1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
31 /* This file handles functionality common to the different MIPS ABI's. */
36 #include "libiberty.h"
38 #include "elfxx-mips.h"
40 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
53 (1) absolute addresses
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
85 /* The input bfd in which the symbol is defined. */
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
92 /* If abfd == NULL, an address that must be stored in the got. */
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
120 struct mips_got_page_range
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
131 /* The input bfd in which the symbol is defined. */
133 /* The index of the symbol, as stored in the relocation r_info. */
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
141 /* This structure is used to hold .got information when linking. */
145 /* The global symbol in the GOT with the lowest index in the dynamic
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
180 /* Map an input bfd to a got in a multi-got link. */
182 struct mips_elf_bfd2got_hash
185 struct mips_got_info *g;
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
191 struct mips_elf_got_per_bfd_arg
193 /* A hashtable that maps bfds to gots. */
195 /* The output bfd. */
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
215 unsigned int global_count;
218 /* Another structure used to pass arguments for got entries traversal. */
220 struct mips_elf_set_global_got_offset_arg
222 struct mips_got_info *g;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
231 struct mips_elf_count_tls_arg
233 struct bfd_link_info *info;
237 struct _mips_elf_section_data
239 struct bfd_elf_section_data elf;
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
272 #define GGA_RELOC_ONLY 1
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
279 addiu $25,$25,%lo(func)
281 immediately before a PIC function "func". The second is to add:
285 addiu $25,$25,%lo(func)
287 to a separate trampoline section.
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
296 /* The offset of the stub from the start of STUB_SECTION. */
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
304 /* Macros for populating a mips_elf_la25_stub. */
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
319 struct mips_elf_hash_sort_data
321 /* The symbol in the global GOT with the lowest dynamic symbol table
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
339 struct mips_elf_link_hash_entry
341 struct elf_link_hash_entry root;
343 /* External symbol information. */
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
351 unsigned int possibly_dynamic_relocs;
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
367 #define GOT_TLS_LDM 2
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
454 /* Shortcuts to some dynamic sections, or NULL if they are not
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
496 The function returns the new section on success, otherwise it
498 asection *(*add_stub_section) (const char *, asection *, asection *);
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
547 /* Structure used to pass information to mips_elf_output_extsym. */
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
558 /* The names of the runtime procedure table symbols used on IRIX5. */
560 static const char * const mips_elf_dynsym_rtproc_names[] =
563 "_procedure_string_table",
564 "_procedure_table_size",
568 /* These structures are used to generate the .compact_rel section on
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
615 } Elf32_External_crinfo;
621 } Elf32_External_crinfo2;
623 /* These are the constants used to swap the bitfields in a crinfo. */
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
674 struct exception_info *exception_info;/* Pointer to exception array. */
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
715 #define JALR_TO_BAL_P(abfd) 1
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
720 #define JR_TO_B_P(abfd) 1
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
830 /* The maximum size of the GOT for it to be addressable using 16-bit
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
855 /* The name of the dynamic interpreter. This is put in the .interp
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
876 #define ELF_R_TYPE(bfd, i) \
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
914 We record any stubs that we find in the symbol table. */
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1016 /* microMIPS 32-bit opcode helper installer. */
1019 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1021 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1022 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1025 /* microMIPS 32-bit opcode helper retriever. */
1028 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1030 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1033 /* Look up an entry in a MIPS ELF linker hash table. */
1035 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1036 ((struct mips_elf_link_hash_entry *) \
1037 elf_link_hash_lookup (&(table)->root, (string), (create), \
1040 /* Traverse a MIPS ELF linker hash table. */
1042 #define mips_elf_link_hash_traverse(table, func, info) \
1043 (elf_link_hash_traverse \
1045 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1048 /* Find the base offsets for thread-local storage in this object,
1049 for GD/LD and IE/LE respectively. */
1051 #define TP_OFFSET 0x7000
1052 #define DTP_OFFSET 0x8000
1055 dtprel_base (struct bfd_link_info *info)
1057 /* If tls_sec is NULL, we should have signalled an error already. */
1058 if (elf_hash_table (info)->tls_sec == NULL)
1060 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1064 tprel_base (struct bfd_link_info *info)
1066 /* If tls_sec is NULL, we should have signalled an error already. */
1067 if (elf_hash_table (info)->tls_sec == NULL)
1069 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1072 /* Create an entry in a MIPS ELF linker hash table. */
1074 static struct bfd_hash_entry *
1075 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1076 struct bfd_hash_table *table, const char *string)
1078 struct mips_elf_link_hash_entry *ret =
1079 (struct mips_elf_link_hash_entry *) entry;
1081 /* Allocate the structure if it has not already been allocated by a
1084 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1086 return (struct bfd_hash_entry *) ret;
1088 /* Call the allocation method of the superclass. */
1089 ret = ((struct mips_elf_link_hash_entry *)
1090 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1094 /* Set local fields. */
1095 memset (&ret->esym, 0, sizeof (EXTR));
1096 /* We use -2 as a marker to indicate that the information has
1097 not been set. -1 means there is no associated ifd. */
1100 ret->possibly_dynamic_relocs = 0;
1101 ret->fn_stub = NULL;
1102 ret->call_stub = NULL;
1103 ret->call_fp_stub = NULL;
1104 ret->tls_type = GOT_NORMAL;
1105 ret->global_got_area = GGA_NONE;
1106 ret->got_only_for_calls = TRUE;
1107 ret->readonly_reloc = FALSE;
1108 ret->has_static_relocs = FALSE;
1109 ret->no_fn_stub = FALSE;
1110 ret->need_fn_stub = FALSE;
1111 ret->has_nonpic_branches = FALSE;
1112 ret->needs_lazy_stub = FALSE;
1115 return (struct bfd_hash_entry *) ret;
1119 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1121 if (!sec->used_by_bfd)
1123 struct _mips_elf_section_data *sdata;
1124 bfd_size_type amt = sizeof (*sdata);
1126 sdata = bfd_zalloc (abfd, amt);
1129 sec->used_by_bfd = sdata;
1132 return _bfd_elf_new_section_hook (abfd, sec);
1135 /* Read ECOFF debugging information from a .mdebug section into a
1136 ecoff_debug_info structure. */
1139 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1140 struct ecoff_debug_info *debug)
1143 const struct ecoff_debug_swap *swap;
1146 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1147 memset (debug, 0, sizeof (*debug));
1149 ext_hdr = bfd_malloc (swap->external_hdr_size);
1150 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1153 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1154 swap->external_hdr_size))
1157 symhdr = &debug->symbolic_header;
1158 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1160 /* The symbolic header contains absolute file offsets and sizes to
1162 #define READ(ptr, offset, count, size, type) \
1163 if (symhdr->count == 0) \
1164 debug->ptr = NULL; \
1167 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1168 debug->ptr = bfd_malloc (amt); \
1169 if (debug->ptr == NULL) \
1170 goto error_return; \
1171 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1172 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1173 goto error_return; \
1176 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1177 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1178 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1179 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1180 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1181 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1183 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1184 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1185 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1186 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1187 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1195 if (ext_hdr != NULL)
1197 if (debug->line != NULL)
1199 if (debug->external_dnr != NULL)
1200 free (debug->external_dnr);
1201 if (debug->external_pdr != NULL)
1202 free (debug->external_pdr);
1203 if (debug->external_sym != NULL)
1204 free (debug->external_sym);
1205 if (debug->external_opt != NULL)
1206 free (debug->external_opt);
1207 if (debug->external_aux != NULL)
1208 free (debug->external_aux);
1209 if (debug->ss != NULL)
1211 if (debug->ssext != NULL)
1212 free (debug->ssext);
1213 if (debug->external_fdr != NULL)
1214 free (debug->external_fdr);
1215 if (debug->external_rfd != NULL)
1216 free (debug->external_rfd);
1217 if (debug->external_ext != NULL)
1218 free (debug->external_ext);
1222 /* Swap RPDR (runtime procedure table entry) for output. */
1225 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1227 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1228 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1229 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1230 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1231 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1232 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1234 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1235 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1237 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1240 /* Create a runtime procedure table from the .mdebug section. */
1243 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1244 struct bfd_link_info *info, asection *s,
1245 struct ecoff_debug_info *debug)
1247 const struct ecoff_debug_swap *swap;
1248 HDRR *hdr = &debug->symbolic_header;
1250 struct rpdr_ext *erp;
1252 struct pdr_ext *epdr;
1253 struct sym_ext *esym;
1257 bfd_size_type count;
1258 unsigned long sindex;
1262 const char *no_name_func = _("static procedure (no name)");
1270 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1272 sindex = strlen (no_name_func) + 1;
1273 count = hdr->ipdMax;
1276 size = swap->external_pdr_size;
1278 epdr = bfd_malloc (size * count);
1282 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1285 size = sizeof (RPDR);
1286 rp = rpdr = bfd_malloc (size * count);
1290 size = sizeof (char *);
1291 sv = bfd_malloc (size * count);
1295 count = hdr->isymMax;
1296 size = swap->external_sym_size;
1297 esym = bfd_malloc (size * count);
1301 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1304 count = hdr->issMax;
1305 ss = bfd_malloc (count);
1308 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1311 count = hdr->ipdMax;
1312 for (i = 0; i < (unsigned long) count; i++, rp++)
1314 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1315 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1316 rp->adr = sym.value;
1317 rp->regmask = pdr.regmask;
1318 rp->regoffset = pdr.regoffset;
1319 rp->fregmask = pdr.fregmask;
1320 rp->fregoffset = pdr.fregoffset;
1321 rp->frameoffset = pdr.frameoffset;
1322 rp->framereg = pdr.framereg;
1323 rp->pcreg = pdr.pcreg;
1325 sv[i] = ss + sym.iss;
1326 sindex += strlen (sv[i]) + 1;
1330 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1331 size = BFD_ALIGN (size, 16);
1332 rtproc = bfd_alloc (abfd, size);
1335 mips_elf_hash_table (info)->procedure_count = 0;
1339 mips_elf_hash_table (info)->procedure_count = count + 2;
1342 memset (erp, 0, sizeof (struct rpdr_ext));
1344 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1345 strcpy (str, no_name_func);
1346 str += strlen (no_name_func) + 1;
1347 for (i = 0; i < count; i++)
1349 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1350 strcpy (str, sv[i]);
1351 str += strlen (sv[i]) + 1;
1353 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1355 /* Set the size and contents of .rtproc section. */
1357 s->contents = rtproc;
1359 /* Skip this section later on (I don't think this currently
1360 matters, but someday it might). */
1361 s->map_head.link_order = NULL;
1390 /* We're going to create a stub for H. Create a symbol for the stub's
1391 value and size, to help make the disassembly easier to read. */
1394 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1395 struct mips_elf_link_hash_entry *h,
1396 const char *prefix, asection *s, bfd_vma value,
1399 struct bfd_link_hash_entry *bh;
1400 struct elf_link_hash_entry *elfh;
1403 if (ELF_ST_IS_MICROMIPS (h->root.other))
1406 /* Create a new symbol. */
1407 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1409 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1410 BSF_LOCAL, s, value, NULL,
1414 /* Make it a local function. */
1415 elfh = (struct elf_link_hash_entry *) bh;
1416 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1418 elfh->forced_local = 1;
1422 /* We're about to redefine H. Create a symbol to represent H's
1423 current value and size, to help make the disassembly easier
1427 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1428 struct mips_elf_link_hash_entry *h,
1431 struct bfd_link_hash_entry *bh;
1432 struct elf_link_hash_entry *elfh;
1437 /* Read the symbol's value. */
1438 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1439 || h->root.root.type == bfd_link_hash_defweak);
1440 s = h->root.root.u.def.section;
1441 value = h->root.root.u.def.value;
1443 /* Create a new symbol. */
1444 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1446 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1447 BSF_LOCAL, s, value, NULL,
1451 /* Make it local and copy the other attributes from H. */
1452 elfh = (struct elf_link_hash_entry *) bh;
1453 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1454 elfh->other = h->root.other;
1455 elfh->size = h->root.size;
1456 elfh->forced_local = 1;
1460 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1461 function rather than to a hard-float stub. */
1464 section_allows_mips16_refs_p (asection *section)
1468 name = bfd_get_section_name (section->owner, section);
1469 return (FN_STUB_P (name)
1470 || CALL_STUB_P (name)
1471 || CALL_FP_STUB_P (name)
1472 || strcmp (name, ".pdr") == 0);
1475 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1476 stub section of some kind. Return the R_SYMNDX of the target
1477 function, or 0 if we can't decide which function that is. */
1479 static unsigned long
1480 mips16_stub_symndx (const struct elf_backend_data *bed,
1481 asection *sec ATTRIBUTE_UNUSED,
1482 const Elf_Internal_Rela *relocs,
1483 const Elf_Internal_Rela *relend)
1485 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1486 const Elf_Internal_Rela *rel;
1488 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1489 one in a compound relocation. */
1490 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1491 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1492 return ELF_R_SYM (sec->owner, rel->r_info);
1494 /* Otherwise trust the first relocation, whatever its kind. This is
1495 the traditional behavior. */
1496 if (relocs < relend)
1497 return ELF_R_SYM (sec->owner, relocs->r_info);
1502 /* Check the mips16 stubs for a particular symbol, and see if we can
1506 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1507 struct mips_elf_link_hash_entry *h)
1509 /* Dynamic symbols must use the standard call interface, in case other
1510 objects try to call them. */
1511 if (h->fn_stub != NULL
1512 && h->root.dynindx != -1)
1514 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1515 h->need_fn_stub = TRUE;
1518 if (h->fn_stub != NULL
1519 && ! h->need_fn_stub)
1521 /* We don't need the fn_stub; the only references to this symbol
1522 are 16 bit calls. Clobber the size to 0 to prevent it from
1523 being included in the link. */
1524 h->fn_stub->size = 0;
1525 h->fn_stub->flags &= ~SEC_RELOC;
1526 h->fn_stub->reloc_count = 0;
1527 h->fn_stub->flags |= SEC_EXCLUDE;
1530 if (h->call_stub != NULL
1531 && ELF_ST_IS_MIPS16 (h->root.other))
1533 /* We don't need the call_stub; this is a 16 bit function, so
1534 calls from other 16 bit functions are OK. Clobber the size
1535 to 0 to prevent it from being included in the link. */
1536 h->call_stub->size = 0;
1537 h->call_stub->flags &= ~SEC_RELOC;
1538 h->call_stub->reloc_count = 0;
1539 h->call_stub->flags |= SEC_EXCLUDE;
1542 if (h->call_fp_stub != NULL
1543 && ELF_ST_IS_MIPS16 (h->root.other))
1545 /* We don't need the call_stub; this is a 16 bit function, so
1546 calls from other 16 bit functions are OK. Clobber the size
1547 to 0 to prevent it from being included in the link. */
1548 h->call_fp_stub->size = 0;
1549 h->call_fp_stub->flags &= ~SEC_RELOC;
1550 h->call_fp_stub->reloc_count = 0;
1551 h->call_fp_stub->flags |= SEC_EXCLUDE;
1555 /* Hashtable callbacks for mips_elf_la25_stubs. */
1558 mips_elf_la25_stub_hash (const void *entry_)
1560 const struct mips_elf_la25_stub *entry;
1562 entry = (struct mips_elf_la25_stub *) entry_;
1563 return entry->h->root.root.u.def.section->id
1564 + entry->h->root.root.u.def.value;
1568 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1570 const struct mips_elf_la25_stub *entry1, *entry2;
1572 entry1 = (struct mips_elf_la25_stub *) entry1_;
1573 entry2 = (struct mips_elf_la25_stub *) entry2_;
1574 return ((entry1->h->root.root.u.def.section
1575 == entry2->h->root.root.u.def.section)
1576 && (entry1->h->root.root.u.def.value
1577 == entry2->h->root.root.u.def.value));
1580 /* Called by the linker to set up the la25 stub-creation code. FN is
1581 the linker's implementation of add_stub_function. Return true on
1585 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1586 asection *(*fn) (const char *, asection *,
1589 struct mips_elf_link_hash_table *htab;
1591 htab = mips_elf_hash_table (info);
1595 htab->add_stub_section = fn;
1596 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1597 mips_elf_la25_stub_eq, NULL);
1598 if (htab->la25_stubs == NULL)
1604 /* Return true if H is a locally-defined PIC function, in the sense
1605 that it or its fn_stub might need $25 to be valid on entry.
1606 Note that MIPS16 functions set up $gp using PC-relative instructions,
1607 so they themselves never need $25 to be valid. Only non-MIPS16
1608 entry points are of interest here. */
1611 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1613 return ((h->root.root.type == bfd_link_hash_defined
1614 || h->root.root.type == bfd_link_hash_defweak)
1615 && h->root.def_regular
1616 && !bfd_is_abs_section (h->root.root.u.def.section)
1617 && (!ELF_ST_IS_MIPS16 (h->root.other)
1618 || (h->fn_stub && h->need_fn_stub))
1619 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1620 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1623 /* Set *SEC to the input section that contains the target of STUB.
1624 Return the offset of the target from the start of that section. */
1627 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1630 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1632 BFD_ASSERT (stub->h->need_fn_stub);
1633 *sec = stub->h->fn_stub;
1638 *sec = stub->h->root.root.u.def.section;
1639 return stub->h->root.root.u.def.value;
1643 /* STUB describes an la25 stub that we have decided to implement
1644 by inserting an LUI/ADDIU pair before the target function.
1645 Create the section and redirect the function symbol to it. */
1648 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1649 struct bfd_link_info *info)
1651 struct mips_elf_link_hash_table *htab;
1653 asection *s, *input_section;
1656 htab = mips_elf_hash_table (info);
1660 /* Create a unique name for the new section. */
1661 name = bfd_malloc (11 + sizeof (".text.stub."));
1664 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1666 /* Create the section. */
1667 mips_elf_get_la25_target (stub, &input_section);
1668 s = htab->add_stub_section (name, input_section,
1669 input_section->output_section);
1673 /* Make sure that any padding goes before the stub. */
1674 align = input_section->alignment_power;
1675 if (!bfd_set_section_alignment (s->owner, s, align))
1678 s->size = (1 << align) - 8;
1680 /* Create a symbol for the stub. */
1681 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1682 stub->stub_section = s;
1683 stub->offset = s->size;
1685 /* Allocate room for it. */
1690 /* STUB describes an la25 stub that we have decided to implement
1691 with a separate trampoline. Allocate room for it and redirect
1692 the function symbol to it. */
1695 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1696 struct bfd_link_info *info)
1698 struct mips_elf_link_hash_table *htab;
1701 htab = mips_elf_hash_table (info);
1705 /* Create a trampoline section, if we haven't already. */
1706 s = htab->strampoline;
1709 asection *input_section = stub->h->root.root.u.def.section;
1710 s = htab->add_stub_section (".text", NULL,
1711 input_section->output_section);
1712 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1714 htab->strampoline = s;
1717 /* Create a symbol for the stub. */
1718 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1719 stub->stub_section = s;
1720 stub->offset = s->size;
1722 /* Allocate room for it. */
1727 /* H describes a symbol that needs an la25 stub. Make sure that an
1728 appropriate stub exists and point H at it. */
1731 mips_elf_add_la25_stub (struct bfd_link_info *info,
1732 struct mips_elf_link_hash_entry *h)
1734 struct mips_elf_link_hash_table *htab;
1735 struct mips_elf_la25_stub search, *stub;
1736 bfd_boolean use_trampoline_p;
1741 /* Describe the stub we want. */
1742 search.stub_section = NULL;
1746 /* See if we've already created an equivalent stub. */
1747 htab = mips_elf_hash_table (info);
1751 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1755 stub = (struct mips_elf_la25_stub *) *slot;
1758 /* We can reuse the existing stub. */
1759 h->la25_stub = stub;
1763 /* Create a permanent copy of ENTRY and add it to the hash table. */
1764 stub = bfd_malloc (sizeof (search));
1770 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1771 of the section and if we would need no more than 2 nops. */
1772 value = mips_elf_get_la25_target (stub, &s);
1773 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1775 h->la25_stub = stub;
1776 return (use_trampoline_p
1777 ? mips_elf_add_la25_trampoline (stub, info)
1778 : mips_elf_add_la25_intro (stub, info));
1781 /* A mips_elf_link_hash_traverse callback that is called before sizing
1782 sections. DATA points to a mips_htab_traverse_info structure. */
1785 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1787 struct mips_htab_traverse_info *hti;
1789 hti = (struct mips_htab_traverse_info *) data;
1790 if (!hti->info->relocatable)
1791 mips_elf_check_mips16_stubs (hti->info, h);
1793 if (mips_elf_local_pic_function_p (h))
1795 /* PR 12845: If H is in a section that has been garbage
1796 collected it will have its output section set to *ABS*. */
1797 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1800 /* H is a function that might need $25 to be valid on entry.
