1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_args_match (struct symbol *, struct value **, int);
102 static struct value *make_array_descriptor (struct type *, struct value *);
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
118 const struct block *);
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
122 static const char *ada_decoded_op_name (enum exp_opcode);
124 static int numeric_type_p (struct type *);
126 static int integer_type_p (struct type *);
128 static int scalar_type_p (struct type *);
130 static int discrete_type_p (struct type *);
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
135 static struct type *ada_find_parallel_type_with_name (struct type *,
138 static int is_dynamic_field (struct type *, int);
140 static struct type *to_fixed_variant_branch_type (struct type *,
142 CORE_ADDR, struct value *);
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
146 static struct type *to_fixed_range_type (struct type *, struct value *);
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
151 static struct value *unwrap_value (struct value *);
153 static struct type *constrained_packed_array_type (struct type *, long *);
155 static struct type *decode_constrained_packed_array_type (struct type *);
157 static long decode_packed_array_bitsize (struct type *);
159 static struct value *decode_constrained_packed_array (struct value *);
161 static int ada_is_unconstrained_packed_array_type (struct type *);
163 static struct value *value_subscript_packed (struct value *, int,
166 static struct value *coerce_unspec_val_to_type (struct value *,
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
171 static int equiv_types (struct type *, struct type *);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name, const char *patn);
179 static struct value *ada_coerce_ref (struct value *);
181 static LONGEST pos_atr (struct value *);
183 static struct value *val_atr (struct type *, LONGEST);
185 static struct symbol *standard_lookup (const char *, const struct block *,
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
198 static int ada_is_direct_array_type (struct type *);
200 static struct value *ada_index_struct_field (int, struct value *, int,
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
206 static struct type *ada_find_any_type (const char *name);
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
213 /* The character set used for source files. */
214 static const char *ada_source_charset;
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8[] = "UTF-8";
220 /* Each entry in the UTF-32 case-folding table is of this form. */
223 /* The start and end, inclusive, of this range of codepoints. */
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
232 bool operator< (uint32_t val) const
238 static const utf8_entry ada_case_fold[] =
240 #include "ada-casefold.h"
245 /* The result of a symbol lookup to be stored in our symbol cache. */
249 /* The name used to perform the lookup. */
251 /* The namespace used during the lookup. */
253 /* The symbol returned by the lookup, or NULL if no matching symbol
256 /* The block where the symbol was found, or NULL if no matching
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
272 #define HASH_SIZE 1009
274 struct ada_symbol_cache
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space;
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry *root[HASH_SIZE] {};
283 static const char ada_completer_word_break_characters[] =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
301 static const char * const known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char * const known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Maintenance-related settings for this module. */
311 static struct cmd_list_element *maint_set_ada_cmdlist;
312 static struct cmd_list_element *maint_show_ada_cmdlist;
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
316 static bool ada_ignore_descriptive_types_p = false;
318 /* Inferior-specific data. */
320 /* Per-inferior data for this module. */
322 struct ada_inferior_data
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type *tsd_type = nullptr;
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
333 const struct exception_support_info *exception_info = nullptr;
336 /* Our key to this module's inferior data. */
337 static const registry<inferior>::key<ada_inferior_data> ada_inferior_data;
339 /* Return our inferior data for the given inferior (INF).
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
347 static struct ada_inferior_data *
348 get_ada_inferior_data (struct inferior *inf)
350 struct ada_inferior_data *data;
352 data = ada_inferior_data.get (inf);
354 data = ada_inferior_data.emplace (inf);
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
363 ada_inferior_exit (struct inferior *inf)
365 ada_inferior_data.clear (inf);
369 /* program-space-specific data. */
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
374 /* The Ada symbol cache. */
375 std::unique_ptr<ada_symbol_cache> sym_cache;
378 /* Key to our per-program-space data. */
379 static const registry<program_space>::key<ada_pspace_data>
380 ada_pspace_data_handle;
382 /* Return this module's data for the given program space (PSPACE).
383 If not is found, add a zero'ed one now.
385 This function always returns a valid object. */
387 static struct ada_pspace_data *
388 get_ada_pspace_data (struct program_space *pspace)
390 struct ada_pspace_data *data;
392 data = ada_pspace_data_handle.get (pspace);
394 data = ada_pspace_data_handle.emplace (pspace);
401 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
402 all typedef layers have been peeled. Otherwise, return TYPE.
404 Normally, we really expect a typedef type to only have 1 typedef layer.
405 In other words, we really expect the target type of a typedef type to be
406 a non-typedef type. This is particularly true for Ada units, because
407 the language does not have a typedef vs not-typedef distinction.
408 In that respect, the Ada compiler has been trying to eliminate as many
409 typedef definitions in the debugging information, since they generally
410 do not bring any extra information (we still use typedef under certain
411 circumstances related mostly to the GNAT encoding).
413 Unfortunately, we have seen situations where the debugging information
414 generated by the compiler leads to such multiple typedef layers. For
415 instance, consider the following example with stabs:
417 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
418 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
420 This is an error in the debugging information which causes type
421 pck__float_array___XUP to be defined twice, and the second time,
422 it is defined as a typedef of a typedef.
424 This is on the fringe of legality as far as debugging information is
425 concerned, and certainly unexpected. But it is easy to handle these
426 situations correctly, so we can afford to be lenient in this case. */
429 ada_typedef_target_type (struct type *type)
431 while (type->code () == TYPE_CODE_TYPEDEF)
432 type = type->target_type ();
436 /* Given DECODED_NAME a string holding a symbol name in its
437 decoded form (ie using the Ada dotted notation), returns
438 its unqualified name. */
441 ada_unqualified_name (const char *decoded_name)
445 /* If the decoded name starts with '<', it means that the encoded
446 name does not follow standard naming conventions, and thus that
447 it is not your typical Ada symbol name. Trying to unqualify it
448 is therefore pointless and possibly erroneous. */
449 if (decoded_name[0] == '<')
452 result = strrchr (decoded_name, '.');
454 result++; /* Skip the dot... */
456 result = decoded_name;
461 /* Return a string starting with '<', followed by STR, and '>'. */
464 add_angle_brackets (const char *str)
466 return string_printf ("<%s>", str);
469 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
470 suffix of FIELD_NAME beginning "___". */
473 field_name_match (const char *field_name, const char *target)
475 int len = strlen (target);
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
480 || (startswith (field_name + len, "___")
481 && strcmp (field_name + strlen (field_name) - 6,
486 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
495 ada_get_field_index (const struct type *type, const char *field_name,
499 struct type *struct_type = check_typedef ((struct type *) type);
501 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
502 if (field_name_match (struct_type->field (fieldno).name (), field_name))
506 error (_("Unable to find field %s in struct %s. Aborting"),
507 field_name, struct_type->name ());
512 /* The length of the prefix of NAME prior to any "___" suffix. */
515 ada_name_prefix_len (const char *name)
521 const char *p = strstr (name, "___");
524 return strlen (name);
530 /* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
534 is_suffix (const char *str, const char *suffix)
541 len2 = strlen (suffix);
542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
545 /* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
548 static struct value *
549 coerce_unspec_val_to_type (struct value *val, struct type *type)
551 type = ada_check_typedef (type);
552 if (value_type (val) == type)
556 struct value *result;
558 if (value_optimized_out (val))
559 result = allocate_optimized_out_value (type);
560 else if (value_lazy (val)
561 /* Be careful not to make a lazy not_lval value. */
562 || (VALUE_LVAL (val) != not_lval
563 && type->length () > value_type (val)->length ()))
564 result = allocate_value_lazy (type);
567 result = allocate_value (type);
568 value_contents_copy (result, 0, val, 0, type->length ());
570 set_value_component_location (result, val);
571 set_value_bitsize (result, value_bitsize (val));
572 set_value_bitpos (result, value_bitpos (val));
573 if (VALUE_LVAL (result) == lval_memory)
574 set_value_address (result, value_address (val));
579 static const gdb_byte *
580 cond_offset_host (const gdb_byte *valaddr, long offset)
585 return valaddr + offset;
589 cond_offset_target (CORE_ADDR address, long offset)
594 return address + offset;
597 /* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
602 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
604 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
607 lim_warning (const char *format, ...)
611 va_start (args, format);
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
614 vwarning (format, args);
619 /* Maximum value of a SIZE-byte signed integer type. */
621 max_of_size (int size)
623 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
625 return top_bit | (top_bit - 1);
628 /* Minimum value of a SIZE-byte signed integer type. */
630 min_of_size (int size)
632 return -max_of_size (size) - 1;
635 /* Maximum value of a SIZE-byte unsigned integer type. */
637 umax_of_size (int size)
639 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
641 return top_bit | (top_bit - 1);
644 /* Maximum value of integral type T, as a signed quantity. */
646 max_of_type (struct type *t)
648 if (t->is_unsigned ())
649 return (LONGEST) umax_of_size (t->length ());
651 return max_of_size (t->length ());
654 /* Minimum value of integral type T, as a signed quantity. */
656 min_of_type (struct type *t)
658 if (t->is_unsigned ())
661 return min_of_size (t->length ());
664 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
666 ada_discrete_type_high_bound (struct type *type)
668 type = resolve_dynamic_type (type, {}, 0);
669 switch (type->code ())
671 case TYPE_CODE_RANGE:
673 const dynamic_prop &high = type->bounds ()->high;
675 if (high.kind () == PROP_CONST)
676 return high.const_val ();
679 gdb_assert (high.kind () == PROP_UNDEFINED);
681 /* This happens when trying to evaluate a type's dynamic bound
682 without a live target. There is nothing relevant for us to
683 return here, so return 0. */
688 return type->field (type->num_fields () - 1).loc_enumval ();
693 return max_of_type (type);
695 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
701 ada_discrete_type_low_bound (struct type *type)
703 type = resolve_dynamic_type (type, {}, 0);
704 switch (type->code ())
706 case TYPE_CODE_RANGE:
708 const dynamic_prop &low = type->bounds ()->low;
710 if (low.kind () == PROP_CONST)
711 return low.const_val ();
714 gdb_assert (low.kind () == PROP_UNDEFINED);
716 /* This happens when trying to evaluate a type's dynamic bound
717 without a live target. There is nothing relevant for us to
718 return here, so return 0. */
723 return type->field (0).loc_enumval ();
728 return min_of_type (type);
730 error (_("Unexpected type in ada_discrete_type_low_bound."));
734 /* The identity on non-range types. For range types, the underlying
735 non-range scalar type. */
738 get_base_type (struct type *type)
740 while (type != NULL && type->code () == TYPE_CODE_RANGE)
742 if (type == type->target_type () || type->target_type () == NULL)
744 type = type->target_type ();
749 /* Return a decoded version of the given VALUE. This means returning
750 a value whose type is obtained by applying all the GNAT-specific
751 encodings, making the resulting type a static but standard description
752 of the initial type. */
755 ada_get_decoded_value (struct value *value)
757 struct type *type = ada_check_typedef (value_type (value));
759 if (ada_is_array_descriptor_type (type)
760 || (ada_is_constrained_packed_array_type (type)
761 && type->code () != TYPE_CODE_PTR))
763 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
764 value = ada_coerce_to_simple_array_ptr (value);
766 value = ada_coerce_to_simple_array (value);
769 value = ada_to_fixed_value (value);
774 /* Same as ada_get_decoded_value, but with the given TYPE.
775 Because there is no associated actual value for this type,
776 the resulting type might be a best-effort approximation in
777 the case of dynamic types. */
780 ada_get_decoded_type (struct type *type)
782 type = to_static_fixed_type (type);
783 if (ada_is_constrained_packed_array_type (type))
784 type = ada_coerce_to_simple_array_type (type);
790 /* Language Selection */
792 /* If the main program is in Ada, return language_ada, otherwise return LANG
793 (the main program is in Ada iif the adainit symbol is found). */
796 ada_update_initial_language (enum language lang)
798 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
804 /* If the main procedure is written in Ada, then return its name.
805 The result is good until the next call. Return NULL if the main
806 procedure doesn't appear to be in Ada. */
811 struct bound_minimal_symbol msym;
812 static gdb::unique_xmalloc_ptr<char> main_program_name;
814 /* For Ada, the name of the main procedure is stored in a specific
815 string constant, generated by the binder. Look for that symbol,
816 extract its address, and then read that string. If we didn't find
817 that string, then most probably the main procedure is not written
819 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
821 if (msym.minsym != NULL)
823 CORE_ADDR main_program_name_addr = msym.value_address ();
824 if (main_program_name_addr == 0)
825 error (_("Invalid address for Ada main program name."));
827 main_program_name = target_read_string (main_program_name_addr, 1024);
828 return main_program_name.get ();
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
865 /* If STR is a decoded version of a compiler-provided suffix (like the
866 "[cold]" in "symbol[cold]"), return true. Otherwise, return
870 is_compiler_suffix (const char *str)
872 gdb_assert (*str == '[');
874 while (*str != '\0' && isalpha (*str))
876 /* We accept a missing "]" in order to support completion. */
877 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
880 /* Append a non-ASCII character to RESULT. */
882 append_hex_encoded (std::string &result, uint32_t one_char)
884 if (one_char <= 0xff)
887 result.append (phex (one_char, 1));
889 else if (one_char <= 0xffff)
892 result.append (phex (one_char, 2));
896 result.append ("WW");
897 result.append (phex (one_char, 4));
901 /* Return a string that is a copy of the data in STORAGE, with
902 non-ASCII characters replaced by the appropriate hex encoding. A
903 template is used because, for UTF-8, we actually want to work with
904 UTF-32 codepoints. */
907 copy_and_hex_encode (struct obstack *storage)
909 const T *chars = (T *) obstack_base (storage);
910 int num_chars = obstack_object_size (storage) / sizeof (T);
912 for (int i = 0; i < num_chars; ++i)
914 if (chars[i] <= 0x7f)
916 /* The host character set has to be a superset of ASCII, as
917 are all the other character sets we can use. */
918 result.push_back (chars[i]);
921 append_hex_encoded (result, chars[i]);
926 /* The "encoded" form of DECODED, according to GNAT conventions. If
927 THROW_ERRORS, throw an error if invalid operator name is found.
928 Otherwise, return the empty string in that case. */
931 ada_encode_1 (const char *decoded, bool throw_errors)
936 std::string encoding_buffer;
937 bool saw_non_ascii = false;
938 for (const char *p = decoded; *p != '\0'; p += 1)
940 if ((*p & 0x80) != 0)
941 saw_non_ascii = true;
944 encoding_buffer.append ("__");
945 else if (*p == '[' && is_compiler_suffix (p))
947 encoding_buffer = encoding_buffer + "." + (p + 1);
948 if (encoding_buffer.back () == ']')
949 encoding_buffer.pop_back ();
954 const struct ada_opname_map *mapping;
956 for (mapping = ada_opname_table;
957 mapping->encoded != NULL
958 && !startswith (p, mapping->decoded); mapping += 1)
960 if (mapping->encoded == NULL)
963 error (_("invalid Ada operator name: %s"), p);
967 encoding_buffer.append (mapping->encoded);
971 encoding_buffer.push_back (*p);
974 /* If a non-ASCII character is seen, we must convert it to the
975 appropriate hex form. As this is more expensive, we keep track
976 of whether it is even necessary. */
979 auto_obstack storage;
980 bool is_utf8 = ada_source_charset == ada_utf8;
983 convert_between_encodings
985 is_utf8 ? HOST_UTF32 : ada_source_charset,
986 (const gdb_byte *) encoding_buffer.c_str (),
987 encoding_buffer.length (), 1,
988 &storage, translit_none);
990 catch (const gdb_exception &)
992 static bool warned = false;
994 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
995 might like to know why. */
999 warning (_("charset conversion failure for '%s'.\n"
1000 "You may have the wrong value for 'set ada source-charset'."),
1001 encoding_buffer.c_str ());
1004 /* We don't try to recover from errors. */
1005 return encoding_buffer;
1009 return copy_and_hex_encode<uint32_t> (&storage);
1010 return copy_and_hex_encode<gdb_byte> (&storage);
1013 return encoding_buffer;
1016 /* Find the entry for C in the case-folding table. Return nullptr if
1017 the entry does not cover C. */
1018 static const utf8_entry *
1019 find_case_fold_entry (uint32_t c)
1021 auto iter = std::lower_bound (std::begin (ada_case_fold),
1022 std::end (ada_case_fold),
1024 if (iter == std::end (ada_case_fold)
1031 /* Return NAME folded to lower case, or, if surrounded by single
1032 quotes, unfolded, but with the quotes stripped away. If
1033 THROW_ON_ERROR is true, encoding failures will throw an exception
1034 rather than emitting a warning. Result good to next call. */
1037 ada_fold_name (gdb::string_view name, bool throw_on_error = false)
1039 static std::string fold_storage;
1041 if (!name.empty () && name[0] == '\'')
1042 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
1045 /* Why convert to UTF-32 and implement our own case-folding,
1046 rather than convert to wchar_t and use the platform's
1047 functions? I'm glad you asked.
1049 The main problem is that GNAT implements an unusual rule for
1050 case folding. For ASCII letters, letters in single-byte
1051 encodings (such as ISO-8859-*), and Unicode letters that fit
1052 in a single byte (i.e., code point is <= 0xff), the letter is
1053 folded to lower case. Other Unicode letters are folded to
1056 This rule means that the code must be able to examine the
1057 value of the character. And, some hosts do not use Unicode
1058 for wchar_t, so examining the value of such characters is
1060 auto_obstack storage;
1063 convert_between_encodings
1064 (host_charset (), HOST_UTF32,
1065 (const gdb_byte *) name.data (),
1067 &storage, translit_none);
1069 catch (const gdb_exception &)
1074 static bool warned = false;
1076 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1077 might like to know why. */
1081 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1082 "This normally should not happen, please file a bug report."),
1083 gdb::to_string (name).c_str (), host_charset ());
1086 /* We don't try to recover from errors; just return the
1088 fold_storage = gdb::to_string (name);
1089 return fold_storage.c_str ();
1092 bool is_utf8 = ada_source_charset == ada_utf8;
1093 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1094 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1095 for (int i = 0; i < num_chars; ++i)
1097 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1098 if (entry != nullptr)
1100 uint32_t low = chars[i] + entry->lower_delta;
1101 if (!is_utf8 || low <= 0xff)
1104 chars[i] = chars[i] + entry->upper_delta;
1108 /* Now convert back to ordinary characters. */
1109 auto_obstack reconverted;
1112 convert_between_encodings (HOST_UTF32,
1114 (const gdb_byte *) chars,
1115 num_chars * sizeof (uint32_t),
1119 obstack_1grow (&reconverted, '\0');
1120 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1122 catch (const gdb_exception &)
1127 static bool warned = false;
1129 /* Converting back from UTF-32 shouldn't normally fail, but
1130 there are some host encodings without upper/lower
1135 warning (_("could not convert the lower-cased variant of '%s'\n"
1136 "from UTF-32 to the host encoding (%s)."),
1137 gdb::to_string (name).c_str (), host_charset ());
1140 /* We don't try to recover from errors; just return the
1142 fold_storage = gdb::to_string (name);
1146 return fold_storage.c_str ();
1149 /* The "encoded" form of DECODED, according to GNAT conventions. */
1152 ada_encode (const char *decoded)
1154 if (decoded[0] != '<')
1155 decoded = ada_fold_name (decoded);
1156 return ada_encode_1 (decoded, true);
1159 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1162 is_lower_alphanum (const char c)
1164 return (isdigit (c) || (isalpha (c) && islower (c)));
1167 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1168 This function saves in LEN the length of that same symbol name but
1169 without either of these suffixes:
1175 These are suffixes introduced by the compiler for entities such as
1176 nested subprogram for instance, in order to avoid name clashes.
1177 They do not serve any purpose for the debugger. */
1180 ada_remove_trailing_digits (const char *encoded, int *len)
1182 if (*len > 1 && isdigit (encoded[*len - 1]))
1186 while (i > 0 && isdigit (encoded[i]))
1188 if (i >= 0 && encoded[i] == '.')
1190 else if (i >= 0 && encoded[i] == '$')
1192 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1194 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1199 /* Remove the suffix introduced by the compiler for protected object
1203 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1205 /* Remove trailing N. */
1207 /* Protected entry subprograms are broken into two
1208 separate subprograms: The first one is unprotected, and has
1209 a 'N' suffix; the second is the protected version, and has
1210 the 'P' suffix. The second calls the first one after handling
1211 the protection. Since the P subprograms are internally generated,
1212 we leave these names undecoded, giving the user a clue that this
1213 entity is internal. */
1216 && encoded[*len - 1] == 'N'
1217 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1221 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1222 then update *LEN to remove the suffix and return the offset of the
1223 character just past the ".". Otherwise, return -1. */
1226 remove_compiler_suffix (const char *encoded, int *len)
1228 int offset = *len - 1;
1229 while (offset > 0 && isalpha (encoded[offset]))
1231 if (offset > 0 && encoded[offset] == '.')
1239 /* Convert an ASCII hex string to a number. Reads exactly N
1240 characters from STR. Returns true on success, false if one of the
1241 digits was not a hex digit. */
1243 convert_hex (const char *str, int n, uint32_t *out)
1245 uint32_t result = 0;
1247 for (int i = 0; i < n; ++i)
1249 if (!isxdigit (str[i]))
1252 result |= fromhex (str[i]);
1259 /* Convert a wide character from its ASCII hex representation in STR
1260 (consisting of exactly N characters) to the host encoding,
1261 appending the resulting bytes to OUT. If N==2 and the Ada source
1262 charset is not UTF-8, then hex refers to an encoding in the
1263 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1264 Return false and do not modify OUT on conversion failure. */
1266 convert_from_hex_encoded (std::string &out, const char *str, int n)
1270 if (!convert_hex (str, n, &value))
1275 /* In the 'U' case, the hex digits encode the character in the
1276 Ada source charset. However, if the source charset is UTF-8,
1277 this really means it is a single-byte UTF-32 character. */
1278 if (n == 2 && ada_source_charset != ada_utf8)
1280 gdb_byte one_char = (gdb_byte) value;
1282 convert_between_encodings (ada_source_charset, host_charset (),
1284 sizeof (one_char), sizeof (one_char),
1285 &bytes, translit_none);
1288 convert_between_encodings (HOST_UTF32, host_charset (),
1289 (const gdb_byte *) &value,
1290 sizeof (value), sizeof (value),
1291 &bytes, translit_none);
1292 obstack_1grow (&bytes, '\0');
1293 out.append ((const char *) obstack_base (&bytes));
1295 catch (const gdb_exception &)
1297 /* On failure, the caller will just let the encoded form
1298 through, which seems basically reasonable. */
1305 /* See ada-lang.h. */
1308 ada_decode (const char *encoded, bool wrap, bool operators)
1314 std::string decoded;
1317 /* With function descriptors on PPC64, the value of a symbol named
1318 ".FN", if it exists, is the entry point of the function "FN". */
1319 if (encoded[0] == '.')
1322 /* The name of the Ada main procedure starts with "_ada_".
1323 This prefix is not part of the decoded name, so skip this part
1324 if we see this prefix. */
1325 if (startswith (encoded, "_ada_"))
1327 /* The "___ghost_" prefix is used for ghost entities. Normally
1328 these aren't preserved but when they are, it's useful to see
1330 if (startswith (encoded, "___ghost_"))
1333 /* If the name starts with '_', then it is not a properly encoded
1334 name, so do not attempt to decode it. Similarly, if the name
1335 starts with '<', the name should not be decoded. */
1336 if (encoded[0] == '_' || encoded[0] == '<')
1339 len0 = strlen (encoded);
1341 suffix = remove_compiler_suffix (encoded, &len0);
1343 ada_remove_trailing_digits (encoded, &len0);
1344 ada_remove_po_subprogram_suffix (encoded, &len0);
1346 /* Remove the ___X.* suffix if present. Do not forget to verify that
1347 the suffix is located before the current "end" of ENCODED. We want
1348 to avoid re-matching parts of ENCODED that have previously been
1349 marked as discarded (by decrementing LEN0). */
1350 p = strstr (encoded, "___");
1351 if (p != NULL && p - encoded < len0 - 3)
1359 /* Remove any trailing TKB suffix. It tells us that this symbol
1360 is for the body of a task, but that information does not actually
1361 appear in the decoded name. */
1363 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1366 /* Remove any trailing TB suffix. The TB suffix is slightly different
1367 from the TKB suffix because it is used for non-anonymous task
1370 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1373 /* Remove trailing "B" suffixes. */
1374 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1376 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1379 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1381 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1384 while ((i >= 0 && isdigit (encoded[i]))
1385 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1387 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1389 else if (encoded[i] == '$')
1393 /* The first few characters that are not alphabetic are not part
1394 of any encoding we use, so we can copy them over verbatim. */
1396 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1397 decoded.push_back (encoded[i]);
1402 /* Is this a symbol function? */
1403 if (operators && at_start_name && encoded[i] == 'O')
1407 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1409 int op_len = strlen (ada_opname_table[k].encoded);
1410 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1412 && !isalnum (encoded[i + op_len]))
1414 decoded.append (ada_opname_table[k].decoded);
1420 if (ada_opname_table[k].encoded != NULL)
1425 /* Replace "TK__" with "__", which will eventually be translated
1426 into "." (just below). */
1428 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1431 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1432 be translated into "." (just below). These are internal names
1433 generated for anonymous blocks inside which our symbol is nested. */
1435 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1436 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1437 && isdigit (encoded [i+4]))
1441 while (k < len0 && isdigit (encoded[k]))
1442 k++; /* Skip any extra digit. */
1444 /* Double-check that the "__B_{DIGITS}+" sequence we found
1445 is indeed followed by "__". */
1446 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1450 /* Remove _E{DIGITS}+[sb] */
1452 /* Just as for protected object subprograms, there are 2 categories
1453 of subprograms created by the compiler for each entry. The first
1454 one implements the actual entry code, and has a suffix following
1455 the convention above; the second one implements the barrier and
1456 uses the same convention as above, except that the 'E' is replaced
1459 Just as above, we do not decode the name of barrier functions
1460 to give the user a clue that the code he is debugging has been
1461 internally generated. */
1463 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1464 && isdigit (encoded[i+2]))
1468 while (k < len0 && isdigit (encoded[k]))
1472 && (encoded[k] == 'b' || encoded[k] == 's'))
1475 /* Just as an extra precaution, make sure that if this
1476 suffix is followed by anything else, it is a '_'.
1477 Otherwise, we matched this sequence by accident. */
1479 || (k < len0 && encoded[k] == '_'))
1484 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1485 the GNAT front-end in protected object subprograms. */
1488 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1490 /* Backtrack a bit up until we reach either the begining of
1491 the encoded name, or "__". Make sure that we only find
1492 digits or lowercase characters. */
1493 const char *ptr = encoded + i - 1;
1495 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1498 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1502 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1504 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1510 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1512 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1518 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1519 && isxdigit (encoded[i + 2]))
1521 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1528 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1530 /* This is a X[bn]* sequence not separated from the previous
1531 part of the name with a non-alpha-numeric character (in other
1532 words, immediately following an alpha-numeric character), then
1533 verify that it is placed at the end of the encoded name. If
1534 not, then the encoding is not valid and we should abort the
1535 decoding. Otherwise, just skip it, it is used in body-nested
1539 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1543 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1545 /* Replace '__' by '.'. */
1546 decoded.push_back ('.');
1552 /* It's a character part of the decoded name, so just copy it
1554 decoded.push_back (encoded[i]);
1559 /* Decoded names should never contain any uppercase character.
1560 Double-check this, and abort the decoding if we find one. */
1564 for (i = 0; i < decoded.length(); ++i)
1565 if (isupper (decoded[i]) || decoded[i] == ' ')
1569 /* If the compiler added a suffix, append it now. */
1571 decoded = decoded + "[" + &encoded[suffix] + "]";
1579 if (encoded[0] == '<')
1582 decoded = '<' + std::string(encoded) + '>';
1586 /* Table for keeping permanent unique copies of decoded names. Once
1587 allocated, names in this table are never released. While this is a
1588 storage leak, it should not be significant unless there are massive
1589 changes in the set of decoded names in successive versions of a
1590 symbol table loaded during a single session. */
1591 static struct htab *decoded_names_store;
1593 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1594 in the language-specific part of GSYMBOL, if it has not been
1595 previously computed. Tries to save the decoded name in the same
1596 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1597 in any case, the decoded symbol has a lifetime at least that of
1599 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1600 const, but nevertheless modified to a semantically equivalent form
1601 when a decoded name is cached in it. */
1604 ada_decode_symbol (const struct general_symbol_info *arg)
1606 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1607 const char **resultp =
1608 &gsymbol->language_specific.demangled_name;
1610 if (!gsymbol->ada_mangled)
1612 std::string decoded = ada_decode (gsymbol->linkage_name ());
1613 struct obstack *obstack = gsymbol->language_specific.obstack;
1615 gsymbol->ada_mangled = 1;
1617 if (obstack != NULL)
1618 *resultp = obstack_strdup (obstack, decoded.c_str ());
1621 /* Sometimes, we can't find a corresponding objfile, in
1622 which case, we put the result on the heap. Since we only
1623 decode when needed, we hope this usually does not cause a
1624 significant memory leak (FIXME). */
1626 char **slot = (char **) htab_find_slot (decoded_names_store,
1627 decoded.c_str (), INSERT);
1630 *slot = xstrdup (decoded.c_str ());
1642 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1643 generated by the GNAT compiler to describe the index type used
1644 for each dimension of an array, check whether it follows the latest
1645 known encoding. If not, fix it up to conform to the latest encoding.
1646 Otherwise, do nothing. This function also does nothing if
1647 INDEX_DESC_TYPE is NULL.
1649 The GNAT encoding used to describe the array index type evolved a bit.
1650 Initially, the information would be provided through the name of each
1651 field of the structure type only, while the type of these fields was
1652 described as unspecified and irrelevant. The debugger was then expected
1653 to perform a global type lookup using the name of that field in order
1654 to get access to the full index type description. Because these global
1655 lookups can be very expensive, the encoding was later enhanced to make
1656 the global lookup unnecessary by defining the field type as being
1657 the full index type description.
1659 The purpose of this routine is to allow us to support older versions
1660 of the compiler by detecting the use of the older encoding, and by
1661 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1662 we essentially replace each field's meaningless type by the associated
1666 ada_fixup_array_indexes_type (struct type *index_desc_type)
1670 if (index_desc_type == NULL)
1672 gdb_assert (index_desc_type->num_fields () > 0);
1674 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1675 to check one field only, no need to check them all). If not, return
1678 If our INDEX_DESC_TYPE was generated using the older encoding,
1679 the field type should be a meaningless integer type whose name
1680 is not equal to the field name. */
1681 if (index_desc_type->field (0).type ()->name () != NULL
1682 && strcmp (index_desc_type->field (0).type ()->name (),
1683 index_desc_type->field (0).name ()) == 0)
1686 /* Fixup each field of INDEX_DESC_TYPE. */
1687 for (i = 0; i < index_desc_type->num_fields (); i++)
1689 const char *name = index_desc_type->field (i).name ();
1690 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1693 index_desc_type->field (i).set_type (raw_type);
1697 /* The desc_* routines return primitive portions of array descriptors
1700 /* The descriptor or array type, if any, indicated by TYPE; removes
1701 level of indirection, if needed. */
1703 static struct type *
1704 desc_base_type (struct type *type)
1708 type = ada_check_typedef (type);
1709 if (type->code () == TYPE_CODE_TYPEDEF)
1710 type = ada_typedef_target_type (type);
1713 && (type->code () == TYPE_CODE_PTR
1714 || type->code () == TYPE_CODE_REF))
1715 return ada_check_typedef (type->target_type ());
1720 /* True iff TYPE indicates a "thin" array pointer type. */
1723 is_thin_pntr (struct type *type)
1726 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1727 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1730 /* The descriptor type for thin pointer type TYPE. */
1732 static struct type *
1733 thin_descriptor_type (struct type *type)
1735 struct type *base_type = desc_base_type (type);
1737 if (base_type == NULL)
1739 if (is_suffix (ada_type_name (base_type), "___XVE"))
1743 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1745 if (alt_type == NULL)
1752 /* A pointer to the array data for thin-pointer value VAL. */
1754 static struct value *
1755 thin_data_pntr (struct value *val)
1757 struct type *type = ada_check_typedef (value_type (val));
1758 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1760 data_type = lookup_pointer_type (data_type);
1762 if (type->code () == TYPE_CODE_PTR)
1763 return value_cast (data_type, value_copy (val));
1765 return value_from_longest (data_type, value_address (val));
1768 /* True iff TYPE indicates a "thick" array pointer type. */
1771 is_thick_pntr (struct type *type)
1773 type = desc_base_type (type);
1774 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1775 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1778 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779 pointer to one, the type of its bounds data; otherwise, NULL. */
1781 static struct type *
1782 desc_bounds_type (struct type *type)
1786 type = desc_base_type (type);
1790 else if (is_thin_pntr (type))
1792 type = thin_descriptor_type (type);
1795 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1797 return ada_check_typedef (r);
1799 else if (type->code () == TYPE_CODE_STRUCT)
1801 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1803 return ada_check_typedef (ada_check_typedef (r)->target_type ());
1808 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1809 one, a pointer to its bounds data. Otherwise NULL. */
1811 static struct value *
1812 desc_bounds (struct value *arr)
1814 struct type *type = ada_check_typedef (value_type (arr));
1816 if (is_thin_pntr (type))
1818 struct type *bounds_type =
1819 desc_bounds_type (thin_descriptor_type (type));
1822 if (bounds_type == NULL)
1823 error (_("Bad GNAT array descriptor"));
1825 /* NOTE: The following calculation is not really kosher, but
1826 since desc_type is an XVE-encoded type (and shouldn't be),
1827 the correct calculation is a real pain. FIXME (and fix GCC). */
1828 if (type->code () == TYPE_CODE_PTR)
1829 addr = value_as_long (arr);
1831 addr = value_address (arr);
1834 value_from_longest (lookup_pointer_type (bounds_type),
1835 addr - bounds_type->length ());
1838 else if (is_thick_pntr (type))
1840 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1841 _("Bad GNAT array descriptor"));
1842 struct type *p_bounds_type = value_type (p_bounds);
1845 && p_bounds_type->code () == TYPE_CODE_PTR)
1847 struct type *target_type = p_bounds_type->target_type ();
1849 if (target_type->is_stub ())
1850 p_bounds = value_cast (lookup_pointer_type
1851 (ada_check_typedef (target_type)),
1855 error (_("Bad GNAT array descriptor"));
1863 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1864 position of the field containing the address of the bounds data. */
1867 fat_pntr_bounds_bitpos (struct type *type)
1869 return desc_base_type (type)->field (1).loc_bitpos ();
1872 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1873 size of the field containing the address of the bounds data. */
1876 fat_pntr_bounds_bitsize (struct type *type)
1878 type = desc_base_type (type);
1880 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1881 return TYPE_FIELD_BITSIZE (type, 1);
1883 return 8 * ada_check_typedef (type->field (1).type ())->length ();
1886 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1887 pointer to one, the type of its array data (a array-with-no-bounds type);
1888 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1891 static struct type *
1892 desc_data_target_type (struct type *type)
1894 type = desc_base_type (type);
1896 /* NOTE: The following is bogus; see comment in desc_bounds. */
1897 if (is_thin_pntr (type))
1898 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1899 else if (is_thick_pntr (type))
1901 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1904 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1905 return ada_check_typedef (data_type->target_type ());
1911 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1914 static struct value *
1915 desc_data (struct value *arr)
1917 struct type *type = value_type (arr);
1919 if (is_thin_pntr (type))
1920 return thin_data_pntr (arr);
1921 else if (is_thick_pntr (type))
1922 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1923 _("Bad GNAT array descriptor"));
1929 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1930 position of the field containing the address of the data. */
1933 fat_pntr_data_bitpos (struct type *type)
1935 return desc_base_type (type)->field (0).loc_bitpos ();
1938 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1939 size of the field containing the address of the data. */
1942 fat_pntr_data_bitsize (struct type *type)
1944 type = desc_base_type (type);
1946 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1947 return TYPE_FIELD_BITSIZE (type, 0);
1949 return TARGET_CHAR_BIT * type->field (0).type ()->length ();
1952 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1953 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1954 bound, if WHICH is 1. The first bound is I=1. */
1956 static struct value *
1957 desc_one_bound (struct value *bounds, int i, int which)
1959 char bound_name[20];
1960 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1961 which ? 'U' : 'L', i - 1);
1962 return value_struct_elt (&bounds, {}, bound_name, NULL,
1963 _("Bad GNAT array descriptor bounds"));
1966 /* If BOUNDS is an array-bounds structure type, return the bit position
1967 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1968 bound, if WHICH is 1. The first bound is I=1. */
1971 desc_bound_bitpos (struct type *type, int i, int which)
1973 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1976 /* If BOUNDS is an array-bounds structure type, return the bit field size
1977 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1978 bound, if WHICH is 1. The first bound is I=1. */
1981 desc_bound_bitsize (struct type *type, int i, int which)
1983 type = desc_base_type (type);
1985 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1986 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1988 return 8 * type->field (2 * i + which - 2).type ()->length ();
1991 /* If TYPE is the type of an array-bounds structure, the type of its
1992 Ith bound (numbering from 1). Otherwise, NULL. */
1994 static struct type *
1995 desc_index_type (struct type *type, int i)
1997 type = desc_base_type (type);
1999 if (type->code () == TYPE_CODE_STRUCT)
2001 char bound_name[20];
2002 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2003 return lookup_struct_elt_type (type, bound_name, 1);
2009 /* The number of index positions in the array-bounds type TYPE.
2010 Return 0 if TYPE is NULL. */
2013 desc_arity (struct type *type)
2015 type = desc_base_type (type);
2018 return type->num_fields () / 2;
2022 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2023 an array descriptor type (representing an unconstrained array
2027 ada_is_direct_array_type (struct type *type)
2031 type = ada_check_typedef (type);
2032 return (type->code () == TYPE_CODE_ARRAY
2033 || ada_is_array_descriptor_type (type));
2036 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2040 ada_is_array_type (struct type *type)
2043 && (type->code () == TYPE_CODE_PTR
2044 || type->code () == TYPE_CODE_REF))
2045 type = type->target_type ();
2046 return ada_is_direct_array_type (type);
2049 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2052 ada_is_simple_array_type (struct type *type)
2056 type = ada_check_typedef (type);
2057 return (type->code () == TYPE_CODE_ARRAY
2058 || (type->code () == TYPE_CODE_PTR
2059 && (ada_check_typedef (type->target_type ())->code ()
2060 == TYPE_CODE_ARRAY)));
2063 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2066 ada_is_array_descriptor_type (struct type *type)
2068 struct type *data_type = desc_data_target_type (type);
2072 type = ada_check_typedef (type);
2073 return (data_type != NULL
2074 && data_type->code () == TYPE_CODE_ARRAY
2075 && desc_arity (desc_bounds_type (type)) > 0);
2078 /* Non-zero iff type is a partially mal-formed GNAT array
2079 descriptor. FIXME: This is to compensate for some problems with
2080 debugging output from GNAT. Re-examine periodically to see if it
2084 ada_is_bogus_array_descriptor (struct type *type)
2088 && type->code () == TYPE_CODE_STRUCT
2089 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
2090 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
2091 && !ada_is_array_descriptor_type (type);
2095 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2096 (fat pointer) returns the type of the array data described---specifically,
2097 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2098 in from the descriptor; otherwise, they are left unspecified. If
2099 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2100 returns NULL. The result is simply the type of ARR if ARR is not
2103 static struct type *
2104 ada_type_of_array (struct value *arr, int bounds)
2106 if (ada_is_constrained_packed_array_type (value_type (arr)))
2107 return decode_constrained_packed_array_type (value_type (arr));
2109 if (!ada_is_array_descriptor_type (value_type (arr)))
2110 return value_type (arr);
2114 struct type *array_type =
2115 ada_check_typedef (desc_data_target_type (value_type (arr)));
2117 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2118 TYPE_FIELD_BITSIZE (array_type, 0) =
2119 decode_packed_array_bitsize (value_type (arr));
2125 struct type *elt_type;
2127 struct value *descriptor;
2129 elt_type = ada_array_element_type (value_type (arr), -1);
2130 arity = ada_array_arity (value_type (arr));
2132 if (elt_type == NULL || arity == 0)
2133 return ada_check_typedef (value_type (arr));
2135 descriptor = desc_bounds (arr);
2136 if (value_as_long (descriptor) == 0)
2140 struct type *range_type = alloc_type_copy (value_type (arr));
2141 struct type *array_type = alloc_type_copy (value_type (arr));
2142 struct value *low = desc_one_bound (descriptor, arity, 0);
2143 struct value *high = desc_one_bound (descriptor, arity, 1);
2146 create_static_range_type (range_type, value_type (low),
2147 longest_to_int (value_as_long (low)),
2148 longest_to_int (value_as_long (high)));
2149 elt_type = create_array_type (array_type, elt_type, range_type);
2151 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2153 /* We need to store the element packed bitsize, as well as
2154 recompute the array size, because it was previously
2155 computed based on the unpacked element size. */
2156 LONGEST lo = value_as_long (low);
2157 LONGEST hi = value_as_long (high);
2159 TYPE_FIELD_BITSIZE (elt_type, 0) =
2160 decode_packed_array_bitsize (value_type (arr));
2161 /* If the array has no element, then the size is already
2162 zero, and does not need to be recomputed. */
2166 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2168 array_type->set_length ((array_bitsize + 7) / 8);
2173 return lookup_pointer_type (elt_type);
2177 /* If ARR does not represent an array, returns ARR unchanged.
