1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "expression.h"
34 #include "complaints.h"
37 #include "gdb_assert.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
42 #include "dwarf2loc.h"
45 /* Initialize BADNESS constants. */
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
118 /* Should opaque types be resolved? */
120 static int opaque_type_resolution = 1;
122 /* A flag to enable printing of debugging information of C++
125 unsigned int overload_debug = 0;
127 /* A flag to enable strict type checking. */
129 static int strict_type_checking = 1;
131 /* A function to show whether opaque types are resolved. */
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
143 /* A function to show whether C++ overload debugging is enabled. */
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
153 /* A function to show the status of strict type checking. */
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
168 alloc_type (struct objfile *objfile)
172 gdb_assert (objfile != NULL);
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
178 OBJSTAT (objfile, n_types++);
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
183 /* Initialize the fields that might not be zero. */
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
197 alloc_type_arch (struct gdbarch *gdbarch)
201 gdb_assert (gdbarch != NULL);
203 /* Alloc the structure and start off with all fields zeroed. */
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
211 /* Initialize the fields that might not be zero. */
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
225 alloc_type_copy (const struct type *type)
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
237 get_type_arch (const struct type *type)
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
242 return TYPE_OWNER (type).gdbarch;
245 /* See gdbtypes.h. */
248 get_target_type (struct type *type)
252 type = TYPE_TARGET_TYPE (type);
254 type = check_typedef (type);
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
265 alloc_type_instance (struct type *oldtype)
269 /* Allocate the structure. */
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
288 smash_type (struct type *type)
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
302 /* For now, leave the pointer/reference types alone. */
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
311 make_pointer_type (struct type *type, struct type **typeptr)
313 struct type *ntype; /* New type */
316 ntype = TYPE_POINTER_TYPE (type);
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
332 ntype = alloc_type_copy (type);
336 else /* We have storage, but need to reset it. */
339 chain = TYPE_CHAIN (ntype);
341 TYPE_CHAIN (ntype) = chain;
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
347 /* FIXME! Assumes the machine has only one representation for pointers! */
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
373 lookup_pointer_type (struct type *type)
375 return make_pointer_type (type, (struct type **) 0);
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
384 make_reference_type (struct type *type, struct type **typeptr)
386 struct type *ntype; /* New type */
389 ntype = TYPE_REFERENCE_TYPE (type);
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
405 ntype = alloc_type_copy (type);
409 else /* We have storage, but need to reset it. */
412 chain = TYPE_CHAIN (ntype);
414 TYPE_CHAIN (ntype) = chain;
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
442 /* Same as above, but caller doesn't care about memory allocation
446 lookup_reference_type (struct type *type)
448 return make_reference_type (type, (struct type **) 0);
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
457 make_function_type (struct type *type, struct type **typeptr)
459 struct type *ntype; /* New type */
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
463 ntype = alloc_type_copy (type);
467 else /* We have storage, but need to reset it. */
473 TYPE_TARGET_TYPE (ntype) = type;
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
478 INIT_FUNC_SPECIFIC (ntype);
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
487 lookup_function_type (struct type *type)
489 return make_function_type (type, (struct type **) 0);
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
497 lookup_function_type_with_arguments (struct type *type,
499 struct type **param_types)
501 struct type *fn = make_function_type (type, (struct type **) 0);
506 if (param_types[nparams - 1] == NULL)
509 TYPE_VARARGS (fn) = 1;
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
584 ntype = TYPE_CHAIN (ntype);
586 while (ntype != type);
588 /* Create a new type instance. */
590 ntype = alloc_type_instance (type);
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
604 /* Pointers or references to the original type are not relevant to
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
632 make_type_with_address_space (struct type *type, int space_flag)
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
640 return make_qualified_type (type, new_flags, NULL);
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
656 make_cv_type (int cnst, int voltl,
658 struct type **typeptr)
660 struct type *ntype; /* New type */
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
672 if (typeptr && *typeptr != NULL)
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
698 /* Make a 'restrict'-qualified version of TYPE. */
701 make_restrict_type (struct type *type)
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
720 replace_type (struct type *ntype, struct type *type)
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
748 while (ntype != chain);
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
761 lookup_memberptr_type (struct type *type, struct type *domain)
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
773 lookup_methodptr_type (struct type *to_type)
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
789 allocate_stub_method (struct type *type)
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
844 struct dynamic_prop low, high;
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
852 result_type = create_range_type (result_type, index_type, &low, &high);
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
861 has_static_range (const struct range_bounds *bounds)
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
883 if (TYPE_NFIELDS (type) > 0)
885 /* The enums may not be sorted by value, so search all
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
898 /* Set unsigned indicator if warranted. */
901 TYPE_UNSIGNED (type) = 1;
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
917 if (!TYPE_UNSIGNED (type))
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
923 /* ... fall through for unsigned ints ... */
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
954 struct type *index = TYPE_INDEX_TYPE (type);
962 res = get_discrete_bounds (index, &low, &high);
966 /* Check if the array bounds are undefined. */
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1008 LONGEST low_bound, high_bound;
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1059 return create_array_type_with_stride (result_type, element_type,
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1072 return create_array_type (NULL, element_type, range_type);
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1092 result_type = create_array_type (result_type,
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1103 struct type *result_type;
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1112 create_set_type (struct type *result_type, struct type *domain_type)
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1121 if (!TYPE_STUB (domain_type))
1123 LONGEST low_bound, high_bound, bit_length;
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1131 TYPE_UNSIGNED (result_type) = 1;
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1142 make_vector_type (struct type *array_type)
1144 struct type *inner_array, *elt_type;
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1161 TYPE_VECTOR (array_type) = 1;
1165 init_vector_type (struct type *elt_type, int n)
1167 struct type *array_type;
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1242 type_name_no_tag (const struct type *type)
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1261 type_name_no_tag_or_error (struct type *type)
1263 struct type *saved_type = type;
1265 struct objfile *objfile;
1267 CHECK_TYPEDEF (type);
1269 name = type_name_no_tag (type);
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1302 error (_("No type named %s."), name);
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1309 char *uns = alloca (strlen (name) + 10);
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1321 char *uns = alloca (strlen (name) + 8);
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1336 lookup_struct (const char *name, const struct block *block)
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1344 error (_("No struct type named %s."), name);
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1348 error (_("This context has class, union or enum %s, not a struct."),
1351 return (SYMBOL_TYPE (sym));
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1358 lookup_union (const char *name, const struct block *block)
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1366 error (_("No union type named %s."), name);
1368 t = SYMBOL_TYPE (sym);
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1382 lookup_enum (const char *name, const struct block *block)
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1389 error (_("No enum type named %s."), name);
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1393 error (_("This context has class, struct or union %s, not an enum."),
1396 return (SYMBOL_TYPE (sym));
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1419 error (_("No template type named %s."), name);
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1423 error (_("This context has class, union or enum %s, not a struct."),
1426 return (SYMBOL_TYPE (sym));
1429 /* Given a type TYPE, lookup the type of the component of type named
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1453 type = TYPE_TARGET_TYPE (type);
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1484 return TYPE_FIELD_TYPE (type, i);
1486 else if (!t_field_name || *t_field_name == '\0')
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1491 if (subtype != NULL)
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1518 /* Store in *MAX the largest number representable by unsigned integer type
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1567 CHECK_TYPEDEF (type);
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1579 struct type *basetype;
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1592 *basetypep = basetype;
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1609 stub_noname_complaint (void)
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1614 /* Worker for is_dynamic_type. */
1617 is_dynamic_type_internal (struct type *type, int top_level)
1619 type = check_typedef (type);
1621 /* We only want to recognize references at the outermost level. */
1622 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1623 type = check_typedef (TYPE_TARGET_TYPE (type));
1625 switch (TYPE_CODE (type))
1627 case TYPE_CODE_RANGE:
1628 return !has_static_range (TYPE_RANGE_DATA (type));
1630 case TYPE_CODE_ARRAY:
1632 gdb_assert (TYPE_NFIELDS (type) == 1);
1634 /* The array is dynamic if either the bounds are dynamic,
1635 or the elements it contains have a dynamic contents. */
1636 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1638 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1641 case TYPE_CODE_STRUCT:
1642 case TYPE_CODE_UNION:
1646 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1647 if (!field_is_static (&TYPE_FIELD (type, i))
1648 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1657 /* See gdbtypes.h. */
1660 is_dynamic_type (struct type *type)
1662 return is_dynamic_type_internal (type, 1);
1665 static struct type *resolve_dynamic_type_internal (struct type *type,
1669 /* Given a dynamic range type (dyn_range_type), return a static version
1672 static struct type *
1673 resolve_dynamic_range (struct type *dyn_range_type)
1676 struct type *static_range_type;
1677 const struct dynamic_prop *prop;
1678 const struct dwarf2_locexpr_baton *baton;
1679 struct dynamic_prop low_bound, high_bound;
1681 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1683 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1684 if (dwarf2_evaluate_property (prop, &value))
1686 low_bound.kind = PROP_CONST;
1687 low_bound.data.const_val = value;
1691 low_bound.kind = PROP_UNDEFINED;
1692 low_bound.data.const_val = 0;
1695 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1696 if (dwarf2_evaluate_property (prop, &value))
1698 high_bound.kind = PROP_CONST;
1699 high_bound.data.const_val = value;
1701 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1702 high_bound.data.const_val
1703 = low_bound.data.const_val + high_bound.data.const_val - 1;
1707 high_bound.kind = PROP_UNDEFINED;
1708 high_bound.data.const_val = 0;
1711 static_range_type = create_range_type (copy_type (dyn_range_type),
1712 TYPE_TARGET_TYPE (dyn_range_type),
1713 &low_bound, &high_bound);
1714 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1715 return static_range_type;
1718 /* Resolves dynamic bound values of an array type TYPE to static ones.
