1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
55 #include "gdb_string.h"
59 #include "cp-support.h"
61 #include "gdb_assert.h"
64 #include "macroscope.h"
68 /* Prototypes for local functions */
70 static void completion_list_add_name (char *, char *, int, char *, char *);
72 static void rbreak_command (char *, int);
74 static void types_info (char *, int);
76 static void functions_info (char *, int);
78 static void variables_info (char *, int);
80 static void sources_info (char *, int);
82 static void output_source_filename (const char *, int *);
84 static int find_line_common (struct linetable *, int, int *);
86 /* This one is used by linespec.c */
88 char *operator_chars (char *p, char **end);
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
105 const domain_enum domain);
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
111 const domain_enum domain);
113 static void print_msymbol_info (struct minimal_symbol *);
115 void _initialize_symtab (void);
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *multiple_symbols_modes[] =
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
133 static const char *multiple_symbols_mode = multiple_symbols_all;
135 /* Read-only accessor to AUTO_SELECT_MODE. */
138 multiple_symbols_select_mode (void)
140 return multiple_symbols_mode;
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
147 const struct block *block_found;
149 /* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
154 lookup_symtab (const char *name)
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
161 struct cleanup *cleanup;
163 cleanup = make_cleanup (null_cleanup, NULL);
165 /* Here we are interested in canonicalizing an absolute path, not
166 absolutizing a relative path. */
167 if (IS_ABSOLUTE_PATH (name))
169 full_path = xfullpath (name);
170 make_cleanup (xfree, full_path);
171 real_path = gdb_realpath (name);
172 make_cleanup (xfree, real_path);
177 /* First, search for an exact match. */
179 ALL_SYMTABS (objfile, s)
181 if (FILENAME_CMP (name, s->filename) == 0)
183 do_cleanups (cleanup);
187 /* If the user gave us an absolute path, try to find the file in
188 this symtab and use its absolute path. */
190 if (full_path != NULL)
192 const char *fp = symtab_to_fullname (s);
194 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 do_cleanups (cleanup);
201 if (real_path != NULL)
203 char *fullname = symtab_to_fullname (s);
205 if (fullname != NULL)
207 char *rp = gdb_realpath (fullname);
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
212 do_cleanups (cleanup);
219 /* Now, search for a matching tail (only if name doesn't have any dirs). */
221 if (lbasename (name) == name)
222 ALL_SYMTABS (objfile, s)
224 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
226 do_cleanups (cleanup);
231 /* Same search rules as above apply here, but now we look thru the
235 ALL_OBJFILES (objfile)
238 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
248 do_cleanups (cleanup);
253 do_cleanups (cleanup);
257 /* At this point, we have located the psymtab for this file, but
258 the conversion to a symtab has failed. This usually happens
259 when we are looking up an include file. In this case,
260 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
261 been created. So, we need to run through the symtabs again in
262 order to find the file.
263 XXX - This is a crock, and should be fixed inside of the
264 symbol parsing routines. */
268 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
269 full method name, which consist of the class name (from T), the unadorned
270 method name from METHOD_ID, and the signature for the specific overload,
271 specified by SIGNATURE_ID. Note that this function is g++ specific. */
274 gdb_mangle_name (struct type *type, int method_id, int signature_id)
276 int mangled_name_len;
278 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
279 struct fn_field *method = &f[signature_id];
280 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
281 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
282 char *newname = type_name_no_tag (type);
284 /* Does the form of physname indicate that it is the full mangled name
285 of a constructor (not just the args)? */
286 int is_full_physname_constructor;
289 int is_destructor = is_destructor_name (physname);
290 /* Need a new type prefix. */
291 char *const_prefix = method->is_const ? "C" : "";
292 char *volatile_prefix = method->is_volatile ? "V" : "";
294 int len = (newname == NULL ? 0 : strlen (newname));
296 /* Nothing to do if physname already contains a fully mangled v3 abi name
297 or an operator name. */
298 if ((physname[0] == '_' && physname[1] == 'Z')
299 || is_operator_name (field_name))
300 return xstrdup (physname);
302 is_full_physname_constructor = is_constructor_name (physname);
304 is_constructor = is_full_physname_constructor
305 || (newname && strcmp (field_name, newname) == 0);
308 is_destructor = (strncmp (physname, "__dt", 4) == 0);
310 if (is_destructor || is_full_physname_constructor)
312 mangled_name = (char *) xmalloc (strlen (physname) + 1);
313 strcpy (mangled_name, physname);
319 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
321 else if (physname[0] == 't' || physname[0] == 'Q')
323 /* The physname for template and qualified methods already includes
325 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
331 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
333 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
334 + strlen (buf) + len + strlen (physname) + 1);
336 mangled_name = (char *) xmalloc (mangled_name_len);
338 mangled_name[0] = '\0';
340 strcpy (mangled_name, field_name);
342 strcat (mangled_name, buf);
343 /* If the class doesn't have a name, i.e. newname NULL, then we just
344 mangle it using 0 for the length of the class. Thus it gets mangled
345 as something starting with `::' rather than `classname::'. */
347 strcat (mangled_name, newname);
349 strcat (mangled_name, physname);
350 return (mangled_name);
353 /* Initialize the cplus_specific structure. 'cplus_specific' should
354 only be allocated for use with cplus symbols. */
357 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
358 struct objfile *objfile)
360 /* A language_specific structure should not have been previously
362 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
363 gdb_assert (objfile != NULL);
365 gsymbol->language_specific.cplus_specific =
366 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
369 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
370 correctly allocated. For C++ symbols a cplus_specific struct is
371 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
372 OBJFILE can be NULL. */
374 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
376 struct objfile *objfile)
378 if (gsymbol->language == language_cplus)
380 if (gsymbol->language_specific.cplus_specific == NULL)
381 symbol_init_cplus_specific (gsymbol, objfile);
383 gsymbol->language_specific.cplus_specific->demangled_name = name;
386 gsymbol->language_specific.mangled_lang.demangled_name = name;
389 /* Return the demangled name of GSYMBOL. */
391 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
393 if (gsymbol->language == language_cplus)
395 if (gsymbol->language_specific.cplus_specific != NULL)
396 return gsymbol->language_specific.cplus_specific->demangled_name;
401 return gsymbol->language_specific.mangled_lang.demangled_name;
405 /* Initialize the language dependent portion of a symbol
406 depending upon the language for the symbol. */
408 symbol_set_language (struct general_symbol_info *gsymbol,
409 enum language language)
411 gsymbol->language = language;
412 if (gsymbol->language == language_d
413 || gsymbol->language == language_java
414 || gsymbol->language == language_objc
415 || gsymbol->language == language_fortran)
417 symbol_set_demangled_name (gsymbol, NULL, NULL);
419 else if (gsymbol->language == language_cplus)
420 gsymbol->language_specific.cplus_specific = NULL;
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
428 /* Functions to initialize a symbol's mangled name. */
430 /* Objects of this type are stored in the demangled name hash table. */
431 struct demangled_name_entry
437 /* Hash function for the demangled name hash. */
439 hash_demangled_name_entry (const void *data)
441 const struct demangled_name_entry *e = data;
443 return htab_hash_string (e->mangled);
446 /* Equality function for the demangled name hash. */
448 eq_demangled_name_entry (const void *a, const void *b)
450 const struct demangled_name_entry *da = a;
451 const struct demangled_name_entry *db = b;
453 return strcmp (da->mangled, db->mangled) == 0;
456 /* Create the hash table used for demangled names. Each hash entry is
457 a pair of strings; one for the mangled name and one for the demangled
458 name. The entry is hashed via just the mangled name. */
461 create_demangled_names_hash (struct objfile *objfile)
463 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
464 The hash table code will round this up to the next prime number.
465 Choosing a much larger table size wastes memory, and saves only about
466 1% in symbol reading. */
468 objfile->demangled_names_hash = htab_create_alloc
469 (256, hash_demangled_name_entry, eq_demangled_name_entry,
470 NULL, xcalloc, xfree);
473 /* Try to determine the demangled name for a symbol, based on the
474 language of that symbol. If the language is set to language_auto,
475 it will attempt to find any demangling algorithm that works and
476 then set the language appropriately. The returned name is allocated
477 by the demangler and should be xfree'd. */
480 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
483 char *demangled = NULL;
485 if (gsymbol->language == language_unknown)
486 gsymbol->language = language_auto;
488 if (gsymbol->language == language_objc
489 || gsymbol->language == language_auto)
492 objc_demangle (mangled, 0);
493 if (demangled != NULL)
495 gsymbol->language = language_objc;
499 if (gsymbol->language == language_cplus
500 || gsymbol->language == language_auto)
503 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
504 if (demangled != NULL)
506 gsymbol->language = language_cplus;
510 if (gsymbol->language == language_java)
513 cplus_demangle (mangled,
514 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
515 if (demangled != NULL)
517 gsymbol->language = language_java;
521 if (gsymbol->language == language_d
522 || gsymbol->language == language_auto)
524 demangled = d_demangle(mangled, 0);
525 if (demangled != NULL)
527 gsymbol->language = language_d;
531 /* We could support `gsymbol->language == language_fortran' here to provide
532 module namespaces also for inferiors with only minimal symbol table (ELF
533 symbols). Just the mangling standard is not standardized across compilers
534 and there is no DW_AT_producer available for inferiors with only the ELF
535 symbols to check the mangling kind. */
539 /* Set both the mangled and demangled (if any) names for GSYMBOL based
540 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
541 objfile's obstack; but if COPY_NAME is 0 and if NAME is
542 NUL-terminated, then this function assumes that NAME is already
543 correctly saved (either permanently or with a lifetime tied to the
544 objfile), and it will not be copied.
546 The hash table corresponding to OBJFILE is used, and the memory
547 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
548 so the pointer can be discarded after calling this function. */
550 /* We have to be careful when dealing with Java names: when we run
551 into a Java minimal symbol, we don't know it's a Java symbol, so it
552 gets demangled as a C++ name. This is unfortunate, but there's not
553 much we can do about it: but when demangling partial symbols and
554 regular symbols, we'd better not reuse the wrong demangled name.
555 (See PR gdb/1039.) We solve this by putting a distinctive prefix
556 on Java names when storing them in the hash table. */
558 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
559 don't mind the Java prefix so much: different languages have
560 different demangling requirements, so it's only natural that we
561 need to keep language data around in our demangling cache. But
562 it's not good that the minimal symbol has the wrong demangled name.
563 Unfortunately, I can't think of any easy solution to that
566 #define JAVA_PREFIX "##JAVA$$"
567 #define JAVA_PREFIX_LEN 8
570 symbol_set_names (struct general_symbol_info *gsymbol,
571 const char *linkage_name, int len, int copy_name,
572 struct objfile *objfile)
574 struct demangled_name_entry **slot;
575 /* A 0-terminated copy of the linkage name. */
576 const char *linkage_name_copy;
577 /* A copy of the linkage name that might have a special Java prefix
578 added to it, for use when looking names up in the hash table. */
579 const char *lookup_name;
580 /* The length of lookup_name. */
582 struct demangled_name_entry entry;
584 if (gsymbol->language == language_ada)
586 /* In Ada, we do the symbol lookups using the mangled name, so
587 we can save some space by not storing the demangled name.
589 As a side note, we have also observed some overlap between
590 the C++ mangling and Ada mangling, similarly to what has
591 been observed with Java. Because we don't store the demangled
592 name with the symbol, we don't need to use the same trick
595 gsymbol->name = (char *) linkage_name;
598 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
599 memcpy (gsymbol->name, linkage_name, len);
600 gsymbol->name[len] = '\0';
602 symbol_set_demangled_name (gsymbol, NULL, NULL);
607 if (objfile->demangled_names_hash == NULL)
608 create_demangled_names_hash (objfile);
610 /* The stabs reader generally provides names that are not
611 NUL-terminated; most of the other readers don't do this, so we
612 can just use the given copy, unless we're in the Java case. */
613 if (gsymbol->language == language_java)
617 lookup_len = len + JAVA_PREFIX_LEN;
618 alloc_name = alloca (lookup_len + 1);
619 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
620 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
621 alloc_name[lookup_len] = '\0';
623 lookup_name = alloc_name;
624 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
626 else if (linkage_name[len] != '\0')
631 alloc_name = alloca (lookup_len + 1);
632 memcpy (alloc_name, linkage_name, len);
633 alloc_name[lookup_len] = '\0';
635 lookup_name = alloc_name;
636 linkage_name_copy = alloc_name;
641 lookup_name = linkage_name;
642 linkage_name_copy = linkage_name;
645 entry.mangled = (char *) lookup_name;
646 slot = ((struct demangled_name_entry **)
647 htab_find_slot (objfile->demangled_names_hash,
650 /* If this name is not in the hash table, add it. */
653 char *demangled_name = symbol_find_demangled_name (gsymbol,
655 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
657 /* Suppose we have demangled_name==NULL, copy_name==0, and
658 lookup_name==linkage_name. In this case, we already have the
659 mangled name saved, and we don't have a demangled name. So,
660 you might think we could save a little space by not recording
661 this in the hash table at all.