1801 If we're creating a non-PIC relocatable object, mark H as
1802 being PIC. If we're creating a non-relocatable object with
1803 non-PIC branches and jumps to H, make sure that H has an la25
1805 if (hti->info->relocatable)
1807 if (!PIC_OBJECT_P (hti->output_bfd))
1808 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1810 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1819 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1820 Most mips16 instructions are 16 bits, but these instructions
1823 The format of these instructions is:
1825 +--------------+--------------------------------+
1826 | JALX | X| Imm 20:16 | Imm 25:21 |
1827 +--------------+--------------------------------+
1829 +-----------------------------------------------+
1831 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1832 Note that the immediate value in the first word is swapped.
1834 When producing a relocatable object file, R_MIPS16_26 is
1835 handled mostly like R_MIPS_26. In particular, the addend is
1836 stored as a straight 26-bit value in a 32-bit instruction.
1837 (gas makes life simpler for itself by never adjusting a
1838 R_MIPS16_26 reloc to be against a section, so the addend is
1839 always zero). However, the 32 bit instruction is stored as 2
1840 16-bit values, rather than a single 32-bit value. In a
1841 big-endian file, the result is the same; in a little-endian
1842 file, the two 16-bit halves of the 32 bit value are swapped.
1843 This is so that a disassembler can recognize the jal
1846 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1847 instruction stored as two 16-bit values. The addend A is the
1848 contents of the targ26 field. The calculation is the same as
1849 R_MIPS_26. When storing the calculated value, reorder the
1850 immediate value as shown above, and don't forget to store the
1851 value as two 16-bit values.
1853 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1857 +--------+----------------------+
1861 +--------+----------------------+
1864 +----------+------+-------------+
1868 +----------+--------------------+
1869 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1870 ((sub1 << 16) | sub2)).
1872 When producing a relocatable object file, the calculation is
1873 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1874 When producing a fully linked file, the calculation is
1875 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1876 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1878 The table below lists the other MIPS16 instruction relocations.
1879 Each one is calculated in the same way as the non-MIPS16 relocation
1880 given on the right, but using the extended MIPS16 layout of 16-bit
1883 R_MIPS16_GPREL R_MIPS_GPREL16
1884 R_MIPS16_GOT16 R_MIPS_GOT16
1885 R_MIPS16_CALL16 R_MIPS_CALL16
1886 R_MIPS16_HI16 R_MIPS_HI16
1887 R_MIPS16_LO16 R_MIPS_LO16
1889 A typical instruction will have a format like this:
1891 +--------------+--------------------------------+
1892 | EXTEND | Imm 10:5 | Imm 15:11 |
1893 +--------------+--------------------------------+
1894 | Major | rx | ry | Imm 4:0 |
1895 +--------------+--------------------------------+
1897 EXTEND is the five bit value 11110. Major is the instruction
1900 All we need to do here is shuffle the bits appropriately.
1901 As above, the two 16-bit halves must be swapped on a
1902 little-endian system. */
1904 static inline bfd_boolean
1905 mips16_reloc_p (int r_type)
1910 case R_MIPS16_GPREL:
1911 case R_MIPS16_GOT16:
1912 case R_MIPS16_CALL16:
1915 case R_MIPS16_TLS_GD:
1916 case R_MIPS16_TLS_LDM:
1917 case R_MIPS16_TLS_DTPREL_HI16:
1918 case R_MIPS16_TLS_DTPREL_LO16:
1919 case R_MIPS16_TLS_GOTTPREL:
1920 case R_MIPS16_TLS_TPREL_HI16:
1921 case R_MIPS16_TLS_TPREL_LO16:
1929 /* Check if a microMIPS reloc. */
1931 static inline bfd_boolean
1932 micromips_reloc_p (unsigned int r_type)
1934 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1937 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1938 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1939 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1941 static inline bfd_boolean
1942 micromips_reloc_shuffle_p (unsigned int r_type)
1944 return (micromips_reloc_p (r_type)
1945 && r_type != R_MICROMIPS_PC7_S1
1946 && r_type != R_MICROMIPS_PC10_S1);
1949 static inline bfd_boolean
1950 got16_reloc_p (int r_type)
1952 return (r_type == R_MIPS_GOT16
1953 || r_type == R_MIPS16_GOT16
1954 || r_type == R_MICROMIPS_GOT16);
1957 static inline bfd_boolean
1958 call16_reloc_p (int r_type)
1960 return (r_type == R_MIPS_CALL16
1961 || r_type == R_MIPS16_CALL16
1962 || r_type == R_MICROMIPS_CALL16);
1965 static inline bfd_boolean
1966 got_disp_reloc_p (unsigned int r_type)
1968 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1971 static inline bfd_boolean
1972 got_page_reloc_p (unsigned int r_type)
1974 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1977 static inline bfd_boolean
1978 got_ofst_reloc_p (unsigned int r_type)
1980 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1983 static inline bfd_boolean
1984 got_hi16_reloc_p (unsigned int r_type)
1986 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1989 static inline bfd_boolean
1990 got_lo16_reloc_p (unsigned int r_type)
1992 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1995 static inline bfd_boolean
1996 call_hi16_reloc_p (unsigned int r_type)
1998 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2001 static inline bfd_boolean
2002 call_lo16_reloc_p (unsigned int r_type)
2004 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2007 static inline bfd_boolean
2008 hi16_reloc_p (int r_type)
2010 return (r_type == R_MIPS_HI16
2011 || r_type == R_MIPS16_HI16
2012 || r_type == R_MICROMIPS_HI16);
2015 static inline bfd_boolean
2016 lo16_reloc_p (int r_type)
2018 return (r_type == R_MIPS_LO16
2019 || r_type == R_MIPS16_LO16
2020 || r_type == R_MICROMIPS_LO16);
2023 static inline bfd_boolean
2024 mips16_call_reloc_p (int r_type)
2026 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2029 static inline bfd_boolean
2030 jal_reloc_p (int r_type)
2032 return (r_type == R_MIPS_26
2033 || r_type == R_MIPS16_26
2034 || r_type == R_MICROMIPS_26_S1);
2037 static inline bfd_boolean
2038 micromips_branch_reloc_p (int r_type)
2040 return (r_type == R_MICROMIPS_26_S1
2041 || r_type == R_MICROMIPS_PC16_S1
2042 || r_type == R_MICROMIPS_PC10_S1
2043 || r_type == R_MICROMIPS_PC7_S1);
2046 static inline bfd_boolean
2047 tls_gd_reloc_p (unsigned int r_type)
2049 return (r_type == R_MIPS_TLS_GD
2050 || r_type == R_MIPS16_TLS_GD
2051 || r_type == R_MICROMIPS_TLS_GD);
2054 static inline bfd_boolean
2055 tls_ldm_reloc_p (unsigned int r_type)
2057 return (r_type == R_MIPS_TLS_LDM
2058 || r_type == R_MIPS16_TLS_LDM
2059 || r_type == R_MICROMIPS_TLS_LDM);
2062 static inline bfd_boolean
2063 tls_gottprel_reloc_p (unsigned int r_type)
2065 return (r_type == R_MIPS_TLS_GOTTPREL
2066 || r_type == R_MIPS16_TLS_GOTTPREL
2067 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2071 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2072 bfd_boolean jal_shuffle, bfd_byte *data)
2074 bfd_vma first, second, val;
2076 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2079 /* Pick up the first and second halfwords of the instruction. */
2080 first = bfd_get_16 (abfd, data);
2081 second = bfd_get_16 (abfd, data + 2);
2082 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2083 val = first << 16 | second;
2084 else if (r_type != R_MIPS16_26)
2085 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2086 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2088 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2089 | ((first & 0x1f) << 21) | second);
2090 bfd_put_32 (abfd, val, data);
2094 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2095 bfd_boolean jal_shuffle, bfd_byte *data)
2097 bfd_vma first, second, val;
2099 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2102 val = bfd_get_32 (abfd, data);
2103 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2105 second = val & 0xffff;
2108 else if (r_type != R_MIPS16_26)
2110 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2111 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2115 second = val & 0xffff;
2116 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2117 | ((val >> 21) & 0x1f);
2119 bfd_put_16 (abfd, second, data + 2);
2120 bfd_put_16 (abfd, first, data);
2123 bfd_reloc_status_type
2124 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2125 arelent *reloc_entry, asection *input_section,
2126 bfd_boolean relocatable, void *data, bfd_vma gp)
2130 bfd_reloc_status_type status;
2132 if (bfd_is_com_section (symbol->section))
2135 relocation = symbol->value;
2137 relocation += symbol->section->output_section->vma;
2138 relocation += symbol->section->output_offset;
2140 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2141 return bfd_reloc_outofrange;
2143 /* Set val to the offset into the section or symbol. */
2144 val = reloc_entry->addend;
2146 _bfd_mips_elf_sign_extend (val, 16);
2148 /* Adjust val for the final section location and GP value. If we
2149 are producing relocatable output, we don't want to do this for
2150 an external symbol. */
2152 || (symbol->flags & BSF_SECTION_SYM) != 0)
2153 val += relocation - gp;
2155 if (reloc_entry->howto->partial_inplace)
2157 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2159 + reloc_entry->address);
2160 if (status != bfd_reloc_ok)
2164 reloc_entry->addend = val;
2167 reloc_entry->address += input_section->output_offset;
2169 return bfd_reloc_ok;
2172 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2173 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2174 that contains the relocation field and DATA points to the start of
2179 struct mips_hi16 *next;
2181 asection *input_section;
2185 /* FIXME: This should not be a static variable. */
2187 static struct mips_hi16 *mips_hi16_list;
2189 /* A howto special_function for REL *HI16 relocations. We can only
2190 calculate the correct value once we've seen the partnering
2191 *LO16 relocation, so just save the information for later.
2193 The ABI requires that the *LO16 immediately follow the *HI16.
2194 However, as a GNU extension, we permit an arbitrary number of
2195 *HI16s to be associated with a single *LO16. This significantly
2196 simplies the relocation handling in gcc. */
2198 bfd_reloc_status_type
2199 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2200 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2201 asection *input_section, bfd *output_bfd,
2202 char **error_message ATTRIBUTE_UNUSED)
2204 struct mips_hi16 *n;
2206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2207 return bfd_reloc_outofrange;
2209 n = bfd_malloc (sizeof *n);
2211 return bfd_reloc_outofrange;
2213 n->next = mips_hi16_list;
2215 n->input_section = input_section;
2216 n->rel = *reloc_entry;
2219 if (output_bfd != NULL)
2220 reloc_entry->address += input_section->output_offset;
2222 return bfd_reloc_ok;
2225 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2226 like any other 16-bit relocation when applied to global symbols, but is
2227 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2229 bfd_reloc_status_type
2230 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2231 void *data, asection *input_section,
2232 bfd *output_bfd, char **error_message)
2234 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2235 || bfd_is_und_section (bfd_get_section (symbol))
2236 || bfd_is_com_section (bfd_get_section (symbol)))
2237 /* The relocation is against a global symbol. */
2238 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2239 input_section, output_bfd,
2242 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2246 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2247 is a straightforward 16 bit inplace relocation, but we must deal with
2248 any partnering high-part relocations as well. */
2250 bfd_reloc_status_type
2251 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2256 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2258 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2259 return bfd_reloc_outofrange;
2261 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2263 vallo = bfd_get_32 (abfd, location);
2264 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2267 while (mips_hi16_list != NULL)
2269 bfd_reloc_status_type ret;
2270 struct mips_hi16 *hi;
2272 hi = mips_hi16_list;
2274 /* R_MIPS*_GOT16 relocations are something of a special case. We
2275 want to install the addend in the same way as for a R_MIPS*_HI16
2276 relocation (with a rightshift of 16). However, since GOT16
2277 relocations can also be used with global symbols, their howto
2278 has a rightshift of 0. */
2279 if (hi->rel.howto->type == R_MIPS_GOT16)
2280 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2281 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2282 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2283 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2284 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2286 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2287 carry or borrow will induce a change of +1 or -1 in the high part. */
2288 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2290 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2291 hi->input_section, output_bfd,
2293 if (ret != bfd_reloc_ok)
2296 mips_hi16_list = hi->next;
2300 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2301 input_section, output_bfd,
2305 /* A generic howto special_function. This calculates and installs the
2306 relocation itself, thus avoiding the oft-discussed problems in
2307 bfd_perform_relocation and bfd_install_relocation. */
2309 bfd_reloc_status_type
2310 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2311 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2312 asection *input_section, bfd *output_bfd,
2313 char **error_message ATTRIBUTE_UNUSED)
2316 bfd_reloc_status_type status;
2317 bfd_boolean relocatable;
2319 relocatable = (output_bfd != NULL);
2321 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2322 return bfd_reloc_outofrange;
2324 /* Build up the field adjustment in VAL. */
2326 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2328 /* Either we're calculating the final field value or we have a
2329 relocation against a section symbol. Add in the section's
2330 offset or address. */
2331 val += symbol->section->output_section->vma;
2332 val += symbol->section->output_offset;
2337 /* We're calculating the final field value. Add in the symbol's value
2338 and, if pc-relative, subtract the address of the field itself. */
2339 val += symbol->value;
2340 if (reloc_entry->howto->pc_relative)
2342 val -= input_section->output_section->vma;
2343 val -= input_section->output_offset;
2344 val -= reloc_entry->address;
2348 /* VAL is now the final adjustment. If we're keeping this relocation
2349 in the output file, and if the relocation uses a separate addend,
2350 we just need to add VAL to that addend. Otherwise we need to add
2351 VAL to the relocation field itself. */
2352 if (relocatable && !reloc_entry->howto->partial_inplace)
2353 reloc_entry->addend += val;
2356 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2358 /* Add in the separate addend, if any. */
2359 val += reloc_entry->addend;
2361 /* Add VAL to the relocation field. */
2362 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2364 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2366 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2369 if (status != bfd_reloc_ok)
2374 reloc_entry->address += input_section->output_offset;
2376 return bfd_reloc_ok;
2379 /* Swap an entry in a .gptab section. Note that these routines rely
2380 on the equivalence of the two elements of the union. */
2383 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2386 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2387 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2391 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2392 Elf32_External_gptab *ex)
2394 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2395 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2399 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2400 Elf32_External_compact_rel *ex)
2402 H_PUT_32 (abfd, in->id1, ex->id1);
2403 H_PUT_32 (abfd, in->num, ex->num);
2404 H_PUT_32 (abfd, in->id2, ex->id2);
2405 H_PUT_32 (abfd, in->offset, ex->offset);
2406 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2407 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2411 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2412 Elf32_External_crinfo *ex)
2416 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2417 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2418 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2419 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2420 H_PUT_32 (abfd, l, ex->info);
2421 H_PUT_32 (abfd, in->konst, ex->konst);
2422 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2425 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2426 routines swap this structure in and out. They are used outside of
2427 BFD, so they are globally visible. */
2430 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2433 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2434 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2435 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2436 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2437 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2438 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2442 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2443 Elf32_External_RegInfo *ex)
2445 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2446 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2447 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2448 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2449 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2450 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2453 /* In the 64 bit ABI, the .MIPS.options section holds register
2454 information in an Elf64_Reginfo structure. These routines swap
2455 them in and out. They are globally visible because they are used
2456 outside of BFD. These routines are here so that gas can call them
2457 without worrying about whether the 64 bit ABI has been included. */
2460 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2461 Elf64_Internal_RegInfo *in)
2463 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2464 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2465 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2466 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2467 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2468 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2469 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2473 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2474 Elf64_External_RegInfo *ex)
2476 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2477 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2478 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2479 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2480 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2481 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2482 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2485 /* Swap in an options header. */
2488 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2489 Elf_Internal_Options *in)
2491 in->kind = H_GET_8 (abfd, ex->kind);
2492 in->size = H_GET_8 (abfd, ex->size);
2493 in->section = H_GET_16 (abfd, ex->section);
2494 in->info = H_GET_32 (abfd, ex->info);
2497 /* Swap out an options header. */
2500 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2501 Elf_External_Options *ex)
2503 H_PUT_8 (abfd, in->kind, ex->kind);
2504 H_PUT_8 (abfd, in->size, ex->size);
2505 H_PUT_16 (abfd, in->section, ex->section);
2506 H_PUT_32 (abfd, in->info, ex->info);
2509 /* This function is called via qsort() to sort the dynamic relocation
2510 entries by increasing r_symndx value. */
2513 sort_dynamic_relocs (const void *arg1, const void *arg2)
2515 Elf_Internal_Rela int_reloc1;
2516 Elf_Internal_Rela int_reloc2;
2519 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2520 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2522 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2526 if (int_reloc1.r_offset < int_reloc2.r_offset)
2528 if (int_reloc1.r_offset > int_reloc2.r_offset)
2533 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2536 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2537 const void *arg2 ATTRIBUTE_UNUSED)
2540 Elf_Internal_Rela int_reloc1[3];
2541 Elf_Internal_Rela int_reloc2[3];
2543 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2544 (reldyn_sorting_bfd, arg1, int_reloc1);
2545 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2546 (reldyn_sorting_bfd, arg2, int_reloc2);
2548 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2550 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2553 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2555 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2564 /* This routine is used to write out ECOFF debugging external symbol
2565 information. It is called via mips_elf_link_hash_traverse. The
2566 ECOFF external symbol information must match the ELF external
2567 symbol information. Unfortunately, at this point we don't know
2568 whether a symbol is required by reloc information, so the two
2569 tables may wind up being different. We must sort out the external
2570 symbol information before we can set the final size of the .mdebug
2571 section, and we must set the size of the .mdebug section before we
2572 can relocate any sections, and we can't know which symbols are
2573 required by relocation until we relocate the sections.
