1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "elf32-hppa.h"
35 #include "elf32-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
111 : ldw -24(%sp),%rp ; restore the original rp
114 : be,n 0(%sr0,%rp) ; inter-space return. */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
148 #define ELIMINATE_COPY_RELOCS 1
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
154 hppa_stub_import_shared,
159 struct elf32_hppa_stub_hash_entry {
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
164 /* The stub section. */
167 /* Offset within stub_sec of the beginning of this stub. */
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
175 enum elf32_hppa_stub_type stub_type;
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
185 struct elf32_hppa_link_hash_entry {
187 struct elf_link_hash_entry elf;
189 /* A pointer to the most recently used stub hash entry against this
191 struct elf32_hppa_stub_hash_entry *stub_cache;
193 /* Used to count relocations for delayed sizing of relocation
195 struct elf32_hppa_dyn_reloc_entry {
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
200 /* The input section of the reloc. */
203 /* Number of relocs copied in this section. */
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
216 struct elf32_hppa_link_hash_table {
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
224 /* Linker stub bfd. */
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
234 /* This is the section to which stubs in the group will be
237 /* The stub section. */
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
247 /* Short-cuts to get to dynamic linker sections. */
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
284 /* Assorted hash table functions. */
286 /* Initialize an entry in the stub hash table. */
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
293 /* Allocate the structure if it has not already been allocated by a
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
307 struct elf32_hppa_stub_hash_entry *eh;
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
323 /* Initialize an entry in the link hash table. */
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
330 /* Allocate the structure if it has not already been allocated by a
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
344 struct elf32_hppa_link_hash_entry *eh;
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
366 ret = bfd_malloc (amt);
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
399 return &ret->elf.root;
402 /* Free the derived linker hash table. */
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
414 /* Build a name for an entry in the stub hash table. */
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
477 stub_entry = hash->stub_cache;
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
490 hash->stub_cache = stub_entry;
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
504 struct elf32_hppa_link_hash_table *htab)
508 struct elf32_hppa_stub_hash_entry *stub_entry;
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
534 htab->stub_group[section->id].stub_sec = stub_sec;
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
540 if (stub_entry == NULL)
542 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
554 /* Determine the type of stub needed, if any, for a call. */
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
561 struct bfd_link_info *info)
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
573 || !hash->elf.def_regular
574 || hash->elf.root.type == bfd_link_hash_defweak))
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
595 max_branch_offset = (1 << (17-1)) << 2;
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
599 max_branch_offset = (1 << (12-1)) << 2;
601 else /* R_PARISC_PCREL22F. */
603 max_branch_offset = (1 << (22-1)) << 2;
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
609 return hppa_stub_none;
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
647 #define LDW_R1_DLT LDW_R1_R19
649 #define LDW_R1_DLT LDW_R1_DP
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
678 stub_bfd = stub_sec->owner;
680 switch (stub_entry->stub_type)
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
730 off &= ~ (bfd_vma) 1;
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
738 if (stub_entry->stub_type == hppa_stub_import_shared)
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
754 if (htab->multi_subspace)
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
794 (*_bfd_error_handler)
795 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 stub_entry->target_section->owner,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->size;
829 stub_sec->size += size;
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
868 if (stub_entry->stub_type == hppa_stub_long_branch)
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
872 else if (stub_entry->stub_type == hppa_stub_export)
874 else /* hppa_stub_import or hppa_stub_import_shared. */
876 if (htab->multi_subspace)
882 stub_entry->stub_sec->size += size;
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
890 elf32_hppa_object_p (bfd *abfd)
892 Elf_Internal_Ehdr * i_ehdrp;
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
904 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
906 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
907 but the kernel produces corefiles with OSABI=SysV. */
908 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
909 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
914 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
918 flags = i_ehdrp->e_flags;
919 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
922 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
924 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
926 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
927 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
928 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
933 /* Create the .plt and .got sections, and set up our hash table
934 short-cuts to various dynamic sections. */
937 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
939 struct elf32_hppa_link_hash_table *htab;
941 /* Don't try to create the .plt and .got twice. */
942 htab = hppa_link_hash_table (info);
943 if (htab->splt != NULL)
946 /* Call the generic code to do most of the work. */
947 if (! _bfd_elf_create_dynamic_sections (abfd, info))
950 htab->splt = bfd_get_section_by_name (abfd, ".plt");
951 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
953 htab->sgot = bfd_get_section_by_name (abfd, ".got");
954 htab->srelgot = bfd_make_section (abfd, ".rela.got");
955 if (htab->srelgot == NULL
956 || ! bfd_set_section_flags (abfd, htab->srelgot,
963 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
966 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
967 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
972 /* Copy the extra info we tack onto an elf_link_hash_entry. */
975 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
976 struct elf_link_hash_entry *dir,
977 struct elf_link_hash_entry *ind)
979 struct elf32_hppa_link_hash_entry *edir, *eind;
981 edir = (struct elf32_hppa_link_hash_entry *) dir;
982 eind = (struct elf32_hppa_link_hash_entry *) ind;
984 if (eind->dyn_relocs != NULL)
986 if (edir->dyn_relocs != NULL)
988 struct elf32_hppa_dyn_reloc_entry **pp;
989 struct elf32_hppa_dyn_reloc_entry *p;
991 if (ind->root.type == bfd_link_hash_indirect)
994 /* Add reloc counts against the weak sym to the strong sym
995 list. Merge any entries against the same section. */
996 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
998 struct elf32_hppa_dyn_reloc_entry *q;
1000 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1001 if (q->sec == p->sec)
1003 #if RELATIVE_DYNRELOCS
1004 q->relative_count += p->relative_count;
1006 q->count += p->count;
1013 *pp = edir->dyn_relocs;
1016 edir->dyn_relocs = eind->dyn_relocs;
1017 eind->dyn_relocs = NULL;
1020 if (ELIMINATE_COPY_RELOCS
1021 && ind->root.type != bfd_link_hash_indirect
1022 && dir->dynamic_adjusted)
1024 /* If called to transfer flags for a weakdef during processing
1025 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1026 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1027 dir->ref_dynamic |= ind->ref_dynamic;
1028 dir->ref_regular |= ind->ref_regular;
1029 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1030 dir->needs_plt |= ind->needs_plt;
1033 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1036 /* Look through the relocs for a section during the first phase, and
1037 calculate needed space in the global offset table, procedure linkage
1038 table, and dynamic reloc sections. At this point we haven't
1039 necessarily read all the input files. */
1042 elf32_hppa_check_relocs (bfd *abfd,
1043 struct bfd_link_info *info,
1045 const Elf_Internal_Rela *relocs)
1047 Elf_Internal_Shdr *symtab_hdr;
1048 struct elf_link_hash_entry **sym_hashes;
1049 const Elf_Internal_Rela *rel;
1050 const Elf_Internal_Rela *rel_end;
1051 struct elf32_hppa_link_hash_table *htab;
1053 asection *stubreloc;
1055 if (info->relocatable)
1058 htab = hppa_link_hash_table (info);
1059 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1060 sym_hashes = elf_sym_hashes (abfd);
1064 rel_end = relocs + sec->reloc_count;
1065 for (rel = relocs; rel < rel_end; rel++)
1074 unsigned int r_symndx, r_type;
1075 struct elf32_hppa_link_hash_entry *h;
1078 r_symndx = ELF32_R_SYM (rel->r_info);
1080 if (r_symndx < symtab_hdr->sh_info)
1083 h = ((struct elf32_hppa_link_hash_entry *)
1084 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1086 r_type = ELF32_R_TYPE (rel->r_info);
1090 case R_PARISC_DLTIND14F:
1091 case R_PARISC_DLTIND14R:
1092 case R_PARISC_DLTIND21L:
1093 /* This symbol requires a global offset table entry. */
1094 need_entry = NEED_GOT;
1097 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1098 case R_PARISC_PLABEL21L:
1099 case R_PARISC_PLABEL32:
1100 /* If the addend is non-zero, we break badly. */
1101 if (rel->r_addend != 0)
1104 /* If we are creating a shared library, then we need to
1105 create a PLT entry for all PLABELs, because PLABELs with
1106 local symbols may be passed via a pointer to another
1107 object. Additionally, output a dynamic relocation
1108 pointing to the PLT entry.
1109 For executables, the original 32-bit ABI allowed two
1110 different styles of PLABELs (function pointers): For
1111 global functions, the PLABEL word points into the .plt
1112 two bytes past a (function address, gp) pair, and for
1113 local functions the PLABEL points directly at the
1114 function. The magic +2 for the first type allows us to
1115 differentiate between the two. As you can imagine, this
1116 is a real pain when it comes to generating code to call
1117 functions indirectly or to compare function pointers.
1118 We avoid the mess by always pointing a PLABEL into the
1119 .plt, even for local functions. */
1120 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1123 case R_PARISC_PCREL12F:
1124 htab->has_12bit_branch = 1;
1127 case R_PARISC_PCREL17C:
1128 case R_PARISC_PCREL17F:
1129 htab->has_17bit_branch = 1;
1132 case R_PARISC_PCREL22F:
1133 htab->has_22bit_branch = 1;
1135 /* Function calls might need to go through the .plt, and
1136 might require long branch stubs. */
1139 /* We know local syms won't need a .plt entry, and if
1140 they need a long branch stub we can't guarantee that
1141 we can reach the stub. So just flag an error later
1142 if we're doing a shared link and find we need a long
1148 /* Global symbols will need a .plt entry if they remain
1149 global, and in most cases won't need a long branch
1150 stub. Unfortunately, we have to cater for the case
1151 where a symbol is forced local by versioning, or due
1152 to symbolic linking, and we lose the .plt entry. */
1153 need_entry = NEED_PLT;
1154 if (h->elf.type == STT_PARISC_MILLI)
1159 case R_PARISC_SEGBASE: /* Used to set segment base. */
1160 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1161 case R_PARISC_PCREL14F: /* PC relative load/store. */
1162 case R_PARISC_PCREL14R:
1163 case R_PARISC_PCREL17R: /* External branches. */
1164 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1165 case R_PARISC_PCREL32:
1166 /* We don't need to propagate the relocation if linking a
1167 shared object since these are section relative. */
1170 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1171 case R_PARISC_DPREL14R:
1172 case R_PARISC_DPREL21L:
1175 (*_bfd_error_handler)
1176 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1178 elf_hppa_howto_table[r_type].name);
1179 bfd_set_error (bfd_error_bad_value);
1184 case R_PARISC_DIR17F: /* Used for external branches. */
1185 case R_PARISC_DIR17R:
1186 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1187 case R_PARISC_DIR14R:
1188 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1189 case R_PARISC_DIR32: /* .word relocs. */
1190 /* We may want to output a dynamic relocation later. */
1191 need_entry = NEED_DYNREL;
1194 /* This relocation describes the C++ object vtable hierarchy.