1719 ADDRESS might be needed to resolve the subrange bounds, it is the location
1720 of the associated array. */
1722 static struct type *
1723 resolve_dynamic_array (struct type *type)
1726 struct type *elt_type;
1727 struct type *range_type;
1728 struct type *ary_dim;
1730 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1733 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1734 range_type = resolve_dynamic_range (range_type);
1736 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1738 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1739 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
1741 elt_type = TYPE_TARGET_TYPE (type);
1743 return create_array_type (copy_type (type),
1748 /* Resolve dynamic bounds of members of the union TYPE to static
1751 static struct type *
1752 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1754 struct type *resolved_type;
1756 unsigned int max_len = 0;
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1760 resolved_type = copy_type (type);
1761 TYPE_FIELDS (resolved_type)
1762 = TYPE_ALLOC (resolved_type,
1763 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1764 memcpy (TYPE_FIELDS (resolved_type),
1766 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1767 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1771 if (field_is_static (&TYPE_FIELD (type, i)))
1774 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1776 TYPE_FIELD_TYPE (resolved_type, i) = t;
1777 if (TYPE_LENGTH (t) > max_len)
1778 max_len = TYPE_LENGTH (t);
1781 TYPE_LENGTH (resolved_type) = max_len;
1782 return resolved_type;
1785 /* Resolve dynamic bounds of members of the struct TYPE to static
1788 static struct type *
1789 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1791 struct type *resolved_type;
1793 unsigned resolved_type_bit_length = 0;
1795 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1796 gdb_assert (TYPE_NFIELDS (type) > 0);
1798 resolved_type = copy_type (type);
1799 TYPE_FIELDS (resolved_type)
1800 = TYPE_ALLOC (resolved_type,
1801 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1802 memcpy (TYPE_FIELDS (resolved_type),
1804 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1805 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1807 unsigned new_bit_length;
1809 if (field_is_static (&TYPE_FIELD (type, i)))
1812 TYPE_FIELD_TYPE (resolved_type, i)
1813 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1816 /* As we know this field is not a static field, the field's
1817 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1818 this is the case, but only trigger a simple error rather
1819 than an internal error if that fails. While failing
1820 that verification indicates a bug in our code, the error
1821 is not severe enough to suggest to the user he stops
1822 his debugging session because of it. */
1823 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1824 error (_("Cannot determine struct field location"
1825 " (invalid location kind)"));
1826 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1827 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1828 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1830 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1833 /* Normally, we would use the position and size of the last field
1834 to determine the size of the enclosing structure. But GCC seems
1835 to be encoding the position of some fields incorrectly when
1836 the struct contains a dynamic field that is not placed last.
1837 So we compute the struct size based on the field that has
1838 the highest position + size - probably the best we can do. */
1839 if (new_bit_length > resolved_type_bit_length)
1840 resolved_type_bit_length = new_bit_length;
1843 TYPE_LENGTH (resolved_type)
1844 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1846 return resolved_type;
1849 /* Worker for resolved_dynamic_type. */
1851 static struct type *
1852 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1855 struct type *real_type = check_typedef (type);
1856 struct type *resolved_type = type;
1858 if (!is_dynamic_type_internal (real_type, top_level))
1861 switch (TYPE_CODE (type))
1863 case TYPE_CODE_TYPEDEF:
1864 resolved_type = copy_type (type);
1865 TYPE_TARGET_TYPE (resolved_type)
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1872 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1874 resolved_type = copy_type (type);
1875 TYPE_TARGET_TYPE (resolved_type)
1876 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1877 target_addr, top_level);
1881 case TYPE_CODE_ARRAY:
1882 resolved_type = resolve_dynamic_array (type);
1885 case TYPE_CODE_RANGE:
1886 resolved_type = resolve_dynamic_range (type);
1889 case TYPE_CODE_UNION:
1890 resolved_type = resolve_dynamic_union (type, addr);
1893 case TYPE_CODE_STRUCT:
1894 resolved_type = resolve_dynamic_struct (type, addr);
1898 return resolved_type;
1901 /* See gdbtypes.h */
1904 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1906 return resolve_dynamic_type_internal (type, addr, 1);
1909 /* Find the real type of TYPE. This function returns the real type,
1910 after removing all layers of typedefs, and completing opaque or stub
1911 types. Completion changes the TYPE argument, but stripping of
1914 Instance flags (e.g. const/volatile) are preserved as typedefs are
1915 stripped. If necessary a new qualified form of the underlying type
1918 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1919 not been computed and we're either in the middle of reading symbols, or
1920 there was no name for the typedef in the debug info.
1922 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1923 QUITs in the symbol reading code can also throw.
1924 Thus this function can throw an exception.
1926 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1929 If this is a stubbed struct (i.e. declared as struct foo *), see if
1930 we can find a full definition in some other file. If so, copy this
1931 definition, so we can use it in future. There used to be a comment
1932 (but not any code) that if we don't find a full definition, we'd
1933 set a flag so we don't spend time in the future checking the same
1934 type. That would be a mistake, though--we might load in more
1935 symbols which contain a full definition for the type. */
1938 check_typedef (struct type *type)
1940 struct type *orig_type = type;
1941 /* While we're removing typedefs, we don't want to lose qualifiers.
1942 E.g., const/volatile. */
1943 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1947 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1949 if (!TYPE_TARGET_TYPE (type))
1954 /* It is dangerous to call lookup_symbol if we are currently
1955 reading a symtab. Infinite recursion is one danger. */
1956 if (currently_reading_symtab)
1957 return make_qualified_type (type, instance_flags, NULL);
1959 name = type_name_no_tag (type);
1960 /* FIXME: shouldn't we separately check the TYPE_NAME and
1961 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1962 VAR_DOMAIN as appropriate? (this code was written before
1963 TYPE_NAME and TYPE_TAG_NAME were separate). */
1966 stub_noname_complaint ();
1967 return make_qualified_type (type, instance_flags, NULL);
1969 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1971 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1972 else /* TYPE_CODE_UNDEF */
1973 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1975 type = TYPE_TARGET_TYPE (type);
1977 /* Preserve the instance flags as we traverse down the typedef chain.
1979 Handling address spaces/classes is nasty, what do we do if there's a
1981 E.g., what if an outer typedef marks the type as class_1 and an inner
1982 typedef marks the type as class_2?
1983 This is the wrong place to do such error checking. We leave it to
1984 the code that created the typedef in the first place to flag the
1985 error. We just pick the outer address space (akin to letting the
1986 outer cast in a chain of casting win), instead of assuming
1987 "it can't happen". */
1989 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1990 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1991 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1992 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1994 /* Treat code vs data spaces and address classes separately. */
1995 if ((instance_flags & ALL_SPACES) != 0)
1996 new_instance_flags &= ~ALL_SPACES;
1997 if ((instance_flags & ALL_CLASSES) != 0)
1998 new_instance_flags &= ~ALL_CLASSES;
2000 instance_flags |= new_instance_flags;
2004 /* If this is a struct/class/union with no fields, then check
2005 whether a full definition exists somewhere else. This is for
2006 systems where a type definition with no fields is issued for such
2007 types, instead of identifying them as stub types in the first
2010 if (TYPE_IS_OPAQUE (type)
2011 && opaque_type_resolution
2012 && !currently_reading_symtab)
2014 const char *name = type_name_no_tag (type);
2015 struct type *newtype;
2019 stub_noname_complaint ();
2020 return make_qualified_type (type, instance_flags, NULL);
2022 newtype = lookup_transparent_type (name);
2026 /* If the resolved type and the stub are in the same
2027 objfile, then replace the stub type with the real deal.
2028 But if they're in separate objfiles, leave the stub
2029 alone; we'll just look up the transparent type every time
2030 we call check_typedef. We can't create pointers between
2031 types allocated to different objfiles, since they may
2032 have different lifetimes. Trying to copy NEWTYPE over to
2033 TYPE's objfile is pointless, too, since you'll have to
2034 move over any other types NEWTYPE refers to, which could
2035 be an unbounded amount of stuff. */
2036 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2037 type = make_qualified_type (newtype,
2038 TYPE_INSTANCE_FLAGS (type),
2044 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2046 else if (TYPE_STUB (type) && !currently_reading_symtab)
2048 const char *name = type_name_no_tag (type);
2049 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2050 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2051 as appropriate? (this code was written before TYPE_NAME and
2052 TYPE_TAG_NAME were separate). */
2057 stub_noname_complaint ();
2058 return make_qualified_type (type, instance_flags, NULL);
2060 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2063 /* Same as above for opaque types, we can replace the stub
2064 with the complete type only if they are in the same
2066 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2067 type = make_qualified_type (SYMBOL_TYPE (sym),
2068 TYPE_INSTANCE_FLAGS (type),
2071 type = SYMBOL_TYPE (sym);
2075 if (TYPE_TARGET_STUB (type))
2077 struct type *range_type;
2078 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2080 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2082 /* Nothing we can do. */
2084 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2086 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2087 TYPE_TARGET_STUB (type) = 0;
2091 type = make_qualified_type (type, instance_flags, NULL);
2093 /* Cache TYPE_LENGTH for future use. */
2094 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2099 /* Parse a type expression in the string [P..P+LENGTH). If an error
2100 occurs, silently return a void type. */
2102 static struct type *
2103 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2105 struct ui_file *saved_gdb_stderr;
2106 struct type *type = NULL; /* Initialize to keep gcc happy. */
2107 volatile struct gdb_exception except;
2109 /* Suppress error messages. */
2110 saved_gdb_stderr = gdb_stderr;
2111 gdb_stderr = ui_file_new ();
2113 /* Call parse_and_eval_type() without fear of longjmp()s. */
2114 TRY_CATCH (except, RETURN_MASK_ERROR)
2116 type = parse_and_eval_type (p, length);
2119 if (except.reason < 0)
2120 type = builtin_type (gdbarch)->builtin_void;
2122 /* Stop suppressing error messages. */
2123 ui_file_delete (gdb_stderr);
2124 gdb_stderr = saved_gdb_stderr;
2129 /* Ugly hack to convert method stubs into method types.
2131 He ain't kiddin'. This demangles the name of the method into a
2132 string including argument types, parses out each argument type,
2133 generates a string casting a zero to that type, evaluates the
2134 string, and stuffs the resulting type into an argtype vector!!!
2135 Then it knows the type of the whole function (including argument
2136 types for overloading), which info used to be in the stab's but was
2137 removed to hack back the space required for them. */
2140 check_stub_method (struct type *type, int method_id, int signature_id)
2142 struct gdbarch *gdbarch = get_type_arch (type);
2144 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2145 char *demangled_name = gdb_demangle (mangled_name,
2146 DMGL_PARAMS | DMGL_ANSI);
2147 char *argtypetext, *p;
2148 int depth = 0, argcount = 1;
2149 struct field *argtypes;
2152 /* Make sure we got back a function string that we can use. */
2154 p = strchr (demangled_name, '(');
2158 if (demangled_name == NULL || p == NULL)
2159 error (_("Internal: Cannot demangle mangled name `%s'."),
2162 /* Now, read in the parameters that define this type. */
2167 if (*p == '(' || *p == '<')
2171 else if (*p == ')' || *p == '>')
2175 else if (*p == ',' && depth == 0)
2183 /* If we read one argument and it was ``void'', don't count it. */
2184 if (strncmp (argtypetext, "(void)", 6) == 0)
2187 /* We need one extra slot, for the THIS pointer. */
2189 argtypes = (struct field *)
2190 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2193 /* Add THIS pointer for non-static methods. */
2194 f = TYPE_FN_FIELDLIST1 (type, method_id);
2195 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2199 argtypes[0].type = lookup_pointer_type (type);
2203 if (*p != ')') /* () means no args, skip while. */
2208 if (depth <= 0 && (*p == ',' || *p == ')'))
2210 /* Avoid parsing of ellipsis, they will be handled below.
