab->function_stub_size);
8908 /* The psABI says that the dynamic relocations must be sorted in
8909 increasing order of r_symndx. The VxWorks EABI doesn't require
8910 this, and because the code below handles REL rather than RELA
8911 relocations, using it for VxWorks would be outright harmful. */
8912 if (!htab->is_vxworks)
8914 s = mips_elf_rel_dyn_section (info, FALSE);
8916 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8918 reldyn_sorting_bfd = output_bfd;
8920 if (ABI_64_P (output_bfd))
8921 qsort ((Elf64_External_Rel *) s->contents + 1,
8922 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8923 sort_dynamic_relocs_64);
8925 qsort ((Elf32_External_Rel *) s->contents + 1,
8926 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8927 sort_dynamic_relocs);
8932 if (htab->is_vxworks && htab->splt->size > 0)
8935 mips_vxworks_finish_shared_plt (output_bfd, info);
8937 mips_vxworks_finish_exec_plt (output_bfd, info);
8943 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8946 mips_set_isa_flags (bfd *abfd)
8950 switch (bfd_get_mach (abfd))
8953 case bfd_mach_mips3000:
8954 val = E_MIPS_ARCH_1;
8957 case bfd_mach_mips3900:
8958 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8961 case bfd_mach_mips6000:
8962 val = E_MIPS_ARCH_2;
8965 case bfd_mach_mips4000:
8966 case bfd_mach_mips4300:
8967 case bfd_mach_mips4400:
8968 case bfd_mach_mips4600:
8969 val = E_MIPS_ARCH_3;
8972 case bfd_mach_mips4010:
8973 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8976 case bfd_mach_mips4100:
8977 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8980 case bfd_mach_mips4111:
8981 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8984 case bfd_mach_mips4120:
8985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8988 case bfd_mach_mips4650:
8989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8992 case bfd_mach_mips5400:
8993 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8996 case bfd_mach_mips5500:
8997 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9000 case bfd_mach_mips9000:
9001 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9004 case bfd_mach_mips5000:
9005 case bfd_mach_mips7000:
9006 case bfd_mach_mips8000:
9007 case bfd_mach_mips10000:
9008 case bfd_mach_mips12000:
9009 val = E_MIPS_ARCH_4;
9012 case bfd_mach_mips5:
9013 val = E_MIPS_ARCH_5;
9016 case bfd_mach_mips_sb1:
9017 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9020 case bfd_mach_mipsisa32:
9021 val = E_MIPS_ARCH_32;
9024 case bfd_mach_mipsisa64:
9025 val = E_MIPS_ARCH_64;
9028 case bfd_mach_mipsisa32r2:
9029 val = E_MIPS_ARCH_32R2;
9032 case bfd_mach_mipsisa64r2:
9033 val = E_MIPS_ARCH_64R2;
9036 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9037 elf_elfheader (abfd)->e_flags |= val;
9042 /* The final processing done just before writing out a MIPS ELF object
9043 file. This gets the MIPS architecture right based on the machine
9044 number. This is used by both the 32-bit and the 64-bit ABI. */
9047 _bfd_mips_elf_final_write_processing (bfd *abfd,
9048 bfd_boolean linker ATTRIBUTE_UNUSED)
9051 Elf_Internal_Shdr **hdrpp;
9055 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9056 is nonzero. This is for compatibility with old objects, which used
9057 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9058 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9059 mips_set_isa_flags (abfd);
9061 /* Set the sh_info field for .gptab sections and other appropriate
9062 info for each special section. */
9063 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9064 i < elf_numsections (abfd);
9067 switch ((*hdrpp)->sh_type)
9070 case SHT_MIPS_LIBLIST:
9071 sec = bfd_get_section_by_name (abfd, ".dynstr");
9073 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9076 case SHT_MIPS_GPTAB:
9077 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9078 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9079 BFD_ASSERT (name != NULL
9080 && CONST_STRNEQ (name, ".gptab."));
9081 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9082 BFD_ASSERT (sec != NULL);
9083 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9086 case SHT_MIPS_CONTENT:
9087 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9088 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9089 BFD_ASSERT (name != NULL
9090 && CONST_STRNEQ (name, ".MIPS.content"));
9091 sec = bfd_get_section_by_name (abfd,
9092 name + sizeof ".MIPS.content" - 1);
9093 BFD_ASSERT (sec != NULL);
9094 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9097 case SHT_MIPS_SYMBOL_LIB:
9098 sec = bfd_get_section_by_name (abfd, ".dynsym");
9100 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9101 sec = bfd_get_section_by_name (abfd, ".liblist");
9103 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9106 case SHT_MIPS_EVENTS:
9107 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9108 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9109 BFD_ASSERT (name != NULL);
9110 if (CONST_STRNEQ (name, ".MIPS.events"))
9111 sec = bfd_get_section_by_name (abfd,
9112 name + sizeof ".MIPS.events" - 1);
9115 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9116 sec = bfd_get_section_by_name (abfd,
9118 + sizeof ".MIPS.post_rel" - 1));
9120 BFD_ASSERT (sec != NULL);
9121 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9128 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9132 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9133 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9138 /* See if we need a PT_MIPS_REGINFO segment. */
9139 s = bfd_get_section_by_name (abfd, ".reginfo");
9140 if (s && (s->flags & SEC_LOAD))
9143 /* See if we need a PT_MIPS_OPTIONS segment. */
9144 if (IRIX_COMPAT (abfd) == ict_irix6
9145 && bfd_get_section_by_name (abfd,
9146 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9149 /* See if we need a PT_MIPS_RTPROC segment. */
9150 if (IRIX_COMPAT (abfd) == ict_irix5
9151 && bfd_get_section_by_name (abfd, ".dynamic")
9152 && bfd_get_section_by_name (abfd, ".mdebug"))
9158 /* Modify the segment map for an IRIX5 executable. */
9161 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9162 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9165 struct elf_segment_map *m, **pm;
9168 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9170 s = bfd_get_section_by_name (abfd, ".reginfo");
