1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
45 switch (bed->s->arch_size)
56 bfd_set_error (bfd_error_bad_value);
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
63 s = bfd_make_section (abfd, ".got");
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
69 if (bed->want_got_plt)
71 s = bfd_make_section (abfd, ".got.plt");
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
78 if (bed->want_got_sym)
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
89 h = (struct elf_link_hash_entry *) bh;
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
97 elf_hash_table (info)->hgot = h;
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
106 /* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
114 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
120 const struct elf_backend_data *bed;
122 if (! is_elf_hash_table (info->hash))
125 if (elf_hash_table (info)->dynamic_sections_created)
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
132 abfd = elf_hash_table (info)->dynobj;
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
141 if (info->executable)
143 s = bfd_make_section (abfd, ".interp");
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
149 if (! info->traditional_format)
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
156 elf_hash_table (info)->eh_info.hdr_sec = s;
159 bed = get_elf_backend_data (abfd);
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
169 s = bfd_make_section (abfd, ".gnu.version");
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
175 s = bfd_make_section (abfd, ".gnu.version_r");
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 s = bfd_make_section (abfd, ".dynsym");
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
187 s = bfd_make_section (abfd, ".dynstr");
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
200 s = bfd_make_section (abfd, ".dynamic");
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
215 if (! (_bfd_generic_link_add_one_symbol
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
223 if (! info->executable
224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
227 s = bfd_make_section (abfd, ".hash");
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
245 /* Create dynamic sections when linking against a dynamic object. */
248 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 flagword flags, pltflags;
252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
267 s = bfd_make_section (abfd, ".plt");
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
273 if (bed->want_plt_sym)
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
280 if (! (_bfd_generic_link_add_one_symbol
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
284 h = (struct elf_link_hash_entry *) bh;
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
288 if (! info->executable
289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
293 s = bfd_make_section (abfd,
294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
300 if (! _bfd_elf_create_got_section (abfd, info))
303 if (bed->want_dynbss)
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
316 /* The .rel[a].bss section holds copy relocs. This section is not
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
342 /* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
351 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
354 if (h->dynindx == -1)
356 struct elf_strtab_hash *dynstr;
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
383 dynstr = elf_hash_table (info)->dynstr;
386 /* Create a strtab to hold the dynamic symbol names. */
387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
392 /* We don't put any version information in the dynamic string
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
409 if (indx == (bfd_size_type) -1)
411 h->dynstr_index = indx;
417 /* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
421 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
426 struct elf_link_hash_entry *h;
428 if (!is_elf_hash_table (info->hash))
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h->root.type == bfd_link_hash_undefweak
439 || h->root.type == bfd_link_hash_undefined)
440 h->root.type = bfd_link_hash_new;
442 if (h->root.type == bfd_link_hash_new)
443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
452 h->root.type = bfd_link_hash_undefined;
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
461 h->verinfo.verdef = NULL;
463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
470 if (! bfd_elf_link_record_dynamic_symbol (info, h))
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h->weakdef != NULL
477 && h->weakdef->dynindx == -1)
479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
487 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
492 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_local_dynamic_entry *entry;
498 struct elf_link_hash_table *eht;
499 struct elf_strtab_hash *dynstr;
500 unsigned long dynstr_index;
502 Elf_External_Sym_Shndx eshndx;
503 char esym[sizeof (Elf64_External_Sym)];
505 if (! is_elf_hash_table (info->hash))
508 /* See if the entry exists already. */
509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
513 amt = sizeof (*entry);
514 entry = bfd_alloc (input_bfd, amt);
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
520 1, input_indx, &entry->isym, esym, &eshndx))
522 bfd_release (input_bfd, entry);
526 if (entry->isym.st_shndx != SHN_UNDEF
527 && (entry->isym.st_shndx < SHN_LORESERVE
528 || entry->isym.st_shndx > SHN_HIRESERVE))
532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
533 if (s == NULL || bfd_is_abs_section (s->output_section))
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd, entry);
542 name = (bfd_elf_string_from_elf_section
543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
544 entry->isym.st_name));
546 dynstr = elf_hash_table (info)->dynstr;
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
556 if (dynstr_index == (unsigned long) -1)
558 entry->isym.st_name = dynstr_index;
560 eht = elf_hash_table (info);
562 entry->next = eht->dynlocal;
563 eht->dynlocal = entry;
564 entry->input_bfd = input_bfd;
565 entry->input_indx = input_indx;
568 /* Whatever binding the symbol had before, it's now local. */
570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
572 /* The dynindx will be set at the end of size_dynamic_sections. */
577 /* Return the dynindex of a local dynamic symbol. */
580 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
584 struct elf_link_local_dynamic_entry *e;
586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
587 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
592 /* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
597 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
600 size_t *count = data;
602 if (h->root.type == bfd_link_hash_warning)
603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
605 if (h->dynindx != -1)
606 h->dynindx = ++(*count);
611 /* Return true if the dynamic symbol for a given section should be
612 omitted when creating a shared library. */
614 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
615 struct bfd_link_info *info,
618 switch (elf_section_data (p)->this_hdr.sh_type)
622 /* If sh_type is yet undecided, assume it could be
623 SHT_PROGBITS/SHT_NOBITS. */
625 if (strcmp (p->name, ".got") == 0
626 || strcmp (p->name, ".got.plt") == 0
627 || strcmp (p->name, ".plt") == 0)
630 bfd *dynobj = elf_hash_table (info)->dynobj;
633 && (ip = bfd_get_section_by_name (dynobj, p->name))
635 && (ip->flags & SEC_LINKER_CREATED)
636 && ip->output_section == p)
641 /* There shouldn't be section relative relocations
642 against any other section. */
648 /* Assign dynsym indices. In a shared library we generate a section
649 symbol for each output section, which come first. Next come all of
650 the back-end allocated local dynamic syms, followed by the rest of
651 the global symbols. */
654 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
656 unsigned long dynsymcount = 0;
660 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
662 for (p = output_bfd->sections; p ; p = p->next)
663 if ((p->flags & SEC_EXCLUDE) == 0
664 && (p->flags & SEC_ALLOC) != 0
665 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
666 elf_section_data (p)->dynindx = ++dynsymcount;
669 if (elf_hash_table (info)->dynlocal)
671 struct elf_link_local_dynamic_entry *p;
672 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
673 p->dynindx = ++dynsymcount;
676 elf_link_hash_traverse (elf_hash_table (info),
677 elf_link_renumber_hash_table_dynsyms,
680 /* There is an unused NULL entry at the head of the table which
681 we must account for in our count. Unless there weren't any
682 symbols, which means we'll have no table at all. */
683 if (dynsymcount != 0)
686 return elf_hash_table (info)->dynsymcount = dynsymcount;
689 /* This function is called when we want to define a new symbol. It
690 handles the various cases which arise when we find a definition in
691 a dynamic object, or when there is already a definition in a
692 dynamic object. The new symbol is described by NAME, SYM, PSEC,
693 and PVALUE. We set SYM_HASH to the hash table entry. We set
694 OVERRIDE if the old symbol is overriding a new definition. We set
695 TYPE_CHANGE_OK if it is OK for the type to change. We set
696 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
697 change, we mean that we shouldn't warn if the type or size does
701 _bfd_elf_merge_symbol (bfd *abfd,
702 struct bfd_link_info *info,
704 Elf_Internal_Sym *sym,
707 struct elf_link_hash_entry **sym_hash,
709 bfd_boolean *override,
710 bfd_boolean *type_change_ok,
711 bfd_boolean *size_change_ok)
714 struct elf_link_hash_entry *h;
715 struct elf_link_hash_entry *flip;
718 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
719 bfd_boolean newweak, oldweak;
725 bind = ELF_ST_BIND (sym->st_info);
727 if (! bfd_is_und_section (sec))
728 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
730 h = ((struct elf_link_hash_entry *)
731 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
736 /* This code is for coping with dynamic objects, and is only useful
737 if we are doing an ELF link. */
738 if (info->hash->creator != abfd->xvec)
741 /* For merging, we only care about real symbols. */
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747 /* If we just created the symbol, mark it as being an ELF symbol.
748 Other than that, there is nothing to do--there is no merge issue
749 with a newly defined symbol--so we just return. */
751 if (h->root.type == bfd_link_hash_new)
753 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
757 /* OLDBFD is a BFD associated with the existing symbol. */
759 switch (h->root.type)
765 case bfd_link_hash_undefined:
766 case bfd_link_hash_undefweak:
767 oldbfd = h->root.u.undef.abfd;
770 case bfd_link_hash_defined:
771 case bfd_link_hash_defweak:
772 oldbfd = h->root.u.def.section->owner;
775 case bfd_link_hash_common:
776 oldbfd = h->root.u.c.p->section->owner;
780 /* In cases involving weak versioned symbols, we may wind up trying
781 to merge a symbol with itself. Catch that here, to avoid the
782 confusion that results if we try to override a symbol with
783 itself. The additional tests catch cases like
784 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
785 dynamic object, which we do want to handle here. */
787 && ((abfd->flags & DYNAMIC) == 0
788 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
791 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
792 respectively, is from a dynamic object. */
794 if ((abfd->flags & DYNAMIC) != 0)
800 olddyn = (oldbfd->flags & DYNAMIC) != 0;
805 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
806 indices used by MIPS ELF. */
807 switch (h->root.type)
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 hsec = h->root.u.def.section;
818 case bfd_link_hash_common:
819 hsec = h->root.u.c.p->section;
826 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
829 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
830 respectively, appear to be a definition rather than reference. */
832 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
837 if (h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common)
844 /* We need to remember if a symbol has a definition in a dynamic
845 object or is weak in all dynamic objects. Internal and hidden
846 visibility will make it unavailable to dynamic objects. */
847 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
849 if (!bfd_is_und_section (sec))
850 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
853 /* Check if this symbol is weak in all dynamic objects. If it
854 is the first time we see it in a dynamic object, we mark
855 if it is weak. Otherwise, we clear it. */
856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
858 if (bind == STB_WEAK)
859 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
861 else if (bind != STB_WEAK)
862 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
866 /* If the old symbol has non-default visibility, we ignore the new
867 definition from a dynamic object. */
869 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
870 && !bfd_is_und_section (sec))
873 /* Make sure this symbol is dynamic. */
874 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
875 /* A protected symbol has external availability. Make sure it is
878 FIXME: Should we check type and size for protected symbol? */
879 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
880 return bfd_elf_link_record_dynamic_symbol (info, h);
885 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
888 /* If the new symbol with non-default visibility comes from a
889 relocatable file and the old definition comes from a dynamic
890 object, we remove the old definition. */
891 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
894 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
895 && bfd_is_und_section (sec))
897 /* If the new symbol is undefined and the old symbol was
898 also undefined before, we need to make sure
899 _bfd_generic_link_add_one_symbol doesn't mess
900 up the linker hash table undefs list. Since the old
901 definition came from a dynamic object, it is still on the
903 h->root.type = bfd_link_hash_undefined;
904 /* FIXME: What if the new symbol is weak undefined? */
905 h->root.u.undef.abfd = abfd;
909 h->root.type = bfd_link_hash_new;
910 h->root.u.undef.abfd = NULL;
913 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
915 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
916 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
917 | ELF_LINK_DYNAMIC_DEF);
919 /* FIXME: Should we check type and size for protected symbol? */
925 /* Differentiate strong and weak symbols. */
926 newweak = bind == STB_WEAK;
927 oldweak = (h->root.type == bfd_link_hash_defweak
928 || h->root.type == bfd_link_hash_undefweak);
930 /* If a new weak symbol definition comes from a regular file and the
931 old symbol comes from a dynamic library, we treat the new one as
932 strong. Similarly, an old weak symbol definition from a regular
933 file is treated as strong when the new symbol comes from a dynamic
934 library. Further, an old weak symbol from a dynamic library is
935 treated as strong if the new symbol is from a dynamic library.
936 This reflects the way glibc's ld.so works.
938 Do this before setting *type_change_ok or *size_change_ok so that
939 we warn properly when dynamic library symbols are overridden. */
941 if (newdef && !newdyn && olddyn)
943 if (olddef && newdyn)
946 /* It's OK to change the type if either the existing symbol or the
947 new symbol is weak. A type change is also OK if the old symbol
948 is undefined and the new symbol is defined. */
953 && h->root.type == bfd_link_hash_undefined))
954 *type_change_ok = TRUE;
956 /* It's OK to change the size if either the existing symbol or the
957 new symbol is weak, or if the old symbol is undefined. */
960 || h->root.type == bfd_link_hash_undefined)
961 *size_change_ok = TRUE;
963 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
964 symbol, respectively, appears to be a common symbol in a dynamic
965 object. If a symbol appears in an uninitialized section, and is
966 not weak, and is not a function, then it may be a common symbol
967 which was resolved when the dynamic object was created. We want
968 to treat such symbols specially, because they raise special
969 considerations when setting the symbol size: if the symbol
970 appears as a common symbol in a regular object, and the size in
971 the regular object is larger, we must make sure that we use the
972 larger size. This problematic case can always be avoided in C,
973 but it must be handled correctly when using Fortran shared
976 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
977 likewise for OLDDYNCOMMON and OLDDEF.
979 Note that this test is just a heuristic, and that it is quite
980 possible to have an uninitialized symbol in a shared object which
981 is really a definition, rather than a common symbol. This could
982 lead to some minor confusion when the symbol really is a common
983 symbol in some regular object. However, I think it will be
989 && (sec->flags & SEC_ALLOC) != 0
990 && (sec->flags & SEC_LOAD) == 0
992 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
995 newdyncommon = FALSE;
999 && h->root.type == bfd_link_hash_defined
1000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1001 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1002 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1004 && h->type != STT_FUNC)
1005 olddyncommon = TRUE;
1007 olddyncommon = FALSE;
1009 /* If both the old and the new symbols look like common symbols in a
1010 dynamic object, set the size of the symbol to the larger of the
1015 && sym->st_size != h->size)
1017 /* Since we think we have two common symbols, issue a multiple
1018 common warning if desired. Note that we only warn if the
1019 size is different. If the size is the same, we simply let
1020 the old symbol override the new one as normally happens with
1021 symbols defined in dynamic objects. */
1023 if (! ((*info->callbacks->multiple_common)
1024 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1025 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1028 if (sym->st_size > h->size)
1029 h->size = sym->st_size;
1031 *size_change_ok = TRUE;
1034 /* If we are looking at a dynamic object, and we have found a
1035 definition, we need to see if the symbol was already defined by
1036 some other object. If so, we want to use the existing
1037 definition, and we do not want to report a multiple symbol
1038 definition error; we do this by clobbering *PSEC to be
1039 bfd_und_section_ptr.
1041 We treat a common symbol as a definition if the symbol in the
1042 shared library is a function, since common symbols always
1043 represent variables; this can cause confusion in principle, but
1044 any such confusion would seem to indicate an erroneous program or
1045 shared library. We also permit a common symbol in a regular
1046 object to override a weak symbol in a shared object. */
1051 || (h->root.type == bfd_link_hash_common
1053 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1057 newdyncommon = FALSE;
1059 *psec = sec = bfd_und_section_ptr;
1060 *size_change_ok = TRUE;
1062 /* If we get here when the old symbol is a common symbol, then
1063 we are explicitly letting it override a weak symbol or
1064 function in a dynamic object, and we don't want to warn about
1065 a type change. If the old symbol is a defined symbol, a type
1066 change warning may still be appropriate. */
1068 if (h->root.type == bfd_link_hash_common)
1069 *type_change_ok = TRUE;
1072 /* Handle the special case of an old common symbol merging with a
1073 new symbol which looks like a common symbol in a shared object.
1074 We change *PSEC and *PVALUE to make the new symbol look like a
1075 common symbol, and let _bfd_generic_link_add_one_symbol will do
1079 && h->root.type == bfd_link_hash_common)
1083 newdyncommon = FALSE;
1084 *pvalue = sym->st_size;
1085 *psec = sec = bfd_com_section_ptr;
1086 *size_change_ok = TRUE;
1089 /* If the old symbol is from a dynamic object, and the new symbol is
1090 a definition which is not from a dynamic object, then the new
1091 symbol overrides the old symbol. Symbols from regular files
1092 always take precedence over symbols from dynamic objects, even if
1093 they are defined after the dynamic object in the link.
1095 As above, we again permit a common symbol in a regular object to
1096 override a definition in a shared object if the shared object
1097 symbol is a function or is weak. */
1102 || (bfd_is_com_section (sec)
1104 || h->type == STT_FUNC)))
1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
1109 /* Change the hash table entry to undefined, and let
1110 _bfd_generic_link_add_one_symbol do the right thing with the
1113 h->root.type = bfd_link_hash_undefined;
1114 h->root.u.undef.abfd = h->root.u.def.section->owner;
1115 *size_change_ok = TRUE;
1118 olddyncommon = FALSE;
1120 /* We again permit a type change when a common symbol may be
1121 overriding a function. */
1123 if (bfd_is_com_section (sec))
1124 *type_change_ok = TRUE;
1126 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1129 /* This union may have been set to be non-NULL when this symbol
1130 was seen in a dynamic object. We must force the union to be
1131 NULL, so that it is correct for a regular symbol. */
1132 h->verinfo.vertree = NULL;
1135 /* Handle the special case of a new common symbol merging with an
1136 old symbol that looks like it might be a common symbol defined in
1137 a shared object. Note that we have already handled the case in
1138 which a new common symbol should simply override the definition
1139 in the shared library. */
1142 && bfd_is_com_section (sec)
1145 /* It would be best if we could set the hash table entry to a
1146 common symbol, but we don't know what to use for the section
1147 or the alignment. */
1148 if (! ((*info->callbacks->multiple_common)
1149 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1150 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1153 /* If the presumed common symbol in the dynamic object is
1154 larger, pretend that the new symbol has its size. */
1156 if (h->size > *pvalue)
1159 /* FIXME: We no longer know the alignment required by the symbol
1160 in the dynamic object, so we just wind up using the one from
1161 the regular object. */
1164 olddyncommon = FALSE;
1166 h->root.type = bfd_link_hash_undefined;
1167 h->root.u.undef.abfd = h->root.u.def.section->owner;
1169 *size_change_ok = TRUE;
1170 *type_change_ok = TRUE;
1172 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1175 h->verinfo.vertree = NULL;
1180 /* Handle the case where we had a versioned symbol in a dynamic
1181 library and now find a definition in a normal object. In this
1182 case, we make the versioned symbol point to the normal one. */
1183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1184 flip->root.type = h->root.type;
1185 h->root.type = bfd_link_hash_indirect;
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1187 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1188 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1189 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1191 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1192 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1199 /* This function is called to create an indirect symbol from the
1200 default for the symbol with the default version if needed. The
1201 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1202 set DYNSYM if the new indirect symbol is dynamic. */
1205 _bfd_elf_add_default_symbol (bfd *abfd,
1206 struct bfd_link_info *info,
1207 struct elf_link_hash_entry *h,
1209 Elf_Internal_Sym *sym,
1212 bfd_boolean *dynsym,
1213 bfd_boolean override)
1215 bfd_boolean type_change_ok;
1216 bfd_boolean size_change_ok;
1219 struct elf_link_hash_entry *hi;
1220 struct bfd_link_hash_entry *bh;
1221 const struct elf_backend_data *bed;
1222 bfd_boolean collect;
1223 bfd_boolean dynamic;
1225 size_t len, shortlen;
1228 /* If this symbol has a version, and it is the default version, we
1229 create an indirect symbol from the default name to the fully
1230 decorated name. This will cause external references which do not
1231 specify a version to be bound to this version of the symbol. */
1232 p = strchr (name, ELF_VER_CHR);
1233 if (p == NULL || p[1] != ELF_VER_CHR)
1238 /* We are overridden by an old definition. We need to check if we
1239 need to create the indirect symbol from the default name. */
1240 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1242 BFD_ASSERT (hi != NULL);
1245 while (hi->root.type == bfd_link_hash_indirect
1246 || hi->root.type == bfd_link_hash_warning)
1248 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1254 bed = get_elf_backend_data (abfd);
1255 collect = bed->collect;
1256 dynamic = (abfd->flags & DYNAMIC) != 0;
1258 shortlen = p - name;
1259 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1260 if (shortname == NULL)
1262 memcpy (shortname, name, shortlen);
1263 shortname[shortlen] = '\0';
1265 /* We are going to create a new symbol. Merge it with any existing
1266 symbol with this name. For the purposes of the merge, act as
1267 though we were defining the symbol we just defined, although we
1268 actually going to define an indirect symbol. */
1269 type_change_ok = FALSE;
1270 size_change_ok = FALSE;
1272 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1273 &hi, &skip, &override, &type_change_ok,
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1285 0, name, FALSE, collect, &bh)))
1287 hi = (struct elf_link_hash_entry *) bh;
1291 /* In this case the symbol named SHORTNAME is overriding the
1292 indirect symbol we want to add. We were planning on making
1293 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1294 is the name without a version. NAME is the fully versioned
1295 name, and it is the default version.
1297 Overriding means that we already saw a definition for the
1298 symbol SHORTNAME in a regular object, and it is overriding
1299 the symbol defined in the dynamic object.
1301 When this happens, we actually want to change NAME, the
1302 symbol we just added, to refer to SHORTNAME. This will cause
1303 references to NAME in the shared object to become references
1304 to SHORTNAME in the regular object. This is what we expect
1305 when we override a function in a shared object: that the
1306 references in the shared object will be mapped to the
1307 definition in the regular object. */
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1315 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1317 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1318 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1319 if (hi->elf_link_hash_flags
1320 & (ELF_LINK_HASH_REF_REGULAR
1321 | ELF_LINK_HASH_DEF_REGULAR))
1323 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1328 /* Now set HI to H, so that the following code will set the
1329 other fields correctly. */
1333 /* If there is a duplicate definition somewhere, then HI may not
1334 point to an indirect symbol. We will have reported an error to
1335 the user in that case. */
1337 if (hi->root.type == bfd_link_hash_indirect)
1339 struct elf_link_hash_entry *ht;
1341 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1342 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1344 /* See if the new flags lead us to realize that the symbol must
1351 || ((hi->elf_link_hash_flags
1352 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1357 if ((hi->elf_link_hash_flags
1358 & ELF_LINK_HASH_REF_REGULAR) != 0)
1364 /* We also need to define an indirection from the nondefault version
1368 len = strlen (name);
1369 shortname = bfd_hash_allocate (&info->hash->table, len);
1370 if (shortname == NULL)
1372 memcpy (shortname, name, shortlen);
1373 memcpy (shortname + shortlen, p + 1, len - shortlen);
1375 /* Once again, merge with any existing symbol. */
1376 type_change_ok = FALSE;
1377 size_change_ok = FALSE;
1379 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1380 &hi, &skip, &override, &type_change_ok,
1389 /* Here SHORTNAME is a versioned name, so we don't expect to see
1390 the type of override we do in the case above unless it is
1391 overridden by a versioned definition. */
1392 if (hi->root.type != bfd_link_hash_defined
1393 && hi->root.type != bfd_link_hash_defweak)
1394 (*_bfd_error_handler)
1395 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1396 bfd_archive_filename (abfd), shortname);
1401 if (! (_bfd_generic_link_add_one_symbol
1402 (info, abfd, shortname, BSF_INDIRECT,
1403 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1405 hi = (struct elf_link_hash_entry *) bh;
1407 /* If there is a duplicate definition somewhere, then HI may not
1408 point to an indirect symbol. We will have reported an error
1409 to the user in that case. */
1411 if (hi->root.type == bfd_link_hash_indirect)
1413 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1415 /* See if the new flags lead us to realize that the symbol
1422 || ((hi->elf_link_hash_flags
1423 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1428 if ((hi->elf_link_hash_flags
1429 & ELF_LINK_HASH_REF_REGULAR) != 0)
1439 /* This routine is used to export all defined symbols into the dynamic
1440 symbol table. It is called via elf_link_hash_traverse. */
1443 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1445 struct elf_info_failed *eif = data;
1447 /* Ignore indirect symbols. These are added by the versioning code. */
1448 if (h->root.type == bfd_link_hash_indirect)
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1454 if (h->dynindx == -1
1455 && (h->elf_link_hash_flags
1456 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1458 struct bfd_elf_version_tree *t;
1459 struct bfd_elf_version_expr *d;
1461 for (t = eif->verdefs; t != NULL; t = t->next)
1463 if (t->globals.list != NULL)
1465 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1470 if (t->locals.list != NULL)
1472 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1481 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1492 /* Look through the symbols which are defined in other shared
1493 libraries and referenced here. Update the list of version
1494 dependencies. This will be put into the .gnu.version_r section.