2211 Also avoid ``void'' as above. */
2212 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2213 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2215 argtypes[argcount].type =
2216 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2219 argtypetext = p + 1;
2222 if (*p == '(' || *p == '<')
2226 else if (*p == ')' || *p == '>')
2235 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2237 /* Now update the old "stub" type into a real type. */
2238 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2239 TYPE_DOMAIN_TYPE (mtype) = type;
2240 TYPE_FIELDS (mtype) = argtypes;
2241 TYPE_NFIELDS (mtype) = argcount;
2242 TYPE_STUB (mtype) = 0;
2243 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2245 TYPE_VARARGS (mtype) = 1;
2247 xfree (demangled_name);
2250 /* This is the external interface to check_stub_method, above. This
2251 function unstubs all of the signatures for TYPE's METHOD_ID method
2252 name. After calling this function TYPE_FN_FIELD_STUB will be
2253 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2256 This function unfortunately can not die until stabs do. */
2259 check_stub_method_group (struct type *type, int method_id)
2261 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2262 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2263 int j, found_stub = 0;
2265 for (j = 0; j < len; j++)
2266 if (TYPE_FN_FIELD_STUB (f, j))
2269 check_stub_method (type, method_id, j);
2272 /* GNU v3 methods with incorrect names were corrected when we read
2273 in type information, because it was cheaper to do it then. The
2274 only GNU v2 methods with incorrect method names are operators and
2275 destructors; destructors were also corrected when we read in type
2278 Therefore the only thing we need to handle here are v2 operator
2280 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2283 char dem_opname[256];
2285 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2287 dem_opname, DMGL_ANSI);
2289 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2293 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2297 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2298 const struct cplus_struct_type cplus_struct_default = { };
2301 allocate_cplus_struct_type (struct type *type)
2303 if (HAVE_CPLUS_STRUCT (type))
2304 /* Structure was already allocated. Nothing more to do. */
2307 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2308 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2309 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2310 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2313 const struct gnat_aux_type gnat_aux_default =
2316 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2317 and allocate the associated gnat-specific data. The gnat-specific
2318 data is also initialized to gnat_aux_default. */
2321 allocate_gnat_aux_type (struct type *type)
2323 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2324 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2325 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2326 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2329 /* Helper function to initialize the standard scalar types.
2331 If NAME is non-NULL, then it is used to initialize the type name.
2332 Note that NAME is not copied; it is required to have a lifetime at
2333 least as long as OBJFILE. */
2336 init_type (enum type_code code, int length, int flags,
2337 const char *name, struct objfile *objfile)
2341 type = alloc_type (objfile);
2342 TYPE_CODE (type) = code;
2343 TYPE_LENGTH (type) = length;
2345 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2346 if (flags & TYPE_FLAG_UNSIGNED)
2347 TYPE_UNSIGNED (type) = 1;
2348 if (flags & TYPE_FLAG_NOSIGN)
2349 TYPE_NOSIGN (type) = 1;
2350 if (flags & TYPE_FLAG_STUB)
2351 TYPE_STUB (type) = 1;
2352 if (flags & TYPE_FLAG_TARGET_STUB)
2353 TYPE_TARGET_STUB (type) = 1;
2354 if (flags & TYPE_FLAG_STATIC)
2355 TYPE_STATIC (type) = 1;
2356 if (flags & TYPE_FLAG_PROTOTYPED)
2357 TYPE_PROTOTYPED (type) = 1;
2358 if (flags & TYPE_FLAG_INCOMPLETE)
2359 TYPE_INCOMPLETE (type) = 1;
2360 if (flags & TYPE_FLAG_VARARGS)
2361 TYPE_VARARGS (type) = 1;
2362 if (flags & TYPE_FLAG_VECTOR)
2363 TYPE_VECTOR (type) = 1;
2364 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2365 TYPE_STUB_SUPPORTED (type) = 1;
2366 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2367 TYPE_FIXED_INSTANCE (type) = 1;
2368 if (flags & TYPE_FLAG_GNU_IFUNC)
2369 TYPE_GNU_IFUNC (type) = 1;
2371 TYPE_NAME (type) = name;
2375 if (name && strcmp (name, "char") == 0)
2376 TYPE_NOSIGN (type) = 1;
2380 case TYPE_CODE_STRUCT:
2381 case TYPE_CODE_UNION:
2382 case TYPE_CODE_NAMESPACE:
2383 INIT_CPLUS_SPECIFIC (type);
2386 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2388 case TYPE_CODE_FUNC:
2389 INIT_FUNC_SPECIFIC (type);
2395 /* Queries on types. */
2398 can_dereference (struct type *t)
2400 /* FIXME: Should we return true for references as well as
2405 && TYPE_CODE (t) == TYPE_CODE_PTR
2406 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2410 is_integral_type (struct type *t)
2415 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2416 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2417 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2418 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2419 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2420 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2423 /* Return true if TYPE is scalar. */
2426 is_scalar_type (struct type *type)
2428 CHECK_TYPEDEF (type);
2430 switch (TYPE_CODE (type))
2432 case TYPE_CODE_ARRAY:
2433 case TYPE_CODE_STRUCT:
2434 case TYPE_CODE_UNION:
2436 case TYPE_CODE_STRING:
2443 /* Return true if T is scalar, or a composite type which in practice has
2444 the memory layout of a scalar type. E.g., an array or struct with only
2445 one scalar element inside it, or a union with only scalar elements. */
2448 is_scalar_type_recursive (struct type *t)
2452 if (is_scalar_type (t))
2454 /* Are we dealing with an array or string of known dimensions? */
2455 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2456 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2457 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2459 LONGEST low_bound, high_bound;
2460 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2462 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2464 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2466 /* Are we dealing with a struct with one element? */
2467 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2468 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2469 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2471 int i, n = TYPE_NFIELDS (t);
2473 /* If all elements of the union are scalar, then the union is scalar. */
2474 for (i = 0; i < n; i++)
2475 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2484 /* A helper function which returns true if types A and B represent the
2485 "same" class type. This is true if the types have the same main
2486 type, or the same name. */
2489 class_types_same_p (const struct type *a, const struct type *b)
2491 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2492 || (TYPE_NAME (a) && TYPE_NAME (b)
2493 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2496 /* If BASE is an ancestor of DCLASS return the distance between them.
2497 otherwise return -1;
2501 class B: public A {};
2502 class C: public B {};
2505 distance_to_ancestor (A, A, 0) = 0
2506 distance_to_ancestor (A, B, 0) = 1
2507 distance_to_ancestor (A, C, 0) = 2
2508 distance_to_ancestor (A, D, 0) = 3
2510 If PUBLIC is 1 then only public ancestors are considered,
2511 and the function returns the distance only if BASE is a public ancestor
2515 distance_to_ancestor (A, D, 1) = -1. */
2518 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2523 CHECK_TYPEDEF (base);
2524 CHECK_TYPEDEF (dclass);
2526 if (class_types_same_p (base, dclass))
2529 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2531 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2534 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2542 /* Check whether BASE is an ancestor or base class or DCLASS
2543 Return 1 if so, and 0 if not.
2544 Note: If BASE and DCLASS are of the same type, this function
2545 will return 1. So for some class A, is_ancestor (A, A) will
2549 is_ancestor (struct type *base, struct type *dclass)
2551 return distance_to_ancestor (base, dclass, 0) >= 0;
2554 /* Like is_ancestor, but only returns true when BASE is a public
2555 ancestor of DCLASS. */
2558 is_public_ancestor (struct type *base, struct type *dclass)
2560 return distance_to_ancestor (base, dclass, 1) >= 0;
2563 /* A helper function for is_unique_ancestor. */
2566 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2568 const gdb_byte *valaddr, int embedded_offset,
2569 CORE_ADDR address, struct value *val)
2573 CHECK_TYPEDEF (base);
2574 CHECK_TYPEDEF (dclass);
2576 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2581 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2583 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2586 if (class_types_same_p (base, iter))
2588 /* If this is the first subclass, set *OFFSET and set count
2589 to 1. Otherwise, if this is at the same offset as
2590 previous instances, do nothing. Otherwise, increment
2594 *offset = this_offset;
2597 else if (this_offset == *offset)
2605 count += is_unique_ancestor_worker (base, iter, offset,
2607 embedded_offset + this_offset,
2614 /* Like is_ancestor, but only returns true if BASE is a unique base
2615 class of the type of VAL. */
2618 is_unique_ancestor (struct type *base, struct value *val)
2622 return is_unique_ancestor_worker (base, value_type (val), &offset,
2623 value_contents_for_printing (val),
2624 value_embedded_offset (val),
2625 value_address (val), val) == 1;
2629 /* Overload resolution. */
2631 /* Return the sum of the rank of A with the rank of B. */
2634 sum_ranks (struct rank a, struct rank b)
2637 c.rank = a.rank + b.rank;
2638 c.subrank = a.subrank + b.subrank;
2642 /* Compare rank A and B and return:
2644 1 if a is better than b
2645 -1 if b is better than a. */
2648 compare_ranks (struct rank a, struct rank b)
2650 if (a.rank == b.rank)
2652 if (a.subrank == b.subrank)
2654 if (a.subrank < b.subrank)
2656 if (a.subrank > b.subrank)
2660 if (a.rank < b.rank)
2663 /* a.rank > b.rank */
2667 /* Functions for overload resolution begin here. */
2669 /* Compare two badness vectors A and B and return the result.