1195 Reconstruct it for later use during GC. */
1196 case R_PARISC_GNU_VTINHERIT:
1197 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
1201 /* This relocation describes which C++ vtable entries are actually
1202 used. Record for later use during GC. */
1203 case R_PARISC_GNU_VTENTRY:
1204 if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
1212 /* Now carry out our orders. */
1213 if (need_entry & NEED_GOT)
1215 /* Allocate space for a GOT entry, as well as a dynamic
1216 relocation for this entry. */
1217 if (htab->sgot == NULL)
1219 if (htab->elf.dynobj == NULL)
1220 htab->elf.dynobj = abfd;
1221 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1227 h->elf.got.refcount += 1;
1231 bfd_signed_vma *local_got_refcounts;
1233 /* This is a global offset table entry for a local symbol. */
1234 local_got_refcounts = elf_local_got_refcounts (abfd);
1235 if (local_got_refcounts == NULL)
1239 /* Allocate space for local got offsets and local
1240 plt offsets. Done this way to save polluting
1241 elf_obj_tdata with another target specific
1243 size = symtab_hdr->sh_info;
1244 size *= 2 * sizeof (bfd_signed_vma);
1245 local_got_refcounts = bfd_zalloc (abfd, size);
1246 if (local_got_refcounts == NULL)
1248 elf_local_got_refcounts (abfd) = local_got_refcounts;
1250 local_got_refcounts[r_symndx] += 1;
1254 if (need_entry & NEED_PLT)
1256 /* If we are creating a shared library, and this is a reloc
1257 against a weak symbol or a global symbol in a dynamic
1258 object, then we will be creating an import stub and a
1259 .plt entry for the symbol. Similarly, on a normal link
1260 to symbols defined in a dynamic object we'll need the
1261 import stub and a .plt entry. We don't know yet whether
1262 the symbol is defined or not, so make an entry anyway and
1263 clean up later in adjust_dynamic_symbol. */
1264 if ((sec->flags & SEC_ALLOC) != 0)
1268 h->elf.needs_plt = 1;
1269 h->elf.plt.refcount += 1;
1271 /* If this .plt entry is for a plabel, mark it so
1272 that adjust_dynamic_symbol will keep the entry
1273 even if it appears to be local. */
1274 if (need_entry & PLT_PLABEL)
1277 else if (need_entry & PLT_PLABEL)
1279 bfd_signed_vma *local_got_refcounts;
1280 bfd_signed_vma *local_plt_refcounts;
1282 local_got_refcounts = elf_local_got_refcounts (abfd);
1283 if (local_got_refcounts == NULL)
1287 /* Allocate space for local got offsets and local
1289 size = symtab_hdr->sh_info;
1290 size *= 2 * sizeof (bfd_signed_vma);
1291 local_got_refcounts = bfd_zalloc (abfd, size);
1292 if (local_got_refcounts == NULL)
1294 elf_local_got_refcounts (abfd) = local_got_refcounts;
1296 local_plt_refcounts = (local_got_refcounts
1297 + symtab_hdr->sh_info);
1298 local_plt_refcounts[r_symndx] += 1;
1303 if (need_entry & NEED_DYNREL)
1305 /* Flag this symbol as having a non-got, non-plt reference
1306 so that we generate copy relocs if it turns out to be
1308 if (h != NULL && !info->shared)
1309 h->elf.non_got_ref = 1;
1311 /* If we are creating a shared library then we need to copy
1312 the reloc into the shared library. However, if we are
1313 linking with -Bsymbolic, we need only copy absolute
1314 relocs or relocs against symbols that are not defined in
1315 an object we are including in the link. PC- or DP- or
1316 DLT-relative relocs against any local sym or global sym
1317 with DEF_REGULAR set, can be discarded. At this point we
1318 have not seen all the input files, so it is possible that
1319 DEF_REGULAR is not set now but will be set later (it is
1320 never cleared). We account for that possibility below by
1321 storing information in the dyn_relocs field of the
1324 A similar situation to the -Bsymbolic case occurs when
1325 creating shared libraries and symbol visibility changes
1326 render the symbol local.
1328 As it turns out, all the relocs we will be creating here
1329 are absolute, so we cannot remove them on -Bsymbolic
1330 links or visibility changes anyway. A STUB_REL reloc
1331 is absolute too, as in that case it is the reloc in the
1332 stub we will be creating, rather than copying the PCREL
1333 reloc in the branch.
1335 If on the other hand, we are creating an executable, we
1336 may need to keep relocations for symbols satisfied by a
1337 dynamic library if we manage to avoid copy relocs for the
1340 && (sec->flags & SEC_ALLOC) != 0
1341 && (IS_ABSOLUTE_RELOC (r_type)
1344 || h->elf.root.type == bfd_link_hash_defweak
1345 || !h->elf.def_regular))))
1346 || (ELIMINATE_COPY_RELOCS
1348 && (sec->flags & SEC_ALLOC) != 0
1350 && (h->elf.root.type == bfd_link_hash_defweak
1351 || !h->elf.def_regular)))
1353 struct elf32_hppa_dyn_reloc_entry *p;
1354 struct elf32_hppa_dyn_reloc_entry **head;
1356 /* Create a reloc section in dynobj and make room for
1363 name = (bfd_elf_string_from_elf_section
1365 elf_elfheader (abfd)->e_shstrndx,
1366 elf_section_data (sec)->rel_hdr.sh_name));
1369 (*_bfd_error_handler)
1370 (_("Could not find relocation section for %s"),
1372 bfd_set_error (bfd_error_bad_value);
1376 if (htab->elf.dynobj == NULL)
1377 htab->elf.dynobj = abfd;
1379 dynobj = htab->elf.dynobj;
1380 sreloc = bfd_get_section_by_name (dynobj, name);
1385 sreloc = bfd_make_section (dynobj, name);
1386 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1387 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1388 if ((sec->flags & SEC_ALLOC) != 0)
1389 flags |= SEC_ALLOC | SEC_LOAD;
1391 || !bfd_set_section_flags (dynobj, sreloc, flags)
1392 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1396 elf_section_data (sec)->sreloc = sreloc;
1399 /* If this is a global symbol, we count the number of
1400 relocations we need for this symbol. */
1403 head = &h->dyn_relocs;
1407 /* Track dynamic relocs needed for local syms too.
1408 We really need local syms available to do this
1412 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1417 head = ((struct elf32_hppa_dyn_reloc_entry **)
1418 &elf_section_data (s)->local_dynrel);
1422 if (p == NULL || p->sec != sec)
1424 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1431 #if RELATIVE_DYNRELOCS
1432 p->relative_count = 0;
1437 #if RELATIVE_DYNRELOCS
1438 if (!IS_ABSOLUTE_RELOC (rtype))
1439 p->relative_count += 1;
1448 /* Return the section that should be marked against garbage collection
1449 for a given relocation. */
1452 elf32_hppa_gc_mark_hook (asection *sec,
1453 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1454 Elf_Internal_Rela *rel,
1455 struct elf_link_hash_entry *h,
1456 Elf_Internal_Sym *sym)
1460 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1462 case R_PARISC_GNU_VTINHERIT:
1463 case R_PARISC_GNU_VTENTRY:
1467 switch (h->root.type)
1469 case bfd_link_hash_defined:
1470 case bfd_link_hash_defweak:
1471 return h->root.u.def.section;
1473 case bfd_link_hash_common:
1474 return h->root.u.c.p->section;
1482 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1487 /* Update the got and plt entry reference counts for the section being
1491 elf32_hppa_gc_sweep_hook (bfd *abfd,
1492 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1494 const Elf_Internal_Rela *relocs)
1496 Elf_Internal_Shdr *symtab_hdr;
1497 struct elf_link_hash_entry **sym_hashes;
1498 bfd_signed_vma *local_got_refcounts;
1499 bfd_signed_vma *local_plt_refcounts;
1500 const Elf_Internal_Rela *rel, *relend;
1502 elf_section_data (sec)->local_dynrel = NULL;
1504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1505 sym_hashes = elf_sym_hashes (abfd);
1506 local_got_refcounts = elf_local_got_refcounts (abfd);
1507 local_plt_refcounts = local_got_refcounts;
1508 if (local_plt_refcounts != NULL)
1509 local_plt_refcounts += symtab_hdr->sh_info;
1511 relend = relocs + sec->reloc_count;
1512 for (rel = relocs; rel < relend; rel++)
1514 unsigned long r_symndx;
1515 unsigned int r_type;
1516 struct elf_link_hash_entry *h = NULL;
1518 r_symndx = ELF32_R_SYM (rel->r_info);
1519 if (r_symndx >= symtab_hdr->sh_info)
1521 struct elf32_hppa_link_hash_entry *eh;
1522 struct elf32_hppa_dyn_reloc_entry **pp;
1523 struct elf32_hppa_dyn_reloc_entry *p;
1525 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1526 while (h->root.type == bfd_link_hash_indirect
1527 || h->root.type == bfd_link_hash_warning)
1528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1529 eh = (struct elf32_hppa_link_hash_entry *) h;
1531 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1534 /* Everything must go for SEC. */
1540 r_type = ELF32_R_TYPE (rel->r_info);
1543 case R_PARISC_DLTIND14F:
1544 case R_PARISC_DLTIND14R:
1545 case R_PARISC_DLTIND21L:
1548 if (h->got.refcount > 0)
1549 h->got.refcount -= 1;
1551 else if (local_got_refcounts != NULL)
1553 if (local_got_refcounts[r_symndx] > 0)
1554 local_got_refcounts[r_symndx] -= 1;
1558 case R_PARISC_PCREL12F:
1559 case R_PARISC_PCREL17C:
1560 case R_PARISC_PCREL17F:
1561 case R_PARISC_PCREL22F:
1564 if (h->plt.refcount > 0)
1565 h->plt.refcount -= 1;
1569 case R_PARISC_PLABEL14R:
1570 case R_PARISC_PLABEL21L:
1571 case R_PARISC_PLABEL32:
1574 if (h->plt.refcount > 0)
1575 h->plt.refcount -= 1;
1577 else if (local_plt_refcounts != NULL)
1579 if (local_plt_refcounts[r_symndx] > 0)
1580 local_plt_refcounts[r_symndx] -= 1;
1592 /* Support for core dump NOTE sections. */
1595 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1600 switch (note->descsz)
1605 case 396: /* Linux/hppa */
1607 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1610 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1619 /* Make a ".reg/999" section. */