1495 This function is called via elf_link_hash_traverse. */
1498 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1501 struct elf_find_verdep_info *rinfo = data;
1502 Elf_Internal_Verneed *t;
1503 Elf_Internal_Vernaux *a;
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1509 /* We only care about symbols defined in shared objects with version
1511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1514 || h->verinfo.verdef == NULL)
1517 /* See if we already know about this version. */
1518 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1520 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1523 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1524 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1530 /* This is a new version. Add it to tree we are building. */
1535 t = bfd_zalloc (rinfo->output_bfd, amt);
1538 rinfo->failed = TRUE;
1542 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1543 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1544 elf_tdata (rinfo->output_bfd)->verref = t;
1548 a = bfd_zalloc (rinfo->output_bfd, amt);
1550 /* Note that we are copying a string pointer here, and testing it
1551 above. If bfd_elf_string_from_elf_section is ever changed to
1552 discard the string data when low in memory, this will have to be
1554 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1556 a->vna_flags = h->verinfo.verdef->vd_flags;
1557 a->vna_nextptr = t->vn_auxptr;
1559 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1562 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1569 /* Figure out appropriate versions for all the symbols. We may not
1570 have the version number script until we have read all of the input
1571 files, so until that point we don't know which symbols should be
1572 local. This function is called via elf_link_hash_traverse. */
1575 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1577 struct elf_assign_sym_version_info *sinfo;
1578 struct bfd_link_info *info;
1579 const struct elf_backend_data *bed;
1580 struct elf_info_failed eif;
1587 if (h->root.type == bfd_link_hash_warning)
1588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1590 /* Fix the symbol flags. */
1593 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1596 sinfo->failed = TRUE;
1600 /* We only need version numbers for symbols defined in regular
1602 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1605 bed = get_elf_backend_data (sinfo->output_bfd);
1606 p = strchr (h->root.root.string, ELF_VER_CHR);
1607 if (p != NULL && h->verinfo.vertree == NULL)
1609 struct bfd_elf_version_tree *t;
1614 /* There are two consecutive ELF_VER_CHR characters if this is
1615 not a hidden symbol. */
1617 if (*p == ELF_VER_CHR)
1623 /* If there is no version string, we can just return out. */
1627 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1631 /* Look for the version. If we find it, it is no longer weak. */
1632 for (t = sinfo->verdefs; t != NULL; t = t->next)
1634 if (strcmp (t->name, p) == 0)
1638 struct bfd_elf_version_expr *d;
1640 len = p - h->root.root.string;
1641 alc = bfd_malloc (len);
1644 memcpy (alc, h->root.root.string, len - 1);
1645 alc[len - 1] = '\0';
1646 if (alc[len - 2] == ELF_VER_CHR)
1647 alc[len - 2] = '\0';
1649 h->verinfo.vertree = t;
1653 if (t->globals.list != NULL)
1654 d = (*t->match) (&t->globals, NULL, alc);
1656 /* See if there is anything to force this symbol to
1658 if (d == NULL && t->locals.list != NULL)
1660 d = (*t->match) (&t->locals, NULL, alc);
1664 && ! info->export_dynamic)
1665 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1673 /* If we are building an application, we need to create a
1674 version node for this version. */
1675 if (t == NULL && info->executable)
1677 struct bfd_elf_version_tree **pp;
1680 /* If we aren't going to export this symbol, we don't need
1681 to worry about it. */
1682 if (h->dynindx == -1)
1686 t = bfd_zalloc (sinfo->output_bfd, amt);
1689 sinfo->failed = TRUE;
1694 t->name_indx = (unsigned int) -1;
1698 /* Don't count anonymous version tag. */
1699 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1701 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1703 t->vernum = version_index;
1707 h->verinfo.vertree = t;
1711 /* We could not find the version for a symbol when
1712 generating a shared archive. Return an error. */
1713 (*_bfd_error_handler)
1714 (_("%s: undefined versioned symbol name %s"),
1715 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
1716 bfd_set_error (bfd_error_bad_value);
1717 sinfo->failed = TRUE;
1722 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1725 /* If we don't have a version for this symbol, see if we can find
1727 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1729 struct bfd_elf_version_tree *t;
1730 struct bfd_elf_version_tree *local_ver;
1731 struct bfd_elf_version_expr *d;
1733 /* See if can find what version this symbol is in. If the
1734 symbol is supposed to be local, then don't actually register
1737 for (t = sinfo->verdefs; t != NULL; t = t->next)
1739 if (t->globals.list != NULL)
1741 bfd_boolean matched;
1745 while ((d = (*t->match) (&t->globals, d,
1746 h->root.root.string)) != NULL)
1751 /* There is a version without definition. Make
1752 the symbol the default definition for this
1754 h->verinfo.vertree = t;
1762 /* There is no undefined version for this symbol. Hide the
1764 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1767 if (t->locals.list != NULL)
1770 while ((d = (*t->match) (&t->locals, d,
1771 h->root.root.string)) != NULL)
1774 /* If the match is "*", keep looking for a more
1775 explicit, perhaps even global, match.
1776 XXX: Shouldn't this be !d->wildcard instead? */
1777 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1786 if (local_ver != NULL)
1788 h->verinfo.vertree = local_ver;
1789 if (h->dynindx != -1
1791 && ! info->export_dynamic)
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1801 /* Read and swap the relocs from the section indicated by SHDR. This
1802 may be either a REL or a RELA section. The relocations are
1803 translated into RELA relocations and stored in INTERNAL_RELOCS,
1804 which should have already been allocated to contain enough space.
1805 The EXTERNAL_RELOCS are a buffer where the external form of the
1806 relocations should be stored.
1808 Returns FALSE if something goes wrong. */
1811 elf_link_read_relocs_from_section (bfd *abfd,
1813 Elf_Internal_Shdr *shdr,
1814 void *external_relocs,
1815 Elf_Internal_Rela *internal_relocs)
1817 const struct elf_backend_data *bed;
1818 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1819 const bfd_byte *erela;
1820 const bfd_byte *erelaend;
1821 Elf_Internal_Rela *irela;
1822 Elf_Internal_Shdr *symtab_hdr;
1825 /* Position ourselves at the start of the section. */
1826 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1829 /* Read the relocations. */
1830 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1836 bed = get_elf_backend_data (abfd);
1838 /* Convert the external relocations to the internal format. */
1839 if (shdr->sh_entsize == bed->s->sizeof_rel)
1840 swap_in = bed->s->swap_reloc_in;
1841 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1842 swap_in = bed->s->swap_reloca_in;
1845 bfd_set_error (bfd_error_wrong_format);
1849 erela = external_relocs;
1850 erelaend = erela + shdr->sh_size;
1851 irela = internal_relocs;
1852 while (erela < erelaend)
1856 (*swap_in) (abfd, erela, irela);
1857 r_symndx = ELF32_R_SYM (irela->r_info);
1858 if (bed->s->arch_size == 64)
1860 if ((size_t) r_symndx >= nsyms)
1862 (*_bfd_error_handler)
1863 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1864 bfd_archive_filename (abfd), (unsigned long) r_symndx,
1865 (unsigned long) nsyms, irela->r_offset, sec->name);
1866 bfd_set_error (bfd_error_bad_value);
1869 irela += bed->s->int_rels_per_ext_rel;
1870 erela += shdr->sh_entsize;
1876 /* Read and swap the relocs for a section O. They may have been
1877 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1878 not NULL, they are used as buffers to read into. They are known to
1879 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1880 the return value is allocated using either malloc or bfd_alloc,
1881 according to the KEEP_MEMORY argument. If O has two relocation
1882 sections (both REL and RELA relocations), then the REL_HDR
1883 relocations will appear first in INTERNAL_RELOCS, followed by the
1884 REL_HDR2 relocations. */
1887 _bfd_elf_link_read_relocs (bfd *abfd,
1889 void *external_relocs,
1890 Elf_Internal_Rela *internal_relocs,
1891 bfd_boolean keep_memory)
1893 Elf_Internal_Shdr *rel_hdr;
1894 void *alloc1 = NULL;
1895 Elf_Internal_Rela *alloc2 = NULL;
1896 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1898 if (elf_section_data (o)->relocs != NULL)
1899 return elf_section_data (o)->relocs;
1901 if (o->reloc_count == 0)
1904 rel_hdr = &elf_section_data (o)->rel_hdr;
1906 if (internal_relocs == NULL)
1910 size = o->reloc_count;
1911 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1913 internal_relocs = bfd_alloc (abfd, size);
1915 internal_relocs = alloc2 = bfd_malloc (size);
1916 if (internal_relocs == NULL)
1920 if (external_relocs == NULL)
1922 bfd_size_type size = rel_hdr->sh_size;
1924 if (elf_section_data (o)->rel_hdr2)
1925 size += elf_section_data (o)->rel_hdr2->sh_size;
1926 alloc1 = bfd_malloc (size);
1929 external_relocs = alloc1;
1932 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1936 if (elf_section_data (o)->rel_hdr2
1937 && (!elf_link_read_relocs_from_section
1939 elf_section_data (o)->rel_hdr2,
1940 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1941 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1942 * bed->s->int_rels_per_ext_rel))))
1945 /* Cache the results for next time, if we can. */
1947 elf_section_data (o)->relocs = internal_relocs;
1952 /* Don't free alloc2, since if it was allocated we are passing it
1953 back (under the name of internal_relocs). */
1955 return internal_relocs;
1965 /* Compute the size of, and allocate space for, REL_HDR which is the
1966 section header for a section containing relocations for O. */
1969 _bfd_elf_link_size_reloc_section (bfd *abfd,
1970 Elf_Internal_Shdr *rel_hdr,
1973 bfd_size_type reloc_count;
1974 bfd_size_type num_rel_hashes;
1976 /* Figure out how many relocations there will be. */
1977 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1978 reloc_count = elf_section_data (o)->rel_count;
1980 reloc_count = elf_section_data (o)->rel_count2;
1982 num_rel_hashes = o->reloc_count;
1983 if (num_rel_hashes < reloc_count)
1984 num_rel_hashes = reloc_count;
1986 /* That allows us to calculate the size of the section. */
1987 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1989 /* The contents field must last into write_object_contents, so we
1990 allocate it with bfd_alloc rather than malloc. Also since we
1991 cannot be sure that the contents will actually be filled in,
1992 we zero the allocated space. */
1993 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
1994 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1997 /* We only allocate one set of hash entries, so we only do it the
1998 first time we are called. */
1999 if (elf_section_data (o)->rel_hashes == NULL
2002 struct elf_link_hash_entry **p;
2004 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2008 elf_section_data (o)->rel_hashes = p;
2014 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2015 originated from the section given by INPUT_REL_HDR) to the
2019 _bfd_elf_link_output_relocs (bfd *output_bfd,
2020 asection *input_section,
2021 Elf_Internal_Shdr *input_rel_hdr,
2022 Elf_Internal_Rela *internal_relocs)
2024 Elf_Internal_Rela *irela;
2025 Elf_Internal_Rela *irelaend;
2027 Elf_Internal_Shdr *output_rel_hdr;
2028 asection *output_section;
2029 unsigned int *rel_countp = NULL;
2030 const struct elf_backend_data *bed;
2031 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2033 output_section = input_section->output_section;
2034 output_rel_hdr = NULL;
2036 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2037 == input_rel_hdr->sh_entsize)
2039 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2040 rel_countp = &elf_section_data (output_section)->rel_count;
2042 else if (elf_section_data (output_section)->rel_hdr2
2043 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2044 == input_rel_hdr->sh_entsize))
2046 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2047 rel_countp = &elf_section_data (output_section)->rel_count2;
2051 (*_bfd_error_handler)
2052 (_("%s: relocation size mismatch in %s section %s"),
2053 bfd_get_filename (output_bfd),
2054 bfd_archive_filename (input_section->owner),
2055 input_section->name);
2056 bfd_set_error (bfd_error_wrong_object_format);
2060 bed = get_elf_backend_data (output_bfd);
2061 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2062 swap_out = bed->s->swap_reloc_out;
2063 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2064 swap_out = bed->s->swap_reloca_out;
2068 erel = output_rel_hdr->contents;
2069 erel += *rel_countp * input_rel_hdr->sh_entsize;
2070 irela = internal_relocs;
2071 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2072 * bed->s->int_rels_per_ext_rel);
2073 while (irela < irelaend)
2075 (*swap_out) (output_bfd, irela, erel);
2076 irela += bed->s->int_rels_per_ext_rel;
2077 erel += input_rel_hdr->sh_entsize;
2080 /* Bump the counter, so that we know where to add the next set of
2082 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2087 /* Fix up the flags for a symbol. This handles various cases which
2088 can only be fixed after all the input files are seen. This is
2089 currently called by both adjust_dynamic_symbol and
2090 assign_sym_version, which is unnecessary but perhaps more robust in
2091 the face of future changes. */
2094 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2095 struct elf_info_failed *eif)
2097 /* If this symbol was mentioned in a non-ELF file, try to set
2098 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2099 permit a non-ELF file to correctly refer to a symbol defined in
2100 an ELF dynamic object. */
2101 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2103 while (h->root.type == bfd_link_hash_indirect)
2104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2106 if (h->root.type != bfd_link_hash_defined
2107 && h->root.type != bfd_link_hash_defweak)
2108 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2109 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2112 if (h->root.u.def.section->owner != NULL
2113 && (bfd_get_flavour (h->root.u.def.section->owner)
2114 == bfd_target_elf_flavour))
2115 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2116 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2118 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2121 if (h->dynindx == -1
2122 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2123 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2125 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2134 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2135 was first seen in a non-ELF file. Fortunately, if the symbol
2136 was first seen in an ELF file, we're probably OK unless the
2137 symbol was defined in a non-ELF file. Catch that case here.
2138 FIXME: We're still in trouble if the symbol was first seen in
2139 a dynamic object, and then later in a non-ELF regular object. */
2140 if ((h->root.type == bfd_link_hash_defined
2141 || h->root.type == bfd_link_hash_defweak)
2142 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2143 && (h->root.u.def.section->owner != NULL
2144 ? (bfd_get_flavour (h->root.u.def.section->owner)
2145 != bfd_target_elf_flavour)
2146 : (bfd_is_abs_section (h->root.u.def.section)
2147 && (h->elf_link_hash_flags
2148 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2149 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2152 /* If this is a final link, and the symbol was defined as a common
2153 symbol in a regular object file, and there was no definition in
2154 any dynamic object, then the linker will have allocated space for
2155 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2156 flag will not have been set. */
2157 if (h->root.type == bfd_link_hash_defined
2158 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2159 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2160 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2161 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2162 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2164 /* If -Bsymbolic was used (which means to bind references to global
2165 symbols to the definition within the shared object), and this
2166 symbol was defined in a regular object, then it actually doesn't
2167 need a PLT entry. Likewise, if the symbol has non-default
2168 visibility. If the symbol has hidden or internal visibility, we
2169 will force it local. */
2170 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2171 && eif->info->shared
2172 && is_elf_hash_table (eif->info->hash)
2173 && (eif->info->symbolic
2174 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2177 const struct elf_backend_data *bed;
2178 bfd_boolean force_local;
2180 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2182 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2183 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2184 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2187 /* If a weak undefined symbol has non-default visibility, we also
2188 hide it from the dynamic linker. */
2189 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2190 && h->root.type == bfd_link_hash_undefweak)
2192 const struct elf_backend_data *bed;
2193 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2194 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2197 /* If this is a weak defined symbol in a dynamic object, and we know
2198 the real definition in the dynamic object, copy interesting flags
2199 over to the real definition. */
2200 if (h->weakdef != NULL)
2202 struct elf_link_hash_entry *weakdef;
2204 weakdef = h->weakdef;
2205 if (h->root.type == bfd_link_hash_indirect)
2206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2208 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2209 || h->root.type == bfd_link_hash_defweak);
2210 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2211 || weakdef->root.type == bfd_link_hash_defweak);
2212 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2214 /* If the real definition is defined by a regular object file,
2215 don't do anything special. See the longer description in
2216 _bfd_elf_adjust_dynamic_symbol, below. */
2217 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2221 const struct elf_backend_data *bed;
2223 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2224 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2231 /* Make the backend pick a good value for a dynamic symbol. This is
2232 called via elf_link_hash_traverse, and also calls itself
2236 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2238 struct elf_info_failed *eif = data;
2240 const struct elf_backend_data *bed;
2242 if (! is_elf_hash_table (eif->info->hash))
2245 if (h->root.type == bfd_link_hash_warning)
2247 h->plt = elf_hash_table (eif->info)->init_offset;
2248 h->got = elf_hash_table (eif->info)->init_offset;
2250 /* When warning symbols are created, they **replace** the "real"
2251 entry in the hash table, thus we never get to see the real
2252 symbol in a hash traversal. So look at it now. */
2253 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2256 /* Ignore indirect symbols. These are added by the versioning code. */
2257 if (h->root.type == bfd_link_hash_indirect)
2260 /* Fix the symbol flags. */
2261 if (! _bfd_elf_fix_symbol_flags (h, eif))
2264 /* If this symbol does not require a PLT entry, and it is not
2265 defined by a dynamic object, or is not referenced by a regular
2266 object, ignore it. We do have to handle a weak defined symbol,
2267 even if no regular object refers to it, if we decided to add it
2268 to the dynamic symbol table. FIXME: Do we normally need to worry
2269 about symbols which are defined by one dynamic object and
2270 referenced by another one? */
2271 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2272 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2273 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2274 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2275 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2277 h->plt = elf_hash_table (eif->info)->init_offset;
2281 /* If we've already adjusted this symbol, don't do it again. This
2282 can happen via a recursive call. */
2283 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2286 /* Don't look at this symbol again. Note that we must set this
2287 after checking the above conditions, because we may look at a
2288 symbol once, decide not to do anything, and then get called
2289 recursively later after REF_REGULAR is set below. */
2290 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2292 /* If this is a weak definition, and we know a real definition, and
2293 the real symbol is not itself defined by a regular object file,
2294 then get a good value for the real definition. We handle the
2295 real symbol first, for the convenience of the backend routine.
2297 Note that there is a confusing case here. If the real definition
2298 is defined by a regular object file, we don't get the real symbol
2299 from the dynamic object, but we do get the weak symbol. If the
2300 processor backend uses a COPY reloc, then if some routine in the
2301 dynamic object changes the real symbol, we will not see that
2302 change in the corresponding weak symbol. This is the way other
2303 ELF linkers work as well, and seems to be a result of the shared
2306 I will clarify this issue. Most SVR4 shared libraries define the
2307 variable _timezone and define timezone as a weak synonym. The
2308 tzset call changes _timezone. If you write
2309 extern int timezone;
2311 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2312 you might expect that, since timezone is a synonym for _timezone,
2313 the same number will print both times. However, if the processor
2314 backend uses a COPY reloc, then actually timezone will be copied
2315 into your process image, and, since you define _timezone
2316 yourself, _timezone will not. Thus timezone and _timezone will
2317 wind up at different memory locations. The tzset call will set
2318 _timezone, leaving timezone unchanged. */
2320 if (h->weakdef != NULL)
2322 /* If we get to this point, we know there is an implicit
2323 reference by a regular object file via the weak symbol H.
2324 FIXME: Is this really true? What if the traversal finds
2325 H->WEAKDEF before it finds H? */
2326 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2328 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
2332 /* If a symbol has no type and no size and does not require a PLT
2333 entry, then we are probably about to do the wrong thing here: we
2334 are probably going to create a COPY reloc for an empty object.
