1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
47 #include "elf/dwarf.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
52 #include "complaints.h"
55 #include "gdb_string.h"
57 /* Some macros to provide DIE info for complaints. */
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
62 /* Complaints that can be issued during DWARF debug info reading. */
64 struct complaint no_bfd_get_N =
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
69 struct complaint malformed_die =
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
74 struct complaint bad_die_ref =
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
79 struct complaint unknown_attribute_form =
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
84 struct complaint unknown_attribute_length =
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
89 struct complaint unexpected_fund_type =
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
94 struct complaint unknown_type_modifier =
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
99 struct complaint volatile_ignored =
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
104 struct complaint const_ignored =
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
109 struct complaint botched_modified_type =
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
114 struct complaint op_deref2 =
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
119 struct complaint op_deref4 =
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
124 struct complaint basereg_not_handled =
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
129 struct complaint dup_user_type_allocation =
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
134 struct complaint dup_user_type_definition =
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
139 struct complaint missing_tag =
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
144 struct complaint bad_array_element_type =
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
149 struct complaint subscript_data_items =
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
154 struct complaint unhandled_array_subscript_format =
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
159 struct complaint unknown_array_subscript_format =
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
164 struct complaint not_row_major =
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
169 struct complaint missing_at_name =
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
177 #define GCC_PRODUCER "GNU C "
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
185 #define LCC_PRODUCER "NCR C/C++"
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
224 /* Macros that return the sizes of various types of data in the target
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
246 /* External variables referenced. */
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
301 CORE_ADDR at_high_pc;
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
306 BLOCK * at_string_length;
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
315 unsigned int has_at_byte_size:1;
316 unsigned int short_element_list:1;
319 static int diecount; /* Approximate count of dies for compilation unit */
320 static struct dieinfo *curdie; /* For warnings and such */
322 static char *dbbase; /* Base pointer to dwarf info */
323 static int dbsize; /* Size of dwarf info in bytes */
324 static int dbroff; /* Relative offset from start of .debug section */
325 static char *lnbase; /* Base pointer to line section */
326 static int isreg; /* Kludge to identify register variables */
327 static int optimized_out; /* Kludge to identify optimized out variables */
328 /* Kludge to identify basereg references. Nonzero if we have an offset
329 relative to a basereg. */
331 /* Which base register is it relative to? */
334 /* This value is added to each symbol value. FIXME: Generalize to
335 the section_offsets structure used by dbxread (once this is done,
336 pass the appropriate section number to end_symtab). */
337 static CORE_ADDR baseaddr; /* Add to each symbol value */
339 /* The section offsets used in the current psymtab or symtab. FIXME,
340 only used to pass one value (baseaddr) at the moment. */
341 static struct section_offsets *base_section_offsets;
343 /* We put a pointer to this structure in the read_symtab_private field
347 /* Always the absolute file offset to the start of the ".debug"
348 section for the file containing the DIE's being accessed. */
350 /* Relative offset from the start of the ".debug" section to the
351 first DIE to be accessed. When building the partial symbol
352 table, this value will be zero since we are accessing the
353 entire ".debug" section. When expanding a partial symbol
354 table entry, this value will be the offset to the first
355 DIE for the compilation unit containing the symbol that
356 triggers the expansion. */
358 /* The size of the chunk of DIE's being examined, in bytes. */
360 /* The absolute file offset to the line table fragment. Ignored
361 when building partial symbol tables, but used when expanding
362 them, and contains the absolute file offset to the fragment
363 of the ".line" section containing the line numbers for the
364 current compilation unit. */
368 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
369 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
370 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
371 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
373 /* The generic symbol table building routines have separate lists for
374 file scope symbols and all all other scopes (local scopes). So
375 we need to select the right one to pass to add_symbol_to_list().
376 We do it by keeping a pointer to the correct list in list_in_scope.
378 FIXME: The original dwarf code just treated the file scope as the first
379 local scope, and all other local scopes as nested local scopes, and worked
380 fine. Check to see if we really need to distinguish these in buildsym.c */
382 struct pending **list_in_scope = &file_symbols;
384 /* DIES which have user defined types or modified user defined types refer to
385 other DIES for the type information. Thus we need to associate the offset
386 of a DIE for a user defined type with a pointer to the type information.
388 Originally this was done using a simple but expensive algorithm, with an
389 array of unsorted structures, each containing an offset/type-pointer pair.
390 This array was scanned linearly each time a lookup was done. The result
391 was that gdb was spending over half it's startup time munging through this
392 array of pointers looking for a structure that had the right offset member.
394 The second attempt used the same array of structures, but the array was
395 sorted using qsort each time a new offset/type was recorded, and a binary
396 search was used to find the type pointer for a given DIE offset. This was
397 even slower, due to the overhead of sorting the array each time a new
398 offset/type pair was entered.
400 The third attempt uses a fixed size array of type pointers, indexed by a
401 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
402 we can divide any DIE offset by 4 to obtain a unique index into this fixed
403 size array. Since each element is a 4 byte pointer, it takes exactly as
404 much memory to hold this array as to hold the DWARF info for a given
405 compilation unit. But it gets freed as soon as we are done with it.
406 This has worked well in practice, as a reasonable tradeoff between memory
407 consumption and speed, without having to resort to much more complicated
410 static struct type **utypes; /* Pointer to array of user type pointers */
411 static int numutypes; /* Max number of user type pointers */
413 /* Maintain an array of referenced fundamental types for the current
414 compilation unit being read. For DWARF version 1, we have to construct
415 the fundamental types on the fly, since no information about the
416 fundamental types is supplied. Each such fundamental type is created by
417 calling a language dependent routine to create the type, and then a
418 pointer to that type is then placed in the array at the index specified
419 by it's FT_<TYPENAME> value. The array has a fixed size set by the
420 FT_NUM_MEMBERS compile time constant, which is the number of predefined
421 fundamental types gdb knows how to construct. */
423 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
425 /* Record the language for the compilation unit which is currently being
426 processed. We know it once we have seen the TAG_compile_unit DIE,
427 and we need it while processing the DIE's for that compilation unit.
428 It is eventually saved in the symtab structure, but we don't finalize
429 the symtab struct until we have processed all the DIE's for the
430 compilation unit. We also need to get and save a pointer to the
431 language struct for this language, so we can call the language
432 dependent routines for doing things such as creating fundamental
435 static enum language cu_language;
436 static const struct language_defn *cu_language_defn;
438 /* Forward declarations of static functions so we don't have to worry
439 about ordering within this file. */
442 free_utypes PARAMS ((PTR));
445 attribute_size PARAMS ((unsigned int));
448 target_to_host PARAMS ((char *, int, int, struct objfile *));
451 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
454 handle_producer PARAMS ((char *));
457 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
460 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
463 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
467 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
470 scan_compilation_units PARAMS ((char *, char *, file_ptr,
471 file_ptr, struct objfile *));
474 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
477 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
480 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
483 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
486 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
489 read_ofile_symtab PARAMS ((struct partial_symtab *));
492 process_dies PARAMS ((char *, char *, struct objfile *));
495 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
499 decode_array_element_type PARAMS ((char *));
502 decode_subscript_data_item PARAMS ((char *, char *));
505 dwarf_read_array_type PARAMS ((struct dieinfo *));
508 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
511 read_tag_string_type PARAMS ((struct dieinfo *dip));
514 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
517 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
520 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
523 enum_type PARAMS ((struct dieinfo *, struct objfile *));
526 decode_line_numbers PARAMS ((char *));
529 decode_die_type PARAMS ((struct dieinfo *));
532 decode_mod_fund_type PARAMS ((char *));
535 decode_mod_u_d_type PARAMS ((char *));
538 decode_modified_type PARAMS ((char *, unsigned int, int));
541 decode_fund_type PARAMS ((unsigned int));
544 create_name PARAMS ((char *, struct obstack *));
547 lookup_utype PARAMS ((DIE_REF));
550 alloc_utype PARAMS ((DIE_REF, struct type *));
552 static struct symbol *
553 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
556 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
560 locval PARAMS ((char *));
563 set_cu_language PARAMS ((struct dieinfo *));
566 dwarf_fundamental_type PARAMS ((struct objfile *, int));
573 dwarf_fundamental_type -- lookup or create a fundamental type
578 dwarf_fundamental_type (struct objfile *objfile, int typeid)
582 DWARF version 1 doesn't supply any fundamental type information,
583 so gdb has to construct such types. It has a fixed number of
584 fundamental types that it knows how to construct, which is the
585 union of all types that it knows how to construct for all languages
586 that it knows about. These are enumerated in gdbtypes.h.
588 As an example, assume we find a DIE that references a DWARF
589 fundamental type of FT_integer. We first look in the ftypes
590 array to see if we already have such a type, indexed by the
591 gdb internal value of FT_INTEGER. If so, we simply return a
592 pointer to that type. If not, then we ask an appropriate
593 language dependent routine to create a type FT_INTEGER, using
594 defaults reasonable for the current target machine, and install
595 that type in ftypes for future reference.