2574 Fortunately, it is relatively unlikely that any symbol will be
2575 stripped but required by a reloc. In particular, it can not happen
2576 when generating a final executable. */
2579 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2581 struct extsym_info *einfo = data;
2583 asection *sec, *output_section;
2585 if (h->root.indx == -2)
2587 else if ((h->root.def_dynamic
2588 || h->root.ref_dynamic
2589 || h->root.type == bfd_link_hash_new)
2590 && !h->root.def_regular
2591 && !h->root.ref_regular)
2593 else if (einfo->info->strip == strip_all
2594 || (einfo->info->strip == strip_some
2595 && bfd_hash_lookup (einfo->info->keep_hash,
2596 h->root.root.root.string,
2597 FALSE, FALSE) == NULL))
2605 if (h->esym.ifd == -2)
2608 h->esym.cobol_main = 0;
2609 h->esym.weakext = 0;
2610 h->esym.reserved = 0;
2611 h->esym.ifd = ifdNil;
2612 h->esym.asym.value = 0;
2613 h->esym.asym.st = stGlobal;
2615 if (h->root.root.type == bfd_link_hash_undefined
2616 || h->root.root.type == bfd_link_hash_undefweak)
2620 /* Use undefined class. Also, set class and type for some
2622 name = h->root.root.root.string;
2623 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2624 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2626 h->esym.asym.sc = scData;
2627 h->esym.asym.st = stLabel;
2628 h->esym.asym.value = 0;
2630 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2632 h->esym.asym.sc = scAbs;
2633 h->esym.asym.st = stLabel;
2634 h->esym.asym.value =
2635 mips_elf_hash_table (einfo->info)->procedure_count;
2637 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2639 h->esym.asym.sc = scAbs;
2640 h->esym.asym.st = stLabel;
2641 h->esym.asym.value = elf_gp (einfo->abfd);
2644 h->esym.asym.sc = scUndefined;
2646 else if (h->root.root.type != bfd_link_hash_defined
2647 && h->root.root.type != bfd_link_hash_defweak)
2648 h->esym.asym.sc = scAbs;
2653 sec = h->root.root.u.def.section;
2654 output_section = sec->output_section;
2656 /* When making a shared library and symbol h is the one from
2657 the another shared library, OUTPUT_SECTION may be null. */
2658 if (output_section == NULL)
2659 h->esym.asym.sc = scUndefined;
2662 name = bfd_section_name (output_section->owner, output_section);
2664 if (strcmp (name, ".text") == 0)
2665 h->esym.asym.sc = scText;
2666 else if (strcmp (name, ".data") == 0)
2667 h->esym.asym.sc = scData;
2668 else if (strcmp (name, ".sdata") == 0)
2669 h->esym.asym.sc = scSData;
2670 else if (strcmp (name, ".rodata") == 0
2671 || strcmp (name, ".rdata") == 0)
2672 h->esym.asym.sc = scRData;
2673 else if (strcmp (name, ".bss") == 0)
2674 h->esym.asym.sc = scBss;
2675 else if (strcmp (name, ".sbss") == 0)
2676 h->esym.asym.sc = scSBss;
2677 else if (strcmp (name, ".init") == 0)
2678 h->esym.asym.sc = scInit;
2679 else if (strcmp (name, ".fini") == 0)
2680 h->esym.asym.sc = scFini;
2682 h->esym.asym.sc = scAbs;
2686 h->esym.asym.reserved = 0;
2687 h->esym.asym.index = indexNil;
2690 if (h->root.root.type == bfd_link_hash_common)
2691 h->esym.asym.value = h->root.root.u.c.size;
2692 else if (h->root.root.type == bfd_link_hash_defined
2693 || h->root.root.type == bfd_link_hash_defweak)
2695 if (h->esym.asym.sc == scCommon)
2696 h->esym.asym.sc = scBss;
2697 else if (h->esym.asym.sc == scSCommon)
2698 h->esym.asym.sc = scSBss;
2700 sec = h->root.root.u.def.section;
2701 output_section = sec->output_section;
2702 if (output_section != NULL)
2703 h->esym.asym.value = (h->root.root.u.def.value
2704 + sec->output_offset
2705 + output_section->vma);
2707 h->esym.asym.value = 0;
2711 struct mips_elf_link_hash_entry *hd = h;
2713 while (hd->root.root.type == bfd_link_hash_indirect)
2714 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2716 if (hd->needs_lazy_stub)
2718 /* Set type and value for a symbol with a function stub. */
2719 h->esym.asym.st = stProc;
2720 sec = hd->root.root.u.def.section;
2722 h->esym.asym.value = 0;
2725 output_section = sec->output_section;
2726 if (output_section != NULL)
2727 h->esym.asym.value = (hd->root.plt.offset
2728 + sec->output_offset
2729 + output_section->vma);
2731 h->esym.asym.value = 0;
2736 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2737 h->root.root.root.string,
2740 einfo->failed = TRUE;
2747 /* A comparison routine used to sort .gptab entries. */
2750 gptab_compare (const void *p1, const void *p2)
2752 const Elf32_gptab *a1 = p1;
2753 const Elf32_gptab *a2 = p2;
2755 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2758 /* Functions to manage the got entry hash table. */
2760 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2763 static INLINE hashval_t
2764 mips_elf_hash_bfd_vma (bfd_vma addr)
2767 return addr + (addr >> 32);
2773 /* got_entries only match if they're identical, except for gotidx, so
2774 use all fields to compute the hash, and compare the appropriate
2778 mips_elf_got_entry_hash (const void *entry_)
2780 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2782 return entry->symndx
2783 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2784 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2786 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2787 : entry->d.h->root.root.root.hash));
2791 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2793 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2794 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2796 /* An LDM entry can only match another LDM entry. */
2797 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2800 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2801 && (! e1->abfd ? e1->d.address == e2->d.address
2802 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2803 : e1->d.h == e2->d.h);
2806 /* multi_got_entries are still a match in the case of global objects,
2807 even if the input bfd in which they're referenced differs, so the
2808 hash computation and compare functions are adjusted
2812 mips_elf_multi_got_entry_hash (const void *entry_)
2814 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2816 return entry->symndx
2818 ? mips_elf_hash_bfd_vma (entry->d.address)
2819 : entry->symndx >= 0
2820 ? ((entry->tls_type & GOT_TLS_LDM)
2821 ? (GOT_TLS_LDM << 17)
2823 + mips_elf_hash_bfd_vma (entry->d.addend)))
2824 : entry->d.h->root.root.root.hash);
2828 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2830 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2831 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2833 /* Any two LDM entries match. */
2834 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2837 /* Nothing else matches an LDM entry. */
2838 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2841 return e1->symndx == e2->symndx
2842 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2843 : e1->abfd == NULL || e2->abfd == NULL
2844 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2845 : e1->d.h == e2->d.h);
2849 mips_got_page_entry_hash (const void *entry_)
2851 const struct mips_got_page_entry *entry;
2853 entry = (const struct mips_got_page_entry *) entry_;
2854 return entry->abfd->id + entry->symndx;
2858 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2860 const struct mips_got_page_entry *entry1, *entry2;
2862 entry1 = (const struct mips_got_page_entry *) entry1_;
2863 entry2 = (const struct mips_got_page_entry *) entry2_;
2864 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2867 /* Return the dynamic relocation section. If it doesn't exist, try to
2868 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2869 if creation fails. */
2872 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2878 dname = MIPS_ELF_REL_DYN_NAME (info);
2879 dynobj = elf_hash_table (info)->dynobj;
2880 sreloc = bfd_get_linker_section (dynobj, dname);
2881 if (sreloc == NULL && create_p)
2883 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2888 | SEC_LINKER_CREATED
2891 || ! bfd_set_section_alignment (dynobj, sreloc,
2892 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2898 /* Count the number of relocations needed for a TLS GOT entry, with
2899 access types from TLS_TYPE, and symbol H (or a local symbol if H
2903 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2904 struct elf_link_hash_entry *h)
2908 bfd_boolean need_relocs = FALSE;
2909 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2911 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2912 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2915 if ((info->shared || indx != 0)
2917 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2918 || h->root.type != bfd_link_hash_undefweak))
2924 if (tls_type & GOT_TLS_GD)
2931 if (tls_type & GOT_TLS_IE)
2934 if ((tls_type & GOT_TLS_LDM) && info->shared)
2940 /* Count the number of TLS relocations required for the GOT entry in
2941 ARG1, if it describes a local symbol. */
2944 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2946 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2947 struct mips_elf_count_tls_arg *arg = arg2;
2949 if (entry->abfd != NULL && entry->symndx != -1)
2950 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2955 /* Count the number of TLS GOT entries required for the global (or
2956 forced-local) symbol in ARG1. */
2959 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2961 struct mips_elf_link_hash_entry *hm
2962 = (struct mips_elf_link_hash_entry *) arg1;
2963 struct mips_elf_count_tls_arg *arg = arg2;
2965 if (hm->tls_type & GOT_TLS_GD)
2967 if (hm->tls_type & GOT_TLS_IE)
2973 /* Count the number of TLS relocations required for the global (or
2974 forced-local) symbol in ARG1. */
2977 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2979 struct mips_elf_link_hash_entry *hm
2980 = (struct mips_elf_link_hash_entry *) arg1;
2981 struct mips_elf_count_tls_arg *arg = arg2;
2983 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2988 /* Output a simple dynamic relocation into SRELOC. */
2991 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2993 unsigned long reloc_index,
2998 Elf_Internal_Rela rel[3];
3000 memset (rel, 0, sizeof (rel));
3002 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3003 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3005 if (ABI_64_P (output_bfd))
3007 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3008 (output_bfd, &rel[0],
3010 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3013 bfd_elf32_swap_reloc_out
3014 (output_bfd, &rel[0],
3016 + reloc_index * sizeof (Elf32_External_Rel)));
3019 /* Initialize a set of TLS GOT entries for one symbol. */
3022 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3023 unsigned char *tls_type_p,
3024 struct bfd_link_info *info,
3025 struct mips_elf_link_hash_entry *h,
3028 struct mips_elf_link_hash_table *htab;
3030 asection *sreloc, *sgot;
3031 bfd_vma offset, offset2;
3032 bfd_boolean need_relocs = FALSE;
3034 htab = mips_elf_hash_table (info);
3043 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3045 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3046 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3047 indx = h->root.dynindx;
3050 if (*tls_type_p & GOT_TLS_DONE)
3053 if ((info->shared || indx != 0)
3055 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3056 || h->root.type != bfd_link_hash_undefweak))
3059 /* MINUS_ONE means the symbol is not defined in this object. It may not
3060 be defined at all; assume that the value doesn't matter in that
3061 case. Otherwise complain if we would use the value. */
3062 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3063 || h->root.root.type == bfd_link_hash_undefweak);
3065 /* Emit necessary relocations. */
3066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3068 /* General Dynamic. */
3069 if (*tls_type_p & GOT_TLS_GD)
3071 offset = got_offset;
3072 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3076 mips_elf_output_dynamic_relocation
3077 (abfd, sreloc, sreloc->reloc_count++, indx,
3078 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3079 sgot->output_offset + sgot->output_section->vma + offset);
3082 mips_elf_output_dynamic_relocation
3083 (abfd, sreloc, sreloc->reloc_count++, indx,
3084 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3085 sgot->output_offset + sgot->output_section->vma + offset2);
3087 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3088 sgot->contents + offset2);
3092 MIPS_ELF_PUT_WORD (abfd, 1,
3093 sgot->contents + offset);
3094 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3095 sgot->contents + offset2);
3098 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3101 /* Initial Exec model. */
3102 if (*tls_type_p & GOT_TLS_IE)
3104 offset = got_offset;
3109 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3110 sgot->contents + offset);
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + offset);
3115 mips_elf_output_dynamic_relocation
3116 (abfd, sreloc, sreloc->reloc_count++, indx,
3117 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3118 sgot->output_offset + sgot->output_section->vma + offset);
3121 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3122 sgot->contents + offset);
3125 if (*tls_type_p & GOT_TLS_LDM)
3127 /* The initial offset is zero, and the LD offsets will include the
3128 bias by DTP_OFFSET. */
3129 MIPS_ELF_PUT_WORD (abfd, 0,
3130 sgot->contents + got_offset
3131 + MIPS_ELF_GOT_SIZE (abfd));
3134 MIPS_ELF_PUT_WORD (abfd, 1,
3135 sgot->contents + got_offset);
3137 mips_elf_output_dynamic_relocation
3138 (abfd, sreloc, sreloc->reloc_count++, indx,
3139 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3140 sgot->output_offset + sgot->output_section->vma + got_offset);
3143 *tls_type_p |= GOT_TLS_DONE;
3146 /* Return the GOT index to use for a relocation of type R_TYPE against
3147 a symbol accessed using TLS_TYPE models. The GOT entries for this
3148 symbol in this GOT start at GOT_INDEX. This function initializes the
3149 GOT entries and corresponding relocations. */
3152 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3153 int r_type, struct bfd_link_info *info,
3154 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3156 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3157 || tls_gd_reloc_p (r_type)
3158 || tls_ldm_reloc_p (r_type));
3160 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3162 if (tls_gottprel_reloc_p (r_type))
3164 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3165 if (*tls_type & GOT_TLS_GD)
3166 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3171 if (tls_gd_reloc_p (r_type))
3173 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3177 if (tls_ldm_reloc_p (r_type))
3179 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3186 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3187 for global symbol H. .got.plt comes before the GOT, so the offset
3188 will be negative. */
3191 mips_elf_gotplt_index (struct bfd_link_info *info,
3192 struct elf_link_hash_entry *h)
3194 bfd_vma plt_index, got_address, got_value;
3195 struct mips_elf_link_hash_table *htab;
3197 htab = mips_elf_hash_table (info);
3198 BFD_ASSERT (htab != NULL);
3200 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3202 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3203 section starts with reserved entries. */
3204 BFD_ASSERT (htab->is_vxworks);
3206 /* Calculate the index of the symbol's PLT entry. */
3207 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3209 /* Calculate the address of the associated .got.plt entry. */
3210 got_address = (htab->sgotplt->output_section->vma
3211 + htab->sgotplt->output_offset
3214 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3215 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3216 + htab->root.hgot->root.u.def.section->output_offset
3217 + htab->root.hgot->root.u.def.value);
3219 return got_address - got_value;
3222 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3223 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3224 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3225 offset can be found. */
3228 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3229 bfd_vma value, unsigned long r_symndx,
3230 struct mips_elf_link_hash_entry *h, int r_type)
3232 struct mips_elf_link_hash_table *htab;
3233 struct mips_got_entry *entry;
3235 htab = mips_elf_hash_table (info);
3236 BFD_ASSERT (htab != NULL);
3238 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3239 r_symndx, h, r_type);
3243 if (TLS_RELOC_P (r_type))
3245 if (entry->symndx == -1 && htab->got_info->next == NULL)
3246 /* A type (3) entry in the single-GOT case. We use the symbol's
3247 hash table entry to track the index. */
3248 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3249 r_type, info, h, value);
3251 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3252 r_type, info, h, value);
3255 return entry->gotidx;
3258 /* Returns the GOT index for the global symbol indicated by H. */
3261 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3262 int r_type, struct bfd_link_info *info)
3264 struct mips_elf_link_hash_table *htab;
3266 struct mips_got_info *g, *gg;
3267 long global_got_dynindx = 0;
3269 htab = mips_elf_hash_table (info);
3270 BFD_ASSERT (htab != NULL);
3272 gg = g = htab->got_info;
3273 if (g->bfd2got && ibfd)
3275 struct mips_got_entry e, *p;
3277 BFD_ASSERT (h->dynindx >= 0);
3279 g = mips_elf_got_for_ibfd (g, ibfd);
3280 if (g->next != gg || TLS_RELOC_P (r_type))
3284 e.d.h = (struct mips_elf_link_hash_entry *)h;
3287 p = htab_find (g->got_entries, &e);
3289 BFD_ASSERT (p->gotidx > 0);
3291 if (TLS_RELOC_P (r_type))
3293 bfd_vma value = MINUS_ONE;
3294 if ((h->root.type == bfd_link_hash_defined
3295 || h->root.type == bfd_link_hash_defweak)
3296 && h->root.u.def.section->output_section)
3297 value = (h->root.u.def.value
3298 + h->root.u.def.section->output_offset
3299 + h->root.u.def.section->output_section->vma);
3301 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3302 info, e.d.h, value);
3309 if (gg->global_gotsym != NULL)
3310 global_got_dynindx = gg->global_gotsym->dynindx;
3312 if (TLS_RELOC_P (r_type))
3314 struct mips_elf_link_hash_entry *hm
3315 = (struct mips_elf_link_hash_entry *) h;
3316 bfd_vma value = MINUS_ONE;
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && h->root.u.def.section->output_section)
3321 value = (h->root.u.def.value
3322 + h->root.u.def.section->output_offset
3323 + h->root.u.def.section->output_section->vma);
3325 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3326 r_type, info, hm, value);
3330 /* Once we determine the global GOT entry with the lowest dynamic
3331 symbol table index, we must put all dynamic symbols with greater
3332 indices into the GOT. That makes it easy to calculate the GOT
3334 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3335 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3336 * MIPS_ELF_GOT_SIZE (abfd));
3338 BFD_ASSERT (got_index < htab->sgot->size);
3343 /* Find a GOT page entry that points to within 32KB of VALUE. These
3344 entries are supposed to be placed at small offsets in the GOT, i.e.,
3345 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3346 entry could be created. If OFFSETP is nonnull, use it to return the
3347 offset of the GOT entry from VALUE. */
3350 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3351 bfd_vma value, bfd_vma *offsetp)
3353 bfd_vma page, got_index;
3354 struct mips_got_entry *entry;
3356 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3357 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3358 NULL, R_MIPS_GOT_PAGE);
3363 got_index = entry->gotidx;
3366 *offsetp = value - entry->d.address;
3371 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3372 EXTERNAL is true if the relocation was originally against a global
3373 symbol that binds locally. */
3376 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3377 bfd_vma value, bfd_boolean external)
3379 struct mips_got_entry *entry;
3381 /* GOT16 relocations against local symbols are followed by a LO16
3382 relocation; those against global symbols are not. Thus if the
3383 symbol was originally local, the GOT16 relocation should load the
3384 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3386 value = mips_elf_high (value) << 16;
3388 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3389 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3390 same in all cases. */
3391 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3392 NULL, R_MIPS_GOT16);
3394 return entry->gotidx;
3399 /* Returns the offset for the entry at the INDEXth position
3403 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3404 bfd *input_bfd, bfd_vma got_index)
3406 struct mips_elf_link_hash_table *htab;
3410 htab = mips_elf_hash_table (info);
3411 BFD_ASSERT (htab != NULL);
3414 gp = _bfd_get_gp_value (output_bfd)
3415 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3417 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3420 /* Create and return a local GOT entry for VALUE, which was calculated
3421 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3422 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3425 static struct mips_got_entry *
3426 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3427 bfd *ibfd, bfd_vma value,
3428 unsigned long r_symndx,
3429 struct mips_elf_link_hash_entry *h,
3432 struct mips_got_entry entry, **loc;
3433 struct mips_got_info *g;
3434 struct mips_elf_link_hash_table *htab;
3436 htab = mips_elf_hash_table (info);
3437 BFD_ASSERT (htab != NULL);
3441 entry.d.address = value;
3444 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3447 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3448 BFD_ASSERT (g != NULL);
3451 /* This function shouldn't be called for symbols that live in the global
3453 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3454 if (TLS_RELOC_P (r_type))
3456 struct mips_got_entry *p;
3459 if (tls_ldm_reloc_p (r_type))
3461 entry.tls_type = GOT_TLS_LDM;
3467 entry.symndx = r_symndx;
3473 p = (struct mips_got_entry *)
3474 htab_find (g->got_entries, &entry);
3480 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3485 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3488 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3493 memcpy (*loc, &entry, sizeof entry);
3495 if (g->assigned_gotno > g->local_gotno)
3497 (*loc)->gotidx = -1;
3498 /* We didn't allocate enough space in the GOT. */
3499 (*_bfd_error_handler)
3500 (_("not enough GOT space for local GOT entries"));
3501 bfd_set_error (bfd_error_bad_value);
3505 MIPS_ELF_PUT_WORD (abfd, value,
3506 (htab->sgot->contents + entry.gotidx));
3508 /* These GOT entries need a dynamic relocation on VxWorks. */
3509 if (htab->is_vxworks)
3511 Elf_Internal_Rela outrel;
3514 bfd_vma got_address;
3516 s = mips_elf_rel_dyn_section (info, FALSE);
3517 got_address = (htab->sgot->output_section->vma
3518 + htab->sgot->output_offset
3521 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3522 outrel.r_offset = got_address;
3523 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3524 outrel.r_addend = value;
3525 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3531 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3532 The number might be exact or a worst-case estimate, depending on how
3533 much information is available to elf_backend_omit_section_dynsym at
3534 the current linking stage. */
3536 static bfd_size_type
3537 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3539 bfd_size_type count;
3542 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3545 const struct elf_backend_data *bed;
3547 bed = get_elf_backend_data (output_bfd);
3548 for (p = output_bfd->sections; p ; p = p->next)
3549 if ((p->flags & SEC_EXCLUDE) == 0
3550 && (p->flags & SEC_ALLOC) != 0
3551 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3557 /* Sort the dynamic symbol table so that symbols that need GOT entries
3558 appear towards the end. */
3561 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_elf_hash_sort_data hsd;
3565 struct mips_got_info *g;
3567 if (elf_hash_table (info)->dynsymcount == 0)
3570 htab = mips_elf_hash_table (info);
3571 BFD_ASSERT (htab != NULL);
3578 hsd.max_unref_got_dynindx
3579 = hsd.min_got_dynindx
3580 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3581 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3582 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3583 elf_hash_table (info)),
3584 mips_elf_sort_hash_table_f,
3587 /* There should have been enough room in the symbol table to
3588 accommodate both the GOT and non-GOT symbols. */
3589 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3590 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3591 == elf_hash_table (info)->dynsymcount);
3592 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3593 == g->global_gotno);
3595 /* Now we know which dynamic symbol has the lowest dynamic symbol
3596 table index in the GOT. */
3597 g->global_gotsym = hsd.low;
3602 /* If H needs a GOT entry, assign it the highest available dynamic
3603 index. Otherwise, assign it the lowest available dynamic
3607 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3609 struct mips_elf_hash_sort_data *hsd = data;
3611 /* Symbols without dynamic symbol table entries aren't interesting
3613 if (h->root.dynindx == -1)
3616 switch (h->global_got_area)
3619 h->root.dynindx = hsd->max_non_got_dynindx++;
3623 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3625 h->root.dynindx = --hsd->min_got_dynindx;
3626 hsd->low = (struct elf_link_hash_entry *) h;
3629 case GGA_RELOC_ONLY:
3630 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3632 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3633 hsd->low = (struct elf_link_hash_entry *) h;
3634 h->root.dynindx = hsd->max_unref_got_dynindx++;
3641 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3642 symbol table index lower than any we've seen to date, record it for
3643 posterity. FOR_CALL is true if the caller is only interested in
3644 using the GOT entry for calls. */
3647 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3648 bfd *abfd, struct bfd_link_info *info,
3649 bfd_boolean for_call,
3650 unsigned char tls_flag)
3652 struct mips_elf_link_hash_table *htab;
3653 struct mips_elf_link_hash_entry *hmips;
3654 struct mips_got_entry entry, **loc;
3655 struct mips_got_info *g;
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3660 hmips = (struct mips_elf_link_hash_entry *) h;
3662 hmips->got_only_for_calls = FALSE;
3664 /* A global symbol in the GOT must also be in the dynamic symbol
3666 if (h->dynindx == -1)
3668 switch (ELF_ST_VISIBILITY (h->other))
3672 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3675 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3679 /* Make sure we have a GOT to put this entry into. */
3681 BFD_ASSERT (g != NULL);
3685 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3688 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3691 /* If we've already marked this entry as needing GOT space, we don't
3692 need to do it again. */
3695 (*loc)->tls_type |= tls_flag;
3699 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3705 entry.tls_type = tls_flag;
3707 memcpy (*loc, &entry, sizeof entry);
3710 hmips->global_got_area = GGA_NORMAL;
3715 /* Reserve space in G for a GOT entry containing the value of symbol
3716 SYMNDX in input bfd ABDF, plus ADDEND. */
3719 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3720 struct bfd_link_info *info,
3721 unsigned char tls_flag)
3723 struct mips_elf_link_hash_table *htab;
3724 struct mips_got_info *g;
3725 struct mips_got_entry entry, **loc;
3727 htab = mips_elf_hash_table (info);
3728 BFD_ASSERT (htab != NULL);
3731 BFD_ASSERT (g != NULL);
3734 entry.symndx = symndx;
3735 entry.d.addend = addend;
3736 entry.tls_type = tls_flag;
3737 loc = (struct mips_got_entry **)
3738 htab_find_slot (g->got_entries, &entry, INSERT);
3742 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3745 (*loc)->tls_type |= tls_flag;
3747 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3750 (*loc)->tls_type |= tls_flag;
3758 entry.tls_type = tls_flag;
3759 if (tls_flag == GOT_TLS_IE)
3761 else if (tls_flag == GOT_TLS_GD)
3763 else if (g->tls_ldm_offset == MINUS_ONE)
3765 g->tls_ldm_offset = MINUS_TWO;
3771 entry.gotidx = g->local_gotno++;
3775 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3780 memcpy (*loc, &entry, sizeof entry);
3785 /* Return the maximum number of GOT page entries required for RANGE. */
3788 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3790 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3793 /* Record that ABFD has a page relocation against symbol SYMNDX and
3794 that ADDEND is the addend for that relocation.