1620 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1621 size, note->descpos + offset);
1625 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1627 switch (note->descsz)
1632 case 124: /* Linux/hppa elf_prpsinfo. */
1633 elf_tdata (abfd)->core_program
1634 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1635 elf_tdata (abfd)->core_command
1636 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1639 /* Note that for some reason, a spurious space is tacked
1640 onto the end of the args in some (at least one anyway)
1641 implementations, so strip it off if it exists. */
1643 char *command = elf_tdata (abfd)->core_command;
1644 int n = strlen (command);
1646 if (0 < n && command[n - 1] == ' ')
1647 command[n - 1] = '\0';
1653 /* Our own version of hide_symbol, so that we can keep plt entries for
1657 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1658 struct elf_link_hash_entry *h,
1659 bfd_boolean force_local)
1663 h->forced_local = 1;
1664 if (h->dynindx != -1)
1667 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1672 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1675 h->plt = elf_hash_table (info)->init_refcount;
1679 /* Adjust a symbol defined by a dynamic object and referenced by a
1680 regular object. The current definition is in some section of the
1681 dynamic object, but we're not including those sections. We have to
1682 change the definition to something the rest of the link can
1686 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1687 struct elf_link_hash_entry *h)
1689 struct elf32_hppa_link_hash_table *htab;
1691 unsigned int power_of_two;
1693 /* If this is a function, put it in the procedure linkage table. We
1694 will fill in the contents of the procedure linkage table later. */
1695 if (h->type == STT_FUNC
1698 if (h->plt.refcount <= 0
1700 && h->root.type != bfd_link_hash_defweak
1701 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1702 && (!info->shared || info->symbolic)))
1704 /* The .plt entry is not needed when:
1705 a) Garbage collection has removed all references to the
1707 b) We know for certain the symbol is defined in this
1708 object, and it's not a weak definition, nor is the symbol
1709 used by a plabel relocation. Either this object is the
1710 application or we are doing a shared symbolic link. */
1712 h->plt.offset = (bfd_vma) -1;
1719 h->plt.offset = (bfd_vma) -1;
1721 /* If this is a weak symbol, and there is a real definition, the
1722 processor independent code will have arranged for us to see the
1723 real definition first, and we can just use the same value. */
1724 if (h->u.weakdef != NULL)
1726 if (h->u.weakdef->root.type != bfd_link_hash_defined
1727 && h->u.weakdef->root.type != bfd_link_hash_defweak)
1729 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1730 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1731 if (ELIMINATE_COPY_RELOCS)
1732 h->non_got_ref = h->u.weakdef->non_got_ref;
1736 /* This is a reference to a symbol defined by a dynamic object which
1737 is not a function. */
1739 /* If we are creating a shared library, we must presume that the
1740 only references to the symbol are via the global offset table.
1741 For such cases we need not do anything here; the relocations will
1742 be handled correctly by relocate_section. */
1746 /* If there are no references to this symbol that do not use the
1747 GOT, we don't need to generate a copy reloc. */
1748 if (!h->non_got_ref)
1751 if (ELIMINATE_COPY_RELOCS)
1753 struct elf32_hppa_link_hash_entry *eh;
1754 struct elf32_hppa_dyn_reloc_entry *p;
1756 eh = (struct elf32_hppa_link_hash_entry *) h;
1757 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1759 s = p->sec->output_section;
1760 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1764 /* If we didn't find any dynamic relocs in read-only sections, then
1765 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1773 /* We must allocate the symbol in our .dynbss section, which will
1774 become part of the .bss section of the executable. There will be
1775 an entry for this symbol in the .dynsym section. The dynamic
1776 object will contain position independent code, so all references
1777 from the dynamic object to this symbol will go through the global
1778 offset table. The dynamic linker will use the .dynsym entry to
1779 determine the address it must put in the global offset table, so
1780 both the dynamic object and the regular object will refer to the
1781 same memory location for the variable. */
1783 htab = hppa_link_hash_table (info);
1785 /* We must generate a COPY reloc to tell the dynamic linker to
1786 copy the initial value out of the dynamic object and into the
1787 runtime process image. */
1788 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1790 htab->srelbss->size += sizeof (Elf32_External_Rela);
1794 /* We need to figure out the alignment required for this symbol. I
1795 have no idea how other ELF linkers handle this. */
1797 power_of_two = bfd_log2 (h->size);
1798 if (power_of_two > 3)
1801 /* Apply the required alignment. */
1803 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1804 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1806 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1810 /* Define the symbol as being at this point in the section. */
1811 h->root.u.def.section = s;
1812 h->root.u.def.value = s->size;
1814 /* Increment the section size to make room for the symbol. */
1820 /* Allocate space in the .plt for entries that won't have relocations.
1821 ie. plabel entries. */
1824 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1826 struct bfd_link_info *info;
1827 struct elf32_hppa_link_hash_table *htab;
1830 if (h->root.type == bfd_link_hash_indirect)
1833 if (h->root.type == bfd_link_hash_warning)
1834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1837 htab = hppa_link_hash_table (info);
1838 if (htab->elf.dynamic_sections_created
1839 && h->plt.refcount > 0)
1841 /* Make sure this symbol is output as a dynamic symbol.
1842 Undefined weak syms won't yet be marked as dynamic. */
1843 if (h->dynindx == -1
1845 && h->type != STT_PARISC_MILLI)
1847 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1851 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
1853 /* Allocate these later. From this point on, h->plabel
1854 means that the plt entry is only used by a plabel.
1855 We'll be using a normal plt entry for this symbol, so
1856 clear the plabel indicator. */
1857 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1859 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1861 /* Make an entry in the .plt section for plabel references
1862 that won't have a .plt entry for other reasons. */
1864 h->plt.offset = s->size;
1865 s->size += PLT_ENTRY_SIZE;
1869 /* No .plt entry needed. */
1870 h->plt.offset = (bfd_vma) -1;
1876 h->plt.offset = (bfd_vma) -1;
1883 /* Allocate space in .plt, .got and associated reloc sections for
1887 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1889 struct bfd_link_info *info;
1890 struct elf32_hppa_link_hash_table *htab;
1892 struct elf32_hppa_link_hash_entry *eh;
1893 struct elf32_hppa_dyn_reloc_entry *p;
1895 if (h->root.type == bfd_link_hash_indirect)
1898 if (h->root.type == bfd_link_hash_warning)
1899 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1902 htab = hppa_link_hash_table (info);
1903 if (htab->elf.dynamic_sections_created
1904 && h->plt.offset != (bfd_vma) -1
1905 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1907 /* Make an entry in the .plt section. */
1909 h->plt.offset = s->size;
1910 s->size += PLT_ENTRY_SIZE;
1912 /* We also need to make an entry in the .rela.plt section. */
1913 htab->srelplt->size += sizeof (Elf32_External_Rela);
1914 htab->need_plt_stub = 1;
1917 if (h->got.refcount > 0)
1919 /* Make sure this symbol is output as a dynamic symbol.
1920 Undefined weak syms won't yet be marked as dynamic. */
1921 if (h->dynindx == -1
1923 && h->type != STT_PARISC_MILLI)
1925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1930 h->got.offset = s->size;
1931 s->size += GOT_ENTRY_SIZE;
1932 if (htab->elf.dynamic_sections_created
1934 || (h->dynindx != -1
1935 && !h->forced_local)))
1937 htab->srelgot->size += sizeof (Elf32_External_Rela);
1941 h->got.offset = (bfd_vma) -1;
1943 eh = (struct elf32_hppa_link_hash_entry *) h;
1944 if (eh->dyn_relocs == NULL)
1947 /* If this is a -Bsymbolic shared link, then we need to discard all
1948 space allocated for dynamic pc-relative relocs against symbols
1949 defined in a regular object. For the normal shared case, discard
1950 space for relocs that have become local due to symbol visibility
1954 #if RELATIVE_DYNRELOCS
1955 if (SYMBOL_CALLS_LOCAL (info, h))
1957 struct elf32_hppa_dyn_reloc_entry **pp;
1959 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1961 p->count -= p->relative_count;
1962 p->relative_count = 0;
1971 /* Also discard relocs on undefined weak syms with non-default
1973 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1974 && h->root.type == bfd_link_hash_undefweak)
1975 eh->dyn_relocs = NULL;
1979 /* For the non-shared case, discard space for relocs against
1980 symbols which turn out to need copy relocs or are not
1983 && ((ELIMINATE_COPY_RELOCS
1986 || (htab->elf.dynamic_sections_created
1987 && (h->root.type == bfd_link_hash_undefweak
1988 || h->root.type == bfd_link_hash_undefined))))
1990 /* Make sure this symbol is output as a dynamic symbol.