9171 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9173 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9174 if (m->p_type == PT_MIPS_REGINFO)
9179 m = bfd_zalloc (abfd, amt);
9183 m->p_type = PT_MIPS_REGINFO;
9187 /* We want to put it after the PHDR and INTERP segments. */
9188 pm = &elf_tdata (abfd)->segment_map;
9190 && ((*pm)->p_type == PT_PHDR
9191 || (*pm)->p_type == PT_INTERP))
9199 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9200 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9201 PT_MIPS_OPTIONS segment immediately following the program header
9204 /* On non-IRIX6 new abi, we'll have already created a segment
9205 for this section, so don't create another. I'm not sure this
9206 is not also the case for IRIX 6, but I can't test it right
9208 && IRIX_COMPAT (abfd) == ict_irix6)
9210 for (s = abfd->sections; s; s = s->next)
9211 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9216 struct elf_segment_map *options_segment;
9218 pm = &elf_tdata (abfd)->segment_map;
9220 && ((*pm)->p_type == PT_PHDR
9221 || (*pm)->p_type == PT_INTERP))
9224 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9226 amt = sizeof (struct elf_segment_map);
9227 options_segment = bfd_zalloc (abfd, amt);
9228 options_segment->next = *pm;
9229 options_segment->p_type = PT_MIPS_OPTIONS;
9230 options_segment->p_flags = PF_R;
9231 options_segment->p_flags_valid = TRUE;
9232 options_segment->count = 1;
9233 options_segment->sections[0] = s;
9234 *pm = options_segment;
9240 if (IRIX_COMPAT (abfd) == ict_irix5)
9242 /* If there are .dynamic and .mdebug sections, we make a room
9243 for the RTPROC header. FIXME: Rewrite without section names. */
9244 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9245 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9246 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9248 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9249 if (m->p_type == PT_MIPS_RTPROC)
9254 m = bfd_zalloc (abfd, amt);
9258 m->p_type = PT_MIPS_RTPROC;
9260 s = bfd_get_section_by_name (abfd, ".rtproc");
9265 m->p_flags_valid = 1;
9273 /* We want to put it after the DYNAMIC segment. */
9274 pm = &elf_tdata (abfd)->segment_map;
9275 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9285 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9286 .dynstr, .dynsym, and .hash sections, and everything in
9288 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9290 if ((*pm)->p_type == PT_DYNAMIC)
9293 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9295 /* For a normal mips executable the permissions for the PT_DYNAMIC
9296 segment are read, write and execute. We do that here since
9297 the code in elf.c sets only the read permission. This matters
9298 sometimes for the dynamic linker. */
9299 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9301 m->p_flags = PF_R | PF_W | PF_X;
9302 m->p_flags_valid = 1;
9306 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9308 static const char *sec_names[] =
9310 ".dynamic", ".dynstr", ".dynsym", ".hash"
9314 struct elf_segment_map *n;
9318 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9320 s = bfd_get_section_by_name (abfd, sec_names[i]);
9321 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9328 if (high < s->vma + sz)
9334 for (s = abfd->sections; s != NULL; s = s->next)
9335 if ((s->flags & SEC_LOAD) != 0
9337 && s->vma + s->size <= high)
9340 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9341 n = bfd_zalloc (abfd, amt);
9348 for (s = abfd->sections; s != NULL; s = s->next)
9350 if ((s->flags & SEC_LOAD) != 0
9352 && s->vma + s->size <= high)
9366 /* Return the section that should be marked against GC for a given
9370 _bfd_mips_elf_gc_mark_hook (asection *sec,
9371 struct bfd_link_info *info,
9372 Elf_Internal_Rela *rel,
9373 struct elf_link_hash_entry *h,
9374 Elf_Internal_Sym *sym)
9376 /* ??? Do mips16 stub sections need to be handled special? */
9379 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9381 case R_MIPS_GNU_VTINHERIT:
9382 case R_MIPS_GNU_VTENTRY:
9386 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9389 /* Update the got entry reference counts for the section being removed. */
9392 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9393 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9394 asection *sec ATTRIBUTE_UNUSED,
9395 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9398 Elf_Internal_Shdr *symtab_hdr;
9399 struct elf_link_hash_entry **sym_hashes;
9400 bfd_signed_vma *local_got_refcounts;
9401 const Elf_Internal_Rela *rel, *relend;
9402 unsigned long r_symndx;
9403 struct elf_link_hash_entry *h;
9405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9406 sym_hashes = elf_sym_hashes (abfd);
9407 local_got_refcounts = elf_local_got_refcounts (abfd);
9409 relend = relocs + sec->reloc_count;
9410 for (rel = relocs; rel < relend; rel++)
9411 switch (ELF_R_TYPE (abfd, rel->r_info))
9415 case R_MIPS_CALL_HI16:
9416 case R_MIPS_CALL_LO16:
9417 case R_MIPS_GOT_HI16:
9418 case R_MIPS_GOT_LO16:
9419 case R_MIPS_GOT_DISP:
9420 case R_MIPS_GOT_PAGE:
9421 case R_MIPS_GOT_OFST:
9422 /* ??? It would seem that the existing MIPS code does no sort
9423 of reference counting or whatnot on its GOT and PLT entries,
9424 so it is not possible to garbage collect them at this time. */
9435 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9436 hiding the old indirect symbol. Process additional relocation
9437 information. Also called for weakdefs, in which case we just let
9438 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9441 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9442 struct elf_link_hash_entry *dir,
9443 struct elf_link_hash_entry *ind)
9445 struct mips_elf_link_hash_entry *dirmips, *indmips;
9447 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9449 if (ind->root.type != bfd_link_hash_indirect)
9452 dirmips = (struct mips_elf_link_hash_entry *) dir;
9453 indmips = (struct mips_elf_link_hash_entry *) ind;
9454 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9455 if (indmips->readonly_reloc)
9456 dirmips->readonly_reloc = TRUE;
9457 if (indmips->no_fn_stub)
9458 dirmips->no_fn_stub = TRUE;
9460 if (dirmips->tls_type == 0)
9461 dirmips->tls_type = indmips->tls_type;
9465 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9466 struct elf_link_hash_entry *entry,
9467 bfd_boolean force_local)