663 It turns out that it is actually important to still save such
664 an entry in the hash table, because storing this name gives
665 us better bcache hit rates for partial symbols. */
666 if (!copy_name && lookup_name == linkage_name)
668 *slot = obstack_alloc (&objfile->objfile_obstack,
669 offsetof (struct demangled_name_entry,
671 + demangled_len + 1);
672 (*slot)->mangled = (char *) lookup_name;
676 /* If we must copy the mangled name, put it directly after
677 the demangled name so we can have a single
679 *slot = obstack_alloc (&objfile->objfile_obstack,
680 offsetof (struct demangled_name_entry,
682 + lookup_len + demangled_len + 2);
683 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
684 strcpy ((*slot)->mangled, lookup_name);
687 if (demangled_name != NULL)
689 strcpy ((*slot)->demangled, demangled_name);
690 xfree (demangled_name);
693 (*slot)->demangled[0] = '\0';
696 gsymbol->name = (*slot)->mangled + lookup_len - len;
697 if ((*slot)->demangled[0] != '\0')
698 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
700 symbol_set_demangled_name (gsymbol, NULL, objfile);
703 /* Return the source code name of a symbol. In languages where
704 demangling is necessary, this is the demangled name. */
707 symbol_natural_name (const struct general_symbol_info *gsymbol)
709 switch (gsymbol->language)
715 case language_fortran:
716 if (symbol_get_demangled_name (gsymbol) != NULL)
717 return symbol_get_demangled_name (gsymbol);
720 if (symbol_get_demangled_name (gsymbol) != NULL)
721 return symbol_get_demangled_name (gsymbol);
723 return ada_decode_symbol (gsymbol);
728 return gsymbol->name;
731 /* Return the demangled name for a symbol based on the language for
732 that symbol. If no demangled name exists, return NULL. */
734 symbol_demangled_name (const struct general_symbol_info *gsymbol)
736 switch (gsymbol->language)
742 case language_fortran:
743 if (symbol_get_demangled_name (gsymbol) != NULL)
744 return symbol_get_demangled_name (gsymbol);
747 if (symbol_get_demangled_name (gsymbol) != NULL)
748 return symbol_get_demangled_name (gsymbol);
750 return ada_decode_symbol (gsymbol);
758 /* Return the search name of a symbol---generally the demangled or
759 linkage name of the symbol, depending on how it will be searched for.
760 If there is no distinct demangled name, then returns the same value
761 (same pointer) as SYMBOL_LINKAGE_NAME. */
763 symbol_search_name (const struct general_symbol_info *gsymbol)
765 if (gsymbol->language == language_ada)
766 return gsymbol->name;
768 return symbol_natural_name (gsymbol);
771 /* Initialize the structure fields to zero values. */
773 init_sal (struct symtab_and_line *sal)
781 sal->explicit_pc = 0;
782 sal->explicit_line = 0;
786 /* Return 1 if the two sections are the same, or if they could
787 plausibly be copies of each other, one in an original object
788 file and another in a separated debug file. */
791 matching_obj_sections (struct obj_section *obj_first,
792 struct obj_section *obj_second)
794 asection *first = obj_first? obj_first->the_bfd_section : NULL;
795 asection *second = obj_second? obj_second->the_bfd_section : NULL;
798 /* If they're the same section, then they match. */
802 /* If either is NULL, give up. */
803 if (first == NULL || second == NULL)
806 /* This doesn't apply to absolute symbols. */
807 if (first->owner == NULL || second->owner == NULL)
810 /* If they're in the same object file, they must be different sections. */
811 if (first->owner == second->owner)
814 /* Check whether the two sections are potentially corresponding. They must
815 have the same size, address, and name. We can't compare section indexes,
816 which would be more reliable, because some sections may have been
818 if (bfd_get_section_size (first) != bfd_get_section_size (second))
821 /* In-memory addresses may start at a different offset, relativize them. */
822 if (bfd_get_section_vma (first->owner, first)
823 - bfd_get_start_address (first->owner)
824 != bfd_get_section_vma (second->owner, second)
825 - bfd_get_start_address (second->owner))
828 if (bfd_get_section_name (first->owner, first) == NULL
829 || bfd_get_section_name (second->owner, second) == NULL
830 || strcmp (bfd_get_section_name (first->owner, first),
831 bfd_get_section_name (second->owner, second)) != 0)
834 /* Otherwise check that they are in corresponding objfiles. */
837 if (obj->obfd == first->owner)
839 gdb_assert (obj != NULL);
841 if (obj->separate_debug_objfile != NULL
842 && obj->separate_debug_objfile->obfd == second->owner)
844 if (obj->separate_debug_objfile_backlink != NULL
845 && obj->separate_debug_objfile_backlink->obfd == second->owner)
852 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
854 struct objfile *objfile;
855 struct minimal_symbol *msymbol;
857 /* If we know that this is not a text address, return failure. This is
858 necessary because we loop based on texthigh and textlow, which do
859 not include the data ranges. */
860 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
862 && (MSYMBOL_TYPE (msymbol) == mst_data
863 || MSYMBOL_TYPE (msymbol) == mst_bss
864 || MSYMBOL_TYPE (msymbol) == mst_abs
865 || MSYMBOL_TYPE (msymbol) == mst_file_data
866 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
869 ALL_OBJFILES (objfile)
871 struct symtab *result = NULL;
874 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
883 /* Debug symbols usually don't have section information. We need to dig that
884 out of the minimal symbols and stash that in the debug symbol. */
887 fixup_section (struct general_symbol_info *ginfo,
888 CORE_ADDR addr, struct objfile *objfile)
890 struct minimal_symbol *msym;
892 /* First, check whether a minimal symbol with the same name exists
893 and points to the same address. The address check is required
894 e.g. on PowerPC64, where the minimal symbol for a function will
895 point to the function descriptor, while the debug symbol will
896 point to the actual function code. */
897 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
900 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
901 ginfo->section = SYMBOL_SECTION (msym);
905 /* Static, function-local variables do appear in the linker
906 (minimal) symbols, but are frequently given names that won't
907 be found via lookup_minimal_symbol(). E.g., it has been
908 observed in frv-uclinux (ELF) executables that a static,
909 function-local variable named "foo" might appear in the
910 linker symbols as "foo.6" or "foo.3". Thus, there is no
911 point in attempting to extend the lookup-by-name mechanism to
912 handle this case due to the fact that there can be multiple
915 So, instead, search the section table when lookup by name has
916 failed. The ``addr'' and ``endaddr'' fields may have already
917 been relocated. If so, the relocation offset (i.e. the
918 ANOFFSET value) needs to be subtracted from these values when
919 performing the comparison. We unconditionally subtract it,
920 because, when no relocation has been performed, the ANOFFSET
921 value will simply be zero.
923 The address of the symbol whose section we're fixing up HAS
924 NOT BEEN adjusted (relocated) yet. It can't have been since
925 the section isn't yet known and knowing the section is
926 necessary in order to add the correct relocation value. In
927 other words, we wouldn't even be in this function (attempting
928 to compute the section) if it were already known.
930 Note that it is possible to search the minimal symbols
931 (subtracting the relocation value if necessary) to find the
932 matching minimal symbol, but this is overkill and much less
933 efficient. It is not necessary to find the matching minimal
934 symbol, only its section.
936 Note that this technique (of doing a section table search)
937 can fail when unrelocated section addresses overlap. For
938 this reason, we still attempt a lookup by name prior to doing
939 a search of the section table. */
941 struct obj_section *s;
943 ALL_OBJFILE_OSECTIONS (objfile, s)
945 int idx = s->the_bfd_section->index;
946 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
948 if (obj_section_addr (s) - offset <= addr
949 && addr < obj_section_endaddr (s) - offset)
951 ginfo->obj_section = s;
952 ginfo->section = idx;
960 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
967 if (SYMBOL_OBJ_SECTION (sym))
970 /* We either have an OBJFILE, or we can get at it from the sym's
971 symtab. Anything else is a bug. */
972 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
975 objfile = SYMBOL_SYMTAB (sym)->objfile;
977 /* We should have an objfile by now. */
978 gdb_assert (objfile);
980 switch (SYMBOL_CLASS (sym))
984 addr = SYMBOL_VALUE_ADDRESS (sym);
987 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
991 /* Nothing else will be listed in the minsyms -- no use looking
996 fixup_section (&sym->ginfo, addr, objfile);
1001 /* Find the definition for a specified symbol name NAME
1002 in domain DOMAIN, visible from lexical block BLOCK.
1003 Returns the struct symbol pointer, or zero if no symbol is found.
1004 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1005 NAME is a field of the current implied argument `this'. If so set
1006 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1007 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1008 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1010 /* This function has a bunch of loops in it and it would seem to be
1011 attractive to put in some QUIT's (though I'm not really sure
1012 whether it can run long enough to be really important). But there
1013 are a few calls for which it would appear to be bad news to quit
1014 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1015 that there is C++ code below which can error(), but that probably
1016 doesn't affect these calls since they are looking for a known
1017 variable and thus can probably assume it will never hit the C++
1021 lookup_symbol_in_language (const char *name, const struct block *block,
1022 const domain_enum domain, enum language lang,
1023 int *is_a_field_of_this)
1025 char *demangled_name = NULL;
1026 const char *modified_name = NULL;
1027 struct symbol *returnval;
1028 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1030 modified_name = name;
1032 /* If we are using C++, D, or Java, demangle the name before doing a
1033 lookup, so we can always binary search. */
1034 if (lang == language_cplus)
1036 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1044 /* If we were given a non-mangled name, canonicalize it
1045 according to the language (so far only for C++). */
1046 demangled_name = cp_canonicalize_string (name);
1049 modified_name = demangled_name;
1050 make_cleanup (xfree, demangled_name);
1054 else if (lang == language_java)
1056 demangled_name = cplus_demangle (name,
1057 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1060 modified_name = demangled_name;
1061 make_cleanup (xfree, demangled_name);
1064 else if (lang == language_d)
1066 demangled_name = d_demangle (name, 0);
1069 modified_name = demangled_name;
1070 make_cleanup (xfree, demangled_name);
1074 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1075 is_a_field_of_this);
1076 do_cleanups (cleanup);
1081 /* Behave like lookup_symbol_in_language, but performed with the
1082 current language. */
1085 lookup_symbol (const char *name, const struct block *block,
1086 domain_enum domain, int *is_a_field_of_this)
1088 return lookup_symbol_in_language (name, block, domain,
1089 current_language->la_language,
1090 is_a_field_of_this);
1093 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1094 found, or NULL if not found. */
1097 lookup_language_this (const struct language_defn *lang,
1098 const struct block *block)
1100 if (lang->la_name_of_this == NULL || block == NULL)
1107 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1110 if (BLOCK_FUNCTION (block))
1112 block = BLOCK_SUPERBLOCK (block);
1116 /* Behave like lookup_symbol except that NAME is the natural name
1117 of the symbol that we're looking for and, if LINKAGE_NAME is
1118 non-NULL, ensure that the symbol's linkage name matches as
1121 static struct symbol *
1122 lookup_symbol_aux (const char *name, const struct block *block,
1123 const domain_enum domain, enum language language,
1124 int *is_a_field_of_this)
1127 const struct language_defn *langdef;
1129 /* Make sure we do something sensible with is_a_field_of_this, since
1130 the callers that set this parameter to some non-null value will
1131 certainly use it later and expect it to be either 0 or 1.
1132 If we don't set it, the contents of is_a_field_of_this are
1134 if (is_a_field_of_this != NULL)
1135 *is_a_field_of_this = 0;
1137 /* Search specified block and its superiors. Don't search
1138 STATIC_BLOCK or GLOBAL_BLOCK. */
1140 sym = lookup_symbol_aux_local (name, block, domain, language);
1144 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1145 check to see if NAME is a field of `this'. */
1147 langdef = language_def (language);
1149 if (is_a_field_of_this != NULL)
1151 struct symbol *sym = lookup_language_this (langdef, block);
1155 struct type *t = sym->type;
1157 /* I'm not really sure that type of this can ever
1158 be typedefed; just be safe. */
1160 if (TYPE_CODE (t) == TYPE_CODE_PTR
1161 || TYPE_CODE (t) == TYPE_CODE_REF)
1162 t = TYPE_TARGET_TYPE (t);
1164 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1165 && TYPE_CODE (t) != TYPE_CODE_UNION)
1166 error (_("Internal error: `%s' is not an aggregate"),
1167 langdef->la_name_of_this);
1169 if (check_field (t, name))
1171 *is_a_field_of_this = 1;
1177 /* Now do whatever is appropriate for LANGUAGE to look
1178 up static and global variables. */
1180 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1184 /* Now search all static file-level symbols. Not strictly correct,
1185 but more useful than an error. */
1187 return lookup_static_symbol_aux (name, domain);
1190 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1191 first, then check the psymtabs. If a psymtab indicates the existence of the
1192 desired name as a file-level static, then do psymtab-to-symtab conversion on
1193 the fly and return the found symbol. */
1196 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1198 struct objfile *objfile;
1201 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1205 ALL_OBJFILES (objfile)
1207 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1215 /* Check to see if the symbol is defined in BLOCK or its superiors.
