1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "gdb_string.h"
31 #include "expression.h"
36 #include "complaints.h"
40 #include "gdb_assert.h"
44 /* Initialize BADNESS constants. */
46 const struct rank LENGTH_MISMATCH_BADNESS = {100};
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100};
51 const struct rank EXACT_MATCH_BADNESS = {0};
53 const struct rank INTEGER_PROMOTION_BADNESS = {1};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3};
61 const struct rank BASE_CONVERSION_BADNESS = {2};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10};
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
117 int opaque_type_resolution = 1;
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
123 fprintf_filtered (file, _("\
124 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
128 int overload_debug = 0;
130 show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
141 }; /* Maximum extension is 128! FIXME */
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
149 /* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
154 alloc_type (struct objfile *objfile)
158 gdb_assert (objfile != NULL);
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
164 OBJSTAT (objfile, n_types++);
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
169 /* Initialize the fields that might not be zero. */
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
178 /* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
183 alloc_type_arch (struct gdbarch *gdbarch)
187 gdb_assert (gdbarch != NULL);
189 /* Alloc the structure and start off with all fields zeroed. */
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
197 /* Initialize the fields that might not be zero. */
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
206 /* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
211 alloc_type_copy (const struct type *type)
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
219 /* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
223 get_type_arch (const struct type *type)
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
228 return TYPE_OWNER (type).gdbarch;
232 /* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
237 alloc_type_instance (struct type *oldtype)
241 /* Allocate the structure. */
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
259 smash_type (struct type *type)
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
273 /* For now, leave the pointer/reference types alone. */
276 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
282 make_pointer_type (struct type *type, struct type **typeptr)
284 struct type *ntype; /* New type */
287 ntype = TYPE_POINTER_TYPE (type);
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
303 ntype = alloc_type_copy (type);
307 else /* We have storage, but need to reset it. */
310 chain = TYPE_CHAIN (ntype);
312 TYPE_CHAIN (ntype) = chain;
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
318 /* FIXME! Assume the machine has only one representation for
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
344 /* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
348 lookup_pointer_type (struct type *type)
350 return make_pointer_type (type, (struct type **) 0);
353 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
359 make_reference_type (struct type *type, struct type **typeptr)
361 struct type *ntype; /* New type */
364 ntype = TYPE_REFERENCE_TYPE (type);
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
380 ntype = alloc_type_copy (type);
384 else /* We have storage, but need to reset it. */
387 chain = TYPE_CHAIN (ntype);
389 TYPE_CHAIN (ntype) = chain;
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
417 /* Same as above, but caller doesn't care about memory allocation
421 lookup_reference_type (struct type *type)
423 return make_reference_type (type, (struct type **) 0);
426 /* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
432 make_function_type (struct type *type, struct type **typeptr)
434 struct type *ntype; /* New type */
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
438 ntype = alloc_type_copy (type);
442 else /* We have storage, but need to reset it. */
448 TYPE_TARGET_TYPE (ntype) = type;
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
457 /* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
461 lookup_function_type (struct type *type)
463 return make_function_type (type, (struct type **) 0);
466 /* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
473 /* Check for known address space delimiters. */
474 if (!strcmp (space_identifier, "code"))
475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
476 else if (!strcmp (space_identifier, "data"))
477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
487 /* Identify address space identifier by integer flag as defined in
488 gdbtypes.h -- return the string version of the adress space name. */
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
510 make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
520 ntype = TYPE_CHAIN (ntype);
522 while (ntype != type);
524 /* Create a new type instance. */
526 ntype = alloc_type_instance (type);
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
540 /* Pointers or references to the original type are not relevant to
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
558 /* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
568 make_type_with_address_space (struct type *type, int space_flag)
570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
576 return make_qualified_type (type, new_flags, NULL);
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
591 make_cv_type (int cnst, int voltl,
593 struct type **typeptr)
595 struct type *ntype; /* New type */
597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
607 if (typeptr && *typeptr != NULL)
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
633 /* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
643 replace_type (struct type *ntype, struct type *type)
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
671 while (ntype != chain);
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
684 lookup_memberptr_type (struct type *type, struct type *domain)
688 mtype = alloc_type_copy (type);
689 smash_to_memberptr_type (mtype, domain, type);
693 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
696 lookup_methodptr_type (struct type *to_type)
700 mtype = alloc_type_copy (to_type);
701 smash_to_methodptr_type (mtype, to_type);
705 /* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
712 allocate_stub_method (struct type *type)
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
725 /* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
736 create_range_type (struct type *result_type, struct type *index_type,
737 LONGEST low_bound, LONGEST high_bound)
739 if (result_type == NULL)
740 result_type = alloc_type_copy (index_type);
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
743 if (TYPE_STUB (index_type))
744 TYPE_TARGET_STUB (result_type) = 1;
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
753 TYPE_UNSIGNED (result_type) = 1;
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
773 if (TYPE_NFIELDS (type) > 0)
775 /* The enums may not be sorted by value, so search all
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
788 /* Set unsigned indicator if warranted. */
791 TYPE_UNSIGNED (type) = 1;
805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
807 if (!TYPE_UNSIGNED (type))
809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
813 /* ... fall through for unsigned ints ... */
816 /* This round-about calculation is to avoid shifting by
817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
844 struct type *index = TYPE_INDEX_TYPE (type);
852 res = get_discrete_bounds (index, &low, &high);
856 /* Check if the array bounds are undefined. */
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
871 /* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
883 create_array_type (struct type *result_type,
884 struct type *element_type,
885 struct type *range_type)
887 LONGEST low_bound, high_bound;
889 if (result_type == NULL)
890 result_type = alloc_type_copy (range_type);
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908 TYPE_INDEX_TYPE (result_type) = range_type;
909 TYPE_VPTR_FIELDNO (result_type) = -1;
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
912 if (TYPE_LENGTH (result_type) == 0)
913 TYPE_TARGET_STUB (result_type) = 1;
919 lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
922 struct gdbarch *gdbarch = get_type_arch (element_type);
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
927 return create_array_type (NULL, element_type, range_type);
930 /* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
943 create_string_type (struct type *result_type,
944 struct type *string_char_type,
945 struct type *range_type)
947 result_type = create_array_type (result_type,
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
955 lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
958 struct type *result_type;
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
967 create_set_type (struct type *result_type, struct type *domain_type)
969 if (result_type == NULL)
970 result_type = alloc_type_copy (domain_type);
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
976 if (!TYPE_STUB (domain_type))
978 LONGEST low_bound, high_bound, bit_length;
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
986 TYPE_UNSIGNED (result_type) = 1;
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
993 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
997 make_vector_type (struct type *array_type)
999 struct type *inner_array, *elt_type;
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1016 TYPE_VECTOR (array_type) = 1;
1020 init_vector_type (struct type *elt_type, int n)
1022 struct type *array_type;
1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025 make_vector_type (array_type);
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
1047 /* Assume that a data member pointer is the same size as a normal
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1088 TYPE_VARARGS (type) = 1;
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1097 type_name_no_tag (const struct type *type)
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
1105 return TYPE_NAME (type);
1108 /* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
1113 lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
1115 const struct block *block, int noerr)
1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1128 else if (!tmp && noerr)
1134 error (_("No type named %s."), name);
1137 return (SYMBOL_TYPE (sym));
1141 lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
1144 char *uns = alloca (strlen (name) + 10);
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1152 lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
1156 char *uns = alloca (strlen (name) + 8);
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1167 /* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1171 lookup_struct (char *name, struct block *block)
1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1179 error (_("No struct type named %s."), name);