2335 This case can arise when a shared object is built with assembly
2336 code, and the assembly code fails to set the symbol type. */
2338 && h->type == STT_NOTYPE
2339 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2340 (*_bfd_error_handler)
2341 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2342 h->root.root.string);
2344 dynobj = elf_hash_table (eif->info)->dynobj;
2345 bed = get_elf_backend_data (dynobj);
2346 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2355 /* Adjust all external symbols pointing into SEC_MERGE sections
2356 to reflect the object merging within the sections. */
2359 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2363 if (h->root.type == bfd_link_hash_warning)
2364 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2366 if ((h->root.type == bfd_link_hash_defined
2367 || h->root.type == bfd_link_hash_defweak)
2368 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2369 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2371 bfd *output_bfd = data;
2373 h->root.u.def.value =
2374 _bfd_merged_section_offset (output_bfd,
2375 &h->root.u.def.section,
2376 elf_section_data (sec)->sec_info,
2377 h->root.u.def.value);
2383 /* Returns false if the symbol referred to by H should be considered
2384 to resolve local to the current module, and true if it should be
2385 considered to bind dynamically. */
2388 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2389 struct bfd_link_info *info,
2390 bfd_boolean ignore_protected)
2392 bfd_boolean binding_stays_local_p;
2397 while (h->root.type == bfd_link_hash_indirect
2398 || h->root.type == bfd_link_hash_warning)
2399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2401 /* If it was forced local, then clearly it's not dynamic. */
2402 if (h->dynindx == -1)
2404 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2407 /* Identify the cases where name binding rules say that a
2408 visible symbol resolves locally. */
2409 binding_stays_local_p = info->executable || info->symbolic;
2411 switch (ELF_ST_VISIBILITY (h->other))
2418 /* Proper resolution for function pointer equality may require
2419 that these symbols perhaps be resolved dynamically, even though
2420 we should be resolving them to the current module. */
2421 if (!ignore_protected)
2422 binding_stays_local_p = TRUE;
2429 /* If it isn't defined locally, then clearly it's dynamic. */
2430 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2433 /* Otherwise, the symbol is dynamic if binding rules don't tell
2434 us that it remains local. */
2435 return !binding_stays_local_p;
2438 /* Return true if the symbol referred to by H should be considered
2439 to resolve local to the current module, and false otherwise. Differs
2440 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2441 undefined symbols and weak symbols. */
2444 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2445 struct bfd_link_info *info,
2446 bfd_boolean local_protected)
2448 /* If it's a local sym, of course we resolve locally. */
2452 /* If we don't have a definition in a regular file, then we can't
2453 resolve locally. The sym is either undefined or dynamic. */
2454 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2457 /* Forced local symbols resolve locally. */
2458 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2461 /* As do non-dynamic symbols. */
2462 if (h->dynindx == -1)
2465 /* At this point, we know the symbol is defined and dynamic. In an
2466 executable it must resolve locally, likewise when building symbolic
2467 shared libraries. */
2468 if (info->executable || info->symbolic)
2471 /* Now deal with defined dynamic symbols in shared libraries. Ones
2472 with default visibility might not resolve locally. */
2473 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2476 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2477 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2480 /* Function pointer equality tests may require that STV_PROTECTED
2481 symbols be treated as dynamic symbols, even when we know that the
2482 dynamic linker will resolve them locally. */
2483 return local_protected;
2486 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2487 aligned. Returns the first TLS output section. */
2489 struct bfd_section *
2490 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2492 struct bfd_section *sec, *tls;
2493 unsigned int align = 0;
2495 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2496 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2500 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2501 if (sec->alignment_power > align)
2502 align = sec->alignment_power;
2504 elf_hash_table (info)->tls_sec = tls;
2506 /* Ensure the alignment of the first section is the largest alignment,
2507 so that the tls segment starts aligned. */
2509 tls->alignment_power = align;
2514 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2516 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2517 Elf_Internal_Sym *sym)
2519 /* Local symbols do not count, but target specific ones might. */
2520 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2521 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2524 /* Function symbols do not count. */
2525 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2528 /* If the section is undefined, then so is the symbol. */
2529 if (sym->st_shndx == SHN_UNDEF)
2532 /* If the symbol is defined in the common section, then
2533 it is a common definition and so does not count. */
2534 if (sym->st_shndx == SHN_COMMON)
2537 /* If the symbol is in a target specific section then we
2538 must rely upon the backend to tell us what it is. */
2539 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2540 /* FIXME - this function is not coded yet:
2542 return _bfd_is_global_symbol_definition (abfd, sym);
2544 Instead for now assume that the definition is not global,
2545 Even if this is wrong, at least the linker will behave
2546 in the same way that it used to do. */
2552 /* Search the symbol table of the archive element of the archive ABFD
2553 whose archive map contains a mention of SYMDEF, and determine if
2554 the symbol is defined in this element. */
2556 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2558 Elf_Internal_Shdr * hdr;
2559 bfd_size_type symcount;
2560 bfd_size_type extsymcount;
2561 bfd_size_type extsymoff;
2562 Elf_Internal_Sym *isymbuf;
2563 Elf_Internal_Sym *isym;
2564 Elf_Internal_Sym *isymend;
2567 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2571 if (! bfd_check_format (abfd, bfd_object))
2574 /* If we have already included the element containing this symbol in the
2575 link then we do not need to include it again. Just claim that any symbol
2576 it contains is not a definition, so that our caller will not decide to
2577 (re)include this element. */
2578 if (abfd->archive_pass)
2581 /* Select the appropriate symbol table. */
2582 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2583 hdr = &elf_tdata (abfd)->symtab_hdr;
2585 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2587 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2589 /* The sh_info field of the symtab header tells us where the
2590 external symbols start. We don't care about the local symbols. */
2591 if (elf_bad_symtab (abfd))
2593 extsymcount = symcount;
2598 extsymcount = symcount - hdr->sh_info;
2599 extsymoff = hdr->sh_info;
2602 if (extsymcount == 0)
2605 /* Read in the symbol table. */
2606 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2608 if (isymbuf == NULL)
2611 /* Scan the symbol table looking for SYMDEF. */
2613 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2617 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2622 if (strcmp (name, symdef->name) == 0)
2624 result = is_global_data_symbol_definition (abfd, isym);
2634 /* Add an entry to the .dynamic table. */
2637 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2641 struct elf_link_hash_table *hash_table;
2642 const struct elf_backend_data *bed;
2644 bfd_size_type newsize;
2645 bfd_byte *newcontents;
2646 Elf_Internal_Dyn dyn;
2648 hash_table = elf_hash_table (info);
2649 if (! is_elf_hash_table (hash_table))
2652 bed = get_elf_backend_data (hash_table->dynobj);
2653 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2654 BFD_ASSERT (s != NULL);
2656 newsize = s->size + bed->s->sizeof_dyn;
2657 newcontents = bfd_realloc (s->contents, newsize);
2658 if (newcontents == NULL)
2662 dyn.d_un.d_val = val;
2663 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2666 s->contents = newcontents;
2671 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2672 otherwise just check whether one already exists. Returns -1 on error,
2673 1 if a DT_NEEDED tag already exists, and 0 on success. */
2676 elf_add_dt_needed_tag (struct bfd_link_info *info,
2680 struct elf_link_hash_table *hash_table;
2681 bfd_size_type oldsize;
2682 bfd_size_type strindex;
2684 hash_table = elf_hash_table (info);
2685 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2686 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2687 if (strindex == (bfd_size_type) -1)
2690 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2693 const struct elf_backend_data *bed;
2696 bed = get_elf_backend_data (hash_table->dynobj);
2697 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2698 BFD_ASSERT (sdyn != NULL);
2700 for (extdyn = sdyn->contents;
2701 extdyn < sdyn->contents + sdyn->size;
2702 extdyn += bed->s->sizeof_dyn)
2704 Elf_Internal_Dyn dyn;
2706 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2707 if (dyn.d_tag == DT_NEEDED
2708 && dyn.d_un.d_val == strindex)
2710 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2718 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2722 /* We were just checking for existence of the tag. */
2723 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2728 /* Sort symbol by value and section. */
2730 elf_sort_symbol (const void *arg1, const void *arg2)
2732 const struct elf_link_hash_entry *h1;
2733 const struct elf_link_hash_entry *h2;
2734 bfd_signed_vma vdiff;
2736 h1 = *(const struct elf_link_hash_entry **) arg1;
2737 h2 = *(const struct elf_link_hash_entry **) arg2;
2738 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2740 return vdiff > 0 ? 1 : -1;
2743 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2745 return sdiff > 0 ? 1 : -1;
2750 /* This function is used to adjust offsets into .dynstr for
2751 dynamic symbols. This is called via elf_link_hash_traverse. */
2754 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2756 struct elf_strtab_hash *dynstr = data;
2758 if (h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2761 if (h->dynindx != -1)
2762 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2766 /* Assign string offsets in .dynstr, update all structures referencing
2770 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2772 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2773 struct elf_link_local_dynamic_entry *entry;
2774 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2775 bfd *dynobj = hash_table->dynobj;
2778 const struct elf_backend_data *bed;
2781 _bfd_elf_strtab_finalize (dynstr);
2782 size = _bfd_elf_strtab_size (dynstr);
2784 bed = get_elf_backend_data (dynobj);
2785 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2786 BFD_ASSERT (sdyn != NULL);
2788 /* Update all .dynamic entries referencing .dynstr strings. */
2789 for (extdyn = sdyn->contents;
2790 extdyn < sdyn->contents + sdyn->size;
2791 extdyn += bed->s->sizeof_dyn)
2793 Elf_Internal_Dyn dyn;
2795 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2799 dyn.d_un.d_val = size;
2807 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2812 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2815 /* Now update local dynamic symbols. */
2816 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2817 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2818 entry->isym.st_name);
2820 /* And the rest of dynamic symbols. */
2821 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2823 /* Adjust version definitions. */
2824 if (elf_tdata (output_bfd)->cverdefs)
2829 Elf_Internal_Verdef def;
2830 Elf_Internal_Verdaux defaux;
2832 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2836 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2838 p += sizeof (Elf_External_Verdef);
2839 for (i = 0; i < def.vd_cnt; ++i)
2841 _bfd_elf_swap_verdaux_in (output_bfd,
2842 (Elf_External_Verdaux *) p, &defaux);
2843 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2845 _bfd_elf_swap_verdaux_out (output_bfd,
2846 &defaux, (Elf_External_Verdaux *) p);
2847 p += sizeof (Elf_External_Verdaux);
2850 while (def.vd_next);
2853 /* Adjust version references. */
2854 if (elf_tdata (output_bfd)->verref)
2859 Elf_Internal_Verneed need;
2860 Elf_Internal_Vernaux needaux;
2862 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2866 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2868 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2869 _bfd_elf_swap_verneed_out (output_bfd, &need,
2870 (Elf_External_Verneed *) p);
2871 p += sizeof (Elf_External_Verneed);
2872 for (i = 0; i < need.vn_cnt; ++i)
2874 _bfd_elf_swap_vernaux_in (output_bfd,
2875 (Elf_External_Vernaux *) p, &needaux);
2876 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2878 _bfd_elf_swap_vernaux_out (output_bfd,
2880 (Elf_External_Vernaux *) p);
2881 p += sizeof (Elf_External_Vernaux);
2884 while (need.vn_next);
2890 /* Add symbols from an ELF object file to the linker hash table. */
2893 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2895 bfd_boolean (*add_symbol_hook)
2896 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
2897 const char **, flagword *, asection **, bfd_vma *);
2898 bfd_boolean (*check_relocs)
2899 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
2900 bfd_boolean collect;
2901 Elf_Internal_Shdr *hdr;
2902 bfd_size_type symcount;
2903 bfd_size_type extsymcount;
2904 bfd_size_type extsymoff;
2905 struct elf_link_hash_entry **sym_hash;
2906 bfd_boolean dynamic;
2907 Elf_External_Versym *extversym = NULL;
2908 Elf_External_Versym *ever;
2909 struct elf_link_hash_entry *weaks;
2910 struct elf_link_hash_entry **nondeflt_vers = NULL;
2911 bfd_size_type nondeflt_vers_cnt = 0;
2912 Elf_Internal_Sym *isymbuf = NULL;
2913 Elf_Internal_Sym *isym;
2914 Elf_Internal_Sym *isymend;
2915 const struct elf_backend_data *bed;
2916 bfd_boolean add_needed;
2917 struct elf_link_hash_table * hash_table;
2920 hash_table = elf_hash_table (info);
2922 bed = get_elf_backend_data (abfd);
2923 add_symbol_hook = bed->elf_add_symbol_hook;
2924 collect = bed->collect;
2926 if ((abfd->flags & DYNAMIC) == 0)
2932 /* You can't use -r against a dynamic object. Also, there's no
2933 hope of using a dynamic object which does not exactly match
2934 the format of the output file. */
2935 if (info->relocatable
2936 || !is_elf_hash_table (hash_table)
2937 || hash_table->root.creator != abfd->xvec)
2939 bfd_set_error (bfd_error_invalid_operation);
2944 /* As a GNU extension, any input sections which are named
2945 .gnu.warning.SYMBOL are treated as warning symbols for the given
2946 symbol. This differs from .gnu.warning sections, which generate
2947 warnings when they are included in an output file. */
2948 if (info->executable)
2952 for (s = abfd->sections; s != NULL; s = s->next)
2956 name = bfd_get_section_name (abfd, s);
2957 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2961 bfd_size_type prefix_len;
2962 const char * gnu_warning_prefix = _("warning: ");
2964 name += sizeof ".gnu.warning." - 1;
2966 /* If this is a shared object, then look up the symbol
2967 in the hash table. If it is there, and it is already
2968 been defined, then we will not be using the entry
2969 from this shared object, so we don't need to warn.
2970 FIXME: If we see the definition in a regular object
2971 later on, we will warn, but we shouldn't. The only
2972 fix is to keep track of what warnings we are supposed
2973 to emit, and then handle them all at the end of the
2977 struct elf_link_hash_entry *h;
2979 h = elf_link_hash_lookup (hash_table, name,
2980 FALSE, FALSE, TRUE);
2982 /* FIXME: What about bfd_link_hash_common? */
2984 && (h->root.type == bfd_link_hash_defined
2985 || h->root.type == bfd_link_hash_defweak))
2987 /* We don't want to issue this warning. Clobber
2988 the section size so that the warning does not
2989 get copied into the output file. */
2996 prefix_len = strlen (gnu_warning_prefix);
2997 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3001 strcpy (msg, gnu_warning_prefix);
3002 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3005 msg[prefix_len + sz] = '\0';
3007 if (! (_bfd_generic_link_add_one_symbol
3008 (info, abfd, name, BSF_WARNING, s, 0, msg,
3009 FALSE, collect, NULL)))
3012 if (! info->relocatable)
3014 /* Clobber the section size so that the warning does
3015 not get copied into the output file. */
3025 /* If we are creating a shared library, create all the dynamic
3026 sections immediately. We need to attach them to something,
3027 so we attach them to this BFD, provided it is the right
3028 format. FIXME: If there are no input BFD's of the same
3029 format as the output, we can't make a shared library. */
3031 && is_elf_hash_table (hash_table)
3032 && hash_table->root.creator == abfd->xvec
3033 && ! hash_table->dynamic_sections_created)
3035 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3039 else if (!is_elf_hash_table (hash_table))
3044 const char *soname = NULL;
3045 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3048 /* ld --just-symbols and dynamic objects don't mix very well.
3049 Test for --just-symbols by looking at info set up by
3050 _bfd_elf_link_just_syms. */
3051 if ((s = abfd->sections) != NULL
3052 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3055 /* If this dynamic lib was specified on the command line with
3056 --as-needed in effect, then we don't want to add a DT_NEEDED
3057 tag unless the lib is actually used. Similary for libs brought
3058 in by another lib's DT_NEEDED. */
3059 add_needed = elf_dyn_lib_class (abfd) == DYN_NORMAL;
3061 s = bfd_get_section_by_name (abfd, ".dynamic");
3067 unsigned long shlink;
3069 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3070 goto error_free_dyn;
3072 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3074 goto error_free_dyn;
3075 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3077 for (extdyn = dynbuf;
3078 extdyn < dynbuf + s->size;
3079 extdyn += bed->s->sizeof_dyn)
3081 Elf_Internal_Dyn dyn;
3083 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3084 if (dyn.d_tag == DT_SONAME)
3086 unsigned int tagv = dyn.d_un.d_val;
3087 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3089 goto error_free_dyn;
3091 if (dyn.d_tag == DT_NEEDED)
3093 struct bfd_link_needed_list *n, **pn;
3095 unsigned int tagv = dyn.d_un.d_val;
3097 amt = sizeof (struct bfd_link_needed_list);
3098 n = bfd_alloc (abfd, amt);
3099 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3100 if (n == NULL || fnm == NULL)
3101 goto error_free_dyn;
3102 amt = strlen (fnm) + 1;
3103 anm = bfd_alloc (abfd, amt);
3105 goto error_free_dyn;
3106 memcpy (anm, fnm, amt);
3110 for (pn = & hash_table->needed;
3116 if (dyn.d_tag == DT_RUNPATH)
3118 struct bfd_link_needed_list *n, **pn;
3120 unsigned int tagv = dyn.d_un.d_val;
3122 amt = sizeof (struct bfd_link_needed_list);
3123 n = bfd_alloc (abfd, amt);
3124 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3125 if (n == NULL || fnm == NULL)
3126 goto error_free_dyn;
3127 amt = strlen (fnm) + 1;
3128 anm = bfd_alloc (abfd, amt);
3130 goto error_free_dyn;
3131 memcpy (anm, fnm, amt);
3135 for (pn = & runpath;
3141 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3142 if (!runpath && dyn.d_tag == DT_RPATH)
3144 struct bfd_link_needed_list *n, **pn;
3146 unsigned int tagv = dyn.d_un.d_val;
3148 amt = sizeof (struct bfd_link_needed_list);
3149 n = bfd_alloc (abfd, amt);
3150 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3151 if (n == NULL || fnm == NULL)
3152 goto error_free_dyn;
3153 amt = strlen (fnm) + 1;
3154 anm = bfd_alloc (abfd, amt);
3161 memcpy (anm, fnm, amt);
3176 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3177 frees all more recently bfd_alloc'd blocks as well. */
3183 struct bfd_link_needed_list **pn;
3184 for (pn = & hash_table->runpath;
3191 /* We do not want to include any of the sections in a dynamic
3192 object in the output file. We hack by simply clobbering the
3193 list of sections in the BFD. This could be handled more
3194 cleanly by, say, a new section flag; the existing
3195 SEC_NEVER_LOAD flag is not the one we want, because that one
3196 still implies that the section takes up space in the output
3198 bfd_section_list_clear (abfd);
3200 /* If this is the first dynamic object found in the link, create
3201 the special sections required for dynamic linking. */
3202 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3205 /* Find the name to use in a DT_NEEDED entry that refers to this
3206 object. If the object has a DT_SONAME entry, we use it.
3207 Otherwise, if the generic linker stuck something in
3208 elf_dt_name, we use that. Otherwise, we just use the file
3210 if (soname == NULL || *soname == '\0')
3212 soname = elf_dt_name (abfd);
3213 if (soname == NULL || *soname == '\0')
3214 soname = bfd_get_filename (abfd);
3217 /* Save the SONAME because sometimes the linker emulation code
3218 will need to know it. */
3219 elf_dt_name (abfd) = soname;
3221 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3225 /* If we have already included this dynamic object in the
3226 link, just ignore it. There is no reason to include a
3227 particular dynamic object more than once. */
3232 /* If this is a dynamic object, we always link against the .dynsym
3233 symbol table, not the .symtab symbol table. The dynamic linker
3234 will only see the .dynsym symbol table, so there is no reason to
3235 look at .symtab for a dynamic object. */
3237 if (! dynamic || elf_dynsymtab (abfd) == 0)
3238 hdr = &elf_tdata (abfd)->symtab_hdr;
3240 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3242 symcount = hdr->sh_size / bed->s->sizeof_sym;
3244 /* The sh_info field of the symtab header tells us where the
3245 external symbols start. We don't care about the local symbols at
3247 if (elf_bad_symtab (abfd))
3249 extsymcount = symcount;
3254 extsymcount = symcount - hdr->sh_info;
3255 extsymoff = hdr->sh_info;
3259 if (extsymcount != 0)
3261 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3263 if (isymbuf == NULL)
3266 /* We store a pointer to the hash table entry for each external
3268 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3269 sym_hash = bfd_alloc (abfd, amt);
3270 if (sym_hash == NULL)
3271 goto error_free_sym;
3272 elf_sym_hashes (abfd) = sym_hash;
3277 /* Read in any version definitions. */
3278 if (! _bfd_elf_slurp_version_tables (abfd))
3279 goto error_free_sym;
3281 /* Read in the symbol versions, but don't bother to convert them
3282 to internal format. */
3283 if (elf_dynversym (abfd) != 0)
3285 Elf_Internal_Shdr *versymhdr;
3287 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3288 extversym = bfd_malloc (versymhdr->sh_size);
3289 if (extversym == NULL)
3290 goto error_free_sym;
3291 amt = versymhdr->sh_size;
3292 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3293 || bfd_bread (extversym, amt, abfd) != amt)
3294 goto error_free_vers;
3300 ever = extversym != NULL ? extversym + extsymoff : NULL;
3301 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3303 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3310 struct elf_link_hash_entry *h;
3311 bfd_boolean definition;
3312 bfd_boolean size_change_ok;
3313 bfd_boolean type_change_ok;
3314 bfd_boolean new_weakdef;
3315 bfd_boolean override;
3316 unsigned int old_alignment;
3321 flags = BSF_NO_FLAGS;
3323 value = isym->st_value;
3326 bind = ELF_ST_BIND (isym->st_info);
3327 if (bind == STB_LOCAL)
3329 /* This should be impossible, since ELF requires that all
3330 global symbols follow all local symbols, and that sh_info
3331 point to the first global symbol. Unfortunately, Irix 5
3335 else if (bind == STB_GLOBAL)
3337 if (isym->st_shndx != SHN_UNDEF
3338 && isym->st_shndx != SHN_COMMON)
3341 else if (bind == STB_WEAK)
3345 /* Leave it up to the processor backend. */
3348 if (isym->st_shndx == SHN_UNDEF)
3349 sec = bfd_und_section_ptr;
3350 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3352 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3354 sec = bfd_abs_section_ptr;
3355 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3358 else if (isym->st_shndx == SHN_ABS)
3359 sec = bfd_abs_section_ptr;
3360 else if (isym->st_shndx == SHN_COMMON)
3362 sec = bfd_com_section_ptr;
3363 /* What ELF calls the size we call the value. What ELF
3364 calls the value we call the alignment. */
3365 value = isym->st_size;
3369 /* Leave it up to the processor backend. */
3372 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3375 goto error_free_vers;
3377 if (isym->st_shndx == SHN_COMMON
3378 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3380 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3384 tcomm = bfd_make_section (abfd, ".tcommon");
3386 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3388 | SEC_LINKER_CREATED
3389 | SEC_THREAD_LOCAL)))
3390 goto error_free_vers;
3394 else if (add_symbol_hook)
3396 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3398 goto error_free_vers;
3400 /* The hook function sets the name to NULL if this symbol
3401 should be skipped for some reason. */
3406 /* Sanity check that all possibilities were handled. */
3409 bfd_set_error (bfd_error_bad_value);
3410 goto error_free_vers;
3413 if (bfd_is_und_section (sec)
3414 || bfd_is_com_section (sec))
3419 size_change_ok = FALSE;
3420 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3424 if (is_elf_hash_table (hash_table))
3426 Elf_Internal_Versym iver;
3427 unsigned int vernum = 0;
3432 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3433 vernum = iver.vs_vers & VERSYM_VERSION;
3435 /* If this is a hidden symbol, or if it is not version
3436 1, we append the version name to the symbol name.