1216 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1218 static struct symbol *
1219 lookup_symbol_aux_local (const char *name, const struct block *block,
1220 const domain_enum domain,
1221 enum language language)
1224 const struct block *static_block = block_static_block (block);
1225 const char *scope = block_scope (block);
1227 /* Check if either no block is specified or it's a global block. */
1229 if (static_block == NULL)
1232 while (block != static_block)
1234 sym = lookup_symbol_aux_block (name, block, domain);
1238 if (language == language_cplus || language == language_fortran)
1240 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1246 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1248 block = BLOCK_SUPERBLOCK (block);
1251 /* We've reached the edge of the function without finding a result. */
1256 /* Look up OBJFILE to BLOCK. */
1259 lookup_objfile_from_block (const struct block *block)
1261 struct objfile *obj;
1267 block = block_global_block (block);
1268 /* Go through SYMTABS. */
1269 ALL_SYMTABS (obj, s)
1270 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1272 if (obj->separate_debug_objfile_backlink)
1273 obj = obj->separate_debug_objfile_backlink;
1281 /* Look up a symbol in a block; if found, fixup the symbol, and set
1282 block_found appropriately. */
1285 lookup_symbol_aux_block (const char *name, const struct block *block,
1286 const domain_enum domain)
1290 sym = lookup_block_symbol (block, name, domain);
1293 block_found = block;
1294 return fixup_symbol_section (sym, NULL);
1300 /* Check all global symbols in OBJFILE in symtabs and
1304 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1306 const domain_enum domain)
1308 const struct objfile *objfile;
1310 struct blockvector *bv;
1311 const struct block *block;
1314 for (objfile = main_objfile;
1316 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1318 /* Go through symtabs. */
1319 ALL_OBJFILE_SYMTABS (objfile, s)
1321 bv = BLOCKVECTOR (s);
1322 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1323 sym = lookup_block_symbol (block, name, domain);
1326 block_found = block;
1327 return fixup_symbol_section (sym, (struct objfile *)objfile);
1331 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1340 /* Check to see if the symbol is defined in one of the symtabs.
1341 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1342 depending on whether or not we want to search global symbols or
1345 static struct symbol *
1346 lookup_symbol_aux_symtabs (int block_index, const char *name,
1347 const domain_enum domain)
1350 struct objfile *objfile;
1351 struct blockvector *bv;
1352 const struct block *block;
1355 ALL_OBJFILES (objfile)
1358 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1362 ALL_OBJFILE_SYMTABS (objfile, s)
1365 bv = BLOCKVECTOR (s);
1366 block = BLOCKVECTOR_BLOCK (bv, block_index);
1367 sym = lookup_block_symbol (block, name, domain);
1370 block_found = block;
1371 return fixup_symbol_section (sym, objfile);
1379 /* A helper function for lookup_symbol_aux that interfaces with the
1380 "quick" symbol table functions. */
1382 static struct symbol *
1383 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1384 const char *name, const domain_enum domain)
1386 struct symtab *symtab;
1387 struct blockvector *bv;
1388 const struct block *block;
1393 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1397 bv = BLOCKVECTOR (symtab);
1398 block = BLOCKVECTOR_BLOCK (bv, kind);
1399 sym = lookup_block_symbol (block, name, domain);
1402 /* This shouldn't be necessary, but as a last resort try
1403 looking in the statics even though the psymtab claimed
1404 the symbol was global, or vice-versa. It's possible
1405 that the psymtab gets it wrong in some cases. */
1407 /* FIXME: carlton/2002-09-30: Should we really do that?
1408 If that happens, isn't it likely to be a GDB error, in
1409 which case we should fix the GDB error rather than
1410 silently dealing with it here? So I'd vote for
1411 removing the check for the symbol in the other
1413 block = BLOCKVECTOR_BLOCK (bv,
1414 kind == GLOBAL_BLOCK ?
1415 STATIC_BLOCK : GLOBAL_BLOCK);
1416 sym = lookup_block_symbol (block, name, domain);
1419 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1420 %s may be an inlined function, or may be a template function\n\
1421 (if a template, try specifying an instantiation: %s<type>)."),
1422 kind == GLOBAL_BLOCK ? "global" : "static",
1423 name, symtab->filename, name, name);
1425 return fixup_symbol_section (sym, objfile);
1428 /* A default version of lookup_symbol_nonlocal for use by languages
1429 that can't think of anything better to do. This implements the C
1433 basic_lookup_symbol_nonlocal (const char *name,
1434 const struct block *block,
1435 const domain_enum domain)
1439 /* NOTE: carlton/2003-05-19: The comments below were written when
1440 this (or what turned into this) was part of lookup_symbol_aux;
1441 I'm much less worried about these questions now, since these
1442 decisions have turned out well, but I leave these comments here
1445 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1446 not it would be appropriate to search the current global block
1447 here as well. (That's what this code used to do before the
1448 is_a_field_of_this check was moved up.) On the one hand, it's
1449 redundant with the lookup_symbol_aux_symtabs search that happens
1450 next. On the other hand, if decode_line_1 is passed an argument
1451 like filename:var, then the user presumably wants 'var' to be
1452 searched for in filename. On the third hand, there shouldn't be
1453 multiple global variables all of which are named 'var', and it's
1454 not like decode_line_1 has ever restricted its search to only
1455 global variables in a single filename. All in all, only
1456 searching the static block here seems best: it's correct and it's
1459 /* NOTE: carlton/2002-12-05: There's also a possible performance
1460 issue here: if you usually search for global symbols in the
1461 current file, then it would be slightly better to search the
1462 current global block before searching all the symtabs. But there
1463 are other factors that have a much greater effect on performance
1464 than that one, so I don't think we should worry about that for
1467 sym = lookup_symbol_static (name, block, domain);
1471 return lookup_symbol_global (name, block, domain);
1474 /* Lookup a symbol in the static block associated to BLOCK, if there
1475 is one; do nothing if BLOCK is NULL or a global block. */
1478 lookup_symbol_static (const char *name,
1479 const struct block *block,
1480 const domain_enum domain)
1482 const struct block *static_block = block_static_block (block);
1484 if (static_block != NULL)
1485 return lookup_symbol_aux_block (name, static_block, domain);
1490 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1494 lookup_symbol_global (const char *name,
1495 const struct block *block,
1496 const domain_enum domain)
1498 struct symbol *sym = NULL;
1499 struct objfile *objfile = NULL;
1501 /* Call library-specific lookup procedure. */
1502 objfile = lookup_objfile_from_block (block);
1503 if (objfile != NULL)
1504 sym = solib_global_lookup (objfile, name, domain);
1508 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1512 ALL_OBJFILES (objfile)
1514 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1523 symbol_matches_domain (enum language symbol_language,
1524 domain_enum symbol_domain,
1527 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1528 A Java class declaration also defines a typedef for the class.
1529 Similarly, any Ada type declaration implicitly defines a typedef. */
1530 if (symbol_language == language_cplus
1531 || symbol_language == language_d
1532 || symbol_language == language_java
1533 || symbol_language == language_ada)
1535 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1536 && symbol_domain == STRUCT_DOMAIN)
1539 /* For all other languages, strict match is required. */
1540 return (symbol_domain == domain);
1543 /* Look up a type named NAME in the struct_domain. The type returned
1544 must not be opaque -- i.e., must have at least one field
1548 lookup_transparent_type (const char *name)
1550 return current_language->la_lookup_transparent_type (name);
1553 /* A helper for basic_lookup_transparent_type that interfaces with the
1554 "quick" symbol table functions. */
1556 static struct type *
1557 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1560 struct symtab *symtab;
1561 struct blockvector *bv;
1562 struct block *block;
1567 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1571 bv = BLOCKVECTOR (symtab);
1572 block = BLOCKVECTOR_BLOCK (bv, kind);
1573 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1576 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1578 /* This shouldn't be necessary, but as a last resort
1579 * try looking in the 'other kind' even though the psymtab
1580 * claimed the symbol was one thing. It's possible that
1581 * the psymtab gets it wrong in some cases.
1583 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1584 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1586 /* FIXME; error is wrong in one case. */
1588 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1589 %s may be an inlined function, or may be a template function\n\
1590 (if a template, try specifying an instantiation: %s<type>)."),
1591 name, symtab->filename, name, name);
1593 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1594 return SYMBOL_TYPE (sym);
1599 /* The standard implementation of lookup_transparent_type. This code
1600 was modeled on lookup_symbol -- the parts not relevant to looking
1601 up types were just left out. In particular it's assumed here that
1602 types are available in struct_domain and only at file-static or
1606 basic_lookup_transparent_type (const char *name)
1609 struct symtab *s = NULL;
1610 struct blockvector *bv;
1611 struct objfile *objfile;
1612 struct block *block;
1615 /* Now search all the global symbols. Do the symtab's first, then
1616 check the psymtab's. If a psymtab indicates the existence
1617 of the desired name as a global, then do psymtab-to-symtab
1618 conversion on the fly and return the found symbol. */
1620 ALL_OBJFILES (objfile)
1623 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1625 name, STRUCT_DOMAIN);
1627 ALL_OBJFILE_SYMTABS (objfile, s)
1630 bv = BLOCKVECTOR (s);
1631 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1632 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1633 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1635 return SYMBOL_TYPE (sym);
1640 ALL_OBJFILES (objfile)
1642 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1647 /* Now search the static file-level symbols.
1648 Not strictly correct, but more useful than an error.
1649 Do the symtab's first, then
1650 check the psymtab's. If a psymtab indicates the existence
1651 of the desired name as a file-level static, then do psymtab-to-symtab
1652 conversion on the fly and return the found symbol. */
1654 ALL_OBJFILES (objfile)
1657 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1658 name, STRUCT_DOMAIN);
1660 ALL_OBJFILE_SYMTABS (objfile, s)
1662 bv = BLOCKVECTOR (s);
1663 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1664 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1665 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1667 return SYMBOL_TYPE (sym);
1672 ALL_OBJFILES (objfile)
1674 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1679 return (struct type *) 0;
1683 /* Find the name of the file containing main(). */
1684 /* FIXME: What about languages without main() or specially linked
1685 executables that have no main() ? */
1688 find_main_filename (void)
1690 struct objfile *objfile;
1691 char *name = main_name ();
1693 ALL_OBJFILES (objfile)
1699 result = objfile->sf->qf->find_symbol_file (objfile, name);
1706 /* Search BLOCK for symbol NAME in DOMAIN.
1708 Note that if NAME is the demangled form of a C++ symbol, we will fail
1709 to find a match during the binary search of the non-encoded names, but
1710 for now we don't worry about the slight inefficiency of looking for
1711 a match we'll never find, since it will go pretty quick. Once the
1712 binary search terminates, we drop through and do a straight linear
1713 search on the symbols. Each symbol which is marked as being a ObjC/C++
1714 symbol (language_cplus or language_objc set) has both the encoded and
1715 non-encoded names tested for a match. */
1718 lookup_block_symbol (const struct block *block, const char *name,
1719 const domain_enum domain)
1721 struct dict_iterator iter;
1724 if (!BLOCK_FUNCTION (block))
1726 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1728 sym = dict_iter_name_next (name, &iter))
1730 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1731 SYMBOL_DOMAIN (sym), domain))
1738 /* Note that parameter symbols do not always show up last in the
1739 list; this loop makes sure to take anything else other than
1740 parameter symbols first; it only uses parameter symbols as a
1741 last resort. Note that this only takes up extra computation
1744 struct symbol *sym_found = NULL;
1746 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1748 sym = dict_iter_name_next (name, &iter))
1750 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1751 SYMBOL_DOMAIN (sym), domain))
1754 if (!SYMBOL_IS_ARGUMENT (sym))
1760 return (sym_found); /* Will be NULL if not found. */
1764 /* Find the symtab associated with PC and SECTION. Look through the
1765 psymtabs and read in another symtab if necessary. */
1768 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1771 struct blockvector *bv;
1772 struct symtab *s = NULL;
1773 struct symtab *best_s = NULL;
1774 struct objfile *objfile;
1775 struct program_space *pspace;
1776 CORE_ADDR distance = 0;
1777 struct minimal_symbol *msymbol;
1779 pspace = current_program_space;
1781 /* If we know that this is not a text address, return failure. This is
1782 necessary because we loop based on the block's high and low code
1783 addresses, which do not include the data ranges, and because
1784 we call find_pc_sect_psymtab which has a similar restriction based
1785 on the partial_symtab's texthigh and textlow. */
1786 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1788 && (MSYMBOL_TYPE (msymbol) == mst_data
1789 || MSYMBOL_TYPE (msymbol) == mst_bss
1790 || MSYMBOL_TYPE (msymbol) == mst_abs
1791 || MSYMBOL_TYPE (msymbol) == mst_file_data
1792 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1795 /* Search all symtabs for the one whose file contains our address, and which
1796 is the smallest of all the ones containing the address. This is designed
1797 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1798 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1799 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1801 This happens for native ecoff format, where code from included files
1802 gets its own symtab. The symtab for the included file should have
1803 been read in already via the dependency mechanism.
1804 It might be swifter to create several symtabs with the same name
1805 like xcoff does (I'm not sure).
1807 It also happens for objfiles that have their functions reordered.
1808 For these, the symtab we are looking for is not necessarily read in. */
1810 ALL_PRIMARY_SYMTABS (objfile, s)
1812 bv = BLOCKVECTOR (s);
1813 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1815 if (BLOCK_START (b) <= pc
1816 && BLOCK_END (b) > pc
1818 || BLOCK_END (b) - BLOCK_START (b) < distance))
1820 /* For an objfile that has its functions reordered,
1821 find_pc_psymtab will find the proper partial symbol table
1822 and we simply return its corresponding symtab. */
1823 /* In order to better support objfiles that contain both
1824 stabs and coff debugging info, we continue on if a psymtab
1826 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1828 struct symtab *result;
1831 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1840 struct dict_iterator iter;
1841 struct symbol *sym = NULL;
1843 ALL_BLOCK_SYMBOLS (b, iter, sym)
1845 fixup_symbol_section (sym, objfile);
1846 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1850 continue; /* No symbol in this symtab matches
1853 distance = BLOCK_END (b) - BLOCK_START (b);
1861 ALL_OBJFILES (objfile)
1863 struct symtab *result;
1867 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1878 /* Find the symtab associated with PC. Look through the psymtabs and read
1879 in another symtab if necessary. Backward compatibility, no section. */
1882 find_pc_symtab (CORE_ADDR pc)
1884 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1888 /* Find the source file and line number for a given PC value and SECTION.