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1183 error (_("This context has class, union or enum %s, not a struct."),
1186 return (SYMBOL_TYPE (sym));
1189 /* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1193 lookup_union (char *name, struct block *block)
1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1201 error (_("No union type named %s."), name);
1203 t = SYMBOL_TYPE (sym);
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1214 /* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1218 lookup_enum (char *name, struct block *block)
1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1225 error (_("No enum type named %s."), name);
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1229 error (_("This context has class, struct or union %s, not an enum."),
1232 return (SYMBOL_TYPE (sym));
1235 /* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1239 lookup_template_type (char *name, struct type *type,
1240 struct block *block)
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1248 strcat (nam, TYPE_NAME (type));
1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1255 error (_("No template type named %s."), name);
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1259 error (_("This context has class, union or enum %s, not a struct."),
1262 return (SYMBOL_TYPE (sym));
1265 /* Given a type TYPE, lookup the type of the component of type named
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1278 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1289 type = TYPE_TARGET_TYPE (type);
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
1303 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1304 foo; } bell;" Disabled by fnf. */
1308 typename = type_name_no_tag (type);
1309 if (typename != NULL && strcmp (typename, name) == 0)
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1320 return TYPE_FIELD_TYPE (type, i);
1322 else if (!t_field_name || *t_field_name == '\0')
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1327 if (subtype != NULL)
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
1354 /* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
1360 the type or one of its baseclasses is a stub type and we are
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
1363 virtual function table pointer, and vptr_fieldno will remain -1 and
1364 vptr_basetype will remain NULL or incomplete. */
1367 get_vptr_fieldno (struct type *type, struct type **basetypep)
1369 CHECK_TYPEDEF (type);
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1381 struct type *basetype;
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1386 /* If the type comes from a different objfile we can't cache
1387 it, it may have a different lifetime. PR 2384 */
1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1394 *basetypep = basetype;
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
1411 stub_noname_complaint (void)
1413 complaint (&symfile_complaints, _("stub type has NULL name"));
1416 /* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
1433 we can find a full definition in some other file. If so, copy this
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
1438 symbols which contain a full definition for the type. */
1441 check_typedef (struct type *type)
1443 struct type *orig_type = type;
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1452 if (!TYPE_TARGET_TYPE (type))
1457 /* It is dangerous to call lookup_symbol if we are currently
1458 reading a symtab. Infinite recursion is one danger. */
1459 if (currently_reading_symtab)
1460 return make_qualified_type (type, instance_flags, NULL);
1462 name = type_name_no_tag (type);
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
1469 stub_noname_complaint ();
1470 return make_qualified_type (type, instance_flags, NULL);
1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1475 else /* TYPE_CODE_UNDEF */
1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1478 type = TYPE_TARGET_TYPE (type);
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1482 Handling address spaces/classes is nasty, what do we do if there's a
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1503 instance_flags |= new_instance_flags;
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
1522 stub_noname_complaint ();
1523 return make_qualified_type (type, instance_flags, NULL);
1525 newtype = lookup_transparent_type (name);
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
1551 char *name = type_name_no_tag (type);
1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
1560 stub_noname_complaint ();
1561 return make_qualified_type (type, instance_flags, NULL);
1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1566 /* Same as above for opaque types, we can replace the stub
1567 with the complete type only if they are in the same
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1574 type = SYMBOL_TYPE (sym);
1578 if (TYPE_TARGET_STUB (type))
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1590 == TYPE_CODE_RANGE))
1592 /* Now recompute the length of the array type, based on its
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
1595 is smaller than the low bound. */
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1600 if (high_bound < low_bound)
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
1609 high-order bit on). It uses the fact that
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
1614 from unsigned int to ULONGEST. */
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1623 TYPE_LENGTH (type) = len;
1624 TYPE_TARGET_STUB (type) = 0;
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1629 TYPE_TARGET_STUB (type) = 0;
1633 type = make_qualified_type (type, instance_flags, NULL);
1635 /* Cache TYPE_LENGTH for future use. */
1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1641 /* Parse a type expression in the string [P..P+LENGTH). If an error
1642 occurs, silently return a void type. */
1644 static struct type *
1645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1647 struct ui_file *saved_gdb_stderr;
1650 /* Suppress error messages. */
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
1655 if (!gdb_parse_and_eval_type (p, length, &type))
1656 type = builtin_type (gdbarch)->builtin_void;
1658 /* Stop suppressing error messages. */
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1665 /* Ugly hack to convert method stubs into method types.
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
1676 check_stub_method (struct type *type, int method_id, int signature_id)
1678 struct gdbarch *gdbarch = get_type_arch (type);
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
1685 struct field *argtypes;
1688 /* Make sure we got back a function string that we can use. */
1690 p = strchr (demangled_name, '(');
1694 if (demangled_name == NULL || p == NULL)
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1698 /* Now, read in the parameters that define this type. */
1703 if (*p == '(' || *p == '<')
1707 else if (*p == ')' || *p == '>')
1711 else if (*p == ',' && depth == 0)
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1723 /* We need one extra slot, for the THIS pointer. */
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1735 argtypes[0].type = lookup_pointer_type (type);
1739 if (*p != ')') /* () means no args, skip while */
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1751 argtypes[argcount].type =
1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1755 argtypetext = p + 1;
1758 if (*p == '(' || *p == '<')
1762 else if (*p == ')' || *p == '>')
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
1778 TYPE_STUB (mtype) = 0;
1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1781 TYPE_VARARGS (mtype) = 1;
1783 xfree (demangled_name);
1786 /* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1792 This function unfortunately can not die until stabs do. */
1795 check_stub_method_group (struct type *type, int method_id)
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1799 int j, found_stub = 0;
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1805 check_stub_method (type, method_id, j);
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1814 Therefore the only thing we need to handle here are v2 operator
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1819 char dem_opname[256];
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1823 dem_opname, DMGL_ANSI);
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1833 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834 const struct cplus_struct_type cplus_struct_default = { };
1837 allocate_cplus_struct_type (struct type *type)
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1849 const struct gnat_aux_type gnat_aux_default =
1852 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1856 allocate_gnat_aux_type (struct type *type)
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1865 /* Helper function to initialize the standard scalar types.
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
1873 init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
1907 TYPE_NAME (type) = obsavestring (name, strlen (name),
1908 &objfile->objfile_obstack);
1912 if (name && strcmp (name, "char") == 0)
1913 TYPE_NOSIGN (type) = 1;
1917 case TYPE_CODE_STRUCT:
1918 case TYPE_CODE_UNION:
1919 case TYPE_CODE_NAMESPACE:
1920 INIT_CPLUS_SPECIFIC (type);
1923 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1925 case TYPE_CODE_FUNC:
1926 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1933 can_dereference (struct type *t)
1935 /* FIXME: Should we return true for references as well as
1940 && TYPE_CODE (t) == TYPE_CODE_PTR
1941 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1945 is_integral_type (struct type *t)
1950 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1951 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1952 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1953 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1954 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1955 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1958 /* A helper function which returns true if types A and B represent the
1959 "same" class type. This is true if the types have the same main
1960 type, or the same name. */
1963 class_types_same_p (const struct type *a, const struct type *b)
1965 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1966 || (TYPE_NAME (a) && TYPE_NAME (b)
1967 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1970 /* Check whether BASE is an ancestor or base class of DCLASS
1971 Return 1 if so, and 0 if not. If PUBLIC is 1 then only public
1972 ancestors are considered, and the function returns 1 only if
1973 BASE is a public ancestor of DCLASS. */
1976 do_is_ancestor (struct type *base, struct type *dclass, int public)
1980 CHECK_TYPEDEF (base);
1981 CHECK_TYPEDEF (dclass);
1983 if (class_types_same_p (base, dclass))
1986 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1988 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
1991 if (do_is_ancestor (base, TYPE_BASECLASS (dclass, i), public))