2670 0 => A and B are identical
2671 1 => A and B are incomparable
2672 2 => A is better than B
2673 3 => A is worse than B */
2676 compare_badness (struct badness_vector *a, struct badness_vector *b)
2680 short found_pos = 0; /* any positives in c? */
2681 short found_neg = 0; /* any negatives in c? */
2683 /* differing lengths => incomparable */
2684 if (a->length != b->length)
2687 /* Subtract b from a */
2688 for (i = 0; i < a->length; i++)
2690 tmp = compare_ranks (b->rank[i], a->rank[i]);
2700 return 1; /* incomparable */
2702 return 3; /* A > B */
2708 return 2; /* A < B */
2710 return 0; /* A == B */
2714 /* Rank a function by comparing its parameter types (PARMS, length
2715 NPARMS), to the types of an argument list (ARGS, length NARGS).
2716 Return a pointer to a badness vector. This has NARGS + 1
2719 struct badness_vector *
2720 rank_function (struct type **parms, int nparms,
2721 struct value **args, int nargs)
2724 struct badness_vector *bv;
2725 int min_len = nparms < nargs ? nparms : nargs;
2727 bv = xmalloc (sizeof (struct badness_vector));
2728 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2729 bv->rank = XNEWVEC (struct rank, nargs + 1);
2731 /* First compare the lengths of the supplied lists.
2732 If there is a mismatch, set it to a high value. */
2734 /* pai/1997-06-03 FIXME: when we have debug info about default
2735 arguments and ellipsis parameter lists, we should consider those
2736 and rank the length-match more finely. */
2738 LENGTH_MATCH (bv) = (nargs != nparms)
2739 ? LENGTH_MISMATCH_BADNESS
2740 : EXACT_MATCH_BADNESS;
2742 /* Now rank all the parameters of the candidate function. */
2743 for (i = 1; i <= min_len; i++)
2744 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2747 /* If more arguments than parameters, add dummy entries. */
2748 for (i = min_len + 1; i <= nargs; i++)
2749 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2754 /* Compare the names of two integer types, assuming that any sign
2755 qualifiers have been checked already. We do it this way because
2756 there may be an "int" in the name of one of the types. */
2759 integer_types_same_name_p (const char *first, const char *second)
2761 int first_p, second_p;
2763 /* If both are shorts, return 1; if neither is a short, keep
2765 first_p = (strstr (first, "short") != NULL);
2766 second_p = (strstr (second, "short") != NULL);
2767 if (first_p && second_p)
2769 if (first_p || second_p)
2772 /* Likewise for long. */
2773 first_p = (strstr (first, "long") != NULL);
2774 second_p = (strstr (second, "long") != NULL);
2775 if (first_p && second_p)
2777 if (first_p || second_p)
2780 /* Likewise for char. */
2781 first_p = (strstr (first, "char") != NULL);
2782 second_p = (strstr (second, "char") != NULL);
2783 if (first_p && second_p)
2785 if (first_p || second_p)
2788 /* They must both be ints. */
2792 /* Compares type A to type B returns 1 if the represent the same type
2796 types_equal (struct type *a, struct type *b)
2798 /* Identical type pointers. */
2799 /* However, this still doesn't catch all cases of same type for b
2800 and a. The reason is that builtin types are different from
2801 the same ones constructed from the object. */
2805 /* Resolve typedefs */
2806 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2807 a = check_typedef (a);
2808 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2809 b = check_typedef (b);
2811 /* If after resolving typedefs a and b are not of the same type
2812 code then they are not equal. */
2813 if (TYPE_CODE (a) != TYPE_CODE (b))
2816 /* If a and b are both pointers types or both reference types then
2817 they are equal of the same type iff the objects they refer to are
2818 of the same type. */
2819 if (TYPE_CODE (a) == TYPE_CODE_PTR
2820 || TYPE_CODE (a) == TYPE_CODE_REF)
2821 return types_equal (TYPE_TARGET_TYPE (a),
2822 TYPE_TARGET_TYPE (b));
2824 /* Well, damnit, if the names are exactly the same, I'll say they
2825 are exactly the same. This happens when we generate method
2826 stubs. The types won't point to the same address, but they
2827 really are the same. */
2829 if (TYPE_NAME (a) && TYPE_NAME (b)
2830 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2833 /* Check if identical after resolving typedefs. */
2837 /* Two function types are equal if their argument and return types
2839 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2843 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2846 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2849 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2850 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2859 /* Deep comparison of types. */
2861 /* An entry in the type-equality bcache. */
2863 typedef struct type_equality_entry
2865 struct type *type1, *type2;
2866 } type_equality_entry_d;
2868 DEF_VEC_O (type_equality_entry_d);
2870 /* A helper function to compare two strings. Returns 1 if they are
2871 the same, 0 otherwise. Handles NULLs properly. */
2874 compare_maybe_null_strings (const char *s, const char *t)
2876 if (s == NULL && t != NULL)
2878 else if (s != NULL && t == NULL)
2880 else if (s == NULL && t== NULL)
2882 return strcmp (s, t) == 0;
2885 /* A helper function for check_types_worklist that checks two types for
2886 "deep" equality. Returns non-zero if the types are considered the
2887 same, zero otherwise. */
2890 check_types_equal (struct type *type1, struct type *type2,
2891 VEC (type_equality_entry_d) **worklist)
2893 CHECK_TYPEDEF (type1);
2894 CHECK_TYPEDEF (type2);
2899 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2900 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2901 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2902 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2903 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2904 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2905 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2906 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2907 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2910 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2911 TYPE_TAG_NAME (type2)))
2913 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2916 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2918 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2919 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2926 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2928 const struct field *field1 = &TYPE_FIELD (type1, i);
2929 const struct field *field2 = &TYPE_FIELD (type2, i);
2930 struct type_equality_entry entry;
2932 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2933 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2934 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2936 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2937 FIELD_NAME (*field2)))
2939 switch (FIELD_LOC_KIND (*field1))
2941 case FIELD_LOC_KIND_BITPOS:
2942 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2945 case FIELD_LOC_KIND_ENUMVAL:
2946 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2949 case FIELD_LOC_KIND_PHYSADDR:
2950 if (FIELD_STATIC_PHYSADDR (*field1)
2951 != FIELD_STATIC_PHYSADDR (*field2))
2954 case FIELD_LOC_KIND_PHYSNAME:
2955 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2956 FIELD_STATIC_PHYSNAME (*field2)))
2959 case FIELD_LOC_KIND_DWARF_BLOCK:
2961 struct dwarf2_locexpr_baton *block1, *block2;
2963 block1 = FIELD_DWARF_BLOCK (*field1);
2964 block2 = FIELD_DWARF_BLOCK (*field2);
2965 if (block1->per_cu != block2->per_cu
2966 || block1->size != block2->size
2967 || memcmp (block1->data, block2->data, block1->size) != 0)
2972 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2973 "%d by check_types_equal"),
2974 FIELD_LOC_KIND (*field1));
2977 entry.type1 = FIELD_TYPE (*field1);
2978 entry.type2 = FIELD_TYPE (*field2);
2979 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2983 if (TYPE_TARGET_TYPE (type1) != NULL)
2985 struct type_equality_entry entry;
2987 if (TYPE_TARGET_TYPE (type2) == NULL)
2990 entry.type1 = TYPE_TARGET_TYPE (type1);
2991 entry.type2 = TYPE_TARGET_TYPE (type2);
2992 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2994 else if (TYPE_TARGET_TYPE (type2) != NULL)
3000 /* Check types on a worklist for equality. Returns zero if any pair
3001 is not equal, non-zero if they are all considered equal. */
3004 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3005 struct bcache *cache)
3007 while (!VEC_empty (type_equality_entry_d, *worklist))
3009 struct type_equality_entry entry;
3012 entry = *VEC_last (type_equality_entry_d, *worklist);
3013 VEC_pop (type_equality_entry_d, *worklist);
3015 /* If the type pair has already been visited, we know it is
3017 bcache_full (&entry, sizeof (entry), cache, &added);
3021 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3028 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3029 "deep comparison". Otherwise return zero. */
3032 types_deeply_equal (struct type *type1, struct type *type2)
3034 volatile struct gdb_exception except;
3036 struct bcache *cache;
3037 VEC (type_equality_entry_d) *worklist = NULL;
3038 struct type_equality_entry entry;
3040 gdb_assert (type1 != NULL && type2 != NULL);
3042 /* Early exit for the simple case. */
3046 cache = bcache_xmalloc (NULL, NULL);
3048 entry.type1 = type1;
3049 entry.type2 = type2;
3050 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3052 TRY_CATCH (except, RETURN_MASK_ALL)
3054 result = check_types_worklist (&worklist, cache);
3056 /* check_types_worklist calls several nested helper functions,
3057 some of which can raise a GDB Exception, so we just check
3058 and rethrow here. If there is a GDB exception, a comparison
3059 is not capable (or trusted), so exit. */
3060 bcache_xfree (cache);
3061 VEC_free (type_equality_entry_d, worklist);
3062 /* Rethrow if there was a problem. */
3063 if (except.reason < 0)
3064 throw_exception (except);
3069 /* Compare one type (PARM) for compatibility with another (ARG).
3070 * PARM is intended to be the parameter type of a function; and
3071 * ARG is the supplied argument's type. This function tests if
3072 * the latter can be converted to the former.
3073 * VALUE is the argument's value or NULL if none (or called recursively)
3075 * Return 0 if they are identical types;
3076 * Otherwise, return an integer which corresponds to how compatible
3077 * PARM is to ARG. The higher the return value, the worse the match.
3078 * Generally the "bad" conversions are all uniformly assigned a 100. */
3081 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3083 struct rank rank = {0,0};
3085 if (types_equal (parm, arg))
3086 return EXACT_MATCH_BADNESS;
3088 /* Resolve typedefs */
3089 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3090 parm = check_typedef (parm);
3091 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3092 arg = check_typedef (arg);
3094 /* See through references, since we can almost make non-references
3096 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3097 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3098 REFERENCE_CONVERSION_BADNESS));
3099 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3100 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3101 REFERENCE_CONVERSION_BADNESS));
3103 /* Debugging only. */
3104 fprintf_filtered (gdb_stderr,
3105 "------ Arg is %s [%d], parm is %s [%d]\n",
3106 TYPE_NAME (arg), TYPE_CODE (arg),
3107 TYPE_NAME (parm), TYPE_CODE (parm));
3109 /* x -> y means arg of type x being supplied for parameter of type y. */
3111 switch (TYPE_CODE (parm))
3114 switch (TYPE_CODE (arg))
3118 /* Allowed pointer conversions are:
3119 (a) pointer to void-pointer conversion. */
3120 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3121 return VOID_PTR_CONVERSION_BADNESS;
3123 /* (b) pointer to ancestor-pointer conversion. */
3124 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3125 TYPE_TARGET_TYPE (arg),
3127 if (rank.subrank >= 0)
3128 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3130 return INCOMPATIBLE_TYPE_BADNESS;
3131 case TYPE_CODE_ARRAY:
3132 if (types_equal (TYPE_TARGET_TYPE (parm),
3133 TYPE_TARGET_TYPE (arg)))
3134 return EXACT_MATCH_BADNESS;
3135 return INCOMPATIBLE_TYPE_BADNESS;
3136 case TYPE_CODE_FUNC:
3137 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3139 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3141 if (value_as_long (value) == 0)
3143 /* Null pointer conversion: allow it to be cast to a pointer.