9471 struct mips_got_info *g;
9472 struct mips_elf_link_hash_entry *h;
9474 h = (struct mips_elf_link_hash_entry *) entry;
9475 if (h->forced_local)
9477 h->forced_local = force_local;
9479 dynobj = elf_hash_table (info)->dynobj;
9480 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9481 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9482 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9486 struct mips_got_entry e;
9487 struct mips_got_info *gg = g;
9489 /* Since we're turning what used to be a global symbol into a
9490 local one, bump up the number of local entries of each GOT
9491 that had an entry for it. This will automatically decrease
9492 the number of global entries, since global_gotno is actually
9493 the upper limit of global entries. */
9499 for (g = g->next; g != gg; g = g->next)
9500 if (htab_find (g->got_entries, &e))
9502 BFD_ASSERT (g->global_gotno > 0);
9507 /* If this was a global symbol forced into the primary GOT, we
9508 no longer need an entry for it. We can't release the entry
9509 at this point, but we must at least stop counting it as one
9510 of the symbols that required a forced got entry. */
9511 if (h->root.got.offset == 2)
9513 BFD_ASSERT (gg->assigned_gotno > 0);
9514 gg->assigned_gotno--;
9517 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9518 /* If we haven't got through GOT allocation yet, just bump up the
9519 number of local entries, as this symbol won't be counted as
9522 else if (h->root.got.offset == 1)
9524 /* If we're past non-multi-GOT allocation and this symbol had
9525 been marked for a global got entry, give it a local entry
9527 BFD_ASSERT (g->global_gotno > 0);
9533 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9539 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9540 struct bfd_link_info *info)
9543 bfd_boolean ret = FALSE;
9544 unsigned char *tdata;
9547 o = bfd_get_section_by_name (abfd, ".pdr");
9552 if (o->size % PDR_SIZE != 0)
9554 if (o->output_section != NULL
9555 && bfd_is_abs_section (o->output_section))
9558 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9562 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9570 cookie->rel = cookie->rels;
9571 cookie->relend = cookie->rels + o->reloc_count;
9573 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9575 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9584 mips_elf_section_data (o)->u.tdata = tdata;
9585 o->size -= skip * PDR_SIZE;
9591 if (! info->keep_memory)
9592 free (cookie->rels);
9598 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9600 if (strcmp (sec->name, ".pdr") == 0)
9606 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9609 bfd_byte *to, *from, *end;
9612 if (strcmp (sec->name, ".pdr") != 0)
9615 if (mips_elf_section_data (sec)->u.tdata == NULL)
9619 end = contents + sec->size;
9620 for (from = contents, i = 0;
9622 from += PDR_SIZE, i++)
9624 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9627 memcpy (to, from, PDR_SIZE);
9630 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9631 sec->output_offset, sec->size);
9635 /* MIPS ELF uses a special find_nearest_line routine in order the
9636 handle the ECOFF debugging information. */
9638 struct mips_elf_find_line
9640 struct ecoff_debug_info d;
9641 struct ecoff_find_line i;
9645 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9646 asymbol **symbols, bfd_vma offset,
9647 const char **filename_ptr,
9648 const char **functionname_ptr,
9649 unsigned int *line_ptr)
9653 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9654 filename_ptr, functionname_ptr,
9658 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9659 filename_ptr, functionname_ptr,
9660 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9661 &elf_tdata (abfd)->dwarf2_find_line_info))
9664 msec = bfd_get_section_by_name (abfd, ".mdebug");
9668 struct mips_elf_find_line *fi;
9669 const struct ecoff_debug_swap * const swap =
9670 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9672 /* If we are called during a link, mips_elf_final_link may have
9673 cleared the SEC_HAS_CONTENTS field. We force it back on here
9674 if appropriate (which it normally will be). */
9675 origflags = msec->flags;
9676 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9677 msec->flags |= SEC_HAS_CONTENTS;
9679 fi = elf_tdata (abfd)->find_line_info;
9682 bfd_size_type external_fdr_size;
9685 struct fdr *fdr_ptr;
9686 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9688 fi = bfd_zalloc (abfd, amt);
9691 msec->flags = origflags;
9695 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9697 msec->flags = origflags;
9701 /* Swap in the FDR information. */
9702 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9703 fi->d.fdr = bfd_alloc (abfd, amt);
9704 if (fi->d.fdr == NULL)
9706 msec->flags = origflags;
9709 external_fdr_size = swap->external_fdr_size;
9710 fdr_ptr = fi->d.fdr;
9711 fraw_src = (char *) fi->d.external_fdr;
9712 fraw_end = (fraw_src
9713 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9714 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9715 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9717 elf_tdata (abfd)->find_line_info = fi;
9719 /* Note that we don't bother to ever free this information.
9720 find_nearest_line is either called all the time, as in
9721 objdump -l, so the information should be saved, or it is
9722 rarely called, as in ld error messages, so the memory
9723 wasted is unimportant. Still, it would probably be a
9724 good idea for free_cached_info to throw it away. */
9727 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9728 &fi->i, filename_ptr, functionname_ptr,
9731 msec->flags = origflags;
9735 msec->flags = origflags;
9738 /* Fall back on the generic ELF find_nearest_line routine. */
9740 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9741 filename_ptr, functionname_ptr,
9746 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9747 const char **filename_ptr,
9748 const char **functionname_ptr,
9749 unsigned int *line_ptr)
9752 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9753 functionname_ptr, line_ptr,
9754 & elf_tdata (abfd)->dwarf2_find_line_info);
9759 /* When are writing out the .options or .MIPS.options section,
9760 remember the bytes we are writing out, so that we can install the
9761 GP value in the section_processing routine. */