1889 Return a structure containing a symtab pointer, a line number,
1890 and a pc range for the entire source line.
1891 The value's .pc field is NOT the specified pc.
1892 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1893 use the line that ends there. Otherwise, in that case, the line
1894 that begins there is used. */
1896 /* The big complication here is that a line may start in one file, and end just
1897 before the start of another file. This usually occurs when you #include
1898 code in the middle of a subroutine. To properly find the end of a line's PC
1899 range, we must search all symtabs associated with this compilation unit, and
1900 find the one whose first PC is closer than that of the next line in this
1903 /* If it's worth the effort, we could be using a binary search. */
1905 struct symtab_and_line
1906 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1909 struct linetable *l;
1912 struct linetable_entry *item;
1913 struct symtab_and_line val;
1914 struct blockvector *bv;
1915 struct minimal_symbol *msymbol;
1916 struct minimal_symbol *mfunsym;
1917 struct objfile *objfile;
1919 /* Info on best line seen so far, and where it starts, and its file. */
1921 struct linetable_entry *best = NULL;
1922 CORE_ADDR best_end = 0;
1923 struct symtab *best_symtab = 0;
1925 /* Store here the first line number
1926 of a file which contains the line at the smallest pc after PC.
1927 If we don't find a line whose range contains PC,
1928 we will use a line one less than this,
1929 with a range from the start of that file to the first line's pc. */
1930 struct linetable_entry *alt = NULL;
1931 struct symtab *alt_symtab = 0;
1933 /* Info on best line seen in this file. */
1935 struct linetable_entry *prev;
1937 /* If this pc is not from the current frame,
1938 it is the address of the end of a call instruction.
1939 Quite likely that is the start of the following statement.
1940 But what we want is the statement containing the instruction.
1941 Fudge the pc to make sure we get that. */
1943 init_sal (&val); /* initialize to zeroes */
1945 val.pspace = current_program_space;
1947 /* It's tempting to assume that, if we can't find debugging info for
1948 any function enclosing PC, that we shouldn't search for line
1949 number info, either. However, GAS can emit line number info for
1950 assembly files --- very helpful when debugging hand-written
1951 assembly code. In such a case, we'd have no debug info for the
1952 function, but we would have line info. */
1957 /* elz: added this because this function returned the wrong
1958 information if the pc belongs to a stub (import/export)
1959 to call a shlib function. This stub would be anywhere between
1960 two functions in the target, and the line info was erroneously
1961 taken to be the one of the line before the pc. */
1963 /* RT: Further explanation:
1965 * We have stubs (trampolines) inserted between procedures.
1967 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1968 * exists in the main image.
1970 * In the minimal symbol table, we have a bunch of symbols
1971 * sorted by start address. The stubs are marked as "trampoline",
1972 * the others appear as text. E.g.:
1974 * Minimal symbol table for main image
1975 * main: code for main (text symbol)
1976 * shr1: stub (trampoline symbol)
1977 * foo: code for foo (text symbol)
1979 * Minimal symbol table for "shr1" image:
1981 * shr1: code for shr1 (text symbol)
1984 * So the code below is trying to detect if we are in the stub
1985 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1986 * and if found, do the symbolization from the real-code address
1987 * rather than the stub address.
1989 * Assumptions being made about the minimal symbol table:
1990 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1991 * if we're really in the trampoline.s If we're beyond it (say
1992 * we're in "foo" in the above example), it'll have a closer
1993 * symbol (the "foo" text symbol for example) and will not
1994 * return the trampoline.
1995 * 2. lookup_minimal_symbol_text() will find a real text symbol
1996 * corresponding to the trampoline, and whose address will
1997 * be different than the trampoline address. I put in a sanity
1998 * check for the address being the same, to avoid an
1999 * infinite recursion.
2001 msymbol = lookup_minimal_symbol_by_pc (pc);
2002 if (msymbol != NULL)
2003 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2005 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2007 if (mfunsym == NULL)
2008 /* I eliminated this warning since it is coming out
2009 * in the following situation:
2010 * gdb shmain // test program with shared libraries
2011 * (gdb) break shr1 // function in shared lib
2012 * Warning: In stub for ...
2013 * In the above situation, the shared lib is not loaded yet,
2014 * so of course we can't find the real func/line info,
2015 * but the "break" still works, and the warning is annoying.
2016 * So I commented out the warning. RT */
2017 /* warning ("In stub for %s; unable to find real function/line info",
2018 SYMBOL_LINKAGE_NAME (msymbol)); */
2021 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2022 == SYMBOL_VALUE_ADDRESS (msymbol))
2023 /* Avoid infinite recursion */
2024 /* See above comment about why warning is commented out. */
2025 /* warning ("In stub for %s; unable to find real function/line info",
2026 SYMBOL_LINKAGE_NAME (msymbol)); */
2030 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2034 s = find_pc_sect_symtab (pc, section);
2037 /* If no symbol information, return previous pc. */
2044 bv = BLOCKVECTOR (s);
2045 objfile = s->objfile;
2047 /* Look at all the symtabs that share this blockvector.
2048 They all have the same apriori range, that we found was right;
2049 but they have different line tables. */
2051 ALL_OBJFILE_SYMTABS (objfile, s)
2053 if (BLOCKVECTOR (s) != bv)
2056 /* Find the best line in this symtab. */
2063 /* I think len can be zero if the symtab lacks line numbers
2064 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2065 I'm not sure which, and maybe it depends on the symbol
2071 item = l->item; /* Get first line info. */
2073 /* Is this file's first line closer than the first lines of other files?
2074 If so, record this file, and its first line, as best alternate. */
2075 if (item->pc > pc && (!alt || item->pc < alt->pc))
2081 for (i = 0; i < len; i++, item++)
2083 /* Leave prev pointing to the linetable entry for the last line
2084 that started at or before PC. */
2091 /* At this point, prev points at the line whose start addr is <= pc, and
2092 item points at the next line. If we ran off the end of the linetable
2093 (pc >= start of the last line), then prev == item. If pc < start of
2094 the first line, prev will not be set. */
2096 /* Is this file's best line closer than the best in the other files?
2097 If so, record this file, and its best line, as best so far. Don't
2098 save prev if it represents the end of a function (i.e. line number
2099 0) instead of a real line. */
2101 if (prev && prev->line && (!best || prev->pc > best->pc))
2106 /* Discard BEST_END if it's before the PC of the current BEST. */
2107 if (best_end <= best->pc)
2111 /* If another line (denoted by ITEM) is in the linetable and its
2112 PC is after BEST's PC, but before the current BEST_END, then
2113 use ITEM's PC as the new best_end. */
2114 if (best && i < len && item->pc > best->pc
2115 && (best_end == 0 || best_end > item->pc))
2116 best_end = item->pc;
2121 /* If we didn't find any line number info, just return zeros.
2122 We used to return alt->line - 1 here, but that could be
2123 anywhere; if we don't have line number info for this PC,
2124 don't make some up. */
2127 else if (best->line == 0)
2129 /* If our best fit is in a range of PC's for which no line
2130 number info is available (line number is zero) then we didn't
2131 find any valid line information. */
2136 val.symtab = best_symtab;
2137 val.line = best->line;
2139 if (best_end && (!alt || best_end < alt->pc))
2144 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2146 val.section = section;
2150 /* Backward compatibility (no section). */
2152 struct symtab_and_line
2153 find_pc_line (CORE_ADDR pc, int notcurrent)
2155 struct obj_section *section;
2157 section = find_pc_overlay (pc);
2158 if (pc_in_unmapped_range (pc, section))
2159 pc = overlay_mapped_address (pc, section);
2160 return find_pc_sect_line (pc, section, notcurrent);
2163 /* Find line number LINE in any symtab whose name is the same as
2166 If found, return the symtab that contains the linetable in which it was
2167 found, set *INDEX to the index in the linetable of the best entry
2168 found, and set *EXACT_MATCH nonzero if the value returned is an
2171 If not found, return NULL. */
2174 find_line_symtab (struct symtab *symtab, int line,
2175 int *index, int *exact_match)
2177 int exact = 0; /* Initialized here to avoid a compiler warning. */
2179 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2183 struct linetable *best_linetable;
2184 struct symtab *best_symtab;
2186 /* First try looking it up in the given symtab. */
2187 best_linetable = LINETABLE (symtab);
2188 best_symtab = symtab;
2189 best_index = find_line_common (best_linetable, line, &exact);
2190 if (best_index < 0 || !exact)
2192 /* Didn't find an exact match. So we better keep looking for
2193 another symtab with the same name. In the case of xcoff,
2194 multiple csects for one source file (produced by IBM's FORTRAN
2195 compiler) produce multiple symtabs (this is unavoidable
2196 assuming csects can be at arbitrary places in memory and that
2197 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2199 /* BEST is the smallest linenumber > LINE so far seen,
2200 or 0 if none has been seen so far.
2201 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2204 struct objfile *objfile;
2207 if (best_index >= 0)
2208 best = best_linetable->item[best_index].line;
2212 ALL_OBJFILES (objfile)
2215 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2219 /* Get symbol full file name if possible. */
2220 symtab_to_fullname (symtab);
2222 ALL_SYMTABS (objfile, s)
2224 struct linetable *l;
2227 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2229 if (symtab->fullname != NULL
2230 && symtab_to_fullname (s) != NULL
2231 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2234 ind = find_line_common (l, line, &exact);
2244 if (best == 0 || l->item[ind].line < best)
2246 best = l->item[ind].line;
2259 *index = best_index;
2261 *exact_match = exact;
2266 /* Set the PC value for a given source file and line number and return true.
2267 Returns zero for invalid line number (and sets the PC to 0).
2268 The source file is specified with a struct symtab. */
2271 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2273 struct linetable *l;
2280 symtab = find_line_symtab (symtab, line, &ind, NULL);
2283 l = LINETABLE (symtab);
2284 *pc = l->item[ind].pc;
2291 /* Find the range of pc values in a line.
2292 Store the starting pc of the line into *STARTPTR
2293 and the ending pc (start of next line) into *ENDPTR.
2294 Returns 1 to indicate success.
2295 Returns 0 if could not find the specified line. */
2298 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2301 CORE_ADDR startaddr;
2302 struct symtab_and_line found_sal;
2305 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2308 /* This whole function is based on address. For example, if line 10 has
2309 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2310 "info line *0x123" should say the line goes from 0x100 to 0x200
2311 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2312 This also insures that we never give a range like "starts at 0x134
2313 and ends at 0x12c". */
2315 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2316 if (found_sal.line != sal.line)
2318 /* The specified line (sal) has zero bytes. */
2319 *startptr = found_sal.pc;
2320 *endptr = found_sal.pc;
2324 *startptr = found_sal.pc;
2325 *endptr = found_sal.end;
2330 /* Given a line table and a line number, return the index into the line
2331 table for the pc of the nearest line whose number is >= the specified one.
2332 Return -1 if none is found. The value is >= 0 if it is an index.
2334 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2337 find_line_common (struct linetable *l, int lineno,
2343 /* BEST is the smallest linenumber > LINENO so far seen,
2344 or 0 if none has been seen so far.
2345 BEST_INDEX identifies the item for it. */
2347 int best_index = -1;
2358 for (i = 0; i < len; i++)
2360 struct linetable_entry *item = &(l->item[i]);
2362 if (item->line == lineno)
2364 /* Return the first (lowest address) entry which matches. */
2369 if (item->line > lineno && (best == 0 || item->line < best))
2376 /* If we got here, we didn't get an exact match. */
2381 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2383 struct symtab_and_line sal;
2385 sal = find_pc_line (pc, 0);
2388 return sal.symtab != 0;
2391 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2392 address for that function that has an entry in SYMTAB's line info
2393 table. If such an entry cannot be found, return FUNC_ADDR
2396 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2398 CORE_ADDR func_start, func_end;
2399 struct linetable *l;
2402 /* Give up if this symbol has no lineinfo table. */
2403 l = LINETABLE (symtab);
2407 /* Get the range for the function's PC values, or give up if we
2408 cannot, for some reason. */
2409 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2412 /* Linetable entries are ordered by PC values, see the commentary in
2413 symtab.h where `struct linetable' is defined. Thus, the first
2414 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2415 address we are looking for. */
2416 for (i = 0; i < l->nitems; i++)
2418 struct linetable_entry *item = &(l->item[i]);
2420 /* Don't use line numbers of zero, they mark special entries in
2421 the table. See the commentary on symtab.h before the
2422 definition of struct linetable. */
2423 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2430 /* Given a function symbol SYM, find the symtab and line for the start
2432 If the argument FUNFIRSTLINE is nonzero, we want the first line
2433 of real code inside the function. */
2435 struct symtab_and_line
2436 find_function_start_sal (struct symbol *sym, int funfirstline)
2438 struct symtab_and_line sal;
2440 fixup_symbol_section (sym, NULL);
2441 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2442 SYMBOL_OBJ_SECTION (sym), 0);
2444 /* We always should have a line for the function start address.
2445 If we don't, something is odd. Create a plain SAL refering
2446 just the PC and hope that skip_prologue_sal (if requested)
2447 can find a line number for after the prologue. */
2448 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2451 sal.pspace = current_program_space;
2452 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2453 sal.section = SYMBOL_OBJ_SECTION (sym);
2457 skip_prologue_sal (&sal);
2462 /* Adjust SAL to the first instruction past the function prologue.