2178 Otherwise, returns either a standard GDB array with bounds set
2179 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2180 GDB array. Returns NULL if ARR is a null fat pointer. */
2183 ada_coerce_to_simple_array_ptr (struct value *arr)
2185 if (ada_is_array_descriptor_type (value_type (arr)))
2187 struct type *arrType = ada_type_of_array (arr, 1);
2189 if (arrType == NULL)
2191 return value_cast (arrType, value_copy (desc_data (arr)));
2193 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2194 return decode_constrained_packed_array (arr);
2199 /* If ARR does not represent an array, returns ARR unchanged.
2200 Otherwise, returns a standard GDB array describing ARR (which may
2201 be ARR itself if it already is in the proper form). */
2204 ada_coerce_to_simple_array (struct value *arr)
2206 if (ada_is_array_descriptor_type (value_type (arr)))
2208 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2211 error (_("Bounds unavailable for null array pointer."));
2212 return value_ind (arrVal);
2214 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2215 return decode_constrained_packed_array (arr);
2220 /* If TYPE represents a GNAT array type, return it translated to an
2221 ordinary GDB array type (possibly with BITSIZE fields indicating
2222 packing). For other types, is the identity. */
2225 ada_coerce_to_simple_array_type (struct type *type)
2227 if (ada_is_constrained_packed_array_type (type))
2228 return decode_constrained_packed_array_type (type);
2230 if (ada_is_array_descriptor_type (type))
2231 return ada_check_typedef (desc_data_target_type (type));
2236 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2239 ada_is_gnat_encoded_packed_array_type (struct type *type)
2243 type = desc_base_type (type);
2244 type = ada_check_typedef (type);
2246 ada_type_name (type) != NULL
2247 && strstr (ada_type_name (type), "___XP") != NULL;
2250 /* Non-zero iff TYPE represents a standard GNAT constrained
2251 packed-array type. */
2254 ada_is_constrained_packed_array_type (struct type *type)
2256 return ada_is_gnat_encoded_packed_array_type (type)
2257 && !ada_is_array_descriptor_type (type);
2260 /* Non-zero iff TYPE represents an array descriptor for a
2261 unconstrained packed-array type. */
2264 ada_is_unconstrained_packed_array_type (struct type *type)
2266 if (!ada_is_array_descriptor_type (type))
2269 if (ada_is_gnat_encoded_packed_array_type (type))
2272 /* If we saw GNAT encodings, then the above code is sufficient.
2273 However, with minimal encodings, we will just have a thick
2275 if (is_thick_pntr (type))
2277 type = desc_base_type (type);
2278 /* The structure's first field is a pointer to an array, so this
2279 fetches the array type. */
2280 type = type->field (0).type ()->target_type ();
2281 if (type->code () == TYPE_CODE_TYPEDEF)
2282 type = ada_typedef_target_type (type);
2283 /* Now we can see if the array elements are packed. */
2284 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2290 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2291 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2294 ada_is_any_packed_array_type (struct type *type)
2296 return (ada_is_constrained_packed_array_type (type)
2297 || (type->code () == TYPE_CODE_ARRAY
2298 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2301 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2302 return the size of its elements in bits. */
2305 decode_packed_array_bitsize (struct type *type)
2307 const char *raw_name;
2311 /* Access to arrays implemented as fat pointers are encoded as a typedef
2312 of the fat pointer type. We need the name of the fat pointer type
2313 to do the decoding, so strip the typedef layer. */
2314 if (type->code () == TYPE_CODE_TYPEDEF)
2315 type = ada_typedef_target_type (type);
2317 raw_name = ada_type_name (ada_check_typedef (type));
2319 raw_name = ada_type_name (desc_base_type (type));
2324 tail = strstr (raw_name, "___XP");
2325 if (tail == nullptr)
2327 gdb_assert (is_thick_pntr (type));
2328 /* The structure's first field is a pointer to an array, so this
2329 fetches the array type. */
2330 type = type->field (0).type ()->target_type ();
2331 /* Now we can see if the array elements are packed. */
2332 return TYPE_FIELD_BITSIZE (type, 0);
2335 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2338 (_("could not understand bit size information on packed array"));
2345 /* Given that TYPE is a standard GDB array type with all bounds filled
2346 in, and that the element size of its ultimate scalar constituents
2347 (that is, either its elements, or, if it is an array of arrays, its
2348 elements' elements, etc.) is *ELT_BITS, return an identical type,
2349 but with the bit sizes of its elements (and those of any
2350 constituent arrays) recorded in the BITSIZE components of its
2351 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2354 Note that, for arrays whose index type has an XA encoding where
2355 a bound references a record discriminant, getting that discriminant,
2356 and therefore the actual value of that bound, is not possible
2357 because none of the given parameters gives us access to the record.
2358 This function assumes that it is OK in the context where it is being
2359 used to return an array whose bounds are still dynamic and where
2360 the length is arbitrary. */
2362 static struct type *
2363 constrained_packed_array_type (struct type *type, long *elt_bits)
2365 struct type *new_elt_type;
2366 struct type *new_type;
2367 struct type *index_type_desc;
2368 struct type *index_type;
2369 LONGEST low_bound, high_bound;
2371 type = ada_check_typedef (type);
2372 if (type->code () != TYPE_CODE_ARRAY)
2375 index_type_desc = ada_find_parallel_type (type, "___XA");
2376 if (index_type_desc)
2377 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2380 index_type = type->index_type ();
2382 new_type = alloc_type_copy (type);
2384 constrained_packed_array_type (ada_check_typedef (type->target_type ()),
2386 create_array_type (new_type, new_elt_type, index_type);
2387 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2388 new_type->set_name (ada_type_name (type));
2390 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2391 && is_dynamic_type (check_typedef (index_type)))
2392 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2393 low_bound = high_bound = 0;
2394 if (high_bound < low_bound)
2397 new_type->set_length (0);
2401 *elt_bits *= (high_bound - low_bound + 1);
2402 new_type->set_length ((*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
2405 new_type->set_is_fixed_instance (true);
2409 /* The array type encoded by TYPE, where
2410 ada_is_constrained_packed_array_type (TYPE). */
2412 static struct type *
2413 decode_constrained_packed_array_type (struct type *type)
2415 const char *raw_name = ada_type_name (ada_check_typedef (type));
2418 struct type *shadow_type;
2422 raw_name = ada_type_name (desc_base_type (type));
2427 name = (char *) alloca (strlen (raw_name) + 1);
2428 tail = strstr (raw_name, "___XP");
2429 type = desc_base_type (type);
2431 memcpy (name, raw_name, tail - raw_name);
2432 name[tail - raw_name] = '\000';
2434 shadow_type = ada_find_parallel_type_with_name (type, name);
2436 if (shadow_type == NULL)
2438 lim_warning (_("could not find bounds information on packed array"));
2441 shadow_type = check_typedef (shadow_type);
2443 if (shadow_type->code () != TYPE_CODE_ARRAY)
2445 lim_warning (_("could not understand bounds "
2446 "information on packed array"));
2450 bits = decode_packed_array_bitsize (type);
2451 return constrained_packed_array_type (shadow_type, &bits);
2454 /* Helper function for decode_constrained_packed_array. Set the field
2455 bitsize on a series of packed arrays. Returns the number of
2456 elements in TYPE. */
2459 recursively_update_array_bitsize (struct type *type)
2461 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2464 if (!get_discrete_bounds (type->index_type (), &low, &high)
2467 LONGEST our_len = high - low + 1;
2469 struct type *elt_type = type->target_type ();
2470 if (elt_type->code () == TYPE_CODE_ARRAY)
2472 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2473 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2474 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2476 type->set_length (((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2483 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2484 array, returns a simple array that denotes that array. Its type is a
2485 standard GDB array type except that the BITSIZEs of the array
2486 target types are set to the number of bits in each element, and the
2487 type length is set appropriately. */
2489 static struct value *
2490 decode_constrained_packed_array (struct value *arr)
2494 /* If our value is a pointer, then dereference it. Likewise if
2495 the value is a reference. Make sure that this operation does not
2496 cause the target type to be fixed, as this would indirectly cause
2497 this array to be decoded. The rest of the routine assumes that
2498 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2499 and "value_ind" routines to perform the dereferencing, as opposed
2500 to using "ada_coerce_ref" or "ada_value_ind". */
2501 arr = coerce_ref (arr);
2502 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2503 arr = value_ind (arr);
2505 type = decode_constrained_packed_array_type (value_type (arr));
2508 error (_("can't unpack array"));
2512 /* Decoding the packed array type could not correctly set the field
2513 bitsizes for any dimension except the innermost, because the
2514 bounds may be variable and were not passed to that function. So,
2515 we further resolve the array bounds here and then update the
2517 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2518 CORE_ADDR address = value_address (arr);
2519 gdb::array_view<const gdb_byte> view
2520 = gdb::make_array_view (valaddr, type->length ());
2521 type = resolve_dynamic_type (type, view, address);
2522 recursively_update_array_bitsize (type);
2524 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2525 && ada_is_modular_type (value_type (arr)))
2527 /* This is a (right-justified) modular type representing a packed
2528 array with no wrapper. In order to interpret the value through
2529 the (left-justified) packed array type we just built, we must
2530 first left-justify it. */
2531 int bit_size, bit_pos;
2534 mod = ada_modulus (value_type (arr)) - 1;
2541 bit_pos = HOST_CHAR_BIT * value_type (arr)->length () - bit_size;
2542 arr = ada_value_primitive_packed_val (arr, NULL,
2543 bit_pos / HOST_CHAR_BIT,
2544 bit_pos % HOST_CHAR_BIT,
2549 return coerce_unspec_val_to_type (arr, type);
2553 /* The value of the element of packed array ARR at the ARITY indices
2554 given in IND. ARR must be a simple array. */
2556 static struct value *
2557 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2560 int bits, elt_off, bit_off;
2561 long elt_total_bit_offset;
2562 struct type *elt_type;
2566 elt_total_bit_offset = 0;
2567 elt_type = ada_check_typedef (value_type (arr));
2568 for (i = 0; i < arity; i += 1)
2570 if (elt_type->code () != TYPE_CODE_ARRAY
2571 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2573 (_("attempt to do packed indexing of "
2574 "something other than a packed array"));
2577 struct type *range_type = elt_type->index_type ();
2578 LONGEST lowerbound, upperbound;
2581 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2583 lim_warning (_("don't know bounds of array"));
2584 lowerbound = upperbound = 0;
2587 idx = pos_atr (ind[i]);
2588 if (idx < lowerbound || idx > upperbound)
2589 lim_warning (_("packed array index %ld out of bounds"),
2591 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2592 elt_total_bit_offset += (idx - lowerbound) * bits;
2593 elt_type = ada_check_typedef (elt_type->target_type ());
2596 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2597 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2599 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2604 /* Non-zero iff TYPE includes negative integer values. */
2607 has_negatives (struct type *type)
2609 switch (type->code ())
2614 return !type->is_unsigned ();
2615 case TYPE_CODE_RANGE:
2616 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2620 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2621 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2622 the unpacked buffer.
2624 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2625 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2627 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2630 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2632 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2635 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2636 gdb_byte *unpacked, int unpacked_len,
2637 int is_big_endian, int is_signed_type,
2640 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2641 int src_idx; /* Index into the source area */
2642 int src_bytes_left; /* Number of source bytes left to process. */
2643 int srcBitsLeft; /* Number of source bits left to move */
2644 int unusedLS; /* Number of bits in next significant
2645 byte of source that are unused */
2647 int unpacked_idx; /* Index into the unpacked buffer */
2648 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2650 unsigned long accum; /* Staging area for bits being transferred */
2651 int accumSize; /* Number of meaningful bits in accum */
2654 /* Transmit bytes from least to most significant; delta is the direction
2655 the indices move. */
2656 int delta = is_big_endian ? -1 : 1;
2658 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2660 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2661 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2662 bit_size, unpacked_len);
2664 srcBitsLeft = bit_size;
2665 src_bytes_left = src_len;
2666 unpacked_bytes_left = unpacked_len;
2671 src_idx = src_len - 1;
2673 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2677 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2683 unpacked_idx = unpacked_len - 1;
2687 /* Non-scalar values must be aligned at a byte boundary... */
2689 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2690 /* ... And are placed at the beginning (most-significant) bytes
2692 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2693 unpacked_bytes_left = unpacked_idx + 1;
2698 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2700 src_idx = unpacked_idx = 0;
2701 unusedLS = bit_offset;
2704 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2709 while (src_bytes_left > 0)
2711 /* Mask for removing bits of the next source byte that are not
2712 part of the value. */
2713 unsigned int unusedMSMask =
2714 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2716 /* Sign-extend bits for this byte. */
2717 unsigned int signMask = sign & ~unusedMSMask;
2720 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2721 accumSize += HOST_CHAR_BIT - unusedLS;
2722 if (accumSize >= HOST_CHAR_BIT)
2724 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2725 accumSize -= HOST_CHAR_BIT;
2726 accum >>= HOST_CHAR_BIT;
2727 unpacked_bytes_left -= 1;
2728 unpacked_idx += delta;
2730 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2732 src_bytes_left -= 1;
2735 while (unpacked_bytes_left > 0)
2737 accum |= sign << accumSize;
2738 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2739 accumSize -= HOST_CHAR_BIT;
2742 accum >>= HOST_CHAR_BIT;
2743 unpacked_bytes_left -= 1;
2744 unpacked_idx += delta;
2748 /* Create a new value of type TYPE from the contents of OBJ starting
2749 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2750 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2751 assigning through the result will set the field fetched from.
2752 VALADDR is ignored unless OBJ is NULL, in which case,
2753 VALADDR+OFFSET must address the start of storage containing the
2754 packed value. The value returned in this case is never an lval.
2755 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2758 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2759 long offset, int bit_offset, int bit_size,
2763 const gdb_byte *src; /* First byte containing data to unpack */
2765 const int is_scalar = is_scalar_type (type);
2766 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2767 gdb::byte_vector staging;
2769 type = ada_check_typedef (type);
2772 src = valaddr + offset;
2774 src = value_contents (obj).data () + offset;
2776 if (is_dynamic_type (type))
2778 /* The length of TYPE might by dynamic, so we need to resolve
2779 TYPE in order to know its actual size, which we then use
2780 to create the contents buffer of the value we return.
2781 The difficulty is that the data containing our object is
2782 packed, and therefore maybe not at a byte boundary. So, what
2783 we do, is unpack the data into a byte-aligned buffer, and then
2784 use that buffer as our object's value for resolving the type. */
2785 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2786 staging.resize (staging_len);
2788 ada_unpack_from_contents (src, bit_offset, bit_size,
2789 staging.data (), staging.size (),
2790 is_big_endian, has_negatives (type),
2792 type = resolve_dynamic_type (type, staging, 0);
2793 if (type->length () < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2795 /* This happens when the length of the object is dynamic,
2796 and is actually smaller than the space reserved for it.
2797 For instance, in an array of variant records, the bit_size
2798 we're given is the array stride, which is constant and
2799 normally equal to the maximum size of its element.
2800 But, in reality, each element only actually spans a portion
2802 bit_size = type->length () * HOST_CHAR_BIT;
2808 v = allocate_value (type);
2809 src = valaddr + offset;
2811 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2813 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2816 v = value_at (type, value_address (obj) + offset);
2817 buf = (gdb_byte *) alloca (src_len);
2818 read_memory (value_address (v), buf, src_len);
2823 v = allocate_value (type);
2824 src = value_contents (obj).data () + offset;
2829 long new_offset = offset;
2831 set_value_component_location (v, obj);
2832 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2833 set_value_bitsize (v, bit_size);
2834 if (value_bitpos (v) >= HOST_CHAR_BIT)
2837 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2839 set_value_offset (v, new_offset);
2841 /* Also set the parent value. This is needed when trying to
2842 assign a new value (in inferior memory). */
2843 set_value_parent (v, obj);
2846 set_value_bitsize (v, bit_size);
2847 unpacked = value_contents_writeable (v).data ();
2851 memset (unpacked, 0, type->length ());
2855 if (staging.size () == type->length ())
2857 /* Small short-cut: If we've unpacked the data into a buffer
2858 of the same size as TYPE's length, then we can reuse that,
2859 instead of doing the unpacking again. */
2860 memcpy (unpacked, staging.data (), staging.size ());
2863 ada_unpack_from_contents (src, bit_offset, bit_size,
2864 unpacked, type->length (),
2865 is_big_endian, has_negatives (type), is_scalar);
2870 /* Store the contents of FROMVAL into the location of TOVAL.
2871 Return a new value with the location of TOVAL and contents of
2872 FROMVAL. Handles assignment into packed fields that have
2873 floating-point or non-scalar types. */
2875 static struct value *
2876 ada_value_assign (struct value *toval, struct value *fromval)
2878 struct type *type = value_type (toval);
2879 int bits = value_bitsize (toval);
2881 toval = ada_coerce_ref (toval);
2882 fromval = ada_coerce_ref (fromval);
2884 if (ada_is_direct_array_type (value_type (toval)))
2885 toval = ada_coerce_to_simple_array (toval);
2886 if (ada_is_direct_array_type (value_type (fromval)))
2887 fromval = ada_coerce_to_simple_array (fromval);
2889 if (!deprecated_value_modifiable (toval))
2890 error (_("Left operand of assignment is not a modifiable lvalue."));
2892 if (VALUE_LVAL (toval) == lval_memory
2894 && (type->code () == TYPE_CODE_FLT
2895 || type->code () == TYPE_CODE_STRUCT))
2897 int len = (value_bitpos (toval)
2898 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2900 gdb_byte *buffer = (gdb_byte *) alloca (len);
2902 CORE_ADDR to_addr = value_address (toval);
2904 if (type->code () == TYPE_CODE_FLT)
2905 fromval = value_cast (type, fromval);
2907 read_memory (to_addr, buffer, len);
2908 from_size = value_bitsize (fromval);
2910 from_size = value_type (fromval)->length () * TARGET_CHAR_BIT;
2912 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2913 ULONGEST from_offset = 0;
2914 if (is_big_endian && is_scalar_type (value_type (fromval)))
2915 from_offset = from_size - bits;
2916 copy_bitwise (buffer, value_bitpos (toval),
2917 value_contents (fromval).data (), from_offset,
2918 bits, is_big_endian);
2919 write_memory_with_notification (to_addr, buffer, len);
2921 val = value_copy (toval);
2922 memcpy (value_contents_raw (val).data (),
2923 value_contents (fromval).data (),
2925 deprecated_set_value_type (val, type);
2930 return value_assign (toval, fromval);
2934 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2935 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2936 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2937 COMPONENT, and not the inferior's memory. The current contents
2938 of COMPONENT are ignored.
2940 Although not part of the initial design, this function also works
2941 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2942 had a null address, and COMPONENT had an address which is equal to
2943 its offset inside CONTAINER. */
2946 value_assign_to_component (struct value *container, struct value *component,
2949 LONGEST offset_in_container =
2950 (LONGEST) (value_address (component) - value_address (container));
2951 int bit_offset_in_container =
2952 value_bitpos (component) - value_bitpos (container);
2955 val = value_cast (value_type (component), val);
2957 if (value_bitsize (component) == 0)
2958 bits = TARGET_CHAR_BIT * value_type (component)->length ();
2960 bits = value_bitsize (component);
2962 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2966 if (is_scalar_type (check_typedef (value_type (component))))
2968 = value_type (component)->length () * TARGET_CHAR_BIT - bits;
2971 copy_bitwise ((value_contents_writeable (container).data ()
2972 + offset_in_container),
2973 value_bitpos (container) + bit_offset_in_container,
2974 value_contents (val).data (), src_offset, bits, 1);
2977 copy_bitwise ((value_contents_writeable (container).data ()
2978 + offset_in_container),
2979 value_bitpos (container) + bit_offset_in_container,
2980 value_contents (val).data (), 0, bits, 0);
2983 /* Determine if TYPE is an access to an unconstrained array. */
2986 ada_is_access_to_unconstrained_array (struct type *type)
2988 return (type->code () == TYPE_CODE_TYPEDEF
2989 && is_thick_pntr (ada_typedef_target_type (type)));
2992 /* The value of the element of array ARR at the ARITY indices given in IND.
2993 ARR may be either a simple array, GNAT array descriptor, or pointer
2997 ada_value_subscript (struct value *arr, int arity, struct value **ind)
3001 struct type *elt_type;
3003 elt = ada_coerce_to_simple_array (arr);
3005 elt_type = ada_check_typedef (value_type (elt));
3006 if (elt_type->code () == TYPE_CODE_ARRAY
3007 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3008 return value_subscript_packed (elt, arity, ind);
3010 for (k = 0; k < arity; k += 1)
3012 struct type *saved_elt_type = elt_type->target_type ();
3014 if (elt_type->code () != TYPE_CODE_ARRAY)
3015 error (_("too many subscripts (%d expected)"), k);
3017 elt = value_subscript (elt, pos_atr (ind[k]));
3019 if (ada_is_access_to_unconstrained_array (saved_elt_type)
3020 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
3022 /* The element is a typedef to an unconstrained array,
3023 except that the value_subscript call stripped the
3024 typedef layer. The typedef layer is GNAT's way to
3025 specify that the element is, at the source level, an
3026 access to the unconstrained array, rather than the
3027 unconstrained array. So, we need to restore that
3028 typedef layer, which we can do by forcing the element's
3029 type back to its original type. Otherwise, the returned
3030 value is going to be printed as the array, rather
3031 than as an access. Another symptom of the same issue
3032 would be that an expression trying to dereference the
3033 element would also be improperly rejected. */
3034 deprecated_set_value_type (elt, saved_elt_type);
3037 elt_type = ada_check_typedef (value_type (elt));
3043 /* Assuming ARR is a pointer to a GDB array, the value of the element
3044 of *ARR at the ARITY indices given in IND.
3045 Does not read the entire array into memory.
3047 Note: Unlike what one would expect, this function is used instead of
3048 ada_value_subscript for basically all non-packed array types. The reason
3049 for this is that a side effect of doing our own pointer arithmetics instead
3050 of relying on value_subscript is that there is no implicit typedef peeling.
3051 This is important for arrays of array accesses, where it allows us to
3052 preserve the fact that the array's element is an array access, where the
3053 access part os encoded in a typedef layer. */
3055 static struct value *
3056 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
3059 struct value *array_ind = ada_value_ind (arr);
3061 = check_typedef (value_enclosing_type (array_ind));
3063 if (type->code () == TYPE_CODE_ARRAY
3064 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3065 return value_subscript_packed (array_ind, arity, ind);
3067 for (k = 0; k < arity; k += 1)
3071 if (type->code () != TYPE_CODE_ARRAY)
3072 error (_("too many subscripts (%d expected)"), k);
3073 arr = value_cast (lookup_pointer_type (type->target_type ()),
3075 get_discrete_bounds (type->index_type (), &lwb, &upb);
3076 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
3077 type = type->target_type ();
3080 return value_ind (arr);
3083 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3084 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3085 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3086 this array is LOW, as per Ada rules. */
3087 static struct value *
3088 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
3091 struct type *type0 = ada_check_typedef (type);
3092 struct type *base_index_type = type0->index_type ()->target_type ();
3093 struct type *index_type
3094 = create_static_range_type (NULL, base_index_type, low, high);
3095 struct type *slice_type = create_array_type_with_stride
3096 (NULL, type0->target_type (), index_type,
3097 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
3098 TYPE_FIELD_BITSIZE (type0, 0));
3099 int base_low = ada_discrete_type_low_bound (type0->index_type ());
3100 gdb::optional<LONGEST> base_low_pos, low_pos;
3103 low_pos = discrete_position (base_index_type, low);
3104 base_low_pos = discrete_position (base_index_type, base_low);
3106 if (!low_pos.has_value () || !base_low_pos.has_value ())
3108 warning (_("unable to get positions in slice, use bounds instead"));
3110 base_low_pos = base_low;
3113 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3115 stride = type0->target_type ()->length ();
3117 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
3118 return value_at_lazy (slice_type, base);
3122 static struct value *
3123 ada_value_slice (struct value *array, int low, int high)
3125 struct type *type = ada_check_typedef (value_type (array));
3126 struct type *base_index_type = type->index_type ()->target_type ();
3127 struct type *index_type
3128 = create_static_range_type (NULL, type->index_type (), low, high);
3129 struct type *slice_type = create_array_type_with_stride
3130 (NULL, type->target_type (), index_type,
3131 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
3132 TYPE_FIELD_BITSIZE (type, 0));
3133 gdb::optional<LONGEST> low_pos, high_pos;
3136 low_pos = discrete_position (base_index_type, low);
3137 high_pos = discrete_position (base_index_type, high);
3139 if (!low_pos.has_value () || !high_pos.has_value ())
3141 warning (_("unable to get positions in slice, use bounds instead"));
3146 return value_cast (slice_type,
3147 value_slice (array, low, *high_pos - *low_pos + 1));
3150 /* If type is a record type in the form of a standard GNAT array
3151 descriptor, returns the number of dimensions for type. If arr is a
3152 simple array, returns the number of "array of"s that prefix its
3153 type designation. Otherwise, returns 0. */
3156 ada_array_arity (struct type *type)
3163 type = desc_base_type (type);
3166 if (type->code () == TYPE_CODE_STRUCT)
3167 return desc_arity (desc_bounds_type (type));
3169 while (type->code () == TYPE_CODE_ARRAY)
3172 type = ada_check_typedef (type->target_type ());
3178 /* If TYPE is a record type in the form of a standard GNAT array
3179 descriptor or a simple array type, returns the element type for
3180 TYPE after indexing by NINDICES indices, or by all indices if
3181 NINDICES is -1. Otherwise, returns NULL. */
3184 ada_array_element_type (struct type *type, int nindices)
3186 type = desc_base_type (type);
3188 if (type->code () == TYPE_CODE_STRUCT)
3191 struct type *p_array_type;
3193 p_array_type = desc_data_target_type (type);
3195 k = ada_array_arity (type);
3199 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3200 if (nindices >= 0 && k > nindices)
3202 while (k > 0 && p_array_type != NULL)
3204 p_array_type = ada_check_typedef (p_array_type->target_type ());
3207 return p_array_type;
3209 else if (type->code () == TYPE_CODE_ARRAY)
3211 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
3213 type = type->target_type ();
3214 /* A multi-dimensional array is represented using a sequence
3215 of array types. If one of these types has a name, then
3216 it is not another dimension of the outer array, but
3217 rather the element type of the outermost array. */
3218 if (type->name () != nullptr)
3228 /* See ada-lang.h. */
3231 ada_index_type (struct type *type, int n, const char *name)
3233 struct type *result_type;
3235 type = desc_base_type (type);
3237 if (n < 0 || n > ada_array_arity (type))
3238 error (_("invalid dimension number to '%s"), name);
3240 if (ada_is_simple_array_type (type))
3244 for (i = 1; i < n; i += 1)
3246 type = ada_check_typedef (type);
3247 type = type->target_type ();
3249 result_type = ada_check_typedef (type)->index_type ()->target_type ();
3250 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3251 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3252 perhaps stabsread.c would make more sense. */
3253 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
3258 result_type = desc_index_type (desc_bounds_type (type), n);
3259 if (result_type == NULL)
3260 error (_("attempt to take bound of something that is not an array"));
3266 /* Given that arr is an array type, returns the lower bound of the
3267 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3268 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3269 array-descriptor type. It works for other arrays with bounds supplied
3270 by run-time quantities other than discriminants. */
3273 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3275 struct type *type, *index_type_desc, *index_type;
3278 gdb_assert (which == 0 || which == 1);
3280 if (ada_is_constrained_packed_array_type (arr_type))
3281 arr_type = decode_constrained_packed_array_type (arr_type);
3283 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3284 return (LONGEST) - which;
3286 if (arr_type->code () == TYPE_CODE_PTR)
3287 type = arr_type->target_type ();
3291 if (type->is_fixed_instance ())
3293 /* The array has already been fixed, so we do not need to
3294 check the parallel ___XA type again. That encoding has
3295 already been applied, so ignore it now. */
3296 index_type_desc = NULL;
3300 index_type_desc = ada_find_parallel_type (type, "___XA");
3301 ada_fixup_array_indexes_type (index_type_desc);
3304 if (index_type_desc != NULL)
3305 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3309 struct type *elt_type = check_typedef (type);
3311 for (i = 1; i < n; i++)
3312 elt_type = check_typedef (elt_type->target_type ());
3314 index_type = elt_type->index_type ();
3318 (LONGEST) (which == 0
3319 ? ada_discrete_type_low_bound (index_type)
3320 : ada_discrete_type_high_bound (index_type));
3323 /* Given that arr is an array value, returns the lower bound of the
3324 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3325 WHICH is 1. This routine will also work for arrays with bounds
3326 supplied by run-time quantities other than discriminants. */
3329 ada_array_bound (struct value *arr, int n, int which)
3331 struct type *arr_type;
3333 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3334 arr = value_ind (arr);
3335 arr_type = value_enclosing_type (arr);
3337 if (ada_is_constrained_packed_array_type (arr_type))
3338 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3339 else if (ada_is_simple_array_type (arr_type))
3340 return ada_array_bound_from_type (arr_type, n, which);
3342 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3345 /* Given that arr is an array value, returns the length of the
3346 nth index. This routine will also work for arrays with bounds
3347 supplied by run-time quantities other than discriminants.
3348 Does not work for arrays indexed by enumeration types with representation
3349 clauses at the moment. */
3352 ada_array_length (struct value *arr, int n)
3354 struct type *arr_type, *index_type;
3357 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3358 arr = value_ind (arr);
3359 arr_type = value_enclosing_type (arr);
3361 if (ada_is_constrained_packed_array_type (arr_type))
3362 return ada_array_length (decode_constrained_packed_array (arr), n);
3364 if (ada_is_simple_array_type (arr_type))
3366 low = ada_array_bound_from_type (arr_type, n, 0);
3367 high = ada_array_bound_from_type (arr_type, n, 1);
3371 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3372 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3375 arr_type = check_typedef (arr_type);
3376 index_type = ada_index_type (arr_type, n, "length");
3377 if (index_type != NULL)
3379 struct type *base_type;
3380 if (index_type->code () == TYPE_CODE_RANGE)
3381 base_type = index_type->target_type ();
3383 base_type = index_type;
3385 low = pos_atr (value_from_longest (base_type, low));
3386 high = pos_atr (value_from_longest (base_type, high));
3388 return high - low + 1;
3391 /* An array whose type is that of ARR_TYPE (an array type), with
3392 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3393 less than LOW, then LOW-1 is used. */
3395 static struct value *
3396 empty_array (struct type *arr_type, int low, int high)
3398 struct type *arr_type0 = ada_check_typedef (arr_type);
3399 struct type *index_type
3400 = create_static_range_type
3401 (NULL, arr_type0->index_type ()->target_type (), low,
3402 high < low ? low - 1 : high);
3403 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3405 return allocate_value (create_array_type (NULL, elt_type, index_type));
3409 /* Name resolution */
3411 /* The "decoded" name for the user-definable Ada operator corresponding
3415 ada_decoded_op_name (enum exp_opcode op)
3419 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3421 if (ada_opname_table[i].op == op)
3422 return ada_opname_table[i].decoded;
3424 error (_("Could not find operator name for opcode"));
3427 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3428 in a listing of choices during disambiguation (see sort_choices, below).
3429 The idea is that overloadings of a subprogram name from the
3430 same package should sort in their source order. We settle for ordering
3431 such symbols by their trailing number (__N or $N). */
3434 encoded_ordered_before (const char *N0, const char *N1)
3438 else if (N0 == NULL)
3444 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3446 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3448 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3449 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3454 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3457 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3459 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3460 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3462 return (strcmp (N0, N1) < 0);
3466 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3470 sort_choices (struct block_symbol syms[], int nsyms)
3474 for (i = 1; i < nsyms; i += 1)
3476 struct block_symbol sym = syms[i];
3479 for (j = i - 1; j >= 0; j -= 1)
3481 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3482 sym.symbol->linkage_name ()))
3484 syms[j + 1] = syms[j];
3490 /* Whether GDB should display formals and return types for functions in the
3491 overloads selection menu. */
3492 static bool print_signatures = true;
3494 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3495 all but functions, the signature is just the name of the symbol. For
3496 functions, this is the name of the function, the list of types for formals
3497 and the return type (if any). */
3500 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3501 const struct type_print_options *flags)
3503 struct type *type = sym->type ();
3505 gdb_printf (stream, "%s", sym->print_name ());
3506 if (!print_signatures
3508 || type->code () != TYPE_CODE_FUNC)
3511 if (type->num_fields () > 0)
3515 gdb_printf (stream, " (");
3516 for (i = 0; i < type->num_fields (); ++i)
3519 gdb_printf (stream, "; ");
3520 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3523 gdb_printf (stream, ")");
3525 if (type->target_type () != NULL
3526 && type->target_type ()->code () != TYPE_CODE_VOID)
3528 gdb_printf (stream, " return ");
3529 ada_print_type (type->target_type (), NULL, stream, -1, 0, flags);
3533 /* Read and validate a set of numeric choices from the user in the
3534 range 0 .. N_CHOICES-1. Place the results in increasing
3535 order in CHOICES[0 .. N-1], and return N.
3537 The user types choices as a sequence of numbers on one line
3538 separated by blanks, encoding them as follows:
3540 + A choice of 0 means to cancel the selection, throwing an error.
3541 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3542 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3544 The user is not allowed to choose more than MAX_RESULTS values.
3546 ANNOTATION_SUFFIX, if present, is used to annotate the input
3547 prompts (for use with the -f switch). */
3550 get_selections (int *choices, int n_choices, int max_results,
3551 int is_all_choice, const char *annotation_suffix)
3556 int first_choice = is_all_choice ? 2 : 1;
3558 prompt = getenv ("PS2");
3562 args = command_line_input (prompt, annotation_suffix);
3565 error_no_arg (_("one or more choice numbers"));
3569 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3570 order, as given in args. Choices are validated. */
3576 args = skip_spaces (args);
3577 if (*args == '\0' && n_chosen == 0)
3578 error_no_arg (_("one or more choice numbers"));
3579 else if (*args == '\0')
3582 choice = strtol (args, &args2, 10);
3583 if (args == args2 || choice < 0
3584 || choice > n_choices + first_choice - 1)
3585 error (_("Argument must be choice number"));
3589 error (_("cancelled"));
3591 if (choice < first_choice)
3593 n_chosen = n_choices;
3594 for (j = 0; j < n_choices; j += 1)
3598 choice -= first_choice;
3600 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3604 if (j < 0 || choice != choices[j])
3608 for (k = n_chosen - 1; k > j; k -= 1)
3609 choices[k + 1] = choices[k];
3610 choices[j + 1] = choice;
3615 if (n_chosen > max_results)
3616 error (_("Select no more than %d of the above"), max_results);
3621 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3622 by asking the user (if necessary), returning the number selected,
3623 and setting the first elements of SYMS items. Error if no symbols
3626 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3627 to be re-integrated one of these days. */
3630 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3633 int *chosen = XALLOCAVEC (int , nsyms);
3635 int first_choice = (max_results == 1) ? 1 : 2;
3636 const char *select_mode = multiple_symbols_select_mode ();
3638 if (max_results < 1)
3639 error (_("Request to select 0 symbols!"));
3643 if (select_mode == multiple_symbols_cancel)
3645 canceled because the command is ambiguous\n\
3646 See set/show multiple-symbol."));
3648 /* If select_mode is "all", then return all possible symbols.
3649 Only do that if more than one symbol can be selected, of course.
3650 Otherwise, display the menu as usual. */
3651 if (select_mode == multiple_symbols_all && max_results > 1)
3654 gdb_printf (_("[0] cancel\n"));
3655 if (max_results > 1)
3656 gdb_printf (_("[1] all\n"));
3658 sort_choices (syms, nsyms);
3660 for (i = 0; i < nsyms; i += 1)
3662 if (syms[i].symbol == NULL)
3665 if (syms[i].symbol->aclass () == LOC_BLOCK)
3667 struct symtab_and_line sal =
3668 find_function_start_sal (syms[i].symbol, 1);
3670 gdb_printf ("[%d] ", i + first_choice);
3671 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3672 &type_print_raw_options);
3673 if (sal.symtab == NULL)
3674 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3675 metadata_style.style ().ptr (), nullptr, sal.line);
3679 styled_string (file_name_style.style (),
3680 symtab_to_filename_for_display (sal.symtab)),
3687 (syms[i].symbol->aclass () == LOC_CONST
3688 && syms[i].symbol->type () != NULL
3689 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3690 struct symtab *symtab = NULL;
3692 if (syms[i].symbol->is_objfile_owned ())
3693 symtab = syms[i].symbol->symtab ();
3695 if (syms[i].symbol->line () != 0 && symtab != NULL)
3697 gdb_printf ("[%d] ", i + first_choice);
3698 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3699 &type_print_raw_options);
3700 gdb_printf (_(" at %s:%d\n"),
3701 symtab_to_filename_for_display (symtab),
3702 syms[i].symbol->line ());
3704 else if (is_enumeral
3705 && syms[i].symbol->type ()->name () != NULL)
3707 gdb_printf (("[%d] "), i + first_choice);
3708 ada_print_type (syms[i].symbol->type (), NULL,
3709 gdb_stdout, -1, 0, &type_print_raw_options);
3710 gdb_printf (_("'(%s) (enumeral)\n"),
3711 syms[i].symbol->print_name ());
3715 gdb_printf ("[%d] ", i + first_choice);
3716 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3717 &type_print_raw_options);
3720 gdb_printf (is_enumeral
3721 ? _(" in %s (enumeral)\n")
3723 symtab_to_filename_for_display (symtab));
3725 gdb_printf (is_enumeral
3726 ? _(" (enumeral)\n")
3732 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3735 for (i = 0; i < n_chosen; i += 1)
3736 syms[i] = syms[chosen[i]];
3741 /* See ada-lang.h. */
3744 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3745 int nargs, value *argvec[])
3747 if (possible_user_operator_p (op, argvec))
3749 std::vector<struct block_symbol> candidates
3750 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3753 int i = ada_resolve_function (candidates, argvec,
3754 nargs, ada_decoded_op_name (op), NULL,
3757 return candidates[i];
3762 /* See ada-lang.h. */
3765 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3766 struct type *context_type,
3767 bool parse_completion,
3768 int nargs, value *argvec[],
3769 innermost_block_tracker *tracker)
3771 std::vector<struct block_symbol> candidates
3772 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3775 if (candidates.size () == 1)
3779 i = ada_resolve_function
3782 sym->linkage_name (),
3783 context_type, parse_completion);
3785 error (_("Could not find a match for %s"), sym->print_name ());
3788 tracker->update (candidates[i]);
3789 return candidates[i];
3792 /* Resolve a mention of a name where the context type is an
3793 enumeration type. */
3796 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3797 const char *name, struct type *context_type,
3798 bool parse_completion)
3800 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3801 context_type = ada_check_typedef (context_type);
3803 for (int i = 0; i < syms.size (); ++i)
3805 /* We already know the name matches, so we're just looking for
3806 an element of the correct enum type. */
3807 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3811 error (_("No name '%s' in enumeration type '%s'"), name,
3812 ada_type_name (context_type));
3815 /* See ada-lang.h. */
3818 ada_resolve_variable (struct symbol *sym, const struct block *block,
3819 struct type *context_type,
3820 bool parse_completion,
3822 innermost_block_tracker *tracker)
3824 std::vector<struct block_symbol> candidates
3825 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3827 if (std::any_of (candidates.begin (),
3829 [] (block_symbol &bsym)
3831 switch (bsym.symbol->aclass ())
3836 case LOC_REGPARM_ADDR:
3845 /* Types tend to get re-introduced locally, so if there
3846 are any local symbols that are not types, first filter
3850 (candidates.begin (),
3852 [] (block_symbol &bsym)
3854 return bsym.symbol->aclass () == LOC_TYPEDEF;
3859 /* Filter out artificial symbols. */
3862 (candidates.begin (),
3864 [] (block_symbol &bsym)
3866 return bsym.symbol->is_artificial ();
3871 if (candidates.empty ())
3872 error (_("No definition found for %s"), sym->print_name ());
3873 else if (candidates.size () == 1)
3875 else if (context_type != nullptr
3876 && context_type->code () == TYPE_CODE_ENUM)
3877 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3879 else if (deprocedure_p && !is_nonfunction (candidates))
3881 i = ada_resolve_function
3882 (candidates, NULL, 0,
3883 sym->linkage_name (),
3884 context_type, parse_completion);
3886 error (_("Could not find a match for %s"), sym->print_name ());
3890 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
3891 user_select_syms (candidates.data (), candidates.size (), 1);
3895 tracker->update (candidates[i]);
3896 return candidates[i];
3899 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3900 /* The term "match" here is rather loose. The match is heuristic and
3904 ada_type_match (struct type *ftype, struct type *atype)
3906 ftype = ada_check_typedef (ftype);
3907 atype = ada_check_typedef (atype);
3909 if (ftype->code () == TYPE_CODE_REF)
3910 ftype = ftype->target_type ();
3911 if (atype->code () == TYPE_CODE_REF)
3912 atype = atype->target_type ();
3914 switch (ftype->code ())
3917 return ftype->code () == atype->code ();
3919 if (atype->code () != TYPE_CODE_PTR)
3921 atype = atype->target_type ();
3922 /* This can only happen if the actual argument is 'null'. */
3923 if (atype->code () == TYPE_CODE_INT && atype->length () == 0)
3925 return ada_type_match (ftype->target_type (), atype);
3927 case TYPE_CODE_ENUM:
3928 case TYPE_CODE_RANGE:
3929 switch (atype->code ())
3932 case TYPE_CODE_ENUM:
3933 case TYPE_CODE_RANGE:
3939 case TYPE_CODE_ARRAY:
3940 return (atype->code () == TYPE_CODE_ARRAY
3941 || ada_is_array_descriptor_type (atype));
3943 case TYPE_CODE_STRUCT:
3944 if (ada_is_array_descriptor_type (ftype))
3945 return (atype->code () == TYPE_CODE_ARRAY
3946 || ada_is_array_descriptor_type (atype));
3948 return (atype->code () == TYPE_CODE_STRUCT
3949 && !ada_is_array_descriptor_type (atype));
3951 case TYPE_CODE_UNION:
3953 return (atype->code () == ftype->code ());
3957 /* Return non-zero if the formals of FUNC "sufficiently match" the
3958 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3959 may also be an enumeral, in which case it is treated as a 0-
3960 argument function. */
3963 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3966 struct type *func_type = func->type ();
3968 if (func->aclass () == LOC_CONST
3969 && func_type->code () == TYPE_CODE_ENUM)
3970 return (n_actuals == 0);
3971 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3974 if (func_type->num_fields () != n_actuals)
3977 for (i = 0; i < n_actuals; i += 1)
3979 if (actuals[i] == NULL)
3983 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3984 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3986 if (!ada_type_match (ftype, atype))
3993 /* False iff function type FUNC_TYPE definitely does not produce a value
3994 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3995 FUNC_TYPE is not a valid function type with a non-null return type
3996 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3999 return_match (struct type *func_type, struct type *context_type)
4001 struct type *return_type;
4003 if (func_type == NULL)
4006 if (func_type->code () == TYPE_CODE_FUNC)
4007 return_type = get_base_type (func_type->target_type ());
4009 return_type = get_base_type (func_type);
4010 if (return_type == NULL)
4013 context_type = get_base_type (context_type);
4015 if (return_type->code () == TYPE_CODE_ENUM)
4016 return context_type == NULL || return_type == context_type;
4017 else if (context_type == NULL)
4018 return return_type->code () != TYPE_CODE_VOID;
4020 return return_type->code () == context_type->code ();
4024 /* Returns the index in SYMS that contains the symbol for the
4025 function (if any) that matches the types of the NARGS arguments in
4026 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4027 that returns that type, then eliminate matches that don't. If
4028 CONTEXT_TYPE is void and there is at least one match that does not
4029 return void, eliminate all matches that do.