599 Pointer to a fundamental type.
604 dwarf_fundamental_type (objfile, typeid)
605 struct objfile *objfile;
608 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
610 error ("internal error - invalid fundamental type id %d", typeid);
613 /* Look for this particular type in the fundamental type vector. If one is
614 not found, create and install one appropriate for the current language
615 and the current target machine. */
617 if (ftypes[typeid] == NULL)
619 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
622 return (ftypes[typeid]);
629 set_cu_language -- set local copy of language for compilation unit
634 set_cu_language (struct dieinfo *dip)
638 Decode the language attribute for a compilation unit DIE and
639 remember what the language was. We use this at various times
640 when processing DIE's for a given compilation unit.
649 set_cu_language (dip)
652 switch (dip -> at_language)
656 cu_language = language_c;
658 case LANG_C_PLUS_PLUS:
659 cu_language = language_cplus;
662 cu_language = language_chill;
665 cu_language = language_m2;
673 /* We don't know anything special about these yet. */
674 cu_language = language_unknown;
677 /* If no at_language, try to deduce one from the filename */
678 cu_language = deduce_language_from_filename (dip -> at_name);
681 cu_language_defn = language_def (cu_language);
688 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
692 void dwarf_build_psymtabs (struct objfile *objfile,
693 struct section_offsets *section_offsets,
694 int mainline, file_ptr dbfoff, unsigned int dbfsize,
695 file_ptr lnoffset, unsigned int lnsize)
699 This function is called upon to build partial symtabs from files
700 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
702 It is passed a bfd* containing the DIES
703 and line number information, the corresponding filename for that
704 file, a base address for relocating the symbols, a flag indicating
705 whether or not this debugging information is from a "main symbol
706 table" rather than a shared library or dynamically linked file,
707 and file offset/size pairs for the DIE information and line number
717 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
719 struct objfile *objfile;
720 struct section_offsets *section_offsets;
723 unsigned int dbfsize;
727 bfd *abfd = objfile->obfd;
728 struct cleanup *back_to;
730 current_objfile = objfile;
732 dbbase = xmalloc (dbsize);
734 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
735 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
738 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
740 back_to = make_cleanup (free, dbbase);
742 /* If we are reinitializing, or if we have never loaded syms yet, init.
743 Since we have no idea how many DIES we are looking at, we just guess
744 some arbitrary value. */
746 if (mainline || objfile -> global_psymbols.size == 0 ||
747 objfile -> static_psymbols.size == 0)
749 init_psymbol_list (objfile, 1024);
752 /* Save the relocation factor where everybody can see it. */
754 base_section_offsets = section_offsets;
755 baseaddr = ANOFFSET (section_offsets, 0);
757 /* Follow the compilation unit sibling chain, building a partial symbol
758 table entry for each one. Save enough information about each compilation
759 unit to locate the full DWARF information later. */
761 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
763 do_cleanups (back_to);
764 current_objfile = NULL;
771 read_lexical_block_scope -- process all dies in a lexical block
775 static void read_lexical_block_scope (struct dieinfo *dip,
776 char *thisdie, char *enddie)
780 Process all the DIES contained within a lexical block scope.
781 Start a new scope, process the dies, and then close the scope.
786 read_lexical_block_scope (dip, thisdie, enddie, objfile)
790 struct objfile *objfile;
792 register struct context_stack *new;
794 push_context (0, dip -> at_low_pc);
795 process_dies (thisdie + dip -> die_length, enddie, objfile);
796 new = pop_context ();
797 if (local_symbols != NULL)
799 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
800 dip -> at_high_pc, objfile);
802 local_symbols = new -> locals;
809 lookup_utype -- look up a user defined type from die reference
813 static type *lookup_utype (DIE_REF die_ref)
817 Given a DIE reference, lookup the user defined type associated with
818 that DIE, if it has been registered already. If not registered, then
819 return NULL. Alloc_utype() can be called to register an empty
820 type for this reference, which will be filled in later when the
821 actual referenced DIE is processed.
825 lookup_utype (die_ref)
828 struct type *type = NULL;
831 utypeidx = (die_ref - dbroff) / 4;
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
838 type = *(utypes + utypeidx);
848 alloc_utype -- add a user defined type for die reference
852 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
856 Given a die reference DIE_REF, and a possible pointer to a user
857 defined type UTYPEP, register that this reference has a user
858 defined type and either use the specified type in UTYPEP or
859 make a new empty type that will be filled in later.
861 We should only be called after calling lookup_utype() to verify that
862 there is not currently a type registered for DIE_REF.
866 alloc_utype (die_ref, utypep)
873 utypeidx = (die_ref - dbroff) / 4;
874 typep = utypes + utypeidx;
875 if ((utypeidx < 0) || (utypeidx >= numutypes))
877 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
878 complain (&bad_die_ref, DIE_ID, DIE_NAME);
880 else if (*typep != NULL)
883 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
889 utypep = alloc_type (current_objfile);
900 free_utypes -- free the utypes array and reset pointer & count
904 static void free_utypes (PTR dummy)
908 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
909 and set numutypes back to zero. This ensures that the utypes does not get
910 referenced after being freed.
927 decode_die_type -- return a type for a specified die
931 static struct type *decode_die_type (struct dieinfo *dip)
935 Given a pointer to a die information structure DIP, decode the
936 type of the die and return a pointer to the decoded type. All
937 dies without specific types default to type int.
941 decode_die_type (dip)
944 struct type *type = NULL;
946 if (dip -> at_fund_type != 0)
948 type = decode_fund_type (dip -> at_fund_type);
950 else if (dip -> at_mod_fund_type != NULL)
952 type = decode_mod_fund_type (dip -> at_mod_fund_type);
954 else if (dip -> at_user_def_type)
956 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
958 type = alloc_utype (dip -> at_user_def_type, NULL);
961 else if (dip -> at_mod_u_d_type)
963 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
967 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
976 struct_type -- compute and return the type for a struct or union
980 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
981 char *enddie, struct objfile *objfile)
985 Given pointer to a die information structure for a die which
986 defines a union or structure (and MUST define one or the other),
987 and pointers to the raw die data that define the range of dies which
988 define the members, compute and return the user defined type for the
993 struct_type (dip, thisdie, enddie, objfile)
997 struct objfile *objfile;
1001 struct nextfield *next;
1004 struct nextfield *list = NULL;
1005 struct nextfield *new;
1012 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1014 /* No forward references created an empty type, so install one now */
1015 type = alloc_utype (dip -> die_ref, NULL);
1017 INIT_CPLUS_SPECIFIC(type);
1018 switch (dip -> die_tag)
1020 case TAG_class_type:
1021 TYPE_CODE (type) = TYPE_CODE_CLASS;
1023 case TAG_structure_type:
1024 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1026 case TAG_union_type:
1027 TYPE_CODE (type) = TYPE_CODE_UNION;
1030 /* Should never happen */
1031 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1032 complain (&missing_tag, DIE_ID, DIE_NAME);
1035 /* Some compilers try to be helpful by inventing "fake" names for
1036 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1037 Thanks, but no thanks... */
1038 if (dip -> at_name != NULL
1039 && *dip -> at_name != '~'
1040 && *dip -> at_name != '.')
1042 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1043 "", "", dip -> at_name);
1045 /* Use whatever size is known. Zero is a valid size. We might however
1046 wish to check has_at_byte_size to make sure that some byte size was
1047 given explicitly, but DWARF doesn't specify that explicit sizes of
1048 zero have to present, so complaining about missing sizes should
1049 probably not be the default. */
1050 TYPE_LENGTH (type) = dip -> at_byte_size;
1051 thisdie += dip -> die_length;
1052 while (thisdie < enddie)
1054 basicdieinfo (&mbr, thisdie, objfile);
1055 completedieinfo (&mbr, objfile);
1056 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1060 else if (mbr.at_sibling != 0)
1062 nextdie = dbbase + mbr.at_sibling - dbroff;
1066 nextdie = thisdie + mbr.die_length;
1068 switch (mbr.die_tag)
1071 /* Get space to record the next field's data. */
1072 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1075 /* Save the data. */
1076 list -> field.name =
1077 obsavestring (mbr.at_name, strlen (mbr.at_name),
1078 &objfile -> type_obstack);
1079 list -> field.type = decode_die_type (&mbr);
1080 list -> field.bitpos = 8 * locval (mbr.at_location);
1081 /* Handle bit fields. */
1082 list -> field.bitsize = mbr.at_bit_size;
1083 if (BITS_BIG_ENDIAN)
1085 /* For big endian bits, the at_bit_offset gives the
1086 additional bit offset from the MSB of the containing
1087 anonymous object to the MSB of the field. We don't
1088 have to do anything special since we don't need to
1089 know the size of the anonymous object. */
1090 list -> field.bitpos += mbr.at_bit_offset;
1094 /* For little endian bits, we need to have a non-zero
1095 at_bit_size, so that we know we are in fact dealing
1096 with a bitfield. Compute the bit offset to the MSB
1097 of the anonymous object, subtract off the number of
1098 bits from the MSB of the field to the MSB of the
1099 object, and then subtract off the number of bits of
1100 the field itself. The result is the bit offset of
1101 the LSB of the field. */
1102 if (mbr.at_bit_size > 0)
1104 if (mbr.has_at_byte_size)
1106 /* The size of the anonymous object containing
1107 the bit field is explicit, so use the
1108 indicated size (in bytes). */
1109 anonymous_size = mbr.at_byte_size;
1113 /* The size of the anonymous object containing
1114 the bit field matches the size of an object
1115 of the bit field's type. DWARF allows
1116 at_byte_size to be left out in such cases, as
1117 a debug information size optimization. */
1118 anonymous_size = TYPE_LENGTH (list -> field.type);
1120 list -> field.bitpos +=
1121 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1127 process_dies (thisdie, nextdie, objfile);
1132 /* Now create the vector of fields, and record how big it is. We may
1133 not even have any fields, if this DIE was generated due to a reference
1134 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1135 set, which clues gdb in to the fact that it needs to search elsewhere
1136 for the full structure definition. */
1139 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1143 TYPE_NFIELDS (type) = nfields;
1144 TYPE_FIELDS (type) = (struct field *)
1145 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1146 /* Copy the saved-up fields into the field vector. */
1147 for (n = nfields; list; list = list -> next)
1149 TYPE_FIELD (type, --n) = list -> field;
1159 read_structure_scope -- process all dies within struct or union
1163 static void read_structure_scope (struct dieinfo *dip,
1164 char *thisdie, char *enddie, struct objfile *objfile)
1168 Called when we find the DIE that starts a structure or union
1169 scope (definition) to process all dies that define the members
1170 of the structure or union. DIP is a pointer to the die info
1171 struct for the DIE that names the structure or union.