9764 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9765 const void *location,
9766 file_ptr offset, bfd_size_type count)
9768 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9772 if (elf_section_data (section) == NULL)
9774 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9775 section->used_by_bfd = bfd_zalloc (abfd, amt);
9776 if (elf_section_data (section) == NULL)
9779 c = mips_elf_section_data (section)->u.tdata;
9782 c = bfd_zalloc (abfd, section->size);
9785 mips_elf_section_data (section)->u.tdata = c;
9788 memcpy (c + offset, location, count);
9791 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9795 /* This is almost identical to bfd_generic_get_... except that some
9796 MIPS relocations need to be handled specially. Sigh. */
9799 _bfd_elf_mips_get_relocated_section_contents
9801 struct bfd_link_info *link_info,
9802 struct bfd_link_order *link_order,
9804 bfd_boolean relocatable,
9807 /* Get enough memory to hold the stuff */
9808 bfd *input_bfd = link_order->u.indirect.section->owner;
9809 asection *input_section = link_order->u.indirect.section;
9812 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9813 arelent **reloc_vector = NULL;
9819 reloc_vector = bfd_malloc (reloc_size);
9820 if (reloc_vector == NULL && reloc_size != 0)
9823 /* read in the section */
9824 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9825 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9828 reloc_count = bfd_canonicalize_reloc (input_bfd,
9832 if (reloc_count < 0)
9835 if (reloc_count > 0)
9840 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9843 struct bfd_hash_entry *h;
9844 struct bfd_link_hash_entry *lh;
9845 /* Skip all this stuff if we aren't mixing formats. */
9846 if (abfd && input_bfd
9847 && abfd->xvec == input_bfd->xvec)
9851 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9852 lh = (struct bfd_link_hash_entry *) h;
9859 case bfd_link_hash_undefined:
9860 case bfd_link_hash_undefweak:
9861 case bfd_link_hash_common:
9864 case bfd_link_hash_defined:
9865 case bfd_link_hash_defweak:
9867 gp = lh->u.def.value;
9869 case bfd_link_hash_indirect:
9870 case bfd_link_hash_warning:
9872 /* @@FIXME ignoring warning for now */
9874 case bfd_link_hash_new:
9883 for (parent = reloc_vector; *parent != NULL; parent++)
9885 char *error_message = NULL;
9886 bfd_reloc_status_type r;
9888 /* Specific to MIPS: Deal with relocation types that require
9889 knowing the gp of the output bfd. */
9890 asymbol *sym = *(*parent)->sym_ptr_ptr;
9892 /* If we've managed to find the gp and have a special
9893 function for the relocation then go ahead, else default
9894 to the generic handling. */
9896 && (*parent)->howto->special_function
9897 == _bfd_mips_elf32_gprel16_reloc)
9898 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9899 input_section, relocatable,
9902 r = bfd_perform_relocation (input_bfd, *parent, data,
9904 relocatable ? abfd : NULL,
9909 asection *os = input_section->output_section;
9911 /* A partial link, so keep the relocs */
9912 os->orelocation[os->reloc_count] = *parent;
9916 if (r != bfd_reloc_ok)
9920 case bfd_reloc_undefined:
9921 if (!((*link_info->callbacks->undefined_symbol)
9922 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9923 input_bfd, input_section, (*parent)->address, TRUE)))
9926 case bfd_reloc_dangerous:
9927 BFD_ASSERT (error_message != NULL);
9928 if (!((*link_info->callbacks->reloc_dangerous)
9929 (link_info, error_message, input_bfd, input_section,
9930 (*parent)->address)))
9933 case bfd_reloc_overflow:
9934 if (!((*link_info->callbacks->reloc_overflow)
9936 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9937 (*parent)->howto->name, (*parent)->addend,
9938 input_bfd, input_section, (*parent)->address)))
9941 case bfd_reloc_outofrange:
9950 if (reloc_vector != NULL)
9951 free (reloc_vector);
9955 if (reloc_vector != NULL)
9956 free (reloc_vector);
9960 /* Create a MIPS ELF linker hash table. */
9962 struct bfd_link_hash_table *
9963 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9965 struct mips_elf_link_hash_table *ret;
9966 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9968 ret = bfd_malloc (amt);
9972 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9973 mips_elf_link_hash_newfunc,
9974 sizeof (struct mips_elf_link_hash_entry)))
9981 /* We no longer use this. */
9982 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9983 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9985 ret->procedure_count = 0;
9986 ret->compact_rel_size = 0;
9987 ret->use_rld_obj_head = FALSE;
9989 ret->mips16_stubs_seen = FALSE;
9990 ret->is_vxworks = FALSE;
9991 ret->srelbss = NULL;
9992 ret->sdynbss = NULL;
9993 ret->srelplt = NULL;
9994 ret->srelplt2 = NULL;
9995 ret->sgotplt = NULL;
9997 ret->plt_header_size = 0;
9998 ret->plt_entry_size = 0;
9999 ret->function_stub_size = 0;
10001 return &ret->root.root;
10004 /* Likewise, but indicate that the target is VxWorks. */
10006 struct bfd_link_hash_table *
10007 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10009 struct bfd_link_hash_table *ret;
10011 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10014 struct mips_elf_link_hash_table *htab;
10016 htab = (struct mips_elf_link_hash_table *) ret;
10017 htab->is_vxworks = 1;
10022 /* We need to use a special link routine to handle the .reginfo and
10023 the .mdebug sections. We need to merge all instances of these
10024 sections together, not write them all out sequentially. */
10027 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10030 struct bfd_link_order *p;
10031 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10032 asection *rtproc_sec;
10033 Elf32_RegInfo reginfo;
10034 struct ecoff_debug_info debug;
10035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10036 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10037 HDRR *symhdr = &debug.symbolic_header;
10038 void *mdebug_handle = NULL;
10043 struct mips_elf_link_hash_table *htab;
10045 static const char * const secname[] =
10047 ".text", ".init", ".fini", ".data",
10048 ".rodata", ".sdata", ".sbss", ".bss"
10050 static const int sc[] =
10052 scText, scInit, scFini, scData,
10053 scRData, scSData, scSBss, scBss
10056 /* We'd carefully arranged the dynamic symbol indices, and then the
10057 generic size_dynamic_sections renumbered them out from under us.