1991 Undefined weak syms won't yet be marked as dynamic. */
1992 if (h->dynindx == -1
1994 && h->type != STT_PARISC_MILLI)
1996 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2000 /* If that succeeded, we know we'll be keeping all the
2002 if (h->dynindx != -1)
2006 eh->dyn_relocs = NULL;
2012 /* Finally, allocate space. */
2013 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2015 asection *sreloc = elf_section_data (p->sec)->sreloc;
2016 sreloc->size += p->count * sizeof (Elf32_External_Rela);
2022 /* This function is called via elf_link_hash_traverse to force
2023 millicode symbols local so they do not end up as globals in the
2024 dynamic symbol table. We ought to be able to do this in
2025 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2026 for all dynamic symbols. Arguably, this is a bug in
2027 elf_adjust_dynamic_symbol. */
2030 clobber_millicode_symbols (struct elf_link_hash_entry *h,
2031 struct bfd_link_info *info)
2033 if (h->root.type == bfd_link_hash_warning)
2034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2036 if (h->type == STT_PARISC_MILLI
2037 && !h->forced_local)
2039 elf32_hppa_hide_symbol (info, h, TRUE);
2044 /* Find any dynamic relocs that apply to read-only sections. */
2047 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2049 struct elf32_hppa_link_hash_entry *eh;
2050 struct elf32_hppa_dyn_reloc_entry *p;
2052 if (h->root.type == bfd_link_hash_warning)
2053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2055 eh = (struct elf32_hppa_link_hash_entry *) h;
2056 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2058 asection *s = p->sec->output_section;
2060 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2062 struct bfd_link_info *info = inf;
2064 info->flags |= DF_TEXTREL;
2066 /* Not an error, just cut short the traversal. */
2073 /* Set the sizes of the dynamic sections. */
2076 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2077 struct bfd_link_info *info)
2079 struct elf32_hppa_link_hash_table *htab;
2085 htab = hppa_link_hash_table (info);
2086 dynobj = htab->elf.dynobj;
2090 if (htab->elf.dynamic_sections_created)
2092 /* Set the contents of the .interp section to the interpreter. */
2093 if (info->executable)
2095 s = bfd_get_section_by_name (dynobj, ".interp");
2098 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2099 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2102 /* Force millicode symbols local. */
2103 elf_link_hash_traverse (&htab->elf,
2104 clobber_millicode_symbols,
2108 /* Set up .got and .plt offsets for local syms, and space for local
2110 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2112 bfd_signed_vma *local_got;
2113 bfd_signed_vma *end_local_got;
2114 bfd_signed_vma *local_plt;
2115 bfd_signed_vma *end_local_plt;
2116 bfd_size_type locsymcount;
2117 Elf_Internal_Shdr *symtab_hdr;
2120 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2123 for (s = ibfd->sections; s != NULL; s = s->next)
2125 struct elf32_hppa_dyn_reloc_entry *p;
2127 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2128 elf_section_data (s)->local_dynrel);
2132 if (!bfd_is_abs_section (p->sec)
2133 && bfd_is_abs_section (p->sec->output_section))
2135 /* Input section has been discarded, either because
2136 it is a copy of a linkonce section or due to
2137 linker script /DISCARD/, so we'll be discarding
2140 else if (p->count != 0)
2142 srel = elf_section_data (p->sec)->sreloc;
2143 srel->size += p->count * sizeof (Elf32_External_Rela);
2144 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2145 info->flags |= DF_TEXTREL;
2150 local_got = elf_local_got_refcounts (ibfd);
2154 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2155 locsymcount = symtab_hdr->sh_info;
2156 end_local_got = local_got + locsymcount;
2158 srel = htab->srelgot;
2159 for (; local_got < end_local_got; ++local_got)
2163 *local_got = s->size;
2164 s->size += GOT_ENTRY_SIZE;
2166 srel->size += sizeof (Elf32_External_Rela);
2169 *local_got = (bfd_vma) -1;
2172 local_plt = end_local_got;
2173 end_local_plt = local_plt + locsymcount;
2174 if (! htab->elf.dynamic_sections_created)
2176 /* Won't be used, but be safe. */
2177 for (; local_plt < end_local_plt; ++local_plt)
2178 *local_plt = (bfd_vma) -1;
2183 srel = htab->srelplt;
2184 for (; local_plt < end_local_plt; ++local_plt)
2188 *local_plt = s->size;
2189 s->size += PLT_ENTRY_SIZE;
2191 srel->size += sizeof (Elf32_External_Rela);
2194 *local_plt = (bfd_vma) -1;
2199 /* Do all the .plt entries without relocs first. The dynamic linker
2200 uses the last .plt reloc to find the end of the .plt (and hence
2201 the start of the .got) for lazy linking. */
2202 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2204 /* Allocate global sym .plt and .got entries, and space for global
2205 sym dynamic relocs. */
2206 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2208 /* The check_relocs and adjust_dynamic_symbol entry points have
2209 determined the sizes of the various dynamic sections. Allocate
2212 for (s = dynobj->sections; s != NULL; s = s->next)
2214 if ((s->flags & SEC_LINKER_CREATED) == 0)
2217 if (s == htab->splt)
2219 if (htab->need_plt_stub)
2221 /* Make space for the plt stub at the end of the .plt
2222 section. We want this stub right at the end, up
2223 against the .got section. */
2224 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2225 int pltalign = bfd_section_alignment (dynobj, s);
2228 if (gotalign > pltalign)
2229 bfd_set_section_alignment (dynobj, s, gotalign);
2230 mask = ((bfd_size_type) 1 << gotalign) - 1;
2231 s->size = (s->size + sizeof (plt_stub) + mask) & ~mask;
2234 else if (s == htab->sgot)
2236 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2240 /* Remember whether there are any reloc sections other
2242 if (s != htab->srelplt)
2245 /* We use the reloc_count field as a counter if we need
2246 to copy relocs into the output file. */
2252 /* It's not one of our sections, so don't allocate space. */
2258 /* If we don't need this section, strip it from the
2259 output file. This is mostly to handle .rela.bss and
2260 .rela.plt. We must create both sections in
2261 create_dynamic_sections, because they must be created
2262 before the linker maps input sections to output
2263 sections. The linker does that before
2264 adjust_dynamic_symbol is called, and it is that
2265 function which decides whether anything needs to go
2266 into these sections. */
2267 _bfd_strip_section_from_output (info, s);
2271 /* Allocate memory for the section contents. Zero it, because
2272 we may not fill in all the reloc sections. */
2273 s->contents = bfd_zalloc (dynobj, s->size);
2274 if (s->contents == NULL && s->size != 0)
2278 if (htab->elf.dynamic_sections_created)
2280 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2281 actually has nothing to do with the PLT, it is how we
2282 communicate the LTP value of a load module to the dynamic
2284 #define add_dynamic_entry(TAG, VAL) \
2285 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2287 if (!add_dynamic_entry (DT_PLTGOT, 0))
2290 /* Add some entries to the .dynamic section. We fill in the
2291 values later, in elf32_hppa_finish_dynamic_sections, but we
2292 must add the entries now so that we get the correct size for
2293 the .dynamic section. The DT_DEBUG entry is filled in by the
2294 dynamic linker and used by the debugger. */
2297 if (!add_dynamic_entry (DT_DEBUG, 0))
2301 if (htab->srelplt->size != 0)
2303 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2304 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2305 || !add_dynamic_entry (DT_JMPREL, 0))
2311 if (!add_dynamic_entry (DT_RELA, 0)
2312 || !add_dynamic_entry (DT_RELASZ, 0)
2313 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2316 /* If any dynamic relocs apply to a read-only section,
2317 then we need a DT_TEXTREL entry. */
2318 if ((info->flags & DF_TEXTREL) == 0)
2319 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2321 if ((info->flags & DF_TEXTREL) != 0)
2323 if (!add_dynamic_entry (DT_TEXTREL, 0))
2328 #undef add_dynamic_entry
2333 /* External entry points for sizing and building linker stubs. */
2335 /* Set up various things so that we can make a list of input sections
2336 for each output section included in the link. Returns -1 on error,
2337 0 when no stubs will be needed, and 1 on success. */
2340 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2343 unsigned int bfd_count;
2344 int top_id, top_index;
2346 asection **input_list, **list;
2348 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2350 /* Count the number of input BFDs and find the top input section id. */
2351 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2353 input_bfd = input_bfd->link_next)
2356 for (section = input_bfd->sections;
2358 section = section->next)
2360 if (top_id < section->id)
2361 top_id = section->id;
2364 htab->bfd_count = bfd_count;
2366 amt = sizeof (struct map_stub) * (top_id + 1);
2367 htab->stub_group = bfd_zmalloc (amt);
2368 if (htab->stub_group == NULL)
2371 /* We can't use output_bfd->section_count here to find the top output
2372 section index as some sections may have been removed, and
2373 _bfd_strip_section_from_output doesn't renumber the indices. */
2374 for (section = output_bfd->sections, top_index = 0;
2376 section = section->next)
2378 if (top_index < section->index)
2379 top_index = section->index;
2382 htab->top_index = top_index;
2383 amt = sizeof (asection *) * (top_index + 1);
2384 input_list = bfd_malloc (amt);
2385 htab->input_list = input_list;
2386 if (input_list == NULL)
2389 /* For sections we aren't interested in, mark their entries with a
2390 value we can check later. */
2391 list = input_list + top_index;
2393 *list = bfd_abs_section_ptr;
2394 while (list-- != input_list);
2396 for (section = output_bfd->sections;
2398 section = section->next)
2400 if ((section->flags & SEC_CODE) != 0)
2401 input_list[section->index] = NULL;
2407 /* The linker repeatedly calls this function for each input section,
2408 in the order that input sections are linked into output sections.
2409 Build lists of input sections to determine groupings between which
2410 we may insert linker stubs. */
2413 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2415 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2417 if (isec->output_section->index <= htab->top_index)
2419 asection **list = htab->input_list + isec->output_section->index;
2420 if (*list != bfd_abs_section_ptr)
2422 /* Steal the link_sec pointer for our list. */
2423 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2424 /* This happens to make the list in reverse order,
2425 which is what we want. */
2426 PREV_SEC (isec) = *list;
2432 /* See whether we can group stub sections together. Grouping stub
2433 sections may result in fewer stubs. More importantly, we need to
2434 put all .init* and .fini* stubs at the beginning of the .init or
2435 .fini output sections respectively, because glibc splits the
2436 _init and _fini functions into multiple parts. Putting a stub in
2437 the middle of a function is not a good idea. */
2440 group_sections (struct elf32_hppa_link_hash_table *htab,
2441 bfd_size_type stub_group_size,
2442 bfd_boolean stubs_always_before_branch)
2444 asection **list = htab->input_list + htab->top_index;
2447 asection *tail = *list;
2448 if (tail == bfd_abs_section_ptr)
2450 while (tail != NULL)
2454 bfd_size_type total;
2455 bfd_boolean big_sec;
2459 big_sec = total >= stub_group_size;
2461 while ((prev = PREV_SEC (curr)) != NULL
2462 && ((total += curr->output_offset - prev->output_offset)
2466 /* OK, the size from the start of CURR to the end is less
2467 than 240000 bytes and thus can be handled by one stub
2468 section. (or the tail section is itself larger than
2469 240000 bytes, in which case we may be toast.)
2470 We should really be keeping track of the total size of
2471 stubs added here, as stubs contribute to the final output
2472 section size. That's a little tricky, and this way will
2473 only break if stubs added total more than 22144 bytes, or
2474 2768 long branch stubs. It seems unlikely for more than
2475 2768 different functions to be called, especially from
2476 code only 240000 bytes long. This limit used to be
2477 250000, but c++ code tends to generate lots of little
2478 functions, and sometimes violated the assumption. */
2481 prev = PREV_SEC (tail);
2482 /* Set up this stub group. */
2483 htab->stub_group[tail->id].link_sec = curr;
2485 while (tail != curr && (tail = prev) != NULL);
2487 /* But wait, there's more! Input sections up to 240000
2488 bytes before the stub section can be handled by it too.