1175 Note that we need to call struct_type regardless of whether or not
1176 the DIE has an at_name attribute, since it might be an anonymous
1177 structure or union. This gets the type entered into our set of
1180 However, if the structure is incomplete (an opaque struct/union)
1181 then suppress creating a symbol table entry for it since gdb only
1182 wants to find the one with the complete definition. Note that if
1183 it is complete, we just call new_symbol, which does it's own
1184 checking about whether the struct/union is anonymous or not (and
1185 suppresses creating a symbol table entry itself).
1190 read_structure_scope (dip, thisdie, enddie, objfile)
1191 struct dieinfo *dip;
1194 struct objfile *objfile;
1199 type = struct_type (dip, thisdie, enddie, objfile);
1200 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1202 sym = new_symbol (dip, objfile);
1205 SYMBOL_TYPE (sym) = type;
1206 if (cu_language == language_cplus)
1208 synthesize_typedef (dip, objfile, type);
1218 decode_array_element_type -- decode type of the array elements
1222 static struct type *decode_array_element_type (char *scan, char *end)
1226 As the last step in decoding the array subscript information for an
1227 array DIE, we need to decode the type of the array elements. We are
1228 passed a pointer to this last part of the subscript information and
1229 must return the appropriate type. If the type attribute is not
1230 recognized, just warn about the problem and return type int.
1233 static struct type *
1234 decode_array_element_type (scan)
1239 unsigned short attribute;
1240 unsigned short fundtype;
1243 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1245 scan += SIZEOF_ATTRIBUTE;
1246 if ((nbytes = attribute_size (attribute)) == -1)
1248 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1256 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1258 typep = decode_fund_type (fundtype);
1260 case AT_mod_fund_type:
1261 typep = decode_mod_fund_type (scan);
1263 case AT_user_def_type:
1264 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1266 if ((typep = lookup_utype (die_ref)) == NULL)
1268 typep = alloc_utype (die_ref, NULL);
1271 case AT_mod_u_d_type:
1272 typep = decode_mod_u_d_type (scan);
1275 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1276 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1287 decode_subscript_data_item -- decode array subscript item
1291 static struct type *
1292 decode_subscript_data_item (char *scan, char *end)
1296 The array subscripts and the data type of the elements of an
1297 array are described by a list of data items, stored as a block
1298 of contiguous bytes. There is a data item describing each array
1299 dimension, and a final data item describing the element type.
1300 The data items are ordered the same as their appearance in the
1301 source (I.E. leftmost dimension first, next to leftmost second,
1304 The data items describing each array dimension consist of four
1305 parts: (1) a format specifier, (2) type type of the subscript
1306 index, (3) a description of the low bound of the array dimension,
1307 and (4) a description of the high bound of the array dimension.
1309 The last data item is the description of the type of each of
1312 We are passed a pointer to the start of the block of bytes
1313 containing the remaining data items, and a pointer to the first
1314 byte past the data. This function recursively decodes the
1315 remaining data items and returns a type.
1317 If we somehow fail to decode some data, we complain about it
1318 and return a type "array of int".
1321 FIXME: This code only implements the forms currently used
1322 by the AT&T and GNU C compilers.
1324 The end pointer is supplied for error checking, maybe we should
1328 static struct type *
1329 decode_subscript_data_item (scan, end)
1333 struct type *typep = NULL; /* Array type we are building */
1334 struct type *nexttype; /* Type of each element (may be array) */
1335 struct type *indextype; /* Type of this index */
1336 struct type *rangetype;
1337 unsigned int format;
1338 unsigned short fundtype;
1339 unsigned long lowbound;
1340 unsigned long highbound;
1343 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1345 scan += SIZEOF_FORMAT_SPECIFIER;
1349 typep = decode_array_element_type (scan);
1352 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1354 indextype = decode_fund_type (fundtype);
1355 scan += SIZEOF_FMT_FT;
1356 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1357 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1359 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1361 nexttype = decode_subscript_data_item (scan, end);
1362 if (nexttype == NULL)
1364 /* Munged subscript data or other problem, fake it. */
1365 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1366 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1368 rangetype = create_range_type ((struct type *) NULL, indextype,
1369 lowbound, highbound);
1370 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1379 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1380 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1381 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1382 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1385 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1386 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1387 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1388 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1398 dwarf_read_array_type -- read TAG_array_type DIE
1402 static void dwarf_read_array_type (struct dieinfo *dip)
1406 Extract all information from a TAG_array_type DIE and add to
1407 the user defined type vector.
1411 dwarf_read_array_type (dip)
1412 struct dieinfo *dip;
1418 unsigned short blocksz;
1421 if (dip -> at_ordering != ORD_row_major)
1423 /* FIXME: Can gdb even handle column major arrays? */
1424 complain (¬_row_major, DIE_ID, DIE_NAME);
1426 if ((sub = dip -> at_subscr_data) != NULL)
1428 nbytes = attribute_size (AT_subscr_data);
1429 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1430 subend = sub + nbytes + blocksz;
1432 type = decode_subscript_data_item (sub, subend);
1433 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1435 /* Install user defined type that has not been referenced yet. */
1436 alloc_utype (dip -> die_ref, type);
1438 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1440 /* Ick! A forward ref has already generated a blank type in our
1441 slot, and this type probably already has things pointing to it
1442 (which is what caused it to be created in the first place).
1443 If it's just a place holder we can plop our fully defined type
1444 on top of it. We can't recover the space allocated for our
1445 new type since it might be on an obstack, but we could reuse
1446 it if we kept a list of them, but it might not be worth it
1452 /* Double ick! Not only is a type already in our slot, but
1453 someone has decorated it. Complain and leave it alone. */
1454 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1463 read_tag_pointer_type -- read TAG_pointer_type DIE
1467 static void read_tag_pointer_type (struct dieinfo *dip)
1471 Extract all information from a TAG_pointer_type DIE and add to
1472 the user defined type vector.
1476 read_tag_pointer_type (dip)
1477 struct dieinfo *dip;
1482 type = decode_die_type (dip);
1483 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1485 utype = lookup_pointer_type (type);
1486 alloc_utype (dip -> die_ref, utype);
1490 TYPE_TARGET_TYPE (utype) = type;
1491 TYPE_POINTER_TYPE (type) = utype;
1493 /* We assume the machine has only one representation for pointers! */
1494 /* FIXME: This confuses host<->target data representations, and is a
1495 poor assumption besides. */
1497 TYPE_LENGTH (utype) = sizeof (char *);
1498 TYPE_CODE (utype) = TYPE_CODE_PTR;
1506 read_tag_string_type -- read TAG_string_type DIE
1510 static void read_tag_string_type (struct dieinfo *dip)
1514 Extract all information from a TAG_string_type DIE and add to
1515 the user defined type vector. It isn't really a user defined
1516 type, but it behaves like one, with other DIE's using an
1517 AT_user_def_type attribute to reference it.
1521 read_tag_string_type (dip)
1522 struct dieinfo *dip;
1525 struct type *indextype;
1526 struct type *rangetype;
1527 unsigned long lowbound = 0;
1528 unsigned long highbound;
1530 if (dip -> has_at_byte_size)
1532 /* A fixed bounds string */
1533 highbound = dip -> at_byte_size - 1;
1537 /* A varying length string. Stub for now. (FIXME) */
1540 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1541 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1544 utype = lookup_utype (dip -> die_ref);
1547 /* No type defined, go ahead and create a blank one to use. */
1548 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1552 /* Already a type in our slot due to a forward reference. Make sure it
1553 is a blank one. If not, complain and leave it alone. */
1554 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1556 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1561 /* Create the string type using the blank type we either found or created. */
1562 utype = create_string_type (utype, rangetype);
1569 read_subroutine_type -- process TAG_subroutine_type dies
1573 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1578 Handle DIES due to C code like:
1581 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1587 The parameter DIES are currently ignored. See if gdb has a way to
1588 include this info in it's type system, and decode them if so. Is
1589 this what the type structure's "arg_types" field is for? (FIXME)
1593 read_subroutine_type (dip, thisdie, enddie)
1594 struct dieinfo *dip;
1598 struct type *type; /* Type that this function returns */
1599 struct type *ftype; /* Function that returns above type */
1601 /* Decode the type that this subroutine returns */
1603 type = decode_die_type (dip);
1605 /* Check to see if we already have a partially constructed user
1606 defined type for this DIE, from a forward reference. */
1608 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1610 /* This is the first reference to one of these types. Make
1611 a new one and place it in the user defined types. */
1612 ftype = lookup_function_type (type);
1613 alloc_utype (dip -> die_ref, ftype);
1615 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1617 /* We have an existing partially constructed type, so bash it
1618 into the correct type. */
1619 TYPE_TARGET_TYPE (ftype) = type;
1620 TYPE_LENGTH (ftype) = 1;
1621 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1625 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1633 read_enumeration -- process dies which define an enumeration
1637 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1638 char *enddie, struct objfile *objfile)
1642 Given a pointer to a die which begins an enumeration, process all
1643 the dies that define the members of the enumeration.