10058 Rather than trying somehow to prevent the renumbering, just do
10060 htab = mips_elf_hash_table (info);
10061 if (elf_hash_table (info)->dynamic_sections_created)
10065 struct mips_got_info *g;
10066 bfd_size_type dynsecsymcount;
10068 /* When we resort, we must tell mips_elf_sort_hash_table what
10069 the lowest index it may use is. That's the number of section
10070 symbols we're going to add. The generic ELF linker only
10071 adds these symbols when building a shared object. Note that
10072 we count the sections after (possibly) removing the .options
10075 dynsecsymcount = count_section_dynsyms (abfd, info);
10076 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10079 /* Make sure we didn't grow the global .got region. */
10080 dynobj = elf_hash_table (info)->dynobj;
10081 got = mips_elf_got_section (dynobj, FALSE);
10082 g = mips_elf_section_data (got)->u.got_info;
10084 if (g->global_gotsym != NULL)
10085 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10086 - g->global_gotsym->dynindx)
10087 <= g->global_gotno);
10090 /* Get a value for the GP register. */
10091 if (elf_gp (abfd) == 0)
10093 struct bfd_link_hash_entry *h;
10095 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10096 if (h != NULL && h->type == bfd_link_hash_defined)
10097 elf_gp (abfd) = (h->u.def.value
10098 + h->u.def.section->output_section->vma
10099 + h->u.def.section->output_offset);
10100 else if (htab->is_vxworks
10101 && (h = bfd_link_hash_lookup (info->hash,
10102 "_GLOBAL_OFFSET_TABLE_",
10103 FALSE, FALSE, TRUE))
10104 && h->type == bfd_link_hash_defined)
10105 elf_gp (abfd) = (h->u.def.section->output_section->vma
10106 + h->u.def.section->output_offset
10108 else if (info->relocatable)
10110 bfd_vma lo = MINUS_ONE;
10112 /* Find the GP-relative section with the lowest offset. */
10113 for (o = abfd->sections; o != NULL; o = o->next)
10115 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10118 /* And calculate GP relative to that. */
10119 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10123 /* If the relocate_section function needs to do a reloc
10124 involving the GP value, it should make a reloc_dangerous
10125 callback to warn that GP is not defined. */
10129 /* Go through the sections and collect the .reginfo and .mdebug
10131 reginfo_sec = NULL;
10133 gptab_data_sec = NULL;
10134 gptab_bss_sec = NULL;
10135 for (o = abfd->sections; o != NULL; o = o->next)
10137 if (strcmp (o->name, ".reginfo") == 0)
10139 memset (®info, 0, sizeof reginfo);
10141 /* We have found the .reginfo section in the output file.
10142 Look through all the link_orders comprising it and merge
10143 the information together. */
10144 for (p = o->map_head.link_order; p != NULL; p = p->next)
10146 asection *input_section;
10148 Elf32_External_RegInfo ext;
10151 if (p->type != bfd_indirect_link_order)
10153 if (p->type == bfd_data_link_order)
10158 input_section = p->u.indirect.section;
10159 input_bfd = input_section->owner;
10161 if (! bfd_get_section_contents (input_bfd, input_section,
10162 &ext, 0, sizeof ext))
10165 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10167 reginfo.ri_gprmask |= sub.ri_gprmask;
10168 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10169 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10170 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10171 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10173 /* ri_gp_value is set by the function
10174 mips_elf32_section_processing when the section is
10175 finally written out. */
10177 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10178 elf_link_input_bfd ignores this section. */
10179 input_section->flags &= ~SEC_HAS_CONTENTS;
10182 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10183 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10185 /* Skip this section later on (I don't think this currently
10186 matters, but someday it might). */
10187 o->map_head.link_order = NULL;
10192 if (strcmp (o->name, ".mdebug") == 0)
10194 struct extsym_info einfo;
10197 /* We have found the .mdebug section in the output file.
10198 Look through all the link_orders comprising it and merge
10199 the information together. */
10200 symhdr->magic = swap->sym_magic;
10201 /* FIXME: What should the version stamp be? */
10202 symhdr->vstamp = 0;
10203 symhdr->ilineMax = 0;
10204 symhdr->cbLine = 0;
10205 symhdr->idnMax = 0;
10206 symhdr->ipdMax = 0;
10207 symhdr->isymMax = 0;
10208 symhdr->ioptMax = 0;
10209 symhdr->iauxMax = 0;
10210 symhdr->issMax = 0;
10211 symhdr->issExtMax = 0;
10212 symhdr->ifdMax = 0;
10214 symhdr->iextMax = 0;
10216 /* We accumulate the debugging information itself in the
10217 debug_info structure. */
10219 debug.external_dnr = NULL;
10220 debug.external_pdr = NULL;
10221 debug.external_sym = NULL;
10222 debug.external_opt = NULL;
10223 debug.external_aux = NULL;
10225 debug.ssext = debug.ssext_end = NULL;
10226 debug.external_fdr = NULL;
10227 debug.external_rfd = NULL;
10228 debug.external_ext = debug.external_ext_end = NULL;
10230 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10231 if (mdebug_handle == NULL)
10235 esym.cobol_main = 0;
10239 esym.asym.iss = issNil;
10240 esym.asym.st = stLocal;
10241 esym.asym.reserved = 0;
10242 esym.asym.index = indexNil;
10244 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10246 esym.asym.sc = sc[i];
10247 s = bfd_get_section_by_name (abfd, secname[i]);
10250 esym.asym.value = s->vma;
10251 last = s->vma + s->size;
10254 esym.asym.value = last;
10255 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10256 secname[i], &esym))
10260 for (p = o->map_head.link_order; p != NULL; p = p->next)
10262 asection *input_section;
10264 const struct ecoff_debug_swap *input_swap;
10265 struct ecoff_debug_info input_debug;
10269 if (p->type != bfd_indirect_link_order)
10271 if (p->type == bfd_data_link_order)
10276 input_section = p->u.indirect.section;
10277 input_bfd = input_section->owner;
10279 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10280 || (get_elf_backend_data (input_bfd)
10281 ->elf_backend_ecoff_debug_swap) == NULL)
10283 /* I don't know what a non MIPS ELF bfd would be
10284 doing with a .mdebug section, but I don't really
10285 want to deal with it. */
10289 input_swap = (get_elf_backend_data (input_bfd)
10290 ->elf_backend_ecoff_debug_swap);
10292 BFD_ASSERT (p->size == input_section->size);
10294 /* The ECOFF linking code expects that we have already
10295 read in the debugging information and set up an
10296 ecoff_debug_info structure, so we do that now. */
10297 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10301 if (! (bfd_ecoff_debug_accumulate
10302 (mdebug_handle, abfd, &debug, swap, input_bfd,
10303 &input_debug, input_swap, info)))
10306 /* Loop through the external symbols. For each one with
10307 interesting information, try to find the symbol in