2489 Don't do this if we have a really large section after the
2490 stubs, as adding more stubs increases the chance that
2491 branches may not reach into the stub section. */
2492 if (!stubs_always_before_branch && !big_sec)
2496 && ((total += tail->output_offset - prev->output_offset)
2500 prev = PREV_SEC (tail);
2501 htab->stub_group[tail->id].link_sec = curr;
2507 while (list-- != htab->input_list);
2508 free (htab->input_list);
2512 /* Read in all local syms for all input bfds, and create hash entries
2513 for export stubs if we are building a multi-subspace shared lib.
2514 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2517 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2519 unsigned int bfd_indx;
2520 Elf_Internal_Sym *local_syms, **all_local_syms;
2521 int stub_changed = 0;
2522 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2524 /* We want to read in symbol extension records only once. To do this
2525 we need to read in the local symbols in parallel and save them for
2526 later use; so hold pointers to the local symbols in an array. */
2527 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2528 all_local_syms = bfd_zmalloc (amt);
2529 htab->all_local_syms = all_local_syms;
2530 if (all_local_syms == NULL)
2533 /* Walk over all the input BFDs, swapping in local symbols.
2534 If we are creating a shared library, create hash entries for the
2538 input_bfd = input_bfd->link_next, bfd_indx++)
2540 Elf_Internal_Shdr *symtab_hdr;
2542 /* We'll need the symbol table in a second. */
2543 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2544 if (symtab_hdr->sh_info == 0)
2547 /* We need an array of the local symbols attached to the input bfd. */
2548 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2549 if (local_syms == NULL)
2551 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2552 symtab_hdr->sh_info, 0,
2554 /* Cache them for elf_link_input_bfd. */
2555 symtab_hdr->contents = (unsigned char *) local_syms;
2557 if (local_syms == NULL)
2560 all_local_syms[bfd_indx] = local_syms;
2562 if (info->shared && htab->multi_subspace)
2564 struct elf_link_hash_entry **sym_hashes;
2565 struct elf_link_hash_entry **end_hashes;
2566 unsigned int symcount;
2568 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2569 - symtab_hdr->sh_info);
2570 sym_hashes = elf_sym_hashes (input_bfd);
2571 end_hashes = sym_hashes + symcount;
2573 /* Look through the global syms for functions; We need to
2574 build export stubs for all globally visible functions. */
2575 for (; sym_hashes < end_hashes; sym_hashes++)
2577 struct elf32_hppa_link_hash_entry *hash;
2579 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2581 while (hash->elf.root.type == bfd_link_hash_indirect
2582 || hash->elf.root.type == bfd_link_hash_warning)
2583 hash = ((struct elf32_hppa_link_hash_entry *)
2584 hash->elf.root.u.i.link);
2586 /* At this point in the link, undefined syms have been
2587 resolved, so we need to check that the symbol was
2588 defined in this BFD. */
2589 if ((hash->elf.root.type == bfd_link_hash_defined
2590 || hash->elf.root.type == bfd_link_hash_defweak)
2591 && hash->elf.type == STT_FUNC
2592 && hash->elf.root.u.def.section->output_section != NULL
2593 && (hash->elf.root.u.def.section->output_section->owner
2595 && hash->elf.root.u.def.section->owner == input_bfd
2596 && hash->elf.def_regular
2597 && !hash->elf.forced_local
2598 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2601 const char *stub_name;
2602 struct elf32_hppa_stub_hash_entry *stub_entry;
2604 sec = hash->elf.root.u.def.section;
2605 stub_name = hash->elf.root.root.string;
2606 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2609 if (stub_entry == NULL)
2611 stub_entry = hppa_add_stub (stub_name, sec, htab);
2615 stub_entry->target_value = hash->elf.root.u.def.value;
2616 stub_entry->target_section = hash->elf.root.u.def.section;
2617 stub_entry->stub_type = hppa_stub_export;
2618 stub_entry->h = hash;
2623 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2632 return stub_changed;
2635 /* Determine and set the size of the stub section for a final link.
2637 The basic idea here is to examine all the relocations looking for
2638 PC-relative calls to a target that is unreachable with a "bl"
2642 elf32_hppa_size_stubs
2643 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2644 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2645 asection * (*add_stub_section) (const char *, asection *),
2646 void (*layout_sections_again) (void))
2648 bfd_size_type stub_group_size;
2649 bfd_boolean stubs_always_before_branch;
2650 bfd_boolean stub_changed;
2651 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2653 /* Stash our params away. */
2654 htab->stub_bfd = stub_bfd;
2655 htab->multi_subspace = multi_subspace;
2656 htab->add_stub_section = add_stub_section;
2657 htab->layout_sections_again = layout_sections_again;
2658 stubs_always_before_branch = group_size < 0;
2660 stub_group_size = -group_size;
2662 stub_group_size = group_size;
2663 if (stub_group_size == 1)
2665 /* Default values. */
2666 if (stubs_always_before_branch)
2668 stub_group_size = 7680000;
2669 if (htab->has_17bit_branch || htab->multi_subspace)
2670 stub_group_size = 240000;
2671 if (htab->has_12bit_branch)
2672 stub_group_size = 7500;
2676 stub_group_size = 6971392;
2677 if (htab->has_17bit_branch || htab->multi_subspace)
2678 stub_group_size = 217856;
2679 if (htab->has_12bit_branch)
2680 stub_group_size = 6808;
2684 group_sections (htab, stub_group_size, stubs_always_before_branch);
2686 switch (get_local_syms (output_bfd, info->input_bfds, info))
2689 if (htab->all_local_syms)
2690 goto error_ret_free_local;
2694 stub_changed = FALSE;
2698 stub_changed = TRUE;
2705 unsigned int bfd_indx;
2708 for (input_bfd = info->input_bfds, bfd_indx = 0;
2710 input_bfd = input_bfd->link_next, bfd_indx++)
2712 Elf_Internal_Shdr *symtab_hdr;
2714 Elf_Internal_Sym *local_syms;
2716 /* We'll need the symbol table in a second. */
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 if (symtab_hdr->sh_info == 0)
2721 local_syms = htab->all_local_syms[bfd_indx];
2723 /* Walk over each section attached to the input bfd. */
2724 for (section = input_bfd->sections;
2726 section = section->next)
2728 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2730 /* If there aren't any relocs, then there's nothing more
2732 if ((section->flags & SEC_RELOC) == 0
2733 || section->reloc_count == 0)
2736 /* If this section is a link-once section that will be
2737 discarded, then don't create any stubs. */
2738 if (section->output_section == NULL
2739 || section->output_section->owner != output_bfd)
2742 /* Get the relocs. */
2744 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2746 if (internal_relocs == NULL)
2747 goto error_ret_free_local;
2749 /* Now examine each relocation. */
2750 irela = internal_relocs;
2751 irelaend = irela + section->reloc_count;
2752 for (; irela < irelaend; irela++)
2754 unsigned int r_type, r_indx;
2755 enum elf32_hppa_stub_type stub_type;
2756 struct elf32_hppa_stub_hash_entry *stub_entry;
2759 bfd_vma destination;
2760 struct elf32_hppa_link_hash_entry *hash;
2762 const asection *id_sec;
2764 r_type = ELF32_R_TYPE (irela->r_info);
2765 r_indx = ELF32_R_SYM (irela->r_info);
2767 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2769 bfd_set_error (bfd_error_bad_value);
2770 error_ret_free_internal:
2771 if (elf_section_data (section)->relocs == NULL)
2772 free (internal_relocs);
2773 goto error_ret_free_local;
2776 /* Only look for stubs on call instructions. */
2777 if (r_type != (unsigned int) R_PARISC_PCREL12F
2778 && r_type != (unsigned int) R_PARISC_PCREL17F
2779 && r_type != (unsigned int) R_PARISC_PCREL22F)
2782 /* Now determine the call target, its name, value,
2788 if (r_indx < symtab_hdr->sh_info)
2790 /* It's a local symbol. */
2791 Elf_Internal_Sym *sym;
2792 Elf_Internal_Shdr *hdr;
2794 sym = local_syms + r_indx;
2795 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2796 sym_sec = hdr->bfd_section;
2797 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2798 sym_value = sym->st_value;
2799 destination = (sym_value + irela->r_addend
2800 + sym_sec->output_offset
2801 + sym_sec->output_section->vma);
2805 /* It's an external symbol. */
2808 e_indx = r_indx - symtab_hdr->sh_info;
2809 hash = ((struct elf32_hppa_link_hash_entry *)
2810 elf_sym_hashes (input_bfd)[e_indx]);
2812 while (hash->elf.root.type == bfd_link_hash_indirect
2813 || hash->elf.root.type == bfd_link_hash_warning)
2814 hash = ((struct elf32_hppa_link_hash_entry *)
2815 hash->elf.root.u.i.link);
2817 if (hash->elf.root.type == bfd_link_hash_defined
2818 || hash->elf.root.type == bfd_link_hash_defweak)
2820 sym_sec = hash->elf.root.u.def.section;
2821 sym_value = hash->elf.root.u.def.value;
2822 if (sym_sec->output_section != NULL)
2823 destination = (sym_value + irela->r_addend
2824 + sym_sec->output_offset
2825 + sym_sec->output_section->vma);
2827 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2832 else if (hash->elf.root.type == bfd_link_hash_undefined)
2834 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2835 && (ELF_ST_VISIBILITY (hash->elf.other)
2837 && hash->elf.type != STT_PARISC_MILLI))
2842 bfd_set_error (bfd_error_bad_value);
2843 goto error_ret_free_internal;
2847 /* Determine what (if any) linker stub is needed. */
2848 stub_type = hppa_type_of_stub (section, irela, hash,
2850 if (stub_type == hppa_stub_none)
2853 /* Support for grouping stub sections. */
2854 id_sec = htab->stub_group[section->id].link_sec;
2856 /* Get the name of this stub. */
2857 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2859 goto error_ret_free_internal;
2861 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2864 if (stub_entry != NULL)
2866 /* The proper stub has already been created. */
2871 stub_entry = hppa_add_stub (stub_name, section, htab);
2872 if (stub_entry == NULL)
2875 goto error_ret_free_internal;
2878 stub_entry->target_value = sym_value;
2879 stub_entry->target_section = sym_sec;
2880 stub_entry->stub_type = stub_type;
2883 if (stub_type == hppa_stub_import)
2884 stub_entry->stub_type = hppa_stub_import_shared;
2885 else if (stub_type == hppa_stub_long_branch)
2886 stub_entry->stub_type = hppa_stub_long_branch_shared;
2888 stub_entry->h = hash;
2889 stub_changed = TRUE;
2892 /* We're done with the internal relocs, free them. */
2893 if (elf_section_data (section)->relocs == NULL)
2894 free (internal_relocs);
2901 /* OK, we've added some stubs. Find out the new size of the
2903 for (stub_sec = htab->stub_bfd->sections;
2905 stub_sec = stub_sec->next)
2908 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2910 /* Ask the linker to do its stuff. */
2911 (*htab->layout_sections_again) ();
2912 stub_changed = FALSE;