4031 Asks the user if there is more than one match remaining. Returns -1
4032 if there is no such symbol or none is selected. NAME is used
4033 solely for messages. May re-arrange and modify SYMS in
4034 the process; the index returned is for the modified vector. */
4037 ada_resolve_function (std::vector<struct block_symbol> &syms,
4038 struct value **args, int nargs,
4039 const char *name, struct type *context_type,
4040 bool parse_completion)
4044 int m; /* Number of hits */
4047 /* In the first pass of the loop, we only accept functions matching
4048 context_type. If none are found, we add a second pass of the loop
4049 where every function is accepted. */
4050 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4052 for (k = 0; k < syms.size (); k += 1)
4054 struct type *type = ada_check_typedef (syms[k].symbol->type ());
4056 if (ada_args_match (syms[k].symbol, args, nargs)
4057 && (fallback || return_match (type, context_type)))
4065 /* If we got multiple matches, ask the user which one to use. Don't do this
4066 interactive thing during completion, though, as the purpose of the
4067 completion is providing a list of all possible matches. Prompting the
4068 user to filter it down would be completely unexpected in this case. */
4071 else if (m > 1 && !parse_completion)
4073 gdb_printf (_("Multiple matches for %s\n"), name);
4074 user_select_syms (syms.data (), m, 1);
4080 /* Type-class predicates */
4082 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4086 numeric_type_p (struct type *type)
4092 switch (type->code ())
4096 case TYPE_CODE_FIXED_POINT:
4098 case TYPE_CODE_RANGE:
4099 return (type == type->target_type ()
4100 || numeric_type_p (type->target_type ()));
4107 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4110 integer_type_p (struct type *type)
4116 switch (type->code ())
4120 case TYPE_CODE_RANGE:
4121 return (type == type->target_type ()
4122 || integer_type_p (type->target_type ()));
4129 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4132 scalar_type_p (struct type *type)
4138 switch (type->code ())
4141 case TYPE_CODE_RANGE:
4142 case TYPE_CODE_ENUM:
4144 case TYPE_CODE_FIXED_POINT:
4152 /* True iff TYPE is discrete, as defined in the Ada Reference Manual.
4153 This essentially means one of (INT, RANGE, ENUM) -- but note that
4154 "enum" includes character and boolean as well. */
4157 discrete_type_p (struct type *type)
4163 switch (type->code ())
4166 case TYPE_CODE_RANGE:
4167 case TYPE_CODE_ENUM:
4168 case TYPE_CODE_BOOL:
4169 case TYPE_CODE_CHAR:
4177 /* Returns non-zero if OP with operands in the vector ARGS could be
4178 a user-defined function. Errs on the side of pre-defined operators
4179 (i.e., result 0). */
4182 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4184 struct type *type0 =
4185 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4186 struct type *type1 =
4187 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4201 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4205 case BINOP_BITWISE_AND:
4206 case BINOP_BITWISE_IOR:
4207 case BINOP_BITWISE_XOR:
4208 return (!(integer_type_p (type0) && integer_type_p (type1)));
4211 case BINOP_NOTEQUAL:
4216 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4219 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4222 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4226 case UNOP_LOGICAL_NOT:
4228 return (!numeric_type_p (type0));
4237 1. In the following, we assume that a renaming type's name may
4238 have an ___XD suffix. It would be nice if this went away at some
4240 2. We handle both the (old) purely type-based representation of
4241 renamings and the (new) variable-based encoding. At some point,
4242 it is devoutly to be hoped that the former goes away
4243 (FIXME: hilfinger-2007-07-09).
4244 3. Subprogram renamings are not implemented, although the XRS
4245 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4247 /* If SYM encodes a renaming,
4249 <renaming> renames <renamed entity>,
4251 sets *LEN to the length of the renamed entity's name,
4252 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4253 the string describing the subcomponent selected from the renamed
4254 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4255 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4256 are undefined). Otherwise, returns a value indicating the category
4257 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4258 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4259 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4260 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4261 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4262 may be NULL, in which case they are not assigned.
4264 [Currently, however, GCC does not generate subprogram renamings.] */
4266 enum ada_renaming_category
4267 ada_parse_renaming (struct symbol *sym,
4268 const char **renamed_entity, int *len,
4269 const char **renaming_expr)
4271 enum ada_renaming_category kind;
4276 return ADA_NOT_RENAMING;
4277 switch (sym->aclass ())
4280 return ADA_NOT_RENAMING;
4284 case LOC_OPTIMIZED_OUT:
4285 info = strstr (sym->linkage_name (), "___XR");
4287 return ADA_NOT_RENAMING;
4291 kind = ADA_OBJECT_RENAMING;
4295 kind = ADA_EXCEPTION_RENAMING;
4299 kind = ADA_PACKAGE_RENAMING;
4303 kind = ADA_SUBPROGRAM_RENAMING;
4307 return ADA_NOT_RENAMING;
4311 if (renamed_entity != NULL)
4312 *renamed_entity = info;
4313 suffix = strstr (info, "___XE");
4314 if (suffix == NULL || suffix == info)
4315 return ADA_NOT_RENAMING;
4317 *len = strlen (info) - strlen (suffix);
4319 if (renaming_expr != NULL)
4320 *renaming_expr = suffix;
4324 /* Compute the value of the given RENAMING_SYM, which is expected to
4325 be a symbol encoding a renaming expression. BLOCK is the block
4326 used to evaluate the renaming. */
4328 static struct value *
4329 ada_read_renaming_var_value (struct symbol *renaming_sym,
4330 const struct block *block)
4332 const char *sym_name;
4334 sym_name = renaming_sym->linkage_name ();
4335 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4336 return evaluate_expression (expr.get ());
4340 /* Evaluation: Function Calls */
4342 /* Return an lvalue containing the value VAL. This is the identity on
4343 lvalues, and otherwise has the side-effect of allocating memory
4344 in the inferior where a copy of the value contents is copied. */
4346 static struct value *
4347 ensure_lval (struct value *val)
4349 if (VALUE_LVAL (val) == not_lval
4350 || VALUE_LVAL (val) == lval_internalvar)
4352 int len = ada_check_typedef (value_type (val))->length ();
4353 const CORE_ADDR addr =
4354 value_as_long (value_allocate_space_in_inferior (len));
4356 VALUE_LVAL (val) = lval_memory;
4357 set_value_address (val, addr);
4358 write_memory (addr, value_contents (val).data (), len);
4364 /* Given ARG, a value of type (pointer or reference to a)*
4365 structure/union, extract the component named NAME from the ultimate
4366 target structure/union and return it as a value with its
4369 The routine searches for NAME among all members of the structure itself
4370 and (recursively) among all members of any wrapper members
4373 If NO_ERR, then simply return NULL in case of error, rather than
4376 static struct value *
4377 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4379 struct type *t, *t1;
4384 t1 = t = ada_check_typedef (value_type (arg));
4385 if (t->code () == TYPE_CODE_REF)
4387 t1 = t->target_type ();
4390 t1 = ada_check_typedef (t1);
4391 if (t1->code () == TYPE_CODE_PTR)
4393 arg = coerce_ref (arg);
4398 while (t->code () == TYPE_CODE_PTR)
4400 t1 = t->target_type ();
4403 t1 = ada_check_typedef (t1);
4404 if (t1->code () == TYPE_CODE_PTR)
4406 arg = value_ind (arg);
4413 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4417 v = ada_search_struct_field (name, arg, 0, t);
4420 int bit_offset, bit_size, byte_offset;
4421 struct type *field_type;
4424 if (t->code () == TYPE_CODE_PTR)
4425 address = value_address (ada_value_ind (arg));
4427 address = value_address (ada_coerce_ref (arg));
4429 /* Check to see if this is a tagged type. We also need to handle
4430 the case where the type is a reference to a tagged type, but
4431 we have to be careful to exclude pointers to tagged types.
4432 The latter should be shown as usual (as a pointer), whereas
4433 a reference should mostly be transparent to the user. */
4435 if (ada_is_tagged_type (t1, 0)
4436 || (t1->code () == TYPE_CODE_REF
4437 && ada_is_tagged_type (t1->target_type (), 0)))
4439 /* We first try to find the searched field in the current type.
4440 If not found then let's look in the fixed type. */
4442 if (!find_struct_field (name, t1, 0,
4443 nullptr, nullptr, nullptr,
4452 /* Convert to fixed type in all cases, so that we have proper
4453 offsets to each field in unconstrained record types. */
4454 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4455 address, NULL, check_tag);
4457 /* Resolve the dynamic type as well. */
4458 arg = value_from_contents_and_address (t1, nullptr, address);
4459 t1 = value_type (arg);
4461 if (find_struct_field (name, t1, 0,
4462 &field_type, &byte_offset, &bit_offset,
4467 if (t->code () == TYPE_CODE_REF)
4468 arg = ada_coerce_ref (arg);
4470 arg = ada_value_ind (arg);
4471 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4472 bit_offset, bit_size,
4476 v = value_at_lazy (field_type, address + byte_offset);
4480 if (v != NULL || no_err)
4483 error (_("There is no member named %s."), name);
4489 error (_("Attempt to extract a component of "
4490 "a value that is not a record."));
4493 /* Return the value ACTUAL, converted to be an appropriate value for a
4494 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4495 allocating any necessary descriptors (fat pointers), or copies of
4496 values not residing in memory, updating it as needed. */
4499 ada_convert_actual (struct value *actual, struct type *formal_type0)
4501 struct type *actual_type = ada_check_typedef (value_type (actual));
4502 struct type *formal_type = ada_check_typedef (formal_type0);
4503 struct type *formal_target =
4504 formal_type->code () == TYPE_CODE_PTR
4505 ? ada_check_typedef (formal_type->target_type ()) : formal_type;
4506 struct type *actual_target =
4507 actual_type->code () == TYPE_CODE_PTR
4508 ? ada_check_typedef (actual_type->target_type ()) : actual_type;
4510 if (ada_is_array_descriptor_type (formal_target)
4511 && actual_target->code () == TYPE_CODE_ARRAY)
4512 return make_array_descriptor (formal_type, actual);
4513 else if (formal_type->code () == TYPE_CODE_PTR
4514 || formal_type->code () == TYPE_CODE_REF)
4516 struct value *result;
4518 if (formal_target->code () == TYPE_CODE_ARRAY
4519 && ada_is_array_descriptor_type (actual_target))
4520 result = desc_data (actual);
4521 else if (formal_type->code () != TYPE_CODE_PTR)
4523 if (VALUE_LVAL (actual) != lval_memory)
4527 actual_type = ada_check_typedef (value_type (actual));
4528 val = allocate_value (actual_type);
4529 copy (value_contents (actual), value_contents_raw (val));
4530 actual = ensure_lval (val);
4532 result = value_addr (actual);
4536 return value_cast_pointers (formal_type, result, 0);
4538 else if (actual_type->code () == TYPE_CODE_PTR)
4539 return ada_value_ind (actual);
4540 else if (ada_is_aligner_type (formal_type))
4542 /* We need to turn this parameter into an aligner type
4544 struct value *aligner = allocate_value (formal_type);
4545 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4547 value_assign_to_component (aligner, component, actual);
4554 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4555 type TYPE. This is usually an inefficient no-op except on some targets
4556 (such as AVR) where the representation of a pointer and an address
4560 value_pointer (struct value *value, struct type *type)
4562 unsigned len = type->length ();
4563 gdb_byte *buf = (gdb_byte *) alloca (len);
4566 addr = value_address (value);
4567 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4568 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4573 /* Push a descriptor of type TYPE for array value ARR on the stack at
4574 *SP, updating *SP to reflect the new descriptor. Return either
4575 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4576 to-descriptor type rather than a descriptor type), a struct value *
4577 representing a pointer to this descriptor. */
4579 static struct value *
4580 make_array_descriptor (struct type *type, struct value *arr)
4582 struct type *bounds_type = desc_bounds_type (type);
4583 struct type *desc_type = desc_base_type (type);
4584 struct value *descriptor = allocate_value (desc_type);
4585 struct value *bounds = allocate_value (bounds_type);
4588 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4591 modify_field (value_type (bounds),
4592 value_contents_writeable (bounds).data (),
4593 ada_array_bound (arr, i, 0),
4594 desc_bound_bitpos (bounds_type, i, 0),
4595 desc_bound_bitsize (bounds_type, i, 0));
4596 modify_field (value_type (bounds),
4597 value_contents_writeable (bounds).data (),
4598 ada_array_bound (arr, i, 1),
4599 desc_bound_bitpos (bounds_type, i, 1),
4600 desc_bound_bitsize (bounds_type, i, 1));
4603 bounds = ensure_lval (bounds);
4605 modify_field (value_type (descriptor),
4606 value_contents_writeable (descriptor).data (),
4607 value_pointer (ensure_lval (arr),
4608 desc_type->field (0).type ()),
4609 fat_pntr_data_bitpos (desc_type),
4610 fat_pntr_data_bitsize (desc_type));
4612 modify_field (value_type (descriptor),
4613 value_contents_writeable (descriptor).data (),
4614 value_pointer (bounds,
4615 desc_type->field (1).type ()),
4616 fat_pntr_bounds_bitpos (desc_type),
4617 fat_pntr_bounds_bitsize (desc_type));
4619 descriptor = ensure_lval (descriptor);
4621 if (type->code () == TYPE_CODE_PTR)
4622 return value_addr (descriptor);
4627 /* Symbol Cache Module */
4629 /* Performance measurements made as of 2010-01-15 indicate that
4630 this cache does bring some noticeable improvements. Depending
4631 on the type of entity being printed, the cache can make it as much
4632 as an order of magnitude faster than without it.
4634 The descriptive type DWARF extension has significantly reduced
4635 the need for this cache, at least when DWARF is being used. However,
4636 even in this case, some expensive name-based symbol searches are still
4637 sometimes necessary - to find an XVZ variable, mostly. */
4639 /* Return the symbol cache associated to the given program space PSPACE.
4640 If not allocated for this PSPACE yet, allocate and initialize one. */
4642 static struct ada_symbol_cache *
4643 ada_get_symbol_cache (struct program_space *pspace)
4645 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4647 if (pspace_data->sym_cache == nullptr)
4648 pspace_data->sym_cache.reset (new ada_symbol_cache);
4650 return pspace_data->sym_cache.get ();
4653 /* Clear all entries from the symbol cache. */
4656 ada_clear_symbol_cache ()
4658 struct ada_pspace_data *pspace_data
4659 = get_ada_pspace_data (current_program_space);
4661 if (pspace_data->sym_cache != nullptr)
4662 pspace_data->sym_cache.reset ();
4665 /* Search our cache for an entry matching NAME and DOMAIN.
4666 Return it if found, or NULL otherwise. */
4668 static struct cache_entry **
4669 find_entry (const char *name, domain_enum domain)
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673 int h = msymbol_hash (name) % HASH_SIZE;
4674 struct cache_entry **e;
4676 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4678 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4684 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4685 Return 1 if found, 0 otherwise.
4687 If an entry was found and SYM is not NULL, set *SYM to the entry's
4688 SYM. Same principle for BLOCK if not NULL. */
4691 lookup_cached_symbol (const char *name, domain_enum domain,
4692 struct symbol **sym, const struct block **block)
4694 struct cache_entry **e = find_entry (name, domain);
4701 *block = (*e)->block;
4705 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4706 in domain DOMAIN, save this result in our symbol cache. */
4709 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4710 const struct block *block)
4712 struct ada_symbol_cache *sym_cache
4713 = ada_get_symbol_cache (current_program_space);
4715 struct cache_entry *e;
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !sym->is_objfile_owned ())
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4728 const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();
4730 if (bv.global_block () != block && bv.static_block () != block)
4734 h = msymbol_hash (name) % HASH_SIZE;
4735 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4736 e->next = sym_cache->root[h];
4737 sym_cache->root[h] = e;
4738 e->name = obstack_strdup (&sym_cache->cache_space, name);
4746 /* Return the symbol name match type that should be used used when
4747 searching for all symbols matching LOOKUP_NAME.
4749 LOOKUP_NAME is expected to be a symbol name after transformation
4752 static symbol_name_match_type
4753 name_match_type_from_name (const char *lookup_name)
4755 return (strstr (lookup_name, "__") == NULL
4756 ? symbol_name_match_type::WILD
4757 : symbol_name_match_type::FULL);
4760 /* Return the result of a standard (literal, C-like) lookup of NAME in
4761 given DOMAIN, visible from lexical block BLOCK. */
4763 static struct symbol *
4764 standard_lookup (const char *name, const struct block *block,
4767 /* Initialize it just to avoid a GCC false warning. */
4768 struct block_symbol sym = {};
4770 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 ada_lookup_encoded_symbol (name, block, domain, &sym);
4773 cache_symbol (name, domain, sym.symbol, sym.block);
4778 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4779 in the symbol fields of SYMS. We treat enumerals as functions,
4780 since they contend in overloading in the same way. */
4782 is_nonfunction (const std::vector<struct block_symbol> &syms)
4784 for (const block_symbol &sym : syms)
4785 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4786 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4787 || sym.symbol->aclass () != LOC_CONST))
4793 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4794 struct types. Otherwise, they may not. */
4797 equiv_types (struct type *type0, struct type *type1)
4801 if (type0 == NULL || type1 == NULL
4802 || type0->code () != type1->code ())
4804 if ((type0->code () == TYPE_CODE_STRUCT
4805 || type0->code () == TYPE_CODE_ENUM)
4806 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4807 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4813 /* True iff SYM0 represents the same entity as SYM1, or one that is
4814 no more defined than that of SYM1. */
4817 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4821 if (sym0->domain () != sym1->domain ()
4822 || sym0->aclass () != sym1->aclass ())
4825 switch (sym0->aclass ())
4831 struct type *type0 = sym0->type ();
4832 struct type *type1 = sym1->type ();
4833 const char *name0 = sym0->linkage_name ();
4834 const char *name1 = sym1->linkage_name ();
4835 int len0 = strlen (name0);
4838 type0->code () == type1->code ()
4839 && (equiv_types (type0, type1)
4840 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4841 && startswith (name1 + len0, "___XV")));
4844 return sym0->value_longest () == sym1->value_longest ()
4845 && equiv_types (sym0->type (), sym1->type ());
4849 const char *name0 = sym0->linkage_name ();
4850 const char *name1 = sym1->linkage_name ();
4851 return (strcmp (name0, name1) == 0
4852 && sym0->value_address () == sym1->value_address ());
4860 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4861 records in RESULT. Do nothing if SYM is a duplicate. */
4864 add_defn_to_vec (std::vector<struct block_symbol> &result,
4866 const struct block *block)
4868 /* Do not try to complete stub types, as the debugger is probably
4869 already scanning all symbols matching a certain name at the
4870 time when this function is called. Trying to replace the stub
4871 type by its associated full type will cause us to restart a scan
4872 which may lead to an infinite recursion. Instead, the client
4873 collecting the matching symbols will end up collecting several
4874 matches, with at least one of them complete. It can then filter
4875 out the stub ones if needed. */
4877 for (int i = result.size () - 1; i >= 0; i -= 1)
4879 if (lesseq_defined_than (sym, result[i].symbol))
4881 else if (lesseq_defined_than (result[i].symbol, sym))
4883 result[i].symbol = sym;
4884 result[i].block = block;
4889 struct block_symbol info;
4892 result.push_back (info);
4895 /* Return a bound minimal symbol matching NAME according to Ada
4896 decoding rules. Returns an invalid symbol if there is no such
4897 minimal symbol. Names prefixed with "standard__" are handled
4898 specially: "standard__" is first stripped off, and only static and
4899 global symbols are searched. */
4901 struct bound_minimal_symbol
4902 ada_lookup_simple_minsym (const char *name)
4904 struct bound_minimal_symbol result;
4906 symbol_name_match_type match_type = name_match_type_from_name (name);
4907 lookup_name_info lookup_name (name, match_type);
4909 symbol_name_matcher_ftype *match_name
4910 = ada_get_symbol_name_matcher (lookup_name);
4912 for (objfile *objfile : current_program_space->objfiles ())
4914 for (minimal_symbol *msymbol : objfile->msymbols ())
4916 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4917 && msymbol->type () != mst_solib_trampoline)
4919 result.minsym = msymbol;
4920 result.objfile = objfile;
4929 /* True if TYPE is definitely an artificial type supplied to a symbol
4930 for which no debugging information was given in the symbol file. */
4933 is_nondebugging_type (struct type *type)
4935 const char *name = ada_type_name (type);
4937 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4940 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4941 that are deemed "identical" for practical purposes.
4943 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4944 types and that their number of enumerals is identical (in other
4945 words, type1->num_fields () == type2->num_fields ()). */
4948 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4952 /* The heuristic we use here is fairly conservative. We consider
4953 that 2 enumerate types are identical if they have the same
4954 number of enumerals and that all enumerals have the same
4955 underlying value and name. */
4957 /* All enums in the type should have an identical underlying value. */
4958 for (i = 0; i < type1->num_fields (); i++)
4959 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4962 /* All enumerals should also have the same name (modulo any numerical
4964 for (i = 0; i < type1->num_fields (); i++)
4966 const char *name_1 = type1->field (i).name ();
4967 const char *name_2 = type2->field (i).name ();
4968 int len_1 = strlen (name_1);
4969 int len_2 = strlen (name_2);
4971 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4972 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4974 || strncmp (type1->field (i).name (),
4975 type2->field (i).name (),
4983 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4984 that are deemed "identical" for practical purposes. Sometimes,
4985 enumerals are not strictly identical, but their types are so similar
4986 that they can be considered identical.
4988 For instance, consider the following code:
4990 type Color is (Black, Red, Green, Blue, White);
4991 type RGB_Color is new Color range Red .. Blue;
4993 Type RGB_Color is a subrange of an implicit type which is a copy
4994 of type Color. If we call that implicit type RGB_ColorB ("B" is
4995 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4996 As a result, when an expression references any of the enumeral
4997 by name (Eg. "print green"), the expression is technically
4998 ambiguous and the user should be asked to disambiguate. But
4999 doing so would only hinder the user, since it wouldn't matter
5000 what choice he makes, the outcome would always be the same.
5001 So, for practical purposes, we consider them as the same. */
5004 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5008 /* Before performing a thorough comparison check of each type,
5009 we perform a series of inexpensive checks. We expect that these
5010 checks will quickly fail in the vast majority of cases, and thus
5011 help prevent the unnecessary use of a more expensive comparison.
5012 Said comparison also expects us to make some of these checks
5013 (see ada_identical_enum_types_p). */
5015 /* Quick check: All symbols should have an enum type. */
5016 for (i = 0; i < syms.size (); i++)
5017 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
5020 /* Quick check: They should all have the same value. */
5021 for (i = 1; i < syms.size (); i++)
5022 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
5025 /* Quick check: They should all have the same number of enumerals. */
5026 for (i = 1; i < syms.size (); i++)
5027 if (syms[i].symbol->type ()->num_fields ()
5028 != syms[0].symbol->type ()->num_fields ())
5031 /* All the sanity checks passed, so we might have a set of
5032 identical enumeration types. Perform a more complete
5033 comparison of the type of each symbol. */
5034 for (i = 1; i < syms.size (); i++)
5035 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5036 syms[0].symbol->type ()))
5042 /* Remove any non-debugging symbols in SYMS that definitely
5043 duplicate other symbols in the list (The only case I know of where
5044 this happens is when object files containing stabs-in-ecoff are
5045 linked with files containing ordinary ecoff debugging symbols (or no
5046 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5049 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5053 /* We should never be called with less than 2 symbols, as there
5054 cannot be any extra symbol in that case. But it's easy to
5055 handle, since we have nothing to do in that case. */
5056 if (syms->size () < 2)
5060 while (i < syms->size ())
5064 /* If two symbols have the same name and one of them is a stub type,
5065 the get rid of the stub. */
5067 if ((*syms)[i].symbol->type ()->is_stub ()
5068 && (*syms)[i].symbol->linkage_name () != NULL)
5070 for (j = 0; j < syms->size (); j++)
5073 && !(*syms)[j].symbol->type ()->is_stub ()
5074 && (*syms)[j].symbol->linkage_name () != NULL
5075 && strcmp ((*syms)[i].symbol->linkage_name (),
5076 (*syms)[j].symbol->linkage_name ()) == 0)
5081 /* Two symbols with the same name, same class and same address
5082 should be identical. */
5084 else if ((*syms)[i].symbol->linkage_name () != NULL
5085 && (*syms)[i].symbol->aclass () == LOC_STATIC
5086 && is_nondebugging_type ((*syms)[i].symbol->type ()))
5088 for (j = 0; j < syms->size (); j += 1)
5091 && (*syms)[j].symbol->linkage_name () != NULL
5092 && strcmp ((*syms)[i].symbol->linkage_name (),
5093 (*syms)[j].symbol->linkage_name ()) == 0
5094 && ((*syms)[i].symbol->aclass ()
5095 == (*syms)[j].symbol->aclass ())
5096 && (*syms)[i].symbol->value_address ()
5097 == (*syms)[j].symbol->value_address ())
5103 syms->erase (syms->begin () + i);
5108 /* If all the remaining symbols are identical enumerals, then
5109 just keep the first one and discard the rest.
5111 Unlike what we did previously, we do not discard any entry
5112 unless they are ALL identical. This is because the symbol
5113 comparison is not a strict comparison, but rather a practical
5114 comparison. If all symbols are considered identical, then
5115 we can just go ahead and use the first one and discard the rest.
5116 But if we cannot reduce the list to a single element, we have
5117 to ask the user to disambiguate anyways. And if we have to
5118 present a multiple-choice menu, it's less confusing if the list
5119 isn't missing some choices that were identical and yet distinct. */
5120 if (symbols_are_identical_enums (*syms))
5124 /* Given a type that corresponds to a renaming entity, use the type name
5125 to extract the scope (package name or function name, fully qualified,
5126 and following the GNAT encoding convention) where this renaming has been
5130 xget_renaming_scope (struct type *renaming_type)
5132 /* The renaming types adhere to the following convention:
5133 <scope>__<rename>___<XR extension>.
5134 So, to extract the scope, we search for the "___XR" extension,
5135 and then backtrack until we find the first "__". */
5137 const char *name = renaming_type->name ();
5138 const char *suffix = strstr (name, "___XR");
5141 /* Now, backtrack a bit until we find the first "__". Start looking
5142 at suffix - 3, as the <rename> part is at least one character long. */
5144 for (last = suffix - 3; last > name; last--)
5145 if (last[0] == '_' && last[1] == '_')
5148 /* Make a copy of scope and return it. */
5149 return std::string (name, last);
5152 /* Return nonzero if NAME corresponds to a package name. */
5155 is_package_name (const char *name)
5157 /* Here, We take advantage of the fact that no symbols are generated
5158 for packages, while symbols are generated for each function.
5159 So the condition for NAME represent a package becomes equivalent
5160 to NAME not existing in our list of symbols. There is only one
5161 small complication with library-level functions (see below). */
5163 /* If it is a function that has not been defined at library level,
5164 then we should be able to look it up in the symbols. */
5165 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5168 /* Library-level function names start with "_ada_". See if function
5169 "_ada_" followed by NAME can be found. */
5171 /* Do a quick check that NAME does not contain "__", since library-level
5172 functions names cannot contain "__" in them. */
5173 if (strstr (name, "__") != NULL)
5176 std::string fun_name = string_printf ("_ada_%s", name);
5178 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5181 /* Return nonzero if SYM corresponds to a renaming entity that is
5182 not visible from FUNCTION_NAME. */
5185 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5187 if (sym->aclass () != LOC_TYPEDEF)
5190 std::string scope = xget_renaming_scope (sym->type ());
5192 /* If the rename has been defined in a package, then it is visible. */
5193 if (is_package_name (scope.c_str ()))
5196 /* Check that the rename is in the current function scope by checking
5197 that its name starts with SCOPE. */
5199 /* If the function name starts with "_ada_", it means that it is
5200 a library-level function. Strip this prefix before doing the
5201 comparison, as the encoding for the renaming does not contain
5203 if (startswith (function_name, "_ada_"))
5206 return !startswith (function_name, scope.c_str ());
5209 /* Remove entries from SYMS that corresponds to a renaming entity that
5210 is not visible from the function associated with CURRENT_BLOCK or
5211 that is superfluous due to the presence of more specific renaming
5212 information. Places surviving symbols in the initial entries of
5216 First, in cases where an object renaming is implemented as a
5217 reference variable, GNAT may produce both the actual reference
5218 variable and the renaming encoding. In this case, we discard the
5221 Second, GNAT emits a type following a specified encoding for each renaming
5222 entity. Unfortunately, STABS currently does not support the definition
5223 of types that are local to a given lexical block, so all renamings types
5224 are emitted at library level. As a consequence, if an application
5225 contains two renaming entities using the same name, and a user tries to
5226 print the value of one of these entities, the result of the ada symbol
5227 lookup will also contain the wrong renaming type.
5229 This function partially covers for this limitation by attempting to
5230 remove from the SYMS list renaming symbols that should be visible
5231 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5232 method with the current information available. The implementation
5233 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5235 - When the user tries to print a rename in a function while there
5236 is another rename entity defined in a package: Normally, the
5237 rename in the function has precedence over the rename in the
5238 package, so the latter should be removed from the list. This is
5239 currently not the case.
5241 - This function will incorrectly remove valid renames if
5242 the CURRENT_BLOCK corresponds to a function which symbol name
5243 has been changed by an "Export" pragma. As a consequence,
5244 the user will be unable to print such rename entities. */
5247 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5248 const struct block *current_block)
5250 struct symbol *current_function;
5251 const char *current_function_name;
5253 int is_new_style_renaming;
5255 /* If there is both a renaming foo___XR... encoded as a variable and
5256 a simple variable foo in the same block, discard the latter.
5257 First, zero out such symbols, then compress. */
5258 is_new_style_renaming = 0;
5259 for (i = 0; i < syms->size (); i += 1)
5261 struct symbol *sym = (*syms)[i].symbol;
5262 const struct block *block = (*syms)[i].block;
5266 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
5268 name = sym->linkage_name ();
5269 suffix = strstr (name, "___XR");
5273 int name_len = suffix - name;
5276 is_new_style_renaming = 1;
5277 for (j = 0; j < syms->size (); j += 1)
5278 if (i != j && (*syms)[j].symbol != NULL
5279 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5281 && block == (*syms)[j].block)
5282 (*syms)[j].symbol = NULL;
5285 if (is_new_style_renaming)
5289 for (j = k = 0; j < syms->size (); j += 1)
5290 if ((*syms)[j].symbol != NULL)
5292 (*syms)[k] = (*syms)[j];
5299 /* Extract the function name associated to CURRENT_BLOCK.
5300 Abort if unable to do so. */
5302 if (current_block == NULL)
5305 current_function = block_linkage_function (current_block);
5306 if (current_function == NULL)
5309 current_function_name = current_function->linkage_name ();
5310 if (current_function_name == NULL)
5313 /* Check each of the symbols, and remove it from the list if it is
5314 a type corresponding to a renaming that is out of the scope of
5315 the current block. */
5318 while (i < syms->size ())
5320 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5321 == ADA_OBJECT_RENAMING
5322 && old_renaming_is_invisible ((*syms)[i].symbol,
5323 current_function_name))
5324 syms->erase (syms->begin () + i);
5330 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5331 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5333 Note: This function assumes that RESULT is empty. */
5336 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5337 const lookup_name_info &lookup_name,
5338 const struct block *block, domain_enum domain)
5340 while (block != NULL)
5342 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5344 /* If we found a non-function match, assume that's the one. We
5345 only check this when finding a function boundary, so that we
5346 can accumulate all results from intervening blocks first. */
5347 if (block->function () != nullptr && is_nonfunction (result))
5350 block = block->superblock ();
5354 /* An object of this type is used as the callback argument when
5355 calling the map_matching_symbols method. */
5359 explicit match_data (std::vector<struct block_symbol> *rp)
5363 DISABLE_COPY_AND_ASSIGN (match_data);
5365 bool operator() (struct block_symbol *bsym);
5367 struct objfile *objfile = nullptr;
5368 std::vector<struct block_symbol> *resultp;
5369 struct symbol *arg_sym = nullptr;
5370 bool found_sym = false;
5373 /* A callback for add_nonlocal_symbols that adds symbol, found in
5374 BSYM, to a list of symbols. */
5377 match_data::operator() (struct block_symbol *bsym)
5379 const struct block *block = bsym->block;
5380 struct symbol *sym = bsym->symbol;
5384 if (!found_sym && arg_sym != NULL)
5385 add_defn_to_vec (*resultp,
5386 fixup_symbol_section (arg_sym, objfile),
5393 if (sym->aclass () == LOC_UNRESOLVED)
5395 else if (sym->is_argument ())
5400 add_defn_to_vec (*resultp,
5401 fixup_symbol_section (sym, objfile),
5408 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5409 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5410 symbols to RESULT. Return whether we found such symbols. */
5413 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5414 const struct block *block,
5415 const lookup_name_info &lookup_name,
5418 struct using_direct *renaming;
5419 int defns_mark = result.size ();
5421 symbol_name_matcher_ftype *name_match
5422 = ada_get_symbol_name_matcher (lookup_name);
5424 for (renaming = block_using (block);
5426 renaming = renaming->next)
5430 /* Avoid infinite recursions: skip this renaming if we are actually
5431 already traversing it.
5433 Currently, symbol lookup in Ada don't use the namespace machinery from
5434 C++/Fortran support: skip namespace imports that use them. */
5435 if (renaming->searched
5436 || (renaming->import_src != NULL
5437 && renaming->import_src[0] != '\0')
5438 || (renaming->import_dest != NULL
5439 && renaming->import_dest[0] != '\0'))
5441 renaming->searched = 1;
5443 /* TODO: here, we perform another name-based symbol lookup, which can
5444 pull its own multiple overloads. In theory, we should be able to do
5445 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5446 not a simple name. But in order to do this, we would need to enhance
5447 the DWARF reader to associate a symbol to this renaming, instead of a
5448 name. So, for now, we do something simpler: re-use the C++/Fortran
5449 namespace machinery. */
5450 r_name = (renaming->alias != NULL
5452 : renaming->declaration);
5453 if (name_match (r_name, lookup_name, NULL))
5455 lookup_name_info decl_lookup_name (renaming->declaration,
5456 lookup_name.match_type ());
5457 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5460 renaming->searched = 0;
5462 return result.size () != defns_mark;
5465 /* Implements compare_names, but only applying the comparision using
5466 the given CASING. */
5469 compare_names_with_case (const char *string1, const char *string2,
5470 enum case_sensitivity casing)
5472 while (*string1 != '\0' && *string2 != '\0')
5476 if (isspace (*string1) || isspace (*string2))
5477 return strcmp_iw_ordered (string1, string2);
5479 if (casing == case_sensitive_off)
5481 c1 = tolower (*string1);
5482 c2 = tolower (*string2);
5499 return strcmp_iw_ordered (string1, string2);
5501 if (*string2 == '\0')
5503 if (is_name_suffix (string1))
5510 if (*string2 == '(')
5511 return strcmp_iw_ordered (string1, string2);
5514 if (casing == case_sensitive_off)
5515 return tolower (*string1) - tolower (*string2);
5517 return *string1 - *string2;
5522 /* Compare STRING1 to STRING2, with results as for strcmp.
5523 Compatible with strcmp_iw_ordered in that...
5525 strcmp_iw_ordered (STRING1, STRING2) <= 0
5529 compare_names (STRING1, STRING2) <= 0
5531 (they may differ as to what symbols compare equal). */
5534 compare_names (const char *string1, const char *string2)
5538 /* Similar to what strcmp_iw_ordered does, we need to perform
5539 a case-insensitive comparison first, and only resort to
5540 a second, case-sensitive, comparison if the first one was
5541 not sufficient to differentiate the two strings. */
5543 result = compare_names_with_case (string1, string2, case_sensitive_off);
5545 result = compare_names_with_case (string1, string2, case_sensitive_on);
5550 /* Convenience function to get at the Ada encoded lookup name for
5551 LOOKUP_NAME, as a C string. */
5554 ada_lookup_name (const lookup_name_info &lookup_name)
5556 return lookup_name.ada ().lookup_name ().c_str ();
5559 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5560 for OBJFILE, then walk the objfile's symtabs and update the
5564 map_matching_symbols (struct objfile *objfile,
5565 const lookup_name_info &lookup_name,
5571 data.objfile = objfile;
5572 objfile->expand_matching_symbols (lookup_name, domain, global,
5573 is_wild_match ? nullptr : compare_names);
5575 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5576 for (compunit_symtab *symtab : objfile->compunits ())
5578 const struct block *block
5579 = symtab->blockvector ()->block (block_kind);
5580 if (!iterate_over_symbols_terminated (block, lookup_name,
5586 /* Add to RESULT all non-local symbols whose name and domain match
5587 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5588 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5589 symbols otherwise. */
5592 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5593 const lookup_name_info &lookup_name,
5594 domain_enum domain, int global)
5596 struct match_data data (&result);
5598 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5600 for (objfile *objfile : current_program_space->objfiles ())
5602 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5605 for (compunit_symtab *cu : objfile->compunits ())
5607 const struct block *global_block
5608 = cu->blockvector ()->global_block ();
5610 if (ada_add_block_renamings (result, global_block, lookup_name,
5612 data.found_sym = true;
5616 if (result.empty () && global && !is_wild_match)
5618 const char *name = ada_lookup_name (lookup_name);
5619 std::string bracket_name = std::string ("<_ada_") + name + '>';
5620 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5622 for (objfile *objfile : current_program_space->objfiles ())
5623 map_matching_symbols (objfile, name1, false, domain, global, data);
5627 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5628 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5629 returning the number of matches. Add these to RESULT.