1647 Note that we need to call enum_type regardless of whether or not we
1648 have a symbol, since we might have an enum without a tag name (thus
1649 no symbol for the tagname).
1653 read_enumeration (dip, thisdie, enddie, objfile)
1654 struct dieinfo *dip;
1657 struct objfile *objfile;
1662 type = enum_type (dip, objfile);
1663 sym = new_symbol (dip, objfile);
1666 SYMBOL_TYPE (sym) = type;
1667 if (cu_language == language_cplus)
1669 synthesize_typedef (dip, objfile, type);
1678 enum_type -- decode and return a type for an enumeration
1682 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1686 Given a pointer to a die information structure for the die which
1687 starts an enumeration, process all the dies that define the members
1688 of the enumeration and return a type pointer for the enumeration.
1690 At the same time, for each member of the enumeration, create a
1691 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1692 and give it the type of the enumeration itself.
1696 Note that the DWARF specification explicitly mandates that enum
1697 constants occur in reverse order from the source program order,
1698 for "consistency" and because this ordering is easier for many
1699 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1700 Entries). Because gdb wants to see the enum members in program
1701 source order, we have to ensure that the order gets reversed while
1702 we are processing them.
1705 static struct type *
1706 enum_type (dip, objfile)
1707 struct dieinfo *dip;
1708 struct objfile *objfile;
1712 struct nextfield *next;
1715 struct nextfield *list = NULL;
1716 struct nextfield *new;
1721 unsigned short blocksz;
1724 int unsigned_enum = 1;
1726 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1728 /* No forward references created an empty type, so install one now */
1729 type = alloc_utype (dip -> die_ref, NULL);
1731 TYPE_CODE (type) = TYPE_CODE_ENUM;
1732 /* Some compilers try to be helpful by inventing "fake" names for
1733 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1734 Thanks, but no thanks... */
1735 if (dip -> at_name != NULL
1736 && *dip -> at_name != '~'
1737 && *dip -> at_name != '.')
1739 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1740 "", "", dip -> at_name);
1742 if (dip -> at_byte_size != 0)
1744 TYPE_LENGTH (type) = dip -> at_byte_size;
1746 if ((scan = dip -> at_element_list) != NULL)
1748 if (dip -> short_element_list)
1750 nbytes = attribute_size (AT_short_element_list);
1754 nbytes = attribute_size (AT_element_list);
1756 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1757 listend = scan + nbytes + blocksz;
1759 while (scan < listend)
1761 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1764 list -> field.type = NULL;
1765 list -> field.bitsize = 0;
1766 list -> field.bitpos =
1767 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1769 scan += TARGET_FT_LONG_SIZE (objfile);
1770 list -> field.name = obsavestring (scan, strlen (scan),
1771 &objfile -> type_obstack);
1772 scan += strlen (scan) + 1;
1774 /* Handcraft a new symbol for this enum member. */
1775 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1776 sizeof (struct symbol));
1777 memset (sym, 0, sizeof (struct symbol));
1778 SYMBOL_NAME (sym) = create_name (list -> field.name,
1779 &objfile->symbol_obstack);
1780 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1781 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1782 SYMBOL_CLASS (sym) = LOC_CONST;
1783 SYMBOL_TYPE (sym) = type;
1784 SYMBOL_VALUE (sym) = list -> field.bitpos;
1785 if (SYMBOL_VALUE (sym) < 0)
1787 add_symbol_to_list (sym, list_in_scope);
1789 /* Now create the vector of fields, and record how big it is. This is
1790 where we reverse the order, by pulling the members off the list in
1791 reverse order from how they were inserted. If we have no fields
1792 (this is apparently possible in C++) then skip building a field
1797 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1798 TYPE_NFIELDS (type) = nfields;
1799 TYPE_FIELDS (type) = (struct field *)
1800 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1801 /* Copy the saved-up fields into the field vector. */
1802 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1804 TYPE_FIELD (type, n++) = list -> field;
1815 read_func_scope -- process all dies within a function scope
1819 Process all dies within a given function scope. We are passed
1820 a die information structure pointer DIP for the die which
1821 starts the function scope, and pointers into the raw die data
1822 that define the dies within the function scope.
1824 For now, we ignore lexical block scopes within the function.
1825 The problem is that AT&T cc does not define a DWARF lexical
1826 block scope for the function itself, while gcc defines a
1827 lexical block scope for the function. We need to think about
1828 how to handle this difference, or if it is even a problem.
1833 read_func_scope (dip, thisdie, enddie, objfile)
1834 struct dieinfo *dip;
1837 struct objfile *objfile;
1839 register struct context_stack *new;
1841 /* AT_name is absent if the function is described with an
1842 AT_abstract_origin tag.
1843 Ignore the function description for now to avoid GDB core dumps.
1844 FIXME: Add code to handle AT_abstract_origin tags properly. */
1845 if (dip -> at_name == NULL)
1847 complain (&missing_at_name, DIE_ID);
1851 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1852 objfile -> ei.entry_point < dip -> at_high_pc)
1854 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1855 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1857 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1859 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1860 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1862 new = push_context (0, dip -> at_low_pc);
1863 new -> name = new_symbol (dip, objfile);
1864 list_in_scope = &local_symbols;
1865 process_dies (thisdie + dip -> die_length, enddie, objfile);
1866 new = pop_context ();
1867 /* Make a block for the local symbols within. */
1868 finish_block (new -> name, &local_symbols, new -> old_blocks,
1869 new -> start_addr, dip -> at_high_pc, objfile);
1870 list_in_scope = &file_symbols;
1878 handle_producer -- process the AT_producer attribute
1882 Perform any operations that depend on finding a particular
1883 AT_producer attribute.
1888 handle_producer (producer)
1892 /* If this compilation unit was compiled with g++ or gcc, then set the
1893 processing_gcc_compilation flag. */
1895 processing_gcc_compilation =
1896 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1897 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1898 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1900 /* Select a demangling style if we can identify the producer and if
1901 the current style is auto. We leave the current style alone if it
1902 is not auto. We also leave the demangling style alone if we find a
1903 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1905 if (AUTO_DEMANGLING)
1907 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1909 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1911 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1913 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1923 read_file_scope -- process all dies within a file scope
1927 Process all dies within a given file scope. We are passed a
1928 pointer to the die information structure for the die which
1929 starts the file scope, and pointers into the raw die data which
1930 mark the range of dies within the file scope.
1932 When the partial symbol table is built, the file offset for the line
1933 number table for each compilation unit is saved in the partial symbol
1934 table entry for that compilation unit. As the symbols for each
1935 compilation unit are read, the line number table is read into memory
1936 and the variable lnbase is set to point to it. Thus all we have to
1937 do is use lnbase to access the line number table for the current
1942 read_file_scope (dip, thisdie, enddie, objfile)
1943 struct dieinfo *dip;
1946 struct objfile *objfile;
1948 struct cleanup *back_to;
1949 struct symtab *symtab;
1951 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1952 objfile -> ei.entry_point < dip -> at_high_pc)
1954 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1955 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1957 set_cu_language (dip);
1958 if (dip -> at_producer != NULL)
1960 handle_producer (dip -> at_producer);
1962 numutypes = (enddie - thisdie) / 4;
1963 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1964 back_to = make_cleanup (free_utypes, NULL);
1965 memset (utypes, 0, numutypes * sizeof (struct type *));
1966 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1967 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1968 decode_line_numbers (lnbase);
1969 process_dies (thisdie + dip -> die_length, enddie, objfile);
1971 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
1974 symtab -> language = cu_language;
1976 do_cleanups (back_to);
1983 process_dies -- process a range of DWARF Information Entries
1987 static void process_dies (char *thisdie, char *enddie,
1988 struct objfile *objfile)
1992 Process all DIE's in a specified range. May be (and almost
1993 certainly will be) called recursively.