3144 [4.10.1 of C++ standard draft n3290] */
3145 return NULL_POINTER_CONVERSION_BADNESS;
3149 /* If type checking is disabled, allow the conversion. */
3150 if (!strict_type_checking)
3151 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3155 case TYPE_CODE_ENUM:
3156 case TYPE_CODE_FLAGS:
3157 case TYPE_CODE_CHAR:
3158 case TYPE_CODE_RANGE:
3159 case TYPE_CODE_BOOL:
3161 return INCOMPATIBLE_TYPE_BADNESS;
3163 case TYPE_CODE_ARRAY:
3164 switch (TYPE_CODE (arg))
3167 case TYPE_CODE_ARRAY:
3168 return rank_one_type (TYPE_TARGET_TYPE (parm),
3169 TYPE_TARGET_TYPE (arg), NULL);
3171 return INCOMPATIBLE_TYPE_BADNESS;
3173 case TYPE_CODE_FUNC:
3174 switch (TYPE_CODE (arg))
3176 case TYPE_CODE_PTR: /* funcptr -> func */
3177 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3179 return INCOMPATIBLE_TYPE_BADNESS;
3182 switch (TYPE_CODE (arg))
3185 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3187 /* Deal with signed, unsigned, and plain chars and
3188 signed and unsigned ints. */
3189 if (TYPE_NOSIGN (parm))
3191 /* This case only for character types. */
3192 if (TYPE_NOSIGN (arg))
3193 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3194 else /* signed/unsigned char -> plain char */
3195 return INTEGER_CONVERSION_BADNESS;
3197 else if (TYPE_UNSIGNED (parm))
3199 if (TYPE_UNSIGNED (arg))
3201 /* unsigned int -> unsigned int, or
3202 unsigned long -> unsigned long */
3203 if (integer_types_same_name_p (TYPE_NAME (parm),
3205 return EXACT_MATCH_BADNESS;
3206 else if (integer_types_same_name_p (TYPE_NAME (arg),
3208 && integer_types_same_name_p (TYPE_NAME (parm),
3210 /* unsigned int -> unsigned long */
3211 return INTEGER_PROMOTION_BADNESS;
3213 /* unsigned long -> unsigned int */
3214 return INTEGER_CONVERSION_BADNESS;
3218 if (integer_types_same_name_p (TYPE_NAME (arg),
3220 && integer_types_same_name_p (TYPE_NAME (parm),
3222 /* signed long -> unsigned int */
3223 return INTEGER_CONVERSION_BADNESS;
3225 /* signed int/long -> unsigned int/long */
3226 return INTEGER_CONVERSION_BADNESS;
3229 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3231 if (integer_types_same_name_p (TYPE_NAME (parm),
3233 return EXACT_MATCH_BADNESS;
3234 else if (integer_types_same_name_p (TYPE_NAME (arg),
3236 && integer_types_same_name_p (TYPE_NAME (parm),
3238 return INTEGER_PROMOTION_BADNESS;
3240 return INTEGER_CONVERSION_BADNESS;
3243 return INTEGER_CONVERSION_BADNESS;
3245 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3246 return INTEGER_PROMOTION_BADNESS;
3248 return INTEGER_CONVERSION_BADNESS;
3249 case TYPE_CODE_ENUM:
3250 case TYPE_CODE_FLAGS:
3251 case TYPE_CODE_CHAR:
3252 case TYPE_CODE_RANGE:
3253 case TYPE_CODE_BOOL:
3254 if (TYPE_DECLARED_CLASS (arg))
3255 return INCOMPATIBLE_TYPE_BADNESS;
3256 return INTEGER_PROMOTION_BADNESS;
3258 return INT_FLOAT_CONVERSION_BADNESS;
3260 return NS_POINTER_CONVERSION_BADNESS;
3262 return INCOMPATIBLE_TYPE_BADNESS;
3265 case TYPE_CODE_ENUM:
3266 switch (TYPE_CODE (arg))
3269 case TYPE_CODE_CHAR:
3270 case TYPE_CODE_RANGE:
3271 case TYPE_CODE_BOOL:
3272 case TYPE_CODE_ENUM:
3273 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3274 return INCOMPATIBLE_TYPE_BADNESS;
3275 return INTEGER_CONVERSION_BADNESS;
3277 return INT_FLOAT_CONVERSION_BADNESS;
3279 return INCOMPATIBLE_TYPE_BADNESS;
3282 case TYPE_CODE_CHAR:
3283 switch (TYPE_CODE (arg))
3285 case TYPE_CODE_RANGE:
3286 case TYPE_CODE_BOOL:
3287 case TYPE_CODE_ENUM:
3288 if (TYPE_DECLARED_CLASS (arg))
3289 return INCOMPATIBLE_TYPE_BADNESS;
3290 return INTEGER_CONVERSION_BADNESS;
3292 return INT_FLOAT_CONVERSION_BADNESS;
3294 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3295 return INTEGER_CONVERSION_BADNESS;
3296 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3297 return INTEGER_PROMOTION_BADNESS;
3298 /* >>> !! else fall through !! <<< */
3299 case TYPE_CODE_CHAR:
3300 /* Deal with signed, unsigned, and plain chars for C++ and
3301 with int cases falling through from previous case. */
3302 if (TYPE_NOSIGN (parm))
3304 if (TYPE_NOSIGN (arg))
3305 return EXACT_MATCH_BADNESS;
3307 return INTEGER_CONVERSION_BADNESS;
3309 else if (TYPE_UNSIGNED (parm))
3311 if (TYPE_UNSIGNED (arg))
3312 return EXACT_MATCH_BADNESS;
3314 return INTEGER_PROMOTION_BADNESS;
3316 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3317 return EXACT_MATCH_BADNESS;
3319 return INTEGER_CONVERSION_BADNESS;
3321 return INCOMPATIBLE_TYPE_BADNESS;
3324 case TYPE_CODE_RANGE:
3325 switch (TYPE_CODE (arg))
3328 case TYPE_CODE_CHAR:
3329 case TYPE_CODE_RANGE:
3330 case TYPE_CODE_BOOL:
3331 case TYPE_CODE_ENUM:
3332 return INTEGER_CONVERSION_BADNESS;
3334 return INT_FLOAT_CONVERSION_BADNESS;
3336 return INCOMPATIBLE_TYPE_BADNESS;
3339 case TYPE_CODE_BOOL:
3340 switch (TYPE_CODE (arg))
3342 /* n3290 draft, section 4.12.1 (conv.bool):
3344 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3345 pointer to member type can be converted to a prvalue of type
3346 bool. A zero value, null pointer value, or null member pointer
3347 value is converted to false; any other value is converted to
3348 true. A prvalue of type std::nullptr_t can be converted to a
3349 prvalue of type bool; the resulting value is false." */
3351 case TYPE_CODE_CHAR:
3352 case TYPE_CODE_ENUM:
3354 case TYPE_CODE_MEMBERPTR:
3356 return BOOL_CONVERSION_BADNESS;
3357 case TYPE_CODE_RANGE:
3358 return INCOMPATIBLE_TYPE_BADNESS;
3359 case TYPE_CODE_BOOL:
3360 return EXACT_MATCH_BADNESS;
3362 return INCOMPATIBLE_TYPE_BADNESS;
3366 switch (TYPE_CODE (arg))
3369 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3370 return FLOAT_PROMOTION_BADNESS;
3371 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3372 return EXACT_MATCH_BADNESS;
3374 return FLOAT_CONVERSION_BADNESS;
3376 case TYPE_CODE_BOOL:
3377 case TYPE_CODE_ENUM:
3378 case TYPE_CODE_RANGE:
3379 case TYPE_CODE_CHAR:
3380 return INT_FLOAT_CONVERSION_BADNESS;
3382 return INCOMPATIBLE_TYPE_BADNESS;
3385 case TYPE_CODE_COMPLEX:
3386 switch (TYPE_CODE (arg))
3387 { /* Strictly not needed for C++, but... */
3389 return FLOAT_PROMOTION_BADNESS;
3390 case TYPE_CODE_COMPLEX:
3391 return EXACT_MATCH_BADNESS;
3393 return INCOMPATIBLE_TYPE_BADNESS;
3396 case TYPE_CODE_STRUCT:
3397 /* currently same as TYPE_CODE_CLASS. */
3398 switch (TYPE_CODE (arg))
3400 case TYPE_CODE_STRUCT:
3401 /* Check for derivation */
3402 rank.subrank = distance_to_ancestor (parm, arg, 0);
3403 if (rank.subrank >= 0)
3404 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3405 /* else fall through */
3407 return INCOMPATIBLE_TYPE_BADNESS;
3410 case TYPE_CODE_UNION:
3411 switch (TYPE_CODE (arg))
3413 case TYPE_CODE_UNION:
3415 return INCOMPATIBLE_TYPE_BADNESS;
3418 case TYPE_CODE_MEMBERPTR:
3419 switch (TYPE_CODE (arg))
3422 return INCOMPATIBLE_TYPE_BADNESS;
3425 case TYPE_CODE_METHOD:
3426 switch (TYPE_CODE (arg))
3430 return INCOMPATIBLE_TYPE_BADNESS;
3434 switch (TYPE_CODE (arg))
3438 return INCOMPATIBLE_TYPE_BADNESS;
3443 switch (TYPE_CODE (arg))
3447 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3448 TYPE_FIELD_TYPE (arg, 0), NULL);
3450 return INCOMPATIBLE_TYPE_BADNESS;
3453 case TYPE_CODE_VOID:
3455 return INCOMPATIBLE_TYPE_BADNESS;
3456 } /* switch (TYPE_CODE (arg)) */
3459 /* End of functions for overload resolution. */
3461 /* Routines to pretty-print types. */
3464 print_bit_vector (B_TYPE *bits, int nbits)
3468 for (bitno = 0; bitno < nbits; bitno++)
3470 if ((bitno % 8) == 0)
3472 puts_filtered (" ");
3474 if (B_TST (bits, bitno))
3475 printf_filtered (("1"));
3477 printf_filtered (("0"));
3481 /* Note the first arg should be the "this" pointer, we may not want to
3482 include it since we may get into a infinitely recursive
3486 print_arg_types (struct field *args, int nargs, int spaces)
3492 for (i = 0; i < nargs; i++)
3493 recursive_dump_type (args[i].type, spaces + 2);
3498 field_is_static (struct field *f)
3500 /* "static" fields are the fields whose location is not relative
3501 to the address of the enclosing struct. It would be nice to
3502 have a dedicated flag that would be set for static fields when
3503 the type is being created. But in practice, checking the field
3504 loc_kind should give us an accurate answer. */
3505 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3506 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3510 dump_fn_fieldlists (struct type *type, int spaces)
3516 printfi_filtered (spaces, "fn_fieldlists ");
3517 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3518 printf_filtered ("\n");
3519 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3521 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3522 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3524 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3525 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3527 printf_filtered (_(") length %d\n"),
3528 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3529 for (overload_idx = 0;
3530 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3533 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3535 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3536 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3538 printf_filtered (")\n");
3539 printfi_filtered (spaces + 8, "type ");
3540 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3542 printf_filtered ("\n");
3544 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3547 printfi_filtered (spaces + 8, "args ");
3548 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3550 printf_filtered ("\n");
3552 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3553 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3556 printfi_filtered (spaces + 8, "fcontext ");
3557 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3559 printf_filtered ("\n");
3561 printfi_filtered (spaces + 8, "is_const %d\n",
3562 TYPE_FN_FIELD_CONST (f, overload_idx));
3563 printfi_filtered (spaces + 8, "is_volatile %d\n",
3564 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3565 printfi_filtered (spaces + 8, "is_private %d\n",
3566 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3567 printfi_filtered (spaces + 8, "is_protected %d\n",
3568 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3569 printfi_filtered (spaces + 8, "is_stub %d\n",