1998 /* Check whether BASE is an ancestor or base class or DCLASS
1999 Return 1 if so, and 0 if not.
2000 Note: If BASE and DCLASS are of the same type, this function
2001 will return 1. So for some class A, is_ancestor (A, A) will
2005 is_ancestor (struct type *base, struct type *dclass)
2007 return do_is_ancestor (base, dclass, 0);
2010 /* Like is_ancestor, but only returns true when BASE is a public
2011 ancestor of DCLASS. */
2014 is_public_ancestor (struct type *base, struct type *dclass)
2016 return do_is_ancestor (base, dclass, 1);
2019 /* A helper function for is_unique_ancestor. */
2022 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2024 const bfd_byte *contents, CORE_ADDR address)
2028 CHECK_TYPEDEF (base);
2029 CHECK_TYPEDEF (dclass);
2031 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2033 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
2034 int this_offset = baseclass_offset (dclass, i, contents, address);
2036 if (this_offset == -1)
2037 error (_("virtual baseclass botch"));
2039 if (class_types_same_p (base, iter))
2041 /* If this is the first subclass, set *OFFSET and set count
2042 to 1. Otherwise, if this is at the same offset as
2043 previous instances, do nothing. Otherwise, increment
2047 *offset = this_offset;
2050 else if (this_offset == *offset)
2058 count += is_unique_ancestor_worker (base, iter, offset,
2059 contents + this_offset,
2060 address + this_offset);
2066 /* Like is_ancestor, but only returns true if BASE is a unique base
2067 class of the type of VAL. */
2070 is_unique_ancestor (struct type *base, struct value *val)
2074 return is_unique_ancestor_worker (base, value_type (val), &offset,
2075 value_contents (val),
2076 value_address (val)) == 1;
2081 /* Return the sum of the rank of A with the rank of B. */
2084 sum_ranks (struct rank a, struct rank b)
2087 c.rank = a.rank + b.rank;
2091 /* Compare rank A and B and return:
2093 1 if a is better than b
2094 -1 if b is better than a. */
2097 compare_ranks (struct rank a, struct rank b)
2099 if (a.rank == b.rank)
2102 if (a.rank < b.rank)
2108 /* Functions for overload resolution begin here */
2110 /* Compare two badness vectors A and B and return the result.
2111 0 => A and B are identical
2112 1 => A and B are incomparable
2113 2 => A is better than B
2114 3 => A is worse than B */
2117 compare_badness (struct badness_vector *a, struct badness_vector *b)
2121 short found_pos = 0; /* any positives in c? */
2122 short found_neg = 0; /* any negatives in c? */
2124 /* differing lengths => incomparable */
2125 if (a->length != b->length)
2128 /* Subtract b from a */
2129 for (i = 0; i < a->length; i++)
2131 tmp = compare_ranks (b->rank[i], a->rank[i]);
2141 return 1; /* incomparable */
2143 return 3; /* A > B */
2149 return 2; /* A < B */
2151 return 0; /* A == B */
2155 /* Rank a function by comparing its parameter types (PARMS, length
2156 NPARMS), to the types of an argument list (ARGS, length NARGS).
2157 Return a pointer to a badness vector. This has NARGS + 1
2160 struct badness_vector *
2161 rank_function (struct type **parms, int nparms,
2162 struct type **args, int nargs)
2165 struct badness_vector *bv;
2166 int min_len = nparms < nargs ? nparms : nargs;
2168 bv = xmalloc (sizeof (struct badness_vector));
2169 bv->length = nargs + 1; /* add 1 for the length-match rank */
2170 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2172 /* First compare the lengths of the supplied lists.
2173 If there is a mismatch, set it to a high value. */
2175 /* pai/1997-06-03 FIXME: when we have debug info about default
2176 arguments and ellipsis parameter lists, we should consider those
2177 and rank the length-match more finely. */
2179 LENGTH_MATCH (bv) = (nargs != nparms)
2180 ? LENGTH_MISMATCH_BADNESS
2181 : EXACT_MATCH_BADNESS;
2183 /* Now rank all the parameters of the candidate function */
2184 for (i = 1; i <= min_len; i++)
2185 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2187 /* If more arguments than parameters, add dummy entries */
2188 for (i = min_len + 1; i <= nargs; i++)
2189 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2194 /* Compare the names of two integer types, assuming that any sign
2195 qualifiers have been checked already. We do it this way because
2196 there may be an "int" in the name of one of the types. */
2199 integer_types_same_name_p (const char *first, const char *second)
2201 int first_p, second_p;
2203 /* If both are shorts, return 1; if neither is a short, keep
2205 first_p = (strstr (first, "short") != NULL);
2206 second_p = (strstr (second, "short") != NULL);
2207 if (first_p && second_p)
2209 if (first_p || second_p)
2212 /* Likewise for long. */
2213 first_p = (strstr (first, "long") != NULL);
2214 second_p = (strstr (second, "long") != NULL);
2215 if (first_p && second_p)
2217 if (first_p || second_p)
2220 /* Likewise for char. */
2221 first_p = (strstr (first, "char") != NULL);
2222 second_p = (strstr (second, "char") != NULL);
2223 if (first_p && second_p)
2225 if (first_p || second_p)
2228 /* They must both be ints. */
2232 /* Compares type A to type B returns 1 if the represent the same type
2236 types_equal (struct type *a, struct type *b)
2238 /* Identical type pointers. */
2239 /* However, this still doesn't catch all cases of same type for b
2240 and a. The reason is that builtin types are different from
2241 the same ones constructed from the object. */
2245 /* Resolve typedefs */
2246 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2247 a = check_typedef (a);
2248 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2249 b = check_typedef (b);
2251 /* If after resolving typedefs a and b are not of the same type
2252 code then they are not equal. */
2253 if (TYPE_CODE (a) != TYPE_CODE (b))
2256 /* If a and b are both pointers types or both reference types then
2257 they are equal of the same type iff the objects they refer to are
2258 of the same type. */
2259 if (TYPE_CODE (a) == TYPE_CODE_PTR
2260 || TYPE_CODE (a) == TYPE_CODE_REF)
2261 return types_equal (TYPE_TARGET_TYPE (a),
2262 TYPE_TARGET_TYPE (b));
2265 Well, damnit, if the names are exactly the same, I'll say they
2266 are exactly the same. This happens when we generate method
2267 stubs. The types won't point to the same address, but they
2268 really are the same.
2271 if (TYPE_NAME (a) && TYPE_NAME (b)
2272 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2275 /* Check if identical after resolving typedefs. */
2282 /* Compare one type (PARM) for compatibility with another (ARG).
2283 * PARM is intended to be the parameter type of a function; and
2284 * ARG is the supplied argument's type. This function tests if
2285 * the latter can be converted to the former.
2287 * Return 0 if they are identical types;
2288 * Otherwise, return an integer which corresponds to how compatible
2289 * PARM is to ARG. The higher the return value, the worse the match.