3796 This function creates an upper bound on the number of GOT slots
3797 required; no attempt is made to combine references to non-overridable
3798 global symbols across multiple input files. */
3801 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3802 long symndx, bfd_signed_vma addend)
3804 struct mips_elf_link_hash_table *htab;
3805 struct mips_got_info *g;
3806 struct mips_got_page_entry lookup, *entry;
3807 struct mips_got_page_range **range_ptr, *range;
3808 bfd_vma old_pages, new_pages;
3811 htab = mips_elf_hash_table (info);
3812 BFD_ASSERT (htab != NULL);
3815 BFD_ASSERT (g != NULL);
3817 /* Find the mips_got_page_entry hash table entry for this symbol. */
3819 lookup.symndx = symndx;
3820 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3824 /* Create a mips_got_page_entry if this is the first time we've
3826 entry = (struct mips_got_page_entry *) *loc;
3829 entry = bfd_alloc (abfd, sizeof (*entry));
3834 entry->symndx = symndx;
3835 entry->ranges = NULL;
3836 entry->num_pages = 0;
3840 /* Skip over ranges whose maximum extent cannot share a page entry
3842 range_ptr = &entry->ranges;
3843 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3844 range_ptr = &(*range_ptr)->next;
3846 /* If we scanned to the end of the list, or found a range whose
3847 minimum extent cannot share a page entry with ADDEND, create
3848 a new singleton range. */
3850 if (!range || addend < range->min_addend - 0xffff)
3852 range = bfd_alloc (abfd, sizeof (*range));
3856 range->next = *range_ptr;
3857 range->min_addend = addend;
3858 range->max_addend = addend;
3866 /* Remember how many pages the old range contributed. */
3867 old_pages = mips_elf_pages_for_range (range);
3869 /* Update the ranges. */
3870 if (addend < range->min_addend)
3871 range->min_addend = addend;
3872 else if (addend > range->max_addend)
3874 if (range->next && addend >= range->next->min_addend - 0xffff)
3876 old_pages += mips_elf_pages_for_range (range->next);
3877 range->max_addend = range->next->max_addend;
3878 range->next = range->next->next;
3881 range->max_addend = addend;
3884 /* Record any change in the total estimate. */
3885 new_pages = mips_elf_pages_for_range (range);
3886 if (old_pages != new_pages)
3888 entry->num_pages += new_pages - old_pages;
3889 g->page_gotno += new_pages - old_pages;
3895 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3898 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3902 struct mips_elf_link_hash_table *htab;
3904 htab = mips_elf_hash_table (info);
3905 BFD_ASSERT (htab != NULL);
3907 s = mips_elf_rel_dyn_section (info, FALSE);
3908 BFD_ASSERT (s != NULL);
3910 if (htab->is_vxworks)
3911 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3916 /* Make room for a null element. */
3917 s->size += MIPS_ELF_REL_SIZE (abfd);
3920 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3924 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3925 if the GOT entry is for an indirect or warning symbol. */
3928 mips_elf_check_recreate_got (void **entryp, void *data)
3930 struct mips_got_entry *entry;
3931 bfd_boolean *must_recreate;
3933 entry = (struct mips_got_entry *) *entryp;
3934 must_recreate = (bfd_boolean *) data;
3935 if (entry->abfd != NULL && entry->symndx == -1)
3937 struct mips_elf_link_hash_entry *h;
3940 if (h->root.root.type == bfd_link_hash_indirect
3941 || h->root.root.type == bfd_link_hash_warning)
3943 *must_recreate = TRUE;
3950 /* A htab_traverse callback for GOT entries. Add all entries to
3951 hash table *DATA, converting entries for indirect and warning
3952 symbols into entries for the target symbol. Set *DATA to null
3956 mips_elf_recreate_got (void **entryp, void *data)
3959 struct mips_got_entry *entry;
3962 new_got = (htab_t *) data;
3963 entry = (struct mips_got_entry *) *entryp;
3964 if (entry->abfd != NULL && entry->symndx == -1)
3966 struct mips_elf_link_hash_entry *h;
3969 while (h->root.root.type == bfd_link_hash_indirect
3970 || h->root.root.type == bfd_link_hash_warning)
3972 BFD_ASSERT (h->global_got_area == GGA_NONE);
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3977 slot = htab_find_slot (*new_got, entry, INSERT);
3990 /* If any entries in G->got_entries are for indirect or warning symbols,
3991 replace them with entries for the target symbol. */
3994 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3996 bfd_boolean must_recreate;
3999 must_recreate = FALSE;
4000 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4003 new_got = htab_create (htab_size (g->got_entries),
4004 mips_elf_got_entry_hash,
4005 mips_elf_got_entry_eq, NULL);
4006 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4007 if (new_got == NULL)
4010 /* Each entry in g->got_entries has either been copied to new_got
4011 or freed. Now delete the hash table itself. */
4012 htab_delete (g->got_entries);
4013 g->got_entries = new_got;
4018 /* A mips_elf_link_hash_traverse callback for which DATA points
4019 to the link_info structure. Count the number of type (3) entries
4020 in the master GOT. */
4023 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4025 struct bfd_link_info *info;
4026 struct mips_elf_link_hash_table *htab;
4027 struct mips_got_info *g;
4029 info = (struct bfd_link_info *) data;
4030 htab = mips_elf_hash_table (info);
4032 if (h->global_got_area != GGA_NONE)
4034 /* Make a final decision about whether the symbol belongs in the
4035 local or global GOT. Symbols that bind locally can (and in the
4036 case of forced-local symbols, must) live in the local GOT.
4037 Those that are aren't in the dynamic symbol table must also
4038 live in the local GOT.
4040 Note that the former condition does not always imply the
4041 latter: symbols do not bind locally if they are completely
4042 undefined. We'll report undefined symbols later if appropriate. */
4043 if (h->root.dynindx == -1
4044 || (h->got_only_for_calls
4045 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4046 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4048 /* The symbol belongs in the local GOT. We no longer need this
4049 entry if it was only used for relocations; those relocations
4050 will be against the null or section symbol instead of H. */
4051 if (h->global_got_area != GGA_RELOC_ONLY)
4053 h->global_got_area = GGA_NONE;
4055 else if (htab->is_vxworks
4056 && h->got_only_for_calls
4057 && h->root.plt.offset != MINUS_ONE)
4058 /* On VxWorks, calls can refer directly to the .got.plt entry;
4059 they don't need entries in the regular GOT. .got.plt entries
4060 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4061 h->global_got_area = GGA_NONE;
4065 if (h->global_got_area == GGA_RELOC_ONLY)
4066 g->reloc_only_gotno++;
4072 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4075 mips_elf_bfd2got_entry_hash (const void *entry_)
4077 const struct mips_elf_bfd2got_hash *entry
4078 = (struct mips_elf_bfd2got_hash *)entry_;
4080 return entry->bfd->id;
4083 /* Check whether two hash entries have the same bfd. */
4086 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4088 const struct mips_elf_bfd2got_hash *e1
4089 = (const struct mips_elf_bfd2got_hash *)entry1;
4090 const struct mips_elf_bfd2got_hash *e2
4091 = (const struct mips_elf_bfd2got_hash *)entry2;
4093 return e1->bfd == e2->bfd;
4096 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4097 be the master GOT data. */
4099 static struct mips_got_info *
4100 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4102 struct mips_elf_bfd2got_hash e, *p;
4108 p = htab_find (g->bfd2got, &e);
4109 return p ? p->g : NULL;
4112 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4113 Return NULL if an error occured. */
4115 static struct mips_got_info *
4116 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4119 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4120 struct mips_got_info *g;
4123 bfdgot_entry.bfd = input_bfd;
4124 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4125 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4129 bfdgot = ((struct mips_elf_bfd2got_hash *)
4130 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4136 g = ((struct mips_got_info *)
4137 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4141 bfdgot->bfd = input_bfd;
4144 g->global_gotsym = NULL;
4145 g->global_gotno = 0;
4146 g->reloc_only_gotno = 0;
4149 g->assigned_gotno = -1;
4151 g->tls_assigned_gotno = 0;
4152 g->tls_ldm_offset = MINUS_ONE;
4153 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4154 mips_elf_multi_got_entry_eq, NULL);
4155 if (g->got_entries == NULL)
4158 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4159 mips_got_page_entry_eq, NULL);
4160 if (g->got_page_entries == NULL)
4170 /* A htab_traverse callback for the entries in the master got.
4171 Create one separate got for each bfd that has entries in the global
4172 got, such that we can tell how many local and global entries each
4176 mips_elf_make_got_per_bfd (void **entryp, void *p)
4178 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4179 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4180 struct mips_got_info *g;
4182 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4189 /* Insert the GOT entry in the bfd's got entry hash table. */
4190 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4191 if (*entryp != NULL)
4196 if (entry->tls_type)
4198 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4200 if (entry->tls_type & GOT_TLS_IE)
4203 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4211 /* A htab_traverse callback for the page entries in the master got.
4212 Associate each page entry with the bfd's got. */
4215 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4217 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4218 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4219 struct mips_got_info *g;
4221 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4228 /* Insert the GOT entry in the bfd's got entry hash table. */
4229 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4230 if (*entryp != NULL)
4234 g->page_gotno += entry->num_pages;
4238 /* Consider merging the got described by BFD2GOT with TO, using the
4239 information given by ARG. Return -1 if this would lead to overflow,
4240 1 if they were merged successfully, and 0 if a merge failed due to
4241 lack of memory. (These values are chosen so that nonnegative return
4242 values can be returned by a htab_traverse callback.) */
4245 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4246 struct mips_got_info *to,
4247 struct mips_elf_got_per_bfd_arg *arg)
4249 struct mips_got_info *from = bfd2got->g;
4250 unsigned int estimate;
4252 /* Work out how many page entries we would need for the combined GOT. */
4253 estimate = arg->max_pages;
4254 if (estimate >= from->page_gotno + to->page_gotno)
4255 estimate = from->page_gotno + to->page_gotno;
4257 /* And conservatively estimate how many local and TLS entries
4259 estimate += from->local_gotno + to->local_gotno;
4260 estimate += from->tls_gotno + to->tls_gotno;
4262 /* If we're merging with the primary got, we will always have
4263 the full set of global entries. Otherwise estimate those
4264 conservatively as well. */
4265 if (to == arg->primary)
4266 estimate += arg->global_count;
4268 estimate += from->global_gotno + to->global_gotno;
4270 /* Bail out if the combined GOT might be too big. */
4271 if (estimate > arg->max_count)
4274 /* Commit to the merge. Record that TO is now the bfd for this got. */
4277 /* Transfer the bfd's got information from FROM to TO. */
4278 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4279 if (arg->obfd == NULL)
4282 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4283 if (arg->obfd == NULL)
4286 /* We don't have to worry about releasing memory of the actual
4287 got entries, since they're all in the master got_entries hash
4289 htab_delete (from->got_entries);
4290 htab_delete (from->got_page_entries);
4294 /* Attempt to merge gots of different input bfds. Try to use as much
4295 as possible of the primary got, since it doesn't require explicit
4296 dynamic relocations, but don't use bfds that would reference global
4297 symbols out of the addressable range. Failing the primary got,
4298 attempt to merge with the current got, or finish the current got
4299 and then make make the new got current. */
4302 mips_elf_merge_gots (void **bfd2got_, void *p)
4304 struct mips_elf_bfd2got_hash *bfd2got
4305 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4306 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4307 struct mips_got_info *g;
4308 unsigned int estimate;
4313 /* Work out the number of page, local and TLS entries. */
4314 estimate = arg->max_pages;
4315 if (estimate > g->page_gotno)
4316 estimate = g->page_gotno;
4317 estimate += g->local_gotno + g->tls_gotno;
4319 /* We place TLS GOT entries after both locals and globals. The globals
4320 for the primary GOT may overflow the normal GOT size limit, so be
4321 sure not to merge a GOT which requires TLS with the primary GOT in that
4322 case. This doesn't affect non-primary GOTs. */
4323 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4325 if (estimate <= arg->max_count)
4327 /* If we don't have a primary GOT, use it as
4328 a starting point for the primary GOT. */
4331 arg->primary = bfd2got->g;
4335 /* Try merging with the primary GOT. */
4336 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4341 /* If we can merge with the last-created got, do it. */
4344 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4349 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4350 fits; if it turns out that it doesn't, we'll get relocation
4351 overflows anyway. */
4352 g->next = arg->current;
4358 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4359 is null iff there is just a single GOT. */
4362 mips_elf_initialize_tls_index (void **entryp, void *p)
4364 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4365 struct mips_got_info *g = p;
4367 unsigned char tls_type;
4369 /* We're only interested in TLS symbols. */
4370 if (entry->tls_type == 0)
4373 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4375 if (entry->symndx == -1 && g->next == NULL)
4377 /* A type (3) got entry in the single-GOT case. We use the symbol's
4378 hash table entry to track its index. */
4379 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4381 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4382 entry->d.h->tls_got_offset = next_index;
4383 tls_type = entry->d.h->tls_type;
4387 if (entry->tls_type & GOT_TLS_LDM)
4389 /* There are separate mips_got_entry objects for each input bfd
4390 that requires an LDM entry. Make sure that all LDM entries in
4391 a GOT resolve to the same index. */
4392 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4394 entry->gotidx = g->tls_ldm_offset;
4397 g->tls_ldm_offset = next_index;
4399 entry->gotidx = next_index;
4400 tls_type = entry->tls_type;
4403 /* Account for the entries we've just allocated. */
4404 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4405 g->tls_assigned_gotno += 2;
4406 if (tls_type & GOT_TLS_IE)
4407 g->tls_assigned_gotno += 1;
4412 /* If passed a NULL mips_got_info in the argument, set the marker used
4413 to tell whether a global symbol needs a got entry (in the primary
4414 got) to the given VALUE.
4416 If passed a pointer G to a mips_got_info in the argument (it must
4417 not be the primary GOT), compute the offset from the beginning of
4418 the (primary) GOT section to the entry in G corresponding to the
4419 global symbol. G's assigned_gotno must contain the index of the
4420 first available global GOT entry in G. VALUE must contain the size
4421 of a GOT entry in bytes. For each global GOT entry that requires a
4422 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4423 marked as not eligible for lazy resolution through a function
4426 mips_elf_set_global_got_offset (void **entryp, void *p)
4428 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4429 struct mips_elf_set_global_got_offset_arg *arg
4430 = (struct mips_elf_set_global_got_offset_arg *)p;
4431 struct mips_got_info *g = arg->g;
4433 if (g && entry->tls_type != GOT_NORMAL)
4434 arg->needed_relocs +=
4435 mips_tls_got_relocs (arg->info, entry->tls_type,
4436 entry->symndx == -1 ? &entry->d.h->root : NULL);
4438 if (entry->abfd != NULL
4439 && entry->symndx == -1
4440 && entry->d.h->global_got_area != GGA_NONE)
4444 BFD_ASSERT (g->global_gotsym == NULL);
4446 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4447 if (arg->info->shared
4448 || (elf_hash_table (arg->info)->dynamic_sections_created
4449 && entry->d.h->root.def_dynamic
4450 && !entry->d.h->root.def_regular))
4451 ++arg->needed_relocs;
4454 entry->d.h->global_got_area = arg->value;
4460 /* A htab_traverse callback for GOT entries for which DATA is the
4461 bfd_link_info. Forbid any global symbols from having traditional
4462 lazy-binding stubs. */
4465 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4467 struct bfd_link_info *info;
4468 struct mips_elf_link_hash_table *htab;
4469 struct mips_got_entry *entry;
4471 entry = (struct mips_got_entry *) *entryp;
4472 info = (struct bfd_link_info *) data;
4473 htab = mips_elf_hash_table (info);
4474 BFD_ASSERT (htab != NULL);
4476 if (entry->abfd != NULL
4477 && entry->symndx == -1
4478 && entry->d.h->needs_lazy_stub)
4480 entry->d.h->needs_lazy_stub = FALSE;
4481 htab->lazy_stub_count--;
4487 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4490 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4492 if (g->bfd2got == NULL)
4495 g = mips_elf_got_for_ibfd (g, ibfd);
4499 BFD_ASSERT (g->next);
4503 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4504 * MIPS_ELF_GOT_SIZE (abfd);
4507 /* Turn a single GOT that is too big for 16-bit addressing into
4508 a sequence of GOTs, each one 16-bit addressable. */
4511 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4512 asection *got, bfd_size_type pages)
4514 struct mips_elf_link_hash_table *htab;
4515 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4516 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4517 struct mips_got_info *g, *gg;
4518 unsigned int assign, needed_relocs;
4521 dynobj = elf_hash_table (info)->dynobj;
4522 htab = mips_elf_hash_table (info);
4523 BFD_ASSERT (htab != NULL);
4526 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4527 mips_elf_bfd2got_entry_eq, NULL);
4528 if (g->bfd2got == NULL)
4531 got_per_bfd_arg.bfd2got = g->bfd2got;
4532 got_per_bfd_arg.obfd = abfd;
4533 got_per_bfd_arg.info = info;
4535 /* Count how many GOT entries each input bfd requires, creating a
4536 map from bfd to got info while at that. */
4537 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4538 if (got_per_bfd_arg.obfd == NULL)
4541 /* Also count how many page entries each input bfd requires. */
4542 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4544 if (got_per_bfd_arg.obfd == NULL)
4547 got_per_bfd_arg.current = NULL;
4548 got_per_bfd_arg.primary = NULL;
4549 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4550 / MIPS_ELF_GOT_SIZE (abfd))
4551 - htab->reserved_gotno);
4552 got_per_bfd_arg.max_pages = pages;
4553 /* The number of globals that will be included in the primary GOT.