3570 TYPE_FN_FIELD_STUB (f, overload_idx));
3571 printfi_filtered (spaces + 8, "voffset %u\n",
3572 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3578 print_cplus_stuff (struct type *type, int spaces)
3580 printfi_filtered (spaces, "n_baseclasses %d\n",
3581 TYPE_N_BASECLASSES (type));
3582 printfi_filtered (spaces, "nfn_fields %d\n",
3583 TYPE_NFN_FIELDS (type));
3584 if (TYPE_N_BASECLASSES (type) > 0)
3586 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3587 TYPE_N_BASECLASSES (type));
3588 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3590 printf_filtered (")");
3592 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3593 TYPE_N_BASECLASSES (type));
3594 puts_filtered ("\n");
3596 if (TYPE_NFIELDS (type) > 0)
3598 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3600 printfi_filtered (spaces,
3601 "private_field_bits (%d bits at *",
3602 TYPE_NFIELDS (type));
3603 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3605 printf_filtered (")");
3606 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3607 TYPE_NFIELDS (type));
3608 puts_filtered ("\n");
3610 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3612 printfi_filtered (spaces,
3613 "protected_field_bits (%d bits at *",
3614 TYPE_NFIELDS (type));
3615 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3617 printf_filtered (")");
3618 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3619 TYPE_NFIELDS (type));
3620 puts_filtered ("\n");
3623 if (TYPE_NFN_FIELDS (type) > 0)
3625 dump_fn_fieldlists (type, spaces);
3629 /* Print the contents of the TYPE's type_specific union, assuming that
3630 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3633 print_gnat_stuff (struct type *type, int spaces)
3635 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3637 recursive_dump_type (descriptive_type, spaces + 2);
3640 static struct obstack dont_print_type_obstack;
3643 recursive_dump_type (struct type *type, int spaces)
3648 obstack_begin (&dont_print_type_obstack, 0);
3650 if (TYPE_NFIELDS (type) > 0
3651 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3653 struct type **first_dont_print
3654 = (struct type **) obstack_base (&dont_print_type_obstack);
3656 int i = (struct type **)
3657 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3661 if (type == first_dont_print[i])
3663 printfi_filtered (spaces, "type node ");
3664 gdb_print_host_address (type, gdb_stdout);
3665 printf_filtered (_(" <same as already seen type>\n"));
3670 obstack_ptr_grow (&dont_print_type_obstack, type);
3673 printfi_filtered (spaces, "type node ");
3674 gdb_print_host_address (type, gdb_stdout);
3675 printf_filtered ("\n");
3676 printfi_filtered (spaces, "name '%s' (",
3677 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3678 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3679 printf_filtered (")\n");
3680 printfi_filtered (spaces, "tagname '%s' (",
3681 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3682 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3683 printf_filtered (")\n");
3684 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3685 switch (TYPE_CODE (type))
3687 case TYPE_CODE_UNDEF:
3688 printf_filtered ("(TYPE_CODE_UNDEF)");
3691 printf_filtered ("(TYPE_CODE_PTR)");
3693 case TYPE_CODE_ARRAY:
3694 printf_filtered ("(TYPE_CODE_ARRAY)");
3696 case TYPE_CODE_STRUCT:
3697 printf_filtered ("(TYPE_CODE_STRUCT)");
3699 case TYPE_CODE_UNION:
3700 printf_filtered ("(TYPE_CODE_UNION)");
3702 case TYPE_CODE_ENUM:
3703 printf_filtered ("(TYPE_CODE_ENUM)");
3705 case TYPE_CODE_FLAGS:
3706 printf_filtered ("(TYPE_CODE_FLAGS)");
3708 case TYPE_CODE_FUNC:
3709 printf_filtered ("(TYPE_CODE_FUNC)");
3712 printf_filtered ("(TYPE_CODE_INT)");
3715 printf_filtered ("(TYPE_CODE_FLT)");
3717 case TYPE_CODE_VOID:
3718 printf_filtered ("(TYPE_CODE_VOID)");
3721 printf_filtered ("(TYPE_CODE_SET)");
3723 case TYPE_CODE_RANGE:
3724 printf_filtered ("(TYPE_CODE_RANGE)");
3726 case TYPE_CODE_STRING:
3727 printf_filtered ("(TYPE_CODE_STRING)");
3729 case TYPE_CODE_ERROR:
3730 printf_filtered ("(TYPE_CODE_ERROR)");
3732 case TYPE_CODE_MEMBERPTR:
3733 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3735 case TYPE_CODE_METHODPTR:
3736 printf_filtered ("(TYPE_CODE_METHODPTR)");
3738 case TYPE_CODE_METHOD:
3739 printf_filtered ("(TYPE_CODE_METHOD)");
3742 printf_filtered ("(TYPE_CODE_REF)");
3744 case TYPE_CODE_CHAR:
3745 printf_filtered ("(TYPE_CODE_CHAR)");
3747 case TYPE_CODE_BOOL:
3748 printf_filtered ("(TYPE_CODE_BOOL)");
3750 case TYPE_CODE_COMPLEX:
3751 printf_filtered ("(TYPE_CODE_COMPLEX)");
3753 case TYPE_CODE_TYPEDEF:
3754 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3756 case TYPE_CODE_NAMESPACE:
3757 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3760 printf_filtered ("(UNKNOWN TYPE CODE)");
3763 puts_filtered ("\n");
3764 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3765 if (TYPE_OBJFILE_OWNED (type))
3767 printfi_filtered (spaces, "objfile ");
3768 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3772 printfi_filtered (spaces, "gdbarch ");
3773 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3775 printf_filtered ("\n");
3776 printfi_filtered (spaces, "target_type ");
3777 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3778 printf_filtered ("\n");
3779 if (TYPE_TARGET_TYPE (type) != NULL)
3781 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3783 printfi_filtered (spaces, "pointer_type ");
3784 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3785 printf_filtered ("\n");
3786 printfi_filtered (spaces, "reference_type ");
3787 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3788 printf_filtered ("\n");
3789 printfi_filtered (spaces, "type_chain ");
3790 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3791 printf_filtered ("\n");
3792 printfi_filtered (spaces, "instance_flags 0x%x",
3793 TYPE_INSTANCE_FLAGS (type));
3794 if (TYPE_CONST (type))
3796 puts_filtered (" TYPE_FLAG_CONST");
3798 if (TYPE_VOLATILE (type))
3800 puts_filtered (" TYPE_FLAG_VOLATILE");
3802 if (TYPE_CODE_SPACE (type))
3804 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3806 if (TYPE_DATA_SPACE (type))
3808 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3810 if (TYPE_ADDRESS_CLASS_1 (type))
3812 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3814 if (TYPE_ADDRESS_CLASS_2 (type))
3816 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3818 if (TYPE_RESTRICT (type))
3820 puts_filtered (" TYPE_FLAG_RESTRICT");
3822 puts_filtered ("\n");
3824 printfi_filtered (spaces, "flags");
3825 if (TYPE_UNSIGNED (type))
3827 puts_filtered (" TYPE_FLAG_UNSIGNED");
3829 if (TYPE_NOSIGN (type))
3831 puts_filtered (" TYPE_FLAG_NOSIGN");
3833 if (TYPE_STUB (type))
3835 puts_filtered (" TYPE_FLAG_STUB");
3837 if (TYPE_TARGET_STUB (type))
3839 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3841 if (TYPE_STATIC (type))
3843 puts_filtered (" TYPE_FLAG_STATIC");
3845 if (TYPE_PROTOTYPED (type))
3847 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3849 if (TYPE_INCOMPLETE (type))
3851 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3853 if (TYPE_VARARGS (type))
3855 puts_filtered (" TYPE_FLAG_VARARGS");
3857 /* This is used for things like AltiVec registers on ppc. Gcc emits
3858 an attribute for the array type, which tells whether or not we
3859 have a vector, instead of a regular array. */
3860 if (TYPE_VECTOR (type))
3862 puts_filtered (" TYPE_FLAG_VECTOR");
3864 if (TYPE_FIXED_INSTANCE (type))
3866 puts_filtered (" TYPE_FIXED_INSTANCE");
3868 if (TYPE_STUB_SUPPORTED (type))
3870 puts_filtered (" TYPE_STUB_SUPPORTED");
3872 if (TYPE_NOTTEXT (type))
3874 puts_filtered (" TYPE_NOTTEXT");
3876 puts_filtered ("\n");
3877 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3878 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3879 puts_filtered ("\n");
3880 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3882 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3883 printfi_filtered (spaces + 2,
3884 "[%d] enumval %s type ",
3885 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3887 printfi_filtered (spaces + 2,
3888 "[%d] bitpos %d bitsize %d type ",
3889 idx, TYPE_FIELD_BITPOS (type, idx),
3890 TYPE_FIELD_BITSIZE (type, idx));
3891 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3892 printf_filtered (" name '%s' (",
3893 TYPE_FIELD_NAME (type, idx) != NULL
3894 ? TYPE_FIELD_NAME (type, idx)
3896 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3897 printf_filtered (")\n");
3898 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3900 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3903 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3905 printfi_filtered (spaces, "low %s%s high %s%s\n",
3906 plongest (TYPE_LOW_BOUND (type)),
3907 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3908 plongest (TYPE_HIGH_BOUND (type)),
3909 TYPE_HIGH_BOUND_UNDEFINED (type)
3910 ? " (undefined)" : "");
3912 printfi_filtered (spaces, "vptr_basetype ");
3913 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3914 puts_filtered ("\n");
3915 if (TYPE_VPTR_BASETYPE (type) != NULL)
3917 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3919 printfi_filtered (spaces, "vptr_fieldno %d\n",
3920 TYPE_VPTR_FIELDNO (type));
3922 switch (TYPE_SPECIFIC_FIELD (type))
3924 case TYPE_SPECIFIC_CPLUS_STUFF:
3925 printfi_filtered (spaces, "cplus_stuff ");
3926 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3928 puts_filtered ("\n");
3929 print_cplus_stuff (type, spaces);
3932 case TYPE_SPECIFIC_GNAT_STUFF:
3933 printfi_filtered (spaces, "gnat_stuff ");
3934 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3935 puts_filtered ("\n");
3936 print_gnat_stuff (type, spaces);
3939 case TYPE_SPECIFIC_FLOATFORMAT:
3940 printfi_filtered (spaces, "floatformat ");
3941 if (TYPE_FLOATFORMAT (type) == NULL)
3942 puts_filtered ("(null)");
3945 puts_filtered ("{ ");
3946 if (TYPE_FLOATFORMAT (type)[0] == NULL
3947 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3948 puts_filtered ("(null)");
3950 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3952 puts_filtered (", ");
3953 if (TYPE_FLOATFORMAT (type)[1] == NULL