2290 * Generally the "bad" conversions are all uniformly assigned a 100. */
2293 rank_one_type (struct type *parm, struct type *arg)
2296 if (types_equal (parm, arg))
2297 return EXACT_MATCH_BADNESS;
2299 /* Resolve typedefs */
2300 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2301 parm = check_typedef (parm);
2302 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2303 arg = check_typedef (arg);
2305 /* See through references, since we can almost make non-references
2307 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2308 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2309 REFERENCE_CONVERSION_BADNESS));
2310 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2311 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2312 REFERENCE_CONVERSION_BADNESS));
2314 /* Debugging only. */
2315 fprintf_filtered (gdb_stderr,
2316 "------ Arg is %s [%d], parm is %s [%d]\n",
2317 TYPE_NAME (arg), TYPE_CODE (arg),
2318 TYPE_NAME (parm), TYPE_CODE (parm));
2320 /* x -> y means arg of type x being supplied for parameter of type y */
2322 switch (TYPE_CODE (parm))
2325 switch (TYPE_CODE (arg))
2329 /* Allowed pointer conversions are:
2330 (a) pointer to void-pointer conversion. */
2331 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2332 return VOID_PTR_CONVERSION_BADNESS;
2334 /* (b) pointer to ancestor-pointer conversion. */
2335 if (is_ancestor (TYPE_TARGET_TYPE (parm),
2336 TYPE_TARGET_TYPE (arg)))
2337 return BASE_PTR_CONVERSION_BADNESS;
2339 return INCOMPATIBLE_TYPE_BADNESS;
2340 case TYPE_CODE_ARRAY:
2341 if (types_equal (TYPE_TARGET_TYPE (parm),
2342 TYPE_TARGET_TYPE (arg)))
2343 return EXACT_MATCH_BADNESS;
2344 return INCOMPATIBLE_TYPE_BADNESS;
2345 case TYPE_CODE_FUNC:
2346 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2348 case TYPE_CODE_ENUM:
2349 case TYPE_CODE_FLAGS:
2350 case TYPE_CODE_CHAR:
2351 case TYPE_CODE_RANGE:
2352 case TYPE_CODE_BOOL:
2354 return INCOMPATIBLE_TYPE_BADNESS;
2356 case TYPE_CODE_ARRAY:
2357 switch (TYPE_CODE (arg))
2360 case TYPE_CODE_ARRAY:
2361 return rank_one_type (TYPE_TARGET_TYPE (parm),
2362 TYPE_TARGET_TYPE (arg));
2364 return INCOMPATIBLE_TYPE_BADNESS;
2366 case TYPE_CODE_FUNC:
2367 switch (TYPE_CODE (arg))
2369 case TYPE_CODE_PTR: /* funcptr -> func */
2370 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2372 return INCOMPATIBLE_TYPE_BADNESS;
2375 switch (TYPE_CODE (arg))
2378 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2380 /* Deal with signed, unsigned, and plain chars and
2381 signed and unsigned ints. */
2382 if (TYPE_NOSIGN (parm))
2384 /* This case only for character types */
2385 if (TYPE_NOSIGN (arg))
2386 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2387 else /* signed/unsigned char -> plain char */
2388 return INTEGER_CONVERSION_BADNESS;
2390 else if (TYPE_UNSIGNED (parm))
2392 if (TYPE_UNSIGNED (arg))
2394 /* unsigned int -> unsigned int, or
2395 unsigned long -> unsigned long */
2396 if (integer_types_same_name_p (TYPE_NAME (parm),
2398 return EXACT_MATCH_BADNESS;
2399 else if (integer_types_same_name_p (TYPE_NAME (arg),
2401 && integer_types_same_name_p (TYPE_NAME (parm),
2403 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2405 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2409 if (integer_types_same_name_p (TYPE_NAME (arg),
2411 && integer_types_same_name_p (TYPE_NAME (parm),
2413 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2415 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2418 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2420 if (integer_types_same_name_p (TYPE_NAME (parm),
2422 return EXACT_MATCH_BADNESS;
2423 else if (integer_types_same_name_p (TYPE_NAME (arg),
2425 && integer_types_same_name_p (TYPE_NAME (parm),
2427 return INTEGER_PROMOTION_BADNESS;
2429 return INTEGER_CONVERSION_BADNESS;
2432 return INTEGER_CONVERSION_BADNESS;
2434 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2435 return INTEGER_PROMOTION_BADNESS;
2437 return INTEGER_CONVERSION_BADNESS;
2438 case TYPE_CODE_ENUM:
2439 case TYPE_CODE_FLAGS:
2440 case TYPE_CODE_CHAR:
2441 case TYPE_CODE_RANGE:
2442 case TYPE_CODE_BOOL:
2443 return INTEGER_PROMOTION_BADNESS;
2445 return INT_FLOAT_CONVERSION_BADNESS;
2447 return NS_POINTER_CONVERSION_BADNESS;
2449 return INCOMPATIBLE_TYPE_BADNESS;
2452 case TYPE_CODE_ENUM:
2453 switch (TYPE_CODE (arg))
2456 case TYPE_CODE_CHAR:
2457 case TYPE_CODE_RANGE:
2458 case TYPE_CODE_BOOL:
2459 case TYPE_CODE_ENUM:
2460 return INTEGER_CONVERSION_BADNESS;
2462 return INT_FLOAT_CONVERSION_BADNESS;
2464 return INCOMPATIBLE_TYPE_BADNESS;
2467 case TYPE_CODE_CHAR:
2468 switch (TYPE_CODE (arg))
2470 case TYPE_CODE_RANGE:
2471 case TYPE_CODE_BOOL:
2472 case TYPE_CODE_ENUM:
2473 return INTEGER_CONVERSION_BADNESS;
2475 return INT_FLOAT_CONVERSION_BADNESS;
2477 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2478 return INTEGER_CONVERSION_BADNESS;
2479 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2480 return INTEGER_PROMOTION_BADNESS;
2481 /* >>> !! else fall through !! <<< */
2482 case TYPE_CODE_CHAR:
2483 /* Deal with signed, unsigned, and plain chars for C++ and
2484 with int cases falling through from previous case. */
2485 if (TYPE_NOSIGN (parm))
2487 if (TYPE_NOSIGN (arg))
2488 return EXACT_MATCH_BADNESS;
2490 return INTEGER_CONVERSION_BADNESS;
2492 else if (TYPE_UNSIGNED (parm))
2494 if (TYPE_UNSIGNED (arg))
2495 return EXACT_MATCH_BADNESS;
2497 return INTEGER_PROMOTION_BADNESS;
2499 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2500 return EXACT_MATCH_BADNESS;
2502 return INTEGER_CONVERSION_BADNESS;
2504 return INCOMPATIBLE_TYPE_BADNESS;
2507 case TYPE_CODE_RANGE:
2508 switch (TYPE_CODE (arg))
2511 case TYPE_CODE_CHAR:
2512 case TYPE_CODE_RANGE:
2513 case TYPE_CODE_BOOL:
2514 case TYPE_CODE_ENUM:
2515 return INTEGER_CONVERSION_BADNESS;
2517 return INT_FLOAT_CONVERSION_BADNESS;
2519 return INCOMPATIBLE_TYPE_BADNESS;
2522 case TYPE_CODE_BOOL:
2523 switch (TYPE_CODE (arg))
2526 case TYPE_CODE_CHAR:
2527 case TYPE_CODE_RANGE:
2528 case TYPE_CODE_ENUM:
2530 return INCOMPATIBLE_TYPE_BADNESS;
2532 return BOOL_PTR_CONVERSION_BADNESS;
2533 case TYPE_CODE_BOOL:
2534 return EXACT_MATCH_BADNESS;
2536 return INCOMPATIBLE_TYPE_BADNESS;
2540 switch (TYPE_CODE (arg))
2543 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2544 return FLOAT_PROMOTION_BADNESS;
2545 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2546 return EXACT_MATCH_BADNESS;
2548 return FLOAT_CONVERSION_BADNESS;
2550 case TYPE_CODE_BOOL:
2551 case TYPE_CODE_ENUM:
2552 case TYPE_CODE_RANGE:
2553 case TYPE_CODE_CHAR:
2554 return INT_FLOAT_CONVERSION_BADNESS;
2556 return INCOMPATIBLE_TYPE_BADNESS;
2559 case TYPE_CODE_COMPLEX:
2560 switch (TYPE_CODE (arg))
2561 { /* Strictly not needed for C++, but... */
2563 return FLOAT_PROMOTION_BADNESS;
2564 case TYPE_CODE_COMPLEX:
2565 return EXACT_MATCH_BADNESS;
2567 return INCOMPATIBLE_TYPE_BADNESS;
2570 case TYPE_CODE_STRUCT:
2571 /* currently same as TYPE_CODE_CLASS */
2572 switch (TYPE_CODE (arg))
2574 case TYPE_CODE_STRUCT:
2575 /* Check for derivation */
2576 if (is_ancestor (parm, arg))
2577 return BASE_CONVERSION_BADNESS;
2578 /* else fall through */
2580 return INCOMPATIBLE_TYPE_BADNESS;
2583 case TYPE_CODE_UNION:
2584 switch (TYPE_CODE (arg))
2586 case TYPE_CODE_UNION:
2588 return INCOMPATIBLE_TYPE_BADNESS;
2591 case TYPE_CODE_MEMBERPTR:
2592 switch (TYPE_CODE (arg))
2595 return INCOMPATIBLE_TYPE_BADNESS;
2598 case TYPE_CODE_METHOD:
2599 switch (TYPE_CODE (arg))
2603 return INCOMPATIBLE_TYPE_BADNESS;
2607 switch (TYPE_CODE (arg))
2611 return INCOMPATIBLE_TYPE_BADNESS;
2616 switch (TYPE_CODE (arg))
2620 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2621 TYPE_FIELD_TYPE (arg, 0));
2623 return INCOMPATIBLE_TYPE_BADNESS;
2626 case TYPE_CODE_VOID:
2628 return INCOMPATIBLE_TYPE_BADNESS;
2629 } /* switch (TYPE_CODE (arg)) */
2633 /* End of functions for overload resolution */
2636 print_bit_vector (B_TYPE *bits, int nbits)
2640 for (bitno = 0; bitno < nbits; bitno++)
2642 if ((bitno % 8) == 0)
2644 puts_filtered (" ");
2646 if (B_TST (bits, bitno))
2647 printf_filtered (("1"));
2649 printf_filtered (("0"));
2653 /* Note the first arg should be the "this" pointer, we may not want to
2654 include it since we may get into a infinitely recursive
2658 print_arg_types (struct field *args, int nargs, int spaces)
2664 for (i = 0; i < nargs; i++)
2665 recursive_dump_type (args[i].type, spaces + 2);
2670 field_is_static (struct field *f)