3437 However, we do not modify a non-hidden absolute
3438 symbol, because it might be the version symbol
3439 itself. FIXME: What if it isn't? */
3440 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3441 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3444 size_t namelen, verlen, newlen;
3447 if (isym->st_shndx != SHN_UNDEF)
3449 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3451 (*_bfd_error_handler)
3452 (_("%s: %s: invalid version %u (max %d)"),
3453 bfd_archive_filename (abfd), name, vernum,
3454 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3455 bfd_set_error (bfd_error_bad_value);
3456 goto error_free_vers;
3458 else if (vernum > 1)
3460 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3466 /* We cannot simply test for the number of
3467 entries in the VERNEED section since the
3468 numbers for the needed versions do not start
3470 Elf_Internal_Verneed *t;
3473 for (t = elf_tdata (abfd)->verref;
3477 Elf_Internal_Vernaux *a;
3479 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3481 if (a->vna_other == vernum)
3483 verstr = a->vna_nodename;
3492 (*_bfd_error_handler)
3493 (_("%s: %s: invalid needed version %d"),
3494 bfd_archive_filename (abfd), name, vernum);
3495 bfd_set_error (bfd_error_bad_value);
3496 goto error_free_vers;
3500 namelen = strlen (name);
3501 verlen = strlen (verstr);
3502 newlen = namelen + verlen + 2;
3503 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3504 && isym->st_shndx != SHN_UNDEF)
3507 newname = bfd_alloc (abfd, newlen);
3508 if (newname == NULL)
3509 goto error_free_vers;
3510 memcpy (newname, name, namelen);
3511 p = newname + namelen;
3513 /* If this is a defined non-hidden version symbol,
3514 we add another @ to the name. This indicates the
3515 default version of the symbol. */
3516 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3517 && isym->st_shndx != SHN_UNDEF)
3519 memcpy (p, verstr, verlen + 1);
3525 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3526 sym_hash, &skip, &override,
3527 &type_change_ok, &size_change_ok))
3528 goto error_free_vers;
3537 while (h->root.type == bfd_link_hash_indirect
3538 || h->root.type == bfd_link_hash_warning)
3539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3541 /* Remember the old alignment if this is a common symbol, so
3542 that we don't reduce the alignment later on. We can't
3543 check later, because _bfd_generic_link_add_one_symbol
3544 will set a default for the alignment which we want to
3545 override. We also remember the old bfd where the existing
3546 definition comes from. */
3547 switch (h->root.type)
3552 case bfd_link_hash_defined:
3553 case bfd_link_hash_defweak:
3554 old_bfd = h->root.u.def.section->owner;
3557 case bfd_link_hash_common:
3558 old_bfd = h->root.u.c.p->section->owner;
3559 old_alignment = h->root.u.c.p->alignment_power;
3563 if (elf_tdata (abfd)->verdef != NULL
3567 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3570 if (! (_bfd_generic_link_add_one_symbol
3571 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3572 (struct bfd_link_hash_entry **) sym_hash)))
3573 goto error_free_vers;
3576 while (h->root.type == bfd_link_hash_indirect
3577 || h->root.type == bfd_link_hash_warning)
3578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3581 new_weakdef = FALSE;
3584 && (flags & BSF_WEAK) != 0
3585 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3586 && is_elf_hash_table (hash_table)
3587 && h->weakdef == NULL)
3589 /* Keep a list of all weak defined non function symbols from
3590 a dynamic object, using the weakdef field. Later in this
3591 function we will set the weakdef field to the correct
3592 value. We only put non-function symbols from dynamic
3593 objects on this list, because that happens to be the only
3594 time we need to know the normal symbol corresponding to a
3595 weak symbol, and the information is time consuming to
3596 figure out. If the weakdef field is not already NULL,
3597 then this symbol was already defined by some previous
3598 dynamic object, and we will be using that previous
3599 definition anyhow. */
3606 /* Set the alignment of a common symbol. */
3607 if (isym->st_shndx == SHN_COMMON
3608 && h->root.type == bfd_link_hash_common)
3612 align = bfd_log2 (isym->st_value);
3613 if (align > old_alignment
3614 /* Permit an alignment power of zero if an alignment of one
3615 is specified and no other alignments have been specified. */
3616 || (isym->st_value == 1 && old_alignment == 0))
3617 h->root.u.c.p->alignment_power = align;
3619 h->root.u.c.p->alignment_power = old_alignment;
3622 if (is_elf_hash_table (hash_table))
3628 /* Check the alignment when a common symbol is involved. This
3629 can change when a common symbol is overridden by a normal
3630 definition or a common symbol is ignored due to the old
3631 normal definition. We need to make sure the maximum
3632 alignment is maintained. */
3633 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3634 && h->root.type != bfd_link_hash_common)
3636 unsigned int common_align;
3637 unsigned int normal_align;
3638 unsigned int symbol_align;
3642 symbol_align = ffs (h->root.u.def.value) - 1;
3643 if (h->root.u.def.section->owner != NULL
3644 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3646 normal_align = h->root.u.def.section->alignment_power;
3647 if (normal_align > symbol_align)
3648 normal_align = symbol_align;
3651 normal_align = symbol_align;
3655 common_align = old_alignment;
3656 common_bfd = old_bfd;
3661 common_align = bfd_log2 (isym->st_value);
3663 normal_bfd = old_bfd;
3666 if (normal_align < common_align)
3667 (*_bfd_error_handler)
3668 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"),
3671 bfd_archive_filename (normal_bfd),
3673 bfd_archive_filename (common_bfd));
3676 /* Remember the symbol size and type. */
3677 if (isym->st_size != 0
3678 && (definition || h->size == 0))
3680 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3681 (*_bfd_error_handler)
3682 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"),
3683 name, (unsigned long) h->size,
3684 bfd_archive_filename (old_bfd),
3685 (unsigned long) isym->st_size,
3686 bfd_archive_filename (abfd));
3688 h->size = isym->st_size;
3691 /* If this is a common symbol, then we always want H->SIZE
3692 to be the size of the common symbol. The code just above
3693 won't fix the size if a common symbol becomes larger. We
3694 don't warn about a size change here, because that is
3695 covered by --warn-common. */
3696 if (h->root.type == bfd_link_hash_common)
3697 h->size = h->root.u.c.size;
3699 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3700 && (definition || h->type == STT_NOTYPE))
3702 if (h->type != STT_NOTYPE
3703 && h->type != ELF_ST_TYPE (isym->st_info)
3704 && ! type_change_ok)
3705 (*_bfd_error_handler)
3706 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3707 name, h->type, ELF_ST_TYPE (isym->st_info),
3708 bfd_archive_filename (abfd));
3710 h->type = ELF_ST_TYPE (isym->st_info);
3713 /* If st_other has a processor-specific meaning, specific
3714 code might be needed here. We never merge the visibility
3715 attribute with the one from a dynamic object. */
3716 if (bed->elf_backend_merge_symbol_attribute)
3717 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3720 if (isym->st_other != 0 && !dynamic)
3722 unsigned char hvis, symvis, other, nvis;
3724 /* Take the balance of OTHER from the definition. */
3725 other = (definition ? isym->st_other : h->other);
3726 other &= ~ ELF_ST_VISIBILITY (-1);
3728 /* Combine visibilities, using the most constraining one. */
3729 hvis = ELF_ST_VISIBILITY (h->other);
3730 symvis = ELF_ST_VISIBILITY (isym->st_other);
3736 nvis = hvis < symvis ? hvis : symvis;
3738 h->other = other | nvis;
3741 /* Set a flag in the hash table entry indicating the type of
3742 reference or definition we just found. Keep a count of
3743 the number of dynamic symbols we find. A dynamic symbol
3744 is one which is referenced or defined by both a regular
3745 object and a shared object. */
3746 old_flags = h->elf_link_hash_flags;
3752 new_flag = ELF_LINK_HASH_REF_REGULAR;
3753 if (bind != STB_WEAK)
3754 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3757 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3758 if (! info->executable
3759 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3760 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3766 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3768 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3769 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3770 | ELF_LINK_HASH_REF_REGULAR)) != 0
3771 || (h->weakdef != NULL
3773 && h->weakdef->dynindx != -1))
3777 h->elf_link_hash_flags |= new_flag;
3779 /* Check to see if we need to add an indirect symbol for
3780 the default name. */
3781 if (definition || h->root.type == bfd_link_hash_common)
3782 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3783 &sec, &value, &dynsym,
3785 goto error_free_vers;
3787 if (definition && !dynamic)
3789 char *p = strchr (name, ELF_VER_CHR);
3790 if (p != NULL && p[1] != ELF_VER_CHR)
3792 /* Queue non-default versions so that .symver x, x@FOO
3793 aliases can be checked. */
3794 if (! nondeflt_vers)
3796 amt = (isymend - isym + 1)
3797 * sizeof (struct elf_link_hash_entry *);
3798 nondeflt_vers = bfd_malloc (amt);
3800 nondeflt_vers [nondeflt_vers_cnt++] = h;
3804 if (dynsym && h->dynindx == -1)
3806 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3807 goto error_free_vers;
3808 if (h->weakdef != NULL
3810 && h->weakdef->dynindx == -1)
3812 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
3813 goto error_free_vers;
3816 else if (dynsym && h->dynindx != -1)
3817 /* If the symbol already has a dynamic index, but
3818 visibility says it should not be visible, turn it into
3820 switch (ELF_ST_VISIBILITY (h->other))
3824 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3832 && (h->elf_link_hash_flags
3833 & ELF_LINK_HASH_REF_REGULAR) != 0)
3836 const char *soname = elf_dt_name (abfd);
3838 /* A symbol from a library loaded via DT_NEEDED of some
3839 other library is referenced by a regular object.
3840 Add a DT_NEEDED entry for it. */
3842 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3844 goto error_free_vers;
3846 BFD_ASSERT (ret == 0);
3851 /* Now that all the symbols from this input file are created, handle
3852 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3853 if (nondeflt_vers != NULL)
3855 bfd_size_type cnt, symidx;
3857 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3859 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3860 char *shortname, *p;
3862 p = strchr (h->root.root.string, ELF_VER_CHR);
3864 || (h->root.type != bfd_link_hash_defined
3865 && h->root.type != bfd_link_hash_defweak))
3868 amt = p - h->root.root.string;
3869 shortname = bfd_malloc (amt + 1);
3870 memcpy (shortname, h->root.root.string, amt);
3871 shortname[amt] = '\0';
3873 hi = (struct elf_link_hash_entry *)
3874 bfd_link_hash_lookup (&hash_table->root, shortname,
3875 FALSE, FALSE, FALSE);
3877 && hi->root.type == h->root.type
3878 && hi->root.u.def.value == h->root.u.def.value
3879 && hi->root.u.def.section == h->root.u.def.section)
3881 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3882 hi->root.type = bfd_link_hash_indirect;
3883 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3884 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3885 sym_hash = elf_sym_hashes (abfd);
3887 for (symidx = 0; symidx < extsymcount; ++symidx)
3888 if (sym_hash[symidx] == hi)
3890 sym_hash[symidx] = h;
3896 free (nondeflt_vers);
3897 nondeflt_vers = NULL;
3900 if (extversym != NULL)
3906 if (isymbuf != NULL)
3910 /* Now set the weakdefs field correctly for all the weak defined
3911 symbols we found. The only way to do this is to search all the
3912 symbols. Since we only need the information for non functions in
3913 dynamic objects, that's the only time we actually put anything on
3914 the list WEAKS. We need this information so that if a regular
3915 object refers to a symbol defined weakly in a dynamic object, the
3916 real symbol in the dynamic object is also put in the dynamic
3917 symbols; we also must arrange for both symbols to point to the
3918 same memory location. We could handle the general case of symbol
3919 aliasing, but a general symbol alias can only be generated in
3920 assembler code, handling it correctly would be very time
3921 consuming, and other ELF linkers don't handle general aliasing
3925 struct elf_link_hash_entry **hpp;
3926 struct elf_link_hash_entry **hppend;
3927 struct elf_link_hash_entry **sorted_sym_hash;
3928 struct elf_link_hash_entry *h;
3931 /* Since we have to search the whole symbol list for each weak
3932 defined symbol, search time for N weak defined symbols will be
3933 O(N^2). Binary search will cut it down to O(NlogN). */
3934 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3935 sorted_sym_hash = bfd_malloc (amt);
3936 if (sorted_sym_hash == NULL)
3938 sym_hash = sorted_sym_hash;
3939 hpp = elf_sym_hashes (abfd);
3940 hppend = hpp + extsymcount;
3942 for (; hpp < hppend; hpp++)
3946 && h->root.type == bfd_link_hash_defined
3947 && h->type != STT_FUNC)
3955 qsort (sorted_sym_hash, sym_count,
3956 sizeof (struct elf_link_hash_entry *),
3959 while (weaks != NULL)
3961 struct elf_link_hash_entry *hlook;
3968 weaks = hlook->weakdef;
3969 hlook->weakdef = NULL;
3971 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3972 || hlook->root.type == bfd_link_hash_defweak
3973 || hlook->root.type == bfd_link_hash_common
3974 || hlook->root.type == bfd_link_hash_indirect);
3975 slook = hlook->root.u.def.section;
3976 vlook = hlook->root.u.def.value;
3983 bfd_signed_vma vdiff;
3985 h = sorted_sym_hash [idx];
3986 vdiff = vlook - h->root.u.def.value;
3993 long sdiff = slook->id - h->root.u.def.section->id;
4006 /* We didn't find a value/section match. */
4010 for (i = ilook; i < sym_count; i++)
4012 h = sorted_sym_hash [i];
4014 /* Stop if value or section doesn't match. */
4015 if (h->root.u.def.value != vlook
4016 || h->root.u.def.section != slook)
4018 else if (h != hlook)
4022 /* If the weak definition is in the list of dynamic
4023 symbols, make sure the real definition is put
4025 if (hlook->dynindx != -1 && h->dynindx == -1)
4027 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4031 /* If the real definition is in the list of dynamic
4032 symbols, make sure the weak definition is put
4033 there as well. If we don't do this, then the
4034 dynamic loader might not merge the entries for the
4035 real definition and the weak definition. */
4036 if (h->dynindx != -1 && hlook->dynindx == -1)
4038 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4046 free (sorted_sym_hash);
4049 /* If this object is the same format as the output object, and it is
4050 not a shared library, then let the backend look through the
4053 This is required to build global offset table entries and to
4054 arrange for dynamic relocs. It is not required for the
4055 particular common case of linking non PIC code, even when linking
4056 against shared libraries, but unfortunately there is no way of
4057 knowing whether an object file has been compiled PIC or not.
4058 Looking through the relocs is not particularly time consuming.
4059 The problem is that we must either (1) keep the relocs in memory,
4060 which causes the linker to require additional runtime memory or
4061 (2) read the relocs twice from the input file, which wastes time.
4062 This would be a good case for using mmap.
4064 I have no idea how to handle linking PIC code into a file of a
4065 different format. It probably can't be done. */
4066 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4068 && is_elf_hash_table (hash_table)
4069 && hash_table->root.creator == abfd->xvec
4070 && check_relocs != NULL)
4074 for (o = abfd->sections; o != NULL; o = o->next)
4076 Elf_Internal_Rela *internal_relocs;
4079 if ((o->flags & SEC_RELOC) == 0
4080 || o->reloc_count == 0
4081 || ((info->strip == strip_all || info->strip == strip_debugger)
4082 && (o->flags & SEC_DEBUGGING) != 0)
4083 || bfd_is_abs_section (o->output_section))
4086 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4088 if (internal_relocs == NULL)
4091 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4093 if (elf_section_data (o)->relocs != internal_relocs)
4094 free (internal_relocs);
4101 /* If this is a non-traditional link, try to optimize the handling
4102 of the .stab/.stabstr sections. */
4104 && ! info->traditional_format
4105 && is_elf_hash_table (hash_table)
4106 && (info->strip != strip_all && info->strip != strip_debugger))
4110 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4111 if (stabstr != NULL)
4113 bfd_size_type string_offset = 0;
4116 for (stab = abfd->sections; stab; stab = stab->next)
4117 if (strncmp (".stab", stab->name, 5) == 0
4118 && (!stab->name[5] ||
4119 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4120 && (stab->flags & SEC_MERGE) == 0
4121 && !bfd_is_abs_section (stab->output_section))
4123 struct bfd_elf_section_data *secdata;
4125 secdata = elf_section_data (stab);
4126 if (! _bfd_link_section_stabs (abfd,
4127 & hash_table->stab_info,
4132 if (secdata->sec_info)
4133 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4138 if (is_elf_hash_table (hash_table))
4140 /* Add this bfd to the loaded list. */
4141 struct elf_link_loaded_list *n;
4143 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4147 n->next = hash_table->loaded;
4148 hash_table->loaded = n;
4154 if (nondeflt_vers != NULL)
4155 free (nondeflt_vers);
4156 if (extversym != NULL)
4159 if (isymbuf != NULL)
4165 /* Add symbols from an ELF archive file to the linker hash table. We
4166 don't use _bfd_generic_link_add_archive_symbols because of a
4167 problem which arises on UnixWare. The UnixWare libc.so is an
4168 archive which includes an entry libc.so.1 which defines a bunch of
4169 symbols. The libc.so archive also includes a number of other
4170 object files, which also define symbols, some of which are the same
4171 as those defined in libc.so.1. Correct linking requires that we
4172 consider each object file in turn, and include it if it defines any
4173 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4174 this; it looks through the list of undefined symbols, and includes
4175 any object file which defines them. When this algorithm is used on
4176 UnixWare, it winds up pulling in libc.so.1 early and defining a
4177 bunch of symbols. This means that some of the other objects in the
4178 archive are not included in the link, which is incorrect since they
4179 precede libc.so.1 in the archive.
4181 Fortunately, ELF archive handling is simpler than that done by
4182 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4183 oddities. In ELF, if we find a symbol in the archive map, and the
4184 symbol is currently undefined, we know that we must pull in that
4187 Unfortunately, we do have to make multiple passes over the symbol
4188 table until nothing further is resolved. */
4191 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4194 bfd_boolean *defined = NULL;
4195 bfd_boolean *included = NULL;
4200 if (! bfd_has_map (abfd))
4202 /* An empty archive is a special case. */
4203 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4205 bfd_set_error (bfd_error_no_armap);
4209 /* Keep track of all symbols we know to be already defined, and all
4210 files we know to be already included. This is to speed up the
4211 second and subsequent passes. */
4212 c = bfd_ardata (abfd)->symdef_count;
4216 amt *= sizeof (bfd_boolean);
4217 defined = bfd_zmalloc (amt);
4218 included = bfd_zmalloc (amt);
4219 if (defined == NULL || included == NULL)
4222 symdefs = bfd_ardata (abfd)->symdefs;
4235 symdefend = symdef + c;
4236 for (i = 0; symdef < symdefend; symdef++, i++)
4238 struct elf_link_hash_entry *h;
4240 struct bfd_link_hash_entry *undefs_tail;
4243 if (defined[i] || included[i])
4245 if (symdef->file_offset == last)
4251 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
4252 FALSE, FALSE, FALSE);
4259 /* If this is a default version (the name contains @@),
4260 look up the symbol again with only one `@' as well
4261 as without the version. The effect is that references
4262 to the symbol with and without the version will be
4263 matched by the default symbol in the archive. */
4265 p = strchr (symdef->name, ELF_VER_CHR);
4266 if (p == NULL || p[1] != ELF_VER_CHR)
4269 /* First check with only one `@'. */
4270 len = strlen (symdef->name);
4271 copy = bfd_alloc (abfd, len);
4274 first = p - symdef->name + 1;
4275 memcpy (copy, symdef->name, first);
4276 memcpy (copy + first, symdef->name + first + 1, len - first);
4278 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4279 FALSE, FALSE, FALSE);
4283 /* We also need to check references to the symbol
4284 without the version. */
4286 copy[first - 1] = '\0';
4287 h = elf_link_hash_lookup (elf_hash_table (info),
4288 copy, FALSE, FALSE, FALSE);
4291 bfd_release (abfd, copy);
4297 if (h->root.type == bfd_link_hash_common)
4299 /* We currently have a common symbol. The archive map contains
4300 a reference to this symbol, so we may want to include it. We
4301 only want to include it however, if this archive element
4302 contains a definition of the symbol, not just another common
4305 Unfortunately some archivers (including GNU ar) will put
4306 declarations of common symbols into their archive maps, as
4307 well as real definitions, so we cannot just go by the archive
4308 map alone. Instead we must read in the element's symbol
4309 table and check that to see what kind of symbol definition
4311 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4314 else if (h->root.type != bfd_link_hash_undefined)
4316 if (h->root.type != bfd_link_hash_undefweak)
4321 /* We need to include this archive member. */
4322 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4323 if (element == NULL)
4326 if (! bfd_check_format (element, bfd_object))
4329 /* Doublecheck that we have not included this object
4330 already--it should be impossible, but there may be
4331 something wrong with the archive. */
4332 if (element->archive_pass != 0)
4334 bfd_set_error (bfd_error_bad_value);
4337 element->archive_pass = 1;
4339 undefs_tail = info->hash->undefs_tail;
4341 if (! (*info->callbacks->add_archive_element) (info, element,
4344 if (! bfd_link_add_symbols (element, info))
4347 /* If there are any new undefined symbols, we need to make
4348 another pass through the archive in order to see whether
4349 they can be defined. FIXME: This isn't perfect, because
4350 common symbols wind up on undefs_tail and because an
4351 undefined symbol which is defined later on in this pass
4352 does not require another pass. This isn't a bug, but it
4353 does make the code less efficient than it could be. */
4354 if (undefs_tail != info->hash->undefs_tail)
4357 /* Look backward to mark all symbols from this object file
4358 which we have already seen in this pass. */
4362 included[mark] = TRUE;
4367 while (symdefs[mark].file_offset == symdef->file_offset);
4369 /* We mark subsequent symbols from this object file as we go
4370 on through the loop. */
4371 last = symdef->file_offset;
4382 if (defined != NULL)
4384 if (included != NULL)
4389 /* Given an ELF BFD, add symbols to the global hash table as
4393 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4395 switch (bfd_get_format (abfd))
4398 return elf_link_add_object_symbols (abfd, info);
4400 return elf_link_add_archive_symbols (abfd, info);
4402 bfd_set_error (bfd_error_wrong_format);
4407 /* This function will be called though elf_link_hash_traverse to store
4408 all hash value of the exported symbols in an array. */
4411 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4413 unsigned long **valuep = data;
4419 if (h->root.type == bfd_link_hash_warning)
4420 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4422 /* Ignore indirect symbols. These are added by the versioning code. */
4423 if (h->dynindx == -1)
4426 name = h->root.root.string;
4427 p = strchr (name, ELF_VER_CHR);
4430 alc = bfd_malloc (p - name + 1);
4431 memcpy (alc, name, p - name);
4432 alc[p - name] = '\0';
4436 /* Compute the hash value. */
4437 ha = bfd_elf_hash (name);
4439 /* Store the found hash value in the array given as the argument. */
4442 /* And store it in the struct so that we can put it in the hash table
4444 h->elf_hash_value = ha;
4452 /* Array used to determine the number of hash table buckets to use
4453 based on the number of symbols there are. If there are fewer than
4454 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4455 fewer than 37 we use 17 buckets, and so forth. We never use more
4456 than 32771 buckets. */
4458 static const size_t elf_buckets[] =
4460 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4464 /* Compute bucket count for hashing table. We do not use a static set
4465 of possible tables sizes anymore. Instead we determine for all
4466 possible reasonable sizes of the table the outcome (i.e., the
4467 number of collisions etc) and choose the best solution. The
4468 weighting functions are not too simple to allow the table to grow
4469 without bounds. Instead one of the weighting factors is the size.