5631 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5632 symbol match within the nest of blocks whose innermost member is BLOCK,
5633 is the one match returned (no other matches in that or
5634 enclosing blocks is returned). If there are any matches in or
5635 surrounding BLOCK, then these alone are returned.
5637 Names prefixed with "standard__" are handled specially:
5638 "standard__" is first stripped off (by the lookup_name
5639 constructor), and only static and global symbols are searched.
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5645 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5646 const struct block *block,
5647 const lookup_name_info &lookup_name,
5650 int *made_global_lookup_p)
5654 if (made_global_lookup_p)
5655 *made_global_lookup_p = 0;
5657 /* Special case: If the user specifies a symbol name inside package
5658 Standard, do a non-wild matching of the symbol name without
5659 the "standard__" prefix. This was primarily introduced in order
5660 to allow the user to specifically access the standard exceptions
5661 using, for instance, Standard.Constraint_Error when Constraint_Error
5662 is ambiguous (due to the user defining its own Constraint_Error
5663 entity inside its program). */
5664 if (lookup_name.ada ().standard_p ())
5667 /* Check the non-global symbols. If we have ANY match, then we're done. */
5672 ada_add_local_symbols (result, lookup_name, block, domain);
5675 /* In the !full_search case we're are being called by
5676 iterate_over_symbols, and we don't want to search
5678 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5680 if (!result.empty () || !full_search)
5684 /* No non-global symbols found. Check our cache to see if we have
5685 already performed this search before. If we have, then return
5688 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5689 domain, &sym, &block))
5692 add_defn_to_vec (result, sym, block);
5696 if (made_global_lookup_p)
5697 *made_global_lookup_p = 1;
5699 /* Search symbols from all global blocks. */
5701 add_nonlocal_symbols (result, lookup_name, domain, 1);
5703 /* Now add symbols from all per-file blocks if we've gotten no hits
5704 (not strictly correct, but perhaps better than an error). */
5706 if (result.empty ())
5707 add_nonlocal_symbols (result, lookup_name, domain, 0);
5710 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5711 is non-zero, enclosing scope and in global scopes.
5713 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5714 blocks and symbol tables (if any) in which they were found.
5716 When full_search is non-zero, any non-function/non-enumeral
5717 symbol match within the nest of blocks whose innermost member is BLOCK,
5718 is the one match returned (no other matches in that or
5719 enclosing blocks is returned). If there are any matches in or
5720 surrounding BLOCK, then these alone are returned.
5722 Names prefixed with "standard__" are handled specially: "standard__"
5723 is first stripped off, and only static and global symbols are searched. */
5725 static std::vector<struct block_symbol>
5726 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5727 const struct block *block,
5731 int syms_from_global_search;
5732 std::vector<struct block_symbol> results;
5734 ada_add_all_symbols (results, block, lookup_name,
5735 domain, full_search, &syms_from_global_search);
5737 remove_extra_symbols (&results);
5739 if (results.empty () && full_search && syms_from_global_search)
5740 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5742 if (results.size () == 1 && full_search && syms_from_global_search)
5743 cache_symbol (ada_lookup_name (lookup_name), domain,
5744 results[0].symbol, results[0].block);
5746 remove_irrelevant_renamings (&results, block);
5750 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5751 in global scopes, returning (SYM,BLOCK) tuples.
5753 See ada_lookup_symbol_list_worker for further details. */
5755 std::vector<struct block_symbol>
5756 ada_lookup_symbol_list (const char *name, const struct block *block,
5759 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5760 lookup_name_info lookup_name (name, name_match_type);
5762 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5765 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5766 to 1, but choosing the first symbol found if there are multiple
5769 The result is stored in *INFO, which must be non-NULL.
5770 If no match is found, INFO->SYM is set to NULL. */
5773 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5775 struct block_symbol *info)
5777 /* Since we already have an encoded name, wrap it in '<>' to force a
5778 verbatim match. Otherwise, if the name happens to not look like
5779 an encoded name (because it doesn't include a "__"),
5780 ada_lookup_name_info would re-encode/fold it again, and that
5781 would e.g., incorrectly lowercase object renaming names like
5782 "R28b" -> "r28b". */
5783 std::string verbatim = add_angle_brackets (name);
5785 gdb_assert (info != NULL);
5786 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5789 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5790 scope and in global scopes, or NULL if none. NAME is folded and
5791 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5792 choosing the first symbol if there are multiple choices. */
5795 ada_lookup_symbol (const char *name, const struct block *block0,
5798 std::vector<struct block_symbol> candidates
5799 = ada_lookup_symbol_list (name, block0, domain);
5801 if (candidates.empty ())
5804 block_symbol info = candidates[0];
5805 info.symbol = fixup_symbol_section (info.symbol, NULL);
5810 /* True iff STR is a possible encoded suffix of a normal Ada name
5811 that is to be ignored for matching purposes. Suffixes of parallel
5812 names (e.g., XVE) are not included here. Currently, the possible suffixes
5813 are given by any of the regular expressions:
5815 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5816 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5817 TKB [subprogram suffix for task bodies]
5818 _E[0-9]+[bs]$ [protected object entry suffixes]
5819 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5821 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5822 match is performed. This sequence is used to differentiate homonyms,
5823 is an optional part of a valid name suffix. */
5826 is_name_suffix (const char *str)
5829 const char *matching;
5830 const int len = strlen (str);
5832 /* Skip optional leading __[0-9]+. */
5834 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5837 while (isdigit (str[0]))
5843 if (str[0] == '.' || str[0] == '$')
5846 while (isdigit (matching[0]))
5848 if (matching[0] == '\0')
5854 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5857 while (isdigit (matching[0]))
5859 if (matching[0] == '\0')
5863 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5865 if (strcmp (str, "TKB") == 0)
5869 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5870 with a N at the end. Unfortunately, the compiler uses the same
5871 convention for other internal types it creates. So treating
5872 all entity names that end with an "N" as a name suffix causes
5873 some regressions. For instance, consider the case of an enumerated
5874 type. To support the 'Image attribute, it creates an array whose
5876 Having a single character like this as a suffix carrying some
5877 information is a bit risky. Perhaps we should change the encoding
5878 to be something like "_N" instead. In the meantime, do not do
5879 the following check. */
5880 /* Protected Object Subprograms */
5881 if (len == 1 && str [0] == 'N')
5886 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5889 while (isdigit (matching[0]))
5891 if ((matching[0] == 'b' || matching[0] == 's')
5892 && matching [1] == '\0')
5896 /* ??? We should not modify STR directly, as we are doing below. This
5897 is fine in this case, but may become problematic later if we find
5898 that this alternative did not work, and want to try matching
5899 another one from the begining of STR. Since we modified it, we
5900 won't be able to find the begining of the string anymore! */
5904 while (str[0] != '_' && str[0] != '\0')
5906 if (str[0] != 'n' && str[0] != 'b')
5912 if (str[0] == '\000')
5917 if (str[1] != '_' || str[2] == '\000')
5921 if (strcmp (str + 3, "JM") == 0)
5923 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5924 the LJM suffix in favor of the JM one. But we will
5925 still accept LJM as a valid suffix for a reasonable
5926 amount of time, just to allow ourselves to debug programs
5927 compiled using an older version of GNAT. */
5928 if (strcmp (str + 3, "LJM") == 0)
5932 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5933 || str[4] == 'U' || str[4] == 'P')
5935 if (str[4] == 'R' && str[5] != 'T')
5939 if (!isdigit (str[2]))
5941 for (k = 3; str[k] != '\0'; k += 1)
5942 if (!isdigit (str[k]) && str[k] != '_')
5946 if (str[0] == '$' && isdigit (str[1]))
5948 for (k = 2; str[k] != '\0'; k += 1)
5949 if (!isdigit (str[k]) && str[k] != '_')
5956 /* Return non-zero if the string starting at NAME and ending before
5957 NAME_END contains no capital letters. */
5960 is_valid_name_for_wild_match (const char *name0)
5962 std::string decoded_name = ada_decode (name0);
5965 /* If the decoded name starts with an angle bracket, it means that
5966 NAME0 does not follow the GNAT encoding format. It should then
5967 not be allowed as a possible wild match. */
5968 if (decoded_name[0] == '<')
5971 for (i=0; decoded_name[i] != '\0'; i++)
5972 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5978 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5979 character which could start a simple name. Assumes that *NAMEP points
5980 somewhere inside the string beginning at NAME0. */
5983 advance_wild_match (const char **namep, const char *name0, char target0)
5985 const char *name = *namep;
5995 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5998 if (name == name0 + 5 && startswith (name0, "_ada"))
6003 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6004 || name[2] == target0))
6009 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6011 /* Names like "pkg__B_N__name", where N is a number, are
6012 block-local. We can handle these by simply skipping
6019 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6029 /* Return true iff NAME encodes a name of the form prefix.PATN.
6030 Ignores any informational suffixes of NAME (i.e., for which
6031 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6035 wild_match (const char *name, const char *patn)
6038 const char *name0 = name;
6040 if (startswith (name, "___ghost_"))
6045 const char *match = name;
6049 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6052 if (*p == '\0' && is_name_suffix (name))
6053 return match == name0 || is_valid_name_for_wild_match (name0);
6055 if (name[-1] == '_')
6058 if (!advance_wild_match (&name, name0, *patn))
6063 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6064 necessary). OBJFILE is the section containing BLOCK. */
6067 ada_add_block_symbols (std::vector<struct block_symbol> &result,
6068 const struct block *block,
6069 const lookup_name_info &lookup_name,
6070 domain_enum domain, struct objfile *objfile)
6072 struct block_iterator iter;
6073 /* A matching argument symbol, if any. */
6074 struct symbol *arg_sym;
6075 /* Set true when we find a matching non-argument symbol. */
6081 for (sym = block_iter_match_first (block, lookup_name, &iter);
6083 sym = block_iter_match_next (lookup_name, &iter))
6085 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
6087 if (sym->aclass () != LOC_UNRESOLVED)
6089 if (sym->is_argument ())
6094 add_defn_to_vec (result,
6095 fixup_symbol_section (sym, objfile),
6102 /* Handle renamings. */
6104 if (ada_add_block_renamings (result, block, lookup_name, domain))
6107 if (!found_sym && arg_sym != NULL)
6109 add_defn_to_vec (result,
6110 fixup_symbol_section (arg_sym, objfile),
6114 if (!lookup_name.ada ().wild_match_p ())
6118 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6119 const char *name = ada_lookup_name.c_str ();
6120 size_t name_len = ada_lookup_name.size ();
6122 ALL_BLOCK_SYMBOLS (block, iter, sym)
6124 if (symbol_matches_domain (sym->language (),
6125 sym->domain (), domain))
6129 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6132 cmp = !startswith (sym->linkage_name (), "_ada_");
6134 cmp = strncmp (name, sym->linkage_name () + 5,
6139 && is_name_suffix (sym->linkage_name () + name_len + 5))
6141 if (sym->aclass () != LOC_UNRESOLVED)
6143 if (sym->is_argument ())
6148 add_defn_to_vec (result,
6149 fixup_symbol_section (sym, objfile),
6157 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6158 They aren't parameters, right? */
6159 if (!found_sym && arg_sym != NULL)
6161 add_defn_to_vec (result,
6162 fixup_symbol_section (arg_sym, objfile),
6169 /* Symbol Completion */
6174 ada_lookup_name_info::matches
6175 (const char *sym_name,
6176 symbol_name_match_type match_type,
6177 completion_match_result *comp_match_res) const
6180 const char *text = m_encoded_name.c_str ();
6181 size_t text_len = m_encoded_name.size ();
6183 /* First, test against the fully qualified name of the symbol. */
6185 if (strncmp (sym_name, text, text_len) == 0)
6188 std::string decoded_name = ada_decode (sym_name);
6189 if (match && !m_encoded_p)
6191 /* One needed check before declaring a positive match is to verify
6192 that iff we are doing a verbatim match, the decoded version
6193 of the symbol name starts with '<'. Otherwise, this symbol name
6194 is not a suitable completion. */
6196 bool has_angle_bracket = (decoded_name[0] == '<');
6197 match = (has_angle_bracket == m_verbatim_p);
6200 if (match && !m_verbatim_p)
6202 /* When doing non-verbatim match, another check that needs to
6203 be done is to verify that the potentially matching symbol name
6204 does not include capital letters, because the ada-mode would
6205 not be able to understand these symbol names without the
6206 angle bracket notation. */
6209 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6214 /* Second: Try wild matching... */
6216 if (!match && m_wild_match_p)
6218 /* Since we are doing wild matching, this means that TEXT
6219 may represent an unqualified symbol name. We therefore must
6220 also compare TEXT against the unqualified name of the symbol. */
6221 sym_name = ada_unqualified_name (decoded_name.c_str ());
6223 if (strncmp (sym_name, text, text_len) == 0)
6227 /* Finally: If we found a match, prepare the result to return. */
6232 if (comp_match_res != NULL)
6234 std::string &match_str = comp_match_res->match.storage ();
6237 match_str = ada_decode (sym_name);
6241 match_str = add_angle_brackets (sym_name);
6243 match_str = sym_name;
6247 comp_match_res->set_match (match_str.c_str ());
6255 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6256 for tagged types. */
6259 ada_is_dispatch_table_ptr_type (struct type *type)
6263 if (type->code () != TYPE_CODE_PTR)
6266 name = type->target_type ()->name ();
6270 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6273 /* Return non-zero if TYPE is an interface tag. */
6276 ada_is_interface_tag (struct type *type)
6278 const char *name = type->name ();
6283 return (strcmp (name, "ada__tags__interface_tag") == 0);
6286 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6287 to be invisible to users. */
6290 ada_is_ignored_field (struct type *type, int field_num)
6292 if (field_num < 0 || field_num > type->num_fields ())
6295 /* Check the name of that field. */
6297 const char *name = type->field (field_num).name ();
6299 /* Anonymous field names should not be printed.
6300 brobecker/2007-02-20: I don't think this can actually happen
6301 but we don't want to print the value of anonymous fields anyway. */
6305 /* Normally, fields whose name start with an underscore ("_")
6306 are fields that have been internally generated by the compiler,
6307 and thus should not be printed. The "_parent" field is special,
6308 however: This is a field internally generated by the compiler
6309 for tagged types, and it contains the components inherited from
6310 the parent type. This field should not be printed as is, but
6311 should not be ignored either. */
6312 if (name[0] == '_' && !startswith (name, "_parent"))
6315 /* The compiler doesn't document this, but sometimes it emits
6316 a field whose name starts with a capital letter, like 'V148s'.
6317 These aren't marked as artificial in any way, but we know they
6318 should be ignored. However, wrapper fields should not be
6320 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6322 /* Wrapper field. */
6324 else if (isupper (name[0]))
6328 /* If this is the dispatch table of a tagged type or an interface tag,
6330 if (ada_is_tagged_type (type, 1)
6331 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6332 || ada_is_interface_tag (type->field (field_num).type ())))
6335 /* Not a special field, so it should not be ignored. */
6339 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6340 pointer or reference type whose ultimate target has a tag field. */
6343 ada_is_tagged_type (struct type *type, int refok)
6345 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6348 /* True iff TYPE represents the type of X'Tag */
6351 ada_is_tag_type (struct type *type)
6353 type = ada_check_typedef (type);
6355 if (type == NULL || type->code () != TYPE_CODE_PTR)
6359 const char *name = ada_type_name (type->target_type ());
6361 return (name != NULL
6362 && strcmp (name, "ada__tags__dispatch_table") == 0);
6366 /* The type of the tag on VAL. */
6368 static struct type *
6369 ada_tag_type (struct value *val)
6371 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6374 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6375 retired at Ada 05). */
6378 is_ada95_tag (struct value *tag)
6380 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6383 /* The value of the tag on VAL. */
6385 static struct value *
6386 ada_value_tag (struct value *val)
6388 return ada_value_struct_elt (val, "_tag", 0);
6391 /* The value of the tag on the object of type TYPE whose contents are
6392 saved at VALADDR, if it is non-null, or is at memory address
6395 static struct value *
6396 value_tag_from_contents_and_address (struct type *type,
6397 const gdb_byte *valaddr,
6400 int tag_byte_offset;
6401 struct type *tag_type;
6403 gdb::array_view<const gdb_byte> contents;
6404 if (valaddr != nullptr)
6405 contents = gdb::make_array_view (valaddr, type->length ());
6406 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6407 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6410 const gdb_byte *valaddr1 = ((valaddr == NULL)
6412 : valaddr + tag_byte_offset);
6413 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6415 return value_from_contents_and_address (tag_type, valaddr1, address1);
6420 static struct type *
6421 type_from_tag (struct value *tag)
6423 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6425 if (type_name != NULL)
6426 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6430 /* Given a value OBJ of a tagged type, return a value of this
6431 type at the base address of the object. The base address, as
6432 defined in Ada.Tags, it is the address of the primary tag of
6433 the object, and therefore where the field values of its full
6434 view can be fetched. */
6437 ada_tag_value_at_base_address (struct value *obj)
6440 LONGEST offset_to_top = 0;
6441 struct type *ptr_type, *obj_type;
6443 CORE_ADDR base_address;
6445 obj_type = value_type (obj);
6447 /* It is the responsability of the caller to deref pointers. */
6449 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6452 tag = ada_value_tag (obj);
6456 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6458 if (is_ada95_tag (tag))
6461 struct type *offset_type
6462 = language_lookup_primitive_type (language_def (language_ada),
6463 target_gdbarch(), "storage_offset");
6464 ptr_type = lookup_pointer_type (offset_type);
6465 val = value_cast (ptr_type, tag);
6469 /* It is perfectly possible that an exception be raised while
6470 trying to determine the base address, just like for the tag;
6471 see ada_tag_name for more details. We do not print the error
6472 message for the same reason. */
6476 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6479 catch (const gdb_exception_error &e)
6484 /* If offset is null, nothing to do. */
6486 if (offset_to_top == 0)
6489 /* -1 is a special case in Ada.Tags; however, what should be done
6490 is not quite clear from the documentation. So do nothing for
6493 if (offset_to_top == -1)
6496 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6497 top is used. In this situation the offset is stored just after
6498 the tag, in the object itself. */
6499 ULONGEST last = (((ULONGEST) 1) << (8 * offset_type->length () - 1)) - 1;
6500 if (offset_to_top == last)
6502 struct value *tem = value_addr (tag);
6503 tem = value_ptradd (tem, 1);
6504 tem = value_cast (ptr_type, tem);
6505 offset_to_top = value_as_long (value_ind (tem));
6508 if (offset_to_top > 0)
6510 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6511 from the base address. This was however incompatible with
6512 C++ dispatch table: C++ uses a *negative* value to *add*
6513 to the base address. Ada's convention has therefore been
6514 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6515 use the same convention. Here, we support both cases by
6516 checking the sign of OFFSET_TO_TOP. */
6517 offset_to_top = -offset_to_top;
6520 base_address = value_address (obj) + offset_to_top;
6521 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6523 /* Make sure that we have a proper tag at the new address.
6524 Otherwise, offset_to_top is bogus (which can happen when
6525 the object is not initialized yet). */
6530 obj_type = type_from_tag (tag);
6535 return value_from_contents_and_address (obj_type, NULL, base_address);
6538 /* Return the "ada__tags__type_specific_data" type. */
6540 static struct type *
6541 ada_get_tsd_type (struct inferior *inf)
6543 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6545 if (data->tsd_type == 0)
6546 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6547 return data->tsd_type;
6550 /* Return the TSD (type-specific data) associated to the given TAG.
6551 TAG is assumed to be the tag of a tagged-type entity.
6553 May return NULL if we are unable to get the TSD. */
6555 static struct value *
6556 ada_get_tsd_from_tag (struct value *tag)
6561 /* First option: The TSD is simply stored as a field of our TAG.
6562 Only older versions of GNAT would use this format, but we have
6563 to test it first, because there are no visible markers for
6564 the current approach except the absence of that field. */
6566 val = ada_value_struct_elt (tag, "tsd", 1);
6570 /* Try the second representation for the dispatch table (in which
6571 there is no explicit 'tsd' field in the referent of the tag pointer,
6572 and instead the tsd pointer is stored just before the dispatch
6575 type = ada_get_tsd_type (current_inferior());
6578 type = lookup_pointer_type (lookup_pointer_type (type));
6579 val = value_cast (type, tag);
6582 return value_ind (value_ptradd (val, -1));
6585 /* Given the TSD of a tag (type-specific data), return a string
6586 containing the name of the associated type.
6588 May return NULL if we are unable to determine the tag name. */
6590 static gdb::unique_xmalloc_ptr<char>
6591 ada_tag_name_from_tsd (struct value *tsd)
6595 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6598 gdb::unique_xmalloc_ptr<char> buffer
6599 = target_read_string (value_as_address (val), INT_MAX);
6600 if (buffer == nullptr)
6605 /* Let this throw an exception on error. If the data is
6606 uninitialized, we'd rather not have the user see a
6608 const char *folded = ada_fold_name (buffer.get (), true);
6609 return make_unique_xstrdup (folded);
6611 catch (const gdb_exception &)
6617 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6620 Return NULL if the TAG is not an Ada tag, or if we were unable to
6621 determine the name of that tag. */
6623 gdb::unique_xmalloc_ptr<char>
6624 ada_tag_name (struct value *tag)
6626 gdb::unique_xmalloc_ptr<char> name;
6628 if (!ada_is_tag_type (value_type (tag)))
6631 /* It is perfectly possible that an exception be raised while trying
6632 to determine the TAG's name, even under normal circumstances:
6633 The associated variable may be uninitialized or corrupted, for
6634 instance. We do not let any exception propagate past this point.
6635 instead we return NULL.
6637 We also do not print the error message either (which often is very
6638 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6639 the caller print a more meaningful message if necessary. */
6642 struct value *tsd = ada_get_tsd_from_tag (tag);
6645 name = ada_tag_name_from_tsd (tsd);
6647 catch (const gdb_exception_error &e)
6654 /* The parent type of TYPE, or NULL if none. */
6657 ada_parent_type (struct type *type)
6661 type = ada_check_typedef (type);
6663 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6666 for (i = 0; i < type->num_fields (); i += 1)
6667 if (ada_is_parent_field (type, i))
6669 struct type *parent_type = type->field (i).type ();
6671 /* If the _parent field is a pointer, then dereference it. */
6672 if (parent_type->code () == TYPE_CODE_PTR)
6673 parent_type = parent_type->target_type ();
6674 /* If there is a parallel XVS type, get the actual base type. */
6675 parent_type = ada_get_base_type (parent_type);
6677 return ada_check_typedef (parent_type);
6683 /* True iff field number FIELD_NUM of structure type TYPE contains the
6684 parent-type (inherited) fields of a derived type. Assumes TYPE is
6685 a structure type with at least FIELD_NUM+1 fields. */
6688 ada_is_parent_field (struct type *type, int field_num)
6690 const char *name = ada_check_typedef (type)->field (field_num).name ();
6692 return (name != NULL
6693 && (startswith (name, "PARENT")
6694 || startswith (name, "_parent")));
6697 /* True iff field number FIELD_NUM of structure type TYPE is a
6698 transparent wrapper field (which should be silently traversed when doing
6699 field selection and flattened when printing). Assumes TYPE is a
6700 structure type with at least FIELD_NUM+1 fields. Such fields are always
6704 ada_is_wrapper_field (struct type *type, int field_num)
6706 const char *name = type->field (field_num).name ();
6708 if (name != NULL && strcmp (name, "RETVAL") == 0)
6710 /* This happens in functions with "out" or "in out" parameters
6711 which are passed by copy. For such functions, GNAT describes
6712 the function's return type as being a struct where the return
6713 value is in a field called RETVAL, and where the other "out"
6714 or "in out" parameters are fields of that struct. This is not
6719 return (name != NULL
6720 && (startswith (name, "PARENT")
6721 || strcmp (name, "REP") == 0
6722 || startswith (name, "_parent")
6723 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6726 /* True iff field number FIELD_NUM of structure or union type TYPE
6727 is a variant wrapper. Assumes TYPE is a structure type with at least
6728 FIELD_NUM+1 fields. */
6731 ada_is_variant_part (struct type *type, int field_num)
6733 /* Only Ada types are eligible. */
6734 if (!ADA_TYPE_P (type))
6737 struct type *field_type = type->field (field_num).type ();
6739 return (field_type->code () == TYPE_CODE_UNION
6740 || (is_dynamic_field (type, field_num)
6741 && (field_type->target_type ()->code ()
6742 == TYPE_CODE_UNION)));
6745 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6746 whose discriminants are contained in the record type OUTER_TYPE,
6747 returns the type of the controlling discriminant for the variant.
6748 May return NULL if the type could not be found. */
6751 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6753 const char *name = ada_variant_discrim_name (var_type);
6755 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6758 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6759 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6760 represents a 'when others' clause; otherwise 0. */
6763 ada_is_others_clause (struct type *type, int field_num)
6765 const char *name = type->field (field_num).name ();
6767 return (name != NULL && name[0] == 'O');
6770 /* Assuming that TYPE0 is the type of the variant part of a record,
6771 returns the name of the discriminant controlling the variant.
6772 The value is valid until the next call to ada_variant_discrim_name. */
6775 ada_variant_discrim_name (struct type *type0)
6777 static std::string result;
6780 const char *discrim_end;
6781 const char *discrim_start;
6783 if (type0->code () == TYPE_CODE_PTR)
6784 type = type0->target_type ();
6788 name = ada_type_name (type);
6790 if (name == NULL || name[0] == '\000')
6793 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6796 if (startswith (discrim_end, "___XVN"))
6799 if (discrim_end == name)
6802 for (discrim_start = discrim_end; discrim_start != name + 3;
6805 if (discrim_start == name + 1)
6807 if ((discrim_start > name + 3
6808 && startswith (discrim_start - 3, "___"))
6809 || discrim_start[-1] == '.')
6813 result = std::string (discrim_start, discrim_end - discrim_start);
6814 return result.c_str ();
6817 /* Scan STR for a subtype-encoded number, beginning at position K.
6818 Put the position of the character just past the number scanned in
6819 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6820 Return 1 if there was a valid number at the given position, and 0
6821 otherwise. A "subtype-encoded" number consists of the absolute value
6822 in decimal, followed by the letter 'm' to indicate a negative number.
6823 Assumes 0m does not occur. */
6826 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6830 if (!isdigit (str[k]))
6833 /* Do it the hard way so as not to make any assumption about
6834 the relationship of unsigned long (%lu scan format code) and
6837 while (isdigit (str[k]))
6839 RU = RU * 10 + (str[k] - '0');
6846 *R = (-(LONGEST) (RU - 1)) - 1;
6852 /* NOTE on the above: Technically, C does not say what the results of
6853 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6854 number representable as a LONGEST (although either would probably work
6855 in most implementations). When RU>0, the locution in the then branch
6856 above is always equivalent to the negative of RU. */
6863 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6864 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6865 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6868 ada_in_variant (LONGEST val, struct type *type, int field_num)
6870 const char *name = type->field (field_num).name ();
6884 if (!ada_scan_number (name, p + 1, &W, &p))
6894 if (!ada_scan_number (name, p + 1, &L, &p)
6895 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6897 if (val >= L && val <= U)
6909 /* FIXME: Lots of redundancy below. Try to consolidate. */
6911 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6912 ARG_TYPE, extract and return the value of one of its (non-static)
6913 fields. FIELDNO says which field. Differs from value_primitive_field
6914 only in that it can handle packed values of arbitrary type. */
6917 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6918 struct type *arg_type)
6922 arg_type = ada_check_typedef (arg_type);
6923 type = arg_type->field (fieldno).type ();
6925 /* Handle packed fields. It might be that the field is not packed
6926 relative to its containing structure, but the structure itself is
6927 packed; in this case we must take the bit-field path. */
6928 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6930 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6931 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6933 return ada_value_primitive_packed_val (arg1,
6934 value_contents (arg1).data (),
6935 offset + bit_pos / 8,
6936 bit_pos % 8, bit_size, type);
6939 return value_primitive_field (arg1, offset, fieldno, arg_type);
6942 /* Find field with name NAME in object of type TYPE. If found,
6943 set the following for each argument that is non-null:
6944 - *FIELD_TYPE_P to the field's type;
6945 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6946 an object of that type;
6947 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6948 - *BIT_SIZE_P to its size in bits if the field is packed, and
6950 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6951 fields up to but not including the desired field, or by the total
6952 number of fields if not found. A NULL value of NAME never
6953 matches; the function just counts visible fields in this case.
6955 Notice that we need to handle when a tagged record hierarchy
6956 has some components with the same name, like in this scenario:
6958 type Top_T is tagged record
6964 type Middle_T is new Top.Top_T with record
6965 N : Character := 'a';
6969 type Bottom_T is new Middle.Middle_T with record
6971 C : Character := '5';
6973 A : Character := 'J';
6976 Let's say we now have a variable declared and initialized as follow:
6978 TC : Top_A := new Bottom_T;
6980 And then we use this variable to call this function
6982 procedure Assign (Obj: in out Top_T; TV : Integer);
6986 Assign (Top_T (B), 12);
6988 Now, we're in the debugger, and we're inside that procedure
6989 then and we want to print the value of obj.c:
6991 Usually, the tagged record or one of the parent type owns the
6992 component to print and there's no issue but in this particular
6993 case, what does it mean to ask for Obj.C? Since the actual
6994 type for object is type Bottom_T, it could mean two things: type
6995 component C from the Middle_T view, but also component C from
6996 Bottom_T. So in that "undefined" case, when the component is
6997 not found in the non-resolved type (which includes all the
6998 components of the parent type), then resolve it and see if we
6999 get better luck once expanded.
7001 In the case of homonyms in the derived tagged type, we don't
7002 guaranty anything, and pick the one that's easiest for us
7005 Returns 1 if found, 0 otherwise. */
7008 find_struct_field (const char *name, struct type *type, int offset,
7009 struct type **field_type_p,
7010 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7014 int parent_offset = -1;
7016 type = ada_check_typedef (type);
7018 if (field_type_p != NULL)
7019 *field_type_p = NULL;
7020 if (byte_offset_p != NULL)
7022 if (bit_offset_p != NULL)
7024 if (bit_size_p != NULL)
7027 for (i = 0; i < type->num_fields (); i += 1)
7029 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7030 type. However, we only need the values to be correct when
7031 the caller asks for them. */
7032 int bit_pos = 0, fld_offset = 0;
7033 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7035 bit_pos = type->field (i).loc_bitpos ();
7036 fld_offset = offset + bit_pos / 8;
7039 const char *t_field_name = type->field (i).name ();
7041 if (t_field_name == NULL)
7044 else if (ada_is_parent_field (type, i))
7046 /* This is a field pointing us to the parent type of a tagged
7047 type. As hinted in this function's documentation, we give
7048 preference to fields in the current record first, so what
7049 we do here is just record the index of this field before
7050 we skip it. If it turns out we couldn't find our field
7051 in the current record, then we'll get back to it and search
7052 inside it whether the field might exist in the parent. */
7058 else if (name != NULL && field_name_match (t_field_name, name))
7060 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7062 if (field_type_p != NULL)
7063 *field_type_p = type->field (i).type ();
7064 if (byte_offset_p != NULL)
7065 *byte_offset_p = fld_offset;
7066 if (bit_offset_p != NULL)
7067 *bit_offset_p = bit_pos % 8;
7068 if (bit_size_p != NULL)
7069 *bit_size_p = bit_size;
7072 else if (ada_is_wrapper_field (type, i))
7074 if (find_struct_field (name, type->field (i).type (), fld_offset,
7075 field_type_p, byte_offset_p, bit_offset_p,
7076 bit_size_p, index_p))
7079 else if (ada_is_variant_part (type, i))
7081 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7084 struct type *field_type
7085 = ada_check_typedef (type->field (i).type ());
7087 for (j = 0; j < field_type->num_fields (); j += 1)
7089 if (find_struct_field (name, field_type->field (j).type (),
7091 + field_type->field (j).loc_bitpos () / 8,
7092 field_type_p, byte_offset_p,
7093 bit_offset_p, bit_size_p, index_p))
7097 else if (index_p != NULL)
7101 /* Field not found so far. If this is a tagged type which
7102 has a parent, try finding that field in the parent now. */
7104 if (parent_offset != -1)
7106 /* As above, only compute the offset when truly needed. */
7107 int fld_offset = offset;
7108 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7110 int bit_pos = type->field (parent_offset).loc_bitpos ();
7111 fld_offset += bit_pos / 8;
7114 if (find_struct_field (name, type->field (parent_offset).type (),
7115 fld_offset, field_type_p, byte_offset_p,
7116 bit_offset_p, bit_size_p, index_p))
7123 /* Number of user-visible fields in record type TYPE. */
7126 num_visible_fields (struct type *type)
7131 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7135 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7136 and search in it assuming it has (class) type TYPE.
7137 If found, return value, else return NULL.
7139 Searches recursively through wrapper fields (e.g., '_parent').
7141 In the case of homonyms in the tagged types, please refer to the
7142 long explanation in find_struct_field's function documentation. */
7144 static struct value *
7145 ada_search_struct_field (const char *name, struct value *arg, int offset,
7149 int parent_offset = -1;
7151 type = ada_check_typedef (type);
7152 for (i = 0; i < type->num_fields (); i += 1)
7154 const char *t_field_name = type->field (i).name ();
7156 if (t_field_name == NULL)
7159 else if (ada_is_parent_field (type, i))
7161 /* This is a field pointing us to the parent type of a tagged
7162 type. As hinted in this function's documentation, we give
7163 preference to fields in the current record first, so what
7164 we do here is just record the index of this field before
7165 we skip it. If it turns out we couldn't find our field
7166 in the current record, then we'll get back to it and search
7167 inside it whether the field might exist in the parent. */
7173 else if (field_name_match (t_field_name, name))
7174 return ada_value_primitive_field (arg, offset, i, type);
7176 else if (ada_is_wrapper_field (type, i))
7178 struct value *v = /* Do not let indent join lines here. */
7179 ada_search_struct_field (name, arg,
7180 offset + type->field (i).loc_bitpos () / 8,
7181 type->field (i).type ());
7187 else if (ada_is_variant_part (type, i))
7189 /* PNH: Do we ever get here? See find_struct_field. */
7191 struct type *field_type = ada_check_typedef (type->field (i).type ());
7192 int var_offset = offset + type->field (i).loc_bitpos () / 8;
7194 for (j = 0; j < field_type->num_fields (); j += 1)
7196 struct value *v = ada_search_struct_field /* Force line
7199 var_offset + field_type->field (j).loc_bitpos () / 8,
7200 field_type->field (j).type ());
7208 /* Field not found so far. If this is a tagged type which
7209 has a parent, try finding that field in the parent now. */
7211 if (parent_offset != -1)
7213 struct value *v = ada_search_struct_field (
7214 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
7215 type->field (parent_offset).type ());
7224 static struct value *ada_index_struct_field_1 (int *, struct value *,
7225 int, struct type *);
7228 /* Return field #INDEX in ARG, where the index is that returned by
7229 * find_struct_field through its INDEX_P argument. Adjust the address
7230 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7231 * If found, return value, else return NULL. */
7233 static struct value *
7234 ada_index_struct_field (int index, struct value *arg, int offset,
7237 return ada_index_struct_field_1 (&index, arg, offset, type);
7241 /* Auxiliary function for ada_index_struct_field. Like
7242 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7245 static struct value *
7246 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7250 type = ada_check_typedef (type);
7252 for (i = 0; i < type->num_fields (); i += 1)
7254 if (type->field (i).name () == NULL)
7256 else if (ada_is_wrapper_field (type, i))
7258 struct value *v = /* Do not let indent join lines here. */
7259 ada_index_struct_field_1 (index_p, arg,
7260 offset + type->field (i).loc_bitpos () / 8,
7261 type->field (i).type ());
7267 else if (ada_is_variant_part (type, i))
7269 /* PNH: Do we ever get here? See ada_search_struct_field,
7270 find_struct_field. */
7271 error (_("Cannot assign this kind of variant record"));
7273 else if (*index_p == 0)
7274 return ada_value_primitive_field (arg, offset, i, type);
7281 /* Return a string representation of type TYPE. */
7284 type_as_string (struct type *type)
7286 string_file tmp_stream;
7288 type_print (type, "", &tmp_stream, -1);
7290 return tmp_stream.release ();
7293 /* Given a type TYPE, look up the type of the component of type named NAME.
7294 If DISPP is non-null, add its byte displacement from the beginning of a
7295 structure (pointed to by a value) of type TYPE to *DISPP (does not
7296 work for packed fields).
7298 Matches any field whose name has NAME as a prefix, possibly
7301 TYPE can be either a struct or union. If REFOK, TYPE may also
7302 be a (pointer or reference)+ to a struct or union, and the
7303 ultimate target type will be searched.
7305 Looks recursively into variant clauses and parent types.
7307 In the case of homonyms in the tagged types, please refer to the
7308 long explanation in find_struct_field's function documentation.
7310 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7311 TYPE is not a type of the right kind. */
7313 static struct type *
7314 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7318 int parent_offset = -1;
7323 if (refok && type != NULL)
7326 type = ada_check_typedef (type);
7327 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7329 type = type->target_type ();
7333 || (type->code () != TYPE_CODE_STRUCT
7334 && type->code () != TYPE_CODE_UNION))
7339 error (_("Type %s is not a structure or union type"),
7340 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7343 type = to_static_fixed_type (type);
7345 for (i = 0; i < type->num_fields (); i += 1)
7347 const char *t_field_name = type->field (i).name ();
7350 if (t_field_name == NULL)
7353 else if (ada_is_parent_field (type, i))
7355 /* This is a field pointing us to the parent type of a tagged
7356 type. As hinted in this function's documentation, we give
7357 preference to fields in the current record first, so what
7358 we do here is just record the index of this field before
7359 we skip it. If it turns out we couldn't find our field
7360 in the current record, then we'll get back to it and search
7361 inside it whether the field might exist in the parent. */
7367 else if (field_name_match (t_field_name, name))
7368 return type->field (i).type ();
7370 else if (ada_is_wrapper_field (type, i))
7372 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7378 else if (ada_is_variant_part (type, i))
7381 struct type *field_type = ada_check_typedef (type->field (i).type ());
7383 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7385 /* FIXME pnh 2008/01/26: We check for a field that is
7386 NOT wrapped in a struct, since the compiler sometimes
7387 generates these for unchecked variant types. Revisit
7388 if the compiler changes this practice. */
7389 const char *v_field_name = field_type->field (j).name ();
7391 if (v_field_name != NULL
7392 && field_name_match (v_field_name, name))
7393 t = field_type->field (j).type ();
7395 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7405 /* Field not found so far. If this is a tagged type which
7406 has a parent, try finding that field in the parent now. */
7408 if (parent_offset != -1)
7412 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7421 const char *name_str = name != NULL ? name : _("<null>");
7423 error (_("Type %s has no component named %s"),
7424 type_as_string (type).c_str (), name_str);
7430 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7431 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7432 represents an unchecked union (that is, the variant part of a
7433 record that is named in an Unchecked_Union pragma). */
7436 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7438 const char *discrim_name = ada_variant_discrim_name (var_type);
7440 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7444 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7445 within OUTER, determine which variant clause (field number in VAR_TYPE,
7446 numbering from 0) is applicable. Returns -1 if none are. */
7449 ada_which_variant_applies (struct type *var_type, struct value *outer)
7453 const char *discrim_name = ada_variant_discrim_name (var_type);
7454 struct value *discrim;
7455 LONGEST discrim_val;
7457 /* Using plain value_from_contents_and_address here causes problems
7458 because we will end up trying to resolve a type that is currently
7459 being constructed. */
7460 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7461 if (discrim == NULL)
7463 discrim_val = value_as_long (discrim);
7466 for (i = 0; i < var_type->num_fields (); i += 1)
7468 if (ada_is_others_clause (var_type, i))
7470 else if (ada_in_variant (discrim_val, var_type, i))
7474 return others_clause;
7479 /* Dynamic-Sized Records */
7481 /* Strategy: The type ostensibly attached to a value with dynamic size
7482 (i.e., a size that is not statically recorded in the debugging
7483 data) does not accurately reflect the size or layout of the value.
7484 Our strategy is to convert these values to values with accurate,
7485 conventional types that are constructed on the fly. */
7487 /* There is a subtle and tricky problem here. In general, we cannot
7488 determine the size of dynamic records without its data. However,
7489 the 'struct value' data structure, which GDB uses to represent
7490 quantities in the inferior process (the target), requires the size
7491 of the type at the time of its allocation in order to reserve space
7492 for GDB's internal copy of the data. That's why the
7493 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7494 rather than struct value*s.
7496 However, GDB's internal history variables ($1, $2, etc.) are
7497 struct value*s containing internal copies of the data that are not, in
7498 general, the same as the data at their corresponding addresses in
7499 the target. Fortunately, the types we give to these values are all
7500 conventional, fixed-size types (as per the strategy described
7501 above), so that we don't usually have to perform the
7502 'to_fixed_xxx_type' conversions to look at their values.