2463 If the PC was explicitly specified, the SAL is not changed.
2464 If the line number was explicitly specified, at most the SAL's PC
2465 is updated. If SAL is already past the prologue, then do nothing. */
2467 skip_prologue_sal (struct symtab_and_line *sal)
2470 struct symtab_and_line start_sal;
2471 struct cleanup *old_chain;
2472 CORE_ADDR pc, saved_pc;
2473 struct obj_section *section;
2475 struct objfile *objfile;
2476 struct gdbarch *gdbarch;
2477 struct block *b, *function_block;
2478 int force_skip, skip;
2480 /* Do not change the SAL is PC was specified explicitly. */
2481 if (sal->explicit_pc)
2484 old_chain = save_current_space_and_thread ();
2485 switch_to_program_space_and_thread (sal->pspace);
2487 sym = find_pc_sect_function (sal->pc, sal->section);
2490 fixup_symbol_section (sym, NULL);
2492 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2493 section = SYMBOL_OBJ_SECTION (sym);
2494 name = SYMBOL_LINKAGE_NAME (sym);
2495 objfile = SYMBOL_SYMTAB (sym)->objfile;
2499 struct minimal_symbol *msymbol
2500 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2502 if (msymbol == NULL)
2504 do_cleanups (old_chain);
2508 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2509 section = SYMBOL_OBJ_SECTION (msymbol);
2510 name = SYMBOL_LINKAGE_NAME (msymbol);
2511 objfile = msymbol_objfile (msymbol);
2514 gdbarch = get_objfile_arch (objfile);
2516 /* Process the prologue in two passes. In the first pass try to skip the
2517 prologue (SKIP is true) and verify there is a real need for it (indicated
2518 by FORCE_SKIP). If no such reason was found run a second pass where the
2519 prologue is not skipped (SKIP is false). */
2524 /* Be conservative - allow direct PC (without skipping prologue) only if we
2525 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2526 have to be set by the caller so we use SYM instead. */
2527 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2535 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2536 so that gdbarch_skip_prologue has something unique to work on. */
2537 if (section_is_overlay (section) && !section_is_mapped (section))
2538 pc = overlay_unmapped_address (pc, section);
2540 /* Skip "first line" of function (which is actually its prologue). */
2541 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2543 pc = gdbarch_skip_prologue (gdbarch, pc);
2545 /* For overlays, map pc back into its mapped VMA range. */
2546 pc = overlay_mapped_address (pc, section);
2548 /* Calculate line number. */
2549 start_sal = find_pc_sect_line (pc, section, 0);
2551 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2552 line is still part of the same function. */
2553 if (skip && start_sal.pc != pc
2554 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2555 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2556 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2557 == lookup_minimal_symbol_by_pc_section (pc, section))))
2559 /* First pc of next line */
2561 /* Recalculate the line number (might not be N+1). */
2562 start_sal = find_pc_sect_line (pc, section, 0);
2565 /* On targets with executable formats that don't have a concept of
2566 constructors (ELF with .init has, PE doesn't), gcc emits a call
2567 to `__main' in `main' between the prologue and before user
2569 if (gdbarch_skip_main_prologue_p (gdbarch)
2570 && name && strcmp (name, "main") == 0)
2572 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2573 /* Recalculate the line number (might not be N+1). */
2574 start_sal = find_pc_sect_line (pc, section, 0);
2578 while (!force_skip && skip--);
2580 /* If we still don't have a valid source line, try to find the first
2581 PC in the lineinfo table that belongs to the same function. This
2582 happens with COFF debug info, which does not seem to have an
2583 entry in lineinfo table for the code after the prologue which has
2584 no direct relation to source. For example, this was found to be
2585 the case with the DJGPP target using "gcc -gcoff" when the
2586 compiler inserted code after the prologue to make sure the stack
2588 if (!force_skip && sym && start_sal.symtab == NULL)
2590 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2591 /* Recalculate the line number. */
2592 start_sal = find_pc_sect_line (pc, section, 0);
2595 do_cleanups (old_chain);
2597 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2598 forward SAL to the end of the prologue. */
2603 sal->section = section;
2605 /* Unless the explicit_line flag was set, update the SAL line
2606 and symtab to correspond to the modified PC location. */
2607 if (sal->explicit_line)
2610 sal->symtab = start_sal.symtab;
2611 sal->line = start_sal.line;
2612 sal->end = start_sal.end;
2614 /* Check if we are now inside an inlined function. If we can,
2615 use the call site of the function instead. */
2616 b = block_for_pc_sect (sal->pc, sal->section);
2617 function_block = NULL;
2620 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2622 else if (BLOCK_FUNCTION (b) != NULL)
2624 b = BLOCK_SUPERBLOCK (b);
2626 if (function_block != NULL
2627 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2629 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2630 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2634 /* If P is of the form "operator[ \t]+..." where `...' is
2635 some legitimate operator text, return a pointer to the
2636 beginning of the substring of the operator text.
2637 Otherwise, return "". */
2639 operator_chars (char *p, char **end)
2642 if (strncmp (p, "operator", 8))
2646 /* Don't get faked out by `operator' being part of a longer
2648 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2651 /* Allow some whitespace between `operator' and the operator symbol. */
2652 while (*p == ' ' || *p == '\t')
2655 /* Recognize 'operator TYPENAME'. */
2657 if (isalpha (*p) || *p == '_' || *p == '$')
2661 while (isalnum (*q) || *q == '_' || *q == '$')
2670 case '\\': /* regexp quoting */
2673 if (p[2] == '=') /* 'operator\*=' */
2675 else /* 'operator\*' */
2679 else if (p[1] == '[')
2682 error (_("mismatched quoting on brackets, "
2683 "try 'operator\\[\\]'"));
2684 else if (p[2] == '\\' && p[3] == ']')
2686 *end = p + 4; /* 'operator\[\]' */
2690 error (_("nothing is allowed between '[' and ']'"));
2694 /* Gratuitous qoute: skip it and move on. */
2716 if (p[0] == '-' && p[1] == '>')
2718 /* Struct pointer member operator 'operator->'. */
2721 *end = p + 3; /* 'operator->*' */
2724 else if (p[2] == '\\')
2726 *end = p + 4; /* Hopefully 'operator->\*' */
2731 *end = p + 2; /* 'operator->' */
2735 if (p[1] == '=' || p[1] == p[0])
2746 error (_("`operator ()' must be specified "
2747 "without whitespace in `()'"));
2752 error (_("`operator ?:' must be specified "
2753 "without whitespace in `?:'"));
2758 error (_("`operator []' must be specified "
2759 "without whitespace in `[]'"));
2763 error (_("`operator %s' not supported"), p);
2772 /* If FILE is not already in the table of files, return zero;
2773 otherwise return non-zero. Optionally add FILE to the table if ADD
2774 is non-zero. If *FIRST is non-zero, forget the old table
2777 filename_seen (const char *file, int add, int *first)
2779 /* Table of files seen so far. */
2780 static const char **tab = NULL;
2781 /* Allocated size of tab in elements.
2782 Start with one 256-byte block (when using GNU malloc.c).
2783 24 is the malloc overhead when range checking is in effect. */
2784 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2785 /* Current size of tab in elements. */
2786 static int tab_cur_size;
2792 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2796 /* Is FILE in tab? */
2797 for (p = tab; p < tab + tab_cur_size; p++)
2798 if (filename_cmp (*p, file) == 0)
2801 /* No; maybe add it to tab. */
2804 if (tab_cur_size == tab_alloc_size)
2806 tab_alloc_size *= 2;
2807 tab = (const char **) xrealloc ((char *) tab,
2808 tab_alloc_size * sizeof (*tab));
2810 tab[tab_cur_size++] = file;
2816 /* Slave routine for sources_info. Force line breaks at ,'s.
2817 NAME is the name to print and *FIRST is nonzero if this is the first
2818 name printed. Set *FIRST to zero. */
2820 output_source_filename (const char *name, int *first)
2822 /* Since a single source file can result in several partial symbol
2823 tables, we need to avoid printing it more than once. Note: if
2824 some of the psymtabs are read in and some are not, it gets
2825 printed both under "Source files for which symbols have been
2826 read" and "Source files for which symbols will be read in on
2827 demand". I consider this a reasonable way to deal with the
2828 situation. I'm not sure whether this can also happen for
2829 symtabs; it doesn't hurt to check. */
2831 /* Was NAME already seen? */
2832 if (filename_seen (name, 1, first))
2834 /* Yes; don't print it again. */
2837 /* No; print it and reset *FIRST. */
2844 printf_filtered (", ");
2848 fputs_filtered (name, gdb_stdout);
2851 /* A callback for map_partial_symbol_filenames. */
2853 output_partial_symbol_filename (const char *filename, const char *fullname,
2856 output_source_filename (fullname ? fullname : filename, data);
2860 sources_info (char *ignore, int from_tty)
2863 struct objfile *objfile;
2866 if (!have_full_symbols () && !have_partial_symbols ())
2868 error (_("No symbol table is loaded. Use the \"file\" command."));
2871 printf_filtered ("Source files for which symbols have been read in:\n\n");
2874 ALL_SYMTABS (objfile, s)
2876 const char *fullname = symtab_to_fullname (s);
2878 output_source_filename (fullname ? fullname : s->filename, &first);
2880 printf_filtered ("\n\n");
2882 printf_filtered ("Source files for which symbols "
2883 "will be read in on demand:\n\n");
2886 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2887 printf_filtered ("\n");
2891 file_matches (const char *file, char *files[], int nfiles)
2895 if (file != NULL && nfiles != 0)
2897 for (i = 0; i < nfiles; i++)
2899 if (filename_cmp (files[i], lbasename (file)) == 0)
2903 else if (nfiles == 0)
2908 /* Free any memory associated with a search. */
2910 free_search_symbols (struct symbol_search *symbols)
2912 struct symbol_search *p;
2913 struct symbol_search *next;
2915 for (p = symbols; p != NULL; p = next)
2923 do_free_search_symbols_cleanup (void *symbols)
2925 free_search_symbols (symbols);
2929 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2931 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2934 /* Helper function for sort_search_symbols and qsort. Can only
2935 sort symbols, not minimal symbols. */
2937 compare_search_syms (const void *sa, const void *sb)
2939 struct symbol_search **sym_a = (struct symbol_search **) sa;
2940 struct symbol_search **sym_b = (struct symbol_search **) sb;
2942 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2943 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2946 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2947 prevtail where it is, but update its next pointer to point to
2948 the first of the sorted symbols. */
2949 static struct symbol_search *
2950 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2952 struct symbol_search **symbols, *symp, *old_next;
2955 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2957 symp = prevtail->next;
2958 for (i = 0; i < nfound; i++)
2963 /* Generally NULL. */
2966 qsort (symbols, nfound, sizeof (struct symbol_search *),
2967 compare_search_syms);
2970 for (i = 0; i < nfound; i++)
2972 symp->next = symbols[i];
2975 symp->next = old_next;
2981 /* An object of this type is passed as the user_data to the
2982 expand_symtabs_matching method. */
2983 struct search_symbols_data
2988 /* It is true if PREG contains valid data, false otherwise. */
2989 unsigned preg_p : 1;
2993 /* A callback for expand_symtabs_matching. */
2995 search_symbols_file_matches (const char *filename, void *user_data)
2997 struct search_symbols_data *data = user_data;
2999 return file_matches (filename, data->files, data->nfiles);
3002 /* A callback for expand_symtabs_matching. */
3004 search_symbols_name_matches (const char *symname, void *user_data)
3006 struct search_symbols_data *data = user_data;
3008 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3011 /* Search the symbol table for matches to the regular expression REGEXP,
3012 returning the results in *MATCHES.
3014 Only symbols of KIND are searched:
3015 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3016 and constants (enums)
3017 FUNCTIONS_DOMAIN - search all functions
3018 TYPES_DOMAIN - search all type names
3019 ALL_DOMAIN - an internal error for this function
3021 free_search_symbols should be called when *MATCHES is no longer needed.
3023 The results are sorted locally; each symtab's global and static blocks are
3024 separately alphabetized. */
3027 search_symbols (char *regexp, enum search_domain kind,
3028 int nfiles, char *files[],
3029 struct symbol_search **matches)
3032 struct blockvector *bv;
3035 struct dict_iterator iter;
3037 struct objfile *objfile;
3038 struct minimal_symbol *msymbol;
3041 static const enum minimal_symbol_type types[]
3042 = {mst_data, mst_text, mst_abs};
3043 static const enum minimal_symbol_type types2[]
3044 = {mst_bss, mst_file_text, mst_abs};
3045 static const enum minimal_symbol_type types3[]
3046 = {mst_file_data, mst_solib_trampoline, mst_abs};
3047 static const enum minimal_symbol_type types4[]
3048 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3049 enum minimal_symbol_type ourtype;
3050 enum minimal_symbol_type ourtype2;
3051 enum minimal_symbol_type ourtype3;
3052 enum minimal_symbol_type ourtype4;
3053 struct symbol_search *sr;
3054 struct symbol_search *psr;
3055 struct symbol_search *tail;
3056 struct search_symbols_data datum;
3058 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3059 CLEANUP_CHAIN is freed only in the case of an error. */
3060 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3061 struct cleanup *retval_chain;
3063 gdb_assert (kind <= TYPES_DOMAIN);
3065 ourtype = types[kind];
3066 ourtype2 = types2[kind];
3067 ourtype3 = types3[kind];
3068 ourtype4 = types4[kind];
3070 sr = *matches = NULL;
3076 /* Make sure spacing is right for C++ operators.