3954 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3955 puts_filtered ("(null)");
3957 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3959 puts_filtered (" }");
3961 puts_filtered ("\n");
3964 case TYPE_SPECIFIC_FUNC:
3965 printfi_filtered (spaces, "calling_convention %d\n",
3966 TYPE_CALLING_CONVENTION (type));
3967 /* tail_call_list is not printed. */
3972 obstack_free (&dont_print_type_obstack, NULL);
3975 /* Trivial helpers for the libiberty hash table, for mapping one
3980 struct type *old, *new;
3984 type_pair_hash (const void *item)
3986 const struct type_pair *pair = item;
3988 return htab_hash_pointer (pair->old);
3992 type_pair_eq (const void *item_lhs, const void *item_rhs)
3994 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3996 return lhs->old == rhs->old;
3999 /* Allocate the hash table used by copy_type_recursive to walk
4000 types without duplicates. We use OBJFILE's obstack, because
4001 OBJFILE is about to be deleted. */
4004 create_copied_types_hash (struct objfile *objfile)
4006 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4007 NULL, &objfile->objfile_obstack,
4008 hashtab_obstack_allocate,
4009 dummy_obstack_deallocate);
4012 /* Recursively copy (deep copy) TYPE, if it is associated with
4013 OBJFILE. Return a new type allocated using malloc, a saved type if
4014 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4015 not associated with OBJFILE. */
4018 copy_type_recursive (struct objfile *objfile,
4020 htab_t copied_types)
4022 struct type_pair *stored, pair;
4024 struct type *new_type;
4026 if (! TYPE_OBJFILE_OWNED (type))
4029 /* This type shouldn't be pointing to any types in other objfiles;
4030 if it did, the type might disappear unexpectedly. */
4031 gdb_assert (TYPE_OBJFILE (type) == objfile);
4034 slot = htab_find_slot (copied_types, &pair, INSERT);
4036 return ((struct type_pair *) *slot)->new;
4038 new_type = alloc_type_arch (get_type_arch (type));
4040 /* We must add the new type to the hash table immediately, in case
4041 we encounter this type again during a recursive call below. */
4043 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4045 stored->new = new_type;
4048 /* Copy the common fields of types. For the main type, we simply
4049 copy the entire thing and then update specific fields as needed. */
4050 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4051 TYPE_OBJFILE_OWNED (new_type) = 0;
4052 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4054 if (TYPE_NAME (type))
4055 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4056 if (TYPE_TAG_NAME (type))
4057 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4059 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4060 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4062 /* Copy the fields. */
4063 if (TYPE_NFIELDS (type))
4067 nfields = TYPE_NFIELDS (type);
4068 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4069 for (i = 0; i < nfields; i++)
4071 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4072 TYPE_FIELD_ARTIFICIAL (type, i);
4073 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4074 if (TYPE_FIELD_TYPE (type, i))
4075 TYPE_FIELD_TYPE (new_type, i)
4076 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4078 if (TYPE_FIELD_NAME (type, i))
4079 TYPE_FIELD_NAME (new_type, i) =
4080 xstrdup (TYPE_FIELD_NAME (type, i));
4081 switch (TYPE_FIELD_LOC_KIND (type, i))
4083 case FIELD_LOC_KIND_BITPOS:
4084 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4085 TYPE_FIELD_BITPOS (type, i));
4087 case FIELD_LOC_KIND_ENUMVAL:
4088 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4089 TYPE_FIELD_ENUMVAL (type, i));
4091 case FIELD_LOC_KIND_PHYSADDR:
4092 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4093 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4095 case FIELD_LOC_KIND_PHYSNAME:
4096 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4097 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4101 internal_error (__FILE__, __LINE__,
4102 _("Unexpected type field location kind: %d"),
4103 TYPE_FIELD_LOC_KIND (type, i));
4108 /* For range types, copy the bounds information. */
4109 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4111 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4112 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4115 /* Copy pointers to other types. */
4116 if (TYPE_TARGET_TYPE (type))
4117 TYPE_TARGET_TYPE (new_type) =
4118 copy_type_recursive (objfile,
4119 TYPE_TARGET_TYPE (type),
4121 if (TYPE_VPTR_BASETYPE (type))
4122 TYPE_VPTR_BASETYPE (new_type) =
4123 copy_type_recursive (objfile,
4124 TYPE_VPTR_BASETYPE (type),
4126 /* Maybe copy the type_specific bits.
4128 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4129 base classes and methods. There's no fundamental reason why we
4130 can't, but at the moment it is not needed. */
4132 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4133 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4134 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4135 || TYPE_CODE (type) == TYPE_CODE_UNION
4136 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4137 INIT_CPLUS_SPECIFIC (new_type);
4142 /* Make a copy of the given TYPE, except that the pointer & reference
4143 types are not preserved.
4145 This function assumes that the given type has an associated objfile.
4146 This objfile is used to allocate the new type. */
4149 copy_type (const struct type *type)
4151 struct type *new_type;
4153 gdb_assert (TYPE_OBJFILE_OWNED (type));
4155 new_type = alloc_type_copy (type);
4156 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4157 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4158 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4159 sizeof (struct main_type));
4164 /* Helper functions to initialize architecture-specific types. */
4166 /* Allocate a type structure associated with GDBARCH and set its
4167 CODE, LENGTH, and NAME fields. */
4170 arch_type (struct gdbarch *gdbarch,
4171 enum type_code code, int length, char *name)
4175 type = alloc_type_arch (gdbarch);
4176 TYPE_CODE (type) = code;
4177 TYPE_LENGTH (type) = length;
4180 TYPE_NAME (type) = xstrdup (name);
4185 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4186 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4187 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4190 arch_integer_type (struct gdbarch *gdbarch,
4191 int bit, int unsigned_p, char *name)
4195 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4197 TYPE_UNSIGNED (t) = 1;
4198 if (name && strcmp (name, "char") == 0)
4199 TYPE_NOSIGN (t) = 1;
4204 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4205 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4206 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4209 arch_character_type (struct gdbarch *gdbarch,
4210 int bit, int unsigned_p, char *name)
4214 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4216 TYPE_UNSIGNED (t) = 1;
4221 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4222 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4223 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4226 arch_boolean_type (struct gdbarch *gdbarch,
4227 int bit, int unsigned_p, char *name)
4231 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4233 TYPE_UNSIGNED (t) = 1;
4238 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4239 BIT is the type size in bits; if BIT equals -1, the size is
4240 determined by the floatformat. NAME is the type name. Set the
4241 TYPE_FLOATFORMAT from FLOATFORMATS. */
4244 arch_float_type (struct gdbarch *gdbarch,
4245 int bit, char *name, const struct floatformat **floatformats)
4251 gdb_assert (floatformats != NULL);
4252 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4253 bit = floatformats[0]->totalsize;
4255 gdb_assert (bit >= 0);
4257 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4258 TYPE_FLOATFORMAT (t) = floatformats;
4262 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4263 NAME is the type name. TARGET_TYPE is the component float type. */
4266 arch_complex_type (struct gdbarch *gdbarch,
4267 char *name, struct type *target_type)
4271 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4272 2 * TYPE_LENGTH (target_type), name);
4273 TYPE_TARGET_TYPE (t) = target_type;
4277 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4278 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4281 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4283 int nfields = length * TARGET_CHAR_BIT;
4286 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4287 TYPE_UNSIGNED (type) = 1;
4288 TYPE_NFIELDS (type) = nfields;
4289 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4294 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4295 position BITPOS is called NAME. */
4298 append_flags_type_flag (struct type *type, int bitpos, char *name)
4300 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4301 gdb_assert (bitpos < TYPE_NFIELDS (type));
4302 gdb_assert (bitpos >= 0);
4306 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4307 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4311 /* Don't show this field to the user. */
4312 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4316 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4317 specified by CODE) associated with GDBARCH. NAME is the type name. */
4320 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4324 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4325 t = arch_type (gdbarch, code, 0, NULL);
4326 TYPE_TAG_NAME (t) = name;
4327 INIT_CPLUS_SPECIFIC (t);
4331 /* Add new field with name NAME and type FIELD to composite type T.
4332 Do not set the field's position or adjust the type's length;
4333 the caller should do so. Return the new field. */
4336 append_composite_type_field_raw (struct type *t, char *name,
4341 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4342 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4343 sizeof (struct field) * TYPE_NFIELDS (t));
4344 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4345 memset (f, 0, sizeof f[0]);
4346 FIELD_TYPE (f[0]) = field;
4347 FIELD_NAME (f[0]) = name;
4351 /* Add new field with name NAME and type FIELD to composite type T.