7503 Unfortunately, there is one exception: if one of the internal
7504 history variables is an array whose elements are unconstrained
7505 records, then we will need to create distinct fixed types for each
7506 element selected. */
7508 /* The upshot of all of this is that many routines take a (type, host
7509 address, target address) triple as arguments to represent a value.
7510 The host address, if non-null, is supposed to contain an internal
7511 copy of the relevant data; otherwise, the program is to consult the
7512 target at the target address. */
7514 /* Assuming that VAL0 represents a pointer value, the result of
7515 dereferencing it. Differs from value_ind in its treatment of
7516 dynamic-sized types. */
7519 ada_value_ind (struct value *val0)
7521 struct value *val = value_ind (val0);
7523 if (ada_is_tagged_type (value_type (val), 0))
7524 val = ada_tag_value_at_base_address (val);
7526 return ada_to_fixed_value (val);
7529 /* The value resulting from dereferencing any "reference to"
7530 qualifiers on VAL0. */
7532 static struct value *
7533 ada_coerce_ref (struct value *val0)
7535 if (value_type (val0)->code () == TYPE_CODE_REF)
7537 struct value *val = val0;
7539 val = coerce_ref (val);
7541 if (ada_is_tagged_type (value_type (val), 0))
7542 val = ada_tag_value_at_base_address (val);
7544 return ada_to_fixed_value (val);
7550 /* Return the bit alignment required for field #F of template type TYPE. */
7553 field_alignment (struct type *type, int f)
7555 const char *name = type->field (f).name ();
7559 /* The field name should never be null, unless the debugging information
7560 is somehow malformed. In this case, we assume the field does not
7561 require any alignment. */
7565 len = strlen (name);
7567 if (!isdigit (name[len - 1]))
7570 if (isdigit (name[len - 2]))
7571 align_offset = len - 2;
7573 align_offset = len - 1;
7575 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7576 return TARGET_CHAR_BIT;
7578 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7581 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7583 static struct symbol *
7584 ada_find_any_type_symbol (const char *name)
7588 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7589 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7592 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7596 /* Find a type named NAME. Ignores ambiguity. This routine will look
7597 solely for types defined by debug info, it will not search the GDB
7600 static struct type *
7601 ada_find_any_type (const char *name)
7603 struct symbol *sym = ada_find_any_type_symbol (name);
7606 return sym->type ();
7611 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7612 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7613 symbol, in which case it is returned. Otherwise, this looks for
7614 symbols whose name is that of NAME_SYM suffixed with "___XR".
7615 Return symbol if found, and NULL otherwise. */
7618 ada_is_renaming_symbol (struct symbol *name_sym)
7620 const char *name = name_sym->linkage_name ();
7621 return strstr (name, "___XR") != NULL;
7624 /* Because of GNAT encoding conventions, several GDB symbols may match a
7625 given type name. If the type denoted by TYPE0 is to be preferred to
7626 that of TYPE1 for purposes of type printing, return non-zero;
7627 otherwise return 0. */
7630 ada_prefer_type (struct type *type0, struct type *type1)
7634 else if (type0 == NULL)
7636 else if (type1->code () == TYPE_CODE_VOID)
7638 else if (type0->code () == TYPE_CODE_VOID)
7640 else if (type1->name () == NULL && type0->name () != NULL)
7642 else if (ada_is_constrained_packed_array_type (type0))
7644 else if (ada_is_array_descriptor_type (type0)
7645 && !ada_is_array_descriptor_type (type1))
7649 const char *type0_name = type0->name ();
7650 const char *type1_name = type1->name ();
7652 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7653 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7659 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7663 ada_type_name (struct type *type)
7667 return type->name ();
7670 /* Search the list of "descriptive" types associated to TYPE for a type
7671 whose name is NAME. */
7673 static struct type *
7674 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7676 struct type *result, *tmp;
7678 if (ada_ignore_descriptive_types_p)
7681 /* If there no descriptive-type info, then there is no parallel type
7683 if (!HAVE_GNAT_AUX_INFO (type))
7686 result = TYPE_DESCRIPTIVE_TYPE (type);
7687 while (result != NULL)
7689 const char *result_name = ada_type_name (result);
7691 if (result_name == NULL)
7693 warning (_("unexpected null name on descriptive type"));
7697 /* If the names match, stop. */
7698 if (strcmp (result_name, name) == 0)
7701 /* Otherwise, look at the next item on the list, if any. */
7702 if (HAVE_GNAT_AUX_INFO (result))
7703 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7707 /* If not found either, try after having resolved the typedef. */
7712 result = check_typedef (result);
7713 if (HAVE_GNAT_AUX_INFO (result))
7714 result = TYPE_DESCRIPTIVE_TYPE (result);
7720 /* If we didn't find a match, see whether this is a packed array. With
7721 older compilers, the descriptive type information is either absent or
7722 irrelevant when it comes to packed arrays so the above lookup fails.
7723 Fall back to using a parallel lookup by name in this case. */
7724 if (result == NULL && ada_is_constrained_packed_array_type (type))
7725 return ada_find_any_type (name);
7730 /* Find a parallel type to TYPE with the specified NAME, using the
7731 descriptive type taken from the debugging information, if available,
7732 and otherwise using the (slower) name-based method. */
7734 static struct type *
7735 ada_find_parallel_type_with_name (struct type *type, const char *name)
7737 struct type *result = NULL;
7739 if (HAVE_GNAT_AUX_INFO (type))
7740 result = find_parallel_type_by_descriptive_type (type, name);
7742 result = ada_find_any_type (name);
7747 /* Same as above, but specify the name of the parallel type by appending
7748 SUFFIX to the name of TYPE. */
7751 ada_find_parallel_type (struct type *type, const char *suffix)
7754 const char *type_name = ada_type_name (type);
7757 if (type_name == NULL)
7760 len = strlen (type_name);
7762 name = (char *) alloca (len + strlen (suffix) + 1);
7764 strcpy (name, type_name);
7765 strcpy (name + len, suffix);
7767 return ada_find_parallel_type_with_name (type, name);
7770 /* If TYPE is a variable-size record type, return the corresponding template
7771 type describing its fields. Otherwise, return NULL. */
7773 static struct type *
7774 dynamic_template_type (struct type *type)
7776 type = ada_check_typedef (type);
7778 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7779 || ada_type_name (type) == NULL)
7783 int len = strlen (ada_type_name (type));
7785 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7788 return ada_find_parallel_type (type, "___XVE");
7792 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7793 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7796 is_dynamic_field (struct type *templ_type, int field_num)
7798 const char *name = templ_type->field (field_num).name ();
7801 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7802 && strstr (name, "___XVL") != NULL;
7805 /* The index of the variant field of TYPE, or -1 if TYPE does not
7806 represent a variant record type. */
7809 variant_field_index (struct type *type)
7813 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7816 for (f = 0; f < type->num_fields (); f += 1)
7818 if (ada_is_variant_part (type, f))
7824 /* A record type with no fields. */
7826 static struct type *
7827 empty_record (struct type *templ)
7829 struct type *type = alloc_type_copy (templ);
7831 type->set_code (TYPE_CODE_STRUCT);
7832 INIT_NONE_SPECIFIC (type);
7833 type->set_name ("<empty>");
7834 type->set_length (0);
7838 /* An ordinary record type (with fixed-length fields) that describes
7839 the value of type TYPE at VALADDR or ADDRESS (see comments at
7840 the beginning of this section) VAL according to GNAT conventions.
7841 DVAL0 should describe the (portion of a) record that contains any
7842 necessary discriminants. It should be NULL if value_type (VAL) is
7843 an outer-level type (i.e., as opposed to a branch of a variant.) A
7844 variant field (unless unchecked) is replaced by a particular branch
7847 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7848 length are not statically known are discarded. As a consequence,
7849 VALADDR, ADDRESS and DVAL0 are ignored.
7851 NOTE: Limitations: For now, we assume that dynamic fields and
7852 variants occupy whole numbers of bytes. However, they need not be
7856 ada_template_to_fixed_record_type_1 (struct type *type,
7857 const gdb_byte *valaddr,
7858 CORE_ADDR address, struct value *dval0,
7859 int keep_dynamic_fields)
7863 int nfields, bit_len;
7869 scoped_value_mark mark;
7871 /* Compute the number of fields in this record type that are going
7872 to be processed: unless keep_dynamic_fields, this includes only
7873 fields whose position and length are static will be processed. */
7874 if (keep_dynamic_fields)
7875 nfields = type->num_fields ();
7879 while (nfields < type->num_fields ()
7880 && !ada_is_variant_part (type, nfields)
7881 && !is_dynamic_field (type, nfields))
7885 rtype = alloc_type_copy (type);
7886 rtype->set_code (TYPE_CODE_STRUCT);
7887 INIT_NONE_SPECIFIC (rtype);
7888 rtype->set_num_fields (nfields);
7890 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7891 rtype->set_name (ada_type_name (type));
7892 rtype->set_is_fixed_instance (true);
7898 for (f = 0; f < nfields; f += 1)
7900 off = align_up (off, field_alignment (type, f))
7901 + type->field (f).loc_bitpos ();
7902 rtype->field (f).set_loc_bitpos (off);
7903 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7905 if (ada_is_variant_part (type, f))
7910 else if (is_dynamic_field (type, f))
7912 const gdb_byte *field_valaddr = valaddr;
7913 CORE_ADDR field_address = address;
7914 struct type *field_type = type->field (f).type ()->target_type ();
7918 /* Using plain value_from_contents_and_address here
7919 causes problems because we will end up trying to
7920 resolve a type that is currently being
7922 dval = value_from_contents_and_address_unresolved (rtype,
7925 rtype = value_type (dval);
7930 /* If the type referenced by this field is an aligner type, we need
7931 to unwrap that aligner type, because its size might not be set.
7932 Keeping the aligner type would cause us to compute the wrong
7933 size for this field, impacting the offset of the all the fields
7934 that follow this one. */
7935 if (ada_is_aligner_type (field_type))
7937 long field_offset = type->field (f).loc_bitpos ();
7939 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7940 field_address = cond_offset_target (field_address, field_offset);
7941 field_type = ada_aligned_type (field_type);
7944 field_valaddr = cond_offset_host (field_valaddr,
7945 off / TARGET_CHAR_BIT);
7946 field_address = cond_offset_target (field_address,
7947 off / TARGET_CHAR_BIT);
7949 /* Get the fixed type of the field. Note that, in this case,
7950 we do not want to get the real type out of the tag: if
7951 the current field is the parent part of a tagged record,
7952 we will get the tag of the object. Clearly wrong: the real
7953 type of the parent is not the real type of the child. We
7954 would end up in an infinite loop. */
7955 field_type = ada_get_base_type (field_type);
7956 field_type = ada_to_fixed_type (field_type, field_valaddr,
7957 field_address, dval, 0);
7959 rtype->field (f).set_type (field_type);
7960 rtype->field (f).set_name (type->field (f).name ());
7961 /* The multiplication can potentially overflow. But because
7962 the field length has been size-checked just above, and
7963 assuming that the maximum size is a reasonable value,
7964 an overflow should not happen in practice. So rather than
7965 adding overflow recovery code to this already complex code,
7966 we just assume that it's not going to happen. */
7967 fld_bit_len = rtype->field (f).type ()->length () * TARGET_CHAR_BIT;
7971 /* Note: If this field's type is a typedef, it is important
7972 to preserve the typedef layer.
7974 Otherwise, we might be transforming a typedef to a fat
7975 pointer (encoding a pointer to an unconstrained array),
7976 into a basic fat pointer (encoding an unconstrained
7977 array). As both types are implemented using the same
7978 structure, the typedef is the only clue which allows us
7979 to distinguish between the two options. Stripping it
7980 would prevent us from printing this field appropriately. */
7981 rtype->field (f).set_type (type->field (f).type ());
7982 rtype->field (f).set_name (type->field (f).name ());
7983 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7985 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7988 struct type *field_type = type->field (f).type ();
7990 /* We need to be careful of typedefs when computing
7991 the length of our field. If this is a typedef,
7992 get the length of the target type, not the length
7994 if (field_type->code () == TYPE_CODE_TYPEDEF)
7995 field_type = ada_typedef_target_type (field_type);
7998 ada_check_typedef (field_type)->length () * TARGET_CHAR_BIT;
8001 if (off + fld_bit_len > bit_len)
8002 bit_len = off + fld_bit_len;
8004 rtype->set_length (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
8007 /* We handle the variant part, if any, at the end because of certain
8008 odd cases in which it is re-ordered so as NOT to be the last field of
8009 the record. This can happen in the presence of representation
8011 if (variant_field >= 0)
8013 struct type *branch_type;
8015 off = rtype->field (variant_field).loc_bitpos ();
8019 /* Using plain value_from_contents_and_address here causes
8020 problems because we will end up trying to resolve a type
8021 that is currently being constructed. */
8022 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8024 rtype = value_type (dval);
8030 to_fixed_variant_branch_type
8031 (type->field (variant_field).type (),
8032 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8033 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8034 if (branch_type == NULL)
8036 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8037 rtype->field (f - 1) = rtype->field (f);
8038 rtype->set_num_fields (rtype->num_fields () - 1);
8042 rtype->field (variant_field).set_type (branch_type);
8043 rtype->field (variant_field).set_name ("S");
8045 rtype->field (variant_field).type ()->length () * TARGET_CHAR_BIT;
8046 if (off + fld_bit_len > bit_len)
8047 bit_len = off + fld_bit_len;
8050 (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
8054 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8055 should contain the alignment of that record, which should be a strictly
8056 positive value. If null or negative, then something is wrong, most
8057 probably in the debug info. In that case, we don't round up the size
8058 of the resulting type. If this record is not part of another structure,
8059 the current RTYPE length might be good enough for our purposes. */
8060 if (type->length () <= 0)
8063 warning (_("Invalid type size for `%s' detected: %s."),
8064 rtype->name (), pulongest (type->length ()));
8066 warning (_("Invalid type size for <unnamed> detected: %s."),
8067 pulongest (type->length ()));
8070 rtype->set_length (align_up (rtype->length (), type->length ()));
8075 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8078 static struct type *
8079 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8080 CORE_ADDR address, struct value *dval0)
8082 return ada_template_to_fixed_record_type_1 (type, valaddr,
8086 /* An ordinary record type in which ___XVL-convention fields and
8087 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8088 static approximations, containing all possible fields. Uses
8089 no runtime values. Useless for use in values, but that's OK,
8090 since the results are used only for type determinations. Works on both
8091 structs and unions. Representation note: to save space, we memorize
8092 the result of this function in the type::target_type of the
8095 static struct type *
8096 template_to_static_fixed_type (struct type *type0)
8102 /* No need no do anything if the input type is already fixed. */
8103 if (type0->is_fixed_instance ())
8106 /* Likewise if we already have computed the static approximation. */
8107 if (type0->target_type () != NULL)
8108 return type0->target_type ();
8110 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8112 nfields = type0->num_fields ();
8114 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8115 recompute all over next time. */
8116 type0->set_target_type (type);
8118 for (f = 0; f < nfields; f += 1)
8120 struct type *field_type = type0->field (f).type ();
8121 struct type *new_type;
8123 if (is_dynamic_field (type0, f))
8125 field_type = ada_check_typedef (field_type);
8126 new_type = to_static_fixed_type (field_type->target_type ());
8129 new_type = static_unwrap_type (field_type);
8131 if (new_type != field_type)
8133 /* Clone TYPE0 only the first time we get a new field type. */
8136 type = alloc_type_copy (type0);
8137 type0->set_target_type (type);
8138 type->set_code (type0->code ());
8139 INIT_NONE_SPECIFIC (type);
8140 type->set_num_fields (nfields);
8144 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8145 memcpy (fields, type0->fields (),
8146 sizeof (struct field) * nfields);
8147 type->set_fields (fields);
8149 type->set_name (ada_type_name (type0));
8150 type->set_is_fixed_instance (true);
8151 type->set_length (0);
8153 type->field (f).set_type (new_type);
8154 type->field (f).set_name (type0->field (f).name ());
8161 /* Given an object of type TYPE whose contents are at VALADDR and
8162 whose address in memory is ADDRESS, returns a revision of TYPE,
8163 which should be a non-dynamic-sized record, in which the variant
8164 part, if any, is replaced with the appropriate branch. Looks
8165 for discriminant values in DVAL0, which can be NULL if the record
8166 contains the necessary discriminant values. */
8168 static struct type *
8169 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8170 CORE_ADDR address, struct value *dval0)
8174 struct type *branch_type;
8175 int nfields = type->num_fields ();
8176 int variant_field = variant_field_index (type);
8178 if (variant_field == -1)
8181 scoped_value_mark mark;
8184 dval = value_from_contents_and_address (type, valaddr, address);
8185 type = value_type (dval);
8190 rtype = alloc_type_copy (type);
8191 rtype->set_code (TYPE_CODE_STRUCT);
8192 INIT_NONE_SPECIFIC (rtype);
8193 rtype->set_num_fields (nfields);
8196 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8197 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8198 rtype->set_fields (fields);
8200 rtype->set_name (ada_type_name (type));
8201 rtype->set_is_fixed_instance (true);
8202 rtype->set_length (type->length ());
8204 branch_type = to_fixed_variant_branch_type
8205 (type->field (variant_field).type (),
8206 cond_offset_host (valaddr,
8207 type->field (variant_field).loc_bitpos ()
8209 cond_offset_target (address,
8210 type->field (variant_field).loc_bitpos ()
8211 / TARGET_CHAR_BIT), dval);
8212 if (branch_type == NULL)
8216 for (f = variant_field + 1; f < nfields; f += 1)
8217 rtype->field (f - 1) = rtype->field (f);
8218 rtype->set_num_fields (rtype->num_fields () - 1);
8222 rtype->field (variant_field).set_type (branch_type);
8223 rtype->field (variant_field).set_name ("S");
8224 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8225 rtype->set_length (rtype->length () + branch_type->length ());
8228 rtype->set_length (rtype->length ()
8229 - type->field (variant_field).type ()->length ());
8234 /* An ordinary record type (with fixed-length fields) that describes
8235 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8236 beginning of this section]. Any necessary discriminants' values
8237 should be in DVAL, a record value; it may be NULL if the object
8238 at ADDR itself contains any necessary discriminant values.
8239 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8240 values from the record are needed. Except in the case that DVAL,
8241 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8242 unchecked) is replaced by a particular branch of the variant.
8244 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8245 is questionable and may be removed. It can arise during the
8246 processing of an unconstrained-array-of-record type where all the
8247 variant branches have exactly the same size. This is because in
8248 such cases, the compiler does not bother to use the XVS convention
8249 when encoding the record. I am currently dubious of this
8250 shortcut and suspect the compiler should be altered. FIXME. */
8252 static struct type *
8253 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8254 CORE_ADDR address, struct value *dval)
8256 struct type *templ_type;
8258 if (type0->is_fixed_instance ())
8261 templ_type = dynamic_template_type (type0);
8263 if (templ_type != NULL)
8264 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8265 else if (variant_field_index (type0) >= 0)
8267 if (dval == NULL && valaddr == NULL && address == 0)
8269 return to_record_with_fixed_variant_part (type0, valaddr, address,
8274 type0->set_is_fixed_instance (true);
8280 /* An ordinary record type (with fixed-length fields) that describes
8281 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8282 union type. Any necessary discriminants' values should be in DVAL,
8283 a record value. That is, this routine selects the appropriate
8284 branch of the union at ADDR according to the discriminant value
8285 indicated in the union's type name. Returns VAR_TYPE0 itself if
8286 it represents a variant subject to a pragma Unchecked_Union. */
8288 static struct type *
8289 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8290 CORE_ADDR address, struct value *dval)
8293 struct type *templ_type;
8294 struct type *var_type;
8296 if (var_type0->code () == TYPE_CODE_PTR)
8297 var_type = var_type0->target_type ();
8299 var_type = var_type0;
8301 templ_type = ada_find_parallel_type (var_type, "___XVU");
8303 if (templ_type != NULL)
8304 var_type = templ_type;
8306 if (is_unchecked_variant (var_type, value_type (dval)))
8308 which = ada_which_variant_applies (var_type, dval);
8311 return empty_record (var_type);
8312 else if (is_dynamic_field (var_type, which))
8313 return to_fixed_record_type
8314 (var_type->field (which).type ()->target_type(), valaddr, address, dval);
8315 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8317 to_fixed_record_type
8318 (var_type->field (which).type (), valaddr, address, dval);
8320 return var_type->field (which).type ();
8323 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8324 ENCODING_TYPE, a type following the GNAT conventions for discrete
8325 type encodings, only carries redundant information. */
8328 ada_is_redundant_range_encoding (struct type *range_type,
8329 struct type *encoding_type)
8331 const char *bounds_str;
8335 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8337 if (get_base_type (range_type)->code ()
8338 != get_base_type (encoding_type)->code ())
8340 /* The compiler probably used a simple base type to describe
8341 the range type instead of the range's actual base type,
8342 expecting us to get the real base type from the encoding
8343 anyway. In this situation, the encoding cannot be ignored
8348 if (is_dynamic_type (range_type))
8351 if (encoding_type->name () == NULL)
8354 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8355 if (bounds_str == NULL)
8358 n = 8; /* Skip "___XDLU_". */
8359 if (!ada_scan_number (bounds_str, n, &lo, &n))
8361 if (range_type->bounds ()->low.const_val () != lo)
8364 n += 2; /* Skip the "__" separator between the two bounds. */
8365 if (!ada_scan_number (bounds_str, n, &hi, &n))
8367 if (range_type->bounds ()->high.const_val () != hi)
8373 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8374 a type following the GNAT encoding for describing array type
8375 indices, only carries redundant information. */
8378 ada_is_redundant_index_type_desc (struct type *array_type,
8379 struct type *desc_type)
8381 struct type *this_layer = check_typedef (array_type);
8384 for (i = 0; i < desc_type->num_fields (); i++)
8386 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8387 desc_type->field (i).type ()))
8389 this_layer = check_typedef (this_layer->target_type ());
8395 /* Assuming that TYPE0 is an array type describing the type of a value
8396 at ADDR, and that DVAL describes a record containing any
8397 discriminants used in TYPE0, returns a type for the value that
8398 contains no dynamic components (that is, no components whose sizes
8399 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8400 true, gives an error message if the resulting type's size is over
8403 static struct type *
8404 to_fixed_array_type (struct type *type0, struct value *dval,
8407 struct type *index_type_desc;
8408 struct type *result;
8409 int constrained_packed_array_p;
8410 static const char *xa_suffix = "___XA";
8412 type0 = ada_check_typedef (type0);
8413 if (type0->is_fixed_instance ())
8416 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8417 if (constrained_packed_array_p)
8419 type0 = decode_constrained_packed_array_type (type0);
8420 if (type0 == nullptr)
8421 error (_("could not decode constrained packed array type"));
8424 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8426 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8427 encoding suffixed with 'P' may still be generated. If so,
8428 it should be used to find the XA type. */
8430 if (index_type_desc == NULL)
8432 const char *type_name = ada_type_name (type0);
8434 if (type_name != NULL)
8436 const int len = strlen (type_name);
8437 char *name = (char *) alloca (len + strlen (xa_suffix));
8439 if (type_name[len - 1] == 'P')
8441 strcpy (name, type_name);
8442 strcpy (name + len - 1, xa_suffix);
8443 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8448 ada_fixup_array_indexes_type (index_type_desc);
8449 if (index_type_desc != NULL
8450 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8452 /* Ignore this ___XA parallel type, as it does not bring any
8453 useful information. This allows us to avoid creating fixed
8454 versions of the array's index types, which would be identical
8455 to the original ones. This, in turn, can also help avoid
8456 the creation of fixed versions of the array itself. */
8457 index_type_desc = NULL;
8460 if (index_type_desc == NULL)
8462 struct type *elt_type0 = ada_check_typedef (type0->target_type ());
8464 /* NOTE: elt_type---the fixed version of elt_type0---should never
8465 depend on the contents of the array in properly constructed
8467 /* Create a fixed version of the array element type.
8468 We're not providing the address of an element here,
8469 and thus the actual object value cannot be inspected to do
8470 the conversion. This should not be a problem, since arrays of
8471 unconstrained objects are not allowed. In particular, all
8472 the elements of an array of a tagged type should all be of
8473 the same type specified in the debugging info. No need to
8474 consult the object tag. */
8475 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8477 /* Make sure we always create a new array type when dealing with
8478 packed array types, since we're going to fix-up the array
8479 type length and element bitsize a little further down. */
8480 if (elt_type0 == elt_type && !constrained_packed_array_p)
8483 result = create_array_type (alloc_type_copy (type0),
8484 elt_type, type0->index_type ());
8489 struct type *elt_type0;
8492 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8493 elt_type0 = elt_type0->target_type ();
8495 /* NOTE: result---the fixed version of elt_type0---should never
8496 depend on the contents of the array in properly constructed
8498 /* Create a fixed version of the array element type.
8499 We're not providing the address of an element here,
8500 and thus the actual object value cannot be inspected to do
8501 the conversion. This should not be a problem, since arrays of
8502 unconstrained objects are not allowed. In particular, all
8503 the elements of an array of a tagged type should all be of
8504 the same type specified in the debugging info. No need to
8505 consult the object tag. */
8507 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8510 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8512 struct type *range_type =
8513 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8515 result = create_array_type (alloc_type_copy (elt_type0),
8516 result, range_type);
8517 elt_type0 = elt_type0->target_type ();
8521 /* We want to preserve the type name. This can be useful when
8522 trying to get the type name of a value that has already been
8523 printed (for instance, if the user did "print VAR; whatis $". */
8524 result->set_name (type0->name ());
8526 if (constrained_packed_array_p)
8528 /* So far, the resulting type has been created as if the original
8529 type was a regular (non-packed) array type. As a result, the
8530 bitsize of the array elements needs to be set again, and the array
8531 length needs to be recomputed based on that bitsize. */
8532 int len = result->length () / result->target_type ()->length ();
8533 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8535 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8536 result->set_length (len * elt_bitsize / HOST_CHAR_BIT);
8537 if (result->length () * HOST_CHAR_BIT < len * elt_bitsize)
8538 result->set_length (result->length () + 1);
8541 result->set_is_fixed_instance (true);
8546 /* A standard type (containing no dynamically sized components)
8547 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8548 DVAL describes a record containing any discriminants used in TYPE0,
8549 and may be NULL if there are none, or if the object of type TYPE at
8550 ADDRESS or in VALADDR contains these discriminants.
8552 If CHECK_TAG is not null, in the case of tagged types, this function
8553 attempts to locate the object's tag and use it to compute the actual
8554 type. However, when ADDRESS is null, we cannot use it to determine the
8555 location of the tag, and therefore compute the tagged type's actual type.
8556 So we return the tagged type without consulting the tag. */
8558 static struct type *
8559 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8560 CORE_ADDR address, struct value *dval, int check_tag)
8562 type = ada_check_typedef (type);
8564 /* Only un-fixed types need to be handled here. */
8565 if (!HAVE_GNAT_AUX_INFO (type))
8568 switch (type->code ())
8572 case TYPE_CODE_STRUCT:
8574 struct type *static_type = to_static_fixed_type (type);
8575 struct type *fixed_record_type =
8576 to_fixed_record_type (type, valaddr, address, NULL);
8578 /* If STATIC_TYPE is a tagged type and we know the object's address,
8579 then we can determine its tag, and compute the object's actual
8580 type from there. Note that we have to use the fixed record
8581 type (the parent part of the record may have dynamic fields
8582 and the way the location of _tag is expressed may depend on
8585 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8588 value_tag_from_contents_and_address
8592 struct type *real_type = type_from_tag (tag);
8594 value_from_contents_and_address (fixed_record_type,
8597 fixed_record_type = value_type (obj);
8598 if (real_type != NULL)
8599 return to_fixed_record_type
8601 value_address (ada_tag_value_at_base_address (obj)), NULL);
8604 /* Check to see if there is a parallel ___XVZ variable.
8605 If there is, then it provides the actual size of our type. */
8606 else if (ada_type_name (fixed_record_type) != NULL)
8608 const char *name = ada_type_name (fixed_record_type);
8610 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8611 bool xvz_found = false;
8614 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8617 xvz_found = get_int_var_value (xvz_name, size);
8619 catch (const gdb_exception_error &except)
8621 /* We found the variable, but somehow failed to read
8622 its value. Rethrow the same error, but with a little
8623 bit more information, to help the user understand
8624 what went wrong (Eg: the variable might have been
8626 throw_error (except.error,
8627 _("unable to read value of %s (%s)"),
8628 xvz_name, except.what ());
8631 if (xvz_found && fixed_record_type->length () != size)
8633 fixed_record_type = copy_type (fixed_record_type);
8634 fixed_record_type->set_length (size);
8636 /* The FIXED_RECORD_TYPE may have be a stub. We have
8637 observed this when the debugging info is STABS, and
8638 apparently it is something that is hard to fix.
8640 In practice, we don't need the actual type definition
8641 at all, because the presence of the XVZ variable allows us
8642 to assume that there must be a XVS type as well, which we
8643 should be able to use later, when we need the actual type
8646 In the meantime, pretend that the "fixed" type we are
8647 returning is NOT a stub, because this can cause trouble
8648 when using this type to create new types targeting it.
8649 Indeed, the associated creation routines often check
8650 whether the target type is a stub and will try to replace
8651 it, thus using a type with the wrong size. This, in turn,
8652 might cause the new type to have the wrong size too.
8653 Consider the case of an array, for instance, where the size
8654 of the array is computed from the number of elements in
8655 our array multiplied by the size of its element. */
8656 fixed_record_type->set_is_stub (false);
8659 return fixed_record_type;
8661 case TYPE_CODE_ARRAY:
8662 return to_fixed_array_type (type, dval, 1);
8663 case TYPE_CODE_UNION:
8667 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8671 /* The same as ada_to_fixed_type_1, except that it preserves the type
8672 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8674 The typedef layer needs be preserved in order to differentiate between
8675 arrays and array pointers when both types are implemented using the same
8676 fat pointer. In the array pointer case, the pointer is encoded as
8677 a typedef of the pointer type. For instance, considering:
8679 type String_Access is access String;
8680 S1 : String_Access := null;
8682 To the debugger, S1 is defined as a typedef of type String. But
8683 to the user, it is a pointer. So if the user tries to print S1,
8684 we should not dereference the array, but print the array address
8687 If we didn't preserve the typedef layer, we would lose the fact that
8688 the type is to be presented as a pointer (needs de-reference before
8689 being printed). And we would also use the source-level type name. */
8692 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8693 CORE_ADDR address, struct value *dval, int check_tag)
8696 struct type *fixed_type =
8697 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8699 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8700 then preserve the typedef layer.
8702 Implementation note: We can only check the main-type portion of
8703 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8704 from TYPE now returns a type that has the same instance flags
8705 as TYPE. For instance, if TYPE is a "typedef const", and its
8706 target type is a "struct", then the typedef elimination will return
8707 a "const" version of the target type. See check_typedef for more
8708 details about how the typedef layer elimination is done.
8710 brobecker/2010-11-19: It seems to me that the only case where it is
8711 useful to preserve the typedef layer is when dealing with fat pointers.
8712 Perhaps, we could add a check for that and preserve the typedef layer
8713 only in that situation. But this seems unnecessary so far, probably
8714 because we call check_typedef/ada_check_typedef pretty much everywhere.
8716 if (type->code () == TYPE_CODE_TYPEDEF
8717 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8718 == TYPE_MAIN_TYPE (fixed_type)))
8724 /* A standard (static-sized) type corresponding as well as possible to
8725 TYPE0, but based on no runtime data. */
8727 static struct type *
8728 to_static_fixed_type (struct type *type0)
8735 if (type0->is_fixed_instance ())
8738 type0 = ada_check_typedef (type0);
8740 switch (type0->code ())
8744 case TYPE_CODE_STRUCT:
8745 type = dynamic_template_type (type0);
8747 return template_to_static_fixed_type (type);
8749 return template_to_static_fixed_type (type0);
8750 case TYPE_CODE_UNION:
8751 type = ada_find_parallel_type (type0, "___XVU");
8753 return template_to_static_fixed_type (type);
8755 return template_to_static_fixed_type (type0);
8759 /* A static approximation of TYPE with all type wrappers removed. */
8761 static struct type *
8762 static_unwrap_type (struct type *type)
8764 if (ada_is_aligner_type (type))
8766 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8767 if (ada_type_name (type1) == NULL)
8768 type1->set_name (ada_type_name (type));
8770 return static_unwrap_type (type1);
8774 struct type *raw_real_type = ada_get_base_type (type);
8776 if (raw_real_type == type)
8779 return to_static_fixed_type (raw_real_type);
8783 /* In some cases, incomplete and private types require
8784 cross-references that are not resolved as records (for example,
8786 type FooP is access Foo;
8788 type Foo is array ...;
8789 ). In these cases, since there is no mechanism for producing
8790 cross-references to such types, we instead substitute for FooP a
8791 stub enumeration type that is nowhere resolved, and whose tag is
8792 the name of the actual type. Call these types "non-record stubs". */
8794 /* A type equivalent to TYPE that is not a non-record stub, if one
8795 exists, otherwise TYPE. */
8798 ada_check_typedef (struct type *type)
8803 /* If our type is an access to an unconstrained array, which is encoded
8804 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8805 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8806 what allows us to distinguish between fat pointers that represent
8807 array types, and fat pointers that represent array access types
8808 (in both cases, the compiler implements them as fat pointers). */
8809 if (ada_is_access_to_unconstrained_array (type))
8812 type = check_typedef (type);
8813 if (type == NULL || type->code () != TYPE_CODE_ENUM
8814 || !type->is_stub ()
8815 || type->name () == NULL)
8819 const char *name = type->name ();
8820 struct type *type1 = ada_find_any_type (name);
8825 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8826 stubs pointing to arrays, as we don't create symbols for array
8827 types, only for the typedef-to-array types). If that's the case,
8828 strip the typedef layer. */
8829 if (type1->code () == TYPE_CODE_TYPEDEF)
8830 type1 = ada_check_typedef (type1);
8836 /* A value representing the data at VALADDR/ADDRESS as described by
8837 type TYPE0, but with a standard (static-sized) type that correctly
8838 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8839 type, then return VAL0 [this feature is simply to avoid redundant
8840 creation of struct values]. */
8842 static struct value *
8843 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8846 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8848 if (type == type0 && val0 != NULL)
8851 if (VALUE_LVAL (val0) != lval_memory)
8853 /* Our value does not live in memory; it could be a convenience
8854 variable, for instance. Create a not_lval value using val0's
8856 return value_from_contents (type, value_contents (val0).data ());
8859 return value_from_contents_and_address (type, 0, address);
8862 /* A value representing VAL, but with a standard (static-sized) type
8863 that correctly describes it. Does not necessarily create a new
8867 ada_to_fixed_value (struct value *val)
8869 val = unwrap_value (val);
8870 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8877 /* Table mapping attribute numbers to names.
8878 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8880 static const char * const attribute_names[] = {
8898 ada_attribute_name (enum exp_opcode n)
8900 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8901 return attribute_names[n - OP_ATR_FIRST + 1];
8903 return attribute_names[0];
8906 /* Evaluate the 'POS attribute applied to ARG. */
8909 pos_atr (struct value *arg)
8911 struct value *val = coerce_ref (arg);
8912 struct type *type = value_type (val);
8914 if (!discrete_type_p (type))
8915 error (_("'POS only defined on discrete types"));
8917 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8918 if (!result.has_value ())
8919 error (_("enumeration value is invalid: can't find 'POS"));
8925 ada_pos_atr (struct type *expect_type,
8926 struct expression *exp,
8927 enum noside noside, enum exp_opcode op,
8930 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8932 return value_zero (type, not_lval);
8933 return value_from_longest (type, pos_atr (arg));
8936 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8938 static struct value *
8939 val_atr (struct type *type, LONGEST val)
8941 gdb_assert (discrete_type_p (type));
8942 if (type->code () == TYPE_CODE_RANGE)
8943 type = type->target_type ();
8944 if (type->code () == TYPE_CODE_ENUM)
8946 if (val < 0 || val >= type->num_fields ())
8947 error (_("argument to 'VAL out of range"));
8948 val = type->field (val).loc_enumval ();
8950 return value_from_longest (type, val);
8954 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8957 return value_zero (type, not_lval);
8959 if (!discrete_type_p (type))
8960 error (_("'VAL only defined on discrete types"));
8961 if (!integer_type_p (value_type (arg)))
8962 error (_("'VAL requires integral argument"));
8964 return val_atr (type, value_as_long (arg));
8970 /* True if TYPE appears to be an Ada character type.
8971 [At the moment, this is true only for Character and Wide_Character;
8972 It is a heuristic test that could stand improvement]. */
8975 ada_is_character_type (struct type *type)
8979 /* If the type code says it's a character, then assume it really is,
8980 and don't check any further. */
8981 if (type->code () == TYPE_CODE_CHAR)
8984 /* Otherwise, assume it's a character type iff it is a discrete type
8985 with a known character type name. */
8986 name = ada_type_name (type);
8987 return (name != NULL
8988 && (type->code () == TYPE_CODE_INT
8989 || type->code () == TYPE_CODE_RANGE)
8990 && (strcmp (name, "character") == 0
8991 || strcmp (name, "wide_character") == 0
8992 || strcmp (name, "wide_wide_character") == 0
8993 || strcmp (name, "unsigned char") == 0));
8996 /* True if TYPE appears to be an Ada string type. */
8999 ada_is_string_type (struct type *type)
9001 type = ada_check_typedef (type);
9003 && type->code () != TYPE_CODE_PTR
9004 && (ada_is_simple_array_type (type)
9005 || ada_is_array_descriptor_type (type))
9006 && ada_array_arity (type) == 1)
9008 struct type *elttype = ada_array_element_type (type, 1);
9010 return ada_is_character_type (elttype);
9016 /* The compiler sometimes provides a parallel XVS type for a given
9017 PAD type. Normally, it is safe to follow the PAD type directly,
9018 but older versions of the compiler have a bug that causes the offset
9019 of its "F" field to be wrong. Following that field in that case
9020 would lead to incorrect results, but this can be worked around
9021 by ignoring the PAD type and using the associated XVS type instead.
9023 Set to True if the debugger should trust the contents of PAD types.
9024 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9025 static bool trust_pad_over_xvs = true;
9027 /* True if TYPE is a struct type introduced by the compiler to force the
9028 alignment of a value. Such types have a single field with a
9029 distinctive name. */
9032 ada_is_aligner_type (struct type *type)
9034 type = ada_check_typedef (type);
9036 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9039 return (type->code () == TYPE_CODE_STRUCT
9040 && type->num_fields () == 1
9041 && strcmp (type->field (0).name (), "F") == 0);
9044 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9045 the parallel type. */
9048 ada_get_base_type (struct type *raw_type)
9050 struct type *real_type_namer;
9051 struct type *raw_real_type;
9053 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9056 if (ada_is_aligner_type (raw_type))
9057 /* The encoding specifies that we should always use the aligner type.
9058 So, even if this aligner type has an associated XVS type, we should
9061 According to the compiler gurus, an XVS type parallel to an aligner
9062 type may exist because of a stabs limitation. In stabs, aligner
9063 types are empty because the field has a variable-sized type, and
9064 thus cannot actually be used as an aligner type. As a result,
9065 we need the associated parallel XVS type to decode the type.
9066 Since the policy in the compiler is to not change the internal
9067 representation based on the debugging info format, we sometimes
9068 end up having a redundant XVS type parallel to the aligner type. */
9071 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9072 if (real_type_namer == NULL
9073 || real_type_namer->code () != TYPE_CODE_STRUCT
9074 || real_type_namer->num_fields () != 1)
9077 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9079 /* This is an older encoding form where the base type needs to be
9080 looked up by name. We prefer the newer encoding because it is
9082 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
9083 if (raw_real_type == NULL)
9086 return raw_real_type;
9089 /* The field in our XVS type is a reference to the base type. */
9090 return real_type_namer->field (0).type ()->target_type ();
9093 /* The type of value designated by TYPE, with all aligners removed. */
9096 ada_aligned_type (struct type *type)
9098 if (ada_is_aligner_type (type))
9099 return ada_aligned_type (type->field (0).type ());
9101 return ada_get_base_type (type);
9105 /* The address of the aligned value in an object at address VALADDR
9106 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9109 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9111 if (ada_is_aligner_type (type))
9112 return ada_aligned_value_addr
9113 (type->field (0).type (),
9114 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
9121 /* The printed representation of an enumeration literal with encoded
9122 name NAME. The value is good to the next call of ada_enum_name. */
9124 ada_enum_name (const char *name)
9126 static std::string storage;
9129 /* First, unqualify the enumeration name:
9130 1. Search for the last '.' character. If we find one, then skip
9131 all the preceding characters, the unqualified name starts
9132 right after that dot.