1997 process_dies (thisdie, enddie, objfile)
2000 struct objfile *objfile;
2005 while (thisdie < enddie)
2007 basicdieinfo (&di, thisdie, objfile);
2008 if (di.die_length < SIZEOF_DIE_LENGTH)
2012 else if (di.die_tag == TAG_padding)
2014 nextdie = thisdie + di.die_length;
2018 completedieinfo (&di, objfile);
2019 if (di.at_sibling != 0)
2021 nextdie = dbbase + di.at_sibling - dbroff;
2025 nextdie = thisdie + di.die_length;
2027 #ifdef SMASH_TEXT_ADDRESS
2028 /* I think that these are always text, not data, addresses. */
2029 SMASH_TEXT_ADDRESS (di.at_low_pc);
2030 SMASH_TEXT_ADDRESS (di.at_high_pc);
2034 case TAG_compile_unit:
2035 /* Skip Tag_compile_unit if we are already inside a compilation
2036 unit, we are unable to handle nested compilation units
2037 properly (FIXME). */
2038 if (current_subfile == NULL)
2039 read_file_scope (&di, thisdie, nextdie, objfile);
2041 nextdie = thisdie + di.die_length;
2043 case TAG_global_subroutine:
2044 case TAG_subroutine:
2045 if (di.has_at_low_pc)
2047 read_func_scope (&di, thisdie, nextdie, objfile);
2050 case TAG_lexical_block:
2051 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2053 case TAG_class_type:
2054 case TAG_structure_type:
2055 case TAG_union_type:
2056 read_structure_scope (&di, thisdie, nextdie, objfile);
2058 case TAG_enumeration_type:
2059 read_enumeration (&di, thisdie, nextdie, objfile);
2061 case TAG_subroutine_type:
2062 read_subroutine_type (&di, thisdie, nextdie);
2064 case TAG_array_type:
2065 dwarf_read_array_type (&di);
2067 case TAG_pointer_type:
2068 read_tag_pointer_type (&di);
2070 case TAG_string_type:
2071 read_tag_string_type (&di);
2074 new_symbol (&di, objfile);
2086 decode_line_numbers -- decode a line number table fragment
2090 static void decode_line_numbers (char *tblscan, char *tblend,
2091 long length, long base, long line, long pc)
2095 Translate the DWARF line number information to gdb form.
2097 The ".line" section contains one or more line number tables, one for
2098 each ".line" section from the objects that were linked.
2100 The AT_stmt_list attribute for each TAG_source_file entry in the
2101 ".debug" section contains the offset into the ".line" section for the
2102 start of the table for that file.
2104 The table itself has the following structure:
2106 <table length><base address><source statement entry>
2107 4 bytes 4 bytes 10 bytes
2109 The table length is the total size of the table, including the 4 bytes
2110 for the length information.
2112 The base address is the address of the first instruction generated
2113 for the source file.
2115 Each source statement entry has the following structure:
2117 <line number><statement position><address delta>
2118 4 bytes 2 bytes 4 bytes
2120 The line number is relative to the start of the file, starting with
2123 The statement position either -1 (0xFFFF) or the number of characters
2124 from the beginning of the line to the beginning of the statement.
2126 The address delta is the difference between the base address and
2127 the address of the first instruction for the statement.
2129 Note that we must copy the bytes from the packed table to our local
2130 variables before attempting to use them, to avoid alignment problems
2131 on some machines, particularly RISC processors.
2135 Does gdb expect the line numbers to be sorted? They are now by
2136 chance/luck, but are not required to be. (FIXME)
2138 The line with number 0 is unused, gdb apparently can discover the
2139 span of the last line some other way. How? (FIXME)
2143 decode_line_numbers (linetable)
2148 unsigned long length;
2153 if (linetable != NULL)
2155 tblscan = tblend = linetable;
2156 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2158 tblscan += SIZEOF_LINETBL_LENGTH;
2160 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2161 GET_UNSIGNED, current_objfile);
2162 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2164 while (tblscan < tblend)
2166 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2168 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2169 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2171 tblscan += SIZEOF_LINETBL_DELTA;
2175 record_line (current_subfile, line, pc);
2185 locval -- compute the value of a location attribute
2189 static int locval (char *loc)
2193 Given pointer to a string of bytes that define a location, compute
2194 the location and return the value.
2195 A location description containing no atoms indicates that the
2196 object is optimized out. The global optimized_out flag is set for
2197 those, the return value is meaningless.
2199 When computing values involving the current value of the frame pointer,
2200 the value zero is used, which results in a value relative to the frame
2201 pointer, rather than the absolute value. This is what GDB wants
2204 When the result is a register number, the global isreg flag is set,
2205 otherwise it is cleared. This is a kludge until we figure out a better
2206 way to handle the problem. Gdb's design does not mesh well with the
2207 DWARF notion of a location computing interpreter, which is a shame
2208 because the flexibility goes unused.
2212 Note that stack[0] is unused except as a default error return.
2213 Note that stack overflow is not yet handled.
2220 unsigned short nbytes;
2221 unsigned short locsize;
2222 auto long stack[64];
2228 nbytes = attribute_size (AT_location);
2229 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2231 end = loc + locsize;
2237 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2241 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2243 loc += SIZEOF_LOC_ATOM_CODE;
2244 switch (loc_atom_code)
2251 /* push register (number) */
2253 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2256 loc += loc_value_size;
2260 /* push value of register (number) */
2261 /* Actually, we compute the value as if register has 0, so the
2262 value ends up being the offset from that register. */
2264 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2266 loc += loc_value_size;
2267 stack[++stacki] = 0;
2270 /* push address (relocated address) */
2271 stack[++stacki] = target_to_host (loc, loc_value_size,
2272 GET_UNSIGNED, current_objfile);
2273 loc += loc_value_size;
2276 /* push constant (number) FIXME: signed or unsigned! */
2277 stack[++stacki] = target_to_host (loc, loc_value_size,
2278 GET_SIGNED, current_objfile);
2279 loc += loc_value_size;
2282 /* pop, deref and push 2 bytes (as a long) */
2283 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2285 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2286 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2288 case OP_ADD: /* pop top 2 items, add, push result */
2289 stack[stacki - 1] += stack[stacki];
2294 return (stack[stacki]);
2301 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2305 static void read_ofile_symtab (struct partial_symtab *pst)
2309 When expanding a partial symbol table entry to a full symbol table
2310 entry, this is the function that gets called to read in the symbols
2311 for the compilation unit. A pointer to the newly constructed symtab,
2312 which is now the new first one on the objfile's symtab list, is
2313 stashed in the partial symbol table entry.
2317 read_ofile_symtab (pst)
2318 struct partial_symtab *pst;
2320 struct cleanup *back_to;
2321 unsigned long lnsize;
2324 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2326 abfd = pst -> objfile -> obfd;
2327 current_objfile = pst -> objfile;
2329 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2330 unit, seek to the location in the file, and read in all the DIE's. */
2333 dbsize = DBLENGTH (pst);
2334 dbbase = xmalloc (dbsize);
2335 dbroff = DBROFF(pst);
2336 foffset = DBFOFF(pst) + dbroff;
2337 base_section_offsets = pst->section_offsets;
2338 baseaddr = ANOFFSET (pst->section_offsets, 0);
2339 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2340 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2343 error ("can't read DWARF data");
2345 back_to = make_cleanup (free, dbbase);
2347 /* If there is a line number table associated with this compilation unit
2348 then read the size of this fragment in bytes, from the fragment itself.
2349 Allocate a buffer for the fragment and read it in for future
2355 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2356 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2357 sizeof (lnsizedata)))
2359 error ("can't read DWARF line number table size");
2361 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2362 GET_UNSIGNED, pst -> objfile);
2363 lnbase = xmalloc (lnsize);
2364 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2365 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2368 error ("can't read DWARF line numbers");
2370 make_cleanup (free, lnbase);
2373 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2374 do_cleanups (back_to);
2375 current_objfile = NULL;
2376 pst -> symtab = pst -> objfile -> symtabs;
2383 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2387 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2391 Called once for each partial symbol table entry that needs to be
2392 expanded into a full symbol table entry.
2397 psymtab_to_symtab_1 (pst)
2398 struct partial_symtab *pst;
2401 struct cleanup *old_chain;
2407 warning ("psymtab for %s already read in. Shouldn't happen.",
2412 /* Read in all partial symtabs on which this one is dependent */
2413 for (i = 0; i < pst -> number_of_dependencies; i++)
2415 if (!pst -> dependencies[i] -> readin)
2417 /* Inform about additional files that need to be read in. */
2420 fputs_filtered (" ", gdb_stdout);
2422 fputs_filtered ("and ", gdb_stdout);
2424 printf_filtered ("%s...",
2425 pst -> dependencies[i] -> filename);
2427 gdb_flush (gdb_stdout); /* Flush output */
2429 psymtab_to_symtab_1 (pst -> dependencies[i]);
2432 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2435 old_chain = make_cleanup (really_free_pendings, 0);
2436 read_ofile_symtab (pst);
2439 printf_filtered ("%d DIE's, sorting...", diecount);
2441 gdb_flush (gdb_stdout);
2443 sort_symtab_syms (pst -> symtab);
2444 do_cleanups (old_chain);
2455 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2459 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2463 This is the DWARF support entry point for building a full symbol
2464 table entry from a partial symbol table entry. We are passed a
2465 pointer to the partial symbol table entry that needs to be expanded.