4470 Therefore the result is always a good payoff between few collisions
4471 (= short chain lengths) and table size. */
4473 compute_bucket_count (struct bfd_link_info *info)
4475 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4476 size_t best_size = 0;
4477 unsigned long int *hashcodes;
4478 unsigned long int *hashcodesp;
4479 unsigned long int i;
4482 /* Compute the hash values for all exported symbols. At the same
4483 time store the values in an array so that we could use them for
4486 amt *= sizeof (unsigned long int);
4487 hashcodes = bfd_malloc (amt);
4488 if (hashcodes == NULL)
4490 hashcodesp = hashcodes;
4492 /* Put all hash values in HASHCODES. */
4493 elf_link_hash_traverse (elf_hash_table (info),
4494 elf_collect_hash_codes, &hashcodesp);
4496 /* We have a problem here. The following code to optimize the table
4497 size requires an integer type with more the 32 bits. If
4498 BFD_HOST_U_64_BIT is set we know about such a type. */
4499 #ifdef BFD_HOST_U_64_BIT
4502 unsigned long int nsyms = hashcodesp - hashcodes;
4505 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4506 unsigned long int *counts ;
4507 bfd *dynobj = elf_hash_table (info)->dynobj;
4508 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4510 /* Possible optimization parameters: if we have NSYMS symbols we say
4511 that the hashing table must at least have NSYMS/4 and at most
4513 minsize = nsyms / 4;
4516 best_size = maxsize = nsyms * 2;
4518 /* Create array where we count the collisions in. We must use bfd_malloc
4519 since the size could be large. */
4521 amt *= sizeof (unsigned long int);
4522 counts = bfd_malloc (amt);
4529 /* Compute the "optimal" size for the hash table. The criteria is a
4530 minimal chain length. The minor criteria is (of course) the size
4532 for (i = minsize; i < maxsize; ++i)
4534 /* Walk through the array of hashcodes and count the collisions. */
4535 BFD_HOST_U_64_BIT max;
4536 unsigned long int j;
4537 unsigned long int fact;
4539 memset (counts, '\0', i * sizeof (unsigned long int));
4541 /* Determine how often each hash bucket is used. */
4542 for (j = 0; j < nsyms; ++j)
4543 ++counts[hashcodes[j] % i];
4545 /* For the weight function we need some information about the
4546 pagesize on the target. This is information need not be 100%
4547 accurate. Since this information is not available (so far) we
4548 define it here to a reasonable default value. If it is crucial
4549 to have a better value some day simply define this value. */
4550 # ifndef BFD_TARGET_PAGESIZE
4551 # define BFD_TARGET_PAGESIZE (4096)
4554 /* We in any case need 2 + NSYMS entries for the size values and
4556 max = (2 + nsyms) * (bed->s->arch_size / 8);
4559 /* Variant 1: optimize for short chains. We add the squares
4560 of all the chain lengths (which favors many small chain
4561 over a few long chains). */
4562 for (j = 0; j < i; ++j)
4563 max += counts[j] * counts[j];
4565 /* This adds penalties for the overall size of the table. */
4566 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4569 /* Variant 2: Optimize a lot more for small table. Here we
4570 also add squares of the size but we also add penalties for
4571 empty slots (the +1 term). */
4572 for (j = 0; j < i; ++j)
4573 max += (1 + counts[j]) * (1 + counts[j]);
4575 /* The overall size of the table is considered, but not as
4576 strong as in variant 1, where it is squared. */
4577 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4581 /* Compare with current best results. */
4582 if (max < best_chlen)
4592 #endif /* defined (BFD_HOST_U_64_BIT) */
4594 /* This is the fallback solution if no 64bit type is available or if we
4595 are not supposed to spend much time on optimizations. We select the
4596 bucket count using a fixed set of numbers. */
4597 for (i = 0; elf_buckets[i] != 0; i++)
4599 best_size = elf_buckets[i];
4600 if (dynsymcount < elf_buckets[i + 1])
4605 /* Free the arrays we needed. */
4611 /* Set up the sizes and contents of the ELF dynamic sections. This is
4612 called by the ELF linker emulation before_allocation routine. We
4613 must set the sizes of the sections before the linker sets the
4614 addresses of the various sections. */
4617 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4620 const char *filter_shlib,
4621 const char * const *auxiliary_filters,
4622 struct bfd_link_info *info,
4623 asection **sinterpptr,
4624 struct bfd_elf_version_tree *verdefs)
4626 bfd_size_type soname_indx;
4628 const struct elf_backend_data *bed;
4629 struct elf_assign_sym_version_info asvinfo;
4633 soname_indx = (bfd_size_type) -1;
4635 if (!is_elf_hash_table (info->hash))
4638 elf_tdata (output_bfd)->relro = info->relro;
4639 if (info->execstack)
4640 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4641 else if (info->noexecstack)
4642 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4646 asection *notesec = NULL;
4649 for (inputobj = info->input_bfds;
4651 inputobj = inputobj->link_next)
4655 if (inputobj->flags & DYNAMIC)
4657 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4660 if (s->flags & SEC_CODE)
4669 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4670 if (exec && info->relocatable
4671 && notesec->output_section != bfd_abs_section_ptr)
4672 notesec->output_section->flags |= SEC_CODE;
4676 /* Any syms created from now on start with -1 in
4677 got.refcount/offset and plt.refcount/offset. */
4678 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4680 /* The backend may have to create some sections regardless of whether
4681 we're dynamic or not. */
4682 bed = get_elf_backend_data (output_bfd);
4683 if (bed->elf_backend_always_size_sections
4684 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4687 dynobj = elf_hash_table (info)->dynobj;
4689 /* If there were no dynamic objects in the link, there is nothing to
4694 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4697 if (elf_hash_table (info)->dynamic_sections_created)
4699 struct elf_info_failed eif;
4700 struct elf_link_hash_entry *h;
4702 struct bfd_elf_version_tree *t;
4703 struct bfd_elf_version_expr *d;
4704 bfd_boolean all_defined;
4706 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4707 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4711 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4713 if (soname_indx == (bfd_size_type) -1
4714 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4720 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4722 info->flags |= DF_SYMBOLIC;
4729 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4731 if (indx == (bfd_size_type) -1
4732 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4735 if (info->new_dtags)
4737 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4738 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4743 if (filter_shlib != NULL)
4747 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4748 filter_shlib, TRUE);
4749 if (indx == (bfd_size_type) -1
4750 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4754 if (auxiliary_filters != NULL)
4756 const char * const *p;
4758 for (p = auxiliary_filters; *p != NULL; p++)
4762 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4764 if (indx == (bfd_size_type) -1
4765 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4771 eif.verdefs = verdefs;
4774 /* If we are supposed to export all symbols into the dynamic symbol
4775 table (this is not the normal case), then do so. */
4776 if (info->export_dynamic)
4778 elf_link_hash_traverse (elf_hash_table (info),
4779 _bfd_elf_export_symbol,
4785 /* Make all global versions with definition. */
4786 for (t = verdefs; t != NULL; t = t->next)
4787 for (d = t->globals.list; d != NULL; d = d->next)
4788 if (!d->symver && d->symbol)
4790 const char *verstr, *name;
4791 size_t namelen, verlen, newlen;
4793 struct elf_link_hash_entry *newh;
4796 namelen = strlen (name);
4798 verlen = strlen (verstr);
4799 newlen = namelen + verlen + 3;
4801 newname = bfd_malloc (newlen);
4802 if (newname == NULL)
4804 memcpy (newname, name, namelen);
4806 /* Check the hidden versioned definition. */
4807 p = newname + namelen;
4809 memcpy (p, verstr, verlen + 1);
4810 newh = elf_link_hash_lookup (elf_hash_table (info),
4811 newname, FALSE, FALSE,
4814 || (newh->root.type != bfd_link_hash_defined
4815 && newh->root.type != bfd_link_hash_defweak))
4817 /* Check the default versioned definition. */
4819 memcpy (p, verstr, verlen + 1);
4820 newh = elf_link_hash_lookup (elf_hash_table (info),
4821 newname, FALSE, FALSE,
4826 /* Mark this version if there is a definition and it is
4827 not defined in a shared object. */
4829 && ((newh->elf_link_hash_flags
4830 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4831 && (newh->root.type == bfd_link_hash_defined
4832 || newh->root.type == bfd_link_hash_defweak))
4836 /* Attach all the symbols to their version information. */
4837 asvinfo.output_bfd = output_bfd;
4838 asvinfo.info = info;
4839 asvinfo.verdefs = verdefs;
4840 asvinfo.failed = FALSE;
4842 elf_link_hash_traverse (elf_hash_table (info),
4843 _bfd_elf_link_assign_sym_version,
4848 if (!info->allow_undefined_version)
4850 /* Check if all global versions have a definition. */
4852 for (t = verdefs; t != NULL; t = t->next)
4853 for (d = t->globals.list; d != NULL; d = d->next)
4854 if (!d->symver && !d->script)
4856 (*_bfd_error_handler)
4857 (_("%s: undefined version: %s"),
4858 d->pattern, t->name);
4859 all_defined = FALSE;
4864 bfd_set_error (bfd_error_bad_value);
4869 /* Find all symbols which were defined in a dynamic object and make
4870 the backend pick a reasonable value for them. */
4871 elf_link_hash_traverse (elf_hash_table (info),
4872 _bfd_elf_adjust_dynamic_symbol,
4877 /* Add some entries to the .dynamic section. We fill in some of the
4878 values later, in elf_bfd_final_link, but we must add the entries
4879 now so that we know the final size of the .dynamic section. */
4881 /* If there are initialization and/or finalization functions to
4882 call then add the corresponding DT_INIT/DT_FINI entries. */
4883 h = (info->init_function
4884 ? elf_link_hash_lookup (elf_hash_table (info),
4885 info->init_function, FALSE,
4889 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4890 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4892 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4895 h = (info->fini_function
4896 ? elf_link_hash_lookup (elf_hash_table (info),
4897 info->fini_function, FALSE,
4901 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4902 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4904 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4908 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4910 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4911 if (! info->executable)
4916 for (sub = info->input_bfds; sub != NULL;
4917 sub = sub->link_next)
4918 for (o = sub->sections; o != NULL; o = o->next)
4919 if (elf_section_data (o)->this_hdr.sh_type
4920 == SHT_PREINIT_ARRAY)
4922 (*_bfd_error_handler)
4923 (_("%s: .preinit_array section is not allowed in DSO"),
4924 bfd_archive_filename (sub));
4928 bfd_set_error (bfd_error_nonrepresentable_section);
4932 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4933 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4936 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4938 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4939 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4942 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4944 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4945 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4949 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4950 /* If .dynstr is excluded from the link, we don't want any of
4951 these tags. Strictly, we should be checking each section
4952 individually; This quick check covers for the case where
4953 someone does a /DISCARD/ : { *(*) }. */
4954 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4956 bfd_size_type strsize;
4958 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
4959 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
4960 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
4961 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4962 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
4963 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
4964 bed->s->sizeof_sym))
4969 /* The backend must work out the sizes of all the other dynamic
4971 if (bed->elf_backend_size_dynamic_sections
4972 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
4975 if (elf_hash_table (info)->dynamic_sections_created)
4977 bfd_size_type dynsymcount;
4979 size_t bucketcount = 0;
4980 size_t hash_entry_size;
4981 unsigned int dtagcount;
4983 /* Set up the version definition section. */
4984 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
4985 BFD_ASSERT (s != NULL);
4987 /* We may have created additional version definitions if we are
4988 just linking a regular application. */
4989 verdefs = asvinfo.verdefs;
4991 /* Skip anonymous version tag. */
4992 if (verdefs != NULL && verdefs->vernum == 0)
4993 verdefs = verdefs->next;
4995 if (verdefs == NULL)
4996 _bfd_strip_section_from_output (info, s);
5001 struct bfd_elf_version_tree *t;
5003 Elf_Internal_Verdef def;
5004 Elf_Internal_Verdaux defaux;
5009 /* Make space for the base version. */
5010 size += sizeof (Elf_External_Verdef);
5011 size += sizeof (Elf_External_Verdaux);
5014 for (t = verdefs; t != NULL; t = t->next)
5016 struct bfd_elf_version_deps *n;
5018 size += sizeof (Elf_External_Verdef);
5019 size += sizeof (Elf_External_Verdaux);
5022 for (n = t->deps; n != NULL; n = n->next)
5023 size += sizeof (Elf_External_Verdaux);
5027 s->contents = bfd_alloc (output_bfd, s->size);
5028 if (s->contents == NULL && s->size != 0)
5031 /* Fill in the version definition section. */
5035 def.vd_version = VER_DEF_CURRENT;
5036 def.vd_flags = VER_FLG_BASE;
5039 def.vd_aux = sizeof (Elf_External_Verdef);
5040 def.vd_next = (sizeof (Elf_External_Verdef)
5041 + sizeof (Elf_External_Verdaux));
5043 if (soname_indx != (bfd_size_type) -1)
5045 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5047 def.vd_hash = bfd_elf_hash (soname);
5048 defaux.vda_name = soname_indx;
5055 name = basename (output_bfd->filename);
5056 def.vd_hash = bfd_elf_hash (name);
5057 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5059 if (indx == (bfd_size_type) -1)
5061 defaux.vda_name = indx;
5063 defaux.vda_next = 0;
5065 _bfd_elf_swap_verdef_out (output_bfd, &def,
5066 (Elf_External_Verdef *) p);
5067 p += sizeof (Elf_External_Verdef);
5068 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5069 (Elf_External_Verdaux *) p);
5070 p += sizeof (Elf_External_Verdaux);
5072 for (t = verdefs; t != NULL; t = t->next)
5075 struct bfd_elf_version_deps *n;
5076 struct elf_link_hash_entry *h;
5077 struct bfd_link_hash_entry *bh;
5080 for (n = t->deps; n != NULL; n = n->next)
5083 /* Add a symbol representing this version. */
5085 if (! (_bfd_generic_link_add_one_symbol
5086 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5088 get_elf_backend_data (dynobj)->collect, &bh)))
5090 h = (struct elf_link_hash_entry *) bh;
5091 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5092 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5093 h->type = STT_OBJECT;
5094 h->verinfo.vertree = t;
5096 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5099 def.vd_version = VER_DEF_CURRENT;
5101 if (t->globals.list == NULL
5102 && t->locals.list == NULL
5104 def.vd_flags |= VER_FLG_WEAK;
5105 def.vd_ndx = t->vernum + 1;
5106 def.vd_cnt = cdeps + 1;
5107 def.vd_hash = bfd_elf_hash (t->name);
5108 def.vd_aux = sizeof (Elf_External_Verdef);
5110 if (t->next != NULL)
5111 def.vd_next = (sizeof (Elf_External_Verdef)
5112 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5114 _bfd_elf_swap_verdef_out (output_bfd, &def,
5115 (Elf_External_Verdef *) p);
5116 p += sizeof (Elf_External_Verdef);
5118 defaux.vda_name = h->dynstr_index;
5119 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5121 defaux.vda_next = 0;
5122 if (t->deps != NULL)
5123 defaux.vda_next = sizeof (Elf_External_Verdaux);
5124 t->name_indx = defaux.vda_name;
5126 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5127 (Elf_External_Verdaux *) p);
5128 p += sizeof (Elf_External_Verdaux);
5130 for (n = t->deps; n != NULL; n = n->next)
5132 if (n->version_needed == NULL)
5134 /* This can happen if there was an error in the
5136 defaux.vda_name = 0;
5140 defaux.vda_name = n->version_needed->name_indx;
5141 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5144 if (n->next == NULL)
5145 defaux.vda_next = 0;
5147 defaux.vda_next = sizeof (Elf_External_Verdaux);
5149 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5150 (Elf_External_Verdaux *) p);
5151 p += sizeof (Elf_External_Verdaux);
5155 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5156 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5159 elf_tdata (output_bfd)->cverdefs = cdefs;
5162 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5164 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5167 else if (info->flags & DF_BIND_NOW)
5169 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5175 if (info->executable)
5176 info->flags_1 &= ~ (DF_1_INITFIRST
5179 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5183 /* Work out the size of the version reference section. */
5185 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5186 BFD_ASSERT (s != NULL);
5188 struct elf_find_verdep_info sinfo;
5190 sinfo.output_bfd = output_bfd;
5192 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5193 if (sinfo.vers == 0)
5195 sinfo.failed = FALSE;
5197 elf_link_hash_traverse (elf_hash_table (info),
5198 _bfd_elf_link_find_version_dependencies,
5201 if (elf_tdata (output_bfd)->verref == NULL)
5202 _bfd_strip_section_from_output (info, s);
5205 Elf_Internal_Verneed *t;
5210 /* Build the version definition section. */
5213 for (t = elf_tdata (output_bfd)->verref;
5217 Elf_Internal_Vernaux *a;
5219 size += sizeof (Elf_External_Verneed);
5221 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5222 size += sizeof (Elf_External_Vernaux);
5226 s->contents = bfd_alloc (output_bfd, s->size);
5227 if (s->contents == NULL)
5231 for (t = elf_tdata (output_bfd)->verref;
5236 Elf_Internal_Vernaux *a;
5240 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5243 t->vn_version = VER_NEED_CURRENT;
5245 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5246 elf_dt_name (t->vn_bfd) != NULL
5247 ? elf_dt_name (t->vn_bfd)
5248 : basename (t->vn_bfd->filename),
5250 if (indx == (bfd_size_type) -1)
5253 t->vn_aux = sizeof (Elf_External_Verneed);
5254 if (t->vn_nextref == NULL)
5257 t->vn_next = (sizeof (Elf_External_Verneed)
5258 + caux * sizeof (Elf_External_Vernaux));
5260 _bfd_elf_swap_verneed_out (output_bfd, t,
5261 (Elf_External_Verneed *) p);
5262 p += sizeof (Elf_External_Verneed);
5264 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5266 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5267 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5268 a->vna_nodename, FALSE);
5269 if (indx == (bfd_size_type) -1)
5272 if (a->vna_nextptr == NULL)
5275 a->vna_next = sizeof (Elf_External_Vernaux);
5277 _bfd_elf_swap_vernaux_out (output_bfd, a,
5278 (Elf_External_Vernaux *) p);
5279 p += sizeof (Elf_External_Vernaux);
5283 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5284 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5287 elf_tdata (output_bfd)->cverrefs = crefs;
5291 /* Assign dynsym indicies. In a shared library we generate a
5292 section symbol for each output section, which come first.
5293 Next come all of the back-end allocated local dynamic syms,
5294 followed by the rest of the global symbols. */
5296 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5298 /* Work out the size of the symbol version section. */
5299 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5300 BFD_ASSERT (s != NULL);
5301 if (dynsymcount == 0
5302 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5304 _bfd_strip_section_from_output (info, s);
5305 /* The DYNSYMCOUNT might have changed if we were going to
5306 output a dynamic symbol table entry for S. */
5307 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5311 s->size = dynsymcount * sizeof (Elf_External_Versym);
5312 s->contents = bfd_zalloc (output_bfd, s->size);
5313 if (s->contents == NULL)
5316 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5320 /* Set the size of the .dynsym and .hash sections. We counted
5321 the number of dynamic symbols in elf_link_add_object_symbols.
5322 We will build the contents of .dynsym and .hash when we build
5323 the final symbol table, because until then we do not know the
5324 correct value to give the symbols. We built the .dynstr
5325 section as we went along in elf_link_add_object_symbols. */
5326 s = bfd_get_section_by_name (dynobj, ".dynsym");
5327 BFD_ASSERT (s != NULL);
5328 s->size = dynsymcount * bed->s->sizeof_sym;
5329 s->contents = bfd_alloc (output_bfd, s->size);
5330 if (s->contents == NULL && s->size != 0)
5333 if (dynsymcount != 0)
5335 Elf_Internal_Sym isym;
5337 /* The first entry in .dynsym is a dummy symbol. */
5344 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5347 /* Compute the size of the hashing table. As a side effect this
5348 computes the hash values for all the names we export. */
5349 bucketcount = compute_bucket_count (info);
5351 s = bfd_get_section_by_name (dynobj, ".hash");
5352 BFD_ASSERT (s != NULL);
5353 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5354 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5355 s->contents = bfd_zalloc (output_bfd, s->size);
5356 if (s->contents == NULL)
5359 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5360 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5361 s->contents + hash_entry_size);
5363 elf_hash_table (info)->bucketcount = bucketcount;
5365 s = bfd_get_section_by_name (dynobj, ".dynstr");
5366 BFD_ASSERT (s != NULL);
5368 elf_finalize_dynstr (output_bfd, info);
5370 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5372 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5373 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5380 /* Final phase of ELF linker. */
5382 /* A structure we use to avoid passing large numbers of arguments. */
5384 struct elf_final_link_info
5386 /* General link information. */
5387 struct bfd_link_info *info;
5390 /* Symbol string table. */
5391 struct bfd_strtab_hash *symstrtab;
5392 /* .dynsym section. */
5393 asection *dynsym_sec;
5394 /* .hash section. */
5396 /* symbol version section (.gnu.version). */
5397 asection *symver_sec;
5398 /* Buffer large enough to hold contents of any section. */
5400 /* Buffer large enough to hold external relocs of any section. */
5401 void *external_relocs;
5402 /* Buffer large enough to hold internal relocs of any section. */
5403 Elf_Internal_Rela *internal_relocs;
5404 /* Buffer large enough to hold external local symbols of any input
5406 bfd_byte *external_syms;
5407 /* And a buffer for symbol section indices. */
5408 Elf_External_Sym_Shndx *locsym_shndx;
5409 /* Buffer large enough to hold internal local symbols of any input
5411 Elf_Internal_Sym *internal_syms;
5412 /* Array large enough to hold a symbol index for each local symbol
5413 of any input BFD. */
5415 /* Array large enough to hold a section pointer for each local
5416 symbol of any input BFD. */
5417 asection **sections;
5418 /* Buffer to hold swapped out symbols. */
5420 /* And one for symbol section indices. */
5421 Elf_External_Sym_Shndx *symshndxbuf;
5422 /* Number of swapped out symbols in buffer. */
5423 size_t symbuf_count;
5424 /* Number of symbols which fit in symbuf. */
5426 /* And same for symshndxbuf. */
5427 size_t shndxbuf_size;
5430 /* This struct is used to pass information to elf_link_output_extsym. */
5432 struct elf_outext_info
5435 bfd_boolean localsyms;
5436 struct elf_final_link_info *finfo;
5439 /* When performing a relocatable link, the input relocations are
5440 preserved. But, if they reference global symbols, the indices
5441 referenced must be updated. Update all the relocations in
5442 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5445 elf_link_adjust_relocs (bfd *abfd,
5446 Elf_Internal_Shdr *rel_hdr,
5448 struct elf_link_hash_entry **rel_hash)
5451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5453 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5454 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5455 bfd_vma r_type_mask;
5458 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5460 swap_in = bed->s->swap_reloc_in;
5461 swap_out = bed->s->swap_reloc_out;
5463 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5465 swap_in = bed->s->swap_reloca_in;
5466 swap_out = bed->s->swap_reloca_out;
5471 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5474 if (bed->s->arch_size == 32)
5481 r_type_mask = 0xffffffff;
5485 erela = rel_hdr->contents;
5486 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5488 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5491 if (*rel_hash == NULL)
5494 BFD_ASSERT ((*rel_hash)->indx >= 0);
5496 (*swap_in) (abfd, erela, irela);
5497 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5498 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5499 | (irela[j].r_info & r_type_mask));
5500 (*swap_out) (abfd, irela, erela);
5504 struct elf_link_sort_rela
5510 enum elf_reloc_type_class type;
5511 /* We use this as an array of size int_rels_per_ext_rel. */
5512 Elf_Internal_Rela rela[1];
5516 elf_link_sort_cmp1 (const void *A, const void *B)
5518 const struct elf_link_sort_rela *a = A;
5519 const struct elf_link_sort_rela *b = B;
5520 int relativea, relativeb;
5522 relativea = a->type == reloc_class_relative;
5523 relativeb = b->type == reloc_class_relative;
5525 if (relativea < relativeb)
5527 if (relativea > relativeb)
5529 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5531 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5533 if (a->rela->r_offset < b->rela->r_offset)
5535 if (a->rela->r_offset > b->rela->r_offset)
5541 elf_link_sort_cmp2 (const void *A, const void *B)
5543 const struct elf_link_sort_rela *a = A;
5544 const struct elf_link_sort_rela *b = B;
5547 if (a->u.offset < b->u.offset)
5549 if (a->u.offset > b->u.offset)
5551 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5552 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5557 if (a->rela->r_offset < b->rela->r_offset)
5559 if (a->rela->r_offset > b->rela->r_offset)
5565 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5568 bfd_size_type count, size;
5569 size_t i, ret, sort_elt, ext_size;
5570 bfd_byte *sort, *s_non_relative, *p;
5571 struct elf_link_sort_rela *sq;
5572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5573 int i2e = bed->s->int_rels_per_ext_rel;
5574 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5575 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5576 struct bfd_link_order *lo;
5579 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5580 if (reldyn == NULL || reldyn->size == 0)
5582 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5583 if (reldyn == NULL || reldyn->size == 0)
5585 ext_size = bed->s->sizeof_rel;
5586 swap_in = bed->s->swap_reloc_in;
5587 swap_out = bed->s->swap_reloc_out;
5591 ext_size = bed->s->sizeof_rela;
5592 swap_in = bed->s->swap_reloca_in;
5593 swap_out = bed->s->swap_reloca_out;
5595 count = reldyn->size / ext_size;
5598 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5599 if (lo->type == bfd_indirect_link_order)
5601 asection *o = lo->u.indirect.section;
5605 if (size != reldyn->size)
5608 sort_elt = (sizeof (struct elf_link_sort_rela)
5609 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5610 sort = bfd_zmalloc (sort_elt * count);
5613 (*info->callbacks->warning)
5614 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5618 if (bed->s->arch_size == 32)
5619 r_sym_mask = ~(bfd_vma) 0xff;
5621 r_sym_mask = ~(bfd_vma) 0xffffffff;
5623 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5624 if (lo->type == bfd_indirect_link_order)
5626 bfd_byte *erel, *erelend;
5627 asection *o = lo->u.indirect.section;
5630 erelend = o->contents + o->size;
5631 p = sort + o->output_offset / ext_size * sort_elt;
5632 while (erel < erelend)
5634 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5635 (*swap_in) (abfd, erel, s->rela);
5636 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5637 s->u.sym_mask = r_sym_mask;
5643 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5645 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5647 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5648 if (s->type != reloc_class_relative)
5654 sq = (struct elf_link_sort_rela *) s_non_relative;
5655 for (; i < count; i++, p += sort_elt)
5657 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5658 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5660 sp->u.offset = sq->rela->r_offset;
5663 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5665 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5666 if (lo->type == bfd_indirect_link_order)
5668 bfd_byte *erel, *erelend;
5669 asection *o = lo->u.indirect.section;
5672 erelend = o->contents + o->size;
5673 p = sort + o->output_offset / ext_size * sort_elt;
5674 while (erel < erelend)
5676 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5677 (*swap_out) (abfd, s->rela, erel);
5688 /* Flush the output symbols to the file. */
5691 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5692 const struct elf_backend_data *bed)
5694 if (finfo->symbuf_count > 0)
5696 Elf_Internal_Shdr *hdr;
5700 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5701 pos = hdr->sh_offset + hdr->sh_size;
5702 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5703 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5704 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5707 hdr->sh_size += amt;
5708 finfo->symbuf_count = 0;
5714 /* Add a symbol to the output symbol table. */
5717 elf_link_output_sym (struct elf_final_link_info *finfo,
5719 Elf_Internal_Sym *elfsym,
5720 asection *input_sec,
5721 struct elf_link_hash_entry *h)
5724 Elf_External_Sym_Shndx *destshndx;
5725 bfd_boolean (*output_symbol_hook)
5726 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5727 struct elf_link_hash_entry *);
5728 const struct elf_backend_data *bed;
5730 bed = get_elf_backend_data (finfo->output_bfd);
5731 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5732 if (output_symbol_hook != NULL)
5734 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5738 if (name == NULL || *name == '\0')
5739 elfsym->st_name = 0;
5740 else if (input_sec->flags & SEC_EXCLUDE)
5741 elfsym->st_name = 0;
5744 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5746 if (elfsym->st_name == (unsigned long) -1)
5750 if (finfo->symbuf_count >= finfo->symbuf_size)
5752 if (! elf_link_flush_output_syms (finfo, bed))
5756 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5757 destshndx = finfo->symshndxbuf;
5758 if (destshndx != NULL)
5760 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5764 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5765 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5766 if (destshndx == NULL)
5768 memset ((char *) destshndx + amt, 0, amt);
5769 finfo->shndxbuf_size *= 2;
5771 destshndx += bfd_get_symcount (finfo->output_bfd);
5774 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5775 finfo->symbuf_count += 1;
5776 bfd_get_symcount (finfo->output_bfd) += 1;
5781 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5782 allowing an unsatisfied unversioned symbol in the DSO to match a
5783 versioned symbol that would normally require an explicit version.