4554 See the calls to mips_elf_set_global_got_offset below for more
4556 got_per_bfd_arg.global_count = g->global_gotno;
4558 /* Try to merge the GOTs of input bfds together, as long as they
4559 don't seem to exceed the maximum GOT size, choosing one of them
4560 to be the primary GOT. */
4561 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4562 if (got_per_bfd_arg.obfd == NULL)
4565 /* If we do not find any suitable primary GOT, create an empty one. */
4566 if (got_per_bfd_arg.primary == NULL)
4568 g->next = (struct mips_got_info *)
4569 bfd_alloc (abfd, sizeof (struct mips_got_info));
4570 if (g->next == NULL)
4573 g->next->global_gotsym = NULL;
4574 g->next->global_gotno = 0;
4575 g->next->reloc_only_gotno = 0;
4576 g->next->local_gotno = 0;
4577 g->next->page_gotno = 0;
4578 g->next->tls_gotno = 0;
4579 g->next->assigned_gotno = 0;
4580 g->next->tls_assigned_gotno = 0;
4581 g->next->tls_ldm_offset = MINUS_ONE;
4582 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4583 mips_elf_multi_got_entry_eq,
4585 if (g->next->got_entries == NULL)
4587 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4588 mips_got_page_entry_eq,
4590 if (g->next->got_page_entries == NULL)
4592 g->next->bfd2got = NULL;
4595 g->next = got_per_bfd_arg.primary;
4596 g->next->next = got_per_bfd_arg.current;
4598 /* GG is now the master GOT, and G is the primary GOT. */
4602 /* Map the output bfd to the primary got. That's what we're going
4603 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4604 didn't mark in check_relocs, and we want a quick way to find it.
4605 We can't just use gg->next because we're going to reverse the
4608 struct mips_elf_bfd2got_hash *bfdgot;
4611 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4612 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4619 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4621 BFD_ASSERT (*bfdgotp == NULL);
4625 /* Every symbol that is referenced in a dynamic relocation must be
4626 present in the primary GOT, so arrange for them to appear after
4627 those that are actually referenced. */
4628 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4629 g->global_gotno = gg->global_gotno;
4631 set_got_offset_arg.g = NULL;
4632 set_got_offset_arg.value = GGA_RELOC_ONLY;
4633 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4634 &set_got_offset_arg);
4635 set_got_offset_arg.value = GGA_NORMAL;
4636 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4637 &set_got_offset_arg);
4639 /* Now go through the GOTs assigning them offset ranges.
4640 [assigned_gotno, local_gotno[ will be set to the range of local
4641 entries in each GOT. We can then compute the end of a GOT by
4642 adding local_gotno to global_gotno. We reverse the list and make
4643 it circular since then we'll be able to quickly compute the
4644 beginning of a GOT, by computing the end of its predecessor. To
4645 avoid special cases for the primary GOT, while still preserving
4646 assertions that are valid for both single- and multi-got links,
4647 we arrange for the main got struct to have the right number of
4648 global entries, but set its local_gotno such that the initial
4649 offset of the primary GOT is zero. Remember that the primary GOT
4650 will become the last item in the circular linked list, so it
4651 points back to the master GOT. */
4652 gg->local_gotno = -g->global_gotno;
4653 gg->global_gotno = g->global_gotno;
4660 struct mips_got_info *gn;
4662 assign += htab->reserved_gotno;
4663 g->assigned_gotno = assign;
4664 g->local_gotno += assign;
4665 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4666 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4668 /* Take g out of the direct list, and push it onto the reversed
4669 list that gg points to. g->next is guaranteed to be nonnull after
4670 this operation, as required by mips_elf_initialize_tls_index. */
4675 /* Set up any TLS entries. We always place the TLS entries after
4676 all non-TLS entries. */
4677 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4678 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4680 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4683 /* Forbid global symbols in every non-primary GOT from having
4684 lazy-binding stubs. */
4686 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4690 got->size = (gg->next->local_gotno
4691 + gg->next->global_gotno
4692 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4695 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4696 set_got_offset_arg.info = info;
4697 for (g = gg->next; g && g->next != gg; g = g->next)
4699 unsigned int save_assign;
4701 /* Assign offsets to global GOT entries. */
4702 save_assign = g->assigned_gotno;
4703 g->assigned_gotno = g->local_gotno;
4704 set_got_offset_arg.g = g;
4705 set_got_offset_arg.needed_relocs = 0;
4706 htab_traverse (g->got_entries,
4707 mips_elf_set_global_got_offset,
4708 &set_got_offset_arg);
4709 needed_relocs += set_got_offset_arg.needed_relocs;
4710 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4712 g->assigned_gotno = save_assign;
4715 needed_relocs += g->local_gotno - g->assigned_gotno;
4716 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4717 + g->next->global_gotno
4718 + g->next->tls_gotno
4719 + htab->reserved_gotno);
4724 mips_elf_allocate_dynamic_relocations (dynobj, info,
4731 /* Returns the first relocation of type r_type found, beginning with
4732 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4734 static const Elf_Internal_Rela *
4735 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4736 const Elf_Internal_Rela *relocation,
4737 const Elf_Internal_Rela *relend)
4739 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4741 while (relocation < relend)
4743 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4744 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4750 /* We didn't find it. */
4754 /* Return whether an input relocation is against a local symbol. */
4757 mips_elf_local_relocation_p (bfd *input_bfd,
4758 const Elf_Internal_Rela *relocation,
4759 asection **local_sections)
4761 unsigned long r_symndx;
4762 Elf_Internal_Shdr *symtab_hdr;
4765 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4766 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4767 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4769 if (r_symndx < extsymoff)
4771 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4777 /* Sign-extend VALUE, which has the indicated number of BITS. */
4780 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4782 if (value & ((bfd_vma) 1 << (bits - 1)))
4783 /* VALUE is negative. */
4784 value |= ((bfd_vma) - 1) << bits;
4789 /* Return non-zero if the indicated VALUE has overflowed the maximum
4790 range expressible by a signed number with the indicated number of
4794 mips_elf_overflow_p (bfd_vma value, int bits)
4796 bfd_signed_vma svalue = (bfd_signed_vma) value;
4798 if (svalue > (1 << (bits - 1)) - 1)
4799 /* The value is too big. */
4801 else if (svalue < -(1 << (bits - 1)))
4802 /* The value is too small. */
4809 /* Calculate the %high function. */
4812 mips_elf_high (bfd_vma value)
4814 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4817 /* Calculate the %higher function. */
4820 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4823 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4830 /* Calculate the %highest function. */
4833 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4836 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4843 /* Create the .compact_rel section. */
4846 mips_elf_create_compact_rel_section
4847 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4850 register asection *s;
4852 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4854 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4857 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4859 || ! bfd_set_section_alignment (abfd, s,
4860 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4863 s->size = sizeof (Elf32_External_compact_rel);
4869 /* Create the .got section to hold the global offset table. */
4872 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4875 register asection *s;
4876 struct elf_link_hash_entry *h;
4877 struct bfd_link_hash_entry *bh;
4878 struct mips_got_info *g;
4880 struct mips_elf_link_hash_table *htab;
4882 htab = mips_elf_hash_table (info);
4883 BFD_ASSERT (htab != NULL);
4885 /* This function may be called more than once. */
4889 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4890 | SEC_LINKER_CREATED);
4892 /* We have to use an alignment of 2**4 here because this is hardcoded
4893 in the function stub generation and in the linker script. */
4894 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4896 || ! bfd_set_section_alignment (abfd, s, 4))
4900 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4901 linker script because we don't want to define the symbol if we
4902 are not creating a global offset table. */
4904 if (! (_bfd_generic_link_add_one_symbol
4905 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4906 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4909 h = (struct elf_link_hash_entry *) bh;
4912 h->type = STT_OBJECT;
4913 elf_hash_table (info)->hgot = h;
4916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4919 amt = sizeof (struct mips_got_info);
4920 g = bfd_alloc (abfd, amt);
4923 g->global_gotsym = NULL;
4924 g->global_gotno = 0;
4925 g->reloc_only_gotno = 0;
4929 g->assigned_gotno = 0;
4932 g->tls_ldm_offset = MINUS_ONE;
4933 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4934 mips_elf_got_entry_eq, NULL);
4935 if (g->got_entries == NULL)
4937 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4938 mips_got_page_entry_eq, NULL);
4939 if (g->got_page_entries == NULL)
4942 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4943 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4945 /* We also need a .got.plt section when generating PLTs. */
4946 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4947 SEC_ALLOC | SEC_LOAD
4950 | SEC_LINKER_CREATED);
4958 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4959 __GOTT_INDEX__ symbols. These symbols are only special for
4960 shared objects; they are not used in executables. */
4963 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4965 return (mips_elf_hash_table (info)->is_vxworks
4967 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4968 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4971 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4972 require an la25 stub. See also mips_elf_local_pic_function_p,
4973 which determines whether the destination function ever requires a
4977 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4978 bfd_boolean target_is_16_bit_code_p)
4980 /* We specifically ignore branches and jumps from EF_PIC objects,
4981 where the onus is on the compiler or programmer to perform any
4982 necessary initialization of $25. Sometimes such initialization
4983 is unnecessary; for example, -mno-shared functions do not use
4984 the incoming value of $25, and may therefore be called directly. */
4985 if (PIC_OBJECT_P (input_bfd))
4992 case R_MICROMIPS_26_S1:
4993 case R_MICROMIPS_PC7_S1:
4994 case R_MICROMIPS_PC10_S1:
4995 case R_MICROMIPS_PC16_S1:
4996 case R_MICROMIPS_PC23_S2:
5000 return !target_is_16_bit_code_p;
5007 /* Calculate the value produced by the RELOCATION (which comes from
5008 the INPUT_BFD). The ADDEND is the addend to use for this
5009 RELOCATION; RELOCATION->R_ADDEND is ignored.
5011 The result of the relocation calculation is stored in VALUEP.
5012 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5013 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5015 This function returns bfd_reloc_continue if the caller need take no
5016 further action regarding this relocation, bfd_reloc_notsupported if
5017 something goes dramatically wrong, bfd_reloc_overflow if an
5018 overflow occurs, and bfd_reloc_ok to indicate success. */
5020 static bfd_reloc_status_type
5021 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5022 asection *input_section,
5023 struct bfd_link_info *info,
5024 const Elf_Internal_Rela *relocation,
5025 bfd_vma addend, reloc_howto_type *howto,
5026 Elf_Internal_Sym *local_syms,
5027 asection **local_sections, bfd_vma *valuep,
5029 bfd_boolean *cross_mode_jump_p,
5030 bfd_boolean save_addend)
5032 /* The eventual value we will return. */
5034 /* The address of the symbol against which the relocation is
5037 /* The final GP value to be used for the relocatable, executable, or
5038 shared object file being produced. */
5040 /* The place (section offset or address) of the storage unit being
5043 /* The value of GP used to create the relocatable object. */
5045 /* The offset into the global offset table at which the address of
5046 the relocation entry symbol, adjusted by the addend, resides
5047 during execution. */
5048 bfd_vma g = MINUS_ONE;
5049 /* The section in which the symbol referenced by the relocation is
5051 asection *sec = NULL;
5052 struct mips_elf_link_hash_entry *h = NULL;
5053 /* TRUE if the symbol referred to by this relocation is a local
5055 bfd_boolean local_p, was_local_p;
5056 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5057 bfd_boolean gp_disp_p = FALSE;
5058 /* TRUE if the symbol referred to by this relocation is
5059 "__gnu_local_gp". */
5060 bfd_boolean gnu_local_gp_p = FALSE;
5061 Elf_Internal_Shdr *symtab_hdr;
5063 unsigned long r_symndx;
5065 /* TRUE if overflow occurred during the calculation of the
5066 relocation value. */
5067 bfd_boolean overflowed_p;
5068 /* TRUE if this relocation refers to a MIPS16 function. */
5069 bfd_boolean target_is_16_bit_code_p = FALSE;
5070 bfd_boolean target_is_micromips_code_p = FALSE;
5071 struct mips_elf_link_hash_table *htab;
5074 dynobj = elf_hash_table (info)->dynobj;
5075 htab = mips_elf_hash_table (info);
5076 BFD_ASSERT (htab != NULL);
5078 /* Parse the relocation. */
5079 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5080 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5081 p = (input_section->output_section->vma
5082 + input_section->output_offset
5083 + relocation->r_offset);
5085 /* Assume that there will be no overflow. */
5086 overflowed_p = FALSE;
5088 /* Figure out whether or not the symbol is local, and get the offset
5089 used in the array of hash table entries. */
5090 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5091 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5093 was_local_p = local_p;
5094 if (! elf_bad_symtab (input_bfd))
5095 extsymoff = symtab_hdr->sh_info;
5098 /* The symbol table does not follow the rule that local symbols
5099 must come before globals. */
5103 /* Figure out the value of the symbol. */
5106 Elf_Internal_Sym *sym;
5108 sym = local_syms + r_symndx;
5109 sec = local_sections[r_symndx];
5111 symbol = sec->output_section->vma + sec->output_offset;
5112 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5113 || (sec->flags & SEC_MERGE))
5114 symbol += sym->st_value;
5115 if ((sec->flags & SEC_MERGE)
5116 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5118 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5120 addend += sec->output_section->vma + sec->output_offset;
5123 /* MIPS16/microMIPS text labels should be treated as odd. */
5124 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5127 /* Record the name of this symbol, for our caller. */
5128 *namep = bfd_elf_string_from_elf_section (input_bfd,
5129 symtab_hdr->sh_link,
5132 *namep = bfd_section_name (input_bfd, sec);
5134 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5135 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5139 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5141 /* For global symbols we look up the symbol in the hash-table. */
5142 h = ((struct mips_elf_link_hash_entry *)
5143 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5144 /* Find the real hash-table entry for this symbol. */
5145 while (h->root.root.type == bfd_link_hash_indirect
5146 || h->root.root.type == bfd_link_hash_warning)
5147 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5149 /* Record the name of this symbol, for our caller. */
5150 *namep = h->root.root.root.string;
5152 /* See if this is the special _gp_disp symbol. Note that such a
5153 symbol must always be a global symbol. */
5154 if (strcmp (*namep, "_gp_disp") == 0
5155 && ! NEWABI_P (input_bfd))
5157 /* Relocations against _gp_disp are permitted only with
5158 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5159 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5160 return bfd_reloc_notsupported;
5164 /* See if this is the special _gp symbol. Note that such a
5165 symbol must always be a global symbol. */
5166 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5167 gnu_local_gp_p = TRUE;
5170 /* If this symbol is defined, calculate its address. Note that
5171 _gp_disp is a magic symbol, always implicitly defined by the
5172 linker, so it's inappropriate to check to see whether or not
5174 else if ((h->root.root.type == bfd_link_hash_defined
5175 || h->root.root.type == bfd_link_hash_defweak)
5176 && h->root.root.u.def.section)
5178 sec = h->root.root.u.def.section;
5179 if (sec->output_section)
5180 symbol = (h->root.root.u.def.value
5181 + sec->output_section->vma
5182 + sec->output_offset);
5184 symbol = h->root.root.u.def.value;
5186 else if (h->root.root.type == bfd_link_hash_undefweak)
5187 /* We allow relocations against undefined weak symbols, giving
5188 it the value zero, so that you can undefined weak functions
5189 and check to see if they exist by looking at their
5192 else if (info->unresolved_syms_in_objects == RM_IGNORE
5193 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5195 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5196 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5198 /* If this is a dynamic link, we should have created a
5199 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5200 in in _bfd_mips_elf_create_dynamic_sections.
5201 Otherwise, we should define the symbol with a value of 0.
5202 FIXME: It should probably get into the symbol table
5204 BFD_ASSERT (! info->shared);
5205 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5208 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5210 /* This is an optional symbol - an Irix specific extension to the
5211 ELF spec. Ignore it for now.
5212 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5213 than simply ignoring them, but we do not handle this for now.