9133 2. Otherwise, we may be debugging on a target where the compiler
9134 translates dots into "__". Search forward for double underscores,
9135 but stop searching when we hit an overloading suffix, which is
9136 of the form "__" followed by digits. */
9138 tmp = strrchr (name, '.');
9143 while ((tmp = strstr (name, "__")) != NULL)
9145 if (isdigit (tmp[2]))
9156 if (name[1] == 'U' || name[1] == 'W')
9159 if (name[1] == 'W' && name[2] == 'W')
9161 /* Also handle the QWW case. */
9164 if (sscanf (name + offset, "%x", &v) != 1)
9167 else if (((name[1] >= '0' && name[1] <= '9')
9168 || (name[1] >= 'a' && name[1] <= 'z'))
9171 storage = string_printf ("'%c'", name[1]);
9172 return storage.c_str ();
9177 if (isascii (v) && isprint (v))
9178 storage = string_printf ("'%c'", v);
9179 else if (name[1] == 'U')
9180 storage = string_printf ("'[\"%02x\"]'", v);
9181 else if (name[2] != 'W')
9182 storage = string_printf ("'[\"%04x\"]'", v);
9184 storage = string_printf ("'[\"%06x\"]'", v);
9186 return storage.c_str ();
9190 tmp = strstr (name, "__");
9192 tmp = strstr (name, "$");
9195 storage = std::string (name, tmp - name);
9196 return storage.c_str ();
9203 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9206 static struct value *
9207 unwrap_value (struct value *val)
9209 struct type *type = ada_check_typedef (value_type (val));
9211 if (ada_is_aligner_type (type))
9213 struct value *v = ada_value_struct_elt (val, "F", 0);
9214 struct type *val_type = ada_check_typedef (value_type (v));
9216 if (ada_type_name (val_type) == NULL)
9217 val_type->set_name (ada_type_name (type));
9219 return unwrap_value (v);
9223 struct type *raw_real_type =
9224 ada_check_typedef (ada_get_base_type (type));
9226 /* If there is no parallel XVS or XVE type, then the value is
9227 already unwrapped. Return it without further modification. */
9228 if ((type == raw_real_type)
9229 && ada_find_parallel_type (type, "___XVE") == NULL)
9233 coerce_unspec_val_to_type
9234 (val, ada_to_fixed_type (raw_real_type, 0,
9235 value_address (val),
9240 /* Given two array types T1 and T2, return nonzero iff both arrays
9241 contain the same number of elements. */
9244 ada_same_array_size_p (struct type *t1, struct type *t2)
9246 LONGEST lo1, hi1, lo2, hi2;
9248 /* Get the array bounds in order to verify that the size of
9249 the two arrays match. */
9250 if (!get_array_bounds (t1, &lo1, &hi1)
9251 || !get_array_bounds (t2, &lo2, &hi2))
9252 error (_("unable to determine array bounds"));
9254 /* To make things easier for size comparison, normalize a bit
9255 the case of empty arrays by making sure that the difference
9256 between upper bound and lower bound is always -1. */
9262 return (hi1 - lo1 == hi2 - lo2);
9265 /* Assuming that VAL is an array of integrals, and TYPE represents
9266 an array with the same number of elements, but with wider integral
9267 elements, return an array "casted" to TYPE. In practice, this
9268 means that the returned array is built by casting each element
9269 of the original array into TYPE's (wider) element type. */
9271 static struct value *
9272 ada_promote_array_of_integrals (struct type *type, struct value *val)
9274 struct type *elt_type = type->target_type ();
9278 /* Verify that both val and type are arrays of scalars, and
9279 that the size of val's elements is smaller than the size
9280 of type's element. */
9281 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9282 gdb_assert (is_integral_type (type->target_type ()));
9283 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9284 gdb_assert (is_integral_type (value_type (val)->target_type ()));
9285 gdb_assert (type->target_type ()->length ()
9286 > value_type (val)->target_type ()->length ());
9288 if (!get_array_bounds (type, &lo, &hi))
9289 error (_("unable to determine array bounds"));
9291 value *res = allocate_value (type);
9292 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
9294 /* Promote each array element. */
9295 for (i = 0; i < hi - lo + 1; i++)
9297 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9298 int elt_len = elt_type->length ();
9300 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
9306 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9307 return the converted value. */
9309 static struct value *
9310 coerce_for_assign (struct type *type, struct value *val)
9312 struct type *type2 = value_type (val);
9317 type2 = ada_check_typedef (type2);
9318 type = ada_check_typedef (type);
9320 if (type2->code () == TYPE_CODE_PTR
9321 && type->code () == TYPE_CODE_ARRAY)
9323 val = ada_value_ind (val);
9324 type2 = value_type (val);
9327 if (type2->code () == TYPE_CODE_ARRAY
9328 && type->code () == TYPE_CODE_ARRAY)
9330 if (!ada_same_array_size_p (type, type2))
9331 error (_("cannot assign arrays of different length"));
9333 if (is_integral_type (type->target_type ())
9334 && is_integral_type (type2->target_type ())
9335 && type2->target_type ()->length () < type->target_type ()->length ())
9337 /* Allow implicit promotion of the array elements to
9339 return ada_promote_array_of_integrals (type, val);
9342 if (type2->target_type ()->length () != type->target_type ()->length ())
9343 error (_("Incompatible types in assignment"));
9344 deprecated_set_value_type (val, type);
9349 static struct value *
9350 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9353 struct type *type1, *type2;
9356 arg1 = coerce_ref (arg1);
9357 arg2 = coerce_ref (arg2);
9358 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9359 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9361 if (type1->code () != TYPE_CODE_INT
9362 || type2->code () != TYPE_CODE_INT)
9363 return value_binop (arg1, arg2, op);
9372 return value_binop (arg1, arg2, op);
9375 v2 = value_as_long (arg2);
9379 if (op == BINOP_MOD)
9381 else if (op == BINOP_DIV)
9385 gdb_assert (op == BINOP_REM);
9389 error (_("second operand of %s must not be zero."), name);
9392 if (type1->is_unsigned () || op == BINOP_MOD)
9393 return value_binop (arg1, arg2, op);
9395 v1 = value_as_long (arg1);
9400 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9401 v += v > 0 ? -1 : 1;
9409 /* Should not reach this point. */
9413 val = allocate_value (type1);
9414 store_unsigned_integer (value_contents_raw (val).data (),
9415 value_type (val)->length (),
9416 type_byte_order (type1), v);
9421 ada_value_equal (struct value *arg1, struct value *arg2)
9423 if (ada_is_direct_array_type (value_type (arg1))
9424 || ada_is_direct_array_type (value_type (arg2)))
9426 struct type *arg1_type, *arg2_type;
9428 /* Automatically dereference any array reference before
9429 we attempt to perform the comparison. */
9430 arg1 = ada_coerce_ref (arg1);
9431 arg2 = ada_coerce_ref (arg2);
9433 arg1 = ada_coerce_to_simple_array (arg1);
9434 arg2 = ada_coerce_to_simple_array (arg2);
9436 arg1_type = ada_check_typedef (value_type (arg1));
9437 arg2_type = ada_check_typedef (value_type (arg2));
9439 if (arg1_type->code () != TYPE_CODE_ARRAY
9440 || arg2_type->code () != TYPE_CODE_ARRAY)
9441 error (_("Attempt to compare array with non-array"));
9442 /* FIXME: The following works only for types whose
9443 representations use all bits (no padding or undefined bits)
9444 and do not have user-defined equality. */
9445 return (arg1_type->length () == arg2_type->length ()
9446 && memcmp (value_contents (arg1).data (),
9447 value_contents (arg2).data (),
9448 arg1_type->length ()) == 0);
9450 return value_equal (arg1, arg2);
9457 check_objfile (const std::unique_ptr<ada_component> &comp,
9458 struct objfile *objfile)
9460 return comp->uses_objfile (objfile);
9463 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9464 component of LHS (a simple array or a record). Does not modify the
9465 inferior's memory, nor does it modify LHS (unless LHS ==
9469 assign_component (struct value *container, struct value *lhs, LONGEST index,
9470 struct expression *exp, operation_up &arg)
9472 scoped_value_mark mark;
9475 struct type *lhs_type = check_typedef (value_type (lhs));
9477 if (lhs_type->code () == TYPE_CODE_ARRAY)
9479 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9480 struct value *index_val = value_from_longest (index_type, index);
9482 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9486 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9487 elt = ada_to_fixed_value (elt);
9490 ada_aggregate_operation *ag_op
9491 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9492 if (ag_op != nullptr)
9493 ag_op->assign_aggregate (container, elt, exp);
9495 value_assign_to_component (container, elt,
9496 arg->evaluate (nullptr, exp,
9501 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9503 for (const auto &item : m_components)
9504 if (item->uses_objfile (objfile))
9510 ada_aggregate_component::dump (ui_file *stream, int depth)
9512 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
9513 for (const auto &item : m_components)
9514 item->dump (stream, depth + 1);
9518 ada_aggregate_component::assign (struct value *container,
9519 struct value *lhs, struct expression *exp,
9520 std::vector<LONGEST> &indices,
9521 LONGEST low, LONGEST high)
9523 for (auto &item : m_components)
9524 item->assign (container, lhs, exp, indices, low, high);
9527 /* See ada-exp.h. */
9530 ada_aggregate_operation::assign_aggregate (struct value *container,
9532 struct expression *exp)
9534 struct type *lhs_type;
9535 LONGEST low_index, high_index;
9537 container = ada_coerce_ref (container);
9538 if (ada_is_direct_array_type (value_type (container)))
9539 container = ada_coerce_to_simple_array (container);
9540 lhs = ada_coerce_ref (lhs);
9541 if (!deprecated_value_modifiable (lhs))
9542 error (_("Left operand of assignment is not a modifiable lvalue."));
9544 lhs_type = check_typedef (value_type (lhs));
9545 if (ada_is_direct_array_type (lhs_type))
9547 lhs = ada_coerce_to_simple_array (lhs);
9548 lhs_type = check_typedef (value_type (lhs));
9549 low_index = lhs_type->bounds ()->low.const_val ();
9550 high_index = lhs_type->bounds ()->high.const_val ();
9552 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9555 high_index = num_visible_fields (lhs_type) - 1;
9558 error (_("Left-hand side must be array or record."));
9560 std::vector<LONGEST> indices (4);
9561 indices[0] = indices[1] = low_index - 1;
9562 indices[2] = indices[3] = high_index + 1;
9564 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9565 low_index, high_index);
9571 ada_positional_component::uses_objfile (struct objfile *objfile)
9573 return m_op->uses_objfile (objfile);
9577 ada_positional_component::dump (ui_file *stream, int depth)
9579 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9580 depth, "", m_index);
9581 m_op->dump (stream, depth + 1);
9584 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9585 construct, given that the positions are relative to lower bound
9586 LOW, where HIGH is the upper bound. Record the position in
9587 INDICES. CONTAINER is as for assign_aggregate. */
9589 ada_positional_component::assign (struct value *container,
9590 struct value *lhs, struct expression *exp,
9591 std::vector<LONGEST> &indices,
9592 LONGEST low, LONGEST high)
9594 LONGEST ind = m_index + low;
9596 if (ind - 1 == high)
9597 warning (_("Extra components in aggregate ignored."));
9600 add_component_interval (ind, ind, indices);
9601 assign_component (container, lhs, ind, exp, m_op);
9606 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9608 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9612 ada_discrete_range_association::dump (ui_file *stream, int depth)
9614 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
9615 m_low->dump (stream, depth + 1);
9616 m_high->dump (stream, depth + 1);
9620 ada_discrete_range_association::assign (struct value *container,
9622 struct expression *exp,
9623 std::vector<LONGEST> &indices,
9624 LONGEST low, LONGEST high,
9627 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9628 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9630 if (lower <= upper && (lower < low || upper > high))
9631 error (_("Index in component association out of bounds."));
9633 add_component_interval (lower, upper, indices);
9634 while (lower <= upper)
9636 assign_component (container, lhs, lower, exp, op);
9642 ada_name_association::uses_objfile (struct objfile *objfile)
9644 return m_val->uses_objfile (objfile);
9648 ada_name_association::dump (ui_file *stream, int depth)
9650 gdb_printf (stream, _("%*sName:\n"), depth, "");
9651 m_val->dump (stream, depth + 1);
9655 ada_name_association::assign (struct value *container,
9657 struct expression *exp,
9658 std::vector<LONGEST> &indices,
9659 LONGEST low, LONGEST high,
9664 if (ada_is_direct_array_type (value_type (lhs)))
9665 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9669 ada_string_operation *strop
9670 = dynamic_cast<ada_string_operation *> (m_val.get ());
9673 if (strop != nullptr)
9674 name = strop->get_name ();
9677 ada_var_value_operation *vvo
9678 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9680 error (_("Invalid record component association."));
9681 name = vvo->get_symbol ()->natural_name ();
9685 if (! find_struct_field (name, value_type (lhs), 0,
9686 NULL, NULL, NULL, NULL, &index))
9687 error (_("Unknown component name: %s."), name);
9690 add_component_interval (index, index, indices);
9691 assign_component (container, lhs, index, exp, op);
9695 ada_choices_component::uses_objfile (struct objfile *objfile)
9697 if (m_op->uses_objfile (objfile))
9699 for (const auto &item : m_assocs)
9700 if (item->uses_objfile (objfile))
9706 ada_choices_component::dump (ui_file *stream, int depth)
9708 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
9709 m_op->dump (stream, depth + 1);
9710 for (const auto &item : m_assocs)
9711 item->dump (stream, depth + 1);
9714 /* Assign into the components of LHS indexed by the OP_CHOICES
9715 construct at *POS, updating *POS past the construct, given that
9716 the allowable indices are LOW..HIGH. Record the indices assigned
9717 to in INDICES. CONTAINER is as for assign_aggregate. */
9719 ada_choices_component::assign (struct value *container,
9720 struct value *lhs, struct expression *exp,
9721 std::vector<LONGEST> &indices,
9722 LONGEST low, LONGEST high)
9724 for (auto &item : m_assocs)
9725 item->assign (container, lhs, exp, indices, low, high, m_op);
9729 ada_others_component::uses_objfile (struct objfile *objfile)
9731 return m_op->uses_objfile (objfile);
9735 ada_others_component::dump (ui_file *stream, int depth)
9737 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
9738 m_op->dump (stream, depth + 1);
9741 /* Assign the value of the expression in the OP_OTHERS construct in
9742 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9743 have not been previously assigned. The index intervals already assigned
9744 are in INDICES. CONTAINER is as for assign_aggregate. */
9746 ada_others_component::assign (struct value *container,
9747 struct value *lhs, struct expression *exp,
9748 std::vector<LONGEST> &indices,
9749 LONGEST low, LONGEST high)
9751 int num_indices = indices.size ();
9752 for (int i = 0; i < num_indices - 2; i += 2)
9754 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9755 assign_component (container, lhs, ind, exp, m_op);
9760 ada_assign_operation::evaluate (struct type *expect_type,
9761 struct expression *exp,
9764 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9766 ada_aggregate_operation *ag_op
9767 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9768 if (ag_op != nullptr)
9770 if (noside != EVAL_NORMAL)
9773 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9774 return ada_value_assign (arg1, arg1);
9776 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9777 except if the lhs of our assignment is a convenience variable.
9778 In the case of assigning to a convenience variable, the lhs
9779 should be exactly the result of the evaluation of the rhs. */
9780 struct type *type = value_type (arg1);
9781 if (VALUE_LVAL (arg1) == lval_internalvar)
9783 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9786 if (VALUE_LVAL (arg1) == lval_internalvar)
9791 arg2 = coerce_for_assign (value_type (arg1), arg2);
9792 return ada_value_assign (arg1, arg2);
9795 } /* namespace expr */
9797 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9798 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9801 add_component_interval (LONGEST low, LONGEST high,
9802 std::vector<LONGEST> &indices)
9806 int size = indices.size ();
9807 for (i = 0; i < size; i += 2) {
9808 if (high >= indices[i] && low <= indices[i + 1])
9812 for (kh = i + 2; kh < size; kh += 2)
9813 if (high < indices[kh])
9815 if (low < indices[i])
9817 indices[i + 1] = indices[kh - 1];
9818 if (high > indices[i + 1])
9819 indices[i + 1] = high;
9820 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9821 indices.resize (kh - i - 2);
9824 else if (high < indices[i])
9828 indices.resize (indices.size () + 2);
9829 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9830 indices[j] = indices[j - 2];
9832 indices[i + 1] = high;
9835 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9838 static struct value *
9839 ada_value_cast (struct type *type, struct value *arg2)
9841 if (type == ada_check_typedef (value_type (arg2)))
9844 return value_cast (type, arg2);
9847 /* Evaluating Ada expressions, and printing their result.
9848 ------------------------------------------------------
9853 We usually evaluate an Ada expression in order to print its value.
9854 We also evaluate an expression in order to print its type, which
9855 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9856 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9857 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9858 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9861 Evaluating expressions is a little more complicated for Ada entities
9862 than it is for entities in languages such as C. The main reason for
9863 this is that Ada provides types whose definition might be dynamic.
9864 One example of such types is variant records. Or another example
9865 would be an array whose bounds can only be known at run time.
9867 The following description is a general guide as to what should be
9868 done (and what should NOT be done) in order to evaluate an expression
9869 involving such types, and when. This does not cover how the semantic
9870 information is encoded by GNAT as this is covered separatly. For the
9871 document used as the reference for the GNAT encoding, see exp_dbug.ads
9872 in the GNAT sources.
9874 Ideally, we should embed each part of this description next to its
9875 associated code. Unfortunately, the amount of code is so vast right
9876 now that it's hard to see whether the code handling a particular
9877 situation might be duplicated or not. One day, when the code is
9878 cleaned up, this guide might become redundant with the comments
9879 inserted in the code, and we might want to remove it.
9881 2. ``Fixing'' an Entity, the Simple Case:
9882 -----------------------------------------
9884 When evaluating Ada expressions, the tricky issue is that they may
9885 reference entities whose type contents and size are not statically
9886 known. Consider for instance a variant record:
9888 type Rec (Empty : Boolean := True) is record
9891 when False => Value : Integer;
9894 Yes : Rec := (Empty => False, Value => 1);
9895 No : Rec := (empty => True);
9897 The size and contents of that record depends on the value of the
9898 descriminant (Rec.Empty). At this point, neither the debugging
9899 information nor the associated type structure in GDB are able to
9900 express such dynamic types. So what the debugger does is to create
9901 "fixed" versions of the type that applies to the specific object.
9902 We also informally refer to this operation as "fixing" an object,
9903 which means creating its associated fixed type.
9905 Example: when printing the value of variable "Yes" above, its fixed
9906 type would look like this:
9913 On the other hand, if we printed the value of "No", its fixed type
9920 Things become a little more complicated when trying to fix an entity
9921 with a dynamic type that directly contains another dynamic type,
9922 such as an array of variant records, for instance. There are
9923 two possible cases: Arrays, and records.
9925 3. ``Fixing'' Arrays:
9926 ---------------------
9928 The type structure in GDB describes an array in terms of its bounds,
9929 and the type of its elements. By design, all elements in the array
9930 have the same type and we cannot represent an array of variant elements
9931 using the current type structure in GDB. When fixing an array,
9932 we cannot fix the array element, as we would potentially need one
9933 fixed type per element of the array. As a result, the best we can do
9934 when fixing an array is to produce an array whose bounds and size
9935 are correct (allowing us to read it from memory), but without having
9936 touched its element type. Fixing each element will be done later,
9937 when (if) necessary.
9939 Arrays are a little simpler to handle than records, because the same
9940 amount of memory is allocated for each element of the array, even if
9941 the amount of space actually used by each element differs from element
9942 to element. Consider for instance the following array of type Rec:
9944 type Rec_Array is array (1 .. 2) of Rec;
9946 The actual amount of memory occupied by each element might be different
9947 from element to element, depending on the value of their discriminant.
9948 But the amount of space reserved for each element in the array remains
9949 fixed regardless. So we simply need to compute that size using
9950 the debugging information available, from which we can then determine
9951 the array size (we multiply the number of elements of the array by
9952 the size of each element).
9954 The simplest case is when we have an array of a constrained element
9955 type. For instance, consider the following type declarations:
9957 type Bounded_String (Max_Size : Integer) is
9959 Buffer : String (1 .. Max_Size);
9961 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9963 In this case, the compiler describes the array as an array of
9964 variable-size elements (identified by its XVS suffix) for which
9965 the size can be read in the parallel XVZ variable.
9967 In the case of an array of an unconstrained element type, the compiler
9968 wraps the array element inside a private PAD type. This type should not
9969 be shown to the user, and must be "unwrap"'ed before printing. Note
9970 that we also use the adjective "aligner" in our code to designate
9971 these wrapper types.
9973 In some cases, the size allocated for each element is statically
9974 known. In that case, the PAD type already has the correct size,
9975 and the array element should remain unfixed.
9977 But there are cases when this size is not statically known.
9978 For instance, assuming that "Five" is an integer variable:
9980 type Dynamic is array (1 .. Five) of Integer;
9981 type Wrapper (Has_Length : Boolean := False) is record
9984 when True => Length : Integer;
9988 type Wrapper_Array is array (1 .. 2) of Wrapper;
9990 Hello : Wrapper_Array := (others => (Has_Length => True,
9991 Data => (others => 17),
9995 The debugging info would describe variable Hello as being an
9996 array of a PAD type. The size of that PAD type is not statically
9997 known, but can be determined using a parallel XVZ variable.
9998 In that case, a copy of the PAD type with the correct size should
9999 be used for the fixed array.
10001 3. ``Fixing'' record type objects:
10002 ----------------------------------
10004 Things are slightly different from arrays in the case of dynamic
10005 record types. In this case, in order to compute the associated
10006 fixed type, we need to determine the size and offset of each of
10007 its components. This, in turn, requires us to compute the fixed
10008 type of each of these components.
10010 Consider for instance the example:
10012 type Bounded_String (Max_Size : Natural) is record
10013 Str : String (1 .. Max_Size);
10016 My_String : Bounded_String (Max_Size => 10);
10018 In that case, the position of field "Length" depends on the size
10019 of field Str, which itself depends on the value of the Max_Size
10020 discriminant. In order to fix the type of variable My_String,
10021 we need to fix the type of field Str. Therefore, fixing a variant
10022 record requires us to fix each of its components.
10024 However, if a component does not have a dynamic size, the component
10025 should not be fixed. In particular, fields that use a PAD type
10026 should not fixed. Here is an example where this might happen
10027 (assuming type Rec above):
10029 type Container (Big : Boolean) is record
10033 when True => Another : Integer;
10034 when False => null;
10037 My_Container : Container := (Big => False,
10038 First => (Empty => True),
10041 In that example, the compiler creates a PAD type for component First,
10042 whose size is constant, and then positions the component After just
10043 right after it. The offset of component After is therefore constant
10046 The debugger computes the position of each field based on an algorithm
10047 that uses, among other things, the actual position and size of the field
10048 preceding it. Let's now imagine that the user is trying to print
10049 the value of My_Container. If the type fixing was recursive, we would
10050 end up computing the offset of field After based on the size of the
10051 fixed version of field First. And since in our example First has
10052 only one actual field, the size of the fixed type is actually smaller
10053 than the amount of space allocated to that field, and thus we would
10054 compute the wrong offset of field After.
10056 To make things more complicated, we need to watch out for dynamic
10057 components of variant records (identified by the ___XVL suffix in
10058 the component name). Even if the target type is a PAD type, the size
10059 of that type might not be statically known. So the PAD type needs
10060 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10061 we might end up with the wrong size for our component. This can be
10062 observed with the following type declarations:
10064 type Octal is new Integer range 0 .. 7;
10065 type Octal_Array is array (Positive range <>) of Octal;
10066 pragma Pack (Octal_Array);
10068 type Octal_Buffer (Size : Positive) is record
10069 Buffer : Octal_Array (1 .. Size);
10073 In that case, Buffer is a PAD type whose size is unset and needs
10074 to be computed by fixing the unwrapped type.
10076 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10077 ----------------------------------------------------------
10079 Lastly, when should the sub-elements of an entity that remained unfixed
10080 thus far, be actually fixed?
10082 The answer is: Only when referencing that element. For instance
10083 when selecting one component of a record, this specific component
10084 should be fixed at that point in time. Or when printing the value
10085 of a record, each component should be fixed before its value gets
10086 printed. Similarly for arrays, the element of the array should be
10087 fixed when printing each element of the array, or when extracting
10088 one element out of that array. On the other hand, fixing should
10089 not be performed on the elements when taking a slice of an array!
10091 Note that one of the side effects of miscomputing the offset and
10092 size of each field is that we end up also miscomputing the size
10093 of the containing type. This can have adverse results when computing
10094 the value of an entity. GDB fetches the value of an entity based
10095 on the size of its type, and thus a wrong size causes GDB to fetch
10096 the wrong amount of memory. In the case where the computed size is
10097 too small, GDB fetches too little data to print the value of our
10098 entity. Results in this case are unpredictable, as we usually read
10099 past the buffer containing the data =:-o. */
10101 /* A helper function for TERNOP_IN_RANGE. */
10104 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10105 enum noside noside,
10106 value *arg1, value *arg2, value *arg3)
10108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10110 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10112 value_from_longest (type,
10113 (value_less (arg1, arg3)
10114 || value_equal (arg1, arg3))
10115 && (value_less (arg2, arg1)
10116 || value_equal (arg2, arg1)));
10119 /* A helper function for UNOP_NEG. */
10122 ada_unop_neg (struct type *expect_type,
10123 struct expression *exp,
10124 enum noside noside, enum exp_opcode op,
10125 struct value *arg1)
10127 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10128 return value_neg (arg1);
10131 /* A helper function for UNOP_IN_RANGE. */
10134 ada_unop_in_range (struct type *expect_type,
10135 struct expression *exp,
10136 enum noside noside, enum exp_opcode op,
10137 struct value *arg1, struct type *type)
10139 struct value *arg2, *arg3;
10140 switch (type->code ())
10143 lim_warning (_("Membership test incompletely implemented; "
10144 "always returns true"));
10145 type = language_bool_type (exp->language_defn, exp->gdbarch);
10146 return value_from_longest (type, (LONGEST) 1);
10148 case TYPE_CODE_RANGE:
10149 arg2 = value_from_longest (type,
10150 type->bounds ()->low.const_val ());
10151 arg3 = value_from_longest (type,
10152 type->bounds ()->high.const_val ());
10153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10155 type = language_bool_type (exp->language_defn, exp->gdbarch);
10157 value_from_longest (type,
10158 (value_less (arg1, arg3)
10159 || value_equal (arg1, arg3))
10160 && (value_less (arg2, arg1)
10161 || value_equal (arg2, arg1)));
10165 /* A helper function for OP_ATR_TAG. */
10168 ada_atr_tag (struct type *expect_type,
10169 struct expression *exp,
10170 enum noside noside, enum exp_opcode op,
10171 struct value *arg1)
10173 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10174 return value_zero (ada_tag_type (arg1), not_lval);
10176 return ada_value_tag (arg1);
10179 /* A helper function for OP_ATR_SIZE. */
10182 ada_atr_size (struct type *expect_type,
10183 struct expression *exp,
10184 enum noside noside, enum exp_opcode op,
10185 struct value *arg1)
10187 struct type *type = value_type (arg1);
10189 /* If the argument is a reference, then dereference its type, since
10190 the user is really asking for the size of the actual object,
10191 not the size of the pointer. */
10192 if (type->code () == TYPE_CODE_REF)
10193 type = type->target_type ();
10195 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10196 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10198 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10199 TARGET_CHAR_BIT * type->length ());
10202 /* A helper function for UNOP_ABS. */
10205 ada_abs (struct type *expect_type,
10206 struct expression *exp,
10207 enum noside noside, enum exp_opcode op,
10208 struct value *arg1)
10210 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10211 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10212 return value_neg (arg1);
10217 /* A helper function for BINOP_MUL. */
10220 ada_mult_binop (struct type *expect_type,
10221 struct expression *exp,
10222 enum noside noside, enum exp_opcode op,
10223 struct value *arg1, struct value *arg2)
10225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10227 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10228 return value_zero (value_type (arg1), not_lval);
10232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10233 return ada_value_binop (arg1, arg2, op);
10237 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10240 ada_equal_binop (struct type *expect_type,
10241 struct expression *exp,
10242 enum noside noside, enum exp_opcode op,
10243 struct value *arg1, struct value *arg2)
10246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10250 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10251 tem = ada_value_equal (arg1, arg2);
10253 if (op == BINOP_NOTEQUAL)
10255 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10256 return value_from_longest (type, (LONGEST) tem);
10259 /* A helper function for TERNOP_SLICE. */
10262 ada_ternop_slice (struct expression *exp,
10263 enum noside noside,
10264 struct value *array, struct value *low_bound_val,
10265 struct value *high_bound_val)
10268 LONGEST high_bound;
10270 low_bound_val = coerce_ref (low_bound_val);
10271 high_bound_val = coerce_ref (high_bound_val);
10272 low_bound = value_as_long (low_bound_val);
10273 high_bound = value_as_long (high_bound_val);
10275 /* If this is a reference to an aligner type, then remove all
10277 if (value_type (array)->code () == TYPE_CODE_REF
10278 && ada_is_aligner_type (value_type (array)->target_type ()))
10279 value_type (array)->set_target_type
10280 (ada_aligned_type (value_type (array)->target_type ()));
10282 if (ada_is_any_packed_array_type (value_type (array)))
10283 error (_("cannot slice a packed array"));
10285 /* If this is a reference to an array or an array lvalue,
10286 convert to a pointer. */
10287 if (value_type (array)->code () == TYPE_CODE_REF
10288 || (value_type (array)->code () == TYPE_CODE_ARRAY
10289 && VALUE_LVAL (array) == lval_memory))
10290 array = value_addr (array);
10292 if (noside == EVAL_AVOID_SIDE_EFFECTS
10293 && ada_is_array_descriptor_type (ada_check_typedef
10294 (value_type (array))))
10295 return empty_array (ada_type_of_array (array, 0), low_bound,
10298 array = ada_coerce_to_simple_array_ptr (array);
10300 /* If we have more than one level of pointer indirection,
10301 dereference the value until we get only one level. */
10302 while (value_type (array)->code () == TYPE_CODE_PTR
10303 && (value_type (array)->target_type ()->code ()
10305 array = value_ind (array);
10307 /* Make sure we really do have an array type before going further,
10308 to avoid a SEGV when trying to get the index type or the target
10309 type later down the road if the debug info generated by
10310 the compiler is incorrect or incomplete. */
10311 if (!ada_is_simple_array_type (value_type (array)))
10312 error (_("cannot take slice of non-array"));
10314 if (ada_check_typedef (value_type (array))->code ()
10317 struct type *type0 = ada_check_typedef (value_type (array));
10319 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10320 return empty_array (type0->target_type (), low_bound, high_bound);
10323 struct type *arr_type0 =
10324 to_fixed_array_type (type0->target_type (), NULL, 1);
10326 return ada_value_slice_from_ptr (array, arr_type0,
10327 longest_to_int (low_bound),
10328 longest_to_int (high_bound));
10331 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10333 else if (high_bound < low_bound)
10334 return empty_array (value_type (array), low_bound, high_bound);
10336 return ada_value_slice (array, longest_to_int (low_bound),
10337 longest_to_int (high_bound));
10340 /* A helper function for BINOP_IN_BOUNDS. */
10343 ada_binop_in_bounds (struct expression *exp, enum noside noside,
10344 struct value *arg1, struct value *arg2, int n)
10346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10348 struct type *type = language_bool_type (exp->language_defn,
10350 return value_zero (type, not_lval);
10353 struct type *type = ada_index_type (value_type (arg2), n, "range");
10355 type = value_type (arg1);
10357 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10358 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10360 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10361 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10362 type = language_bool_type (exp->language_defn, exp->gdbarch);
10363 return value_from_longest (type,
10364 (value_less (arg1, arg3)
10365 || value_equal (arg1, arg3))
10366 && (value_less (arg2, arg1)
10367 || value_equal (arg2, arg1)));
10370 /* A helper function for some attribute operations. */
10373 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10374 struct value *arg1, struct type *type_arg, int tem)
10376 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10378 if (type_arg == NULL)
10379 type_arg = value_type (arg1);
10381 if (ada_is_constrained_packed_array_type (type_arg))
10382 type_arg = decode_constrained_packed_array_type (type_arg);
10384 if (!discrete_type_p (type_arg))
10388 default: /* Should never happen. */
10389 error (_("unexpected attribute encountered"));
10392 type_arg = ada_index_type (type_arg, tem,
10393 ada_attribute_name (op));
10395 case OP_ATR_LENGTH:
10396 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10401 return value_zero (type_arg, not_lval);
10403 else if (type_arg == NULL)
10405 arg1 = ada_coerce_ref (arg1);
10407 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10408 arg1 = ada_coerce_to_simple_array (arg1);
10411 if (op == OP_ATR_LENGTH)
10412 type = builtin_type (exp->gdbarch)->builtin_int;
10415 type = ada_index_type (value_type (arg1), tem,
10416 ada_attribute_name (op));
10418 type = builtin_type (exp->gdbarch)->builtin_int;
10423 default: /* Should never happen. */
10424 error (_("unexpected attribute encountered"));
10426 return value_from_longest
10427 (type, ada_array_bound (arg1, tem, 0));
10429 return value_from_longest
10430 (type, ada_array_bound (arg1, tem, 1));
10431 case OP_ATR_LENGTH:
10432 return value_from_longest
10433 (type, ada_array_length (arg1, tem));
10436 else if (discrete_type_p (type_arg))
10438 struct type *range_type;
10439 const char *name = ada_type_name (type_arg);
10442 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10443 range_type = to_fixed_range_type (type_arg, NULL);
10444 if (range_type == NULL)
10445 range_type = type_arg;
10449 error (_("unexpected attribute encountered"));
10451 return value_from_longest
10452 (range_type, ada_discrete_type_low_bound (range_type));
10454 return value_from_longest
10455 (range_type, ada_discrete_type_high_bound (range_type));
10456 case OP_ATR_LENGTH:
10457 error (_("the 'length attribute applies only to array types"));
10460 else if (type_arg->code () == TYPE_CODE_FLT)
10461 error (_("unimplemented type attribute"));
10466 if (ada_is_constrained_packed_array_type (type_arg))
10467 type_arg = decode_constrained_packed_array_type (type_arg);
10470 if (op == OP_ATR_LENGTH)
10471 type = builtin_type (exp->gdbarch)->builtin_int;
10474 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10476 type = builtin_type (exp->gdbarch)->builtin_int;
10482 error (_("unexpected attribute encountered"));
10484 low = ada_array_bound_from_type (type_arg, tem, 0);
10485 return value_from_longest (type, low);
10487 high = ada_array_bound_from_type (type_arg, tem, 1);
10488 return value_from_longest (type, high);
10489 case OP_ATR_LENGTH:
10490 low = ada_array_bound_from_type (type_arg, tem, 0);
10491 high = ada_array_bound_from_type (type_arg, tem, 1);
10492 return value_from_longest (type, high - low + 1);
10497 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10500 ada_binop_minmax (struct type *expect_type,
10501 struct expression *exp,
10502 enum noside noside, enum exp_opcode op,
10503 struct value *arg1, struct value *arg2)
10505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10506 return value_zero (value_type (arg1), not_lval);
10509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10510 return value_binop (arg1, arg2, op);
10514 /* A helper function for BINOP_EXP. */
10517 ada_binop_exp (struct type *expect_type,
10518 struct expression *exp,
10519 enum noside noside, enum exp_opcode op,
10520 struct value *arg1, struct value *arg2)
10522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10523 return value_zero (value_type (arg1), not_lval);
10526 /* For integer exponentiation operations,
10527 only promote the first argument. */
10528 if (is_integral_type (value_type (arg2)))
10529 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10533 return value_binop (arg1, arg2, op);
10540 /* See ada-exp.h. */
10543 ada_resolvable::replace (operation_up &&owner,
10544 struct expression *exp,
10545 bool deprocedure_p,
10546 bool parse_completion,
10547 innermost_block_tracker *tracker,
10548 struct type *context_type)
10550 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10551 return (make_operation<ada_funcall_operation>
10552 (std::move (owner),
10553 std::vector<operation_up> ()));
10554 return std::move (owner);
10557 /* Convert the character literal whose value would be VAL to the
10558 appropriate value of type TYPE, if there is a translation.
10559 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10560 the literal 'A' (VAL == 65), returns 0. */
10563 convert_char_literal (struct type *type, LONGEST val)
10570 type = check_typedef (type);
10571 if (type->code () != TYPE_CODE_ENUM)
10574 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10575 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10576 else if (val >= 0 && val < 256)
10577 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10578 else if (val >= 0 && val < 0x10000)
10579 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10581 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10582 size_t len = strlen (name);
10583 for (f = 0; f < type->num_fields (); f += 1)
10585 /* Check the suffix because an enum constant in a package will
10586 have a name like "pkg__QUxx". This is safe enough because we
10587 already have the correct type, and because mangling means
10588 there can't be clashes. */
10589 const char *ename = type->field (f).name ();
10590 size_t elen = strlen (ename);
10592 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10593 return type->field (f).loc_enumval ();
10599 ada_char_operation::evaluate (struct type *expect_type,
10600 struct expression *exp,
10601 enum noside noside)
10603 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10604 if (expect_type != nullptr)
10605 result = ada_value_cast (expect_type, result);
10609 /* See ada-exp.h. */
10612 ada_char_operation::replace (operation_up &&owner,
10613 struct expression *exp,
10614 bool deprocedure_p,
10615 bool parse_completion,
10616 innermost_block_tracker *tracker,
10617 struct type *context_type)
10619 operation_up result = std::move (owner);
10621 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10623 gdb_assert (result.get () == this);
10624 std::get<0> (m_storage) = context_type;
10625 std::get<1> (m_storage)
10626 = convert_char_literal (context_type, std::get<1> (m_storage));
10633 ada_wrapped_operation::evaluate (struct type *expect_type,
10634 struct expression *exp,
10635 enum noside noside)
10637 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10638 if (noside == EVAL_NORMAL)
10639 result = unwrap_value (result);
10641 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10642 then we need to perform the conversion manually, because
10643 evaluate_subexp_standard doesn't do it. This conversion is
10644 necessary in Ada because the different kinds of float/fixed
10645 types in Ada have different representations.
10647 Similarly, we need to perform the conversion from OP_LONG
10649 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10650 result = ada_value_cast (expect_type, result);
10656 ada_string_operation::evaluate (struct type *expect_type,
10657 struct expression *exp,
10658 enum noside noside)
10660 struct type *char_type;
10661 if (expect_type != nullptr && ada_is_string_type (expect_type))
10662 char_type = ada_array_element_type (expect_type, 1);
10664 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10666 const std::string &str = std::get<0> (m_storage);
10667 const char *encoding;
10668 switch (char_type->length ())
10672 /* Simply copy over the data -- this isn't perhaps strictly
10673 correct according to the encodings, but it is gdb's
10674 historical behavior. */
10675 struct type *stringtype
10676 = lookup_array_range_type (char_type, 1, str.length ());
10677 struct value *val = allocate_value (stringtype);
10678 memcpy (value_contents_raw (val).data (), str.c_str (),
10684 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10685 encoding = "UTF-16BE";
10687 encoding = "UTF-16LE";
10691 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10692 encoding = "UTF-32BE";
10694 encoding = "UTF-32LE";
10698 error (_("unexpected character type size %s"),
10699 pulongest (char_type->length ()));
10702 auto_obstack converted;
10703 convert_between_encodings (host_charset (), encoding,
10704 (const gdb_byte *) str.c_str (),
10706 &converted, translit_none);
10708 struct type *stringtype
10709 = lookup_array_range_type (char_type, 1,
10710 obstack_object_size (&converted)
10711 / char_type->length ());
10712 struct value *val = allocate_value (stringtype);
10713 memcpy (value_contents_raw (val).data (),
10714 obstack_base (&converted),
10715 obstack_object_size (&converted));
10720 ada_concat_operation::evaluate (struct type *expect_type,
10721 struct expression *exp,
10722 enum noside noside)
10724 /* If one side is a literal, evaluate the other side first so that
10725 the expected type can be set properly. */
10726 const operation_up &lhs_expr = std::get<0> (m_storage);
10727 const operation_up &rhs_expr = std::get<1> (m_storage);
10730 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10732 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10733 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10735 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10737 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10738 struct type *rhs_type = check_typedef (value_type (rhs));
10739 struct type *elt_type = nullptr;
10740 if (rhs_type->code () == TYPE_CODE_ARRAY)
10741 elt_type = rhs_type->target_type ();
10742 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10744 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10746 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10747 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10749 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10751 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10752 struct type *lhs_type = check_typedef (value_type (lhs));
10753 struct type *elt_type = nullptr;
10754 if (lhs_type->code () == TYPE_CODE_ARRAY)
10755 elt_type = lhs_type->target_type ();
10756 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10759 return concat_operation::evaluate (expect_type, exp, noside);
10761 return value_concat (lhs, rhs);
10765 ada_qual_operation::evaluate (struct type *expect_type,
10766 struct expression *exp,
10767 enum noside noside)
10769 struct type *type = std::get<1> (m_storage);
10770 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10774 ada_ternop_range_operation::evaluate (struct type *expect_type,
10775 struct expression *exp,
10776 enum noside noside)
10778 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10779 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10780 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10781 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10785 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10786 struct expression *exp,
10787 enum noside noside)
10789 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10790 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10792 auto do_op = [=] (LONGEST x, LONGEST y)
10794 if (std::get<0> (m_storage) == BINOP_ADD)
10799 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10800 return (value_from_longest
10801 (value_type (arg1),
10802 do_op (value_as_long (arg1), value_as_long (arg2))));
10803 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10804 return (value_from_longest
10805 (value_type (arg2),
10806 do_op (value_as_long (arg1), value_as_long (arg2))));
10807 /* Preserve the original type for use by the range case below.