2672 /* "static" fields are the fields whose location is not relative
2673 to the address of the enclosing struct. It would be nice to
2674 have a dedicated flag that would be set for static fields when
2675 the type is being created. But in practice, checking the field
2676 loc_kind should give us an accurate answer. */
2677 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2678 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2682 dump_fn_fieldlists (struct type *type, int spaces)
2688 printfi_filtered (spaces, "fn_fieldlists ");
2689 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2690 printf_filtered ("\n");
2691 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2693 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2694 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2696 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2697 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2699 printf_filtered (_(") length %d\n"),
2700 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2701 for (overload_idx = 0;
2702 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2705 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2707 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2708 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2710 printf_filtered (")\n");
2711 printfi_filtered (spaces + 8, "type ");
2712 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2714 printf_filtered ("\n");
2716 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2719 printfi_filtered (spaces + 8, "args ");
2720 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2722 printf_filtered ("\n");
2724 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2725 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2728 printfi_filtered (spaces + 8, "fcontext ");
2729 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2731 printf_filtered ("\n");
2733 printfi_filtered (spaces + 8, "is_const %d\n",
2734 TYPE_FN_FIELD_CONST (f, overload_idx));
2735 printfi_filtered (spaces + 8, "is_volatile %d\n",
2736 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2737 printfi_filtered (spaces + 8, "is_private %d\n",
2738 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2739 printfi_filtered (spaces + 8, "is_protected %d\n",
2740 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2741 printfi_filtered (spaces + 8, "is_stub %d\n",
2742 TYPE_FN_FIELD_STUB (f, overload_idx));
2743 printfi_filtered (spaces + 8, "voffset %u\n",
2744 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2750 print_cplus_stuff (struct type *type, int spaces)
2752 printfi_filtered (spaces, "n_baseclasses %d\n",
2753 TYPE_N_BASECLASSES (type));
2754 printfi_filtered (spaces, "nfn_fields %d\n",
2755 TYPE_NFN_FIELDS (type));
2756 printfi_filtered (spaces, "nfn_fields_total %d\n",
2757 TYPE_NFN_FIELDS_TOTAL (type));
2758 if (TYPE_N_BASECLASSES (type) > 0)
2760 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2761 TYPE_N_BASECLASSES (type));
2762 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2764 printf_filtered (")");
2766 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2767 TYPE_N_BASECLASSES (type));
2768 puts_filtered ("\n");
2770 if (TYPE_NFIELDS (type) > 0)
2772 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2774 printfi_filtered (spaces,
2775 "private_field_bits (%d bits at *",
2776 TYPE_NFIELDS (type));
2777 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2779 printf_filtered (")");
2780 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2781 TYPE_NFIELDS (type));
2782 puts_filtered ("\n");
2784 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2786 printfi_filtered (spaces,
2787 "protected_field_bits (%d bits at *",
2788 TYPE_NFIELDS (type));
2789 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2791 printf_filtered (")");
2792 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2793 TYPE_NFIELDS (type));
2794 puts_filtered ("\n");
2797 if (TYPE_NFN_FIELDS (type) > 0)
2799 dump_fn_fieldlists (type, spaces);
2803 /* Print the contents of the TYPE's type_specific union, assuming that
2804 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2807 print_gnat_stuff (struct type *type, int spaces)
2809 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2811 recursive_dump_type (descriptive_type, spaces + 2);
2814 static struct obstack dont_print_type_obstack;
2817 recursive_dump_type (struct type *type, int spaces)
2822 obstack_begin (&dont_print_type_obstack, 0);
2824 if (TYPE_NFIELDS (type) > 0
2825 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2827 struct type **first_dont_print
2828 = (struct type **) obstack_base (&dont_print_type_obstack);
2830 int i = (struct type **)
2831 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2835 if (type == first_dont_print[i])
2837 printfi_filtered (spaces, "type node ");
2838 gdb_print_host_address (type, gdb_stdout);
2839 printf_filtered (_(" <same as already seen type>\n"));
2844 obstack_ptr_grow (&dont_print_type_obstack, type);
2847 printfi_filtered (spaces, "type node ");
2848 gdb_print_host_address (type, gdb_stdout);
2849 printf_filtered ("\n");
2850 printfi_filtered (spaces, "name '%s' (",
2851 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2852 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2853 printf_filtered (")\n");
2854 printfi_filtered (spaces, "tagname '%s' (",
2855 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2856 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2857 printf_filtered (")\n");
2858 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2859 switch (TYPE_CODE (type))
2861 case TYPE_CODE_UNDEF:
2862 printf_filtered ("(TYPE_CODE_UNDEF)");
2865 printf_filtered ("(TYPE_CODE_PTR)");
2867 case TYPE_CODE_ARRAY:
2868 printf_filtered ("(TYPE_CODE_ARRAY)");
2870 case TYPE_CODE_STRUCT:
2871 printf_filtered ("(TYPE_CODE_STRUCT)");
2873 case TYPE_CODE_UNION:
2874 printf_filtered ("(TYPE_CODE_UNION)");
2876 case TYPE_CODE_ENUM:
2877 printf_filtered ("(TYPE_CODE_ENUM)");
2879 case TYPE_CODE_FLAGS:
2880 printf_filtered ("(TYPE_CODE_FLAGS)");
2882 case TYPE_CODE_FUNC:
2883 printf_filtered ("(TYPE_CODE_FUNC)");
2886 printf_filtered ("(TYPE_CODE_INT)");
2889 printf_filtered ("(TYPE_CODE_FLT)");
2891 case TYPE_CODE_VOID:
2892 printf_filtered ("(TYPE_CODE_VOID)");
2895 printf_filtered ("(TYPE_CODE_SET)");
2897 case TYPE_CODE_RANGE:
2898 printf_filtered ("(TYPE_CODE_RANGE)");
2900 case TYPE_CODE_STRING:
2901 printf_filtered ("(TYPE_CODE_STRING)");
2903 case TYPE_CODE_BITSTRING:
2904 printf_filtered ("(TYPE_CODE_BITSTRING)");
2906 case TYPE_CODE_ERROR:
2907 printf_filtered ("(TYPE_CODE_ERROR)");
2909 case TYPE_CODE_MEMBERPTR:
2910 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2912 case TYPE_CODE_METHODPTR:
2913 printf_filtered ("(TYPE_CODE_METHODPTR)");
2915 case TYPE_CODE_METHOD:
2916 printf_filtered ("(TYPE_CODE_METHOD)");
2919 printf_filtered ("(TYPE_CODE_REF)");
2921 case TYPE_CODE_CHAR:
2922 printf_filtered ("(TYPE_CODE_CHAR)");
2924 case TYPE_CODE_BOOL:
2925 printf_filtered ("(TYPE_CODE_BOOL)");
2927 case TYPE_CODE_COMPLEX:
2928 printf_filtered ("(TYPE_CODE_COMPLEX)");
2930 case TYPE_CODE_TYPEDEF:
2931 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2933 case TYPE_CODE_NAMESPACE:
2934 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2937 printf_filtered ("(UNKNOWN TYPE CODE)");
2940 puts_filtered ("\n");
2941 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2942 if (TYPE_OBJFILE_OWNED (type))
2944 printfi_filtered (spaces, "objfile ");
2945 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2949 printfi_filtered (spaces, "gdbarch ");
2950 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2952 printf_filtered ("\n");
2953 printfi_filtered (spaces, "target_type ");
2954 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2955 printf_filtered ("\n");
2956 if (TYPE_TARGET_TYPE (type) != NULL)
2958 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2960 printfi_filtered (spaces, "pointer_type ");
2961 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2962 printf_filtered ("\n");
2963 printfi_filtered (spaces, "reference_type ");
2964 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2965 printf_filtered ("\n");
2966 printfi_filtered (spaces, "type_chain ");
2967 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2968 printf_filtered ("\n");
2969 printfi_filtered (spaces, "instance_flags 0x%x",
2970 TYPE_INSTANCE_FLAGS (type));
2971 if (TYPE_CONST (type))
2973 puts_filtered (" TYPE_FLAG_CONST");