5784 We also handle the case that a DSO references a hidden symbol
5785 which may be satisfied by a versioned symbol in another DSO. */
5788 elf_link_check_versioned_symbol (struct bfd_link_info *info,
5789 const struct elf_backend_data *bed,
5790 struct elf_link_hash_entry *h)
5793 struct elf_link_loaded_list *loaded;
5795 if (!is_elf_hash_table (info->hash))
5798 switch (h->root.type)
5804 case bfd_link_hash_undefined:
5805 case bfd_link_hash_undefweak:
5806 abfd = h->root.u.undef.abfd;
5807 if ((abfd->flags & DYNAMIC) == 0
5808 || elf_dyn_lib_class (abfd) != DYN_DT_NEEDED)
5812 case bfd_link_hash_defined:
5813 case bfd_link_hash_defweak:
5814 abfd = h->root.u.def.section->owner;
5817 case bfd_link_hash_common:
5818 abfd = h->root.u.c.p->section->owner;
5821 BFD_ASSERT (abfd != NULL);
5823 for (loaded = elf_hash_table (info)->loaded;
5825 loaded = loaded->next)
5828 Elf_Internal_Shdr *hdr;
5829 bfd_size_type symcount;
5830 bfd_size_type extsymcount;
5831 bfd_size_type extsymoff;
5832 Elf_Internal_Shdr *versymhdr;
5833 Elf_Internal_Sym *isym;
5834 Elf_Internal_Sym *isymend;
5835 Elf_Internal_Sym *isymbuf;
5836 Elf_External_Versym *ever;
5837 Elf_External_Versym *extversym;
5839 input = loaded->abfd;
5841 /* We check each DSO for a possible hidden versioned definition. */
5843 || (input->flags & DYNAMIC) == 0
5844 || elf_dynversym (input) == 0)
5847 hdr = &elf_tdata (input)->dynsymtab_hdr;
5849 symcount = hdr->sh_size / bed->s->sizeof_sym;
5850 if (elf_bad_symtab (input))
5852 extsymcount = symcount;
5857 extsymcount = symcount - hdr->sh_info;
5858 extsymoff = hdr->sh_info;
5861 if (extsymcount == 0)
5864 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5866 if (isymbuf == NULL)
5869 /* Read in any version definitions. */
5870 versymhdr = &elf_tdata (input)->dynversym_hdr;
5871 extversym = bfd_malloc (versymhdr->sh_size);
5872 if (extversym == NULL)
5875 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5876 || (bfd_bread (extversym, versymhdr->sh_size, input)
5877 != versymhdr->sh_size))
5885 ever = extversym + extsymoff;
5886 isymend = isymbuf + extsymcount;
5887 for (isym = isymbuf; isym < isymend; isym++, ever++)
5890 Elf_Internal_Versym iver;
5891 unsigned short version_index;
5893 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5894 || isym->st_shndx == SHN_UNDEF)
5897 name = bfd_elf_string_from_elf_section (input,
5900 if (strcmp (name, h->root.root.string) != 0)
5903 _bfd_elf_swap_versym_in (input, ever, &iver);
5905 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5907 /* If we have a non-hidden versioned sym, then it should
5908 have provided a definition for the undefined sym. */
5912 version_index = iver.vs_vers & VERSYM_VERSION;
5913 if (version_index == 1 || version_index == 2)
5915 /* This is the base or first version. We can use it. */
5929 /* Add an external symbol to the symbol table. This is called from
5930 the hash table traversal routine. When generating a shared object,
5931 we go through the symbol table twice. The first time we output
5932 anything that might have been forced to local scope in a version
5933 script. The second time we output the symbols that are still
5937 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5939 struct elf_outext_info *eoinfo = data;
5940 struct elf_final_link_info *finfo = eoinfo->finfo;
5942 Elf_Internal_Sym sym;
5943 asection *input_sec;
5944 const struct elf_backend_data *bed;
5946 if (h->root.type == bfd_link_hash_warning)
5948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5949 if (h->root.type == bfd_link_hash_new)
5953 /* Decide whether to output this symbol in this pass. */
5954 if (eoinfo->localsyms)
5956 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5961 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5965 bed = get_elf_backend_data (finfo->output_bfd);
5967 /* If we have an undefined symbol reference here then it must have
5968 come from a shared library that is being linked in. (Undefined
5969 references in regular files have already been handled). If we
5970 are reporting errors for this situation then do so now. */
5971 if (h->root.type == bfd_link_hash_undefined
5972 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5973 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
5974 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
5975 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
5977 if (! ((*finfo->info->callbacks->undefined_symbol)
5978 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5979 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
5981 eoinfo->failed = TRUE;
5986 /* We should also warn if a forced local symbol is referenced from
5987 shared libraries. */
5988 if (! finfo->info->relocatable
5989 && (! finfo->info->shared)
5990 && (h->elf_link_hash_flags
5991 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
5992 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
5993 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
5995 (*_bfd_error_handler)
5996 (_("%s: %s symbol `%s' in %s is referenced by DSO"),
5997 bfd_get_filename (finfo->output_bfd),
5998 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6000 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6001 ? "hidden" : "local",
6002 h->root.root.string,
6003 bfd_archive_filename (h->root.u.def.section->owner));
6004 eoinfo->failed = TRUE;
6008 /* We don't want to output symbols that have never been mentioned by
6009 a regular file, or that we have been told to strip. However, if
6010 h->indx is set to -2, the symbol is used by a reloc and we must
6014 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6015 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6016 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6017 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6019 else if (finfo->info->strip == strip_all)
6021 else if (finfo->info->strip == strip_some
6022 && bfd_hash_lookup (finfo->info->keep_hash,
6023 h->root.root.string, FALSE, FALSE) == NULL)
6025 else if (finfo->info->strip_discarded
6026 && (h->root.type == bfd_link_hash_defined
6027 || h->root.type == bfd_link_hash_defweak)
6028 && elf_discarded_section (h->root.u.def.section))
6033 /* If we're stripping it, and it's not a dynamic symbol, there's
6034 nothing else to do unless it is a forced local symbol. */
6037 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6041 sym.st_size = h->size;
6042 sym.st_other = h->other;
6043 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6044 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6045 else if (h->root.type == bfd_link_hash_undefweak
6046 || h->root.type == bfd_link_hash_defweak)
6047 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6049 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6051 switch (h->root.type)
6054 case bfd_link_hash_new:
6055 case bfd_link_hash_warning:
6059 case bfd_link_hash_undefined:
6060 case bfd_link_hash_undefweak:
6061 input_sec = bfd_und_section_ptr;
6062 sym.st_shndx = SHN_UNDEF;
6065 case bfd_link_hash_defined:
6066 case bfd_link_hash_defweak:
6068 input_sec = h->root.u.def.section;
6069 if (input_sec->output_section != NULL)
6072 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6073 input_sec->output_section);
6074 if (sym.st_shndx == SHN_BAD)
6076 (*_bfd_error_handler)
6077 (_("%s: could not find output section %s for input section %s"),
6078 bfd_get_filename (finfo->output_bfd),
6079 input_sec->output_section->name,
6081 eoinfo->failed = TRUE;
6085 /* ELF symbols in relocatable files are section relative,
6086 but in nonrelocatable files they are virtual
6088 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6089 if (! finfo->info->relocatable)
6091 sym.st_value += input_sec->output_section->vma;
6092 if (h->type == STT_TLS)
6094 /* STT_TLS symbols are relative to PT_TLS segment
6096 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6097 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6103 BFD_ASSERT (input_sec->owner == NULL
6104 || (input_sec->owner->flags & DYNAMIC) != 0);
6105 sym.st_shndx = SHN_UNDEF;
6106 input_sec = bfd_und_section_ptr;
6111 case bfd_link_hash_common:
6112 input_sec = h->root.u.c.p->section;
6113 sym.st_shndx = SHN_COMMON;
6114 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6117 case bfd_link_hash_indirect:
6118 /* These symbols are created by symbol versioning. They point
6119 to the decorated version of the name. For example, if the
6120 symbol foo@@GNU_1.2 is the default, which should be used when
6121 foo is used with no version, then we add an indirect symbol
6122 foo which points to foo@@GNU_1.2. We ignore these symbols,
6123 since the indirected symbol is already in the hash table. */
6127 /* Give the processor backend a chance to tweak the symbol value,
6128 and also to finish up anything that needs to be done for this
6129 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6130 forced local syms when non-shared is due to a historical quirk. */
6131 if ((h->dynindx != -1
6132 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6133 && ((finfo->info->shared
6134 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6135 || h->root.type != bfd_link_hash_undefweak))
6136 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6137 && elf_hash_table (finfo->info)->dynamic_sections_created)
6139 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6140 (finfo->output_bfd, finfo->info, h, &sym)))
6142 eoinfo->failed = TRUE;
6147 /* If we are marking the symbol as undefined, and there are no
6148 non-weak references to this symbol from a regular object, then
6149 mark the symbol as weak undefined; if there are non-weak
6150 references, mark the symbol as strong. We can't do this earlier,
6151 because it might not be marked as undefined until the
6152 finish_dynamic_symbol routine gets through with it. */
6153 if (sym.st_shndx == SHN_UNDEF
6154 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6155 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6156 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6160 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6161 bindtype = STB_GLOBAL;
6163 bindtype = STB_WEAK;
6164 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6167 /* If a non-weak symbol with non-default visibility is not defined
6168 locally, it is a fatal error. */
6169 if (! finfo->info->relocatable
6170 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6171 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6172 && h->root.type == bfd_link_hash_undefined
6173 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6175 (*_bfd_error_handler)
6176 (_("%s: %s symbol `%s' isn't defined"),
6177 bfd_get_filename (finfo->output_bfd),
6178 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6180 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6181 ? "internal" : "hidden",
6182 h->root.root.string);
6183 eoinfo->failed = TRUE;
6187 /* If this symbol should be put in the .dynsym section, then put it
6188 there now. We already know the symbol index. We also fill in
6189 the entry in the .hash section. */
6190 if (h->dynindx != -1
6191 && elf_hash_table (finfo->info)->dynamic_sections_created)
6195 size_t hash_entry_size;
6196 bfd_byte *bucketpos;
6200 sym.st_name = h->dynstr_index;
6201 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6202 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6204 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6205 bucket = h->elf_hash_value % bucketcount;
6207 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6208 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6209 + (bucket + 2) * hash_entry_size);
6210 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6211 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6212 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6213 ((bfd_byte *) finfo->hash_sec->contents
6214 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6216 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6218 Elf_Internal_Versym iversym;
6219 Elf_External_Versym *eversym;
6221 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6223 if (h->verinfo.verdef == NULL)
6224 iversym.vs_vers = 0;
6226 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6230 if (h->verinfo.vertree == NULL)
6231 iversym.vs_vers = 1;
6233 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6236 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6237 iversym.vs_vers |= VERSYM_HIDDEN;
6239 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6240 eversym += h->dynindx;
6241 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6245 /* If we're stripping it, then it was just a dynamic symbol, and
6246 there's nothing else to do. */
6247 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6250 h->indx = bfd_get_symcount (finfo->output_bfd);
6252 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6254 eoinfo->failed = TRUE;
6262 elf_section_ignore_discarded_relocs (asection *sec)
6264 const struct elf_backend_data *bed;
6266 switch (sec->sec_info_type)
6268 case ELF_INFO_TYPE_STABS:
6269 case ELF_INFO_TYPE_EH_FRAME:
6275 bed = get_elf_backend_data (sec->owner);
6276 if (bed->elf_backend_ignore_discarded_relocs != NULL
6277 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6283 /* Link an input file into the linker output file. This function
6284 handles all the sections and relocations of the input file at once.
6285 This is so that we only have to read the local symbols once, and
6286 don't have to keep them in memory. */
6289 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6291 bfd_boolean (*relocate_section)
6292 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6293 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6295 Elf_Internal_Shdr *symtab_hdr;
6298 Elf_Internal_Sym *isymbuf;
6299 Elf_Internal_Sym *isym;
6300 Elf_Internal_Sym *isymend;
6302 asection **ppsection;
6304 const struct elf_backend_data *bed;
6305 bfd_boolean emit_relocs;
6306 struct elf_link_hash_entry **sym_hashes;
6308 output_bfd = finfo->output_bfd;
6309 bed = get_elf_backend_data (output_bfd);
6310 relocate_section = bed->elf_backend_relocate_section;
6312 /* If this is a dynamic object, we don't want to do anything here:
6313 we don't want the local symbols, and we don't want the section
6315 if ((input_bfd->flags & DYNAMIC) != 0)
6318 emit_relocs = (finfo->info->relocatable
6319 || finfo->info->emitrelocations
6320 || bed->elf_backend_emit_relocs);
6322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6323 if (elf_bad_symtab (input_bfd))
6325 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6330 locsymcount = symtab_hdr->sh_info;
6331 extsymoff = symtab_hdr->sh_info;
6334 /* Read the local symbols. */
6335 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6336 if (isymbuf == NULL && locsymcount != 0)
6338 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6339 finfo->internal_syms,
6340 finfo->external_syms,
6341 finfo->locsym_shndx);
6342 if (isymbuf == NULL)
6346 /* Find local symbol sections and adjust values of symbols in
6347 SEC_MERGE sections. Write out those local symbols we know are
6348 going into the output file. */
6349 isymend = isymbuf + locsymcount;
6350 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6352 isym++, pindex++, ppsection++)
6356 Elf_Internal_Sym osym;
6360 if (elf_bad_symtab (input_bfd))
6362 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6369 if (isym->st_shndx == SHN_UNDEF)
6370 isec = bfd_und_section_ptr;
6371 else if (isym->st_shndx < SHN_LORESERVE
6372 || isym->st_shndx > SHN_HIRESERVE)
6374 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6376 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6377 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6379 _bfd_merged_section_offset (output_bfd, &isec,
6380 elf_section_data (isec)->sec_info,
6383 else if (isym->st_shndx == SHN_ABS)
6384 isec = bfd_abs_section_ptr;
6385 else if (isym->st_shndx == SHN_COMMON)
6386 isec = bfd_com_section_ptr;
6395 /* Don't output the first, undefined, symbol. */
6396 if (ppsection == finfo->sections)
6399 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6401 /* We never output section symbols. Instead, we use the
6402 section symbol of the corresponding section in the output
6407 /* If we are stripping all symbols, we don't want to output this
6409 if (finfo->info->strip == strip_all)
6412 /* If we are discarding all local symbols, we don't want to
6413 output this one. If we are generating a relocatable output
6414 file, then some of the local symbols may be required by
6415 relocs; we output them below as we discover that they are
6417 if (finfo->info->discard == discard_all)
6420 /* If this symbol is defined in a section which we are
6421 discarding, we don't need to keep it, but note that
6422 linker_mark is only reliable for sections that have contents.
6423 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6424 as well as linker_mark. */
6425 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6427 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6428 || (! finfo->info->relocatable
6429 && (isec->flags & SEC_EXCLUDE) != 0)))
6432 /* Get the name of the symbol. */
6433 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6438 /* See if we are discarding symbols with this name. */
6439 if ((finfo->info->strip == strip_some
6440 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6442 || (((finfo->info->discard == discard_sec_merge
6443 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6444 || finfo->info->discard == discard_l)
6445 && bfd_is_local_label_name (input_bfd, name)))
6448 /* If we get here, we are going to output this symbol. */
6452 /* Adjust the section index for the output file. */
6453 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6454 isec->output_section);
6455 if (osym.st_shndx == SHN_BAD)
6458 *pindex = bfd_get_symcount (output_bfd);
6460 /* ELF symbols in relocatable files are section relative, but
6461 in executable files they are virtual addresses. Note that
6462 this code assumes that all ELF sections have an associated
6463 BFD section with a reasonable value for output_offset; below
6464 we assume that they also have a reasonable value for
6465 output_section. Any special sections must be set up to meet
6466 these requirements. */
6467 osym.st_value += isec->output_offset;
6468 if (! finfo->info->relocatable)
6470 osym.st_value += isec->output_section->vma;
6471 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6473 /* STT_TLS symbols are relative to PT_TLS segment base. */
6474 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6475 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6479 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6483 /* Relocate the contents of each section. */
6484 sym_hashes = elf_sym_hashes (input_bfd);
6485 for (o = input_bfd->sections; o != NULL; o = o->next)
6489 if (! o->linker_mark)
6491 /* This section was omitted from the link. */
6495 if ((o->flags & SEC_HAS_CONTENTS) == 0
6496 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6499 if ((o->flags & SEC_LINKER_CREATED) != 0)
6501 /* Section was created by _bfd_elf_link_create_dynamic_sections
6506 /* Get the contents of the section. They have been cached by a
6507 relaxation routine. Note that o is a section in an input
6508 file, so the contents field will not have been set by any of
6509 the routines which work on output files. */
6510 if (elf_section_data (o)->this_hdr.contents != NULL)
6511 contents = elf_section_data (o)->this_hdr.contents;
6514 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6516 contents = finfo->contents;
6517 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6521 if ((o->flags & SEC_RELOC) != 0)
6523 Elf_Internal_Rela *internal_relocs;
6524 bfd_vma r_type_mask;
6527 /* Get the swapped relocs. */
6529 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6530 finfo->internal_relocs, FALSE);
6531 if (internal_relocs == NULL
6532 && o->reloc_count > 0)
6535 if (bed->s->arch_size == 32)
6542 r_type_mask = 0xffffffff;
6546 /* Run through the relocs looking for any against symbols
6547 from discarded sections and section symbols from
6548 removed link-once sections. Complain about relocs
6549 against discarded sections. Zero relocs against removed
6550 link-once sections. Preserve debug information as much
6552 if (!elf_section_ignore_discarded_relocs (o))
6554 Elf_Internal_Rela *rel, *relend;
6556 rel = internal_relocs;
6557 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6558 for ( ; rel < relend; rel++)
6560 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6563 if (r_symndx >= locsymcount
6564 || (elf_bad_symtab (input_bfd)
6565 && finfo->sections[r_symndx] == NULL))
6567 struct elf_link_hash_entry *h;
6569 h = sym_hashes[r_symndx - extsymoff];
6570 while (h->root.type == bfd_link_hash_indirect
6571 || h->root.type == bfd_link_hash_warning)
6572 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6574 /* Complain if the definition comes from a
6575 discarded section. */
6576 sec = h->root.u.def.section;
6577 if ((h->root.type == bfd_link_hash_defined
6578 || h->root.type == bfd_link_hash_defweak)
6579 && elf_discarded_section (sec))
6581 if ((o->flags & SEC_DEBUGGING) != 0)
6583 BFD_ASSERT (r_symndx != 0);
6584 /* Try to preserve debug information. */
6585 if ((o->flags & SEC_DEBUGGING) != 0
6586 && sec->kept_section != NULL
6587 && sec->size == sec->kept_section->size)
6588 h->root.u.def.section
6589 = sec->kept_section;
6591 memset (rel, 0, sizeof (*rel));
6594 finfo->info->callbacks->error_handler
6595 (LD_DEFINITION_IN_DISCARDED_SECTION,
6596 _("%T: discarded in section `%s' from %s\n"),
6597 h->root.root.string,
6598 h->root.root.string,
6599 h->root.u.def.section->name,
6600 bfd_archive_filename (h->root.u.def.section->owner));
6605 sec = finfo->sections[r_symndx];
6607 if (sec != NULL && elf_discarded_section (sec))
6609 if ((o->flags & SEC_DEBUGGING) != 0
6610 || (sec->flags & SEC_LINK_ONCE) != 0)
6612 BFD_ASSERT (r_symndx != 0);
6613 /* Try to preserve debug information. */
6614 if ((o->flags & SEC_DEBUGGING) != 0
6615 && sec->kept_section != NULL
6616 && sec->size == sec->kept_section->size)
6617 finfo->sections[r_symndx]
6618 = sec->kept_section;
6621 rel->r_info &= r_type_mask;
6631 ok = asprintf (&buf, "local symbol %d",
6634 buf = (char *) "local symbol";
6635 finfo->info->callbacks->error_handler
6636 (LD_DEFINITION_IN_DISCARDED_SECTION,
6637 _("%T: discarded in section `%s' from %s\n"),
6638 buf, buf, sec->name,
6639 bfd_archive_filename (input_bfd));
6648 /* Relocate the section by invoking a back end routine.
6650 The back end routine is responsible for adjusting the
6651 section contents as necessary, and (if using Rela relocs
6652 and generating a relocatable output file) adjusting the
6653 reloc addend as necessary.
6655 The back end routine does not have to worry about setting
6656 the reloc address or the reloc symbol index.
6658 The back end routine is given a pointer to the swapped in
6659 internal symbols, and can access the hash table entries
6660 for the external symbols via elf_sym_hashes (input_bfd).
6662 When generating relocatable output, the back end routine
6663 must handle STB_LOCAL/STT_SECTION symbols specially. The
6664 output symbol is going to be a section symbol
6665 corresponding to the output section, which will require
6666 the addend to be adjusted. */
6668 if (! (*relocate_section) (output_bfd, finfo->info,
6669 input_bfd, o, contents,
6677 Elf_Internal_Rela *irela;
6678 Elf_Internal_Rela *irelaend;
6679 bfd_vma last_offset;
6680 struct elf_link_hash_entry **rel_hash;
6681 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6682 unsigned int next_erel;
6683 bfd_boolean (*reloc_emitter)
6684 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6685 bfd_boolean rela_normal;
6687 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6688 rela_normal = (bed->rela_normal
6689 && (input_rel_hdr->sh_entsize
6690 == bed->s->sizeof_rela));
6692 /* Adjust the reloc addresses and symbol indices. */
6694 irela = internal_relocs;
6695 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6696 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6697 + elf_section_data (o->output_section)->rel_count
6698 + elf_section_data (o->output_section)->rel_count2);
6699 last_offset = o->output_offset;
6700 if (!finfo->info->relocatable)
6701 last_offset += o->output_section->vma;
6702 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6704 unsigned long r_symndx;
6706 Elf_Internal_Sym sym;
6708 if (next_erel == bed->s->int_rels_per_ext_rel)
6714 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6717 if (irela->r_offset >= (bfd_vma) -2)
6719 /* This is a reloc for a deleted entry or somesuch.