5214 For information see the "64-bit ELF Object File Specification"
5215 which is available from here:
5216 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5219 else if ((*info->callbacks->undefined_symbol)
5220 (info, h->root.root.root.string, input_bfd,
5221 input_section, relocation->r_offset,
5222 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5223 || ELF_ST_VISIBILITY (h->root.other)))
5225 return bfd_reloc_undefined;
5229 return bfd_reloc_notsupported;
5232 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5233 /* If the output section is the PLT section,
5234 then the target is not microMIPS. */
5235 target_is_micromips_code_p = (htab->splt != sec
5236 && ELF_ST_IS_MICROMIPS (h->root.other));
5239 /* If this is a reference to a 16-bit function with a stub, we need
5240 to redirect the relocation to the stub unless:
5242 (a) the relocation is for a MIPS16 JAL;
5244 (b) the relocation is for a MIPS16 PIC call, and there are no
5245 non-MIPS16 uses of the GOT slot; or
5247 (c) the section allows direct references to MIPS16 functions. */
5248 if (r_type != R_MIPS16_26
5249 && !info->relocatable
5251 && h->fn_stub != NULL
5252 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5254 && elf_tdata (input_bfd)->local_stubs != NULL
5255 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5256 && !section_allows_mips16_refs_p (input_section))
5258 /* This is a 32- or 64-bit call to a 16-bit function. We should
5259 have already noticed that we were going to need the
5263 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5268 BFD_ASSERT (h->need_fn_stub);
5271 /* If a LA25 header for the stub itself exists, point to the
5272 prepended LUI/ADDIU sequence. */
5273 sec = h->la25_stub->stub_section;
5274 value = h->la25_stub->offset;
5283 symbol = sec->output_section->vma + sec->output_offset + value;
5284 /* The target is 16-bit, but the stub isn't. */
5285 target_is_16_bit_code_p = FALSE;
5287 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5288 need to redirect the call to the stub. Note that we specifically
5289 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5290 use an indirect stub instead. */
5291 else if (r_type == R_MIPS16_26 && !info->relocatable
5292 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5294 && elf_tdata (input_bfd)->local_call_stubs != NULL
5295 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5296 && !target_is_16_bit_code_p)
5299 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5302 /* If both call_stub and call_fp_stub are defined, we can figure
5303 out which one to use by checking which one appears in the input
5305 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5310 for (o = input_bfd->sections; o != NULL; o = o->next)
5312 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5314 sec = h->call_fp_stub;
5321 else if (h->call_stub != NULL)
5324 sec = h->call_fp_stub;
5327 BFD_ASSERT (sec->size > 0);
5328 symbol = sec->output_section->vma + sec->output_offset;
5330 /* If this is a direct call to a PIC function, redirect to the
5332 else if (h != NULL && h->la25_stub
5333 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5334 target_is_16_bit_code_p))
5335 symbol = (h->la25_stub->stub_section->output_section->vma
5336 + h->la25_stub->stub_section->output_offset
5337 + h->la25_stub->offset);
5339 /* Make sure MIPS16 and microMIPS are not used together. */
5340 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5341 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5343 (*_bfd_error_handler)
5344 (_("MIPS16 and microMIPS functions cannot call each other"));
5345 return bfd_reloc_notsupported;
5348 /* Calls from 16-bit code to 32-bit code and vice versa require the
5349 mode change. However, we can ignore calls to undefined weak symbols,
5350 which should never be executed at runtime. This exception is important
5351 because the assembly writer may have "known" that any definition of the
5352 symbol would be 16-bit code, and that direct jumps were therefore
5354 *cross_mode_jump_p = (!info->relocatable
5355 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5356 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5357 || (r_type == R_MICROMIPS_26_S1
5358 && !target_is_micromips_code_p)
5359 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5360 && (target_is_16_bit_code_p
5361 || target_is_micromips_code_p))));
5363 local_p = (h == NULL
5364 || (h->got_only_for_calls
5365 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5366 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5368 gp0 = _bfd_get_gp_value (input_bfd);
5369 gp = _bfd_get_gp_value (abfd);
5371 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5376 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5377 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5378 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5379 if (got_page_reloc_p (r_type) && !local_p)
5381 r_type = (micromips_reloc_p (r_type)
5382 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5386 /* If we haven't already determined the GOT offset, and we're going
5387 to need it, get it now. */
5390 case R_MIPS16_CALL16:
5391 case R_MIPS16_GOT16:
5394 case R_MIPS_GOT_DISP:
5395 case R_MIPS_GOT_HI16:
5396 case R_MIPS_CALL_HI16:
5397 case R_MIPS_GOT_LO16:
5398 case R_MIPS_CALL_LO16:
5399 case R_MICROMIPS_CALL16:
5400 case R_MICROMIPS_GOT16:
5401 case R_MICROMIPS_GOT_DISP:
5402 case R_MICROMIPS_GOT_HI16:
5403 case R_MICROMIPS_CALL_HI16:
5404 case R_MICROMIPS_GOT_LO16:
5405 case R_MICROMIPS_CALL_LO16:
5407 case R_MIPS_TLS_GOTTPREL:
5408 case R_MIPS_TLS_LDM:
5409 case R_MIPS16_TLS_GD:
5410 case R_MIPS16_TLS_GOTTPREL:
5411 case R_MIPS16_TLS_LDM:
5412 case R_MICROMIPS_TLS_GD:
5413 case R_MICROMIPS_TLS_GOTTPREL:
5414 case R_MICROMIPS_TLS_LDM:
5415 /* Find the index into the GOT where this value is located. */
5416 if (tls_ldm_reloc_p (r_type))
5418 g = mips_elf_local_got_index (abfd, input_bfd, info,
5419 0, 0, NULL, r_type);
5421 return bfd_reloc_outofrange;
5425 /* On VxWorks, CALL relocations should refer to the .got.plt
5426 entry, which is initialized to point at the PLT stub. */
5427 if (htab->is_vxworks
5428 && (call_hi16_reloc_p (r_type)
5429 || call_lo16_reloc_p (r_type)
5430 || call16_reloc_p (r_type)))
5432 BFD_ASSERT (addend == 0);
5433 BFD_ASSERT (h->root.needs_plt);
5434 g = mips_elf_gotplt_index (info, &h->root);
5438 BFD_ASSERT (addend == 0);
5439 g = mips_elf_global_got_index (dynobj, input_bfd,
5440 &h->root, r_type, info);
5441 if (h->tls_type == GOT_NORMAL
5442 && !elf_hash_table (info)->dynamic_sections_created)
5443 /* This is a static link. We must initialize the GOT entry. */
5444 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5447 else if (!htab->is_vxworks
5448 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5449 /* The calculation below does not involve "g". */
5453 g = mips_elf_local_got_index (abfd, input_bfd, info,
5454 symbol + addend, r_symndx, h, r_type);
5456 return bfd_reloc_outofrange;
5459 /* Convert GOT indices to actual offsets. */
5460 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5464 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5465 symbols are resolved by the loader. Add them to .rela.dyn. */
5466 if (h != NULL && is_gott_symbol (info, &h->root))
5468 Elf_Internal_Rela outrel;
5472 s = mips_elf_rel_dyn_section (info, FALSE);
5473 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5475 outrel.r_offset = (input_section->output_section->vma
5476 + input_section->output_offset
5477 + relocation->r_offset);
5478 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5479 outrel.r_addend = addend;
5480 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5482 /* If we've written this relocation for a readonly section,
5483 we need to set DF_TEXTREL again, so that we do not delete the
5485 if (MIPS_ELF_READONLY_SECTION (input_section))
5486 info->flags |= DF_TEXTREL;
5489 return bfd_reloc_ok;
5492 /* Figure out what kind of relocation is being performed. */
5496 return bfd_reloc_continue;
5499 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5500 overflowed_p = mips_elf_overflow_p (value, 16);
5507 || (htab->root.dynamic_sections_created
5509 && h->root.def_dynamic
5510 && !h->root.def_regular
5511 && !h->has_static_relocs))
5512 && r_symndx != STN_UNDEF
5514 || h->root.root.type != bfd_link_hash_undefweak
5515 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5516 && (input_section->flags & SEC_ALLOC) != 0)
5518 /* If we're creating a shared library, then we can't know
5519 where the symbol will end up. So, we create a relocation
5520 record in the output, and leave the job up to the dynamic
5521 linker. We must do the same for executable references to
5522 shared library symbols, unless we've decided to use copy
5523 relocs or PLTs instead. */
5525 if (!mips_elf_create_dynamic_relocation (abfd,
5533 return bfd_reloc_undefined;
5537 if (r_type != R_MIPS_REL32)
5538 value = symbol + addend;
5542 value &= howto->dst_mask;
5546 value = symbol + addend - p;
5547 value &= howto->dst_mask;
5551 /* The calculation for R_MIPS16_26 is just the same as for an
5552 R_MIPS_26. It's only the storage of the relocated field into
5553 the output file that's different. That's handled in
5554 mips_elf_perform_relocation. So, we just fall through to the
5555 R_MIPS_26 case here. */
5557 case R_MICROMIPS_26_S1:
5561 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5562 the correct ISA mode selector and bit 1 must be 0. */
5563 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5564 return bfd_reloc_outofrange;
5566 /* Shift is 2, unusually, for microMIPS JALX. */
5567 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5570 value = addend | ((p + 4) & (0xfc000000 << shift));
5572 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5573 value = (value + symbol) >> shift;
5574 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5575 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5576 value &= howto->dst_mask;
5580 case R_MIPS_TLS_DTPREL_HI16:
5581 case R_MIPS16_TLS_DTPREL_HI16:
5582 case R_MICROMIPS_TLS_DTPREL_HI16:
5583 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5587 case R_MIPS_TLS_DTPREL_LO16:
5588 case R_MIPS_TLS_DTPREL32:
5589 case R_MIPS_TLS_DTPREL64:
5590 case R_MIPS16_TLS_DTPREL_LO16:
5591 case R_MICROMIPS_TLS_DTPREL_LO16:
5592 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5595 case R_MIPS_TLS_TPREL_HI16:
5596 case R_MIPS16_TLS_TPREL_HI16:
5597 case R_MICROMIPS_TLS_TPREL_HI16:
5598 value = (mips_elf_high (addend + symbol - tprel_base (info))
5602 case R_MIPS_TLS_TPREL_LO16:
5603 case R_MIPS_TLS_TPREL32:
5604 case R_MIPS_TLS_TPREL64:
5605 case R_MIPS16_TLS_TPREL_LO16:
5606 case R_MICROMIPS_TLS_TPREL_LO16:
5607 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5612 case R_MICROMIPS_HI16:
5615 value = mips_elf_high (addend + symbol);
5616 value &= howto->dst_mask;
5620 /* For MIPS16 ABI code we generate this sequence
5621 0: li $v0,%hi(_gp_disp)
5622 4: addiupc $v1,%lo(_gp_disp)
5626 So the offsets of hi and lo relocs are the same, but the
5627 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5628 ADDIUPC clears the low two bits of the instruction address,
5629 so the base is ($t9 + 4) & ~3. */
5630 if (r_type == R_MIPS16_HI16)
5631 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5632 /* The microMIPS .cpload sequence uses the same assembly
5633 instructions as the traditional psABI version, but the
5634 incoming $t9 has the low bit set. */
5635 else if (r_type == R_MICROMIPS_HI16)
5636 value = mips_elf_high (addend + gp - p - 1);
5638 value = mips_elf_high (addend + gp - p);
5639 overflowed_p = mips_elf_overflow_p (value, 16);
5645 case R_MICROMIPS_LO16:
5646 case R_MICROMIPS_HI0_LO16:
5648 value = (symbol + addend) & howto->dst_mask;
5651 /* See the comment for R_MIPS16_HI16 above for the reason
5652 for this conditional. */
5653 if (r_type == R_MIPS16_LO16)
5654 value = addend + gp - (p & ~(bfd_vma) 0x3);
5655 else if (r_type == R_MICROMIPS_LO16
5656 || r_type == R_MICROMIPS_HI0_LO16)
5657 value = addend + gp - p + 3;
5659 value = addend + gp - p + 4;
5660 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5661 for overflow. But, on, say, IRIX5, relocations against
5662 _gp_disp are normally generated from the .cpload
5663 pseudo-op. It generates code that normally looks like
5666 lui $gp,%hi(_gp_disp)
5667 addiu $gp,$gp,%lo(_gp_disp)
5670 Here $t9 holds the address of the function being called,
5671 as required by the MIPS ELF ABI. The R_MIPS_LO16
5672 relocation can easily overflow in this situation, but the
5673 R_MIPS_HI16 relocation will handle the overflow.
5674 Therefore, we consider this a bug in the MIPS ABI, and do
5675 not check for overflow here. */
5679 case R_MIPS_LITERAL:
5680 case R_MICROMIPS_LITERAL:
5681 /* Because we don't merge literal sections, we can handle this
5682 just like R_MIPS_GPREL16. In the long run, we should merge
5683 shared literals, and then we will need to additional work
5688 case R_MIPS16_GPREL:
5689 /* The R_MIPS16_GPREL performs the same calculation as
5690 R_MIPS_GPREL16, but stores the relocated bits in a different
5691 order. We don't need to do anything special here; the
5692 differences are handled in mips_elf_perform_relocation. */
5693 case R_MIPS_GPREL16:
5694 case R_MICROMIPS_GPREL7_S2:
5695 case R_MICROMIPS_GPREL16:
5696 /* Only sign-extend the addend if it was extracted from the
5697 instruction. If the addend was separate, leave it alone,
5698 otherwise we may lose significant bits. */
5699 if (howto->partial_inplace)
5700 addend = _bfd_mips_elf_sign_extend (addend, 16);
5701 value = symbol + addend - gp;
5702 /* If the symbol was local, any earlier relocatable links will
5703 have adjusted its addend with the gp offset, so compensate
5704 for that now. Don't do it for symbols forced local in this
5705 link, though, since they won't have had the gp offset applied
5709 overflowed_p = mips_elf_overflow_p (value, 16);
5712 case R_MIPS16_GOT16:
5713 case R_MIPS16_CALL16:
5716 case R_MICROMIPS_GOT16:
5717 case R_MICROMIPS_CALL16:
5718 /* VxWorks does not have separate local and global semantics for
5719 R_MIPS*_GOT16; every relocation evaluates to "G". */
5720 if (!htab->is_vxworks && local_p)
5722 value = mips_elf_got16_entry (abfd, input_bfd, info,
5723 symbol + addend, !was_local_p);
5724 if (value == MINUS_ONE)
5725 return bfd_reloc_outofrange;
5727 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5728 overflowed_p = mips_elf_overflow_p (value, 16);
5735 case R_MIPS_TLS_GOTTPREL:
5736 case R_MIPS_TLS_LDM:
5737 case R_MIPS_GOT_DISP:
5738 case R_MIPS16_TLS_GD:
5739 case R_MIPS16_TLS_GOTTPREL:
5740 case R_MIPS16_TLS_LDM:
5741 case R_MICROMIPS_TLS_GD:
5742 case R_MICROMIPS_TLS_GOTTPREL:
5743 case R_MICROMIPS_TLS_LDM:
5744 case R_MICROMIPS_GOT_DISP:
5746 overflowed_p = mips_elf_overflow_p (value, 16);
5749 case R_MIPS_GPREL32:
5750 value = (addend + symbol + gp0 - gp);
5752 value &= howto->dst_mask;
5756 case R_MIPS_GNU_REL16_S2:
5757 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5758 overflowed_p = mips_elf_overflow_p (value, 18);
5759 value >>= howto->rightshift;
5760 value &= howto->dst_mask;
5763 case R_MICROMIPS_PC7_S1:
5764 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5765 overflowed_p = mips_elf_overflow_p (value, 8);
5766 value >>= howto->rightshift;
5767 value &= howto->dst_mask;
5770 case R_MICROMIPS_PC10_S1:
5771 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5772 overflowed_p = mips_elf_overflow_p (value, 11);
5773 value >>= howto->rightshift;
5774 value &= howto->dst_mask;
5777 case R_MICROMIPS_PC16_S1:
5778 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5779 overflowed_p = mips_elf_overflow_p (value, 17);
5780 value >>= howto->rightshift;
5781 value &= howto->dst_mask;
5784 case R_MICROMIPS_PC23_S2:
5785 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5786 overflowed_p = mips_elf_overflow_p (value, 25);
5787 value >>= howto->rightshift;
5788 value &= howto->dst_mask;
5791 case R_MIPS_GOT_HI16:
5792 case R_MIPS_CALL_HI16:
5793 case R_MICROMIPS_GOT_HI16:
5794 case R_MICROMIPS_CALL_HI16:
5795 /* We're allowed to handle these two relocations identically.
5796 The dynamic linker is allowed to handle the CALL relocations
5797 differently by creating a lazy evaluation stub. */
5799 value = mips_elf_high (value);
5800 value &= howto->dst_mask;
5803 case R_MIPS_GOT_LO16:
5804 case R_MIPS_CALL_LO16:
5805 case R_MICROMIPS_GOT_LO16:
5806 case R_MICROMIPS_CALL_LO16:
5807 value = g & howto->dst_mask;
5810 case R_MIPS_GOT_PAGE:
5811 case R_MICROMIPS_GOT_PAGE:
5812 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5813 if (value == MINUS_ONE)
5814 return bfd_reloc_outofrange;
5815 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5816 overflowed_p = mips_elf_overflow_p (value, 16);
5819 case R_MIPS_GOT_OFST:
5820 case R_MICROMIPS_GOT_OFST:
5822 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5825 overflowed_p = mips_elf_overflow_p (value, 16);
5829 case R_MICROMIPS_SUB:
5830 value = symbol - addend;
5831 value &= howto->dst_mask;
5835 case R_MICROMIPS_HIGHER:
5836 value = mips_elf_higher (addend + symbol);
5837 value &= howto->dst_mask;
5840 case R_MIPS_HIGHEST:
5841 case R_MICROMIPS_HIGHEST:
5842 value = mips_elf_highest (addend + symbol);
5843 value &= howto->dst_mask;
5846 case R_MIPS_SCN_DISP:
5847 case R_MICROMIPS_SCN_DISP:
5848 value = symbol + addend - sec->output_offset;
5849 value &= howto->dst_mask;
5853 case R_MICROMIPS_JALR:
5854 /* This relocation is only a hint. In some cases, we optimize
5855 it into a bal instruction. But we don't try to optimize
5856 when the symbol does not resolve locally. */
5857 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5858 return bfd_reloc_continue;
5859 value = symbol + addend;
5863 case R_MIPS_GNU_VTINHERIT:
5864 case R_MIPS_GNU_VTENTRY:
5865 /* We don't do anything with these at present. */
5866 return bfd_reloc_continue;
5869 /* An unrecognized relocation type. */
5870 return bfd_reloc_notsupported;
5873 /* Store the VALUE for our caller. */
5875 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5878 /* Obtain the field relocated by RELOCATION. */
5881 mips_elf_obtain_contents (reloc_howto_type *howto,
5882 const Elf_Internal_Rela *relocation,
5883 bfd *input_bfd, bfd_byte *contents)
5886 bfd_byte *location = contents + relocation->r_offset;
5888 /* Obtain the bytes. */
5889 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5894 /* It has been determined that the result of the RELOCATION is the
5895 VALUE. Use HOWTO to place VALUE into the output file at the
5896 appropriate position. The SECTION is the section to which the
5898 CROSS_MODE_JUMP_P is true if the relocation field
5899 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5901 Returns FALSE if anything goes wrong. */
5904 mips_elf_perform_relocation (struct bfd_link_info *info,
5905 reloc_howto_type *howto,
5906 const Elf_Internal_Rela *relocation,
5907 bfd_vma value, bfd *input_bfd,
5908 asection *input_section, bfd_byte *contents,
5909 bfd_boolean cross_mode_jump_p)
5913 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5915 /* Figure out where the relocation is occurring. */
5916 location = contents + relocation->r_offset;
5918 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5920 /* Obtain the current value. */
5921 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5923 /* Clear the field we are setting. */
5924 x &= ~howto->dst_mask;
5926 /* Set the field. */
5927 x |= (value & howto->dst_mask);
5929 /* If required, turn JAL into JALX. */
5930 if (cross_mode_jump_p && jal_reloc_p (r_type))
5933 bfd_vma opcode = x >> 26;
5934 bfd_vma jalx_opcode;
5936 /* Check to see if the opcode is already JAL or JALX. */
5937 if (r_type == R_MIPS16_26)
5939 ok = ((opcode == 0x6) || (opcode == 0x7));
5942 else if (r_type == R_MICROMIPS_26_S1)
5944 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5949 ok = ((opcode == 0x3) || (opcode == 0x1d));
5953 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5954 convert J or JALS to JALX. */
5957 (*_bfd_error_handler)
5958 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5961 (unsigned long) relocation->r_offset);
5962 bfd_set_error (bfd_error_bad_value);
5966 /* Make this the JALX opcode. */
5967 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5970 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5972 if (!info->relocatable
5973 && !cross_mode_jump_p
5974 && ((JAL_TO_BAL_P (input_bfd)
5975 && r_type == R_MIPS_26
5976 && (x >> 26) == 0x3) /* jal addr */
5977 || (JALR_TO_BAL_P (input_bfd)
5978 && r_type == R_MIPS_JALR
5979 && x == 0x0320f809) /* jalr t9 */
5980 || (JR_TO_B_P (input_bfd)
5981 && r_type == R_MIPS_JALR
5982 && x == 0x03200008))) /* jr t9 */
5988 addr = (input_section->output_section->vma
5989 + input_section->output_offset
5990 + relocation->r_offset
5992 if (r_type == R_MIPS_26)
5993 dest = (value << 2) | ((addr >> 28) << 28);
5997 if (off <= 0x1ffff && off >= -0x20000)
5999 if (x == 0x03200008) /* jr t9 */
6000 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6002 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6006 /* Put the value into the output. */
6007 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6009 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6015 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6016 is the original relocation, which is now being transformed into a
6017 dynamic relocation. The ADDENDP is adjusted if necessary; the
6018 caller should store the result in place of the original addend. */
6021 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6022 struct bfd_link_info *info,
6023 const Elf_Internal_Rela *rel,
6024 struct mips_elf_link_hash_entry *h,
6025 asection *sec, bfd_vma symbol,
6026 bfd_vma *addendp, asection *input_section)
6028 Elf_Internal_Rela outrel[3];
6033 bfd_boolean defined_p;
6034 struct mips_elf_link_hash_table *htab;
6036 htab = mips_elf_hash_table (info);
6037 BFD_ASSERT (htab != NULL);
6039 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6040 dynobj = elf_hash_table (info)->dynobj;
6041 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6042 BFD_ASSERT (sreloc != NULL);
6043 BFD_ASSERT (sreloc->contents != NULL);
6044 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6047 outrel[0].r_offset =
6048 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6049 if (ABI_64_P (output_bfd))
6051 outrel[1].r_offset =
6052 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6053 outrel[2].r_offset =
6054 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6057 if (outrel[0].r_offset == MINUS_ONE)
6058 /* The relocation field has been deleted. */
6061 if (outrel[0].r_offset == MINUS_TWO)
6063 /* The relocation field has been converted into a relative value of
6064 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6065 the field to be fully relocated, so add in the symbol's value. */
6070 /* We must now calculate the dynamic symbol table index to use
6071 in the relocation. */
6072 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6074 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6075 indx = h->root.dynindx;
6076 if (SGI_COMPAT (output_bfd))
6077 defined_p = h->root.def_regular;
6079 /* ??? glibc's ld.so just adds the final GOT entry to the
6080 relocation field. It therefore treats relocs against
6081 defined symbols in the same way as relocs against
6082 undefined symbols. */
6087 if (sec != NULL && bfd_is_abs_section (sec))
6089 else if (sec == NULL || sec->owner == NULL)
6091 bfd_set_error (bfd_error_bad_value);
6096 indx = elf_section_data (sec->output_section)->dynindx;
6099 asection *osec = htab->root.text_index_section;
6100 indx = elf_section_data (osec)->dynindx;
6106 /* Instead of generating a relocation using the section
6107 symbol, we may as well make it a fully relative
6108 relocation. We want to avoid generating relocations to
6109 local symbols because we used to generate them
6110 incorrectly, without adding the original symbol value,
6111 which is mandated by the ABI for section symbols. In
6112 order to give dynamic loaders and applications time to
6113 phase out the incorrect use, we refrain from emitting
6114 section-relative relocations. It's not like they're
6115 useful, after all. This should be a bit more efficient
6117 /* ??? Although this behavior is compatible with glibc's ld.so,
6118 the ABI says that relocations against STN_UNDEF should have
6119 a symbol value of 0. Irix rld honors this, so relocations
6120 against STN_UNDEF have no effect. */
6121 if (!SGI_COMPAT (output_bfd))
6126 /* If the relocation was previously an absolute relocation and
6127 this symbol will not be referred to by the relocation, we must
6128 adjust it by the value we give it in the dynamic symbol table.