2975 if (TYPE_VOLATILE (type))
2977 puts_filtered (" TYPE_FLAG_VOLATILE");
2979 if (TYPE_CODE_SPACE (type))
2981 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2983 if (TYPE_DATA_SPACE (type))
2985 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2987 if (TYPE_ADDRESS_CLASS_1 (type))
2989 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2991 if (TYPE_ADDRESS_CLASS_2 (type))
2993 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2995 puts_filtered ("\n");
2997 printfi_filtered (spaces, "flags");
2998 if (TYPE_UNSIGNED (type))
3000 puts_filtered (" TYPE_FLAG_UNSIGNED");
3002 if (TYPE_NOSIGN (type))
3004 puts_filtered (" TYPE_FLAG_NOSIGN");
3006 if (TYPE_STUB (type))
3008 puts_filtered (" TYPE_FLAG_STUB");
3010 if (TYPE_TARGET_STUB (type))
3012 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3014 if (TYPE_STATIC (type))
3016 puts_filtered (" TYPE_FLAG_STATIC");
3018 if (TYPE_PROTOTYPED (type))
3020 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3022 if (TYPE_INCOMPLETE (type))
3024 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3026 if (TYPE_VARARGS (type))
3028 puts_filtered (" TYPE_FLAG_VARARGS");
3030 /* This is used for things like AltiVec registers on ppc. Gcc emits
3031 an attribute for the array type, which tells whether or not we
3032 have a vector, instead of a regular array. */
3033 if (TYPE_VECTOR (type))
3035 puts_filtered (" TYPE_FLAG_VECTOR");
3037 if (TYPE_FIXED_INSTANCE (type))
3039 puts_filtered (" TYPE_FIXED_INSTANCE");
3041 if (TYPE_STUB_SUPPORTED (type))
3043 puts_filtered (" TYPE_STUB_SUPPORTED");
3045 if (TYPE_NOTTEXT (type))
3047 puts_filtered (" TYPE_NOTTEXT");
3049 puts_filtered ("\n");
3050 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3051 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3052 puts_filtered ("\n");
3053 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3055 printfi_filtered (spaces + 2,
3056 "[%d] bitpos %d bitsize %d type ",
3057 idx, TYPE_FIELD_BITPOS (type, idx),
3058 TYPE_FIELD_BITSIZE (type, idx));
3059 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3060 printf_filtered (" name '%s' (",
3061 TYPE_FIELD_NAME (type, idx) != NULL
3062 ? TYPE_FIELD_NAME (type, idx)
3064 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3065 printf_filtered (")\n");
3066 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3068 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3071 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3073 printfi_filtered (spaces, "low %s%s high %s%s\n",
3074 plongest (TYPE_LOW_BOUND (type)),
3075 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3076 plongest (TYPE_HIGH_BOUND (type)),
3077 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
3079 printfi_filtered (spaces, "vptr_basetype ");
3080 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3081 puts_filtered ("\n");
3082 if (TYPE_VPTR_BASETYPE (type) != NULL)
3084 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3086 printfi_filtered (spaces, "vptr_fieldno %d\n",
3087 TYPE_VPTR_FIELDNO (type));
3089 switch (TYPE_SPECIFIC_FIELD (type))
3091 case TYPE_SPECIFIC_CPLUS_STUFF:
3092 printfi_filtered (spaces, "cplus_stuff ");
3093 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3095 puts_filtered ("\n");
3096 print_cplus_stuff (type, spaces);
3099 case TYPE_SPECIFIC_GNAT_STUFF:
3100 printfi_filtered (spaces, "gnat_stuff ");
3101 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3102 puts_filtered ("\n");
3103 print_gnat_stuff (type, spaces);
3106 case TYPE_SPECIFIC_FLOATFORMAT:
3107 printfi_filtered (spaces, "floatformat ");
3108 if (TYPE_FLOATFORMAT (type) == NULL)
3109 puts_filtered ("(null)");
3112 puts_filtered ("{ ");
3113 if (TYPE_FLOATFORMAT (type)[0] == NULL
3114 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3115 puts_filtered ("(null)");
3117 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3119 puts_filtered (", ");
3120 if (TYPE_FLOATFORMAT (type)[1] == NULL
3121 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3122 puts_filtered ("(null)");
3124 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3126 puts_filtered (" }");
3128 puts_filtered ("\n");
3131 case TYPE_SPECIFIC_CALLING_CONVENTION:
3132 printfi_filtered (spaces, "calling_convention %d\n",
3133 TYPE_CALLING_CONVENTION (type));
3138 obstack_free (&dont_print_type_obstack, NULL);
3141 /* Trivial helpers for the libiberty hash table, for mapping one
3146 struct type *old, *new;
3150 type_pair_hash (const void *item)
3152 const struct type_pair *pair = item;
3154 return htab_hash_pointer (pair->old);
3158 type_pair_eq (const void *item_lhs, const void *item_rhs)
3160 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3162 return lhs->old == rhs->old;
3165 /* Allocate the hash table used by copy_type_recursive to walk
3166 types without duplicates. We use OBJFILE's obstack, because
3167 OBJFILE is about to be deleted. */
3170 create_copied_types_hash (struct objfile *objfile)
3172 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3173 NULL, &objfile->objfile_obstack,
3174 hashtab_obstack_allocate,
3175 dummy_obstack_deallocate);
3178 /* Recursively copy (deep copy) TYPE, if it is associated with
3179 OBJFILE. Return a new type allocated using malloc, a saved type if
3180 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3181 not associated with OBJFILE. */
3184 copy_type_recursive (struct objfile *objfile,
3186 htab_t copied_types)
3188 struct type_pair *stored, pair;
3190 struct type *new_type;
3192 if (! TYPE_OBJFILE_OWNED (type))
3195 /* This type shouldn't be pointing to any types in other objfiles;
3196 if it did, the type might disappear unexpectedly. */
3197 gdb_assert (TYPE_OBJFILE (type) == objfile);
3200 slot = htab_find_slot (copied_types, &pair, INSERT);
3202 return ((struct type_pair *) *slot)->new;
3204 new_type = alloc_type_arch (get_type_arch (type));
3206 /* We must add the new type to the hash table immediately, in case
3207 we encounter this type again during a recursive call below. */
3208 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3210 stored->new = new_type;
3213 /* Copy the common fields of types. For the main type, we simply
3214 copy the entire thing and then update specific fields as needed. */
3215 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3216 TYPE_OBJFILE_OWNED (new_type) = 0;
3217 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3219 if (TYPE_NAME (type))
3220 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3221 if (TYPE_TAG_NAME (type))
3222 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3224 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3225 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3227 /* Copy the fields. */
3228 if (TYPE_NFIELDS (type))
3232 nfields = TYPE_NFIELDS (type);
3233 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3234 for (i = 0; i < nfields; i++)
3236 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3237 TYPE_FIELD_ARTIFICIAL (type, i);
3238 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3239 if (TYPE_FIELD_TYPE (type, i))
3240 TYPE_FIELD_TYPE (new_type, i)
3241 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3243 if (TYPE_FIELD_NAME (type, i))
3244 TYPE_FIELD_NAME (new_type, i) =
3245 xstrdup (TYPE_FIELD_NAME (type, i));
3246 switch (TYPE_FIELD_LOC_KIND (type, i))
3248 case FIELD_LOC_KIND_BITPOS:
3249 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3250 TYPE_FIELD_BITPOS (type, i));
3252 case FIELD_LOC_KIND_PHYSADDR:
3253 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3254 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3256 case FIELD_LOC_KIND_PHYSNAME:
3257 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3258 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3262 internal_error (__FILE__, __LINE__,
3263 _("Unexpected type field location kind: %d"),
3264 TYPE_FIELD_LOC_KIND (type, i));
3269 /* For range types, copy the bounds information. */
3270 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3272 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3273 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3276 /* Copy pointers to other types. */
3277 if (TYPE_TARGET_TYPE (type))
3278 TYPE_TARGET_TYPE (new_type) =
3279 copy_type_recursive (objfile,
3280 TYPE_TARGET_TYPE (type),
3282 if (TYPE_VPTR_BASETYPE (type))
3283 TYPE_VPTR_BASETYPE (new_type) =
3284 copy_type_recursive (objfile,
3285 TYPE_VPTR_BASETYPE (type),
3287 /* Maybe copy the type_specific bits.