10308 the linker global hash table and save the information
10309 for the output external symbols. */
10310 eraw_src = input_debug.external_ext;
10311 eraw_end = (eraw_src
10312 + (input_debug.symbolic_header.iextMax
10313 * input_swap->external_ext_size));
10315 eraw_src < eraw_end;
10316 eraw_src += input_swap->external_ext_size)
10320 struct mips_elf_link_hash_entry *h;
10322 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10323 if (ext.asym.sc == scNil
10324 || ext.asym.sc == scUndefined
10325 || ext.asym.sc == scSUndefined)
10328 name = input_debug.ssext + ext.asym.iss;
10329 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10330 name, FALSE, FALSE, TRUE);
10331 if (h == NULL || h->esym.ifd != -2)
10336 BFD_ASSERT (ext.ifd
10337 < input_debug.symbolic_header.ifdMax);
10338 ext.ifd = input_debug.ifdmap[ext.ifd];
10344 /* Free up the information we just read. */
10345 free (input_debug.line);
10346 free (input_debug.external_dnr);
10347 free (input_debug.external_pdr);
10348 free (input_debug.external_sym);
10349 free (input_debug.external_opt);
10350 free (input_debug.external_aux);
10351 free (input_debug.ss);
10352 free (input_debug.ssext);
10353 free (input_debug.external_fdr);
10354 free (input_debug.external_rfd);
10355 free (input_debug.external_ext);
10357 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10358 elf_link_input_bfd ignores this section. */
10359 input_section->flags &= ~SEC_HAS_CONTENTS;
10362 if (SGI_COMPAT (abfd) && info->shared)
10364 /* Create .rtproc section. */
10365 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10366 if (rtproc_sec == NULL)
10368 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10369 | SEC_LINKER_CREATED | SEC_READONLY);
10371 rtproc_sec = bfd_make_section_with_flags (abfd,
10374 if (rtproc_sec == NULL
10375 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10379 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10385 /* Build the external symbol information. */
10388 einfo.debug = &debug;
10390 einfo.failed = FALSE;
10391 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10392 mips_elf_output_extsym, &einfo);
10396 /* Set the size of the .mdebug section. */
10397 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10399 /* Skip this section later on (I don't think this currently
10400 matters, but someday it might). */
10401 o->map_head.link_order = NULL;
10406 if (CONST_STRNEQ (o->name, ".gptab."))
10408 const char *subname;
10411 Elf32_External_gptab *ext_tab;
10414 /* The .gptab.sdata and .gptab.sbss sections hold
10415 information describing how the small data area would
10416 change depending upon the -G switch. These sections
10417 not used in executables files. */
10418 if (! info->relocatable)
10420 for (p = o->map_head.link_order; p != NULL; p = p->next)
10422 asection *input_section;
10424 if (p->type != bfd_indirect_link_order)
10426 if (p->type == bfd_data_link_order)
10431 input_section = p->u.indirect.section;
10433 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10434 elf_link_input_bfd ignores this section. */
10435 input_section->flags &= ~SEC_HAS_CONTENTS;
10438 /* Skip this section later on (I don't think this
10439 currently matters, but someday it might). */
10440 o->map_head.link_order = NULL;
10442 /* Really remove the section. */
10443 bfd_section_list_remove (abfd, o);
10444 --abfd->section_count;
10449 /* There is one gptab for initialized data, and one for
10450 uninitialized data. */
10451 if (strcmp (o->name, ".gptab.sdata") == 0)
10452 gptab_data_sec = o;
10453 else if (strcmp (o->name, ".gptab.sbss") == 0)
10457 (*_bfd_error_handler)
10458 (_("%s: illegal section name `%s'"),
10459 bfd_get_filename (abfd), o->name);
10460 bfd_set_error (bfd_error_nonrepresentable_section);
10464 /* The linker script always combines .gptab.data and
10465 .gptab.sdata into .gptab.sdata, and likewise for
10466 .gptab.bss and .gptab.sbss. It is possible that there is
10467 no .sdata or .sbss section in the output file, in which
10468 case we must change the name of the output section. */
10469 subname = o->name + sizeof ".gptab" - 1;
10470 if (bfd_get_section_by_name (abfd, subname) == NULL)
10472 if (o == gptab_data_sec)
10473 o->name = ".gptab.data";
10475 o->name = ".gptab.bss";
10476 subname = o->name + sizeof ".gptab" - 1;
10477 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10480 /* Set up the first entry. */
10482 amt = c * sizeof (Elf32_gptab);
10483 tab = bfd_malloc (amt);
10486 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10487 tab[0].gt_header.gt_unused = 0;
10489 /* Combine the input sections. */
10490 for (p = o->map_head.link_order; p != NULL; p = p->next)
10492 asection *input_section;
10494 bfd_size_type size;
10495 unsigned long last;
10496 bfd_size_type gpentry;
10498 if (p->type != bfd_indirect_link_order)
10500 if (p->type == bfd_data_link_order)
10505 input_section = p->u.indirect.section;
10506 input_bfd = input_section->owner;
10508 /* Combine the gptab entries for this input section one
10509 by one. We know that the input gptab entries are
10510 sorted by ascending -G value. */
10511 size = input_section->size;
10513 for (gpentry = sizeof (Elf32_External_gptab);
10515 gpentry += sizeof (Elf32_External_gptab))
10517 Elf32_External_gptab ext_gptab;
10518 Elf32_gptab int_gptab;
10524 if (! (bfd_get_section_contents
10525 (input_bfd, input_section, &ext_gptab, gpentry,
10526 sizeof (Elf32_External_gptab))))
10532 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10534 val = int_gptab.gt_entry.gt_g_value;
10535 add = int_gptab.gt_entry.gt_bytes - last;
10538 for (look = 1; look < c; look++)
10540 if (tab[look].gt_entry.gt_g_value >= val)
10541 tab[look].gt_entry.gt_bytes += add;
10543 if (tab[look].gt_entry.gt_g_value == val)
10549 Elf32_gptab *new_tab;
10552 /* We need a new table entry. */
10553 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10554 new_tab = bfd_realloc (tab, amt);
10555 if (new_tab == NULL)
10561 tab[c].gt_entry.gt_g_value = val;
10562 tab[c].gt_entry.gt_bytes = add;
10564 /* Merge in the size for the next smallest -G
10565 value, since that will be implied by this new
10568 for (look = 1; look < c; look++)
10570 if (tab[look].gt_entry.gt_g_value < val
10572 || (tab[look].gt_entry.gt_g_value
10573 > tab[max].gt_entry.gt_g_value)))
10577 tab[c].gt_entry.gt_bytes +=
10578 tab[max].gt_entry.gt_bytes;
10583 last = int_gptab.gt_entry.gt_bytes;
10586 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10587 elf_link_input_bfd ignores this section. */
10588 input_section->flags &= ~SEC_HAS_CONTENTS;
10591 /* The table must be sorted by -G value. */
10593 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10595 /* Swap out the table. */
10596 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10597 ext_tab = bfd_alloc (abfd, amt);
10598 if (ext_tab == NULL)
10604 for (j = 0; j < c; j++)