6129 Otherwise leave the job up to the dynamic linker. */
6130 if (defined_p && r_type != R_MIPS_REL32)
6133 if (htab->is_vxworks)
6134 /* VxWorks uses non-relative relocations for this. */
6135 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6137 /* The relocation is always an REL32 relocation because we don't
6138 know where the shared library will wind up at load-time. */
6139 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6142 /* For strict adherence to the ABI specification, we should
6143 generate a R_MIPS_64 relocation record by itself before the
6144 _REL32/_64 record as well, such that the addend is read in as
6145 a 64-bit value (REL32 is a 32-bit relocation, after all).
6146 However, since none of the existing ELF64 MIPS dynamic
6147 loaders seems to care, we don't waste space with these
6148 artificial relocations. If this turns out to not be true,
6149 mips_elf_allocate_dynamic_relocation() should be tweaked so
6150 as to make room for a pair of dynamic relocations per
6151 invocation if ABI_64_P, and here we should generate an
6152 additional relocation record with R_MIPS_64 by itself for a
6153 NULL symbol before this relocation record. */
6154 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6155 ABI_64_P (output_bfd)
6158 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6160 /* Adjust the output offset of the relocation to reference the
6161 correct location in the output file. */
6162 outrel[0].r_offset += (input_section->output_section->vma
6163 + input_section->output_offset);
6164 outrel[1].r_offset += (input_section->output_section->vma
6165 + input_section->output_offset);
6166 outrel[2].r_offset += (input_section->output_section->vma
6167 + input_section->output_offset);
6169 /* Put the relocation back out. We have to use the special
6170 relocation outputter in the 64-bit case since the 64-bit
6171 relocation format is non-standard. */
6172 if (ABI_64_P (output_bfd))
6174 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6175 (output_bfd, &outrel[0],
6177 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6179 else if (htab->is_vxworks)
6181 /* VxWorks uses RELA rather than REL dynamic relocations. */
6182 outrel[0].r_addend = *addendp;
6183 bfd_elf32_swap_reloca_out
6184 (output_bfd, &outrel[0],
6186 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6189 bfd_elf32_swap_reloc_out
6190 (output_bfd, &outrel[0],
6191 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6193 /* We've now added another relocation. */
6194 ++sreloc->reloc_count;
6196 /* Make sure the output section is writable. The dynamic linker
6197 will be writing to it. */
6198 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6201 /* On IRIX5, make an entry of compact relocation info. */
6202 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6204 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6209 Elf32_crinfo cptrel;
6211 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6212 cptrel.vaddr = (rel->r_offset
6213 + input_section->output_section->vma
6214 + input_section->output_offset);
6215 if (r_type == R_MIPS_REL32)
6216 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6218 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6219 mips_elf_set_cr_dist2to (cptrel, 0);
6220 cptrel.konst = *addendp;
6222 cr = (scpt->contents
6223 + sizeof (Elf32_External_compact_rel));
6224 mips_elf_set_cr_relvaddr (cptrel, 0);
6225 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6226 ((Elf32_External_crinfo *) cr
6227 + scpt->reloc_count));
6228 ++scpt->reloc_count;
6232 /* If we've written this relocation for a readonly section,
6233 we need to set DF_TEXTREL again, so that we do not delete the
6235 if (MIPS_ELF_READONLY_SECTION (input_section))
6236 info->flags |= DF_TEXTREL;
6241 /* Return the MACH for a MIPS e_flags value. */
6244 _bfd_elf_mips_mach (flagword flags)
6246 switch (flags & EF_MIPS_MACH)
6248 case E_MIPS_MACH_3900:
6249 return bfd_mach_mips3900;
6251 case E_MIPS_MACH_4010:
6252 return bfd_mach_mips4010;
6254 case E_MIPS_MACH_4100:
6255 return bfd_mach_mips4100;
6257 case E_MIPS_MACH_4111:
6258 return bfd_mach_mips4111;
6260 case E_MIPS_MACH_4120:
6261 return bfd_mach_mips4120;
6263 case E_MIPS_MACH_4650:
6264 return bfd_mach_mips4650;
6266 case E_MIPS_MACH_5400:
6267 return bfd_mach_mips5400;
6269 case E_MIPS_MACH_5500:
6270 return bfd_mach_mips5500;
6272 case E_MIPS_MACH_9000:
6273 return bfd_mach_mips9000;
6275 case E_MIPS_MACH_SB1:
6276 return bfd_mach_mips_sb1;
6278 case E_MIPS_MACH_LS2E:
6279 return bfd_mach_mips_loongson_2e;
6281 case E_MIPS_MACH_LS2F:
6282 return bfd_mach_mips_loongson_2f;
6284 case E_MIPS_MACH_LS3A:
6285 return bfd_mach_mips_loongson_3a;
6287 case E_MIPS_MACH_OCTEON2:
6288 return bfd_mach_mips_octeon2;
6290 case E_MIPS_MACH_OCTEON:
6291 return bfd_mach_mips_octeon;
6293 case E_MIPS_MACH_XLR:
6294 return bfd_mach_mips_xlr;
6297 switch (flags & EF_MIPS_ARCH)
6301 return bfd_mach_mips3000;
6304 return bfd_mach_mips6000;
6307 return bfd_mach_mips4000;
6310 return bfd_mach_mips8000;
6313 return bfd_mach_mips5;
6315 case E_MIPS_ARCH_32:
6316 return bfd_mach_mipsisa32;
6318 case E_MIPS_ARCH_64:
6319 return bfd_mach_mipsisa64;
6321 case E_MIPS_ARCH_32R2:
6322 return bfd_mach_mipsisa32r2;
6324 case E_MIPS_ARCH_64R2:
6325 return bfd_mach_mipsisa64r2;
6332 /* Return printable name for ABI. */
6334 static INLINE char *
6335 elf_mips_abi_name (bfd *abfd)
6339 flags = elf_elfheader (abfd)->e_flags;
6340 switch (flags & EF_MIPS_ABI)
6343 if (ABI_N32_P (abfd))
6345 else if (ABI_64_P (abfd))
6349 case E_MIPS_ABI_O32:
6351 case E_MIPS_ABI_O64:
6353 case E_MIPS_ABI_EABI32:
6355 case E_MIPS_ABI_EABI64:
6358 return "unknown abi";
6362 /* MIPS ELF uses two common sections. One is the usual one, and the
6363 other is for small objects. All the small objects are kept
6364 together, and then referenced via the gp pointer, which yields
6365 faster assembler code. This is what we use for the small common
6366 section. This approach is copied from ecoff.c. */
6367 static asection mips_elf_scom_section;
6368 static asymbol mips_elf_scom_symbol;
6369 static asymbol *mips_elf_scom_symbol_ptr;
6371 /* MIPS ELF also uses an acommon section, which represents an
6372 allocated common symbol which may be overridden by a
6373 definition in a shared library. */
6374 static asection mips_elf_acom_section;
6375 static asymbol mips_elf_acom_symbol;
6376 static asymbol *mips_elf_acom_symbol_ptr;
6378 /* This is used for both the 32-bit and the 64-bit ABI. */
6381 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6383 elf_symbol_type *elfsym;
6385 /* Handle the special MIPS section numbers that a symbol may use. */
6386 elfsym = (elf_symbol_type *) asym;
6387 switch (elfsym->internal_elf_sym.st_shndx)
6389 case SHN_MIPS_ACOMMON:
6390 /* This section is used in a dynamically linked executable file.
6391 It is an allocated common section. The dynamic linker can
6392 either resolve these symbols to something in a shared
6393 library, or it can just leave them here. For our purposes,
6394 we can consider these symbols to be in a new section. */
6395 if (mips_elf_acom_section.name == NULL)
6397 /* Initialize the acommon section. */
6398 mips_elf_acom_section.name = ".acommon";
6399 mips_elf_acom_section.flags = SEC_ALLOC;
6400 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6401 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6402 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6403 mips_elf_acom_symbol.name = ".acommon";
6404 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6405 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6406 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6408 asym->section = &mips_elf_acom_section;
6412 /* Common symbols less than the GP size are automatically
6413 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6414 if (asym->value > elf_gp_size (abfd)
6415 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6416 || IRIX_COMPAT (abfd) == ict_irix6)
6419 case SHN_MIPS_SCOMMON:
6420 if (mips_elf_scom_section.name == NULL)
6422 /* Initialize the small common section. */
6423 mips_elf_scom_section.name = ".scommon";
6424 mips_elf_scom_section.flags = SEC_IS_COMMON;
6425 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6426 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6427 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6428 mips_elf_scom_symbol.name = ".scommon";
6429 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6430 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6431 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6433 asym->section = &mips_elf_scom_section;
6434 asym->value = elfsym->internal_elf_sym.st_size;
6437 case SHN_MIPS_SUNDEFINED:
6438 asym->section = bfd_und_section_ptr;
6443 asection *section = bfd_get_section_by_name (abfd, ".text");
6445 if (section != NULL)
6447 asym->section = section;
6448 /* MIPS_TEXT is a bit special, the address is not an offset
6449 to the base of the .text section. So substract the section
6450 base address to make it an offset. */
6451 asym->value -= section->vma;
6458 asection *section = bfd_get_section_by_name (abfd, ".data");
6460 if (section != NULL)
6462 asym->section = section;
6463 /* MIPS_DATA is a bit special, the address is not an offset
6464 to the base of the .data section. So substract the section
6465 base address to make it an offset. */
6466 asym->value -= section->vma;
6472 /* If this is an odd-valued function symbol, assume it's a MIPS16
6473 or microMIPS one. */
6474 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6475 && (asym->value & 1) != 0)
6478 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6479 elfsym->internal_elf_sym.st_other
6480 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6482 elfsym->internal_elf_sym.st_other
6483 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6487 /* Implement elf_backend_eh_frame_address_size. This differs from
6488 the default in the way it handles EABI64.
6490 EABI64 was originally specified as an LP64 ABI, and that is what
6491 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6492 historically accepted the combination of -mabi=eabi and -mlong32,
6493 and this ILP32 variation has become semi-official over time.
6494 Both forms use elf32 and have pointer-sized FDE addresses.
6496 If an EABI object was generated by GCC 4.0 or above, it will have
6497 an empty .gcc_compiled_longXX section, where XX is the size of longs
6498 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6499 have no special marking to distinguish them from LP64 objects.
6501 We don't want users of the official LP64 ABI to be punished for the
6502 existence of the ILP32 variant, but at the same time, we don't want
6503 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6504 We therefore take the following approach:
6506 - If ABFD contains a .gcc_compiled_longXX section, use it to
6507 determine the pointer size.
6509 - Otherwise check the type of the first relocation. Assume that
6510 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6514 The second check is enough to detect LP64 objects generated by pre-4.0
6515 compilers because, in the kind of output generated by those compilers,
6516 the first relocation will be associated with either a CIE personality
6517 routine or an FDE start address. Furthermore, the compilers never
6518 used a special (non-pointer) encoding for this ABI.
6520 Checking the relocation type should also be safe because there is no
6521 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6525 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6527 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6529 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6531 bfd_boolean long32_p, long64_p;
6533 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6534 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6535 if (long32_p && long64_p)
6542 if (sec->reloc_count > 0
6543 && elf_section_data (sec)->relocs != NULL
6544 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6553 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6554 relocations against two unnamed section symbols to resolve to the
6555 same address. For example, if we have code like:
6557 lw $4,%got_disp(.data)($gp)
6558 lw $25,%got_disp(.text)($gp)
6561 then the linker will resolve both relocations to .data and the program
6562 will jump there rather than to .text.
6564 We can work around this problem by giving names to local section symbols.
6565 This is also what the MIPSpro tools do. */
6568 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6570 return SGI_COMPAT (abfd);
6573 /* Work over a section just before writing it out. This routine is
6574 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6575 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6579 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6581 if (hdr->sh_type == SHT_MIPS_REGINFO
6582 && hdr->sh_size > 0)
6586 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6587 BFD_ASSERT (hdr->contents == NULL);
6590 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6593 H_PUT_32 (abfd, elf_gp (abfd), buf);
6594 if (bfd_bwrite (buf, 4, abfd) != 4)
6598 if (hdr->sh_type == SHT_MIPS_OPTIONS
6599 && hdr->bfd_section != NULL
6600 && mips_elf_section_data (hdr->bfd_section) != NULL
6601 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6603 bfd_byte *contents, *l, *lend;
6605 /* We stored the section contents in the tdata field in the
6606 set_section_contents routine. We save the section contents
6607 so that we don't have to read them again.
6608 At this point we know that elf_gp is set, so we can look
6609 through the section contents to see if there is an
6610 ODK_REGINFO structure. */
6612 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6614 lend = contents + hdr->sh_size;
6615 while (l + sizeof (Elf_External_Options) <= lend)
6617 Elf_Internal_Options intopt;
6619 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6621 if (intopt.size < sizeof (Elf_External_Options))
6623 (*_bfd_error_handler)
6624 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6625 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6628 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6635 + sizeof (Elf_External_Options)
6636 + (sizeof (Elf64_External_RegInfo) - 8)),
6639 H_PUT_64 (abfd, elf_gp (abfd), buf);
6640 if (bfd_bwrite (buf, 8, abfd) != 8)
6643 else if (intopt.kind == ODK_REGINFO)
6650 + sizeof (Elf_External_Options)
6651 + (sizeof (Elf32_External_RegInfo) - 4)),
6654 H_PUT_32 (abfd, elf_gp (abfd), buf);
6655 if (bfd_bwrite (buf, 4, abfd) != 4)
6662 if (hdr->bfd_section != NULL)
6664 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6666 /* .sbss is not handled specially here because the GNU/Linux
6667 prelinker can convert .sbss from NOBITS to PROGBITS and
6668 changing it back to NOBITS breaks the binary. The entry in
6669 _bfd_mips_elf_special_sections will ensure the correct flags
6670 are set on .sbss if BFD creates it without reading it from an
6671 input file, and without special handling here the flags set
6672 on it in an input file will be followed. */
6673 if (strcmp (name, ".sdata") == 0
6674 || strcmp (name, ".lit8") == 0
6675 || strcmp (name, ".lit4") == 0)
6677 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6678 hdr->sh_type = SHT_PROGBITS;
6680 else if (strcmp (name, ".srdata") == 0)
6682 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6683 hdr->sh_type = SHT_PROGBITS;
6685 else if (strcmp (name, ".compact_rel") == 0)
6688 hdr->sh_type = SHT_PROGBITS;
6690 else if (strcmp (name, ".rtproc") == 0)
6692 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6694 unsigned int adjust;
6696 adjust = hdr->sh_size % hdr->sh_addralign;
6698 hdr->sh_size += hdr->sh_addralign - adjust;
6706 /* Handle a MIPS specific section when reading an object file. This
6707 is called when elfcode.h finds a section with an unknown type.
6708 This routine supports both the 32-bit and 64-bit ELF ABI.
6710 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6714 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6715 Elf_Internal_Shdr *hdr,
6721 /* There ought to be a place to keep ELF backend specific flags, but
6722 at the moment there isn't one. We just keep track of the
6723 sections by their name, instead. Fortunately, the ABI gives
6724 suggested names for all the MIPS specific sections, so we will
6725 probably get away with this. */
6726 switch (hdr->sh_type)
6728 case SHT_MIPS_LIBLIST:
6729 if (strcmp (name, ".liblist") != 0)
6733 if (strcmp (name, ".msym") != 0)
6736 case SHT_MIPS_CONFLICT:
6737 if (strcmp (name, ".conflict") != 0)
6740 case SHT_MIPS_GPTAB:
6741 if (! CONST_STRNEQ (name, ".gptab."))
6744 case SHT_MIPS_UCODE:
6745 if (strcmp (name, ".ucode") != 0)
6748 case SHT_MIPS_DEBUG:
6749 if (strcmp (name, ".mdebug") != 0)
6751 flags = SEC_DEBUGGING;
6753 case SHT_MIPS_REGINFO:
6754 if (strcmp (name, ".reginfo") != 0
6755 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6757 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6759 case SHT_MIPS_IFACE:
6760 if (strcmp (name, ".MIPS.interfaces") != 0)
6763 case SHT_MIPS_CONTENT:
6764 if (! CONST_STRNEQ (name, ".MIPS.content"))
6767 case SHT_MIPS_OPTIONS:
6768 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6771 case SHT_MIPS_DWARF:
6772 if (! CONST_STRNEQ (name, ".debug_")
6773 && ! CONST_STRNEQ (name, ".zdebug_"))
6776 case SHT_MIPS_SYMBOL_LIB:
6777 if (strcmp (name, ".MIPS.symlib") != 0)
6780 case SHT_MIPS_EVENTS:
6781 if (! CONST_STRNEQ (name, ".MIPS.events")
6782 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6789 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6794 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6795 (bfd_get_section_flags (abfd,
6801 /* FIXME: We should record sh_info for a .gptab section. */
6803 /* For a .reginfo section, set the gp value in the tdata information
6804 from the contents of this section. We need the gp value while
6805 processing relocs, so we just get it now. The .reginfo section
6806 is not used in the 64-bit MIPS ELF ABI. */
6807 if (hdr->sh_type == SHT_MIPS_REGINFO)
6809 Elf32_External_RegInfo ext;
6812 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6813 &ext, 0, sizeof ext))
6815 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6816 elf_gp (abfd) = s.ri_gp_value;
6819 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6820 set the gp value based on what we find. We may see both
6821 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6822 they should agree. */
6823 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6825 bfd_byte *contents, *l, *lend;
6827 contents = bfd_malloc (hdr->sh_size);
6828 if (contents == NULL)
6830 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6837 lend = contents + hdr->sh_size;
6838 while (l + sizeof (Elf_External_Options) <= lend)
6840 Elf_Internal_Options intopt;
6842 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6844 if (intopt.size < sizeof (Elf_External_Options))
6846 (*_bfd_error_handler)
6847 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6848 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6851 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6853 Elf64_Internal_RegInfo intreg;
6855 bfd_mips_elf64_swap_reginfo_in
6857 ((Elf64_External_RegInfo *)
6858 (l + sizeof (Elf_External_Options))),
6860 elf_gp (abfd) = intreg.ri_gp_value;
6862 else if (intopt.kind == ODK_REGINFO)
6864 Elf32_RegInfo intreg;
6866 bfd_mips_elf32_swap_reginfo_in
6868 ((Elf32_External_RegInfo *)
6869 (l + sizeof (Elf_External_Options))),
6871 elf_gp (abfd) = intreg.ri_gp_value;
6881 /* Set the correct type for a MIPS ELF section. We do this by the
6882 section name, which is a hack, but ought to work. This routine is
6883 used by both the 32-bit and the 64-bit ABI. */
6886 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6888 const char *name = bfd_get_section_name (abfd, sec);
6890 if (strcmp (name, ".liblist") == 0)
6892 hdr->sh_type = SHT_MIPS_LIBLIST;
6893 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6894 /* The sh_link field is set in final_write_processing. */
6896 else if (strcmp (name, ".conflict") == 0)
6897 hdr->sh_type = SHT_MIPS_CONFLICT;
6898 else if (CONST_STRNEQ (name, ".gptab."))