3289 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3290 base classes and methods. There's no fundamental reason why we
3291 can't, but at the moment it is not needed. */
3293 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3294 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3295 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3296 || TYPE_CODE (type) == TYPE_CODE_UNION
3297 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3298 INIT_CPLUS_SPECIFIC (new_type);
3303 /* Make a copy of the given TYPE, except that the pointer & reference
3304 types are not preserved.
3306 This function assumes that the given type has an associated objfile.
3307 This objfile is used to allocate the new type. */
3310 copy_type (const struct type *type)
3312 struct type *new_type;
3314 gdb_assert (TYPE_OBJFILE_OWNED (type));
3316 new_type = alloc_type_copy (type);
3317 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3318 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3319 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3320 sizeof (struct main_type));
3326 /* Helper functions to initialize architecture-specific types. */
3328 /* Allocate a type structure associated with GDBARCH and set its
3329 CODE, LENGTH, and NAME fields. */
3331 arch_type (struct gdbarch *gdbarch,
3332 enum type_code code, int length, char *name)
3336 type = alloc_type_arch (gdbarch);
3337 TYPE_CODE (type) = code;
3338 TYPE_LENGTH (type) = length;
3341 TYPE_NAME (type) = xstrdup (name);
3346 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3347 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3348 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3350 arch_integer_type (struct gdbarch *gdbarch,
3351 int bit, int unsigned_p, char *name)
3355 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3357 TYPE_UNSIGNED (t) = 1;
3358 if (name && strcmp (name, "char") == 0)
3359 TYPE_NOSIGN (t) = 1;
3364 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3365 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3366 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3368 arch_character_type (struct gdbarch *gdbarch,
3369 int bit, int unsigned_p, char *name)
3373 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3375 TYPE_UNSIGNED (t) = 1;
3380 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3381 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3382 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3384 arch_boolean_type (struct gdbarch *gdbarch,
3385 int bit, int unsigned_p, char *name)
3389 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3391 TYPE_UNSIGNED (t) = 1;
3396 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3397 BIT is the type size in bits; if BIT equals -1, the size is
3398 determined by the floatformat. NAME is the type name. Set the
3399 TYPE_FLOATFORMAT from FLOATFORMATS. */
3401 arch_float_type (struct gdbarch *gdbarch,
3402 int bit, char *name, const struct floatformat **floatformats)
3408 gdb_assert (floatformats != NULL);
3409 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3410 bit = floatformats[0]->totalsize;
3412 gdb_assert (bit >= 0);
3414 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3415 TYPE_FLOATFORMAT (t) = floatformats;
3419 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3420 NAME is the type name. TARGET_TYPE is the component float type. */
3422 arch_complex_type (struct gdbarch *gdbarch,
3423 char *name, struct type *target_type)
3427 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3428 2 * TYPE_LENGTH (target_type), name);
3429 TYPE_TARGET_TYPE (t) = target_type;
3433 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3434 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3436 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3438 int nfields = length * TARGET_CHAR_BIT;
3441 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3442 TYPE_UNSIGNED (type) = 1;
3443 TYPE_NFIELDS (type) = nfields;
3444 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3449 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3450 position BITPOS is called NAME. */
3452 append_flags_type_flag (struct type *type, int bitpos, char *name)
3454 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3455 gdb_assert (bitpos < TYPE_NFIELDS (type));
3456 gdb_assert (bitpos >= 0);
3460 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3461 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3465 /* Don't show this field to the user. */
3466 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3470 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3471 specified by CODE) associated with GDBARCH. NAME is the type name. */
3473 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3477 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3478 t = arch_type (gdbarch, code, 0, NULL);
3479 TYPE_TAG_NAME (t) = name;
3480 INIT_CPLUS_SPECIFIC (t);
3484 /* Add new field with name NAME and type FIELD to composite type T.
3485 Do not set the field's position or adjust the type's length;
3486 the caller should do so. Return the new field. */
3488 append_composite_type_field_raw (struct type *t, char *name,
3493 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3494 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3495 sizeof (struct field) * TYPE_NFIELDS (t));
3496 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3497 memset (f, 0, sizeof f[0]);
3498 FIELD_TYPE (f[0]) = field;
3499 FIELD_NAME (f[0]) = name;
3503 /* Add new field with name NAME and type FIELD to composite type T.