6720 Turn it into an R_*_NONE reloc, at the same
6721 offset as the last reloc. elf_eh_frame.c and
6722 elf_bfd_discard_info rely on reloc offsets
6724 irela->r_offset = last_offset;
6726 irela->r_addend = 0;
6730 irela->r_offset += o->output_offset;
6732 /* Relocs in an executable have to be virtual addresses. */
6733 if (!finfo->info->relocatable)
6734 irela->r_offset += o->output_section->vma;
6736 last_offset = irela->r_offset;
6738 r_symndx = irela->r_info >> r_sym_shift;
6739 if (r_symndx == STN_UNDEF)
6742 if (r_symndx >= locsymcount
6743 || (elf_bad_symtab (input_bfd)
6744 && finfo->sections[r_symndx] == NULL))
6746 struct elf_link_hash_entry *rh;
6749 /* This is a reloc against a global symbol. We
6750 have not yet output all the local symbols, so
6751 we do not know the symbol index of any global
6752 symbol. We set the rel_hash entry for this
6753 reloc to point to the global hash table entry
6754 for this symbol. The symbol index is then
6755 set at the end of elf_bfd_final_link. */
6756 indx = r_symndx - extsymoff;
6757 rh = elf_sym_hashes (input_bfd)[indx];
6758 while (rh->root.type == bfd_link_hash_indirect
6759 || rh->root.type == bfd_link_hash_warning)
6760 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6762 /* Setting the index to -2 tells
6763 elf_link_output_extsym that this symbol is
6765 BFD_ASSERT (rh->indx < 0);
6773 /* This is a reloc against a local symbol. */
6776 sym = isymbuf[r_symndx];
6777 sec = finfo->sections[r_symndx];
6778 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6780 /* I suppose the backend ought to fill in the
6781 section of any STT_SECTION symbol against a
6782 processor specific section. */
6784 if (bfd_is_abs_section (sec))
6786 else if (sec == NULL || sec->owner == NULL)
6788 bfd_set_error (bfd_error_bad_value);
6793 asection *osec = sec->output_section;
6795 /* If we have discarded a section, the output
6796 section will be the absolute section. In
6797 case of discarded link-once and discarded
6798 SEC_MERGE sections, use the kept section. */
6799 if (bfd_is_abs_section (osec)
6800 && sec->kept_section != NULL
6801 && sec->kept_section->output_section != NULL)
6803 osec = sec->kept_section->output_section;
6804 irela->r_addend -= osec->vma;
6807 if (!bfd_is_abs_section (osec))
6809 r_symndx = osec->target_index;
6810 BFD_ASSERT (r_symndx != 0);
6814 /* Adjust the addend according to where the
6815 section winds up in the output section. */
6817 irela->r_addend += sec->output_offset;
6821 if (finfo->indices[r_symndx] == -1)
6823 unsigned long shlink;
6827 if (finfo->info->strip == strip_all)
6829 /* You can't do ld -r -s. */
6830 bfd_set_error (bfd_error_invalid_operation);
6834 /* This symbol was skipped earlier, but
6835 since it is needed by a reloc, we
6836 must output it now. */
6837 shlink = symtab_hdr->sh_link;
6838 name = (bfd_elf_string_from_elf_section
6839 (input_bfd, shlink, sym.st_name));
6843 osec = sec->output_section;
6845 _bfd_elf_section_from_bfd_section (output_bfd,
6847 if (sym.st_shndx == SHN_BAD)
6850 sym.st_value += sec->output_offset;
6851 if (! finfo->info->relocatable)
6853 sym.st_value += osec->vma;
6854 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6856 /* STT_TLS symbols are relative to PT_TLS
6858 BFD_ASSERT (elf_hash_table (finfo->info)
6860 sym.st_value -= (elf_hash_table (finfo->info)
6865 finfo->indices[r_symndx]
6866 = bfd_get_symcount (output_bfd);
6868 if (! elf_link_output_sym (finfo, name, &sym, sec,
6873 r_symndx = finfo->indices[r_symndx];
6876 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6877 | (irela->r_info & r_type_mask));
6880 /* Swap out the relocs. */
6881 if (bed->elf_backend_emit_relocs
6882 && !(finfo->info->relocatable
6883 || finfo->info->emitrelocations))
6884 reloc_emitter = bed->elf_backend_emit_relocs;
6886 reloc_emitter = _bfd_elf_link_output_relocs;
6888 if (input_rel_hdr->sh_size != 0
6889 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6893 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6894 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6896 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6897 * bed->s->int_rels_per_ext_rel);
6898 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6905 /* Write out the modified section contents. */
6906 if (bed->elf_backend_write_section
6907 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6909 /* Section written out. */
6911 else switch (o->sec_info_type)
6913 case ELF_INFO_TYPE_STABS:
6914 if (! (_bfd_write_section_stabs
6916 &elf_hash_table (finfo->info)->stab_info,
6917 o, &elf_section_data (o)->sec_info, contents)))
6920 case ELF_INFO_TYPE_MERGE:
6921 if (! _bfd_write_merged_section (output_bfd, o,
6922 elf_section_data (o)->sec_info))
6925 case ELF_INFO_TYPE_EH_FRAME:
6927 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
6934 if (! (o->flags & SEC_EXCLUDE)
6935 && ! bfd_set_section_contents (output_bfd, o->output_section,
6937 (file_ptr) o->output_offset,
6948 /* Generate a reloc when linking an ELF file. This is a reloc
6949 requested by the linker, and does come from any input file. This
6950 is used to build constructor and destructor tables when linking
6954 elf_reloc_link_order (bfd *output_bfd,
6955 struct bfd_link_info *info,
6956 asection *output_section,
6957 struct bfd_link_order *link_order)
6959 reloc_howto_type *howto;
6963 struct elf_link_hash_entry **rel_hash_ptr;
6964 Elf_Internal_Shdr *rel_hdr;
6965 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6966 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
6970 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6973 bfd_set_error (bfd_error_bad_value);
6977 addend = link_order->u.reloc.p->addend;
6979 /* Figure out the symbol index. */
6980 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6981 + elf_section_data (output_section)->rel_count
6982 + elf_section_data (output_section)->rel_count2);
6983 if (link_order->type == bfd_section_reloc_link_order)
6985 indx = link_order->u.reloc.p->u.section->target_index;
6986 BFD_ASSERT (indx != 0);
6987 *rel_hash_ptr = NULL;
6991 struct elf_link_hash_entry *h;
6993 /* Treat a reloc against a defined symbol as though it were
6994 actually against the section. */
6995 h = ((struct elf_link_hash_entry *)
6996 bfd_wrapped_link_hash_lookup (output_bfd, info,
6997 link_order->u.reloc.p->u.name,
6998 FALSE, FALSE, TRUE));
7000 && (h->root.type == bfd_link_hash_defined
7001 || h->root.type == bfd_link_hash_defweak))
7005 section = h->root.u.def.section;
7006 indx = section->output_section->target_index;
7007 *rel_hash_ptr = NULL;
7008 /* It seems that we ought to add the symbol value to the
7009 addend here, but in practice it has already been added
7010 because it was passed to constructor_callback. */
7011 addend += section->output_section->vma + section->output_offset;
7015 /* Setting the index to -2 tells elf_link_output_extsym that
7016 this symbol is used by a reloc. */
7023 if (! ((*info->callbacks->unattached_reloc)
7024 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7030 /* If this is an inplace reloc, we must write the addend into the
7032 if (howto->partial_inplace && addend != 0)
7035 bfd_reloc_status_type rstat;
7038 const char *sym_name;
7040 size = bfd_get_reloc_size (howto);
7041 buf = bfd_zmalloc (size);
7044 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7051 case bfd_reloc_outofrange:
7054 case bfd_reloc_overflow:
7055 if (link_order->type == bfd_section_reloc_link_order)
7056 sym_name = bfd_section_name (output_bfd,
7057 link_order->u.reloc.p->u.section);
7059 sym_name = link_order->u.reloc.p->u.name;
7060 if (! ((*info->callbacks->reloc_overflow)
7061 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7068 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7069 link_order->offset, size);
7075 /* The address of a reloc is relative to the section in a
7076 relocatable file, and is a virtual address in an executable
7078 offset = link_order->offset;
7079 if (! info->relocatable)
7080 offset += output_section->vma;
7082 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7084 irel[i].r_offset = offset;
7086 irel[i].r_addend = 0;
7088 if (bed->s->arch_size == 32)
7089 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7091 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7093 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7094 erel = rel_hdr->contents;
7095 if (rel_hdr->sh_type == SHT_REL)
7097 erel += (elf_section_data (output_section)->rel_count
7098 * bed->s->sizeof_rel);
7099 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7103 irel[0].r_addend = addend;
7104 erel += (elf_section_data (output_section)->rel_count
7105 * bed->s->sizeof_rela);
7106 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7109 ++elf_section_data (output_section)->rel_count;
7114 /* Do the final step of an ELF link. */
7117 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7119 bfd_boolean dynamic;
7120 bfd_boolean emit_relocs;
7122 struct elf_final_link_info finfo;
7123 register asection *o;
7124 register struct bfd_link_order *p;
7126 bfd_size_type max_contents_size;
7127 bfd_size_type max_external_reloc_size;
7128 bfd_size_type max_internal_reloc_count;
7129 bfd_size_type max_sym_count;
7130 bfd_size_type max_sym_shndx_count;
7132 Elf_Internal_Sym elfsym;
7134 Elf_Internal_Shdr *symtab_hdr;
7135 Elf_Internal_Shdr *symtab_shndx_hdr;
7136 Elf_Internal_Shdr *symstrtab_hdr;
7137 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7138 struct elf_outext_info eoinfo;
7140 size_t relativecount = 0;
7141 asection *reldyn = 0;
7144 if (! is_elf_hash_table (info->hash))
7148 abfd->flags |= DYNAMIC;
7150 dynamic = elf_hash_table (info)->dynamic_sections_created;
7151 dynobj = elf_hash_table (info)->dynobj;
7153 emit_relocs = (info->relocatable
7154 || info->emitrelocations
7155 || bed->elf_backend_emit_relocs);
7158 finfo.output_bfd = abfd;
7159 finfo.symstrtab = _bfd_elf_stringtab_init ();
7160 if (finfo.symstrtab == NULL)
7165 finfo.dynsym_sec = NULL;
7166 finfo.hash_sec = NULL;
7167 finfo.symver_sec = NULL;
7171 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7172 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7173 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7174 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7175 /* Note that it is OK if symver_sec is NULL. */
7178 finfo.contents = NULL;
7179 finfo.external_relocs = NULL;
7180 finfo.internal_relocs = NULL;
7181 finfo.external_syms = NULL;
7182 finfo.locsym_shndx = NULL;
7183 finfo.internal_syms = NULL;
7184 finfo.indices = NULL;
7185 finfo.sections = NULL;
7186 finfo.symbuf = NULL;
7187 finfo.symshndxbuf = NULL;
7188 finfo.symbuf_count = 0;
7189 finfo.shndxbuf_size = 0;
7191 /* Count up the number of relocations we will output for each output
7192 section, so that we know the sizes of the reloc sections. We
7193 also figure out some maximum sizes. */
7194 max_contents_size = 0;
7195 max_external_reloc_size = 0;
7196 max_internal_reloc_count = 0;
7198 max_sym_shndx_count = 0;
7200 for (o = abfd->sections; o != NULL; o = o->next)
7202 struct bfd_elf_section_data *esdo = elf_section_data (o);
7205 for (p = o->link_order_head; p != NULL; p = p->next)
7207 unsigned int reloc_count = 0;
7208 struct bfd_elf_section_data *esdi = NULL;
7209 unsigned int *rel_count1;
7211 if (p->type == bfd_section_reloc_link_order
7212 || p->type == bfd_symbol_reloc_link_order)
7214 else if (p->type == bfd_indirect_link_order)
7218 sec = p->u.indirect.section;
7219 esdi = elf_section_data (sec);
7221 /* Mark all sections which are to be included in the
7222 link. This will normally be every section. We need
7223 to do this so that we can identify any sections which
7224 the linker has decided to not include. */
7225 sec->linker_mark = TRUE;
7227 if (sec->flags & SEC_MERGE)
7230 if (info->relocatable || info->emitrelocations)
7231 reloc_count = sec->reloc_count;
7232 else if (bed->elf_backend_count_relocs)
7234 Elf_Internal_Rela * relocs;
7236 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7239 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7241 if (elf_section_data (o)->relocs != relocs)
7245 if (sec->rawsize > max_contents_size)
7246 max_contents_size = sec->rawsize;
7247 if (sec->size > max_contents_size)
7248 max_contents_size = sec->size;
7250 /* We are interested in just local symbols, not all
7252 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7253 && (sec->owner->flags & DYNAMIC) == 0)
7257 if (elf_bad_symtab (sec->owner))
7258 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7259 / bed->s->sizeof_sym);
7261 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7263 if (sym_count > max_sym_count)
7264 max_sym_count = sym_count;
7266 if (sym_count > max_sym_shndx_count
7267 && elf_symtab_shndx (sec->owner) != 0)
7268 max_sym_shndx_count = sym_count;
7270 if ((sec->flags & SEC_RELOC) != 0)
7274 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7275 if (ext_size > max_external_reloc_size)
7276 max_external_reloc_size = ext_size;
7277 if (sec->reloc_count > max_internal_reloc_count)
7278 max_internal_reloc_count = sec->reloc_count;
7283 if (reloc_count == 0)
7286 o->reloc_count += reloc_count;
7288 /* MIPS may have a mix of REL and RELA relocs on sections.
7289 To support this curious ABI we keep reloc counts in
7290 elf_section_data too. We must be careful to add the
7291 relocations from the input section to the right output
7292 count. FIXME: Get rid of one count. We have
7293 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7294 rel_count1 = &esdo->rel_count;
7297 bfd_boolean same_size;
7298 bfd_size_type entsize1;
7300 entsize1 = esdi->rel_hdr.sh_entsize;
7301 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7302 || entsize1 == bed->s->sizeof_rela);
7303 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7306 rel_count1 = &esdo->rel_count2;
7308 if (esdi->rel_hdr2 != NULL)
7310 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7311 unsigned int alt_count;
7312 unsigned int *rel_count2;
7314 BFD_ASSERT (entsize2 != entsize1
7315 && (entsize2 == bed->s->sizeof_rel
7316 || entsize2 == bed->s->sizeof_rela));
7318 rel_count2 = &esdo->rel_count2;
7320 rel_count2 = &esdo->rel_count;
7322 /* The following is probably too simplistic if the
7323 backend counts output relocs unusually. */
7324 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7325 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7326 *rel_count2 += alt_count;
7327 reloc_count -= alt_count;
7330 *rel_count1 += reloc_count;
7333 if (o->reloc_count > 0)
7334 o->flags |= SEC_RELOC;
7337 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7338 set it (this is probably a bug) and if it is set
7339 assign_section_numbers will create a reloc section. */
7340 o->flags &=~ SEC_RELOC;
7343 /* If the SEC_ALLOC flag is not set, force the section VMA to
7344 zero. This is done in elf_fake_sections as well, but forcing
7345 the VMA to 0 here will ensure that relocs against these
7346 sections are handled correctly. */
7347 if ((o->flags & SEC_ALLOC) == 0
7348 && ! o->user_set_vma)
7352 if (! info->relocatable && merged)
7353 elf_link_hash_traverse (elf_hash_table (info),
7354 _bfd_elf_link_sec_merge_syms, abfd);
7356 /* Figure out the file positions for everything but the symbol table
7357 and the relocs. We set symcount to force assign_section_numbers
7358 to create a symbol table. */
7359 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7360 BFD_ASSERT (! abfd->output_has_begun);
7361 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7364 /* That created the reloc sections. Set their sizes, and assign
7365 them file positions, and allocate some buffers. */
7366 for (o = abfd->sections; o != NULL; o = o->next)
7368 if ((o->flags & SEC_RELOC) != 0)
7370 if (!(_bfd_elf_link_size_reloc_section
7371 (abfd, &elf_section_data (o)->rel_hdr, o)))
7374 if (elf_section_data (o)->rel_hdr2
7375 && !(_bfd_elf_link_size_reloc_section
7376 (abfd, elf_section_data (o)->rel_hdr2, o)))
7380 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7381 to count upwards while actually outputting the relocations. */
7382 elf_section_data (o)->rel_count = 0;
7383 elf_section_data (o)->rel_count2 = 0;
7386 _bfd_elf_assign_file_positions_for_relocs (abfd);
7388 /* We have now assigned file positions for all the sections except
7389 .symtab and .strtab. We start the .symtab section at the current
7390 file position, and write directly to it. We build the .strtab
7391 section in memory. */
7392 bfd_get_symcount (abfd) = 0;
7393 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7394 /* sh_name is set in prep_headers. */
7395 symtab_hdr->sh_type = SHT_SYMTAB;
7396 /* sh_flags, sh_addr and sh_size all start off zero. */
7397 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7398 /* sh_link is set in assign_section_numbers. */
7399 /* sh_info is set below. */
7400 /* sh_offset is set just below. */
7401 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7403 off = elf_tdata (abfd)->next_file_pos;
7404 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7406 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7407 incorrect. We do not yet know the size of the .symtab section.
7408 We correct next_file_pos below, after we do know the size. */
7410 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7411 continuously seeking to the right position in the file. */
7412 if (! info->keep_memory || max_sym_count < 20)
7413 finfo.symbuf_size = 20;
7415 finfo.symbuf_size = max_sym_count;
7416 amt = finfo.symbuf_size;
7417 amt *= bed->s->sizeof_sym;
7418 finfo.symbuf = bfd_malloc (amt);
7419 if (finfo.symbuf == NULL)
7421 if (elf_numsections (abfd) > SHN_LORESERVE)
7423 /* Wild guess at number of output symbols. realloc'd as needed. */
7424 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7425 finfo.shndxbuf_size = amt;
7426 amt *= sizeof (Elf_External_Sym_Shndx);
7427 finfo.symshndxbuf = bfd_zmalloc (amt);
7428 if (finfo.symshndxbuf == NULL)
7432 /* Start writing out the symbol table. The first symbol is always a
7434 if (info->strip != strip_all
7437 elfsym.st_value = 0;
7440 elfsym.st_other = 0;
7441 elfsym.st_shndx = SHN_UNDEF;
7442 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7448 /* Some standard ELF linkers do this, but we don't because it causes
7449 bootstrap comparison failures. */
7450 /* Output a file symbol for the output file as the second symbol.
7451 We output this even if we are discarding local symbols, although
7452 I'm not sure if this is correct. */
7453 elfsym.st_value = 0;
7455 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7456 elfsym.st_other = 0;
7457 elfsym.st_shndx = SHN_ABS;
7458 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7459 &elfsym, bfd_abs_section_ptr, NULL))
7463 /* Output a symbol for each section. We output these even if we are
7464 discarding local symbols, since they are used for relocs. These
7465 symbols have no names. We store the index of each one in the
7466 index field of the section, so that we can find it again when
7467 outputting relocs. */
7468 if (info->strip != strip_all
7472 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7473 elfsym.st_other = 0;
7474 for (i = 1; i < elf_numsections (abfd); i++)
7476 o = bfd_section_from_elf_index (abfd, i);
7478 o->target_index = bfd_get_symcount (abfd);
7479 elfsym.st_shndx = i;
7480 if (info->relocatable || o == NULL)
7481 elfsym.st_value = 0;
7483 elfsym.st_value = o->vma;
7484 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7486 if (i == SHN_LORESERVE - 1)
7487 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7491 /* Allocate some memory to hold information read in from the input
7493 if (max_contents_size != 0)
7495 finfo.contents = bfd_malloc (max_contents_size);
7496 if (finfo.contents == NULL)
7500 if (max_external_reloc_size != 0)
7502 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7503 if (finfo.external_relocs == NULL)
7507 if (max_internal_reloc_count != 0)
7509 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7510 amt *= sizeof (Elf_Internal_Rela);
7511 finfo.internal_relocs = bfd_malloc (amt);
7512 if (finfo.internal_relocs == NULL)
7516 if (max_sym_count != 0)
7518 amt = max_sym_count * bed->s->sizeof_sym;
7519 finfo.external_syms = bfd_malloc (amt);
7520 if (finfo.external_syms == NULL)
7523 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7524 finfo.internal_syms = bfd_malloc (amt);
7525 if (finfo.internal_syms == NULL)
7528 amt = max_sym_count * sizeof (long);
7529 finfo.indices = bfd_malloc (amt);
7530 if (finfo.indices == NULL)
7533 amt = max_sym_count * sizeof (asection *);
7534 finfo.sections = bfd_malloc (amt);
7535 if (finfo.sections == NULL)
7539 if (max_sym_shndx_count != 0)
7541 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7542 finfo.locsym_shndx = bfd_malloc (amt);
7543 if (finfo.locsym_shndx == NULL)
7547 if (elf_hash_table (info)->tls_sec)
7549 bfd_vma base, end = 0;
7552 for (sec = elf_hash_table (info)->tls_sec;
7553 sec && (sec->flags & SEC_THREAD_LOCAL);
7556 bfd_vma size = sec->size;
7558 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7560 struct bfd_link_order *o;
7562 for (o = sec->link_order_head; o != NULL; o = o->next)
7563 if (size < o->offset + o->size)
7564 size = o->offset + o->size;
7566 end = sec->vma + size;
7568 base = elf_hash_table (info)->tls_sec->vma;
7569 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7570 elf_hash_table (info)->tls_size = end - base;
7573 /* Since ELF permits relocations to be against local symbols, we
7574 must have the local symbols available when we do the relocations.
7575 Since we would rather only read the local symbols once, and we
7576 would rather not keep them in memory, we handle all the
7577 relocations for a single input file at the same time.
7579 Unfortunately, there is no way to know the total number of local
7580 symbols until we have seen all of them, and the local symbol
7581 indices precede the global symbol indices. This means that when
7582 we are generating relocatable output, and we see a reloc against
7583 a global symbol, we can not know the symbol index until we have
7584 finished examining all the local symbols to see which ones we are
7585 going to output. To deal with this, we keep the relocations in
7586 memory, and don't output them until the end of the link. This is
7587 an unfortunate waste of memory, but I don't see a good way around
7588 it. Fortunately, it only happens when performing a relocatable
7589 link, which is not the common case. FIXME: If keep_memory is set
7590 we could write the relocs out and then read them again; I don't
7591 know how bad the memory loss will be. */
7593 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7594 sub->output_has_begun = FALSE;
7595 for (o = abfd->sections; o != NULL; o = o->next)
7597 for (p = o->link_order_head; p != NULL; p = p->next)
7599 if (p->type == bfd_indirect_link_order
7600 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7601 == bfd_target_elf_flavour)
7602 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7604 if (! sub->output_has_begun)
7606 if (! elf_link_input_bfd (&finfo, sub))
7608 sub->output_has_begun = TRUE;
7611 else if (p->type == bfd_section_reloc_link_order
7612 || p->type == bfd_symbol_reloc_link_order)
7614 if (! elf_reloc_link_order (abfd, info, o, p))
7619 if (! _bfd_default_link_order (abfd, info, o, p))
7625 /* Output any global symbols that got converted to local in a
7626 version script or due to symbol visibility. We do this in a
7627 separate step since ELF requires all local symbols to appear
7628 prior to any global symbols. FIXME: We should only do this if
7629 some global symbols were, in fact, converted to become local.
7630 FIXME: Will this work correctly with the Irix 5 linker? */
7631 eoinfo.failed = FALSE;
7632 eoinfo.finfo = &finfo;
7633 eoinfo.localsyms = TRUE;
7634 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7639 /* That wrote out all the local symbols. Finish up the symbol table
7640 with the global symbols. Even if we want to strip everything we
7641 can, we still need to deal with those global symbols that got
7642 converted to local in a version script. */
7644 /* The sh_info field records the index of the first non local symbol. */
7645 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7648 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7650 Elf_Internal_Sym sym;
7651 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7652 long last_local = 0;
7654 /* Write out the section symbols for the output sections. */
7661 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7664 for (s = abfd->sections; s != NULL; s = s->next)
7670 dynindx = elf_section_data (s)->dynindx;
7673 indx = elf_section_data (s)->this_idx;
7674 BFD_ASSERT (indx > 0);
7675 sym.st_shndx = indx;
7676 sym.st_value = s->vma;
7677 dest = dynsym + dynindx * bed->s->sizeof_sym;
7678 if (last_local < dynindx)
7679 last_local = dynindx;
7680 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7684 /* Write out the local dynsyms. */
7685 if (elf_hash_table (info)->dynlocal)
7687 struct elf_link_local_dynamic_entry *e;
7688 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7693 sym.st_size = e->isym.st_size;
7694 sym.st_other = e->isym.st_other;
7696 /* Copy the internal symbol as is.