10808 We cannot cast the result to a reference type, so if ARG1 is
10809 a reference type, find its underlying type. */
10810 struct type *type = value_type (arg1);
10811 while (type->code () == TYPE_CODE_REF)
10812 type = type->target_type ();
10813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10814 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10815 /* We need to special-case the result with a range.
10816 This is done for the benefit of "ptype". gdb's Ada support
10817 historically used the LHS to set the result type here, so
10818 preserve this behavior. */
10819 if (type->code () == TYPE_CODE_RANGE)
10820 arg1 = value_cast (type, arg1);
10825 ada_unop_atr_operation::evaluate (struct type *expect_type,
10826 struct expression *exp,
10827 enum noside noside)
10829 struct type *type_arg = nullptr;
10830 value *val = nullptr;
10832 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10834 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10835 EVAL_AVOID_SIDE_EFFECTS);
10836 type_arg = value_type (tem);
10839 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10841 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10842 val, type_arg, std::get<2> (m_storage));
10846 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10847 struct expression *exp,
10848 enum noside noside)
10850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10851 return value_zero (expect_type, not_lval);
10853 const bound_minimal_symbol &b = std::get<0> (m_storage);
10854 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10856 val = ada_value_cast (expect_type, val);
10858 /* Follow the Ada language semantics that do not allow taking
10859 an address of the result of a cast (view conversion in Ada). */
10860 if (VALUE_LVAL (val) == lval_memory)
10862 if (value_lazy (val))
10863 value_fetch_lazy (val);
10864 VALUE_LVAL (val) = not_lval;
10870 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10871 struct expression *exp,
10872 enum noside noside)
10874 value *val = evaluate_var_value (noside,
10875 std::get<0> (m_storage).block,
10876 std::get<0> (m_storage).symbol);
10878 val = ada_value_cast (expect_type, val);
10880 /* Follow the Ada language semantics that do not allow taking
10881 an address of the result of a cast (view conversion in Ada). */
10882 if (VALUE_LVAL (val) == lval_memory)
10884 if (value_lazy (val))
10885 value_fetch_lazy (val);
10886 VALUE_LVAL (val) = not_lval;
10892 ada_var_value_operation::evaluate (struct type *expect_type,
10893 struct expression *exp,
10894 enum noside noside)
10896 symbol *sym = std::get<0> (m_storage).symbol;
10898 if (sym->domain () == UNDEF_DOMAIN)
10899 /* Only encountered when an unresolved symbol occurs in a
10900 context other than a function call, in which case, it is
10902 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10903 sym->print_name ());
10905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10907 struct type *type = static_unwrap_type (sym->type ());
10908 /* Check to see if this is a tagged type. We also need to handle
10909 the case where the type is a reference to a tagged type, but
10910 we have to be careful to exclude pointers to tagged types.
10911 The latter should be shown as usual (as a pointer), whereas
10912 a reference should mostly be transparent to the user. */
10913 if (ada_is_tagged_type (type, 0)
10914 || (type->code () == TYPE_CODE_REF
10915 && ada_is_tagged_type (type->target_type (), 0)))
10917 /* Tagged types are a little special in the fact that the real
10918 type is dynamic and can only be determined by inspecting the
10919 object's tag. This means that we need to get the object's
10920 value first (EVAL_NORMAL) and then extract the actual object
10923 Note that we cannot skip the final step where we extract
10924 the object type from its tag, because the EVAL_NORMAL phase
10925 results in dynamic components being resolved into fixed ones.
10926 This can cause problems when trying to print the type
10927 description of tagged types whose parent has a dynamic size:
10928 We use the type name of the "_parent" component in order
10929 to print the name of the ancestor type in the type description.
10930 If that component had a dynamic size, the resolution into
10931 a fixed type would result in the loss of that type name,
10932 thus preventing us from printing the name of the ancestor
10933 type in the type description. */
10934 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10936 if (type->code () != TYPE_CODE_REF)
10938 struct type *actual_type;
10940 actual_type = type_from_tag (ada_value_tag (arg1));
10941 if (actual_type == NULL)
10942 /* If, for some reason, we were unable to determine
10943 the actual type from the tag, then use the static
10944 approximation that we just computed as a fallback.
10945 This can happen if the debugging information is
10946 incomplete, for instance. */
10947 actual_type = type;
10948 return value_zero (actual_type, not_lval);
10952 /* In the case of a ref, ada_coerce_ref takes care
10953 of determining the actual type. But the evaluation
10954 should return a ref as it should be valid to ask
10955 for its address; so rebuild a ref after coerce. */
10956 arg1 = ada_coerce_ref (arg1);
10957 return value_ref (arg1, TYPE_CODE_REF);
10961 /* Records and unions for which GNAT encodings have been
10962 generated need to be statically fixed as well.
10963 Otherwise, non-static fixing produces a type where
10964 all dynamic properties are removed, which prevents "ptype"
10965 from being able to completely describe the type.
10966 For instance, a case statement in a variant record would be
10967 replaced by the relevant components based on the actual
10968 value of the discriminants. */
10969 if ((type->code () == TYPE_CODE_STRUCT
10970 && dynamic_template_type (type) != NULL)
10971 || (type->code () == TYPE_CODE_UNION
10972 && ada_find_parallel_type (type, "___XVU") != NULL))
10973 return value_zero (to_static_fixed_type (type), not_lval);
10976 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10977 return ada_to_fixed_value (arg1);
10981 ada_var_value_operation::resolve (struct expression *exp,
10982 bool deprocedure_p,
10983 bool parse_completion,
10984 innermost_block_tracker *tracker,
10985 struct type *context_type)
10987 symbol *sym = std::get<0> (m_storage).symbol;
10988 if (sym->domain () == UNDEF_DOMAIN)
10990 block_symbol resolved
10991 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10992 context_type, parse_completion,
10993 deprocedure_p, tracker);
10994 std::get<0> (m_storage) = resolved;
10998 && (std::get<0> (m_storage).symbol->type ()->code ()
10999 == TYPE_CODE_FUNC))
11006 ada_atr_val_operation::evaluate (struct type *expect_type,
11007 struct expression *exp,
11008 enum noside noside)
11010 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11011 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11015 ada_unop_ind_operation::evaluate (struct type *expect_type,
11016 struct expression *exp,
11017 enum noside noside)
11019 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11021 struct type *type = ada_check_typedef (value_type (arg1));
11022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11024 if (ada_is_array_descriptor_type (type))
11025 /* GDB allows dereferencing GNAT array descriptors. */
11027 struct type *arrType = ada_type_of_array (arg1, 0);
11029 if (arrType == NULL)
11030 error (_("Attempt to dereference null array pointer."));
11031 return value_at_lazy (arrType, 0);
11033 else if (type->code () == TYPE_CODE_PTR
11034 || type->code () == TYPE_CODE_REF
11035 /* In C you can dereference an array to get the 1st elt. */
11036 || type->code () == TYPE_CODE_ARRAY)
11038 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11039 only be determined by inspecting the object's tag.
11040 This means that we need to evaluate completely the
11041 expression in order to get its type. */
11043 if ((type->code () == TYPE_CODE_REF
11044 || type->code () == TYPE_CODE_PTR)
11045 && ada_is_tagged_type (type->target_type (), 0))
11047 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11049 type = value_type (ada_value_ind (arg1));
11053 type = to_static_fixed_type
11055 (ada_check_typedef (type->target_type ())));
11057 return value_zero (type, lval_memory);
11059 else if (type->code () == TYPE_CODE_INT)
11061 /* GDB allows dereferencing an int. */
11062 if (expect_type == NULL)
11063 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11068 to_static_fixed_type (ada_aligned_type (expect_type));
11069 return value_zero (expect_type, lval_memory);
11073 error (_("Attempt to take contents of a non-pointer value."));
11075 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11076 type = ada_check_typedef (value_type (arg1));
11078 if (type->code () == TYPE_CODE_INT)
11079 /* GDB allows dereferencing an int. If we were given
11080 the expect_type, then use that as the target type.
11081 Otherwise, assume that the target type is an int. */
11083 if (expect_type != NULL)
11084 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11087 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11088 (CORE_ADDR) value_as_address (arg1));
11091 if (ada_is_array_descriptor_type (type))
11092 /* GDB allows dereferencing GNAT array descriptors. */
11093 return ada_coerce_to_simple_array (arg1);
11095 return ada_value_ind (arg1);
11099 ada_structop_operation::evaluate (struct type *expect_type,
11100 struct expression *exp,
11101 enum noside noside)
11103 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11104 const char *str = std::get<1> (m_storage).c_str ();
11105 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11108 struct type *type1 = value_type (arg1);
11110 if (ada_is_tagged_type (type1, 1))
11112 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11114 /* If the field is not found, check if it exists in the
11115 extension of this object's type. This means that we
11116 need to evaluate completely the expression. */
11120 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11122 arg1 = ada_value_struct_elt (arg1, str, 0);
11123 arg1 = unwrap_value (arg1);
11124 type = value_type (ada_to_fixed_value (arg1));
11128 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11130 return value_zero (ada_aligned_type (type), lval_memory);
11134 arg1 = ada_value_struct_elt (arg1, str, 0);
11135 arg1 = unwrap_value (arg1);
11136 return ada_to_fixed_value (arg1);
11141 ada_funcall_operation::evaluate (struct type *expect_type,
11142 struct expression *exp,
11143 enum noside noside)
11145 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11146 int nargs = args_up.size ();
11147 std::vector<value *> argvec (nargs);
11148 operation_up &callee_op = std::get<0> (m_storage);
11150 ada_var_value_operation *avv
11151 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11153 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
11154 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11155 avv->get_symbol ()->print_name ());
11157 value *callee = callee_op->evaluate (nullptr, exp, noside);
11158 for (int i = 0; i < args_up.size (); ++i)
11159 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11161 if (ada_is_constrained_packed_array_type
11162 (desc_base_type (value_type (callee))))
11163 callee = ada_coerce_to_simple_array (callee);
11164 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11165 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11166 /* This is a packed array that has already been fixed, and
11167 therefore already coerced to a simple array. Nothing further
11170 else if (value_type (callee)->code () == TYPE_CODE_REF)
11172 /* Make sure we dereference references so that all the code below
11173 feels like it's really handling the referenced value. Wrapping
11174 types (for alignment) may be there, so make sure we strip them as
11176 callee = ada_to_fixed_value (coerce_ref (callee));
11178 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11179 && VALUE_LVAL (callee) == lval_memory)
11180 callee = value_addr (callee);
11182 struct type *type = ada_check_typedef (value_type (callee));
11184 /* Ada allows us to implicitly dereference arrays when subscripting
11185 them. So, if this is an array typedef (encoding use for array
11186 access types encoded as fat pointers), strip it now. */
11187 if (type->code () == TYPE_CODE_TYPEDEF)
11188 type = ada_typedef_target_type (type);
11190 if (type->code () == TYPE_CODE_PTR)
11192 switch (ada_check_typedef (type->target_type ())->code ())
11194 case TYPE_CODE_FUNC:
11195 type = ada_check_typedef (type->target_type ());
11197 case TYPE_CODE_ARRAY:
11199 case TYPE_CODE_STRUCT:
11200 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11201 callee = ada_value_ind (callee);
11202 type = ada_check_typedef (type->target_type ());
11205 error (_("cannot subscript or call something of type `%s'"),
11206 ada_type_name (value_type (callee)));
11211 switch (type->code ())
11213 case TYPE_CODE_FUNC:
11214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11216 if (type->target_type () == NULL)
11217 error_call_unknown_return_type (NULL);
11218 return allocate_value (type->target_type ());
11220 return call_function_by_hand (callee, NULL, argvec);
11221 case TYPE_CODE_INTERNAL_FUNCTION:
11222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11223 /* We don't know anything about what the internal
11224 function might return, but we have to return
11226 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11229 return call_internal_function (exp->gdbarch, exp->language_defn,
11233 case TYPE_CODE_STRUCT:
11237 arity = ada_array_arity (type);
11238 type = ada_array_element_type (type, nargs);
11240 error (_("cannot subscript or call a record"));
11241 if (arity != nargs)
11242 error (_("wrong number of subscripts; expecting %d"), arity);
11243 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11244 return value_zero (ada_aligned_type (type), lval_memory);
11246 unwrap_value (ada_value_subscript
11247 (callee, nargs, argvec.data ()));
11249 case TYPE_CODE_ARRAY:
11250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11252 type = ada_array_element_type (type, nargs);
11254 error (_("element type of array unknown"));
11256 return value_zero (ada_aligned_type (type), lval_memory);
11259 unwrap_value (ada_value_subscript
11260 (ada_coerce_to_simple_array (callee),
11261 nargs, argvec.data ()));
11262 case TYPE_CODE_PTR: /* Pointer to array */
11263 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11265 type = to_fixed_array_type (type->target_type (), NULL, 1);
11266 type = ada_array_element_type (type, nargs);
11268 error (_("element type of array unknown"));
11270 return value_zero (ada_aligned_type (type), lval_memory);
11273 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11277 error (_("Attempt to index or call something other than an "
11278 "array or function"));
11283 ada_funcall_operation::resolve (struct expression *exp,
11284 bool deprocedure_p,
11285 bool parse_completion,
11286 innermost_block_tracker *tracker,
11287 struct type *context_type)
11289 operation_up &callee_op = std::get<0> (m_storage);
11291 ada_var_value_operation *avv
11292 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11293 if (avv == nullptr)
11296 symbol *sym = avv->get_symbol ();
11297 if (sym->domain () != UNDEF_DOMAIN)
11300 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11301 int nargs = args_up.size ();
11302 std::vector<value *> argvec (nargs);
11304 for (int i = 0; i < args_up.size (); ++i)
11305 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
11307 const block *block = avv->get_block ();
11308 block_symbol resolved
11309 = ada_resolve_funcall (sym, block,
11310 context_type, parse_completion,
11311 nargs, argvec.data (),
11314 std::get<0> (m_storage)
11315 = make_operation<ada_var_value_operation> (resolved);
11320 ada_ternop_slice_operation::resolve (struct expression *exp,
11321 bool deprocedure_p,
11322 bool parse_completion,
11323 innermost_block_tracker *tracker,
11324 struct type *context_type)
11326 /* Historically this check was done during resolution, so we
11327 continue that here. */
11328 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11329 EVAL_AVOID_SIDE_EFFECTS);
11330 if (ada_is_any_packed_array_type (value_type (v)))
11331 error (_("cannot slice a packed array"));
11339 /* Return non-zero iff TYPE represents a System.Address type. */
11342 ada_is_system_address_type (struct type *type)
11344 return (type->name () && strcmp (type->name (), "system__address") == 0);
11351 /* Scan STR beginning at position K for a discriminant name, and
11352 return the value of that discriminant field of DVAL in *PX. If
11353 PNEW_K is not null, put the position of the character beyond the
11354 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11355 not alter *PX and *PNEW_K if unsuccessful. */
11358 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11361 static std::string storage;
11362 const char *pstart, *pend, *bound;
11363 struct value *bound_val;
11365 if (dval == NULL || str == NULL || str[k] == '\0')
11369 pend = strstr (pstart, "__");
11373 k += strlen (bound);
11377 int len = pend - pstart;
11379 /* Strip __ and beyond. */
11380 storage = std::string (pstart, len);
11381 bound = storage.c_str ();
11385 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11386 if (bound_val == NULL)
11389 *px = value_as_long (bound_val);
11390 if (pnew_k != NULL)
11395 /* Value of variable named NAME. Only exact matches are considered.
11396 If no such variable found, then if ERR_MSG is null, returns 0, and
11397 otherwise causes an error with message ERR_MSG. */
11399 static struct value *
11400 get_var_value (const char *name, const char *err_msg)
11402 std::string quoted_name = add_angle_brackets (name);
11404 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11406 std::vector<struct block_symbol> syms
11407 = ada_lookup_symbol_list_worker (lookup_name,
11408 get_selected_block (0),
11411 if (syms.size () != 1)
11413 if (err_msg == NULL)
11416 error (("%s"), err_msg);
11419 return value_of_variable (syms[0].symbol, syms[0].block);
11422 /* Value of integer variable named NAME in the current environment.
11423 If no such variable is found, returns false. Otherwise, sets VALUE
11424 to the variable's value and returns true. */
11427 get_int_var_value (const char *name, LONGEST &value)
11429 struct value *var_val = get_var_value (name, 0);
11434 value = value_as_long (var_val);
11439 /* Return a range type whose base type is that of the range type named
11440 NAME in the current environment, and whose bounds are calculated
11441 from NAME according to the GNAT range encoding conventions.
11442 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11443 corresponding range type from debug information; fall back to using it
11444 if symbol lookup fails. If a new type must be created, allocate it
11445 like ORIG_TYPE was. The bounds information, in general, is encoded
11446 in NAME, the base type given in the named range type. */
11448 static struct type *
11449 to_fixed_range_type (struct type *raw_type, struct value *dval)
11452 struct type *base_type;
11453 const char *subtype_info;
11455 gdb_assert (raw_type != NULL);
11456 gdb_assert (raw_type->name () != NULL);
11458 if (raw_type->code () == TYPE_CODE_RANGE)
11459 base_type = raw_type->target_type ();
11461 base_type = raw_type;
11463 name = raw_type->name ();
11464 subtype_info = strstr (name, "___XD");
11465 if (subtype_info == NULL)
11467 LONGEST L = ada_discrete_type_low_bound (raw_type);
11468 LONGEST U = ada_discrete_type_high_bound (raw_type);
11470 if (L < INT_MIN || U > INT_MAX)
11473 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11478 int prefix_len = subtype_info - name;
11481 const char *bounds_str;
11485 bounds_str = strchr (subtype_info, '_');
11488 if (*subtype_info == 'L')
11490 if (!ada_scan_number (bounds_str, n, &L, &n)
11491 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11493 if (bounds_str[n] == '_')
11495 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11501 std::string name_buf = std::string (name, prefix_len) + "___L";
11502 if (!get_int_var_value (name_buf.c_str (), L))
11504 lim_warning (_("Unknown lower bound, using 1."));
11509 if (*subtype_info == 'U')
11511 if (!ada_scan_number (bounds_str, n, &U, &n)
11512 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11517 std::string name_buf = std::string (name, prefix_len) + "___U";
11518 if (!get_int_var_value (name_buf.c_str (), U))
11520 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11525 type = create_static_range_type (alloc_type_copy (raw_type),
11527 /* create_static_range_type alters the resulting type's length
11528 to match the size of the base_type, which is not what we want.
11529 Set it back to the original range type's length. */
11530 type->set_length (raw_type->length ());
11531 type->set_name (name);
11536 /* True iff NAME is the name of a range type. */
11539 ada_is_range_type_name (const char *name)
11541 return (name != NULL && strstr (name, "___XD"));
11545 /* Modular types */
11547 /* True iff TYPE is an Ada modular type. */
11550 ada_is_modular_type (struct type *type)
11552 struct type *subranged_type = get_base_type (type);
11554 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11555 && subranged_type->code () == TYPE_CODE_INT
11556 && subranged_type->is_unsigned ());
11559 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11562 ada_modulus (struct type *type)
11564 const dynamic_prop &high = type->bounds ()->high;
11566 if (high.kind () == PROP_CONST)
11567 return (ULONGEST) high.const_val () + 1;
11569 /* If TYPE is unresolved, the high bound might be a location list. Return
11570 0, for lack of a better value to return. */
11575 /* Ada exception catchpoint support:
11576 ---------------------------------
11578 We support 3 kinds of exception catchpoints:
11579 . catchpoints on Ada exceptions
11580 . catchpoints on unhandled Ada exceptions
11581 . catchpoints on failed assertions
11583 Exceptions raised during failed assertions, or unhandled exceptions
11584 could perfectly be caught with the general catchpoint on Ada exceptions.
11585 However, we can easily differentiate these two special cases, and having
11586 the option to distinguish these two cases from the rest can be useful
11587 to zero-in on certain situations.
11589 Exception catchpoints are a specialized form of breakpoint,
11590 since they rely on inserting breakpoints inside known routines
11591 of the GNAT runtime. The implementation therefore uses a standard
11592 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11595 Support in the runtime for exception catchpoints have been changed
11596 a few times already, and these changes affect the implementation
11597 of these catchpoints. In order to be able to support several
11598 variants of the runtime, we use a sniffer that will determine
11599 the runtime variant used by the program being debugged. */
11601 /* Ada's standard exceptions.
11603 The Ada 83 standard also defined Numeric_Error. But there so many
11604 situations where it was unclear from the Ada 83 Reference Manual
11605 (RM) whether Constraint_Error or Numeric_Error should be raised,
11606 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11607 Interpretation saying that anytime the RM says that Numeric_Error
11608 should be raised, the implementation may raise Constraint_Error.
11609 Ada 95 went one step further and pretty much removed Numeric_Error
11610 from the list of standard exceptions (it made it a renaming of
11611 Constraint_Error, to help preserve compatibility when compiling
11612 an Ada83 compiler). As such, we do not include Numeric_Error from
11613 this list of standard exceptions. */
11615 static const char * const standard_exc[] = {
11616 "constraint_error",
11622 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11624 /* A structure that describes how to support exception catchpoints
11625 for a given executable. */
11627 struct exception_support_info
11629 /* The name of the symbol to break on in order to insert
11630 a catchpoint on exceptions. */
11631 const char *catch_exception_sym;
11633 /* The name of the symbol to break on in order to insert
11634 a catchpoint on unhandled exceptions. */
11635 const char *catch_exception_unhandled_sym;
11637 /* The name of the symbol to break on in order to insert
11638 a catchpoint on failed assertions. */
11639 const char *catch_assert_sym;
11641 /* The name of the symbol to break on in order to insert
11642 a catchpoint on exception handling. */
11643 const char *catch_handlers_sym;
11645 /* Assuming that the inferior just triggered an unhandled exception
11646 catchpoint, this function is responsible for returning the address
11647 in inferior memory where the name of that exception is stored.
11648 Return zero if the address could not be computed. */
11649 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11652 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11653 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11655 /* The following exception support info structure describes how to
11656 implement exception catchpoints with the latest version of the
11657 Ada runtime (as of 2019-08-??). */
11659 static const struct exception_support_info default_exception_support_info =
11661 "__gnat_debug_raise_exception", /* catch_exception_sym */
11662 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11663 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11664 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11665 ada_unhandled_exception_name_addr
11668 /* The following exception support info structure describes how to
11669 implement exception catchpoints with an earlier version of the
11670 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11672 static const struct exception_support_info exception_support_info_v0 =
11674 "__gnat_debug_raise_exception", /* catch_exception_sym */
11675 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11676 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11677 "__gnat_begin_handler", /* catch_handlers_sym */
11678 ada_unhandled_exception_name_addr
11681 /* The following exception support info structure describes how to
11682 implement exception catchpoints with a slightly older version
11683 of the Ada runtime. */
11685 static const struct exception_support_info exception_support_info_fallback =
11687 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11688 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11689 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11690 "__gnat_begin_handler", /* catch_handlers_sym */
11691 ada_unhandled_exception_name_addr_from_raise
11694 /* Return nonzero if we can detect the exception support routines
11695 described in EINFO.
11697 This function errors out if an abnormal situation is detected
11698 (for instance, if we find the exception support routines, but
11699 that support is found to be incomplete). */
11702 ada_has_this_exception_support (const struct exception_support_info *einfo)
11704 struct symbol *sym;
11706 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11707 that should be compiled with debugging information. As a result, we
11708 expect to find that symbol in the symtabs. */
11710 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11713 /* Perhaps we did not find our symbol because the Ada runtime was
11714 compiled without debugging info, or simply stripped of it.
11715 It happens on some GNU/Linux distributions for instance, where
11716 users have to install a separate debug package in order to get
11717 the runtime's debugging info. In that situation, let the user
11718 know why we cannot insert an Ada exception catchpoint.
11720 Note: Just for the purpose of inserting our Ada exception
11721 catchpoint, we could rely purely on the associated minimal symbol.
11722 But we would be operating in degraded mode anyway, since we are
11723 still lacking the debugging info needed later on to extract
11724 the name of the exception being raised (this name is printed in
11725 the catchpoint message, and is also used when trying to catch
11726 a specific exception). We do not handle this case for now. */
11727 struct bound_minimal_symbol msym
11728 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11730 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11731 error (_("Your Ada runtime appears to be missing some debugging "
11732 "information.\nCannot insert Ada exception catchpoint "
11733 "in this configuration."));
11738 /* Make sure that the symbol we found corresponds to a function. */
11740 if (sym->aclass () != LOC_BLOCK)
11742 error (_("Symbol \"%s\" is not a function (class = %d)"),
11743 sym->linkage_name (), sym->aclass ());
11747 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11750 struct bound_minimal_symbol msym
11751 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11753 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11754 error (_("Your Ada runtime appears to be missing some debugging "
11755 "information.\nCannot insert Ada exception catchpoint "
11756 "in this configuration."));
11761 /* Make sure that the symbol we found corresponds to a function. */
11763 if (sym->aclass () != LOC_BLOCK)
11765 error (_("Symbol \"%s\" is not a function (class = %d)"),
11766 sym->linkage_name (), sym->aclass ());
11773 /* Inspect the Ada runtime and determine which exception info structure
11774 should be used to provide support for exception catchpoints.
11776 This function will always set the per-inferior exception_info,
11777 or raise an error. */
11780 ada_exception_support_info_sniffer (void)
11782 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11784 /* If the exception info is already known, then no need to recompute it. */
11785 if (data->exception_info != NULL)
11788 /* Check the latest (default) exception support info. */
11789 if (ada_has_this_exception_support (&default_exception_support_info))
11791 data->exception_info = &default_exception_support_info;
11795 /* Try the v0 exception suport info. */
11796 if (ada_has_this_exception_support (&exception_support_info_v0))
11798 data->exception_info = &exception_support_info_v0;
11802 /* Try our fallback exception suport info. */
11803 if (ada_has_this_exception_support (&exception_support_info_fallback))
11805 data->exception_info = &exception_support_info_fallback;
11809 /* Sometimes, it is normal for us to not be able to find the routine
11810 we are looking for. This happens when the program is linked with
11811 the shared version of the GNAT runtime, and the program has not been
11812 started yet. Inform the user of these two possible causes if
11815 if (ada_update_initial_language (language_unknown) != language_ada)
11816 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11818 /* If the symbol does not exist, then check that the program is
11819 already started, to make sure that shared libraries have been
11820 loaded. If it is not started, this may mean that the symbol is
11821 in a shared library. */
11823 if (inferior_ptid.pid () == 0)
11824 error (_("Unable to insert catchpoint. Try to start the program first."));
11826 /* At this point, we know that we are debugging an Ada program and
11827 that the inferior has been started, but we still are not able to
11828 find the run-time symbols. That can mean that we are in
11829 configurable run time mode, or that a-except as been optimized
11830 out by the linker... In any case, at this point it is not worth
11831 supporting this feature. */
11833 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11836 /* True iff FRAME is very likely to be that of a function that is
11837 part of the runtime system. This is all very heuristic, but is
11838 intended to be used as advice as to what frames are uninteresting
11842 is_known_support_routine (frame_info_ptr frame)
11844 enum language func_lang;
11846 const char *fullname;
11848 /* If this code does not have any debugging information (no symtab),
11849 This cannot be any user code. */
11851 symtab_and_line sal = find_frame_sal (frame);
11852 if (sal.symtab == NULL)
11855 /* If there is a symtab, but the associated source file cannot be
11856 located, then assume this is not user code: Selecting a frame
11857 for which we cannot display the code would not be very helpful
11858 for the user. This should also take care of case such as VxWorks
11859 where the kernel has some debugging info provided for a few units. */
11861 fullname = symtab_to_fullname (sal.symtab);
11862 if (access (fullname, R_OK) != 0)
11865 /* Check the unit filename against the Ada runtime file naming.
11866 We also check the name of the objfile against the name of some
11867 known system libraries that sometimes come with debugging info
11870 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11872 re_comp (known_runtime_file_name_patterns[i]);
11873 if (re_exec (lbasename (sal.symtab->filename)))
11875 if (sal.symtab->compunit ()->objfile () != NULL
11876 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
11880 /* Check whether the function is a GNAT-generated entity. */
11882 gdb::unique_xmalloc_ptr<char> func_name
11883 = find_frame_funname (frame, &func_lang, NULL);
11884 if (func_name == NULL)
11887 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11889 re_comp (known_auxiliary_function_name_patterns[i]);
11890 if (re_exec (func_name.get ()))
11897 /* Find the first frame that contains debugging information and that is not
11898 part of the Ada run-time, starting from FI and moving upward. */
11901 ada_find_printable_frame (frame_info_ptr fi)
11903 for (; fi != NULL; fi = get_prev_frame (fi))
11905 if (!is_known_support_routine (fi))
11914 /* Assuming that the inferior just triggered an unhandled exception
11915 catchpoint, return the address in inferior memory where the name
11916 of the exception is stored.
11918 Return zero if the address could not be computed. */
11921 ada_unhandled_exception_name_addr (void)
11923 return parse_and_eval_address ("e.full_name");
11926 /* Same as ada_unhandled_exception_name_addr, except that this function
11927 should be used when the inferior uses an older version of the runtime,
11928 where the exception name needs to be extracted from a specific frame
11929 several frames up in the callstack. */
11932 ada_unhandled_exception_name_addr_from_raise (void)
11936 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11938 /* To determine the name of this exception, we need to select
11939 the frame corresponding to RAISE_SYM_NAME. This frame is
11940 at least 3 levels up, so we simply skip the first 3 frames
11941 without checking the name of their associated function. */
11942 fi = get_current_frame ();
11943 for (frame_level = 0; frame_level < 3; frame_level += 1)
11945 fi = get_prev_frame (fi);
11949 enum language func_lang;
11951 gdb::unique_xmalloc_ptr<char> func_name
11952 = find_frame_funname (fi, &func_lang, NULL);
11953 if (func_name != NULL)
11955 if (strcmp (func_name.get (),
11956 data->exception_info->catch_exception_sym) == 0)
11957 break; /* We found the frame we were looking for... */
11959 fi = get_prev_frame (fi);
11966 return parse_and_eval_address ("id.full_name");
11969 /* Assuming the inferior just triggered an Ada exception catchpoint
11970 (of any type), return the address in inferior memory where the name
11971 of the exception is stored, if applicable.
11973 Assumes the selected frame is the current frame.
11975 Return zero if the address could not be computed, or if not relevant. */
11978 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex)
11980 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11984 case ada_catch_exception:
11985 return (parse_and_eval_address ("e.full_name"));
11988 case ada_catch_exception_unhandled:
11989 return data->exception_info->unhandled_exception_name_addr ();
11992 case ada_catch_handlers:
11993 return 0; /* The runtimes does not provide access to the exception
11997 case ada_catch_assert:
11998 return 0; /* Exception name is not relevant in this case. */
12002 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12006 return 0; /* Should never be reached. */
12009 /* Assuming the inferior is stopped at an exception catchpoint,
12010 return the message which was associated to the exception, if
12011 available. Return NULL if the message could not be retrieved.
12013 Note: The exception message can be associated to an exception
12014 either through the use of the Raise_Exception function, or
12015 more simply (Ada 2005 and later), via:
12017 raise Exception_Name with "exception message";
12021 static gdb::unique_xmalloc_ptr<char>
12022 ada_exception_message_1 (void)
12024 struct value *e_msg_val;
12027 /* For runtimes that support this feature, the exception message
12028 is passed as an unbounded string argument called "message". */
12029 e_msg_val = parse_and_eval ("message");
12030 if (e_msg_val == NULL)
12031 return NULL; /* Exception message not supported. */
12033 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12034 gdb_assert (e_msg_val != NULL);
12035 e_msg_len = value_type (e_msg_val)->length ();
12037 /* If the message string is empty, then treat it as if there was
12038 no exception message. */
12039 if (e_msg_len <= 0)
12042 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12043 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12045 e_msg.get ()[e_msg_len] = '\0';
12050 /* Same as ada_exception_message_1, except that all exceptions are
12051 contained here (returning NULL instead). */
12053 static gdb::unique_xmalloc_ptr<char>
12054 ada_exception_message (void)
12056 gdb::unique_xmalloc_ptr<char> e_msg;
12060 e_msg = ada_exception_message_1 ();
12062 catch (const gdb_exception_error &e)
12064 e_msg.reset (nullptr);
12070 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12071 any error that ada_exception_name_addr_1 might cause to be thrown.
12072 When an error is intercepted, a warning with the error message is printed,
12073 and zero is returned. */
12076 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex)
12078 CORE_ADDR result = 0;
12082 result = ada_exception_name_addr_1 (ex);
12085 catch (const gdb_exception_error &e)
12087 warning (_("failed to get exception name: %s"), e.what ());
12094 static std::string ada_exception_catchpoint_cond_string
12095 (const char *excep_string,
12096 enum ada_exception_catchpoint_kind ex);
12098 /* Ada catchpoints.
12100 In the case of catchpoints on Ada exceptions, the catchpoint will
12101 stop the target on every exception the program throws. When a user
12102 specifies the name of a specific exception, we translate this
12103 request into a condition expression (in text form), and then parse
12104 it into an expression stored in each of the catchpoint's locations.
12105 We then use this condition to check whether the exception that was
12106 raised is the one the user is interested in. If not, then the
12107 target is resumed again. We store the name of the requested
12108 exception, in order to be able to re-set the condition expression
12109 when symbols change. */
12111 /* An instance of this type is used to represent an Ada catchpoint. */
12113 struct ada_catchpoint : public code_breakpoint
12115 ada_catchpoint (struct gdbarch *gdbarch_,
12116 enum ada_exception_catchpoint_kind kind,
12117 struct symtab_and_line sal,
12118 const char *addr_string_,
12122 : code_breakpoint (gdbarch_, bp_catchpoint),
12125 add_location (sal);
12127 /* Unlike most code_breakpoint types, Ada catchpoints are
12128 pspace-specific. */
12129 gdb_assert (sal.pspace != nullptr);
12130 this->pspace = sal.pspace;
12134 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12136 loc_gdbarch = gdbarch;
12138 describe_other_breakpoints (loc_gdbarch,
12139 sal.pspace, sal.pc, sal.section, -1);
12140 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12141 version for exception catchpoints, because two catchpoints
12142 used for different exception names will use the same address.
12143 In this case, a "breakpoint ... also set at..." warning is
12144 unproductive. Besides, the warning phrasing is also a bit
12145 inappropriate, we should use the word catchpoint, and tell
12146 the user what type of catchpoint it is. The above is good
12147 enough for now, though. */
12150 enable_state = enabled ? bp_enabled : bp_disabled;
12151 disposition = tempflag ? disp_del : disp_donttouch;
12152 locspec = string_to_location_spec (&addr_string_,
12153 language_def (language_ada));
12154 language = language_ada;
12157 struct bp_location *allocate_location () override;
12158 void re_set () override;
12159 void check_status (struct bpstat *bs) override;
12160 enum print_stop_action print_it (const bpstat *bs) const override;
12161 bool print_one (bp_location **) const override;
12162 void print_mention () const override;
12163 void print_recreate (struct ui_file *fp) const override;
12165 /* The name of the specific exception the user specified. */
12166 std::string excep_string;
12168 /* What kind of catchpoint this is. */
12169 enum ada_exception_catchpoint_kind m_kind;
12172 /* An instance of this type is used to represent an Ada catchpoint
12173 breakpoint location. */
12175 class ada_catchpoint_location : public bp_location
12178 explicit ada_catchpoint_location (ada_catchpoint *owner)
12179 : bp_location (owner, bp_loc_software_breakpoint)
12182 /* The condition that checks whether the exception that was raised
12183 is the specific exception the user specified on catchpoint
12185 expression_up excep_cond_expr;
12188 /* Parse the exception condition string in the context of each of the
12189 catchpoint's locations, and store them for later evaluation. */
12192 create_excep_cond_exprs (struct ada_catchpoint *c,
12193 enum ada_exception_catchpoint_kind ex)
12195 /* Nothing to do if there's no specific exception to catch. */
12196 if (c->excep_string.empty ())
12199 /* Same if there are no locations... */
12200 if (c->loc == NULL)
12203 /* Compute the condition expression in text form, from the specific
12204 expection we want to catch. */
12205 std::string cond_string
12206 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12208 /* Iterate over all the catchpoint's locations, and parse an
12209 expression for each. */
12210 for (bp_location *bl : c->locations ())
12212 struct ada_catchpoint_location *ada_loc
12213 = (struct ada_catchpoint_location *) bl;
12216 if (!bl->shlib_disabled)
12220 s = cond_string.c_str ();
12223 exp = parse_exp_1 (&s, bl->address,
12224 block_for_pc (bl->address),
12227 catch (const gdb_exception_error &e)
12229 warning (_("failed to reevaluate internal exception condition "
12230 "for catchpoint %d: %s"),
12231 c->number, e.what ());
12235 ada_loc->excep_cond_expr = std::move (exp);
12239 /* Implement the ALLOCATE_LOCATION method in the structure for all
12240 exception catchpoint kinds. */
12242 struct bp_location *
12243 ada_catchpoint::allocate_location ()
12245 return new ada_catchpoint_location (this);
12248 /* Implement the RE_SET method in the structure for all exception
12249 catchpoint kinds. */
12252 ada_catchpoint::re_set ()
12254 /* Call the base class's method. This updates the catchpoint's
12256 this->code_breakpoint::re_set ();
12258 /* Reparse the exception conditional expressions. One for each
12260 create_excep_cond_exprs (this, m_kind);
12263 /* Returns true if we should stop for this breakpoint hit. If the
12264 user specified a specific exception, we only want to cause a stop
12265 if the program thrown that exception. */
12268 should_stop_exception (const struct bp_location *bl)
12270 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12271 const struct ada_catchpoint_location *ada_loc
12272 = (const struct ada_catchpoint_location *) bl;
12275 struct internalvar *var = lookup_internalvar ("_ada_exception");
12276 if (c->m_kind == ada_catch_assert)
12277 clear_internalvar (var);
12284 if (c->m_kind == ada_catch_handlers)
12285 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12286 ".all.occurrence.id");
12290 struct value *exc = parse_and_eval (expr);
12291 set_internalvar (var, exc);
12293 catch (const gdb_exception_error &ex)
12295 clear_internalvar (var);
12299 /* With no specific exception, should always stop. */
12300 if (c->excep_string.empty ())
12303 if (ada_loc->excep_cond_expr == NULL)
12305 /* We will have a NULL expression if back when we were creating
12306 the expressions, this location's had failed to parse. */
12313 scoped_value_mark mark;
12314 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12316 catch (const gdb_exception &ex)
12318 exception_fprintf (gdb_stderr, ex,
12319 _("Error in testing exception condition:\n"));
12325 /* Implement the CHECK_STATUS method in the structure for all
12326 exception catchpoint kinds. */
12329 ada_catchpoint::check_status (bpstat *bs)
12331 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12334 /* Implement the PRINT_IT method in the structure for all exception
12335 catchpoint kinds. */
12337 enum print_stop_action
12338 ada_catchpoint::print_it (const bpstat *bs) const
12340 struct ui_out *uiout = current_uiout;
12342 annotate_catchpoint (number);
12344 if (uiout->is_mi_like_p ())
12346 uiout->field_string ("reason",
12347 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12348 uiout->field_string ("disp", bpdisp_text (disposition));
12351 uiout->text (disposition == disp_del
12352 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12353 uiout->field_signed ("bkptno", number);
12354 uiout->text (", ");
12356 /* ada_exception_name_addr relies on the selected frame being the
12357 current frame. Need to do this here because this function may be
12358 called more than once when printing a stop, and below, we'll
12359 select the first frame past the Ada run-time (see
12360 ada_find_printable_frame). */
12361 select_frame (get_current_frame ());
12365 case ada_catch_exception:
12366 case ada_catch_exception_unhandled:
12367 case ada_catch_handlers:
12369 const CORE_ADDR addr = ada_exception_name_addr (m_kind);
12370 char exception_name[256];
12374 read_memory (addr, (gdb_byte *) exception_name,
12375 sizeof (exception_name) - 1);
12376 exception_name [sizeof (exception_name) - 1] = '\0';
12380 /* For some reason, we were unable to read the exception
12381 name. This could happen if the Runtime was compiled
12382 without debugging info, for instance. In that case,
12383 just replace the exception name by the generic string
12384 "exception" - it will read as "an exception" in the
12385 notification we are about to print. */
12386 memcpy (exception_name, "exception", sizeof ("exception"));
12388 /* In the case of unhandled exception breakpoints, we print
12389 the exception name as "unhandled EXCEPTION_NAME", to make
12390 it clearer to the user which kind of catchpoint just got
12391 hit. We used ui_out_text to make sure that this extra
12392 info does not pollute the exception name in the MI case. */
12393 if (m_kind == ada_catch_exception_unhandled)
12394 uiout->text ("unhandled ");
12395 uiout->field_string ("exception-name", exception_name);
12398 case ada_catch_assert:
12399 /* In this case, the name of the exception is not really
12400 important. Just print "failed assertion" to make it clearer
12401 that his program just hit an assertion-failure catchpoint.