2470 dwarf_psymtab_to_symtab (pst)
2471 struct partial_symtab *pst;
2478 warning ("psymtab for %s already read in. Shouldn't happen.",
2483 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2485 /* Print the message now, before starting serious work, to avoid
2486 disconcerting pauses. */
2489 printf_filtered ("Reading in symbols for %s...",
2491 gdb_flush (gdb_stdout);
2494 psymtab_to_symtab_1 (pst);
2496 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2497 we need to do an equivalent or is this something peculiar to
2499 Match with global symbols. This only needs to be done once,
2500 after all of the symtabs and dependencies have been read in.
2502 scan_file_globals (pst -> objfile);
2505 /* Finish up the verbose info message. */
2508 printf_filtered ("done.\n");
2509 gdb_flush (gdb_stdout);
2520 add_enum_psymbol -- add enumeration members to partial symbol table
2524 Given pointer to a DIE that is known to be for an enumeration,
2525 extract the symbolic names of the enumeration members and add
2526 partial symbols for them.
2530 add_enum_psymbol (dip, objfile)
2531 struct dieinfo *dip;
2532 struct objfile *objfile;
2536 unsigned short blocksz;
2539 if ((scan = dip -> at_element_list) != NULL)
2541 if (dip -> short_element_list)
2543 nbytes = attribute_size (AT_short_element_list);
2547 nbytes = attribute_size (AT_element_list);
2549 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2551 listend = scan + blocksz;
2552 while (scan < listend)
2554 scan += TARGET_FT_LONG_SIZE (objfile);
2555 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2556 &objfile -> static_psymbols, 0, 0, cu_language,
2558 scan += strlen (scan) + 1;
2567 add_partial_symbol -- add symbol to partial symbol table
2571 Given a DIE, if it is one of the types that we want to
2572 add to a partial symbol table, finish filling in the die info
2573 and then add a partial symbol table entry for it.
2577 The caller must ensure that the DIE has a valid name attribute.
2581 add_partial_symbol (dip, objfile)
2582 struct dieinfo *dip;
2583 struct objfile *objfile;
2585 switch (dip -> die_tag)
2587 case TAG_global_subroutine:
2588 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2589 VAR_NAMESPACE, LOC_BLOCK,
2590 &objfile -> global_psymbols,
2591 0, dip -> at_low_pc, cu_language, objfile);
2593 case TAG_global_variable:
2594 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2595 VAR_NAMESPACE, LOC_STATIC,
2596 &objfile -> global_psymbols,
2597 0, 0, cu_language, objfile);
2599 case TAG_subroutine:
2600 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2601 VAR_NAMESPACE, LOC_BLOCK,
2602 &objfile -> static_psymbols,
2603 0, dip -> at_low_pc, cu_language, objfile);
2605 case TAG_local_variable:
2606 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2607 VAR_NAMESPACE, LOC_STATIC,
2608 &objfile -> static_psymbols,
2609 0, 0, cu_language, objfile);
2612 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2613 VAR_NAMESPACE, LOC_TYPEDEF,
2614 &objfile -> static_psymbols,
2615 0, 0, cu_language, objfile);
2617 case TAG_class_type:
2618 case TAG_structure_type:
2619 case TAG_union_type:
2620 case TAG_enumeration_type:
2621 /* Do not add opaque aggregate definitions to the psymtab. */
2622 if (!dip -> has_at_byte_size)
2624 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2625 STRUCT_NAMESPACE, LOC_TYPEDEF,
2626 &objfile -> static_psymbols,
2627 0, 0, cu_language, objfile);
2628 if (cu_language == language_cplus)
2630 /* For C++, these implicitly act as typedefs as well. */
2631 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2632 VAR_NAMESPACE, LOC_TYPEDEF,
2633 &objfile -> static_psymbols,
2634 0, 0, cu_language, objfile);
2644 scan_partial_symbols -- scan DIE's within a single compilation unit
2648 Process the DIE's within a single compilation unit, looking for
2649 interesting DIE's that contribute to the partial symbol table entry
2650 for this compilation unit.
2654 There are some DIE's that may appear both at file scope and within
2655 the scope of a function. We are only interested in the ones at file
2656 scope, and the only way to tell them apart is to keep track of the
2657 scope. For example, consider the test case:
2662 for which the relevant DWARF segment has the structure:
2665 0x23 global subrtn sibling 0x9b
2667 fund_type FT_integer
2672 0x23 local var sibling 0x97
2674 fund_type FT_integer
2675 location OP_BASEREG 0xe
2682 0x1d local var sibling 0xb8
2684 fund_type FT_integer
2685 location OP_ADDR 0x800025dc
2690 We want to include the symbol 'i' in the partial symbol table, but
2691 not the symbol 'j'. In essence, we want to skip all the dies within
2692 the scope of a TAG_global_subroutine DIE.
2694 Don't attempt to add anonymous structures or unions since they have
2695 no name. Anonymous enumerations however are processed, because we
2696 want to extract their member names (the check for a tag name is
2699 Also, for variables and subroutines, check that this is the place
2700 where the actual definition occurs, rather than just a reference
2705 scan_partial_symbols (thisdie, enddie, objfile)
2708 struct objfile *objfile;
2714 while (thisdie < enddie)
2716 basicdieinfo (&di, thisdie, objfile);
2717 if (di.die_length < SIZEOF_DIE_LENGTH)
2723 nextdie = thisdie + di.die_length;
2724 /* To avoid getting complete die information for every die, we
2725 only do it (below) for the cases we are interested in. */
2728 case TAG_global_subroutine:
2729 case TAG_subroutine:
2730 completedieinfo (&di, objfile);
2731 if (di.at_name && (di.has_at_low_pc || di.at_location))
2733 add_partial_symbol (&di, objfile);
2734 /* If there is a sibling attribute, adjust the nextdie
2735 pointer to skip the entire scope of the subroutine.
2736 Apply some sanity checking to make sure we don't
2737 overrun or underrun the range of remaining DIE's */
2738 if (di.at_sibling != 0)
2740 temp = dbbase + di.at_sibling - dbroff;
2741 if ((temp < thisdie) || (temp >= enddie))
2743 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2753 case TAG_global_variable:
2754 case TAG_local_variable:
2755 completedieinfo (&di, objfile);
2756 if (di.at_name && (di.has_at_low_pc || di.at_location))
2758 add_partial_symbol (&di, objfile);
2762 case TAG_class_type:
2763 case TAG_structure_type:
2764 case TAG_union_type:
2765 completedieinfo (&di, objfile);
2768 add_partial_symbol (&di, objfile);
2771 case TAG_enumeration_type:
2772 completedieinfo (&di, objfile);
2775 add_partial_symbol (&di, objfile);
2777 add_enum_psymbol (&di, objfile);
2789 scan_compilation_units -- build a psymtab entry for each compilation
2793 This is the top level dwarf parsing routine for building partial
2796 It scans from the beginning of the DWARF table looking for the first
2797 TAG_compile_unit DIE, and then follows the sibling chain to locate
2798 each additional TAG_compile_unit DIE.
2800 For each TAG_compile_unit DIE it creates a partial symtab structure,
2801 calls a subordinate routine to collect all the compilation unit's
2802 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2803 new partial symtab structure into the partial symbol table. It also
2804 records the appropriate information in the partial symbol table entry
2805 to allow the chunk of DIE's and line number table for this compilation
2806 unit to be located and re-read later, to generate a complete symbol
2807 table entry for the compilation unit.
2809 Thus it effectively partitions up a chunk of DIE's for multiple
2810 compilation units into smaller DIE chunks and line number tables,
2811 and associates them with a partial symbol table entry.
2815 If any compilation unit has no line number table associated with
2816 it for some reason (a missing at_stmt_list attribute, rather than
2817 just one with a value of zero, which is valid) then we ensure that
2818 the recorded file offset is zero so that the routine which later
2819 reads line number table fragments knows that there is no fragment
2829 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2834 struct objfile *objfile;
2838 struct partial_symtab *pst;
2841 file_ptr curlnoffset;
2843 while (thisdie < enddie)
2845 basicdieinfo (&di, thisdie, objfile);
2846 if (di.die_length < SIZEOF_DIE_LENGTH)
2850 else if (di.die_tag != TAG_compile_unit)
2852 nextdie = thisdie + di.die_length;
2856 completedieinfo (&di, objfile);
2857 set_cu_language (&di);
2858 if (di.at_sibling != 0)
2860 nextdie = dbbase + di.at_sibling - dbroff;
2864 nextdie = thisdie + di.die_length;
2866 curoff = thisdie - dbbase;
2867 culength = nextdie - thisdie;
2868 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2870 /* First allocate a new partial symbol table structure */
2872 pst = start_psymtab_common (objfile, base_section_offsets,
2873 di.at_name, di.at_low_pc,
2874 objfile -> global_psymbols.next,
2875 objfile -> static_psymbols.next);
2877 pst -> texthigh = di.at_high_pc;
2878 pst -> read_symtab_private = (char *)
2879 obstack_alloc (&objfile -> psymbol_obstack,
2880 sizeof (struct dwfinfo));
2881 DBFOFF (pst) = dbfoff;
2882 DBROFF (pst) = curoff;
2883 DBLENGTH (pst) = culength;
2884 LNFOFF (pst) = curlnoffset;
2885 pst -> read_symtab = dwarf_psymtab_to_symtab;
2887 /* Now look for partial symbols */
2889 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2891 pst -> n_global_syms = objfile -> global_psymbols.next -
2892 (objfile -> global_psymbols.list + pst -> globals_offset);
2893 pst -> n_static_syms = objfile -> static_psymbols.next -
2894 (objfile -> static_psymbols.list + pst -> statics_offset);
2895 sort_pst_symbols (pst);
2896 /* If there is already a psymtab or symtab for a file of this name,
2897 remove it. (If there is a symtab, more drastic things also
2898 happen.) This happens in VxWorks. */
2899 free_named_symtabs (pst -> filename);
2909 new_symbol -- make a symbol table entry for a new symbol
2913 static struct symbol *new_symbol (struct dieinfo *dip,
2914 struct objfile *objfile)
2918 Given a pointer to a DWARF information entry, figure out if we need
2919 to make a symbol table entry for it, and if so, create a new entry
2920 and return a pointer to it.