4352 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4355 append_composite_type_field_aligned (struct type *t, char *name,
4356 struct type *field, int alignment)
4358 struct field *f = append_composite_type_field_raw (t, name, field);
4360 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4362 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4363 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4365 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4367 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4368 if (TYPE_NFIELDS (t) > 1)
4370 SET_FIELD_BITPOS (f[0],
4371 (FIELD_BITPOS (f[-1])
4372 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4373 * TARGET_CHAR_BIT)));
4379 alignment *= TARGET_CHAR_BIT;
4380 left = FIELD_BITPOS (f[0]) % alignment;
4384 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4385 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4392 /* Add new field with name NAME and type FIELD to composite type T. */
4395 append_composite_type_field (struct type *t, char *name,
4398 append_composite_type_field_aligned (t, name, field, 0);
4401 static struct gdbarch_data *gdbtypes_data;
4403 const struct builtin_type *
4404 builtin_type (struct gdbarch *gdbarch)
4406 return gdbarch_data (gdbarch, gdbtypes_data);
4410 gdbtypes_post_init (struct gdbarch *gdbarch)
4412 struct builtin_type *builtin_type
4413 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4416 builtin_type->builtin_void
4417 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4418 builtin_type->builtin_char
4419 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4420 !gdbarch_char_signed (gdbarch), "char");
4421 builtin_type->builtin_signed_char
4422 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4424 builtin_type->builtin_unsigned_char
4425 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4426 1, "unsigned char");
4427 builtin_type->builtin_short
4428 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4430 builtin_type->builtin_unsigned_short
4431 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4432 1, "unsigned short");
4433 builtin_type->builtin_int
4434 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4436 builtin_type->builtin_unsigned_int
4437 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4439 builtin_type->builtin_long
4440 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4442 builtin_type->builtin_unsigned_long
4443 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4444 1, "unsigned long");
4445 builtin_type->builtin_long_long
4446 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4448 builtin_type->builtin_unsigned_long_long
4449 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4450 1, "unsigned long long");
4451 builtin_type->builtin_float
4452 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4453 "float", gdbarch_float_format (gdbarch));
4454 builtin_type->builtin_double
4455 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4456 "double", gdbarch_double_format (gdbarch));
4457 builtin_type->builtin_long_double
4458 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4459 "long double", gdbarch_long_double_format (gdbarch));
4460 builtin_type->builtin_complex
4461 = arch_complex_type (gdbarch, "complex",
4462 builtin_type->builtin_float);
4463 builtin_type->builtin_double_complex
4464 = arch_complex_type (gdbarch, "double complex",
4465 builtin_type->builtin_double);
4466 builtin_type->builtin_string
4467 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4468 builtin_type->builtin_bool
4469 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4471 /* The following three are about decimal floating point types, which
4472 are 32-bits, 64-bits and 128-bits respectively. */
4473 builtin_type->builtin_decfloat
4474 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4475 builtin_type->builtin_decdouble
4476 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4477 builtin_type->builtin_declong
4478 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4480 /* "True" character types. */
4481 builtin_type->builtin_true_char
4482 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4483 builtin_type->builtin_true_unsigned_char
4484 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4486 /* Fixed-size integer types. */
4487 builtin_type->builtin_int0
4488 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4489 builtin_type->builtin_int8
4490 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4491 builtin_type->builtin_uint8
4492 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4493 builtin_type->builtin_int16
4494 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4495 builtin_type->builtin_uint16
4496 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4497 builtin_type->builtin_int32
4498 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4499 builtin_type->builtin_uint32
4500 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4501 builtin_type->builtin_int64
4502 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4503 builtin_type->builtin_uint64
4504 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4505 builtin_type->builtin_int128
4506 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4507 builtin_type->builtin_uint128
4508 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4509 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4510 TYPE_INSTANCE_FLAG_NOTTEXT;
4511 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4512 TYPE_INSTANCE_FLAG_NOTTEXT;
4514 /* Wide character types. */
4515 builtin_type->builtin_char16
4516 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4517 builtin_type->builtin_char32
4518 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4521 /* Default data/code pointer types. */
4522 builtin_type->builtin_data_ptr
4523 = lookup_pointer_type (builtin_type->builtin_void);
4524 builtin_type->builtin_func_ptr
4525 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4526 builtin_type->builtin_func_func
4527 = lookup_function_type (builtin_type->builtin_func_ptr);
4529 /* This type represents a GDB internal function. */
4530 builtin_type->internal_fn
4531 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4532 "<internal function>");
4534 /* This type represents an xmethod. */
4535 builtin_type->xmethod
4536 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4538 return builtin_type;
4541 /* This set of objfile-based types is intended to be used by symbol
4542 readers as basic types. */
4544 static const struct objfile_data *objfile_type_data;
4546 const struct objfile_type *
4547 objfile_type (struct objfile *objfile)
4549 struct gdbarch *gdbarch;
4550 struct objfile_type *objfile_type
4551 = objfile_data (objfile, objfile_type_data);
4554 return objfile_type;
4556 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4557 1, struct objfile_type);
4559 /* Use the objfile architecture to determine basic type properties. */
4560 gdbarch = get_objfile_arch (objfile);
4563 objfile_type->builtin_void
4564 = init_type (TYPE_CODE_VOID, 1,
4568 objfile_type->builtin_char
4569 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4571 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4573 objfile_type->builtin_signed_char
4574 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4576 "signed char", objfile);
4577 objfile_type->builtin_unsigned_char
4578 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4580 "unsigned char", objfile);
4581 objfile_type->builtin_short
4582 = init_type (TYPE_CODE_INT,
4583 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4584 0, "short", objfile);
4585 objfile_type->builtin_unsigned_short
4586 = init_type (TYPE_CODE_INT,
4587 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4588 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4589 objfile_type->builtin_int
4590 = init_type (TYPE_CODE_INT,
4591 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4593 objfile_type->builtin_unsigned_int
4594 = init_type (TYPE_CODE_INT,
4595 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4596 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4597 objfile_type->builtin_long
4598 = init_type (TYPE_CODE_INT,
4599 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4600 0, "long", objfile);
4601 objfile_type->builtin_unsigned_long
4602 = init_type (TYPE_CODE_INT,
4603 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4604 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4605 objfile_type->builtin_long_long
4606 = init_type (TYPE_CODE_INT,
4607 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4608 0, "long long", objfile);
4609 objfile_type->builtin_unsigned_long_long
4610 = init_type (TYPE_CODE_INT,
4611 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4612 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4614 objfile_type->builtin_float
4615 = init_type (TYPE_CODE_FLT,
4616 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4617 0, "float", objfile);
4618 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4619 = gdbarch_float_format (gdbarch);
4620 objfile_type->builtin_double
4621 = init_type (TYPE_CODE_FLT,
4622 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4623 0, "double", objfile);
4624 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4625 = gdbarch_double_format (gdbarch);
4626 objfile_type->builtin_long_double
4627 = init_type (TYPE_CODE_FLT,
4628 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4629 0, "long double", objfile);
4630 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4631 = gdbarch_long_double_format (gdbarch);
4633 /* This type represents a type that was unrecognized in symbol read-in. */
4634 objfile_type->builtin_error
4635 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4637 /* The following set of types is used for symbols with no
4638 debug information. */
4639 objfile_type->nodebug_text_symbol
4640 = init_type (TYPE_CODE_FUNC, 1, 0,
4641 "<text variable, no debug info>", objfile);
4642 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4643 = objfile_type->builtin_int;
4644 objfile_type->nodebug_text_gnu_ifunc_symbol
4645 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4646 "<text gnu-indirect-function variable, no debug info>",
4648 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4649 = objfile_type->nodebug_text_symbol;
4650 objfile_type->nodebug_got_plt_symbol
4651 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4652 "<text from jump slot in .got.plt, no debug info>",
4654 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4655 = objfile_type->nodebug_text_symbol;
4656 objfile_type->nodebug_data_symbol
4657 = init_type (TYPE_CODE_INT,
4658 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4659 "<data variable, no debug info>", objfile);
4660 objfile_type->nodebug_unknown_symbol
4661 = init_type (TYPE_CODE_INT, 1, 0,
4662 "<variable (not text or data), no debug info>", objfile);
4663 objfile_type->nodebug_tls_symbol
4664 = init_type (TYPE_CODE_INT,
4665 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4666 "<thread local variable, no debug info>", objfile);
4668 /* NOTE: on some targets, addresses and pointers are not necessarily
4672 - gdb's `struct type' always describes the target's
4674 - gdb's `struct value' objects should always hold values in
4676 - gdb's CORE_ADDR values are addresses in the unified virtual
4677 address space that the assembler and linker work with. Thus,
4678 since target_read_memory takes a CORE_ADDR as an argument, it
4679 can access any memory on the target, even if the processor has
4680 separate code and data address spaces.
4682 In this context, objfile_type->builtin_core_addr is a bit odd:
4683 it's a target type for a value the target will never see. It's
4684 only used to hold the values of (typeless) linker symbols, which
4685 are indeed in the unified virtual address space. */
4687 objfile_type->builtin_core_addr
4688 = init_type (TYPE_CODE_INT,
4689 gdbarch_addr_bit (gdbarch) / 8,
4690 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4692 set_objfile_data (objfile, objfile_type_data, objfile_type);
4693 return objfile_type;
4696 extern initialize_file_ftype _initialize_gdbtypes;
4699 _initialize_gdbtypes (void)
4701 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4702 objfile_type_data = register_objfile_data ();
4704 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4705 _("Set debugging of C++ overloading."),
4706 _("Show debugging of C++ overloading."),
4707 _("When enabled, ranking of the "
4708 "functions is displayed."),
4710 show_overload_debug,
4711 &setdebuglist, &showdebuglist);
4713 /* Add user knob for controlling resolution of opaque types. */
4714 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4715 &opaque_type_resolution,
4716 _("Set resolution of opaque struct/class/union"
4717 " types (if set before loading symbols)."),
4718 _("Show resolution of opaque struct/class/union"
4719 " types (if set before loading symbols)."),
4721 show_opaque_type_resolution,
4722 &setlist, &showlist);
4724 /* Add an option to permit non-strict type checking. */
4725 add_setshow_boolean_cmd ("type", class_support,
4726 &strict_type_checking,
4727 _("Set strict type checking."),
4728 _("Show strict type checking."),
4730 show_strict_type_checking,
4731 &setchecklist, &showchecklist);