7697 Note that we saved a word of storage and overwrote
7698 the original st_name with the dynstr_index. */
7701 if (e->isym.st_shndx != SHN_UNDEF
7702 && (e->isym.st_shndx < SHN_LORESERVE
7703 || e->isym.st_shndx > SHN_HIRESERVE))
7705 s = bfd_section_from_elf_index (e->input_bfd,
7709 elf_section_data (s->output_section)->this_idx;
7710 sym.st_value = (s->output_section->vma
7712 + e->isym.st_value);
7715 if (last_local < e->dynindx)
7716 last_local = e->dynindx;
7718 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7719 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7723 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7727 /* We get the global symbols from the hash table. */
7728 eoinfo.failed = FALSE;
7729 eoinfo.localsyms = FALSE;
7730 eoinfo.finfo = &finfo;
7731 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7736 /* If backend needs to output some symbols not present in the hash
7737 table, do it now. */
7738 if (bed->elf_backend_output_arch_syms)
7740 typedef bfd_boolean (*out_sym_func)
7741 (void *, const char *, Elf_Internal_Sym *, asection *,
7742 struct elf_link_hash_entry *);
7744 if (! ((*bed->elf_backend_output_arch_syms)
7745 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7749 /* Flush all symbols to the file. */
7750 if (! elf_link_flush_output_syms (&finfo, bed))
7753 /* Now we know the size of the symtab section. */
7754 off += symtab_hdr->sh_size;
7756 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7757 if (symtab_shndx_hdr->sh_name != 0)
7759 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7760 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7761 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7762 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7763 symtab_shndx_hdr->sh_size = amt;
7765 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7768 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7769 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7774 /* Finish up and write out the symbol string table (.strtab)
7776 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7777 /* sh_name was set in prep_headers. */
7778 symstrtab_hdr->sh_type = SHT_STRTAB;
7779 symstrtab_hdr->sh_flags = 0;
7780 symstrtab_hdr->sh_addr = 0;
7781 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
7782 symstrtab_hdr->sh_entsize = 0;
7783 symstrtab_hdr->sh_link = 0;
7784 symstrtab_hdr->sh_info = 0;
7785 /* sh_offset is set just below. */
7786 symstrtab_hdr->sh_addralign = 1;
7788 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
7789 elf_tdata (abfd)->next_file_pos = off;
7791 if (bfd_get_symcount (abfd) > 0)
7793 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
7794 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
7798 /* Adjust the relocs to have the correct symbol indices. */
7799 for (o = abfd->sections; o != NULL; o = o->next)
7801 if ((o->flags & SEC_RELOC) == 0)
7804 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
7805 elf_section_data (o)->rel_count,
7806 elf_section_data (o)->rel_hashes);
7807 if (elf_section_data (o)->rel_hdr2 != NULL)
7808 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
7809 elf_section_data (o)->rel_count2,
7810 (elf_section_data (o)->rel_hashes
7811 + elf_section_data (o)->rel_count));
7813 /* Set the reloc_count field to 0 to prevent write_relocs from
7814 trying to swap the relocs out itself. */
7818 if (dynamic && info->combreloc && dynobj != NULL)
7819 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
7821 /* If we are linking against a dynamic object, or generating a
7822 shared library, finish up the dynamic linking information. */
7825 bfd_byte *dyncon, *dynconend;
7827 /* Fix up .dynamic entries. */
7828 o = bfd_get_section_by_name (dynobj, ".dynamic");
7829 BFD_ASSERT (o != NULL);
7831 dyncon = o->contents;
7832 dynconend = o->contents + o->size;
7833 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
7835 Elf_Internal_Dyn dyn;
7839 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
7846 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
7848 switch (elf_section_data (reldyn)->this_hdr.sh_type)
7850 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
7851 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
7854 dyn.d_un.d_val = relativecount;
7861 name = info->init_function;
7864 name = info->fini_function;
7867 struct elf_link_hash_entry *h;
7869 h = elf_link_hash_lookup (elf_hash_table (info), name,
7870 FALSE, FALSE, TRUE);
7872 && (h->root.type == bfd_link_hash_defined
7873 || h->root.type == bfd_link_hash_defweak))
7875 dyn.d_un.d_val = h->root.u.def.value;
7876 o = h->root.u.def.section;
7877 if (o->output_section != NULL)
7878 dyn.d_un.d_val += (o->output_section->vma
7879 + o->output_offset);
7882 /* The symbol is imported from another shared
7883 library and does not apply to this one. */
7891 case DT_PREINIT_ARRAYSZ:
7892 name = ".preinit_array";
7894 case DT_INIT_ARRAYSZ:
7895 name = ".init_array";
7897 case DT_FINI_ARRAYSZ:
7898 name = ".fini_array";
7900 o = bfd_get_section_by_name (abfd, name);
7903 (*_bfd_error_handler)
7904 (_("%s: could not find output section %s"),
7905 bfd_get_filename (abfd), name);
7909 (*_bfd_error_handler)
7910 (_("warning: %s section has zero size"), name);
7911 dyn.d_un.d_val = o->size;
7914 case DT_PREINIT_ARRAY:
7915 name = ".preinit_array";
7918 name = ".init_array";
7921 name = ".fini_array";
7934 name = ".gnu.version_d";
7937 name = ".gnu.version_r";
7940 name = ".gnu.version";
7942 o = bfd_get_section_by_name (abfd, name);
7945 (*_bfd_error_handler)
7946 (_("%s: could not find output section %s"),
7947 bfd_get_filename (abfd), name);
7950 dyn.d_un.d_ptr = o->vma;
7957 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
7962 for (i = 1; i < elf_numsections (abfd); i++)
7964 Elf_Internal_Shdr *hdr;
7966 hdr = elf_elfsections (abfd)[i];
7967 if (hdr->sh_type == type
7968 && (hdr->sh_flags & SHF_ALLOC) != 0)
7970 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
7971 dyn.d_un.d_val += hdr->sh_size;
7974 if (dyn.d_un.d_val == 0
7975 || hdr->sh_addr < dyn.d_un.d_val)
7976 dyn.d_un.d_val = hdr->sh_addr;
7982 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
7986 /* If we have created any dynamic sections, then output them. */
7989 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
7992 for (o = dynobj->sections; o != NULL; o = o->next)
7994 if ((o->flags & SEC_HAS_CONTENTS) == 0
7996 || o->output_section == bfd_abs_section_ptr)
7998 if ((o->flags & SEC_LINKER_CREATED) == 0)
8000 /* At this point, we are only interested in sections
8001 created by _bfd_elf_link_create_dynamic_sections. */
8004 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8006 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8008 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8010 if (! bfd_set_section_contents (abfd, o->output_section,
8012 (file_ptr) o->output_offset,
8018 /* The contents of the .dynstr section are actually in a
8020 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8021 if (bfd_seek (abfd, off, SEEK_SET) != 0
8022 || ! _bfd_elf_strtab_emit (abfd,
8023 elf_hash_table (info)->dynstr))
8029 if (info->relocatable)
8031 bfd_boolean failed = FALSE;
8033 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8038 /* If we have optimized stabs strings, output them. */
8039 if (elf_hash_table (info)->stab_info != NULL)
8041 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8045 if (info->eh_frame_hdr)
8047 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8051 if (finfo.symstrtab != NULL)
8052 _bfd_stringtab_free (finfo.symstrtab);
8053 if (finfo.contents != NULL)
8054 free (finfo.contents);
8055 if (finfo.external_relocs != NULL)
8056 free (finfo.external_relocs);
8057 if (finfo.internal_relocs != NULL)
8058 free (finfo.internal_relocs);
8059 if (finfo.external_syms != NULL)
8060 free (finfo.external_syms);
8061 if (finfo.locsym_shndx != NULL)
8062 free (finfo.locsym_shndx);
8063 if (finfo.internal_syms != NULL)
8064 free (finfo.internal_syms);
8065 if (finfo.indices != NULL)
8066 free (finfo.indices);
8067 if (finfo.sections != NULL)
8068 free (finfo.sections);
8069 if (finfo.symbuf != NULL)
8070 free (finfo.symbuf);
8071 if (finfo.symshndxbuf != NULL)
8072 free (finfo.symshndxbuf);
8073 for (o = abfd->sections; o != NULL; o = o->next)
8075 if ((o->flags & SEC_RELOC) != 0
8076 && elf_section_data (o)->rel_hashes != NULL)
8077 free (elf_section_data (o)->rel_hashes);
8080 elf_tdata (abfd)->linker = TRUE;
8085 if (finfo.symstrtab != NULL)
8086 _bfd_stringtab_free (finfo.symstrtab);
8087 if (finfo.contents != NULL)
8088 free (finfo.contents);
8089 if (finfo.external_relocs != NULL)
8090 free (finfo.external_relocs);
8091 if (finfo.internal_relocs != NULL)
8092 free (finfo.internal_relocs);
8093 if (finfo.external_syms != NULL)
8094 free (finfo.external_syms);
8095 if (finfo.locsym_shndx != NULL)
8096 free (finfo.locsym_shndx);
8097 if (finfo.internal_syms != NULL)
8098 free (finfo.internal_syms);
8099 if (finfo.indices != NULL)
8100 free (finfo.indices);
8101 if (finfo.sections != NULL)
8102 free (finfo.sections);
8103 if (finfo.symbuf != NULL)
8104 free (finfo.symbuf);
8105 if (finfo.symshndxbuf != NULL)
8106 free (finfo.symshndxbuf);
8107 for (o = abfd->sections; o != NULL; o = o->next)
8109 if ((o->flags & SEC_RELOC) != 0
8110 && elf_section_data (o)->rel_hashes != NULL)
8111 free (elf_section_data (o)->rel_hashes);
8117 /* Garbage collect unused sections. */
8119 /* The mark phase of garbage collection. For a given section, mark
8120 it and any sections in this section's group, and all the sections
8121 which define symbols to which it refers. */
8123 typedef asection * (*gc_mark_hook_fn)
8124 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8125 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8128 elf_gc_mark (struct bfd_link_info *info,
8130 gc_mark_hook_fn gc_mark_hook)
8133 asection *group_sec;
8137 /* Mark all the sections in the group. */
8138 group_sec = elf_section_data (sec)->next_in_group;
8139 if (group_sec && !group_sec->gc_mark)
8140 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
8143 /* Look through the section relocs. */
8145 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8147 Elf_Internal_Rela *relstart, *rel, *relend;
8148 Elf_Internal_Shdr *symtab_hdr;
8149 struct elf_link_hash_entry **sym_hashes;
8152 bfd *input_bfd = sec->owner;
8153 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8154 Elf_Internal_Sym *isym = NULL;
8157 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8158 sym_hashes = elf_sym_hashes (input_bfd);
8160 /* Read the local symbols. */
8161 if (elf_bad_symtab (input_bfd))
8163 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8167 extsymoff = nlocsyms = symtab_hdr->sh_info;
8169 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8170 if (isym == NULL && nlocsyms != 0)
8172 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8178 /* Read the relocations. */
8179 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8181 if (relstart == NULL)
8186 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8188 if (bed->s->arch_size == 32)
8193 for (rel = relstart; rel < relend; rel++)
8195 unsigned long r_symndx;
8197 struct elf_link_hash_entry *h;
8199 r_symndx = rel->r_info >> r_sym_shift;
8203 if (r_symndx >= nlocsyms
8204 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8206 h = sym_hashes[r_symndx - extsymoff];
8207 while (h->root.type == bfd_link_hash_indirect
8208 || h->root.type == bfd_link_hash_warning)
8209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8210 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8214 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8217 if (rsec && !rsec->gc_mark)
8219 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8221 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
8230 if (elf_section_data (sec)->relocs != relstart)
8233 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8235 if (! info->keep_memory)
8238 symtab_hdr->contents = (unsigned char *) isym;
8245 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8248 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8252 if (h->root.type == bfd_link_hash_warning)
8253 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8255 if (h->dynindx != -1
8256 && ((h->root.type != bfd_link_hash_defined
8257 && h->root.type != bfd_link_hash_defweak)
8258 || h->root.u.def.section->gc_mark))
8259 h->dynindx = (*idx)++;
8264 /* The sweep phase of garbage collection. Remove all garbage sections. */
8266 typedef bfd_boolean (*gc_sweep_hook_fn)
8267 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8270 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8274 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8278 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8281 for (o = sub->sections; o != NULL; o = o->next)
8283 /* Keep special sections. Keep .debug sections. */
8284 if ((o->flags & SEC_LINKER_CREATED)
8285 || (o->flags & SEC_DEBUGGING))
8291 /* Skip sweeping sections already excluded. */
8292 if (o->flags & SEC_EXCLUDE)
8295 /* Since this is early in the link process, it is simple
8296 to remove a section from the output. */
8297 o->flags |= SEC_EXCLUDE;
8299 /* But we also have to update some of the relocation
8300 info we collected before. */
8302 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8304 Elf_Internal_Rela *internal_relocs;
8308 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8310 if (internal_relocs == NULL)
8313 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8315 if (elf_section_data (o)->relocs != internal_relocs)
8316 free (internal_relocs);
8324 /* Remove the symbols that were in the swept sections from the dynamic
8325 symbol table. GCFIXME: Anyone know how to get them out of the
8326 static symbol table as well? */
8330 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8332 elf_hash_table (info)->dynsymcount = i;
8338 /* Propagate collected vtable information. This is called through
8339 elf_link_hash_traverse. */
8342 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8344 if (h->root.type == bfd_link_hash_warning)
8345 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8347 /* Those that are not vtables. */
8348 if (h->vtable_parent == NULL)
8351 /* Those vtables that do not have parents, we cannot merge. */
8352 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8355 /* If we've already been done, exit. */
8356 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8359 /* Make sure the parent's table is up to date. */
8360 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8362 if (h->vtable_entries_used == NULL)
8364 /* None of this table's entries were referenced. Re-use the
8366 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8367 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8372 bfd_boolean *cu, *pu;
8374 /* Or the parent's entries into ours. */
8375 cu = h->vtable_entries_used;
8377 pu = h->vtable_parent->vtable_entries_used;
8380 const struct elf_backend_data *bed;
8381 unsigned int log_file_align;
8383 bed = get_elf_backend_data (h->root.u.def.section->owner);
8384 log_file_align = bed->s->log_file_align;
8385 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8400 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8403 bfd_vma hstart, hend;
8404 Elf_Internal_Rela *relstart, *relend, *rel;
8405 const struct elf_backend_data *bed;
8406 unsigned int log_file_align;
8408 if (h->root.type == bfd_link_hash_warning)
8409 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8411 /* Take care of both those symbols that do not describe vtables as
8412 well as those that are not loaded. */
8413 if (h->vtable_parent == NULL)
8416 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8417 || h->root.type == bfd_link_hash_defweak);
8419 sec = h->root.u.def.section;
8420 hstart = h->root.u.def.value;
8421 hend = hstart + h->size;
8423 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8425 return *(bfd_boolean *) okp = FALSE;
8426 bed = get_elf_backend_data (sec->owner);
8427 log_file_align = bed->s->log_file_align;
8429 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8431 for (rel = relstart; rel < relend; ++rel)
8432 if (rel->r_offset >= hstart && rel->r_offset < hend)
8434 /* If the entry is in use, do nothing. */
8435 if (h->vtable_entries_used
8436 && (rel->r_offset - hstart) < h->vtable_entries_size)
8438 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8439 if (h->vtable_entries_used[entry])
8442 /* Otherwise, kill it. */
8443 rel->r_offset = rel->r_info = rel->r_addend = 0;
8449 /* Mark sections containing dynamically referenced symbols. This is called
8450 through elf_link_hash_traverse. */
8453 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8454 void *okp ATTRIBUTE_UNUSED)
8456 if (h->root.type == bfd_link_hash_warning)
8457 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8459 if ((h->root.type == bfd_link_hash_defined
8460 || h->root.type == bfd_link_hash_defweak)
8461 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8462 h->root.u.def.section->flags |= SEC_KEEP;
8467 /* Do mark and sweep of unused sections. */
8470 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8472 bfd_boolean ok = TRUE;
8474 asection * (*gc_mark_hook)
8475 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8476 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8478 if (!get_elf_backend_data (abfd)->can_gc_sections
8479 || info->relocatable
8480 || info->emitrelocations
8482 || !is_elf_hash_table (info->hash))
8484 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8488 /* Apply transitive closure to the vtable entry usage info. */
8489 elf_link_hash_traverse (elf_hash_table (info),
8490 elf_gc_propagate_vtable_entries_used,
8495 /* Kill the vtable relocations that were not used. */
8496 elf_link_hash_traverse (elf_hash_table (info),
8497 elf_gc_smash_unused_vtentry_relocs,
8502 /* Mark dynamically referenced symbols. */
8503 if (elf_hash_table (info)->dynamic_sections_created)
8504 elf_link_hash_traverse (elf_hash_table (info),
8505 elf_gc_mark_dynamic_ref_symbol,
8510 /* Grovel through relocs to find out who stays ... */
8511 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8512 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8516 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8519 for (o = sub->sections; o != NULL; o = o->next)
8521 if (o->flags & SEC_KEEP)
8523 /* _bfd_elf_discard_section_eh_frame knows how to discard
8524 orphaned FDEs so don't mark sections referenced by the
8525 EH frame section. */
8526 if (strcmp (o->name, ".eh_frame") == 0)
8528 else if (!elf_gc_mark (info, o, gc_mark_hook))
8534 /* ... and mark SEC_EXCLUDE for those that go. */
8535 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8541 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8544 bfd_elf_gc_record_vtinherit (bfd *abfd,
8546 struct elf_link_hash_entry *h,
8549 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8550 struct elf_link_hash_entry **search, *child;
8551 bfd_size_type extsymcount;
8552 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8554 /* The sh_info field of the symtab header tells us where the
8555 external symbols start. We don't care about the local symbols at
8557 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8558 if (!elf_bad_symtab (abfd))
8559 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8561 sym_hashes = elf_sym_hashes (abfd);
8562 sym_hashes_end = sym_hashes + extsymcount;
8564 /* Hunt down the child symbol, which is in this section at the same
8565 offset as the relocation. */
8566 for (search = sym_hashes; search != sym_hashes_end; ++search)
8568 if ((child = *search) != NULL
8569 && (child->root.type == bfd_link_hash_defined
8570 || child->root.type == bfd_link_hash_defweak)
8571 && child->root.u.def.section == sec
8572 && child->root.u.def.value == offset)
8576 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8577 bfd_archive_filename (abfd), sec->name,
8578 (unsigned long) offset);
8579 bfd_set_error (bfd_error_invalid_operation);
8585 /* This *should* only be the absolute section. It could potentially
8586 be that someone has defined a non-global vtable though, which
8587 would be bad. It isn't worth paging in the local symbols to be
8588 sure though; that case should simply be handled by the assembler. */
8590 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8593 child->vtable_parent = h;
8598 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8601 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8602 asection *sec ATTRIBUTE_UNUSED,
8603 struct elf_link_hash_entry *h,
8606 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8607 unsigned int log_file_align = bed->s->log_file_align;
8609 if (addend >= h->vtable_entries_size)
8611 size_t size, bytes, file_align;
8612 bfd_boolean *ptr = h->vtable_entries_used;
8614 /* While the symbol is undefined, we have to be prepared to handle
8616 file_align = 1 << log_file_align;
8617 if (h->root.type == bfd_link_hash_undefined)
8618 size = addend + file_align;
8624 /* Oops! We've got a reference past the defined end of
8625 the table. This is probably a bug -- shall we warn? */
8626 size = addend + file_align;
8629 size = (size + file_align - 1) & -file_align;
8631 /* Allocate one extra entry for use as a "done" flag for the
8632 consolidation pass. */
8633 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8637 ptr = bfd_realloc (ptr - 1, bytes);
8643 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8644 * sizeof (bfd_boolean));
8645 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8649 ptr = bfd_zmalloc (bytes);
8654 /* And arrange for that done flag to be at index -1. */
8655 h->vtable_entries_used = ptr + 1;
8656 h->vtable_entries_size = size;
8659 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8664 struct alloc_got_off_arg {
8666 unsigned int got_elt_size;
8669 /* We need a special top-level link routine to convert got reference counts
8670 to real got offsets. */
8673 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8675 struct alloc_got_off_arg *gofarg = arg;
8677 if (h->root.type == bfd_link_hash_warning)
8678 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8680 if (h->got.refcount > 0)
8682 h->got.offset = gofarg->gotoff;
8683 gofarg->gotoff += gofarg->got_elt_size;
8686 h->got.offset = (bfd_vma) -1;
8691 /* And an accompanying bit to work out final got entry offsets once
8692 we're done. Should be called from final_link. */
8695 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8696 struct bfd_link_info *info)
8699 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8701 unsigned int got_elt_size = bed->s->arch_size / 8;
8702 struct alloc_got_off_arg gofarg;
8704 if (! is_elf_hash_table (info->hash))
8707 /* The GOT offset is relative to the .got section, but the GOT header is
8708 put into the .got.plt section, if the backend uses it. */
8709 if (bed->want_got_plt)
8712 gotoff = bed->got_header_size;
8714 /* Do the local .got entries first. */
8715 for (i = info->input_bfds; i; i = i->link_next)
8717 bfd_signed_vma *local_got;
8718 bfd_size_type j, locsymcount;
8719 Elf_Internal_Shdr *symtab_hdr;
8721 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8724 local_got = elf_local_got_refcounts (i);
8728 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8729 if (elf_bad_symtab (i))
8730 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8732 locsymcount = symtab_hdr->sh_info;
8734 for (j = 0; j < locsymcount; ++j)
8736 if (local_got[j] > 0)
8738 local_got[j] = gotoff;
8739 gotoff += got_elt_size;
8742 local_got[j] = (bfd_vma) -1;
8746 /* Then the global .got entries. .plt refcounts are handled by
8747 adjust_dynamic_symbol */
8748 gofarg.gotoff = gotoff;
8749 gofarg.got_elt_size = got_elt_size;
8750 elf_link_hash_traverse (elf_hash_table (info),
8751 elf_gc_allocate_got_offsets,
8756 /* Many folk need no more in the way of final link than this, once
8757 got entry reference counting is enabled. */
8760 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8762 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8765 /* Invoke the regular ELF backend linker to do all the work. */
8766 return bfd_elf_final_link (abfd, info);
8770 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8772 struct elf_reloc_cookie *rcookie = cookie;
8774 if (rcookie->bad_symtab)
8775 rcookie->rel = rcookie->rels;
8777 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8779 unsigned long r_symndx;
8781 if (! rcookie->bad_symtab)
8782 if (rcookie->rel->r_offset > offset)
8784 if (rcookie->rel->r_offset != offset)
8787 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
8788 if (r_symndx == SHN_UNDEF)
8791 if (r_symndx >= rcookie->locsymcount
8792 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8794 struct elf_link_hash_entry *h;
8796 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8798 while (h->root.type == bfd_link_hash_indirect
8799 || h->root.type == bfd_link_hash_warning)
8800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8802 if ((h->root.type == bfd_link_hash_defined
8803 || h->root.type == bfd_link_hash_defweak)
8804 && elf_discarded_section (h->root.u.def.section))
8811 /* It's not a relocation against a global symbol,
8812 but it could be a relocation against a local
8813 symbol for a discarded section. */
8815 Elf_Internal_Sym *isym;
8817 /* Need to: get the symbol; get the section. */
8818 isym = &rcookie->locsyms[r_symndx];
8819 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8821 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
8822 if (isec != NULL && elf_discarded_section (isec))
8831 /* Discard unneeded references to discarded sections.
8832 Returns TRUE if any section's size was changed. */
8833 /* This function assumes that the relocations are in sorted order,
8834 which is true for all known assemblers. */
8837 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
8839 struct elf_reloc_cookie cookie;
8840 asection *stab, *eh;
8841 Elf_Internal_Shdr *symtab_hdr;
8842 const struct elf_backend_data *bed;
8845 bfd_boolean ret = FALSE;
8847 if (info->traditional_format
8848 || !is_elf_hash_table (info->hash))
8851 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8853 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8856 bed = get_elf_backend_data (abfd);
8858 if ((abfd->flags & DYNAMIC) != 0)
8861 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8862 if (info->relocatable
8865 || bfd_is_abs_section (eh->output_section))))
8868 stab = bfd_get_section_by_name (abfd, ".stab");
8871 || bfd_is_abs_section (stab->output_section)
8872 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
8877 && bed->elf_backend_discard_info == NULL)
8880 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8882 cookie.sym_hashes = elf_sym_hashes (abfd);
8883 cookie.bad_symtab = elf_bad_symtab (abfd);
8884 if (cookie.bad_symtab)
8886 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8887 cookie.extsymoff = 0;
8891 cookie.locsymcount = symtab_hdr->sh_info;
8892 cookie.extsymoff = symtab_hdr->sh_info;
8895 if (bed->s->arch_size == 32)
8896 cookie.r_sym_shift = 8;
8898 cookie.r_sym_shift = 32;
8900 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8901 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8903 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8904 cookie.locsymcount, 0,
8906 if (cookie.locsyms == NULL)
8913 count = stab->reloc_count;
8915 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
8917 if (cookie.rels != NULL)
8919 cookie.rel = cookie.rels;
8920 cookie.relend = cookie.rels;
8921 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8922 if (_bfd_discard_section_stabs (abfd, stab,
8923 elf_section_data (stab)->sec_info,
8924 bfd_elf_reloc_symbol_deleted_p,
8927 if (elf_section_data (stab)->relocs != cookie.rels)
8935 count = eh->reloc_count;
8937 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
8939 cookie.rel = cookie.rels;
8940 cookie.relend = cookie.rels;
8941 if (cookie.rels != NULL)
8942 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8944 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
8945 bfd_elf_reloc_symbol_deleted_p,
8949 if (cookie.rels != NULL
8950 && elf_section_data (eh)->relocs != cookie.rels)
8954 if (bed->elf_backend_discard_info != NULL
8955 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
8958 if (cookie.locsyms != NULL
8959 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8961 if (! info->keep_memory)
8962 free (cookie.locsyms);
8964 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8968 if (info->eh_frame_hdr
8969 && !info->relocatable
8970 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))