2923 static struct symbol *
2924 new_symbol (dip, objfile)
2925 struct dieinfo *dip;
2926 struct objfile *objfile;
2928 struct symbol *sym = NULL;
2930 if (dip -> at_name != NULL)
2932 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2933 sizeof (struct symbol));
2934 OBJSTAT (objfile, n_syms++);
2935 memset (sym, 0, sizeof (struct symbol));
2936 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2937 &objfile->symbol_obstack);
2938 /* default assumptions */
2939 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2940 SYMBOL_CLASS (sym) = LOC_STATIC;
2941 SYMBOL_TYPE (sym) = decode_die_type (dip);
2943 /* If this symbol is from a C++ compilation, then attempt to cache the
2944 demangled form for future reference. This is a typical time versus
2945 space tradeoff, that was decided in favor of time because it sped up
2946 C++ symbol lookups by a factor of about 20. */
2948 SYMBOL_LANGUAGE (sym) = cu_language;
2949 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2950 switch (dip -> die_tag)
2953 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2954 SYMBOL_CLASS (sym) = LOC_LABEL;
2956 case TAG_global_subroutine:
2957 case TAG_subroutine:
2958 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2960 SYMBOL_CLASS (sym) = LOC_BLOCK;
2961 if (dip -> die_tag == TAG_global_subroutine)
2963 add_symbol_to_list (sym, &global_symbols);
2967 add_symbol_to_list (sym, list_in_scope);
2970 case TAG_global_variable:
2971 if (dip -> at_location != NULL)
2973 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2974 add_symbol_to_list (sym, &global_symbols);
2975 SYMBOL_CLASS (sym) = LOC_STATIC;
2976 SYMBOL_VALUE (sym) += baseaddr;
2979 case TAG_local_variable:
2980 if (dip -> at_location != NULL)
2982 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2983 add_symbol_to_list (sym, list_in_scope);
2986 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2990 SYMBOL_CLASS (sym) = LOC_REGISTER;
2994 SYMBOL_CLASS (sym) = LOC_BASEREG;
2995 SYMBOL_BASEREG (sym) = basereg;
2999 SYMBOL_CLASS (sym) = LOC_STATIC;
3000 SYMBOL_VALUE (sym) += baseaddr;
3004 case TAG_formal_parameter:
3005 if (dip -> at_location != NULL)
3007 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3009 add_symbol_to_list (sym, list_in_scope);
3012 SYMBOL_CLASS (sym) = LOC_REGPARM;
3016 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3017 SYMBOL_BASEREG (sym) = basereg;
3021 SYMBOL_CLASS (sym) = LOC_ARG;
3024 case TAG_unspecified_parameters:
3025 /* From varargs functions; gdb doesn't seem to have any interest in
3026 this information, so just ignore it for now. (FIXME?) */
3028 case TAG_class_type:
3029 case TAG_structure_type:
3030 case TAG_union_type:
3031 case TAG_enumeration_type:
3032 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3033 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3034 add_symbol_to_list (sym, list_in_scope);
3037 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3038 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3039 add_symbol_to_list (sym, list_in_scope);
3042 /* Not a tag we recognize. Hopefully we aren't processing trash
3043 data, but since we must specifically ignore things we don't
3044 recognize, there is nothing else we should do at this point. */
3055 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3059 static void synthesize_typedef (struct dieinfo *dip,
3060 struct objfile *objfile,
3065 Given a pointer to a DWARF information entry, synthesize a typedef
3066 for the name in the DIE, using the specified type.
3068 This is used for C++ class, structs, unions, and enumerations to
3069 set up the tag name as a type.
3074 synthesize_typedef (dip, objfile, type)
3075 struct dieinfo *dip;
3076 struct objfile *objfile;
3079 struct symbol *sym = NULL;
3081 if (dip -> at_name != NULL)
3083 sym = (struct symbol *)
3084 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3085 OBJSTAT (objfile, n_syms++);
3086 memset (sym, 0, sizeof (struct symbol));
3087 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3088 &objfile->symbol_obstack);
3089 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3090 SYMBOL_TYPE (sym) = type;
3091 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3092 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3093 add_symbol_to_list (sym, list_in_scope);
3101 decode_mod_fund_type -- decode a modified fundamental type
3105 static struct type *decode_mod_fund_type (char *typedata)
3109 Decode a block of data containing a modified fundamental
3110 type specification. TYPEDATA is a pointer to the block,
3111 which starts with a length containing the size of the rest
3112 of the block. At the end of the block is a fundmental type
3113 code value that gives the fundamental type. Everything
3114 in between are type modifiers.
3116 We simply compute the number of modifiers and call the general
3117 function decode_modified_type to do the actual work.
3120 static struct type *
3121 decode_mod_fund_type (typedata)
3124 struct type *typep = NULL;
3125 unsigned short modcount;
3128 /* Get the total size of the block, exclusive of the size itself */
3130 nbytes = attribute_size (AT_mod_fund_type);
3131 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3134 /* Deduct the size of the fundamental type bytes at the end of the block. */
3136 modcount -= attribute_size (AT_fund_type);
3138 /* Now do the actual decoding */
3140 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3148 decode_mod_u_d_type -- decode a modified user defined type
3152 static struct type *decode_mod_u_d_type (char *typedata)
3156 Decode a block of data containing a modified user defined
3157 type specification. TYPEDATA is a pointer to the block,
3158 which consists of a two byte length, containing the size
3159 of the rest of the block. At the end of the block is a
3160 four byte value that gives a reference to a user defined type.
3161 Everything in between are type modifiers.
3163 We simply compute the number of modifiers and call the general
3164 function decode_modified_type to do the actual work.
3167 static struct type *
3168 decode_mod_u_d_type (typedata)
3171 struct type *typep = NULL;
3172 unsigned short modcount;
3175 /* Get the total size of the block, exclusive of the size itself */
3177 nbytes = attribute_size (AT_mod_u_d_type);
3178 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3181 /* Deduct the size of the reference type bytes at the end of the block. */
3183 modcount -= attribute_size (AT_user_def_type);
3185 /* Now do the actual decoding */
3187 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3195 decode_modified_type -- decode modified user or fundamental type
3199 static struct type *decode_modified_type (char *modifiers,
3200 unsigned short modcount, int mtype)
3204 Decode a modified type, either a modified fundamental type or
3205 a modified user defined type. MODIFIERS is a pointer to the
3206 block of bytes that define MODCOUNT modifiers. Immediately
3207 following the last modifier is a short containing the fundamental
3208 type or a long containing the reference to the user defined
3209 type. Which one is determined by MTYPE, which is either
3210 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3211 type we are generating.
3213 We call ourself recursively to generate each modified type,`
3214 until MODCOUNT reaches zero, at which point we have consumed
3215 all the modifiers and generate either the fundamental type or
3216 user defined type. When the recursion unwinds, each modifier
3217 is applied in turn to generate the full modified type.
3221 If we find a modifier that we don't recognize, and it is not one
3222 of those reserved for application specific use, then we issue a
3223 warning and simply ignore the modifier.
3227 We currently ignore MOD_const and MOD_volatile. (FIXME)
3231 static struct type *
3232 decode_modified_type (modifiers, modcount, mtype)
3234 unsigned int modcount;
3237 struct type *typep = NULL;
3238 unsigned short fundtype;
3247 case AT_mod_fund_type:
3248 nbytes = attribute_size (AT_fund_type);
3249 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3251 typep = decode_fund_type (fundtype);
3253 case AT_mod_u_d_type:
3254 nbytes = attribute_size (AT_user_def_type);
3255 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3257 if ((typep = lookup_utype (die_ref)) == NULL)
3259 typep = alloc_utype (die_ref, NULL);
3263 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3264 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3270 modifier = *modifiers++;
3271 typep = decode_modified_type (modifiers, --modcount, mtype);
3274 case MOD_pointer_to:
3275 typep = lookup_pointer_type (typep);
3277 case MOD_reference_to:
3278 typep = lookup_reference_type (typep);
3281 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3284 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3287 if (!(MOD_lo_user <= (unsigned char) modifier
3288 && (unsigned char) modifier <= MOD_hi_user))
3290 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3302 decode_fund_type -- translate basic DWARF type to gdb base type
3306 Given an integer that is one of the fundamental DWARF types,
3307 translate it to one of the basic internal gdb types and return
3308 a pointer to the appropriate gdb type (a "struct type *").