3077 This is just a courtesy to make the matching less sensitive
3078 to how many spaces the user leaves between 'operator'
3079 and <TYPENAME> or <OPERATOR>. */
3081 char *opname = operator_chars (regexp, &opend);
3086 int fix = -1; /* -1 means ok; otherwise number of
3089 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3091 /* There should 1 space between 'operator' and 'TYPENAME'. */
3092 if (opname[-1] != ' ' || opname[-2] == ' ')
3097 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3098 if (opname[-1] == ' ')
3101 /* If wrong number of spaces, fix it. */
3104 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3106 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3111 errcode = regcomp (&datum.preg, regexp,
3112 REG_NOSUB | (case_sensitivity == case_sensitive_off
3116 char *err = get_regcomp_error (errcode, &datum.preg);
3118 make_cleanup (xfree, err);
3119 error (_("Invalid regexp (%s): %s"), err, regexp);
3122 make_regfree_cleanup (&datum.preg);
3125 /* Search through the partial symtabs *first* for all symbols
3126 matching the regexp. That way we don't have to reproduce all of
3127 the machinery below. */
3129 datum.nfiles = nfiles;
3130 datum.files = files;
3131 ALL_OBJFILES (objfile)
3134 objfile->sf->qf->expand_symtabs_matching (objfile,
3135 search_symbols_file_matches,
3136 search_symbols_name_matches,
3141 retval_chain = old_chain;
3143 /* Here, we search through the minimal symbol tables for functions
3144 and variables that match, and force their symbols to be read.
3145 This is in particular necessary for demangled variable names,
3146 which are no longer put into the partial symbol tables.
3147 The symbol will then be found during the scan of symtabs below.
3149 For functions, find_pc_symtab should succeed if we have debug info
3150 for the function, for variables we have to call lookup_symbol
3151 to determine if the variable has debug info.
3152 If the lookup fails, set found_misc so that we will rescan to print
3153 any matching symbols without debug info. */
3155 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3157 ALL_MSYMBOLS (objfile, msymbol)
3161 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3162 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3163 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3164 MSYMBOL_TYPE (msymbol) == ourtype4)
3167 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3170 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3172 /* FIXME: carlton/2003-02-04: Given that the
3173 semantics of lookup_symbol keeps on changing
3174 slightly, it would be a nice idea if we had a
3175 function lookup_symbol_minsym that found the
3176 symbol associated to a given minimal symbol (if
3178 if (kind == FUNCTIONS_DOMAIN
3179 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3180 (struct block *) NULL,
3190 ALL_PRIMARY_SYMTABS (objfile, s)
3192 bv = BLOCKVECTOR (s);
3193 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3195 struct symbol_search *prevtail = tail;
3198 b = BLOCKVECTOR_BLOCK (bv, i);
3199 ALL_BLOCK_SYMBOLS (b, iter, sym)
3201 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3205 if (file_matches (real_symtab->filename, files, nfiles)
3207 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3209 && ((kind == VARIABLES_DOMAIN
3210 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3211 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3212 && SYMBOL_CLASS (sym) != LOC_BLOCK
3213 /* LOC_CONST can be used for more than just enums,
3214 e.g., c++ static const members.
3215 We only want to skip enums here. */
3216 && !(SYMBOL_CLASS (sym) == LOC_CONST
3217 && TYPE_CODE (SYMBOL_TYPE (sym))
3219 || (kind == FUNCTIONS_DOMAIN
3220 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3221 || (kind == TYPES_DOMAIN
3222 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3225 psr = (struct symbol_search *)
3226 xmalloc (sizeof (struct symbol_search));
3228 psr->symtab = real_symtab;
3230 psr->msymbol = NULL;
3242 if (prevtail == NULL)
3244 struct symbol_search dummy;
3247 tail = sort_search_symbols (&dummy, nfound);
3250 make_cleanup_free_search_symbols (sr);
3253 tail = sort_search_symbols (prevtail, nfound);
3258 /* If there are no eyes, avoid all contact. I mean, if there are
3259 no debug symbols, then print directly from the msymbol_vector. */
3261 if (found_misc || kind != FUNCTIONS_DOMAIN)
3263 ALL_MSYMBOLS (objfile, msymbol)
3267 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3268 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3269 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3270 MSYMBOL_TYPE (msymbol) == ourtype4)
3273 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3276 /* Functions: Look up by address. */
3277 if (kind != FUNCTIONS_DOMAIN ||
3278 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3280 /* Variables/Absolutes: Look up by name. */
3281 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3282 (struct block *) NULL, VAR_DOMAIN, 0)
3286 psr = (struct symbol_search *)
3287 xmalloc (sizeof (struct symbol_search));
3289 psr->msymbol = msymbol;
3296 make_cleanup_free_search_symbols (sr);
3308 discard_cleanups (retval_chain);
3309 do_cleanups (old_chain);
3313 /* Helper function for symtab_symbol_info, this function uses
3314 the data returned from search_symbols() to print information
3315 regarding the match to gdb_stdout. */
3318 print_symbol_info (enum search_domain kind,
3319 struct symtab *s, struct symbol *sym,
3320 int block, char *last)
3322 if (last == NULL || filename_cmp (last, s->filename) != 0)
3324 fputs_filtered ("\nFile ", gdb_stdout);
3325 fputs_filtered (s->filename, gdb_stdout);
3326 fputs_filtered (":\n", gdb_stdout);
3329 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3330 printf_filtered ("static ");
3332 /* Typedef that is not a C++ class. */
3333 if (kind == TYPES_DOMAIN
3334 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3335 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3336 /* variable, func, or typedef-that-is-c++-class. */
3337 else if (kind < TYPES_DOMAIN ||
3338 (kind == TYPES_DOMAIN &&
3339 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3341 type_print (SYMBOL_TYPE (sym),
3342 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3343 ? "" : SYMBOL_PRINT_NAME (sym)),
3346 printf_filtered (";\n");
3350 /* This help function for symtab_symbol_info() prints information
3351 for non-debugging symbols to gdb_stdout. */
3354 print_msymbol_info (struct minimal_symbol *msymbol)
3356 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3359 if (gdbarch_addr_bit (gdbarch) <= 32)
3360 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3361 & (CORE_ADDR) 0xffffffff,
3364 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3366 printf_filtered ("%s %s\n",
3367 tmp, SYMBOL_PRINT_NAME (msymbol));
3370 /* This is the guts of the commands "info functions", "info types", and
3371 "info variables". It calls search_symbols to find all matches and then
3372 print_[m]symbol_info to print out some useful information about the
3376 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3378 static const char * const classnames[] =
3379 {"variable", "function", "type"};
3380 struct symbol_search *symbols;
3381 struct symbol_search *p;
3382 struct cleanup *old_chain;
3383 char *last_filename = NULL;
3386 gdb_assert (kind <= TYPES_DOMAIN);
3388 /* Must make sure that if we're interrupted, symbols gets freed. */
3389 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3390 old_chain = make_cleanup_free_search_symbols (symbols);
3392 printf_filtered (regexp
3393 ? "All %ss matching regular expression \"%s\":\n"
3394 : "All defined %ss:\n",
3395 classnames[kind], regexp);
3397 for (p = symbols; p != NULL; p = p->next)
3401 if (p->msymbol != NULL)
3405 printf_filtered ("\nNon-debugging symbols:\n");
3408 print_msymbol_info (p->msymbol);
3412 print_symbol_info (kind,
3417 last_filename = p->symtab->filename;
3421 do_cleanups (old_chain);
3425 variables_info (char *regexp, int from_tty)
3427 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3431 functions_info (char *regexp, int from_tty)
3433 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3438 types_info (char *regexp, int from_tty)
3440 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3443 /* Breakpoint all functions matching regular expression. */
3446 rbreak_command_wrapper (char *regexp, int from_tty)
3448 rbreak_command (regexp, from_tty);
3451 /* A cleanup function that calls end_rbreak_breakpoints. */
3454 do_end_rbreak_breakpoints (void *ignore)
3456 end_rbreak_breakpoints ();
3460 rbreak_command (char *regexp, int from_tty)
3462 struct symbol_search *ss;
3463 struct symbol_search *p;
3464 struct cleanup *old_chain;
3465 char *string = NULL;
3467 char **files = NULL, *file_name;
3472 char *colon = strchr (regexp, ':');
3474 if (colon && *(colon + 1) != ':')
3478 colon_index = colon - regexp;
3479 file_name = alloca (colon_index + 1);
3480 memcpy (file_name, regexp, colon_index);
3481 file_name[colon_index--] = 0;
3482 while (isspace (file_name[colon_index]))
3483 file_name[colon_index--] = 0;
3487 while (isspace (*regexp)) regexp++;
3491 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3492 old_chain = make_cleanup_free_search_symbols (ss);
3493 make_cleanup (free_current_contents, &string);
3495 start_rbreak_breakpoints ();
3496 make_cleanup (do_end_rbreak_breakpoints, NULL);
3497 for (p = ss; p != NULL; p = p->next)
3499 if (p->msymbol == NULL)
3501 int newlen = (strlen (p->symtab->filename)
3502 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3507 string = xrealloc (string, newlen);
3510 strcpy (string, p->symtab->filename);
3511 strcat (string, ":'");
3512 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3513 strcat (string, "'");
3514 break_command (string, from_tty);
3515 print_symbol_info (FUNCTIONS_DOMAIN,
3519 p->symtab->filename);
3523 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3527 string = xrealloc (string, newlen);
3530 strcpy (string, "'");
3531 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3532 strcat (string, "'");
3534 break_command (string, from_tty);
3535 printf_filtered ("<function, no debug info> %s;\n",
3536 SYMBOL_PRINT_NAME (p->msymbol));
3540 do_cleanups (old_chain);
3544 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3546 Either sym_text[sym_text_len] != '(' and then we search for any
3547 symbol starting with SYM_TEXT text.
3549 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3550 be terminated at that point. Partial symbol tables do not have parameters
3554 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3556 int (*ncmp) (const char *, const char *, size_t);
3558 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3560 if (ncmp (name, sym_text, sym_text_len) != 0)
3563 if (sym_text[sym_text_len] == '(')
3565 /* User searches for `name(someth...'. Require NAME to be terminated.
3566 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3567 present but accept even parameters presence. In this case this
3568 function is in fact strcmp_iw but whitespace skipping is not supported
3569 for tab completion. */
3571 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3578 /* Helper routine for make_symbol_completion_list. */
3580 static int return_val_size;
3581 static int return_val_index;
3582 static char **return_val;
3584 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3585 completion_list_add_name \
3586 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3588 /* Test to see if the symbol specified by SYMNAME (which is already
3589 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3590 characters. If so, add it to the current completion list. */
3593 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3594 char *text, char *word)
3598 /* Clip symbols that cannot match. */
3599 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3602 /* We have a match for a completion, so add SYMNAME to the current list
3603 of matches. Note that the name is moved to freshly malloc'd space. */
3608 if (word == sym_text)
3610 new = xmalloc (strlen (symname) + 5);
3611 strcpy (new, symname);
3613 else if (word > sym_text)
3615 /* Return some portion of symname. */
3616 new = xmalloc (strlen (symname) + 5);
3617 strcpy (new, symname + (word - sym_text));
3621 /* Return some of SYM_TEXT plus symname. */
3622 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3623 strncpy (new, word, sym_text - word);
3624 new[sym_text - word] = '\0';
3625 strcat (new, symname);
3628 if (return_val_index + 3 > return_val_size)
3630 newsize = (return_val_size *= 2) * sizeof (char *);
3631 return_val = (char **) xrealloc ((char *) return_val, newsize);
3633 return_val[return_val_index++] = new;
3634 return_val[return_val_index] = NULL;
3638 /* ObjC: In case we are completing on a selector, look as the msymbol
3639 again and feed all the selectors into the mill. */
3642 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3643 int sym_text_len, char *text, char *word)
3645 static char *tmp = NULL;
3646 static unsigned int tmplen = 0;
3648 char *method, *category, *selector;
3651 method = SYMBOL_NATURAL_NAME (msymbol);
3653 /* Is it a method? */
3654 if ((method[0] != '-') && (method[0] != '+'))
3657 if (sym_text[0] == '[')
3658 /* Complete on shortened method method. */
3659 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3661 while ((strlen (method) + 1) >= tmplen)
3667 tmp = xrealloc (tmp, tmplen);
3669 selector = strchr (method, ' ');
3670 if (selector != NULL)
3673 category = strchr (method, '(');
3675 if ((category != NULL) && (selector != NULL))
3677 memcpy (tmp, method, (category - method));
3678 tmp[category - method] = ' ';
3679 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3680 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3681 if (sym_text[0] == '[')
3682 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3685 if (selector != NULL)
3687 /* Complete on selector only. */
3688 strcpy (tmp, selector);
3689 tmp2 = strchr (tmp, ']');
3693 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3697 /* Break the non-quoted text based on the characters which are in
3698 symbols. FIXME: This should probably be language-specific. */
3701 language_search_unquoted_string (char *text, char *p)
3703 for (; p > text; --p)
3705 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3709 if ((current_language->la_language == language_objc))
3711 if (p[-1] == ':') /* Might be part of a method name. */
3713 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3714 p -= 2; /* Beginning of a method name. */
3715 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3716 { /* Might be part of a method name. */
3719 /* Seeing a ' ' or a '(' is not conclusive evidence
3720 that we are in the middle of a method name. However,
3721 finding "-[" or "+[" should be pretty un-ambiguous.