12402 We used ui_out_text because this info does not belong in
12404 uiout->text ("failed assertion");
12408 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12409 if (exception_message != NULL)
12411 uiout->text (" (");
12412 uiout->field_string ("exception-message", exception_message.get ());
12416 uiout->text (" at ");
12417 ada_find_printable_frame (get_current_frame ());
12419 return PRINT_SRC_AND_LOC;
12422 /* Implement the PRINT_ONE method in the structure for all exception
12423 catchpoint kinds. */
12426 ada_catchpoint::print_one (bp_location **last_loc) const
12428 struct ui_out *uiout = current_uiout;
12429 struct value_print_options opts;
12431 get_user_print_options (&opts);
12433 if (opts.addressprint)
12434 uiout->field_skip ("addr");
12436 annotate_field (5);
12439 case ada_catch_exception:
12440 if (!excep_string.empty ())
12442 std::string msg = string_printf (_("`%s' Ada exception"),
12443 excep_string.c_str ());
12445 uiout->field_string ("what", msg);
12448 uiout->field_string ("what", "all Ada exceptions");
12452 case ada_catch_exception_unhandled:
12453 uiout->field_string ("what", "unhandled Ada exceptions");
12456 case ada_catch_handlers:
12457 if (!excep_string.empty ())
12459 uiout->field_fmt ("what",
12460 _("`%s' Ada exception handlers"),
12461 excep_string.c_str ());
12464 uiout->field_string ("what", "all Ada exceptions handlers");
12467 case ada_catch_assert:
12468 uiout->field_string ("what", "failed Ada assertions");
12472 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12479 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12480 for all exception catchpoint kinds. */
12483 ada_catchpoint::print_mention () const
12485 struct ui_out *uiout = current_uiout;
12487 uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
12488 : _("Catchpoint "));
12489 uiout->field_signed ("bkptno", number);
12490 uiout->text (": ");
12494 case ada_catch_exception:
12495 if (!excep_string.empty ())
12497 std::string info = string_printf (_("`%s' Ada exception"),
12498 excep_string.c_str ());
12499 uiout->text (info);
12502 uiout->text (_("all Ada exceptions"));
12505 case ada_catch_exception_unhandled:
12506 uiout->text (_("unhandled Ada exceptions"));
12509 case ada_catch_handlers:
12510 if (!excep_string.empty ())
12513 = string_printf (_("`%s' Ada exception handlers"),
12514 excep_string.c_str ());
12515 uiout->text (info);
12518 uiout->text (_("all Ada exceptions handlers"));
12521 case ada_catch_assert:
12522 uiout->text (_("failed Ada assertions"));
12526 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12531 /* Implement the PRINT_RECREATE method in the structure for all
12532 exception catchpoint kinds. */
12535 ada_catchpoint::print_recreate (struct ui_file *fp) const
12539 case ada_catch_exception:
12540 gdb_printf (fp, "catch exception");
12541 if (!excep_string.empty ())
12542 gdb_printf (fp, " %s", excep_string.c_str ());
12545 case ada_catch_exception_unhandled:
12546 gdb_printf (fp, "catch exception unhandled");
12549 case ada_catch_handlers:
12550 gdb_printf (fp, "catch handlers");
12553 case ada_catch_assert:
12554 gdb_printf (fp, "catch assert");
12558 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12560 print_recreate_thread (fp);
12563 /* See ada-lang.h. */
12566 is_ada_exception_catchpoint (breakpoint *bp)
12568 return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
12571 /* Split the arguments specified in a "catch exception" command.
12572 Set EX to the appropriate catchpoint type.
12573 Set EXCEP_STRING to the name of the specific exception if
12574 specified by the user.
12575 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12576 "catch handlers" command. False otherwise.
12577 If a condition is found at the end of the arguments, the condition
12578 expression is stored in COND_STRING (memory must be deallocated
12579 after use). Otherwise COND_STRING is set to NULL. */
12582 catch_ada_exception_command_split (const char *args,
12583 bool is_catch_handlers_cmd,
12584 enum ada_exception_catchpoint_kind *ex,
12585 std::string *excep_string,
12586 std::string *cond_string)
12588 std::string exception_name;
12590 exception_name = extract_arg (&args);
12591 if (exception_name == "if")
12593 /* This is not an exception name; this is the start of a condition
12594 expression for a catchpoint on all exceptions. So, "un-get"
12595 this token, and set exception_name to NULL. */
12596 exception_name.clear ();
12600 /* Check to see if we have a condition. */
12602 args = skip_spaces (args);
12603 if (startswith (args, "if")
12604 && (isspace (args[2]) || args[2] == '\0'))
12607 args = skip_spaces (args);
12609 if (args[0] == '\0')
12610 error (_("Condition missing after `if' keyword"));
12611 *cond_string = args;
12613 args += strlen (args);
12616 /* Check that we do not have any more arguments. Anything else
12619 if (args[0] != '\0')
12620 error (_("Junk at end of expression"));
12622 if (is_catch_handlers_cmd)
12624 /* Catch handling of exceptions. */
12625 *ex = ada_catch_handlers;
12626 *excep_string = exception_name;
12628 else if (exception_name.empty ())
12630 /* Catch all exceptions. */
12631 *ex = ada_catch_exception;
12632 excep_string->clear ();
12634 else if (exception_name == "unhandled")
12636 /* Catch unhandled exceptions. */
12637 *ex = ada_catch_exception_unhandled;
12638 excep_string->clear ();
12642 /* Catch a specific exception. */
12643 *ex = ada_catch_exception;
12644 *excep_string = exception_name;
12648 /* Return the name of the symbol on which we should break in order to
12649 implement a catchpoint of the EX kind. */
12651 static const char *
12652 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12654 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12656 gdb_assert (data->exception_info != NULL);
12660 case ada_catch_exception:
12661 return (data->exception_info->catch_exception_sym);
12663 case ada_catch_exception_unhandled:
12664 return (data->exception_info->catch_exception_unhandled_sym);
12666 case ada_catch_assert:
12667 return (data->exception_info->catch_assert_sym);
12669 case ada_catch_handlers:
12670 return (data->exception_info->catch_handlers_sym);
12673 internal_error (__FILE__, __LINE__,
12674 _("unexpected catchpoint kind (%d)"), ex);
12678 /* Return the condition that will be used to match the current exception
12679 being raised with the exception that the user wants to catch. This
12680 assumes that this condition is used when the inferior just triggered
12681 an exception catchpoint.
12682 EX: the type of catchpoints used for catching Ada exceptions. */
12685 ada_exception_catchpoint_cond_string (const char *excep_string,
12686 enum ada_exception_catchpoint_kind ex)
12688 bool is_standard_exc = false;
12689 std::string result;
12691 if (ex == ada_catch_handlers)
12693 /* For exception handlers catchpoints, the condition string does
12694 not use the same parameter as for the other exceptions. */
12695 result = ("long_integer (GNAT_GCC_exception_Access"
12696 "(gcc_exception).all.occurrence.id)");
12699 result = "long_integer (e)";
12701 /* The standard exceptions are a special case. They are defined in
12702 runtime units that have been compiled without debugging info; if
12703 EXCEP_STRING is the not-fully-qualified name of a standard
12704 exception (e.g. "constraint_error") then, during the evaluation
12705 of the condition expression, the symbol lookup on this name would
12706 *not* return this standard exception. The catchpoint condition
12707 may then be set only on user-defined exceptions which have the
12708 same not-fully-qualified name (e.g. my_package.constraint_error).
12710 To avoid this unexcepted behavior, these standard exceptions are
12711 systematically prefixed by "standard". This means that "catch
12712 exception constraint_error" is rewritten into "catch exception
12713 standard.constraint_error".
12715 If an exception named constraint_error is defined in another package of
12716 the inferior program, then the only way to specify this exception as a
12717 breakpoint condition is to use its fully-qualified named:
12718 e.g. my_package.constraint_error. */
12720 for (const char *name : standard_exc)
12722 if (strcmp (name, excep_string) == 0)
12724 is_standard_exc = true;
12731 if (is_standard_exc)
12732 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12734 string_appendf (result, "long_integer (&%s)", excep_string);
12739 /* Return the symtab_and_line that should be used to insert an exception
12740 catchpoint of the TYPE kind.
12742 ADDR_STRING returns the name of the function where the real
12743 breakpoint that implements the catchpoints is set, depending on the
12744 type of catchpoint we need to create. */
12746 static struct symtab_and_line
12747 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12748 std::string *addr_string)
12750 const char *sym_name;
12751 struct symbol *sym;
12753 /* First, find out which exception support info to use. */
12754 ada_exception_support_info_sniffer ();
12756 /* Then lookup the function on which we will break in order to catch
12757 the Ada exceptions requested by the user. */
12758 sym_name = ada_exception_sym_name (ex);
12759 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12762 error (_("Catchpoint symbol not found: %s"), sym_name);
12764 if (sym->aclass () != LOC_BLOCK)
12765 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12767 /* Set ADDR_STRING. */
12768 *addr_string = sym_name;
12770 return find_function_start_sal (sym, 1);
12773 /* Create an Ada exception catchpoint.
12775 EX_KIND is the kind of exception catchpoint to be created.
12777 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12778 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12779 of the exception to which this catchpoint applies.
12781 COND_STRING, if not empty, is the catchpoint condition.
12783 TEMPFLAG, if nonzero, means that the underlying breakpoint
12784 should be temporary.
12786 FROM_TTY is the usual argument passed to all commands implementations. */
12789 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12790 enum ada_exception_catchpoint_kind ex_kind,
12791 const std::string &excep_string,
12792 const std::string &cond_string,
12797 std::string addr_string;
12798 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string);
12800 std::unique_ptr<ada_catchpoint> c
12801 (new ada_catchpoint (gdbarch, ex_kind, sal, addr_string.c_str (),
12802 tempflag, disabled, from_tty));
12803 c->excep_string = excep_string;
12804 create_excep_cond_exprs (c.get (), ex_kind);
12805 if (!cond_string.empty ())
12806 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12807 install_breakpoint (0, std::move (c), 1);
12810 /* Implement the "catch exception" command. */
12813 catch_ada_exception_command (const char *arg_entry, int from_tty,
12814 struct cmd_list_element *command)
12816 const char *arg = arg_entry;
12817 struct gdbarch *gdbarch = get_current_arch ();
12819 enum ada_exception_catchpoint_kind ex_kind;
12820 std::string excep_string;
12821 std::string cond_string;
12823 tempflag = command->context () == CATCH_TEMPORARY;
12827 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12829 create_ada_exception_catchpoint (gdbarch, ex_kind,
12830 excep_string, cond_string,
12831 tempflag, 1 /* enabled */,
12835 /* Implement the "catch handlers" command. */
12838 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12839 struct cmd_list_element *command)
12841 const char *arg = arg_entry;
12842 struct gdbarch *gdbarch = get_current_arch ();
12844 enum ada_exception_catchpoint_kind ex_kind;
12845 std::string excep_string;
12846 std::string cond_string;
12848 tempflag = command->context () == CATCH_TEMPORARY;
12852 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12854 create_ada_exception_catchpoint (gdbarch, ex_kind,
12855 excep_string, cond_string,
12856 tempflag, 1 /* enabled */,
12860 /* Completion function for the Ada "catch" commands. */
12863 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12864 const char *text, const char *word)
12866 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12868 for (const ada_exc_info &info : exceptions)
12870 if (startswith (info.name, word))
12871 tracker.add_completion (make_unique_xstrdup (info.name));
12875 /* Split the arguments specified in a "catch assert" command.
12877 ARGS contains the command's arguments (or the empty string if
12878 no arguments were passed).
12880 If ARGS contains a condition, set COND_STRING to that condition
12881 (the memory needs to be deallocated after use). */
12884 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12886 args = skip_spaces (args);
12888 /* Check whether a condition was provided. */
12889 if (startswith (args, "if")
12890 && (isspace (args[2]) || args[2] == '\0'))
12893 args = skip_spaces (args);
12894 if (args[0] == '\0')
12895 error (_("condition missing after `if' keyword"));
12896 cond_string.assign (args);
12899 /* Otherwise, there should be no other argument at the end of
12901 else if (args[0] != '\0')
12902 error (_("Junk at end of arguments."));
12905 /* Implement the "catch assert" command. */
12908 catch_assert_command (const char *arg_entry, int from_tty,
12909 struct cmd_list_element *command)
12911 const char *arg = arg_entry;
12912 struct gdbarch *gdbarch = get_current_arch ();
12914 std::string cond_string;
12916 tempflag = command->context () == CATCH_TEMPORARY;
12920 catch_ada_assert_command_split (arg, cond_string);
12921 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12923 tempflag, 1 /* enabled */,
12927 /* Return non-zero if the symbol SYM is an Ada exception object. */
12930 ada_is_exception_sym (struct symbol *sym)
12932 const char *type_name = sym->type ()->name ();
12934 return (sym->aclass () != LOC_TYPEDEF
12935 && sym->aclass () != LOC_BLOCK
12936 && sym->aclass () != LOC_CONST
12937 && sym->aclass () != LOC_UNRESOLVED
12938 && type_name != NULL && strcmp (type_name, "exception") == 0);
12941 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12942 Ada exception object. This matches all exceptions except the ones
12943 defined by the Ada language. */
12946 ada_is_non_standard_exception_sym (struct symbol *sym)
12948 if (!ada_is_exception_sym (sym))
12951 for (const char *name : standard_exc)
12952 if (strcmp (sym->linkage_name (), name) == 0)
12953 return 0; /* A standard exception. */
12955 /* Numeric_Error is also a standard exception, so exclude it.
12956 See the STANDARD_EXC description for more details as to why
12957 this exception is not listed in that array. */
12958 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12964 /* A helper function for std::sort, comparing two struct ada_exc_info
12967 The comparison is determined first by exception name, and then
12968 by exception address. */
12971 ada_exc_info::operator< (const ada_exc_info &other) const
12975 result = strcmp (name, other.name);
12978 if (result == 0 && addr < other.addr)
12984 ada_exc_info::operator== (const ada_exc_info &other) const
12986 return addr == other.addr && strcmp (name, other.name) == 0;
12989 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12990 routine, but keeping the first SKIP elements untouched.
12992 All duplicates are also removed. */
12995 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12998 std::sort (exceptions->begin () + skip, exceptions->end ());
12999 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13000 exceptions->end ());
13003 /* Add all exceptions defined by the Ada standard whose name match
13004 a regular expression.
13006 If PREG is not NULL, then this regexp_t object is used to
13007 perform the symbol name matching. Otherwise, no name-based
13008 filtering is performed.
13010 EXCEPTIONS is a vector of exceptions to which matching exceptions
13014 ada_add_standard_exceptions (compiled_regex *preg,
13015 std::vector<ada_exc_info> *exceptions)
13017 for (const char *name : standard_exc)
13019 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
13021 struct bound_minimal_symbol msymbol
13022 = ada_lookup_simple_minsym (name);
13024 if (msymbol.minsym != NULL)
13026 struct ada_exc_info info
13027 = {name, msymbol.value_address ()};
13029 exceptions->push_back (info);
13035 /* Add all Ada exceptions defined locally and accessible from the given
13038 If PREG is not NULL, then this regexp_t object is used to
13039 perform the symbol name matching. Otherwise, no name-based
13040 filtering is performed.
13042 EXCEPTIONS is a vector of exceptions to which matching exceptions
13046 ada_add_exceptions_from_frame (compiled_regex *preg,
13047 frame_info_ptr frame,
13048 std::vector<ada_exc_info> *exceptions)
13050 const struct block *block = get_frame_block (frame, 0);
13054 struct block_iterator iter;
13055 struct symbol *sym;
13057 ALL_BLOCK_SYMBOLS (block, iter, sym)
13059 switch (sym->aclass ())
13066 if (ada_is_exception_sym (sym))
13068 struct ada_exc_info info = {sym->print_name (),
13069 sym->value_address ()};
13071 exceptions->push_back (info);
13075 if (block->function () != NULL)
13077 block = block->superblock ();
13081 /* Return true if NAME matches PREG or if PREG is NULL. */
13084 name_matches_regex (const char *name, compiled_regex *preg)
13086 return (preg == NULL
13087 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13090 /* Add all exceptions defined globally whose name name match
13091 a regular expression, excluding standard exceptions.
13093 The reason we exclude standard exceptions is that they need
13094 to be handled separately: Standard exceptions are defined inside
13095 a runtime unit which is normally not compiled with debugging info,
13096 and thus usually do not show up in our symbol search. However,
13097 if the unit was in fact built with debugging info, we need to
13098 exclude them because they would duplicate the entry we found
13099 during the special loop that specifically searches for those
13100 standard exceptions.
13102 If PREG is not NULL, then this regexp_t object is used to
13103 perform the symbol name matching. Otherwise, no name-based
13104 filtering is performed.
13106 EXCEPTIONS is a vector of exceptions to which matching exceptions
13110 ada_add_global_exceptions (compiled_regex *preg,
13111 std::vector<ada_exc_info> *exceptions)
13113 /* In Ada, the symbol "search name" is a linkage name, whereas the
13114 regular expression used to do the matching refers to the natural
13115 name. So match against the decoded name. */
13116 expand_symtabs_matching (NULL,
13117 lookup_name_info::match_any (),
13118 [&] (const char *search_name)
13120 std::string decoded = ada_decode (search_name);
13121 return name_matches_regex (decoded.c_str (), preg);
13124 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13127 for (objfile *objfile : current_program_space->objfiles ())
13129 for (compunit_symtab *s : objfile->compunits ())
13131 const struct blockvector *bv = s->blockvector ();
13134 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13136 const struct block *b = bv->block (i);
13137 struct block_iterator iter;
13138 struct symbol *sym;
13140 ALL_BLOCK_SYMBOLS (b, iter, sym)
13141 if (ada_is_non_standard_exception_sym (sym)
13142 && name_matches_regex (sym->natural_name (), preg))
13144 struct ada_exc_info info
13145 = {sym->print_name (), sym->value_address ()};
13147 exceptions->push_back (info);
13154 /* Implements ada_exceptions_list with the regular expression passed
13155 as a regex_t, rather than a string.
13157 If not NULL, PREG is used to filter out exceptions whose names
13158 do not match. Otherwise, all exceptions are listed. */
13160 static std::vector<ada_exc_info>
13161 ada_exceptions_list_1 (compiled_regex *preg)
13163 std::vector<ada_exc_info> result;
13166 /* First, list the known standard exceptions. These exceptions
13167 need to be handled separately, as they are usually defined in
13168 runtime units that have been compiled without debugging info. */
13170 ada_add_standard_exceptions (preg, &result);
13172 /* Next, find all exceptions whose scope is local and accessible
13173 from the currently selected frame. */
13175 if (has_stack_frames ())
13177 prev_len = result.size ();
13178 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13180 if (result.size () > prev_len)
13181 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13184 /* Add all exceptions whose scope is global. */
13186 prev_len = result.size ();
13187 ada_add_global_exceptions (preg, &result);
13188 if (result.size () > prev_len)
13189 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13194 /* Return a vector of ada_exc_info.
13196 If REGEXP is NULL, all exceptions are included in the result.
13197 Otherwise, it should contain a valid regular expression,
13198 and only the exceptions whose names match that regular expression
13199 are included in the result.
13201 The exceptions are sorted in the following order:
13202 - Standard exceptions (defined by the Ada language), in
13203 alphabetical order;
13204 - Exceptions only visible from the current frame, in
13205 alphabetical order;
13206 - Exceptions whose scope is global, in alphabetical order. */
13208 std::vector<ada_exc_info>
13209 ada_exceptions_list (const char *regexp)
13211 if (regexp == NULL)
13212 return ada_exceptions_list_1 (NULL);
13214 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13215 return ada_exceptions_list_1 (®);
13218 /* Implement the "info exceptions" command. */
13221 info_exceptions_command (const char *regexp, int from_tty)
13223 struct gdbarch *gdbarch = get_current_arch ();
13225 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13227 if (regexp != NULL)
13229 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13231 gdb_printf (_("All defined Ada exceptions:\n"));
13233 for (const ada_exc_info &info : exceptions)
13234 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13238 /* Language vector */
13240 /* symbol_name_matcher_ftype adapter for wild_match. */
13243 do_wild_match (const char *symbol_search_name,
13244 const lookup_name_info &lookup_name,
13245 completion_match_result *comp_match_res)
13247 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13250 /* symbol_name_matcher_ftype adapter for full_match. */
13253 do_full_match (const char *symbol_search_name,
13254 const lookup_name_info &lookup_name,
13255 completion_match_result *comp_match_res)
13257 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13259 /* If both symbols start with "_ada_", just let the loop below
13260 handle the comparison. However, if only the symbol name starts
13261 with "_ada_", skip the prefix and let the match proceed as
13263 if (startswith (symbol_search_name, "_ada_")
13264 && !startswith (lname, "_ada"))
13265 symbol_search_name += 5;
13266 /* Likewise for ghost entities. */
13267 if (startswith (symbol_search_name, "___ghost_")
13268 && !startswith (lname, "___ghost_"))
13269 symbol_search_name += 9;
13271 int uscore_count = 0;
13272 while (*lname != '\0')
13274 if (*symbol_search_name != *lname)
13276 if (*symbol_search_name == 'B' && uscore_count == 2
13277 && symbol_search_name[1] == '_')
13279 symbol_search_name += 2;
13280 while (isdigit (*symbol_search_name))
13281 ++symbol_search_name;
13282 if (symbol_search_name[0] == '_'
13283 && symbol_search_name[1] == '_')
13285 symbol_search_name += 2;
13292 if (*symbol_search_name == '_')
13297 ++symbol_search_name;
13301 return is_name_suffix (symbol_search_name);
13304 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13307 do_exact_match (const char *symbol_search_name,
13308 const lookup_name_info &lookup_name,
13309 completion_match_result *comp_match_res)
13311 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13314 /* Build the Ada lookup name for LOOKUP_NAME. */
13316 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13318 gdb::string_view user_name = lookup_name.name ();
13320 if (!user_name.empty () && user_name[0] == '<')
13322 if (user_name.back () == '>')
13324 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13327 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13328 m_encoded_p = true;
13329 m_verbatim_p = true;
13330 m_wild_match_p = false;
13331 m_standard_p = false;
13335 m_verbatim_p = false;
13337 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13341 const char *folded = ada_fold_name (user_name);
13342 m_encoded_name = ada_encode_1 (folded, false);
13343 if (m_encoded_name.empty ())
13344 m_encoded_name = gdb::to_string (user_name);
13347 m_encoded_name = gdb::to_string (user_name);
13349 /* Handle the 'package Standard' special case. See description
13350 of m_standard_p. */
13351 if (startswith (m_encoded_name.c_str (), "standard__"))
13353 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13354 m_standard_p = true;
13357 m_standard_p = false;
13359 /* If the name contains a ".", then the user is entering a fully
13360 qualified entity name, and the match must not be done in wild
13361 mode. Similarly, if the user wants to complete what looks
13362 like an encoded name, the match must not be done in wild
13363 mode. Also, in the standard__ special case always do
13364 non-wild matching. */
13366 = (lookup_name.match_type () != symbol_name_match_type::FULL
13369 && user_name.find ('.') == std::string::npos);
13373 /* symbol_name_matcher_ftype method for Ada. This only handles
13374 completion mode. */
13377 ada_symbol_name_matches (const char *symbol_search_name,
13378 const lookup_name_info &lookup_name,
13379 completion_match_result *comp_match_res)
13381 return lookup_name.ada ().matches (symbol_search_name,
13382 lookup_name.match_type (),
13386 /* A name matcher that matches the symbol name exactly, with
13390 literal_symbol_name_matcher (const char *symbol_search_name,
13391 const lookup_name_info &lookup_name,
13392 completion_match_result *comp_match_res)
13394 gdb::string_view name_view = lookup_name.name ();
13396 if (lookup_name.completion_mode ()
13397 ? (strncmp (symbol_search_name, name_view.data (),
13398 name_view.size ()) == 0)
13399 : symbol_search_name == name_view)
13401 if (comp_match_res != NULL)
13402 comp_match_res->set_match (symbol_search_name);
13409 /* Implement the "get_symbol_name_matcher" language_defn method for
13412 static symbol_name_matcher_ftype *
13413 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13415 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13416 return literal_symbol_name_matcher;
13418 if (lookup_name.completion_mode ())
13419 return ada_symbol_name_matches;
13422 if (lookup_name.ada ().wild_match_p ())
13423 return do_wild_match;
13424 else if (lookup_name.ada ().verbatim_p ())
13425 return do_exact_match;
13427 return do_full_match;
13431 /* Class representing the Ada language. */
13433 class ada_language : public language_defn
13437 : language_defn (language_ada)
13440 /* See language.h. */
13442 const char *name () const override
13445 /* See language.h. */
13447 const char *natural_name () const override
13450 /* See language.h. */
13452 const std::vector<const char *> &filename_extensions () const override
13454 static const std::vector<const char *> extensions
13455 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13459 /* Print an array element index using the Ada syntax. */
13461 void print_array_index (struct type *index_type,
13463 struct ui_file *stream,
13464 const value_print_options *options) const override
13466 struct value *index_value = val_atr (index_type, index);
13468 value_print (index_value, stream, options);
13469 gdb_printf (stream, " => ");
13472 /* Implement the "read_var_value" language_defn method for Ada. */
13474 struct value *read_var_value (struct symbol *var,
13475 const struct block *var_block,
13476 frame_info_ptr frame) const override
13478 /* The only case where default_read_var_value is not sufficient
13479 is when VAR is a renaming... */
13480 if (frame != nullptr)
13482 const struct block *frame_block = get_frame_block (frame, NULL);
13483 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13484 return ada_read_renaming_var_value (var, frame_block);
13487 /* This is a typical case where we expect the default_read_var_value
13488 function to work. */
13489 return language_defn::read_var_value (var, var_block, frame);
13492 /* See language.h. */
13493 bool symbol_printing_suppressed (struct symbol *symbol) const override
13495 return symbol->is_artificial ();
13498 /* See language.h. */
13499 void language_arch_info (struct gdbarch *gdbarch,
13500 struct language_arch_info *lai) const override
13502 const struct builtin_type *builtin = builtin_type (gdbarch);
13504 /* Helper function to allow shorter lines below. */
13505 auto add = [&] (struct type *t)
13507 lai->add_primitive_type (t);
13510 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13512 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13513 0, "long_integer"));
13514 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13515 0, "short_integer"));
13516 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13518 lai->set_string_char_type (char_type);
13520 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13521 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13522 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13523 "float", gdbarch_float_format (gdbarch)));
13524 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13525 "long_float", gdbarch_double_format (gdbarch)));
13526 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13527 0, "long_long_integer"));
13528 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13530 gdbarch_long_double_format (gdbarch)));
13531 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13533 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13535 add (builtin->builtin_void);
13537 struct type *system_addr_ptr
13538 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13540 system_addr_ptr->set_name ("system__address");
13541 add (system_addr_ptr);
13543 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13544 type. This is a signed integral type whose size is the same as
13545 the size of addresses. */
13546 unsigned int addr_length = system_addr_ptr->length ();
13547 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13548 "storage_offset"));
13550 lai->set_bool_type (builtin->builtin_bool);
13553 /* See language.h. */
13555 bool iterate_over_symbols
13556 (const struct block *block, const lookup_name_info &name,
13557 domain_enum domain,
13558 gdb::function_view<symbol_found_callback_ftype> callback) const override
13560 std::vector<struct block_symbol> results
13561 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13562 for (block_symbol &sym : results)
13564 if (!callback (&sym))
13571 /* See language.h. */
13572 bool sniff_from_mangled_name
13573 (const char *mangled,
13574 gdb::unique_xmalloc_ptr<char> *out) const override
13576 std::string demangled = ada_decode (mangled);
13580 if (demangled != mangled && demangled[0] != '<')
13582 /* Set the gsymbol language to Ada, but still return 0.
13583 Two reasons for that:
13585 1. For Ada, we prefer computing the symbol's decoded name
13586 on the fly rather than pre-compute it, in order to save
13587 memory (Ada projects are typically very large).
13589 2. There are some areas in the definition of the GNAT
13590 encoding where, with a bit of bad luck, we might be able
13591 to decode a non-Ada symbol, generating an incorrect
13592 demangled name (Eg: names ending with "TB" for instance
13593 are identified as task bodies and so stripped from
13594 the decoded name returned).
13596 Returning true, here, but not setting *DEMANGLED, helps us get
13597 a little bit of the best of both worlds. Because we're last,
13598 we should not affect any of the other languages that were
13599 able to demangle the symbol before us; we get to correctly
13600 tag Ada symbols as such; and even if we incorrectly tagged a
13601 non-Ada symbol, which should be rare, any routing through the
13602 Ada language should be transparent (Ada tries to behave much
13603 like C/C++ with non-Ada symbols). */
13610 /* See language.h. */
13612 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13613 int options) const override
13615 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13618 /* See language.h. */
13620 void print_type (struct type *type, const char *varstring,
13621 struct ui_file *stream, int show, int level,
13622 const struct type_print_options *flags) const override
13624 ada_print_type (type, varstring, stream, show, level, flags);
13627 /* See language.h. */
13629 const char *word_break_characters (void) const override
13631 return ada_completer_word_break_characters;
13634 /* See language.h. */
13636 void collect_symbol_completion_matches (completion_tracker &tracker,
13637 complete_symbol_mode mode,
13638 symbol_name_match_type name_match_type,
13639 const char *text, const char *word,
13640 enum type_code code) const override
13642 struct symbol *sym;
13643 const struct block *b, *surrounding_static_block = 0;
13644 struct block_iterator iter;
13646 gdb_assert (code == TYPE_CODE_UNDEF);
13648 lookup_name_info lookup_name (text, name_match_type, true);
13650 /* First, look at the partial symtab symbols. */
13651 expand_symtabs_matching (NULL,
13655 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13658 /* At this point scan through the misc symbol vectors and add each
13659 symbol you find to the list. Eventually we want to ignore
13660 anything that isn't a text symbol (everything else will be
13661 handled by the psymtab code above). */
13663 for (objfile *objfile : current_program_space->objfiles ())
13665 for (minimal_symbol *msymbol : objfile->msymbols ())
13669 if (completion_skip_symbol (mode, msymbol))
13672 language symbol_language = msymbol->language ();
13674 /* Ada minimal symbols won't have their language set to Ada. If
13675 we let completion_list_add_name compare using the
13676 default/C-like matcher, then when completing e.g., symbols in a
13677 package named "pck", we'd match internal Ada symbols like
13678 "pckS", which are invalid in an Ada expression, unless you wrap
13679 them in '<' '>' to request a verbatim match.
13681 Unfortunately, some Ada encoded names successfully demangle as
13682 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13683 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13684 with the wrong language set. Paper over that issue here. */
13685 if (symbol_language == language_auto
13686 || symbol_language == language_cplus)
13687 symbol_language = language_ada;
13689 completion_list_add_name (tracker,
13691 msymbol->linkage_name (),
13692 lookup_name, text, word);
13696 /* Search upwards from currently selected frame (so that we can
13697 complete on local vars. */
13699 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
13701 if (!b->superblock ())
13702 surrounding_static_block = b; /* For elmin of dups */
13704 ALL_BLOCK_SYMBOLS (b, iter, sym)
13706 if (completion_skip_symbol (mode, sym))
13709 completion_list_add_name (tracker,
13711 sym->linkage_name (),
13712 lookup_name, text, word);
13716 /* Go through the symtabs and check the externs and statics for
13717 symbols which match. */
13719 for (objfile *objfile : current_program_space->objfiles ())
13721 for (compunit_symtab *s : objfile->compunits ())
13724 b = s->blockvector ()->global_block ();
13725 ALL_BLOCK_SYMBOLS (b, iter, sym)
13727 if (completion_skip_symbol (mode, sym))
13730 completion_list_add_name (tracker,
13732 sym->linkage_name (),
13733 lookup_name, text, word);
13738 for (objfile *objfile : current_program_space->objfiles ())
13740 for (compunit_symtab *s : objfile->compunits ())
13743 b = s->blockvector ()->static_block ();
13744 /* Don't do this block twice. */
13745 if (b == surrounding_static_block)
13747 ALL_BLOCK_SYMBOLS (b, iter, sym)
13749 if (completion_skip_symbol (mode, sym))
13752 completion_list_add_name (tracker,
13754 sym->linkage_name (),
13755 lookup_name, text, word);
13761 /* See language.h. */
13763 gdb::unique_xmalloc_ptr<char> watch_location_expression
13764 (struct type *type, CORE_ADDR addr) const override
13766 type = check_typedef (check_typedef (type)->target_type ());
13767 std::string name = type_to_string (type);
13768 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13771 /* See language.h. */
13773 void value_print (struct value *val, struct ui_file *stream,
13774 const struct value_print_options *options) const override
13776 return ada_value_print (val, stream, options);
13779 /* See language.h. */
13781 void value_print_inner
13782 (struct value *val, struct ui_file *stream, int recurse,
13783 const struct value_print_options *options) const override
13785 return ada_value_print_inner (val, stream, recurse, options);
13788 /* See language.h. */
13790 struct block_symbol lookup_symbol_nonlocal
13791 (const char *name, const struct block *block,
13792 const domain_enum domain) const override
13794 struct block_symbol sym;
13796 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13797 if (sym.symbol != NULL)
13800 /* If we haven't found a match at this point, try the primitive
13801 types. In other languages, this search is performed before
13802 searching for global symbols in order to short-circuit that
13803 global-symbol search if it happens that the name corresponds
13804 to a primitive type. But we cannot do the same in Ada, because
13805 it is perfectly legitimate for a program to declare a type which
13806 has the same name as a standard type. If looking up a type in
13807 that situation, we have traditionally ignored the primitive type
13808 in favor of user-defined types. This is why, unlike most other
13809 languages, we search the primitive types this late and only after
13810 having searched the global symbols without success. */
13812 if (domain == VAR_DOMAIN)
13814 struct gdbarch *gdbarch;
13817 gdbarch = target_gdbarch ();
13819 gdbarch = block_gdbarch (block);
13821 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13822 if (sym.symbol != NULL)
13829 /* See language.h. */
13831 int parser (struct parser_state *ps) const override
13833 warnings_issued = 0;
13834 return ada_parse (ps);
13837 /* See language.h. */
13839 void emitchar (int ch, struct type *chtype,
13840 struct ui_file *stream, int quoter) const override
13842 ada_emit_char (ch, chtype, stream, quoter, 1);
13845 /* See language.h. */
13847 void printchar (int ch, struct type *chtype,
13848 struct ui_file *stream) const override
13850 ada_printchar (ch, chtype, stream);
13853 /* See language.h. */
13855 void printstr (struct ui_file *stream, struct type *elttype,
13856 const gdb_byte *string, unsigned int length,
13857 const char *encoding, int force_ellipses,
13858 const struct value_print_options *options) const override
13860 ada_printstr (stream, elttype, string, length, encoding,
13861 force_ellipses, options);
13864 /* See language.h. */
13866 void print_typedef (struct type *type, struct symbol *new_symbol,
13867 struct ui_file *stream) const override
13869 ada_print_typedef (type, new_symbol, stream);
13872 /* See language.h. */
13874 bool is_string_type_p (struct type *type) const override
13876 return ada_is_string_type (type);
13879 /* See language.h. */
13881 const char *struct_too_deep_ellipsis () const override
13882 { return "(...)"; }
13884 /* See language.h. */
13886 bool c_style_arrays_p () const override
13889 /* See language.h. */
13891 bool store_sym_names_in_linkage_form_p () const override
13894 /* See language.h. */
13896 const struct lang_varobj_ops *varobj_ops () const override
13897 { return &ada_varobj_ops; }
13900 /* See language.h. */
13902 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13903 (const lookup_name_info &lookup_name) const override
13905 return ada_get_symbol_name_matcher (lookup_name);
13909 /* Single instance of the Ada language class. */
13911 static ada_language ada_language_defn;
13913 /* Command-list for the "set/show ada" prefix command. */
13914 static struct cmd_list_element *set_ada_list;
13915 static struct cmd_list_element *show_ada_list;
13917 /* This module's 'new_objfile' observer. */
13920 ada_new_objfile_observer (struct objfile *objfile)
13922 ada_clear_symbol_cache ();
13925 /* This module's 'free_objfile' observer. */
13928 ada_free_objfile_observer (struct objfile *objfile)
13930 ada_clear_symbol_cache ();
13933 /* Charsets known to GNAT. */
13934 static const char * const gnat_source_charsets[] =
13936 /* Note that code below assumes that the default comes first.
13937 Latin-1 is the default here, because that is also GNAT's
13947 /* Note that this value is special-cased in the encoder and
13953 void _initialize_ada_language ();
13955 _initialize_ada_language ()
13957 add_setshow_prefix_cmd
13959 _("Prefix command for changing Ada-specific settings."),
13960 _("Generic command for showing Ada-specific settings."),
13961 &set_ada_list, &show_ada_list,
13962 &setlist, &showlist);
13964 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13965 &trust_pad_over_xvs, _("\
13966 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13967 Show whether an optimization trusting PAD types over XVS types is activated."),
13969 This is related to the encoding used by the GNAT compiler. The debugger\n\
13970 should normally trust the contents of PAD types, but certain older versions\n\
13971 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13972 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13973 work around this bug. It is always safe to turn this option \"off\", but\n\
13974 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13975 this option to \"off\" unless necessary."),
13976 NULL, NULL, &set_ada_list, &show_ada_list);
13978 add_setshow_boolean_cmd ("print-signatures", class_vars,
13979 &print_signatures, _("\
13980 Enable or disable the output of formal and return types for functions in the \
13981 overloads selection menu."), _("\
13982 Show whether the output of formal and return types for functions in the \
13983 overloads selection menu is activated."),
13984 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13986 ada_source_charset = gnat_source_charsets[0];
13987 add_setshow_enum_cmd ("source-charset", class_files,
13988 gnat_source_charsets,
13989 &ada_source_charset, _("\
13990 Set the Ada source character set."), _("\
13991 Show the Ada source character set."), _("\
13992 The character set used for Ada source files.\n\
13993 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13995 &set_ada_list, &show_ada_list);
13997 add_catch_command ("exception", _("\
13998 Catch Ada exceptions, when raised.\n\
13999 Usage: catch exception [ARG] [if CONDITION]\n\
14000 Without any argument, stop when any Ada exception is raised.\n\
14001 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14002 being raised does not have a handler (and will therefore lead to the task's\n\
14004 Otherwise, the catchpoint only stops when the name of the exception being\n\
14005 raised is the same as ARG.\n\
14006 CONDITION is a boolean expression that is evaluated to see whether the\n\
14007 exception should cause a stop."),
14008 catch_ada_exception_command,
14009 catch_ada_completer,
14013 add_catch_command ("handlers", _("\
14014 Catch Ada exceptions, when handled.\n\
14015 Usage: catch handlers [ARG] [if CONDITION]\n\
14016 Without any argument, stop when any Ada exception is handled.\n\
14017 With an argument, catch only exceptions with the given name.\n\
14018 CONDITION is a boolean expression that is evaluated to see whether the\n\
14019 exception should cause a stop."),
14020 catch_ada_handlers_command,
14021 catch_ada_completer,
14024 add_catch_command ("assert", _("\
14025 Catch failed Ada assertions, when raised.\n\
14026 Usage: catch assert [if CONDITION]\n\
14027 CONDITION is a boolean expression that is evaluated to see whether the\n\
14028 exception should cause a stop."),
14029 catch_assert_command,
14034 add_info ("exceptions", info_exceptions_command,
14036 List all Ada exception names.\n\
14037 Usage: info exceptions [REGEXP]\n\
14038 If a regular expression is passed as an argument, only those matching\n\
14039 the regular expression are listed."));
14041 add_setshow_prefix_cmd ("ada", class_maintenance,
14042 _("Set Ada maintenance-related variables."),
14043 _("Show Ada maintenance-related variables."),
14044 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14045 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
14047 add_setshow_boolean_cmd
14048 ("ignore-descriptive-types", class_maintenance,
14049 &ada_ignore_descriptive_types_p,
14050 _("Set whether descriptive types generated by GNAT should be ignored."),
14051 _("Show whether descriptive types generated by GNAT should be ignored."),
14053 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14054 DWARF attribute."),
14055 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14057 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14059 NULL, xcalloc, xfree);
14061 /* The ada-lang observers. */
14062 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14063 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14064 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");