2915 free (htab->all_local_syms);
2918 error_ret_free_local:
2919 free (htab->all_local_syms);
2923 /* For a final link, this function is called after we have sized the
2924 stubs to provide a value for __gp. */
2927 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2929 struct bfd_link_hash_entry *h;
2930 asection *sec = NULL;
2932 struct elf32_hppa_link_hash_table *htab;
2934 htab = hppa_link_hash_table (info);
2935 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2938 && (h->type == bfd_link_hash_defined
2939 || h->type == bfd_link_hash_defweak))
2941 gp_val = h->u.def.value;
2942 sec = h->u.def.section;
2946 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2947 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2949 /* Choose to point our LTP at, in this order, one of .plt, .got,
2950 or .data, if these sections exist. In the case of choosing
2951 .plt try to make the LTP ideal for addressing anywhere in the
2952 .plt or .got with a 14 bit signed offset. Typically, the end
2953 of the .plt is the start of the .got, so choose .plt + 0x2000
2954 if either the .plt or .got is larger than 0x2000. If both
2955 the .plt and .got are smaller than 0x2000, choose the end of
2956 the .plt section. */
2957 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2962 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2972 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
2974 /* We know we don't have a .plt. If .got is large,
2976 if (sec->size > 0x2000)
2982 /* No .plt or .got. Who cares what the LTP is? */
2983 sec = bfd_get_section_by_name (abfd, ".data");
2989 h->type = bfd_link_hash_defined;
2990 h->u.def.value = gp_val;
2992 h->u.def.section = sec;
2994 h->u.def.section = bfd_abs_section_ptr;
2998 if (sec != NULL && sec->output_section != NULL)
2999 gp_val += sec->output_section->vma + sec->output_offset;
3001 elf_gp (abfd) = gp_val;
3005 /* Build all the stubs associated with the current output file. The
3006 stubs are kept in a hash table attached to the main linker hash
3007 table. We also set up the .plt entries for statically linked PIC
3008 functions here. This function is called via hppaelf_finish in the
3012 elf32_hppa_build_stubs (struct bfd_link_info *info)
3015 struct bfd_hash_table *table;
3016 struct elf32_hppa_link_hash_table *htab;
3018 htab = hppa_link_hash_table (info);
3020 for (stub_sec = htab->stub_bfd->sections;
3022 stub_sec = stub_sec->next)
3026 /* Allocate memory to hold the linker stubs. */
3027 size = stub_sec->size;
3028 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3029 if (stub_sec->contents == NULL && size != 0)
3034 /* Build the stubs as directed by the stub hash table. */
3035 table = &htab->stub_hash_table;
3036 bfd_hash_traverse (table, hppa_build_one_stub, info);
3041 /* Perform a final link. */
3044 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3046 /* Invoke the regular ELF linker to do all the work. */
3047 if (!bfd_elf_final_link (abfd, info))
3050 /* If we're producing a final executable, sort the contents of the
3052 return elf_hppa_sort_unwind (abfd);
3055 /* Record the lowest address for the data and text segments. */
3058 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3062 struct elf32_hppa_link_hash_table *htab;
3064 htab = (struct elf32_hppa_link_hash_table *) data;
3066 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3068 bfd_vma value = section->vma - section->filepos;
3070 if ((section->flags & SEC_READONLY) != 0)
3072 if (value < htab->text_segment_base)
3073 htab->text_segment_base = value;
3077 if (value < htab->data_segment_base)
3078 htab->data_segment_base = value;
3083 /* Perform a relocation as part of a final link. */
3085 static bfd_reloc_status_type
3086 final_link_relocate (asection *input_section,
3088 const Elf_Internal_Rela *rel,
3090 struct elf32_hppa_link_hash_table *htab,
3092 struct elf32_hppa_link_hash_entry *h,
3093 struct bfd_link_info *info)
3096 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3097 unsigned int orig_r_type = r_type;
3098 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3099 int r_format = howto->bitsize;
3100 enum hppa_reloc_field_selector_type_alt r_field;
3101 bfd *input_bfd = input_section->owner;
3102 bfd_vma offset = rel->r_offset;
3103 bfd_vma max_branch_offset = 0;
3104 bfd_byte *hit_data = contents + offset;
3105 bfd_signed_vma addend = rel->r_addend;
3107 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3110 if (r_type == R_PARISC_NONE)
3111 return bfd_reloc_ok;
3113 insn = bfd_get_32 (input_bfd, hit_data);
3115 /* Find out where we are and where we're going. */
3116 location = (offset +
3117 input_section->output_offset +
3118 input_section->output_section->vma);
3120 /* If we are not building a shared library, convert DLTIND relocs to
3126 case R_PARISC_DLTIND21L:
3127 r_type = R_PARISC_DPREL21L;
3130 case R_PARISC_DLTIND14R:
3131 r_type = R_PARISC_DPREL14R;
3134 case R_PARISC_DLTIND14F:
3135 r_type = R_PARISC_DPREL14F;
3142 case R_PARISC_PCREL12F:
3143 case R_PARISC_PCREL17F:
3144 case R_PARISC_PCREL22F:
3145 /* If this call should go via the plt, find the import stub in
3148 || sym_sec->output_section == NULL
3150 && h->elf.plt.offset != (bfd_vma) -1
3151 && h->elf.dynindx != -1
3154 || !h->elf.def_regular
3155 || h->elf.root.type == bfd_link_hash_defweak)))
3157 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3159 if (stub_entry != NULL)
3161 value = (stub_entry->stub_offset
3162 + stub_entry->stub_sec->output_offset
3163 + stub_entry->stub_sec->output_section->vma);
3166 else if (sym_sec == NULL && h != NULL
3167 && h->elf.root.type == bfd_link_hash_undefweak)
3169 /* It's OK if undefined weak. Calls to undefined weak
3170 symbols behave as if the "called" function
3171 immediately returns. We can thus call to a weak
3172 function without first checking whether the function
3178 return bfd_reloc_undefined;
3182 case R_PARISC_PCREL21L:
3183 case R_PARISC_PCREL17C:
3184 case R_PARISC_PCREL17R:
3185 case R_PARISC_PCREL14R:
3186 case R_PARISC_PCREL14F:
3187 case R_PARISC_PCREL32:
3188 /* Make it a pc relative offset. */
3193 case R_PARISC_DPREL21L:
3194 case R_PARISC_DPREL14R:
3195 case R_PARISC_DPREL14F:
3196 /* Convert instructions that use the linkage table pointer (r19) to
3197 instructions that use the global data pointer (dp). This is the
3198 most efficient way of using PIC code in an incomplete executable,
3199 but the user must follow the standard runtime conventions for
3200 accessing data for this to work. */
3201 if (orig_r_type == R_PARISC_DLTIND21L)
3203 /* Convert addil instructions if the original reloc was a
3204 DLTIND21L. GCC sometimes uses a register other than r19 for
3205 the operation, so we must convert any addil instruction
3206 that uses this relocation. */
3207 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3210 /* We must have a ldil instruction. It's too hard to find
3211 and convert the associated add instruction, so issue an
3213 (*_bfd_error_handler)
3214 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3217 (long) rel->r_offset,
3221 else if (orig_r_type == R_PARISC_DLTIND14F)
3223 /* This must be a format 1 load/store. Change the base
3225 insn = (insn & 0xfc1ffff) | (27 << 21);
3228 /* For all the DP relative relocations, we need to examine the symbol's
3229 section. If it has no section or if it's a code section, then
3230 "data pointer relative" makes no sense. In that case we don't
3231 adjust the "value", and for 21 bit addil instructions, we change the
3232 source addend register from %dp to %r0. This situation commonly
3233 arises for undefined weak symbols and when a variable's "constness"
3234 is declared differently from the way the variable is defined. For
3235 instance: "extern int foo" with foo defined as "const int foo". */
3236 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3238 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3239 == (((int) OP_ADDIL << 26) | (27 << 21)))
3241 insn &= ~ (0x1f << 21);
3243 /* Now try to make things easy for the dynamic linker. */
3249 case R_PARISC_DLTIND21L:
3250 case R_PARISC_DLTIND14R:
3251 case R_PARISC_DLTIND14F:
3252 value -= elf_gp (input_section->output_section->owner);
3255 case R_PARISC_SEGREL32:
3256 if ((sym_sec->flags & SEC_CODE) != 0)
3257 value -= htab->text_segment_base;
3259 value -= htab->data_segment_base;
3268 case R_PARISC_DIR32:
3269 case R_PARISC_DIR14F:
3270 case R_PARISC_DIR17F:
3271 case R_PARISC_PCREL17C:
3272 case R_PARISC_PCREL14F:
3273 case R_PARISC_PCREL32:
3274 case R_PARISC_DPREL14F:
3275 case R_PARISC_PLABEL32:
3276 case R_PARISC_DLTIND14F:
3277 case R_PARISC_SEGBASE:
3278 case R_PARISC_SEGREL32:
3282 case R_PARISC_DLTIND21L:
3283 case R_PARISC_PCREL21L:
3284 case R_PARISC_PLABEL21L:
3288 case R_PARISC_DIR21L:
3289 case R_PARISC_DPREL21L:
3293 case R_PARISC_PCREL17R:
3294 case R_PARISC_PCREL14R:
3295 case R_PARISC_PLABEL14R:
3296 case R_PARISC_DLTIND14R:
3300 case R_PARISC_DIR17R:
3301 case R_PARISC_DIR14R:
3302 case R_PARISC_DPREL14R:
3306 case R_PARISC_PCREL12F:
3307 case R_PARISC_PCREL17F:
3308 case R_PARISC_PCREL22F:
3311 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3313 max_branch_offset = (1 << (17-1)) << 2;
3315 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3317 max_branch_offset = (1 << (12-1)) << 2;
3321 max_branch_offset = (1 << (22-1)) << 2;
3324 /* sym_sec is NULL on undefined weak syms or when shared on
3325 undefined syms. We've already checked for a stub for the
3326 shared undefined case. */
3327 if (sym_sec == NULL)
3330 /* If the branch is out of reach, then redirect the
3331 call to the local stub for this function. */
3332 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3334 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3336 if (stub_entry == NULL)
3337 return bfd_reloc_undefined;
3339 /* Munge up the value and addend so that we call the stub
3340 rather than the procedure directly. */
3341 value = (stub_entry->stub_offset
3342 + stub_entry->stub_sec->output_offset
3343 + stub_entry->stub_sec->output_section->vma
3349 /* Something we don't know how to handle. */
3351 return bfd_reloc_notsupported;
3354 /* Make sure we can reach the stub. */
3355 if (max_branch_offset != 0
3356 && value + addend + max_branch_offset >= 2*max_branch_offset)
3358 (*_bfd_error_handler)
3359 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3362 (long) rel->r_offset,
3363 stub_entry->root.string);
3364 bfd_set_error (bfd_error_bad_value);
3365 return bfd_reloc_notsupported;
3368 val = hppa_field_adjust (value, addend, r_field);
3372 case R_PARISC_PCREL12F:
3373 case R_PARISC_PCREL17C:
3374 case R_PARISC_PCREL17F:
3375 case R_PARISC_PCREL17R:
3376 case R_PARISC_PCREL22F:
3377 case R_PARISC_DIR17F:
3378 case R_PARISC_DIR17R:
3379 /* This is a branch. Divide the offset by four.