10605 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10608 o->size = c * sizeof (Elf32_External_gptab);
10609 o->contents = (bfd_byte *) ext_tab;
10611 /* Skip this section later on (I don't think this currently
10612 matters, but someday it might). */
10613 o->map_head.link_order = NULL;
10617 /* Invoke the regular ELF backend linker to do all the work. */
10618 if (!bfd_elf_final_link (abfd, info))
10621 /* Now write out the computed sections. */
10623 if (reginfo_sec != NULL)
10625 Elf32_External_RegInfo ext;
10627 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
10628 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10632 if (mdebug_sec != NULL)
10634 BFD_ASSERT (abfd->output_has_begun);
10635 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10637 mdebug_sec->filepos))
10640 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10643 if (gptab_data_sec != NULL)
10645 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10646 gptab_data_sec->contents,
10647 0, gptab_data_sec->size))
10651 if (gptab_bss_sec != NULL)
10653 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10654 gptab_bss_sec->contents,
10655 0, gptab_bss_sec->size))
10659 if (SGI_COMPAT (abfd))
10661 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10662 if (rtproc_sec != NULL)
10664 if (! bfd_set_section_contents (abfd, rtproc_sec,
10665 rtproc_sec->contents,
10666 0, rtproc_sec->size))
10674 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10676 struct mips_mach_extension {
10677 unsigned long extension, base;
10681 /* An array describing how BFD machines relate to one another. The entries
10682 are ordered topologically with MIPS I extensions listed last. */
10684 static const struct mips_mach_extension mips_mach_extensions[] = {
10685 /* MIPS64 extensions. */
10686 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10687 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10689 /* MIPS V extensions. */
10690 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10692 /* R10000 extensions. */
10693 { bfd_mach_mips12000, bfd_mach_mips10000 },
10695 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10696 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10697 better to allow vr5400 and vr5500 code to be merged anyway, since
10698 many libraries will just use the core ISA. Perhaps we could add
10699 some sort of ASE flag if this ever proves a problem. */
10700 { bfd_mach_mips5500, bfd_mach_mips5400 },
10701 { bfd_mach_mips5400, bfd_mach_mips5000 },
10703 /* MIPS IV extensions. */
10704 { bfd_mach_mips5, bfd_mach_mips8000 },
10705 { bfd_mach_mips10000, bfd_mach_mips8000 },
10706 { bfd_mach_mips5000, bfd_mach_mips8000 },
10707 { bfd_mach_mips7000, bfd_mach_mips8000 },
10708 { bfd_mach_mips9000, bfd_mach_mips8000 },
10710 /* VR4100 extensions. */
10711 { bfd_mach_mips4120, bfd_mach_mips4100 },
10712 { bfd_mach_mips4111, bfd_mach_mips4100 },
10714 /* MIPS III extensions. */
10715 { bfd_mach_mips8000, bfd_mach_mips4000 },
10716 { bfd_mach_mips4650, bfd_mach_mips4000 },
10717 { bfd_mach_mips4600, bfd_mach_mips4000 },
10718 { bfd_mach_mips4400, bfd_mach_mips4000 },
10719 { bfd_mach_mips4300, bfd_mach_mips4000 },
10720 { bfd_mach_mips4100, bfd_mach_mips4000 },
10721 { bfd_mach_mips4010, bfd_mach_mips4000 },
10723 /* MIPS32 extensions. */
10724 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10726 /* MIPS II extensions. */
10727 { bfd_mach_mips4000, bfd_mach_mips6000 },
10728 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10730 /* MIPS I extensions. */
10731 { bfd_mach_mips6000, bfd_mach_mips3000 },
10732 { bfd_mach_mips3900, bfd_mach_mips3000 }
10736 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10739 mips_mach_extends_p (unsigned long base, unsigned long extension)
10743 if (extension == base)
10746 if (base == bfd_mach_mipsisa32
10747 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10750 if (base == bfd_mach_mipsisa32r2
10751 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10754 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10755 if (extension == mips_mach_extensions[i].extension)
10757 extension = mips_mach_extensions[i].base;
10758 if (extension == base)
10766 /* Return true if the given ELF header flags describe a 32-bit binary. */
10769 mips_32bit_flags_p (flagword flags)
10771 return ((flags & EF_MIPS_32BITMODE) != 0
10772 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10773 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10774 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10775 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10776 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10777 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10781 /* Merge backend specific data from an object file to the output
10782 object file when linking. */
10785 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10787 flagword old_flags;
10788 flagword new_flags;
10790 bfd_boolean null_input_bfd = TRUE;
10793 /* Check if we have the same endianess */
10794 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10796 (*_bfd_error_handler)
10797 (_("%B: endianness incompatible with that of the selected emulation"),
10802 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10803 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10806 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10808 (*_bfd_error_handler)
10809 (_("%B: ABI is incompatible with that of the selected emulation"),
10814 new_flags = elf_elfheader (ibfd)->e_flags;
10815 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10816 old_flags = elf_elfheader (obfd)->e_flags;
10818 if (! elf_flags_init (obfd))
10820 elf_flags_init (obfd) = TRUE;
10821 elf_elfheader (obfd)->e_flags = new_flags;
10822 elf_elfheader (obfd)->e_ident[EI_CLASS]
10823 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10825 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10826 && (bfd_get_arch_info (obfd)->the_default
10827 || mips_mach_extends_p (bfd_get_mach (obfd),
10828 bfd_get_mach (ibfd))))
10830 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10831 bfd_get_mach (ibfd)))
10838 /* Check flag compatibility. */
10840 new_flags &= ~EF_MIPS_NOREORDER;
10841 old_flags &= ~EF_MIPS_NOREORDER;
10843 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10844 doesn't seem to matter. */
10845 new_flags &= ~EF_MIPS_XGOT;
10846 old_flags &= ~EF_MIPS_XGOT;
10848 /* MIPSpro generates ucode info in n64 objects. Again, we should
10849 just be able to ignore this. */
10850 new_flags &= ~EF_MIPS_UCODE;
10851 old_flags &= ~EF_MIPS_UCODE;
10853 /* Don't care about the PIC flags from dynamic objects; they are
10855 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10856 && (ibfd->flags & DYNAMIC) != 0)
10857 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10859 if (new_flags == old_flags)
10862 /* Check to see if the input BFD actually contains any sections.