3312 For robustness, if we are asked to translate a fundamental
3313 type that we are unprepared to deal with, we return int so
3314 callers can always depend upon a valid type being returned,
3315 and so gdb may at least do something reasonable by default.
3316 If the type is not in the range of those types defined as
3317 application specific types, we also issue a warning.
3320 static struct type *
3321 decode_fund_type (fundtype)
3322 unsigned int fundtype;
3324 struct type *typep = NULL;
3330 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3333 case FT_boolean: /* Was FT_set in AT&T version */
3334 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3337 case FT_pointer: /* (void *) */
3338 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3339 typep = lookup_pointer_type (typep);
3343 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3346 case FT_signed_char:
3347 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3350 case FT_unsigned_char:
3351 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3355 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3358 case FT_signed_short:
3359 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3362 case FT_unsigned_short:
3363 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3367 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3370 case FT_signed_integer:
3371 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3374 case FT_unsigned_integer:
3375 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3379 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3382 case FT_signed_long:
3383 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3386 case FT_unsigned_long:
3387 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3391 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3394 case FT_signed_long_long:
3395 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3398 case FT_unsigned_long_long:
3399 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3403 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3406 case FT_dbl_prec_float:
3407 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3410 case FT_ext_prec_float:
3411 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3415 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3418 case FT_dbl_prec_complex:
3419 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3422 case FT_ext_prec_complex:
3423 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3430 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3431 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3433 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3444 create_name -- allocate a fresh copy of a string on an obstack
3448 Given a pointer to a string and a pointer to an obstack, allocates
3449 a fresh copy of the string on the specified obstack.
3454 create_name (name, obstackp)
3456 struct obstack *obstackp;
3461 length = strlen (name) + 1;
3462 newname = (char *) obstack_alloc (obstackp, length);
3463 strcpy (newname, name);
3471 basicdieinfo -- extract the minimal die info from raw die data
3475 void basicdieinfo (char *diep, struct dieinfo *dip,
3476 struct objfile *objfile)
3480 Given a pointer to raw DIE data, and a pointer to an instance of a
3481 die info structure, this function extracts the basic information
3482 from the DIE data required to continue processing this DIE, along
3483 with some bookkeeping information about the DIE.
3485 The information we absolutely must have includes the DIE tag,
3486 and the DIE length. If we need the sibling reference, then we
3487 will have to call completedieinfo() to process all the remaining
3490 Note that since there is no guarantee that the data is properly
3491 aligned in memory for the type of access required (indirection
3492 through anything other than a char pointer), and there is no
3493 guarantee that it is in the same byte order as the gdb host,
3494 we call a function which deals with both alignment and byte
3495 swapping issues. Possibly inefficient, but quite portable.
3497 We also take care of some other basic things at this point, such
3498 as ensuring that the instance of the die info structure starts
3499 out completely zero'd and that curdie is initialized for use
3500 in error reporting if we have a problem with the current die.
3504 All DIE's must have at least a valid length, thus the minimum
3505 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3506 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3507 are forced to be TAG_padding DIES.
3509 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3510 that if a padding DIE is used for alignment and the amount needed is
3511 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3512 enough to align to the next alignment boundry.
3514 We do some basic sanity checking here, such as verifying that the
3515 length of the die would not cause it to overrun the recorded end of
3516 the buffer holding the DIE info. If we find a DIE that is either
3517 too small or too large, we force it's length to zero which should
3518 cause the caller to take appropriate action.
3522 basicdieinfo (dip, diep, objfile)
3523 struct dieinfo *dip;
3525 struct objfile *objfile;
3528 memset (dip, 0, sizeof (struct dieinfo));
3530 dip -> die_ref = dbroff + (diep - dbbase);
3531 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3533 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3534 ((diep + dip -> die_length) > (dbbase + dbsize)))
3536 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3537 dip -> die_length = 0;
3539 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3541 dip -> die_tag = TAG_padding;
3545 diep += SIZEOF_DIE_LENGTH;
3546 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3555 completedieinfo -- finish reading the information for a given DIE
3559 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3563 Given a pointer to an already partially initialized die info structure,
3564 scan the raw DIE data and finish filling in the die info structure
3565 from the various attributes found.
3567 Note that since there is no guarantee that the data is properly
3568 aligned in memory for the type of access required (indirection
3569 through anything other than a char pointer), and there is no
3570 guarantee that it is in the same byte order as the gdb host,
3571 we call a function which deals with both alignment and byte
3572 swapping issues. Possibly inefficient, but quite portable.
3576 Each time we are called, we increment the diecount variable, which
3577 keeps an approximate count of the number of dies processed for
3578 each compilation unit. This information is presented to the user
3579 if the info_verbose flag is set.
3584 completedieinfo (dip, objfile)
3585 struct dieinfo *dip;
3586 struct objfile *objfile;
3588 char *diep; /* Current pointer into raw DIE data */
3589 char *end; /* Terminate DIE scan here */
3590 unsigned short attr; /* Current attribute being scanned */
3591 unsigned short form; /* Form of the attribute */
3592 int nbytes; /* Size of next field to read */
3596 end = diep + dip -> die_length;
3597 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3600 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3601 diep += SIZEOF_ATTRIBUTE;
3602 if ((nbytes = attribute_size (attr)) == -1)
3604 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3611 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3627 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 dip -> has_at_stmt_list = 1;
3632 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 dip -> at_low_pc += baseaddr;
3635 dip -> has_at_low_pc = 1;
3638 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3640 dip -> at_high_pc += baseaddr;
3643 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 case AT_user_def_type:
3647 dip -> at_user_def_type = target_to_host (diep, nbytes,
3648 GET_UNSIGNED, objfile);
3651 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 dip -> has_at_byte_size = 1;
3656 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3668 dip -> at_location = diep;
3670 case AT_mod_fund_type:
3671 dip -> at_mod_fund_type = diep;
3673 case AT_subscr_data:
3674 dip -> at_subscr_data = diep;
3676 case AT_mod_u_d_type:
3677 dip -> at_mod_u_d_type = diep;
3679 case AT_element_list:
3680 dip -> at_element_list = diep;
3681 dip -> short_element_list = 0;
3683 case AT_short_element_list:
3684 dip -> at_element_list = diep;
3685 dip -> short_element_list = 1;
3687 case AT_discr_value:
3688 dip -> at_discr_value = diep;
3690 case AT_string_length:
3691 dip -> at_string_length = diep;
3694 dip -> at_name = diep;
3697 /* For now, ignore any "hostname:" portion, since gdb doesn't
3698 know how to deal with it. (FIXME). */
3699 dip -> at_comp_dir = strrchr (diep, ':');
3700 if (dip -> at_comp_dir != NULL)
3702 dip -> at_comp_dir++;
3706 dip -> at_comp_dir = diep;
3710 dip -> at_producer = diep;
3712 case AT_start_scope:
3713 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3716 case AT_stride_size:
3717 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3721 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3725 dip -> at_prototyped = diep;
3728 /* Found an attribute that we are unprepared to handle. However
3729 it is specifically one of the design goals of DWARF that
3730 consumers should ignore unknown attributes. As long as the
3731 form is one that we recognize (so we know how to skip it),
3732 we can just ignore the unknown attribute. */
3735 form = FORM_FROM_ATTR (attr);
3749 diep += TARGET_FT_POINTER_SIZE (objfile);
3752 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3755 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3758 diep += strlen (diep) + 1;
3761 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3772 target_to_host -- swap in target data to host
3776 target_to_host (char *from, int nbytes, int signextend,
3777 struct objfile *objfile)
3781 Given pointer to data in target format in FROM, a byte count for
3782 the size of the data in NBYTES, a flag indicating whether or not
3783 the data is signed in SIGNEXTEND, and a pointer to the current
3784 objfile in OBJFILE, convert the data to host format and return
3785 the converted value.
3789 FIXME: If we read data that is known to be signed, and expect to
3790 use it as signed data, then we need to explicitly sign extend the
3791 result until the bfd library is able to do this for us.
3793 FIXME: Would a 32 bit target ever need an 8 byte result?
3798 target_to_host (from, nbytes, signextend, objfile)
3801 int signextend; /* FIXME: Unused */
3802 struct objfile *objfile;
3809 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3812 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3815 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3818 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3821 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3832 attribute_size -- compute size of data for a DWARF attribute
3836 static int attribute_size (unsigned int attr)
3840 Given a DWARF attribute in ATTR, compute the size of the first
3841 piece of data associated with this attribute and return that
3844 Returns -1 for unrecognized attributes.
3849 attribute_size (attr)
3852 int nbytes; /* Size of next data for this attribute */
3853 unsigned short form; /* Form of the attribute */
3855 form = FORM_FROM_ATTR (attr);
3858 case FORM_STRING: /* A variable length field is next */
3861 case FORM_DATA2: /* Next 2 byte field is the data itself */
3862 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3865 case FORM_DATA4: /* Next 4 byte field is the data itself */
3866 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3867 case FORM_REF: /* Next 4 byte field is a DIE offset */
3870 case FORM_DATA8: /* Next 8 byte field is the data itself */
3873 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3874 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3877 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);