3380 Note that we need to decide whether it's a branch or
3381 otherwise by inspecting the reloc. Inspecting insn won't
3382 work as insn might be from a .word directive. */
3390 insn = hppa_rebuild_insn (insn, val, r_format);
3392 /* Update the instruction word. */
3393 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3394 return bfd_reloc_ok;
3397 /* Relocate an HPPA ELF section. */
3400 elf32_hppa_relocate_section (bfd *output_bfd,
3401 struct bfd_link_info *info,
3403 asection *input_section,
3405 Elf_Internal_Rela *relocs,
3406 Elf_Internal_Sym *local_syms,
3407 asection **local_sections)
3409 bfd_vma *local_got_offsets;
3410 struct elf32_hppa_link_hash_table *htab;
3411 Elf_Internal_Shdr *symtab_hdr;
3412 Elf_Internal_Rela *rel;
3413 Elf_Internal_Rela *relend;
3415 if (info->relocatable)
3418 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3420 htab = hppa_link_hash_table (info);
3421 local_got_offsets = elf_local_got_offsets (input_bfd);
3424 relend = relocs + input_section->reloc_count;
3425 for (; rel < relend; rel++)
3427 unsigned int r_type;
3428 reloc_howto_type *howto;
3429 unsigned int r_symndx;
3430 struct elf32_hppa_link_hash_entry *h;
3431 Elf_Internal_Sym *sym;
3434 bfd_reloc_status_type r;
3435 const char *sym_name;
3437 bfd_boolean warned_undef;
3439 r_type = ELF32_R_TYPE (rel->r_info);
3440 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3442 bfd_set_error (bfd_error_bad_value);
3445 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3446 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3449 /* This is a final link. */
3450 r_symndx = ELF32_R_SYM (rel->r_info);
3454 warned_undef = FALSE;
3455 if (r_symndx < symtab_hdr->sh_info)
3457 /* This is a local symbol, h defaults to NULL. */
3458 sym = local_syms + r_symndx;
3459 sym_sec = local_sections[r_symndx];
3460 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3464 struct elf_link_hash_entry *hh;
3465 bfd_boolean unresolved_reloc;
3466 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3468 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3469 r_symndx, symtab_hdr, sym_hashes,
3470 hh, sym_sec, relocation,
3471 unresolved_reloc, warned_undef);
3474 && hh->root.type != bfd_link_hash_defined
3475 && hh->root.type != bfd_link_hash_defweak
3476 && hh->root.type != bfd_link_hash_undefweak)
3478 if (info->unresolved_syms_in_objects == RM_IGNORE
3479 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3480 && hh->type == STT_PARISC_MILLI)
3482 if (! info->callbacks->undefined_symbol
3483 (info, hh->root.root.string, input_bfd,
3484 input_section, rel->r_offset, FALSE))
3486 warned_undef = TRUE;
3489 h = (struct elf32_hppa_link_hash_entry *) hh;
3492 /* Do any required modifications to the relocation value, and
3493 determine what types of dynamic info we need to output, if
3498 case R_PARISC_DLTIND14F:
3499 case R_PARISC_DLTIND14R:
3500 case R_PARISC_DLTIND21L:
3503 bfd_boolean do_got = 0;
3505 /* Relocation is to the entry for this symbol in the
3506 global offset table. */
3511 off = h->elf.got.offset;
3512 dyn = htab->elf.dynamic_sections_created;
3513 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3516 /* If we aren't going to call finish_dynamic_symbol,
3517 then we need to handle initialisation of the .got
3518 entry and create needed relocs here. Since the
3519 offset must always be a multiple of 4, we use the
3520 least significant bit to record whether we have
3521 initialised it already. */
3526 h->elf.got.offset |= 1;
3533 /* Local symbol case. */
3534 if (local_got_offsets == NULL)
3537 off = local_got_offsets[r_symndx];
3539 /* The offset must always be a multiple of 4. We use
3540 the least significant bit to record whether we have
3541 already generated the necessary reloc. */
3546 local_got_offsets[r_symndx] |= 1;
3555 /* Output a dynamic relocation for this GOT entry.
3556 In this case it is relative to the base of the
3557 object because the symbol index is zero. */
3558 Elf_Internal_Rela outrel;
3560 asection *s = htab->srelgot;
3562 outrel.r_offset = (off
3563 + htab->sgot->output_offset
3564 + htab->sgot->output_section->vma);
3565 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3566 outrel.r_addend = relocation;
3568 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3569 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3572 bfd_put_32 (output_bfd, relocation,
3573 htab->sgot->contents + off);
3576 if (off >= (bfd_vma) -2)
3579 /* Add the base of the GOT to the relocation value. */
3581 + htab->sgot->output_offset
3582 + htab->sgot->output_section->vma);
3586 case R_PARISC_SEGREL32:
3587 /* If this is the first SEGREL relocation, then initialize
3588 the segment base values. */
3589 if (htab->text_segment_base == (bfd_vma) -1)
3590 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3593 case R_PARISC_PLABEL14R:
3594 case R_PARISC_PLABEL21L:
3595 case R_PARISC_PLABEL32:
3596 if (htab->elf.dynamic_sections_created)
3599 bfd_boolean do_plt = 0;
3601 /* If we have a global symbol with a PLT slot, then
3602 redirect this relocation to it. */
3605 off = h->elf.plt.offset;
3606 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3609 /* In a non-shared link, adjust_dynamic_symbols
3610 isn't called for symbols forced local. We
3611 need to write out the plt entry here. */
3616 h->elf.plt.offset |= 1;
3623 bfd_vma *local_plt_offsets;
3625 if (local_got_offsets == NULL)
3628 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3629 off = local_plt_offsets[r_symndx];
3631 /* As for the local .got entry case, we use the last
3632 bit to record whether we've already initialised
3633 this local .plt entry. */
3638 local_plt_offsets[r_symndx] |= 1;
3647 /* Output a dynamic IPLT relocation for this
3649 Elf_Internal_Rela outrel;
3651 asection *s = htab->srelplt;
3653 outrel.r_offset = (off
3654 + htab->splt->output_offset
3655 + htab->splt->output_section->vma);
3656 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3657 outrel.r_addend = relocation;
3659 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3660 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3664 bfd_put_32 (output_bfd,
3666 htab->splt->contents + off);
3667 bfd_put_32 (output_bfd,
3668 elf_gp (htab->splt->output_section->owner),
3669 htab->splt->contents + off + 4);
3673 if (off >= (bfd_vma) -2)
3676 /* PLABELs contain function pointers. Relocation is to
3677 the entry for the function in the .plt. The magic +2
3678 offset signals to $$dyncall that the function pointer
3679 is in the .plt and thus has a gp pointer too.
3680 Exception: Undefined PLABELs should have a value of
3683 || (h->elf.root.type != bfd_link_hash_undefweak
3684 && h->elf.root.type != bfd_link_hash_undefined))
3687 + htab->splt->output_offset
3688 + htab->splt->output_section->vma
3693 /* Fall through and possibly emit a dynamic relocation. */
3695 case R_PARISC_DIR17F:
3696 case R_PARISC_DIR17R:
3697 case R_PARISC_DIR14F:
3698 case R_PARISC_DIR14R:
3699 case R_PARISC_DIR21L:
3700 case R_PARISC_DPREL14F:
3701 case R_PARISC_DPREL14R:
3702 case R_PARISC_DPREL21L:
3703 case R_PARISC_DIR32:
3704 /* r_symndx will be zero only for relocs against symbols
3705 from removed linkonce sections, or sections discarded by
3708 || (input_section->flags & SEC_ALLOC) == 0)
3711 /* The reloc types handled here and this conditional
3712 expression must match the code in ..check_relocs and
3713 allocate_dynrelocs. ie. We need exactly the same condition
3714 as in ..check_relocs, with some extra conditions (dynindx
3715 test in this case) to cater for relocs removed by
3716 allocate_dynrelocs. If you squint, the non-shared test
3717 here does indeed match the one in ..check_relocs, the
3718 difference being that here we test DEF_DYNAMIC as well as
3719 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3720 which is why we can't use just that test here.