3504 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3506 append_composite_type_field_aligned (struct type *t, char *name,
3507 struct type *field, int alignment)
3509 struct field *f = append_composite_type_field_raw (t, name, field);
3511 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3513 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3514 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3516 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3518 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3519 if (TYPE_NFIELDS (t) > 1)
3521 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3522 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3523 * TARGET_CHAR_BIT));
3527 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3531 FIELD_BITPOS (f[0]) += left;
3532 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3539 /* Add new field with name NAME and type FIELD to composite type T. */
3541 append_composite_type_field (struct type *t, char *name,
3544 append_composite_type_field_aligned (t, name, field, 0);
3548 static struct gdbarch_data *gdbtypes_data;
3550 const struct builtin_type *
3551 builtin_type (struct gdbarch *gdbarch)
3553 return gdbarch_data (gdbarch, gdbtypes_data);
3557 gdbtypes_post_init (struct gdbarch *gdbarch)
3559 struct builtin_type *builtin_type
3560 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3563 builtin_type->builtin_void
3564 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3565 builtin_type->builtin_char
3566 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3567 !gdbarch_char_signed (gdbarch), "char");
3568 builtin_type->builtin_signed_char
3569 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3571 builtin_type->builtin_unsigned_char
3572 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3573 1, "unsigned char");
3574 builtin_type->builtin_short
3575 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3577 builtin_type->builtin_unsigned_short
3578 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3579 1, "unsigned short");
3580 builtin_type->builtin_int
3581 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3583 builtin_type->builtin_unsigned_int
3584 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3586 builtin_type->builtin_long
3587 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3589 builtin_type->builtin_unsigned_long
3590 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3591 1, "unsigned long");
3592 builtin_type->builtin_long_long
3593 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3595 builtin_type->builtin_unsigned_long_long
3596 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3597 1, "unsigned long long");
3598 builtin_type->builtin_float
3599 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3600 "float", gdbarch_float_format (gdbarch));
3601 builtin_type->builtin_double
3602 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3603 "double", gdbarch_double_format (gdbarch));
3604 builtin_type->builtin_long_double
3605 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3606 "long double", gdbarch_long_double_format (gdbarch));
3607 builtin_type->builtin_complex
3608 = arch_complex_type (gdbarch, "complex",
3609 builtin_type->builtin_float);
3610 builtin_type->builtin_double_complex
3611 = arch_complex_type (gdbarch, "double complex",
3612 builtin_type->builtin_double);
3613 builtin_type->builtin_string
3614 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3615 builtin_type->builtin_bool
3616 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3618 /* The following three are about decimal floating point types, which
3619 are 32-bits, 64-bits and 128-bits respectively. */
3620 builtin_type->builtin_decfloat
3621 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3622 builtin_type->builtin_decdouble
3623 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3624 builtin_type->builtin_declong
3625 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3627 /* "True" character types. */
3628 builtin_type->builtin_true_char
3629 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3630 builtin_type->builtin_true_unsigned_char
3631 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3633 /* Fixed-size integer types. */
3634 builtin_type->builtin_int0
3635 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3636 builtin_type->builtin_int8
3637 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3638 builtin_type->builtin_uint8
3639 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3640 builtin_type->builtin_int16
3641 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3642 builtin_type->builtin_uint16
3643 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3644 builtin_type->builtin_int32
3645 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3646 builtin_type->builtin_uint32
3647 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3648 builtin_type->builtin_int64
3649 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3650 builtin_type->builtin_uint64
3651 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3652 builtin_type->builtin_int128
3653 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3654 builtin_type->builtin_uint128
3655 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3656 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3657 TYPE_INSTANCE_FLAG_NOTTEXT;
3658 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3659 TYPE_INSTANCE_FLAG_NOTTEXT;
3661 /* Wide character types. */
3662 builtin_type->builtin_char16
3663 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3664 builtin_type->builtin_char32
3665 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3668 /* Default data/code pointer types. */
3669 builtin_type->builtin_data_ptr
3670 = lookup_pointer_type (builtin_type->builtin_void);
3671 builtin_type->builtin_func_ptr
3672 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3674 /* This type represents a GDB internal function. */
3675 builtin_type->internal_fn
3676 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3677 "<internal function>");
3679 return builtin_type;
3683 /* This set of objfile-based types is intended to be used by symbol
3684 readers as basic types. */
3686 static const struct objfile_data *objfile_type_data;
3688 const struct objfile_type *
3689 objfile_type (struct objfile *objfile)
3691 struct gdbarch *gdbarch;
3692 struct objfile_type *objfile_type
3693 = objfile_data (objfile, objfile_type_data);
3696 return objfile_type;
3698 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3699 1, struct objfile_type);
3701 /* Use the objfile architecture to determine basic type properties. */
3702 gdbarch = get_objfile_arch (objfile);
3705 objfile_type->builtin_void
3706 = init_type (TYPE_CODE_VOID, 1,
3710 objfile_type->builtin_char
3711 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3713 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3715 objfile_type->builtin_signed_char
3716 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3718 "signed char", objfile);
3719 objfile_type->builtin_unsigned_char
3720 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3722 "unsigned char", objfile);
3723 objfile_type->builtin_short
3724 = init_type (TYPE_CODE_INT,
3725 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3726 0, "short", objfile);
3727 objfile_type->builtin_unsigned_short
3728 = init_type (TYPE_CODE_INT,
3729 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3730 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3731 objfile_type->builtin_int
3732 = init_type (TYPE_CODE_INT,
3733 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3735 objfile_type->builtin_unsigned_int
3736 = init_type (TYPE_CODE_INT,
3737 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3738 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3739 objfile_type->builtin_long
3740 = init_type (TYPE_CODE_INT,
3741 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3742 0, "long", objfile);
3743 objfile_type->builtin_unsigned_long
3744 = init_type (TYPE_CODE_INT,
3745 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3746 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3747 objfile_type->builtin_long_long
3748 = init_type (TYPE_CODE_INT,
3749 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3750 0, "long long", objfile);
3751 objfile_type->builtin_unsigned_long_long
3752 = init_type (TYPE_CODE_INT,
3753 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3754 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3756 objfile_type->builtin_float
3757 = init_type (TYPE_CODE_FLT,
3758 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3759 0, "float", objfile);
3760 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3761 = gdbarch_float_format (gdbarch);
3762 objfile_type->builtin_double
3763 = init_type (TYPE_CODE_FLT,
3764 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3765 0, "double", objfile);
3766 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3767 = gdbarch_double_format (gdbarch);
3768 objfile_type->builtin_long_double
3769 = init_type (TYPE_CODE_FLT,
3770 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3771 0, "long double", objfile);
3772 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3773 = gdbarch_long_double_format (gdbarch);
3775 /* This type represents a type that was unrecognized in symbol read-in. */
3776 objfile_type->builtin_error
3777 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3779 /* The following set of types is used for symbols with no
3780 debug information. */
3781 objfile_type->nodebug_text_symbol
3782 = init_type (TYPE_CODE_FUNC, 1, 0,
3783 "<text variable, no debug info>", objfile);
3784 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3785 = objfile_type->builtin_int;
3786 objfile_type->nodebug_data_symbol
3787 = init_type (TYPE_CODE_INT,
3788 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3789 "<data variable, no debug info>", objfile);
3790 objfile_type->nodebug_unknown_symbol
3791 = init_type (TYPE_CODE_INT, 1, 0,
3792 "<variable (not text or data), no debug info>", objfile);
3793 objfile_type->nodebug_tls_symbol
3794 = init_type (TYPE_CODE_INT,
3795 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3796 "<thread local variable, no debug info>", objfile);
3798 /* NOTE: on some targets, addresses and pointers are not necessarily
3799 the same --- for example, on the D10V, pointers are 16 bits long,
3800 but addresses are 32 bits long. See doc/gdbint.texinfo,
3801 ``Pointers Are Not Always Addresses''.
3804 - gdb's `struct type' always describes the target's
3806 - gdb's `struct value' objects should always hold values in
3808 - gdb's CORE_ADDR values are addresses in the unified virtual
3809 address space that the assembler and linker work with. Thus,
3810 since target_read_memory takes a CORE_ADDR as an argument, it
3811 can access any memory on the target, even if the processor has
3812 separate code and data address spaces.
3815 - If v is a value holding a D10V code pointer, its contents are
3816 in target form: a big-endian address left-shifted two bits.
3817 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3818 sizeof (void *) == 2 on the target.
3820 In this context, objfile_type->builtin_core_addr is a bit odd:
3821 it's a target type for a value the target will never see. It's
3822 only used to hold the values of (typeless) linker symbols, which
3823 are indeed in the unified virtual address space. */
3825 objfile_type->builtin_core_addr
3826 = init_type (TYPE_CODE_INT,
3827 gdbarch_addr_bit (gdbarch) / 8,
3828 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3830 set_objfile_data (objfile, objfile_type_data, objfile_type);
3831 return objfile_type;
3835 extern void _initialize_gdbtypes (void);
3837 _initialize_gdbtypes (void)
3839 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3840 objfile_type_data = register_objfile_data ();
3842 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3843 Set debugging of C++ overloading."), _("\
3844 Show debugging of C++ overloading."), _("\
3845 When enabled, ranking of the functions is displayed."),
3847 show_overload_debug,
3848 &setdebuglist, &showdebuglist);
3850 /* Add user knob for controlling resolution of opaque types. */
3851 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3852 &opaque_type_resolution, _("\
3853 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3854 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3856 show_opaque_type_resolution,
3857 &setlist, &showlist);