10863 If not, its flags may not have been initialised either, but it cannot
10864 actually cause any incompatibility. */
10865 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10867 /* Ignore synthetic sections and empty .text, .data and .bss sections
10868 which are automatically generated by gas. */
10869 if (strcmp (sec->name, ".reginfo")
10870 && strcmp (sec->name, ".mdebug")
10872 || (strcmp (sec->name, ".text")
10873 && strcmp (sec->name, ".data")
10874 && strcmp (sec->name, ".bss"))))
10876 null_input_bfd = FALSE;
10880 if (null_input_bfd)
10885 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10886 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10888 (*_bfd_error_handler)
10889 (_("%B: warning: linking PIC files with non-PIC files"),
10894 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10895 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10896 if (! (new_flags & EF_MIPS_PIC))
10897 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10899 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10900 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10902 /* Compare the ISAs. */
10903 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10905 (*_bfd_error_handler)
10906 (_("%B: linking 32-bit code with 64-bit code"),
10910 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10912 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10913 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10915 /* Copy the architecture info from IBFD to OBFD. Also copy
10916 the 32-bit flag (if set) so that we continue to recognise
10917 OBFD as a 32-bit binary. */
10918 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10919 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10920 elf_elfheader (obfd)->e_flags
10921 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10923 /* Copy across the ABI flags if OBFD doesn't use them
10924 and if that was what caused us to treat IBFD as 32-bit. */
10925 if ((old_flags & EF_MIPS_ABI) == 0
10926 && mips_32bit_flags_p (new_flags)
10927 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10928 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10932 /* The ISAs aren't compatible. */
10933 (*_bfd_error_handler)
10934 (_("%B: linking %s module with previous %s modules"),
10936 bfd_printable_name (ibfd),
10937 bfd_printable_name (obfd));
10942 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10943 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10945 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10946 does set EI_CLASS differently from any 32-bit ABI. */
10947 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10948 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10949 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10951 /* Only error if both are set (to different values). */
10952 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10953 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10954 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10956 (*_bfd_error_handler)
10957 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10959 elf_mips_abi_name (ibfd),
10960 elf_mips_abi_name (obfd));
10963 new_flags &= ~EF_MIPS_ABI;
10964 old_flags &= ~EF_MIPS_ABI;
10967 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10968 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10970 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10972 new_flags &= ~ EF_MIPS_ARCH_ASE;
10973 old_flags &= ~ EF_MIPS_ARCH_ASE;
10976 /* Warn about any other mismatches */
10977 if (new_flags != old_flags)
10979 (*_bfd_error_handler)
10980 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10981 ibfd, (unsigned long) new_flags,
10982 (unsigned long) old_flags);
10988 bfd_set_error (bfd_error_bad_value);
10995 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10998 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11000 BFD_ASSERT (!elf_flags_init (abfd)
11001 || elf_elfheader (abfd)->e_flags == flags);
11003 elf_elfheader (abfd)->e_flags = flags;
11004 elf_flags_init (abfd) = TRUE;
11009 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11013 BFD_ASSERT (abfd != NULL && ptr != NULL);
11015 /* Print normal ELF private data. */
11016 _bfd_elf_print_private_bfd_data (abfd, ptr);
11018 /* xgettext:c-format */
11019 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11021 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11022 fprintf (file, _(" [abi=O32]"));
11023 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11024 fprintf (file, _(" [abi=O64]"));
11025 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11026 fprintf (file, _(" [abi=EABI32]"));
11027 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11028 fprintf (file, _(" [abi=EABI64]"));
11029 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11030 fprintf (file, _(" [abi unknown]"));
11031 else if (ABI_N32_P (abfd))
11032 fprintf (file, _(" [abi=N32]"));
11033 else if (ABI_64_P (abfd))
11034 fprintf (file, _(" [abi=64]"));
11036 fprintf (file, _(" [no abi set]"));
11038 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11039 fprintf (file, _(" [mips1]"));
11040 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11041 fprintf (file, _(" [mips2]"));
11042 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11043 fprintf (file, _(" [mips3]"));
11044 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11045 fprintf (file, _(" [mips4]"));
11046 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11047 fprintf (file, _(" [mips5]"));
11048 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11049 fprintf (file, _(" [mips32]"));
11050 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11051 fprintf (file, _(" [mips64]"));
11052 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11053 fprintf (file, _(" [mips32r2]"));
11054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11055 fprintf (file, _(" [mips64r2]"));
11057 fprintf (file, _(" [unknown ISA]"));
11059 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11060 fprintf (file, _(" [mdmx]"));
11062 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11063 fprintf (file, _(" [mips16]"));
11065 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11066 fprintf (file, _(" [32bitmode]"));
11068 fprintf (file, _(" [not 32bitmode]"));
11070 fputc ('\n', file);
11075 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11077 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11078 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11079 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11080 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11081 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11082 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11083 { NULL, 0, 0, 0, 0 }
11086 /* Merge non visibility st_other attributes. Ensure that the
11087 STO_OPTIONAL flag is copied into h->other, even if this is not a
11088 definiton of the symbol. */
11090 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11091 const Elf_Internal_Sym *isym,
11092 bfd_boolean definition,
11093 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11095 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11097 unsigned char other;
11099 other = (definition ? isym->st_other : h->other);
11100 other &= ~ELF_ST_VISIBILITY (-1);
11101 h->other = other | ELF_ST_VISIBILITY (h->other);
11105 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11106 h->other |= STO_OPTIONAL;
11109 /* Decide whether an undefined symbol is special and can be ignored.
11110 This is the case for OPTIONAL symbols on IRIX. */
11112 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11114 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11118 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11120 return (sym->st_shndx == SHN_COMMON
11121 || sym->st_shndx == SHN_MIPS_ACOMMON
11122 || sym->st_shndx == SHN_MIPS_SCOMMON);