3721 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3722 there all files have not been loaded. */
3725 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3726 || h->elf.root.type != bfd_link_hash_undefweak)
3727 && (IS_ABSOLUTE_RELOC (r_type)
3728 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3731 && h->elf.dynindx != -1
3732 && !h->elf.non_got_ref
3733 && ((ELIMINATE_COPY_RELOCS
3734 && h->elf.def_dynamic
3735 && !h->elf.def_regular)
3736 || h->elf.root.type == bfd_link_hash_undefweak
3737 || h->elf.root.type == bfd_link_hash_undefined)))
3739 Elf_Internal_Rela outrel;
3744 /* When generating a shared object, these relocations
3745 are copied into the output file to be resolved at run
3748 outrel.r_addend = rel->r_addend;
3750 _bfd_elf_section_offset (output_bfd, info, input_section,
3752 skip = (outrel.r_offset == (bfd_vma) -1
3753 || outrel.r_offset == (bfd_vma) -2);
3754 outrel.r_offset += (input_section->output_offset
3755 + input_section->output_section->vma);
3759 memset (&outrel, 0, sizeof (outrel));
3762 && h->elf.dynindx != -1
3764 || !IS_ABSOLUTE_RELOC (r_type)
3767 || !h->elf.def_regular))
3769 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3771 else /* It's a local symbol, or one marked to become local. */
3775 /* Add the absolute offset of the symbol. */
3776 outrel.r_addend += relocation;
3778 /* Global plabels need to be processed by the
3779 dynamic linker so that functions have at most one
3780 fptr. For this reason, we need to differentiate
3781 between global and local plabels, which we do by
3782 providing the function symbol for a global plabel
3783 reloc, and no symbol for local plabels. */
3786 && sym_sec->output_section != NULL
3787 && ! bfd_is_abs_section (sym_sec))
3789 /* Skip this relocation if the output section has
3791 if (bfd_is_abs_section (sym_sec->output_section))
3794 indx = elf_section_data (sym_sec->output_section)->dynindx;
3795 /* We are turning this relocation into one
3796 against a section symbol, so subtract out the
3797 output section's address but not the offset
3798 of the input section in the output section. */
3799 outrel.r_addend -= sym_sec->output_section->vma;
3802 outrel.r_info = ELF32_R_INFO (indx, r_type);
3804 sreloc = elf_section_data (input_section)->sreloc;
3808 loc = sreloc->contents;
3809 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3810 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3818 r = final_link_relocate (input_section, contents, rel, relocation,
3819 htab, sym_sec, h, info);
3821 if (r == bfd_reloc_ok)
3825 sym_name = h->elf.root.root.string;
3828 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3829 symtab_hdr->sh_link,
3831 if (sym_name == NULL)
3833 if (*sym_name == '\0')
3834 sym_name = bfd_section_name (input_bfd, sym_sec);
3837 howto = elf_hppa_howto_table + r_type;
3839 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3841 if (r == bfd_reloc_notsupported || !warned_undef)
3843 (*_bfd_error_handler)
3844 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3847 (long) rel->r_offset,
3850 bfd_set_error (bfd_error_bad_value);
3856 if (!((*info->callbacks->reloc_overflow)
3857 (info, (h ? &h->elf.root : NULL), sym_name, howto->name,
3858 (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
3866 /* Finish up dynamic symbol handling. We set the contents of various
3867 dynamic sections here. */
3870 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3871 struct bfd_link_info *info,
3872 struct elf_link_hash_entry *h,
3873 Elf_Internal_Sym *sym)
3875 struct elf32_hppa_link_hash_table *htab;
3876 Elf_Internal_Rela rel;
3879 htab = hppa_link_hash_table (info);
3881 if (h->plt.offset != (bfd_vma) -1)
3885 if (h->plt.offset & 1)
3888 /* This symbol has an entry in the procedure linkage table. Set
3891 The format of a plt entry is
3896 if (h->root.type == bfd_link_hash_defined
3897 || h->root.type == bfd_link_hash_defweak)
3899 value = h->root.u.def.value;
3900 if (h->root.u.def.section->output_section != NULL)
3901 value += (h->root.u.def.section->output_offset
3902 + h->root.u.def.section->output_section->vma);
3905 /* Create a dynamic IPLT relocation for this entry. */
3906 rel.r_offset = (h->plt.offset
3907 + htab->splt->output_offset
3908 + htab->splt->output_section->vma);
3909 if (h->dynindx != -1)
3911 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3916 /* This symbol has been marked to become local, and is
3917 used by a plabel so must be kept in the .plt. */
3918 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3919 rel.r_addend = value;
3922 loc = htab->srelplt->contents;
3923 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3924 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3926 if (!h->def_regular)
3928 /* Mark the symbol as undefined, rather than as defined in
3929 the .plt section. Leave the value alone. */
3930 sym->st_shndx = SHN_UNDEF;
3934 if (h->got.offset != (bfd_vma) -1)
3936 /* This symbol has an entry in the global offset table. Set it
3939 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3940 + htab->sgot->output_offset
3941 + htab->sgot->output_section->vma);
3943 /* If this is a -Bsymbolic link and the symbol is defined
3944 locally or was forced to be local because of a version file,
3945 we just want to emit a RELATIVE reloc. The entry in the
3946 global offset table will already have been initialized in the
3947 relocate_section function. */
3949 && (info->symbolic || h->dynindx == -1)
3952 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3953 rel.r_addend = (h->root.u.def.value
3954 + h->root.u.def.section->output_offset
3955 + h->root.u.def.section->output_section->vma);
3959 if ((h->got.offset & 1) != 0)
3961 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3962 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3966 loc = htab->srelgot->contents;
3967 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3968 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3975 /* This symbol needs a copy reloc. Set it up. */
3977 if (! (h->dynindx != -1
3978 && (h->root.type == bfd_link_hash_defined
3979 || h->root.type == bfd_link_hash_defweak)))
3984 rel.r_offset = (h->root.u.def.value
3985 + h->root.u.def.section->output_offset
3986 + h->root.u.def.section->output_section->vma);
3988 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3989 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3990 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3993 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3994 if (h->root.root.string[0] == '_'
3995 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3996 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3998 sym->st_shndx = SHN_ABS;
4004 /* Used to decide how to sort relocs in an optimal manner for the
4005 dynamic linker, before writing them out. */
4007 static enum elf_reloc_type_class
4008 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4010 if (ELF32_R_SYM (rela->r_info) == 0)
4011 return reloc_class_relative;
4013 switch ((int) ELF32_R_TYPE (rela->r_info))
4016 return reloc_class_plt;
4018 return reloc_class_copy;
4020 return reloc_class_normal;
4024 /* Finish up the dynamic sections. */
4027 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4028 struct bfd_link_info *info)
4031 struct elf32_hppa_link_hash_table *htab;
4034 htab = hppa_link_hash_table (info);
4035 dynobj = htab->elf.dynobj;
4037 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4039 if (htab->elf.dynamic_sections_created)
4041 Elf32_External_Dyn *dyncon, *dynconend;
4046 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4047 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4048 for (; dyncon < dynconend; dyncon++)
4050 Elf_Internal_Dyn dyn;
4053 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4061 /* Use PLTGOT to set the GOT register. */
4062 dyn.d_un.d_ptr = elf_gp (output_bfd);
4067 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4072 dyn.d_un.d_val = s->size;
4076 /* Don't count procedure linkage table relocs in the
4077 overall reloc count. */
4081 dyn.d_un.d_val -= s->size;
4085 /* We may not be using the standard ELF linker script.
4086 If .rela.plt is the first .rela section, we adjust
4087 DT_RELA to not include it. */
4091 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4093 dyn.d_un.d_ptr += s->size;
4097 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4101 if (htab->sgot != NULL && htab->sgot->size != 0)
4103 /* Fill in the first entry in the global offset table.
4104 We use it to point to our dynamic section, if we have one. */
4105 bfd_put_32 (output_bfd,
4106 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4107 htab->sgot->contents);
4109 /* The second entry is reserved for use by the dynamic linker. */
4110 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4112 /* Set .got entry size. */
4113 elf_section_data (htab->sgot->output_section)
4114 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4117 if (htab->splt != NULL && htab->splt->size != 0)
4119 /* Set plt entry size. */
4120 elf_section_data (htab->splt->output_section)
4121 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4123 if (htab->need_plt_stub)
4125 /* Set up the .plt stub. */
4126 memcpy (htab->splt->contents
4127 + htab->splt->size - sizeof (plt_stub),
4128 plt_stub, sizeof (plt_stub));
4130 if ((htab->splt->output_offset
4131 + htab->splt->output_section->vma
4133 != (htab->sgot->output_offset
4134 + htab->sgot->output_section->vma))
4136 (*_bfd_error_handler)
4137 (_(".got section not immediately after .plt section"));
4146 /* Tweak the OSABI field of the elf header. */
4149 elf32_hppa_post_process_headers (bfd *abfd,
4150 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4152 Elf_Internal_Ehdr * i_ehdrp;
4154 i_ehdrp = elf_elfheader (abfd);
4156 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4158 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4160 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4162 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4166 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4170 /* Called when writing out an object file to decide the type of a
4173 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4175 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4176 return STT_PARISC_MILLI;
4181 /* Misc BFD support code. */
4182 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4183 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4184 #define elf_info_to_howto elf_hppa_info_to_howto
4185 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4187 /* Stuff for the BFD linker. */
4188 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4189 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4190 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4191 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4192 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4193 #define elf_backend_check_relocs elf32_hppa_check_relocs
4194 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4195 #define elf_backend_fake_sections elf_hppa_fake_sections
4196 #define elf_backend_relocate_section elf32_hppa_relocate_section
4197 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4198 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4199 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4200 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4201 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4202 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4203 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4204 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4205 #define elf_backend_object_p elf32_hppa_object_p
4206 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4207 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4208 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4209 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4211 #define elf_backend_can_gc_sections 1
4212 #define elf_backend_can_refcount 1
4213 #define elf_backend_plt_alignment 2
4214 #define elf_backend_want_got_plt 0
4215 #define elf_backend_plt_readonly 0
4216 #define elf_backend_want_plt_sym 0
4217 #define elf_backend_got_header_size 8
4218 #define elf_backend_rela_normal 1
4220 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4221 #define TARGET_BIG_NAME "elf32-hppa"
4222 #define ELF_ARCH bfd_arch_hppa
4223 #define ELF_MACHINE_CODE EM_PARISC
4224 #define ELF_MAXPAGESIZE 0x1000
4226 #include "elf32-target.h"
4228 #undef TARGET_BIG_SYM
4229 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4230 #undef TARGET_BIG_NAME
4231 #define TARGET_BIG_NAME "elf32-hppa-linux"
4233 #define INCLUDED_TARGET_FILE 1
4234 #include "elf32-target.h"
4236 #undef TARGET_BIG_SYM
4237 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4238 #undef TARGET_BIG_NAME
4239 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4241 #include "elf32-target.h"