3722 Unfortunately we have to find it now to decide. */
3725 if (isalnum (t[-1]) || t[-1] == '_' ||
3726 t[-1] == ' ' || t[-1] == ':' ||
3727 t[-1] == '(' || t[-1] == ')')
3732 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3733 p = t - 2; /* Method name detected. */
3734 /* Else we leave with p unchanged. */
3744 completion_list_add_fields (struct symbol *sym, char *sym_text,
3745 int sym_text_len, char *text, char *word)
3747 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3749 struct type *t = SYMBOL_TYPE (sym);
3750 enum type_code c = TYPE_CODE (t);
3753 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3754 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3755 if (TYPE_FIELD_NAME (t, j))
3756 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3757 sym_text, sym_text_len, text, word);
3761 /* Type of the user_data argument passed to add_macro_name or
3762 expand_partial_symbol_name. The contents are simply whatever is
3763 needed by completion_list_add_name. */
3764 struct add_name_data
3772 /* A callback used with macro_for_each and macro_for_each_in_scope.
3773 This adds a macro's name to the current completion list. */
3775 add_macro_name (const char *name, const struct macro_definition *ignore,
3778 struct add_name_data *datum = (struct add_name_data *) user_data;
3780 completion_list_add_name ((char *) name,
3781 datum->sym_text, datum->sym_text_len,
3782 datum->text, datum->word);
3785 /* A callback for expand_partial_symbol_names. */
3787 expand_partial_symbol_name (const char *name, void *user_data)
3789 struct add_name_data *datum = (struct add_name_data *) user_data;
3791 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3795 default_make_symbol_completion_list_break_on (char *text, char *word,
3796 const char *break_on)
3798 /* Problem: All of the symbols have to be copied because readline
3799 frees them. I'm not going to worry about this; hopefully there
3800 won't be that many. */
3804 struct minimal_symbol *msymbol;
3805 struct objfile *objfile;
3807 const struct block *surrounding_static_block, *surrounding_global_block;
3808 struct dict_iterator iter;
3809 /* The symbol we are completing on. Points in same buffer as text. */
3811 /* Length of sym_text. */
3813 struct add_name_data datum;
3815 /* Now look for the symbol we are supposed to complete on. */
3819 char *quote_pos = NULL;
3821 /* First see if this is a quoted string. */
3823 for (p = text; *p != '\0'; ++p)
3825 if (quote_found != '\0')
3827 if (*p == quote_found)
3828 /* Found close quote. */
3830 else if (*p == '\\' && p[1] == quote_found)
3831 /* A backslash followed by the quote character
3832 doesn't end the string. */
3835 else if (*p == '\'' || *p == '"')
3841 if (quote_found == '\'')
3842 /* A string within single quotes can be a symbol, so complete on it. */
3843 sym_text = quote_pos + 1;
3844 else if (quote_found == '"')
3845 /* A double-quoted string is never a symbol, nor does it make sense
3846 to complete it any other way. */
3848 return_val = (char **) xmalloc (sizeof (char *));
3849 return_val[0] = NULL;
3854 /* It is not a quoted string. Break it based on the characters
3855 which are in symbols. */
3858 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3859 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3868 sym_text_len = strlen (sym_text);
3870 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3872 if (current_language->la_language == language_cplus
3873 || current_language->la_language == language_java
3874 || current_language->la_language == language_fortran)
3876 /* These languages may have parameters entered by user but they are never
3877 present in the partial symbol tables. */
3879 const char *cs = memchr (sym_text, '(', sym_text_len);
3882 sym_text_len = cs - sym_text;
3884 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3886 return_val_size = 100;
3887 return_val_index = 0;
3888 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3889 return_val[0] = NULL;
3891 datum.sym_text = sym_text;
3892 datum.sym_text_len = sym_text_len;
3896 /* Look through the partial symtabs for all symbols which begin
3897 by matching SYM_TEXT. Expand all CUs that you find to the list.
3898 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3899 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3901 /* At this point scan through the misc symbol vectors and add each
3902 symbol you find to the list. Eventually we want to ignore
3903 anything that isn't a text symbol (everything else will be
3904 handled by the psymtab code above). */
3906 ALL_MSYMBOLS (objfile, msymbol)
3909 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3911 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3914 /* Search upwards from currently selected frame (so that we can
3915 complete on local vars). Also catch fields of types defined in
3916 this places which match our text string. Only complete on types
3917 visible from current context. */
3919 b = get_selected_block (0);
3920 surrounding_static_block = block_static_block (b);
3921 surrounding_global_block = block_global_block (b);
3922 if (surrounding_static_block != NULL)
3923 while (b != surrounding_static_block)
3927 ALL_BLOCK_SYMBOLS (b, iter, sym)
3929 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3931 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3935 /* Stop when we encounter an enclosing function. Do not stop for
3936 non-inlined functions - the locals of the enclosing function
3937 are in scope for a nested function. */
3938 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3940 b = BLOCK_SUPERBLOCK (b);
3943 /* Add fields from the file's types; symbols will be added below. */
3945 if (surrounding_static_block != NULL)
3946 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3947 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3949 if (surrounding_global_block != NULL)
3950 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3951 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3953 /* Go through the symtabs and check the externs and statics for
3954 symbols which match. */
3956 ALL_PRIMARY_SYMTABS (objfile, s)
3959 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3960 ALL_BLOCK_SYMBOLS (b, iter, sym)
3962 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3966 ALL_PRIMARY_SYMTABS (objfile, s)
3969 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3970 ALL_BLOCK_SYMBOLS (b, iter, sym)
3972 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3976 if (current_language->la_macro_expansion == macro_expansion_c)
3978 struct macro_scope *scope;
3980 /* Add any macros visible in the default scope. Note that this
3981 may yield the occasional wrong result, because an expression
3982 might be evaluated in a scope other than the default. For
3983 example, if the user types "break file:line if <TAB>", the
3984 resulting expression will be evaluated at "file:line" -- but
3985 at there does not seem to be a way to detect this at
3987 scope = default_macro_scope ();
3990 macro_for_each_in_scope (scope->file, scope->line,
3991 add_macro_name, &datum);
3995 /* User-defined macros are always visible. */
3996 macro_for_each (macro_user_macros, add_macro_name, &datum);
3999 return (return_val);
4003 default_make_symbol_completion_list (char *text, char *word)
4005 return default_make_symbol_completion_list_break_on (text, word, "");
4008 /* Return a NULL terminated array of all symbols (regardless of class)
4009 which begin by matching TEXT. If the answer is no symbols, then
4010 the return value is an array which contains only a NULL pointer. */
4013 make_symbol_completion_list (char *text, char *word)
4015 return current_language->la_make_symbol_completion_list (text, word);
4018 /* Like make_symbol_completion_list, but suitable for use as a
4019 completion function. */
4022 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4023 char *text, char *word)
4025 return make_symbol_completion_list (text, word);
4028 /* Like make_symbol_completion_list, but returns a list of symbols
4029 defined in a source file FILE. */
4032 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4037 struct dict_iterator iter;
4038 /* The symbol we are completing on. Points in same buffer as text. */
4040 /* Length of sym_text. */
4043 /* Now look for the symbol we are supposed to complete on.
4044 FIXME: This should be language-specific. */
4048 char *quote_pos = NULL;
4050 /* First see if this is a quoted string. */
4052 for (p = text; *p != '\0'; ++p)
4054 if (quote_found != '\0')
4056 if (*p == quote_found)
4057 /* Found close quote. */
4059 else if (*p == '\\' && p[1] == quote_found)
4060 /* A backslash followed by the quote character
4061 doesn't end the string. */
4064 else if (*p == '\'' || *p == '"')
4070 if (quote_found == '\'')
4071 /* A string within single quotes can be a symbol, so complete on it. */
4072 sym_text = quote_pos + 1;
4073 else if (quote_found == '"')
4074 /* A double-quoted string is never a symbol, nor does it make sense
4075 to complete it any other way. */
4077 return_val = (char **) xmalloc (sizeof (char *));
4078 return_val[0] = NULL;
4083 /* Not a quoted string. */
4084 sym_text = language_search_unquoted_string (text, p);
4088 sym_text_len = strlen (sym_text);
4090 return_val_size = 10;
4091 return_val_index = 0;
4092 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4093 return_val[0] = NULL;
4095 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4097 s = lookup_symtab (srcfile);
4100 /* Maybe they typed the file with leading directories, while the
4101 symbol tables record only its basename. */
4102 const char *tail = lbasename (srcfile);
4105 s = lookup_symtab (tail);
4108 /* If we have no symtab for that file, return an empty list. */
4110 return (return_val);
4112 /* Go through this symtab and check the externs and statics for
4113 symbols which match. */
4115 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4116 ALL_BLOCK_SYMBOLS (b, iter, sym)
4118 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4121 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4122 ALL_BLOCK_SYMBOLS (b, iter, sym)
4124 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4127 return (return_val);
4130 /* A helper function for make_source_files_completion_list. It adds
4131 another file name to a list of possible completions, growing the
4132 list as necessary. */
4135 add_filename_to_list (const char *fname, char *text, char *word,
4136 char ***list, int *list_used, int *list_alloced)
4139 size_t fnlen = strlen (fname);
4141 if (*list_used + 1 >= *list_alloced)
4144 *list = (char **) xrealloc ((char *) *list,
4145 *list_alloced * sizeof (char *));
4150 /* Return exactly fname. */
4151 new = xmalloc (fnlen + 5);
4152 strcpy (new, fname);
4154 else if (word > text)
4156 /* Return some portion of fname. */
4157 new = xmalloc (fnlen + 5);
4158 strcpy (new, fname + (word - text));
4162 /* Return some of TEXT plus fname. */
4163 new = xmalloc (fnlen + (text - word) + 5);
4164 strncpy (new, word, text - word);
4165 new[text - word] = '\0';
4166 strcat (new, fname);
4168 (*list)[*list_used] = new;
4169 (*list)[++*list_used] = NULL;
4173 not_interesting_fname (const char *fname)
4175 static const char *illegal_aliens[] = {
4176 "_globals_", /* inserted by coff_symtab_read */
4181 for (i = 0; illegal_aliens[i]; i++)
4183 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4189 /* An object of this type is passed as the user_data argument to
4190 map_partial_symbol_filenames. */
4191 struct add_partial_filename_data
4202 /* A callback for map_partial_symbol_filenames. */
4204 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4207 struct add_partial_filename_data *data = user_data;
4209 if (not_interesting_fname (filename))
4211 if (!filename_seen (filename, 1, data->first)
4212 && filename_ncmp (filename, data->text, data->text_len) == 0)
4214 /* This file matches for a completion; add it to the
4215 current list of matches. */
4216 add_filename_to_list (filename, data->text, data->word,
4217 data->list, data->list_used, data->list_alloced);
4221 const char *base_name = lbasename (filename);
4223 if (base_name != filename
4224 && !filename_seen (base_name, 1, data->first)
4225 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4226 add_filename_to_list (base_name, data->text, data->word,
4227 data->list, data->list_used, data->list_alloced);
4231 /* Return a NULL terminated array of all source files whose names
4232 begin with matching TEXT. The file names are looked up in the
4233 symbol tables of this program. If the answer is no matchess, then
4234 the return value is an array which contains only a NULL pointer. */
4237 make_source_files_completion_list (char *text, char *word)
4240 struct objfile *objfile;
4242 int list_alloced = 1;
4244 size_t text_len = strlen (text);
4245 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4246 const char *base_name;
4247 struct add_partial_filename_data datum;
4251 if (!have_full_symbols () && !have_partial_symbols ())
4254 ALL_SYMTABS (objfile, s)
4256 if (not_interesting_fname (s->filename))
4258 if (!filename_seen (s->filename, 1, &first)
4259 && filename_ncmp (s->filename, text, text_len) == 0)
4261 /* This file matches for a completion; add it to the current
4263 add_filename_to_list (s->filename, text, word,
4264 &list, &list_used, &list_alloced);
4268 /* NOTE: We allow the user to type a base name when the
4269 debug info records leading directories, but not the other
4270 way around. This is what subroutines of breakpoint
4271 command do when they parse file names. */
4272 base_name = lbasename (s->filename);
4273 if (base_name != s->filename
4274 && !filename_seen (base_name, 1, &first)
4275 && filename_ncmp (base_name, text, text_len) == 0)
4276 add_filename_to_list (base_name, text, word,
4277 &list, &list_used, &list_alloced);
4281 datum.first = &first;
4284 datum.text_len = text_len;
4286 datum.list_used = &list_used;
4287 datum.list_alloced = &list_alloced;
4288 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4293 /* Determine if PC is in the prologue of a function. The prologue is the area
4294 between the first instruction of a function, and the first executable line.
4295 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4297 If non-zero, func_start is where we think the prologue starts, possibly
4298 by previous examination of symbol table information. */
4301 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4303 struct symtab_and_line sal;
4304 CORE_ADDR func_addr, func_end;
4306 /* We have several sources of information we can consult to figure
4308 - Compilers usually emit line number info that marks the prologue
4309 as its own "source line". So the ending address of that "line"
4310 is the end of the prologue. If available, this is the most
4312 - The minimal symbols and partial symbols, which can usually tell
4313 us the starting and ending addresses of a function.
4314 - If we know the function's start address, we can call the
4315 architecture-defined gdbarch_skip_prologue function to analyze the
4316 instruction stream and guess where the prologue ends.
4317 - Our `func_start' argument; if non-zero, this is the caller's
4318 best guess as to the function's entry point. At the time of
4319 this writing, handle_inferior_event doesn't get this right, so
4320 it should be our last resort. */
4322 /* Consult the partial symbol table, to find which function
4324 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4326 CORE_ADDR prologue_end;
4328 /* We don't even have minsym information, so fall back to using
4329 func_start, if given. */
4331 return 1; /* We *might* be in a prologue. */
4333 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4335 return func_start <= pc && pc < prologue_end;
4338 /* If we have line number information for the function, that's
4339 usually pretty reliable. */
4340 sal = find_pc_line (func_addr, 0);
4342 /* Now sal describes the source line at the function's entry point,
4343 which (by convention) is the prologue. The end of that "line",
4344 sal.end, is the end of the prologue.
4346 Note that, for functions whose source code is all on a single
4347 line, the line number information doesn't always end up this way.
4348 So we must verify that our purported end-of-prologue address is
4349 *within* the function, not at its start or end. */
4351 || sal.end <= func_addr
4352 || func_end <= sal.end)
4354 /* We don't have any good line number info, so use the minsym
4355 information, together with the architecture-specific prologue
4357 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4359 return func_addr <= pc && pc < prologue_end;
4362 /* We have line number info, and it looks good. */
4363 return func_addr <= pc && pc < sal.end;
4366 /* Given PC at the function's start address, attempt to find the
4367 prologue end using SAL information. Return zero if the skip fails.
4369 A non-optimized prologue traditionally has one SAL for the function
4370 and a second for the function body. A single line function has
4371 them both pointing at the same line.
4373 An optimized prologue is similar but the prologue may contain
4374 instructions (SALs) from the instruction body. Need to skip those
4375 while not getting into the function body.
4377 The functions end point and an increasing SAL line are used as
4378 indicators of the prologue's endpoint.
4380 This code is based on the function refine_prologue_limit (versions
4381 found in both ia64 and ppc). */
4384 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4386 struct symtab_and_line prologue_sal;
4391 /* Get an initial range for the function. */
4392 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4393 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4395 prologue_sal = find_pc_line (start_pc, 0);
4396 if (prologue_sal.line != 0)
4398 /* For langauges other than assembly, treat two consecutive line
4399 entries at the same address as a zero-instruction prologue.
4400 The GNU assembler emits separate line notes for each instruction
4401 in a multi-instruction macro, but compilers generally will not
4403 if (prologue_sal.symtab->language != language_asm)
4405 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4408 /* Skip any earlier lines, and any end-of-sequence marker
4409 from a previous function. */
4410 while (linetable->item[idx].pc != prologue_sal.pc
4411 || linetable->item[idx].line == 0)
4414 if (idx+1 < linetable->nitems
4415 && linetable->item[idx+1].line != 0
4416 && linetable->item[idx+1].pc == start_pc)
4420 /* If there is only one sal that covers the entire function,
4421 then it is probably a single line function, like
4423 if (prologue_sal.end >= end_pc)
4426 while (prologue_sal.end < end_pc)
4428 struct symtab_and_line sal;
4430 sal = find_pc_line (prologue_sal.end, 0);
4433 /* Assume that a consecutive SAL for the same (or larger)
4434 line mark the prologue -> body transition. */
4435 if (sal.line >= prologue_sal.line)
4438 /* The line number is smaller. Check that it's from the
4439 same function, not something inlined. If it's inlined,
4440 then there is no point comparing the line numbers. */
4441 bl = block_for_pc (prologue_sal.end);
4444 if (block_inlined_p (bl))
4446 if (BLOCK_FUNCTION (bl))
4451 bl = BLOCK_SUPERBLOCK (bl);
4456 /* The case in which compiler's optimizer/scheduler has
4457 moved instructions into the prologue. We look ahead in
4458 the function looking for address ranges whose
4459 corresponding line number is less the first one that we
4460 found for the function. This is more conservative then
4461 refine_prologue_limit which scans a large number of SALs
4462 looking for any in the prologue. */
4467 if (prologue_sal.end < end_pc)
4468 /* Return the end of this line, or zero if we could not find a
4470 return prologue_sal.end;
4472 /* Don't return END_PC, which is past the end of the function. */
4473 return prologue_sal.pc;
4476 struct symtabs_and_lines
4477 decode_line_spec (char *string, int funfirstline)
4479 struct symtabs_and_lines sals;
4480 struct symtab_and_line cursal;
4483 error (_("Empty line specification."));
4485 /* We use whatever is set as the current source line. We do not try
4486 and get a default or it will recursively call us! */
4487 cursal = get_current_source_symtab_and_line ();
4489 sals = decode_line_1 (&string, funfirstline,
4490 cursal.symtab, cursal.line,
4494 error (_("Junk at end of line specification: %s"), string);
4499 static char *name_of_main;
4500 enum language language_of_main = language_unknown;
4503 set_main_name (const char *name)
4505 if (name_of_main != NULL)
4507 xfree (name_of_main);
4508 name_of_main = NULL;
4509 language_of_main = language_unknown;
4513 name_of_main = xstrdup (name);
4514 language_of_main = language_unknown;
4518 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4522 find_main_name (void)
4524 const char *new_main_name;
4526 /* Try to see if the main procedure is in Ada. */
4527 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4528 be to add a new method in the language vector, and call this
4529 method for each language until one of them returns a non-empty
4530 name. This would allow us to remove this hard-coded call to
4531 an Ada function. It is not clear that this is a better approach
4532 at this point, because all methods need to be written in a way
4533 such that false positives never be returned. For instance, it is
4534 important that a method does not return a wrong name for the main
4535 procedure if the main procedure is actually written in a different
4536 language. It is easy to guaranty this with Ada, since we use a
4537 special symbol generated only when the main in Ada to find the name
4538 of the main procedure. It is difficult however to see how this can
4539 be guarantied for languages such as C, for instance. This suggests
4540 that order of call for these methods becomes important, which means
4541 a more complicated approach. */
4542 new_main_name = ada_main_name ();
4543 if (new_main_name != NULL)
4545 set_main_name (new_main_name);
4549 new_main_name = pascal_main_name ();
4550 if (new_main_name != NULL)
4552 set_main_name (new_main_name);
4556 /* The languages above didn't identify the name of the main procedure.
4557 Fallback to "main". */
4558 set_main_name ("main");
4564 if (name_of_main == NULL)
4567 return name_of_main;
4570 /* Handle ``executable_changed'' events for the symtab module. */
4573 symtab_observer_executable_changed (void)
4575 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4576 set_main_name (NULL);
4579 /* Helper to expand_line_sal below. Appends new sal to SAL,
4580 initializing it from SYMTAB, LINENO and PC. */
4582 append_expanded_sal (struct symtabs_and_lines *sal,
4583 struct program_space *pspace,
4584 struct symtab *symtab,
4585 int lineno, CORE_ADDR pc)
4587 sal->sals = xrealloc (sal->sals,
4588 sizeof (sal->sals[0])
4589 * (sal->nelts + 1));
4590 init_sal (sal->sals + sal->nelts);
4591 sal->sals[sal->nelts].pspace = pspace;
4592 sal->sals[sal->nelts].symtab = symtab;
4593 sal->sals[sal->nelts].section = NULL;
4594 sal->sals[sal->nelts].end = 0;
4595 sal->sals[sal->nelts].line = lineno;
4596 sal->sals[sal->nelts].pc = pc;
4600 /* Helper to expand_line_sal below. Search in the symtabs for any
4601 linetable entry that exactly matches FULLNAME and LINENO and append
4602 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4603 use FILENAME and LINENO instead. If there is at least one match,
4604 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4608 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4609 struct symtabs_and_lines *ret,
4610 struct linetable_entry **best_item,
4611 struct symtab **best_symtab)
4613 struct program_space *pspace;
4614 struct objfile *objfile;
4615 struct symtab *symtab;
4621 ALL_PSPACES (pspace)
4622 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4624 if (FILENAME_CMP (filename, symtab->filename) == 0)
4626 struct linetable *l;
4629 if (fullname != NULL
4630 && symtab_to_fullname (symtab) != NULL
4631 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4633 l = LINETABLE (symtab);
4638 for (j = 0; j < len; j++)
4640 struct linetable_entry *item = &(l->item[j]);
4642 if (item->line == lineno)
4645 append_expanded_sal (ret, objfile->pspace,
4646 symtab, lineno, item->pc);
4648 else if (!exact && item->line > lineno
4649 && (*best_item == NULL
4650 || item->line < (*best_item)->line))
4653 *best_symtab = symtab;
4661 /* Compute a set of all sals in all program spaces that correspond to
4662 same file and line as SAL and return those. If there are several
4663 sals that belong to the same block, only one sal for the block is
4664 included in results. */
4666 struct symtabs_and_lines
4667 expand_line_sal (struct symtab_and_line sal)
4669 struct symtabs_and_lines ret;
4671 struct objfile *objfile;
4674 struct block **blocks = NULL;
4676 struct cleanup *old_chain;
4681 /* Only expand sals that represent file.c:line. */
4682 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4684 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4691 struct program_space *pspace;
4692 struct linetable_entry *best_item = 0;
4693 struct symtab *best_symtab = 0;
4695 char *match_filename;
4698 match_filename = sal.symtab->filename;
4700 /* We need to find all symtabs for a file which name
4701 is described by sal. We cannot just directly
4702 iterate over symtabs, since a symtab might not be
4703 yet created. We also cannot iterate over psymtabs,
4704 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4705 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4706 corresponding to an included file. Therefore, we do
4707 first pass over psymtabs, reading in those with
4708 the right name. Then, we iterate over symtabs, knowing
4709 that all symtabs we're interested in are loaded. */
4711 old_chain = save_current_program_space ();
4712 ALL_PSPACES (pspace)
4714 set_current_program_space (pspace);
4715 ALL_PSPACE_OBJFILES (pspace, objfile)
4718 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4719 sal.symtab->filename);
4722 do_cleanups (old_chain);
4724 /* Now search the symtab for exact matches and append them. If
4725 none is found, append the best_item and all its exact
4727 symtab_to_fullname (sal.symtab);
4728 exact = append_exact_match_to_sals (sal.symtab->filename,
4729 sal.symtab->fullname, lineno,
4730 &ret, &best_item, &best_symtab);
4731 if (!exact && best_item)
4732 append_exact_match_to_sals (best_symtab->filename,
4733 best_symtab->fullname, best_item->line,
4734 &ret, &best_item, &best_symtab);
4737 /* For optimized code, compiler can scatter one source line accross
4738 disjoint ranges of PC values, even when no duplicate functions
4739 or inline functions are involved. For example, 'for (;;)' inside
4740 non-template non-inline non-ctor-or-dtor function can result
4741 in two PC ranges. In this case, we don't want to set breakpoint
4742 on first PC of each range. To filter such cases, we use containing
4743 blocks -- for each PC found above we see if there are other PCs
4744 that are in the same block. If yes, the other PCs are filtered out. */
4746 old_chain = save_current_program_space ();
4747 filter = alloca (ret.nelts * sizeof (int));
4748 blocks = alloca (ret.nelts * sizeof (struct block *));
4749 for (i = 0; i < ret.nelts; ++i)
4751 set_current_program_space (ret.sals[i].pspace);
4754 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4757 do_cleanups (old_chain);
4759 for (i = 0; i < ret.nelts; ++i)
4760 if (blocks[i] != NULL)
4761 for (j = i+1; j < ret.nelts; ++j)
4762 if (blocks[j] == blocks[i])
4770 struct symtab_and_line *final =
4771 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4773 for (i = 0, j = 0; i < ret.nelts; ++i)
4775 final[j++] = ret.sals[i];
4777 ret.nelts -= deleted;
4785 /* Return 1 if the supplied producer string matches the ARM RealView
4786 compiler (armcc). */
4789 producer_is_realview (const char *producer)
4791 static const char *const arm_idents[] = {
4792 "ARM C Compiler, ADS",
4793 "Thumb C Compiler, ADS",
4794 "ARM C++ Compiler, ADS",
4795 "Thumb C++ Compiler, ADS",
4796 "ARM/Thumb C/C++ Compiler, RVCT",
4797 "ARM C/C++ Compiler, RVCT"
4801 if (producer == NULL)
4804 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4805 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4812 _initialize_symtab (void)
4814 add_info ("variables", variables_info, _("\
4815 All global and static variable names, or those matching REGEXP."));
4817 add_com ("whereis", class_info, variables_info, _("\
4818 All global and static variable names, or those matching REGEXP."));
4820 add_info ("functions", functions_info,
4821 _("All function names, or those matching REGEXP."));
4823 /* FIXME: This command has at least the following problems:
4824 1. It prints builtin types (in a very strange and confusing fashion).
4825 2. It doesn't print right, e.g. with
4826 typedef struct foo *FOO
4827 type_print prints "FOO" when we want to make it (in this situation)
4828 print "struct foo *".
4829 I also think "ptype" or "whatis" is more likely to be useful (but if
4830 there is much disagreement "info types" can be fixed). */
4831 add_info ("types", types_info,
4832 _("All type names, or those matching REGEXP."));
4834 add_info ("sources", sources_info,
4835 _("Source files in the program."));
4837 add_com ("rbreak", class_breakpoint, rbreak_command,
4838 _("Set a breakpoint for all functions matching REGEXP."));
4842 add_com ("lf", class_info, sources_info,
4843 _("Source files in the program"));
4844 add_com ("lg", class_info, variables_info, _("\
4845 All global and static variable names, or those matching REGEXP."));
4848 add_setshow_enum_cmd ("multiple-symbols", no_class,
4849 multiple_symbols_modes, &multiple_symbols_mode,
4851 Set the debugger behavior when more than one symbol are possible matches\n\
4852 in an expression."), _("\
4853 Show how the debugger handles ambiguities in expressions."), _("\
4854 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4855 NULL, NULL, &setlist, &showlist);
4857 observer_attach_executable_changed (symtab_observer_executable_changed);