6900 hdr->sh_type = SHT_MIPS_GPTAB;
6901 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6902 /* The sh_info field is set in final_write_processing. */
6904 else if (strcmp (name, ".ucode") == 0)
6905 hdr->sh_type = SHT_MIPS_UCODE;
6906 else if (strcmp (name, ".mdebug") == 0)
6908 hdr->sh_type = SHT_MIPS_DEBUG;
6909 /* In a shared object on IRIX 5.3, the .mdebug section has an
6910 entsize of 0. FIXME: Does this matter? */
6911 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6912 hdr->sh_entsize = 0;
6914 hdr->sh_entsize = 1;
6916 else if (strcmp (name, ".reginfo") == 0)
6918 hdr->sh_type = SHT_MIPS_REGINFO;
6919 /* In a shared object on IRIX 5.3, the .reginfo section has an
6920 entsize of 0x18. FIXME: Does this matter? */
6921 if (SGI_COMPAT (abfd))
6923 if ((abfd->flags & DYNAMIC) != 0)
6924 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6926 hdr->sh_entsize = 1;
6929 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6931 else if (SGI_COMPAT (abfd)
6932 && (strcmp (name, ".hash") == 0
6933 || strcmp (name, ".dynamic") == 0
6934 || strcmp (name, ".dynstr") == 0))
6936 if (SGI_COMPAT (abfd))
6937 hdr->sh_entsize = 0;
6939 /* This isn't how the IRIX6 linker behaves. */
6940 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6943 else if (strcmp (name, ".got") == 0
6944 || strcmp (name, ".srdata") == 0
6945 || strcmp (name, ".sdata") == 0
6946 || strcmp (name, ".sbss") == 0
6947 || strcmp (name, ".lit4") == 0
6948 || strcmp (name, ".lit8") == 0)
6949 hdr->sh_flags |= SHF_MIPS_GPREL;
6950 else if (strcmp (name, ".MIPS.interfaces") == 0)
6952 hdr->sh_type = SHT_MIPS_IFACE;
6953 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6955 else if (CONST_STRNEQ (name, ".MIPS.content"))
6957 hdr->sh_type = SHT_MIPS_CONTENT;
6958 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6959 /* The sh_info field is set in final_write_processing. */
6961 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6963 hdr->sh_type = SHT_MIPS_OPTIONS;
6964 hdr->sh_entsize = 1;
6965 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6967 else if (CONST_STRNEQ (name, ".debug_")
6968 || CONST_STRNEQ (name, ".zdebug_"))
6970 hdr->sh_type = SHT_MIPS_DWARF;
6972 /* Irix facilities such as libexc expect a single .debug_frame
6973 per executable, the system ones have NOSTRIP set and the linker
6974 doesn't merge sections with different flags so ... */
6975 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6976 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6978 else if (strcmp (name, ".MIPS.symlib") == 0)
6980 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6981 /* The sh_link and sh_info fields are set in
6982 final_write_processing. */
6984 else if (CONST_STRNEQ (name, ".MIPS.events")
6985 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6987 hdr->sh_type = SHT_MIPS_EVENTS;
6988 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6989 /* The sh_link field is set in final_write_processing. */
6991 else if (strcmp (name, ".msym") == 0)
6993 hdr->sh_type = SHT_MIPS_MSYM;
6994 hdr->sh_flags |= SHF_ALLOC;
6995 hdr->sh_entsize = 8;
6998 /* The generic elf_fake_sections will set up REL_HDR using the default
6999 kind of relocations. We used to set up a second header for the
7000 non-default kind of relocations here, but only NewABI would use
7001 these, and the IRIX ld doesn't like resulting empty RELA sections.
7002 Thus we create those header only on demand now. */
7007 /* Given a BFD section, try to locate the corresponding ELF section
7008 index. This is used by both the 32-bit and the 64-bit ABI.
7009 Actually, it's not clear to me that the 64-bit ABI supports these,
7010 but for non-PIC objects we will certainly want support for at least
7011 the .scommon section. */
7014 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7015 asection *sec, int *retval)
7017 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7019 *retval = SHN_MIPS_SCOMMON;
7022 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7024 *retval = SHN_MIPS_ACOMMON;
7030 /* Hook called by the linker routine which adds symbols from an object
7031 file. We must handle the special MIPS section numbers here. */
7034 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7035 Elf_Internal_Sym *sym, const char **namep,
7036 flagword *flagsp ATTRIBUTE_UNUSED,
7037 asection **secp, bfd_vma *valp)
7039 if (SGI_COMPAT (abfd)
7040 && (abfd->flags & DYNAMIC) != 0
7041 && strcmp (*namep, "_rld_new_interface") == 0)
7043 /* Skip IRIX5 rld entry name. */
7048 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7049 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7050 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7051 a magic symbol resolved by the linker, we ignore this bogus definition
7052 of _gp_disp. New ABI objects do not suffer from this problem so this
7053 is not done for them. */
7055 && (sym->st_shndx == SHN_ABS)
7056 && (strcmp (*namep, "_gp_disp") == 0))
7062 switch (sym->st_shndx)
7065 /* Common symbols less than the GP size are automatically
7066 treated as SHN_MIPS_SCOMMON symbols. */
7067 if (sym->st_size > elf_gp_size (abfd)
7068 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7069 || IRIX_COMPAT (abfd) == ict_irix6)
7072 case SHN_MIPS_SCOMMON:
7073 *secp = bfd_make_section_old_way (abfd, ".scommon");
7074 (*secp)->flags |= SEC_IS_COMMON;
7075 *valp = sym->st_size;
7079 /* This section is used in a shared object. */
7080 if (elf_tdata (abfd)->elf_text_section == NULL)
7082 asymbol *elf_text_symbol;
7083 asection *elf_text_section;
7084 bfd_size_type amt = sizeof (asection);
7086 elf_text_section = bfd_zalloc (abfd, amt);
7087 if (elf_text_section == NULL)
7090 amt = sizeof (asymbol);
7091 elf_text_symbol = bfd_zalloc (abfd, amt);
7092 if (elf_text_symbol == NULL)
7095 /* Initialize the section. */
7097 elf_tdata (abfd)->elf_text_section = elf_text_section;
7098 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7100 elf_text_section->symbol = elf_text_symbol;
7101 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7103 elf_text_section->name = ".text";
7104 elf_text_section->flags = SEC_NO_FLAGS;
7105 elf_text_section->output_section = NULL;
7106 elf_text_section->owner = abfd;
7107 elf_text_symbol->name = ".text";
7108 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7109 elf_text_symbol->section = elf_text_section;
7111 /* This code used to do *secp = bfd_und_section_ptr if
7112 info->shared. I don't know why, and that doesn't make sense,
7113 so I took it out. */
7114 *secp = elf_tdata (abfd)->elf_text_section;
7117 case SHN_MIPS_ACOMMON:
7118 /* Fall through. XXX Can we treat this as allocated data? */
7120 /* This section is used in a shared object. */
7121 if (elf_tdata (abfd)->elf_data_section == NULL)
7123 asymbol *elf_data_symbol;
7124 asection *elf_data_section;
7125 bfd_size_type amt = sizeof (asection);
7127 elf_data_section = bfd_zalloc (abfd, amt);
7128 if (elf_data_section == NULL)
7131 amt = sizeof (asymbol);
7132 elf_data_symbol = bfd_zalloc (abfd, amt);
7133 if (elf_data_symbol == NULL)
7136 /* Initialize the section. */
7138 elf_tdata (abfd)->elf_data_section = elf_data_section;
7139 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7141 elf_data_section->symbol = elf_data_symbol;
7142 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7144 elf_data_section->name = ".data";
7145 elf_data_section->flags = SEC_NO_FLAGS;
7146 elf_data_section->output_section = NULL;
7147 elf_data_section->owner = abfd;
7148 elf_data_symbol->name = ".data";
7149 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7150 elf_data_symbol->section = elf_data_section;
7152 /* This code used to do *secp = bfd_und_section_ptr if
7153 info->shared. I don't know why, and that doesn't make sense,
7154 so I took it out. */
7155 *secp = elf_tdata (abfd)->elf_data_section;
7158 case SHN_MIPS_SUNDEFINED:
7159 *secp = bfd_und_section_ptr;
7163 if (SGI_COMPAT (abfd)
7165 && info->output_bfd->xvec == abfd->xvec
7166 && strcmp (*namep, "__rld_obj_head") == 0)
7168 struct elf_link_hash_entry *h;
7169 struct bfd_link_hash_entry *bh;
7171 /* Mark __rld_obj_head as dynamic. */
7173 if (! (_bfd_generic_link_add_one_symbol
7174 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7175 get_elf_backend_data (abfd)->collect, &bh)))
7178 h = (struct elf_link_hash_entry *) bh;
7181 h->type = STT_OBJECT;
7183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7186 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7187 mips_elf_hash_table (info)->rld_symbol = h;
7190 /* If this is a mips16 text symbol, add 1 to the value to make it
7191 odd. This will cause something like .word SYM to come up with
7192 the right value when it is loaded into the PC. */
7193 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7199 /* This hook function is called before the linker writes out a global
7200 symbol. We mark symbols as small common if appropriate. This is
7201 also where we undo the increment of the value for a mips16 symbol. */
7204 _bfd_mips_elf_link_output_symbol_hook
7205 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7206 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7207 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7209 /* If we see a common symbol, which implies a relocatable link, then
7210 if a symbol was small common in an input file, mark it as small
7211 common in the output file. */
7212 if (sym->st_shndx == SHN_COMMON
7213 && strcmp (input_sec->name, ".scommon") == 0)
7214 sym->st_shndx = SHN_MIPS_SCOMMON;
7216 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7217 sym->st_value &= ~1;
7222 /* Functions for the dynamic linker. */
7224 /* Create dynamic sections when linking against a dynamic object. */
7227 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7229 struct elf_link_hash_entry *h;
7230 struct bfd_link_hash_entry *bh;
7232 register asection *s;
7233 const char * const *namep;
7234 struct mips_elf_link_hash_table *htab;
7236 htab = mips_elf_hash_table (info);
7237 BFD_ASSERT (htab != NULL);
7239 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7240 | SEC_LINKER_CREATED | SEC_READONLY);
7242 /* The psABI requires a read-only .dynamic section, but the VxWorks
7244 if (!htab->is_vxworks)
7246 s = bfd_get_linker_section (abfd, ".dynamic");
7249 if (! bfd_set_section_flags (abfd, s, flags))
7254 /* We need to create .got section. */
7255 if (!mips_elf_create_got_section (abfd, info))
7258 if (! mips_elf_rel_dyn_section (info, TRUE))
7261 /* Create .stub section. */
7262 s = bfd_make_section_anyway_with_flags (abfd,
7263 MIPS_ELF_STUB_SECTION_NAME (abfd),
7266 || ! bfd_set_section_alignment (abfd, s,
7267 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7271 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7273 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7275 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7276 flags &~ (flagword) SEC_READONLY);
7278 || ! bfd_set_section_alignment (abfd, s,
7279 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7283 /* On IRIX5, we adjust add some additional symbols and change the
7284 alignments of several sections. There is no ABI documentation
7285 indicating that this is necessary on IRIX6, nor any evidence that
7286 the linker takes such action. */
7287 if (IRIX_COMPAT (abfd) == ict_irix5)
7289 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7292 if (! (_bfd_generic_link_add_one_symbol
7293 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7294 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7297 h = (struct elf_link_hash_entry *) bh;
7300 h->type = STT_SECTION;
7302 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7306 /* We need to create a .compact_rel section. */
7307 if (SGI_COMPAT (abfd))
7309 if (!mips_elf_create_compact_rel_section (abfd, info))
7313 /* Change alignments of some sections. */
7314 s = bfd_get_linker_section (abfd, ".hash");
7316 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7317 s = bfd_get_linker_section (abfd, ".dynsym");
7319 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7320 s = bfd_get_linker_section (abfd, ".dynstr");
7322 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7324 s = bfd_get_section_by_name (abfd, ".reginfo");
7326 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7327 s = bfd_get_linker_section (abfd, ".dynamic");
7329 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7336 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7338 if (!(_bfd_generic_link_add_one_symbol
7339 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7340 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7343 h = (struct elf_link_hash_entry *) bh;
7346 h->type = STT_SECTION;
7348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7351 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7353 /* __rld_map is a four byte word located in the .data section
7354 and is filled in by the rtld to contain a pointer to
7355 the _r_debug structure. Its symbol value will be set in
7356 _bfd_mips_elf_finish_dynamic_symbol. */
7357 s = bfd_get_linker_section (abfd, ".rld_map");
7358 BFD_ASSERT (s != NULL);
7360 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7362 if (!(_bfd_generic_link_add_one_symbol
7363 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7364 get_elf_backend_data (abfd)->collect, &bh)))
7367 h = (struct elf_link_hash_entry *) bh;
7370 h->type = STT_OBJECT;
7372 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7374 mips_elf_hash_table (info)->rld_symbol = h;
7378 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7379 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7380 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7383 /* Cache the sections created above. */
7384 htab->splt = bfd_get_linker_section (abfd, ".plt");
7385 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7386 if (htab->is_vxworks)
7388 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7389 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7392 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7394 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7399 if (htab->is_vxworks)
7401 /* Do the usual VxWorks handling. */
7402 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7405 /* Work out the PLT sizes. */
7408 htab->plt_header_size
7409 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7410 htab->plt_entry_size
7411 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7415 htab->plt_header_size
7416 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7417 htab->plt_entry_size
7418 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7421 else if (!info->shared)
7423 /* All variants of the plt0 entry are the same size. */
7424 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7425 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7431 /* Return true if relocation REL against section SEC is a REL rather than
7432 RELA relocation. RELOCS is the first relocation in the section and
7433 ABFD is the bfd that contains SEC. */
7436 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7437 const Elf_Internal_Rela *relocs,
7438 const Elf_Internal_Rela *rel)
7440 Elf_Internal_Shdr *rel_hdr;
7441 const struct elf_backend_data *bed;
7443 /* To determine which flavor of relocation this is, we depend on the
7444 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7445 rel_hdr = elf_section_data (sec)->rel.hdr;
7446 if (rel_hdr == NULL)
7448 bed = get_elf_backend_data (abfd);
7449 return ((size_t) (rel - relocs)
7450 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7453 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7454 HOWTO is the relocation's howto and CONTENTS points to the contents
7455 of the section that REL is against. */
7458 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7459 reloc_howto_type *howto, bfd_byte *contents)
7462 unsigned int r_type;
7465 r_type = ELF_R_TYPE (abfd, rel->r_info);
7466 location = contents + rel->r_offset;
7468 /* Get the addend, which is stored in the input file. */
7469 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7470 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7471 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7473 return addend & howto->src_mask;
7476 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7477 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7478 and update *ADDEND with the final addend. Return true on success
7479 or false if the LO16 could not be found. RELEND is the exclusive
7480 upper bound on the relocations for REL's section. */
7483 mips_elf_add_lo16_rel_addend (bfd *abfd,
7484 const Elf_Internal_Rela *rel,
7485 const Elf_Internal_Rela *relend,
7486 bfd_byte *contents, bfd_vma *addend)
7488 unsigned int r_type, lo16_type;
7489 const Elf_Internal_Rela *lo16_relocation;
7490 reloc_howto_type *lo16_howto;
7493 r_type = ELF_R_TYPE (abfd, rel->r_info);
7494 if (mips16_reloc_p (r_type))
7495 lo16_type = R_MIPS16_LO16;
7496 else if (micromips_reloc_p (r_type))
7497 lo16_type = R_MICROMIPS_LO16;
7499 lo16_type = R_MIPS_LO16;
7501 /* The combined value is the sum of the HI16 addend, left-shifted by
7502 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7503 code does a `lui' of the HI16 value, and then an `addiu' of the
7506 Scan ahead to find a matching LO16 relocation.
7508 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7509 be immediately following. However, for the IRIX6 ABI, the next
7510 relocation may be a composed relocation consisting of several
7511 relocations for the same address. In that case, the R_MIPS_LO16
7512 relocation may occur as one of these. We permit a similar
7513 extension in general, as that is useful for GCC.
7515 In some cases GCC dead code elimination removes the LO16 but keeps
7516 the corresponding HI16. This is strictly speaking a violation of
7517 the ABI but not immediately harmful. */
7518 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7519 if (lo16_relocation == NULL)
7522 /* Obtain the addend kept there. */
7523 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7524 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7526 l <<= lo16_howto->rightshift;
7527 l = _bfd_mips_elf_sign_extend (l, 16);
7534 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7535 store the contents in *CONTENTS on success. Assume that *CONTENTS
7536 already holds the contents if it is nonull on entry. */
7539 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7544 /* Get cached copy if it exists. */
7545 if (elf_section_data (sec)->this_hdr.contents != NULL)
7547 *contents = elf_section_data (sec)->this_hdr.contents;
7551 return bfd_malloc_and_get_section (abfd, sec, contents);
7554 /* Look through the relocs for a section during the first phase, and
7555 allocate space in the global offset table. */
7558 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7559 asection *sec, const Elf_Internal_Rela *relocs)
7563 Elf_Internal_Shdr *symtab_hdr;
7564 struct elf_link_hash_entry **sym_hashes;
7566 const Elf_Internal_Rela *rel;
7567 const Elf_Internal_Rela *rel_end;
7569 const struct elf_backend_data *bed;
7570 struct mips_elf_link_hash_table *htab;
7573 reloc_howto_type *howto;
7575 if (info->relocatable)
7578 htab = mips_elf_hash_table (info);
7579 BFD_ASSERT (htab != NULL);
7581 dynobj = elf_hash_table (info)->dynobj;
7582 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7583 sym_hashes = elf_sym_hashes (abfd);
7584 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7586 bed = get_elf_backend_data (abfd);
7587 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7589 /* Check for the mips16 stub sections. */
7591 name = bfd_get_section_name (abfd, sec);
7592 if (FN_STUB_P (name))
7594 unsigned long r_symndx;
7596 /* Look at the relocation information to figure out which symbol
7599 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7602 (*_bfd_error_handler)
7603 (_("%B: Warning: cannot determine the target function for"
7604 " stub section `%s'"),
7606 bfd_set_error (bfd_error_bad_value);
7610 if (r_symndx < extsymoff
7611 || sym_hashes[r_symndx - extsymoff] == NULL)
7615 /* This stub is for a local symbol. This stub will only be
7616 needed if there is some relocation in this BFD, other
7617 than a 16 bit function call, which refers to this symbol. */
7618 for (o = abfd->sections; o != NULL; o = o->next)
7620 Elf_Internal_Rela *sec_relocs;
7621 const Elf_Internal_Rela *r, *rend;
7623 /* We can ignore stub sections when looking for relocs. */
7624 if ((o->flags & SEC_RELOC) == 0
7625 || o->reloc_count == 0
7626 || section_allows_mips16_refs_p (o))
7630 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7632 if (sec_relocs == NULL)
7635 rend = sec_relocs + o->reloc_count;
7636 for (r = sec_relocs; r < rend; r++)
7637 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7638 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7641 if (elf_section_data (o)->relocs != sec_relocs)
7650 /* There is no non-call reloc for this stub, so we do
7651 not need it. Since this function is called before
7652 the linker maps input sections to output sections, we
7653 can easily discard it by setting the SEC_EXCLUDE
7655 sec->flags |= SEC_EXCLUDE;
7659 /* Record this stub in an array of local symbol stubs for
7661 if (elf_tdata (abfd)->local_stubs == NULL)
7663 unsigned long symcount;
7667 if (elf_bad_symtab (abfd))
7668 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7670 symcount = symtab_hdr->sh_info;
7671 amt = symcount * sizeof (asection *);
7672 n = bfd_zalloc (abfd, amt);
7675 elf_tdata (abfd)->local_stubs = n;
7678 sec->flags |= SEC_KEEP;
7679 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7681 /* We don't need to set mips16_stubs_seen in this case.
7682 That flag is used to see whether we need to look through
7683 the global symbol table for stubs. We don't need to set
7684 it here, because we just have a local stub. */
7688 struct mips_elf_link_hash_entry *h;
7690 h = ((struct mips_elf_link_hash_entry *)
7691 sym_hashes[r_symndx - extsymoff]);
7693 while (h->root.root.type == bfd_link_hash_indirect
7694 || h->root.root.type == bfd_link_hash_warning)
7695 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7697 /* H is the symbol this stub is for. */
7699 /* If we already have an appropriate stub for this function, we
7700 don't need another one, so we can discard this one. Since
7701 this function is called before the linker maps input sections
7702 to output sections, we can easily discard it by setting the
7703 SEC_EXCLUDE flag. */
7704 if (h->fn_stub != NULL)
7706 sec->flags |= SEC_EXCLUDE;
7710 sec->flags |= SEC_KEEP;
7712 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7715 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7717 unsigned long r_symndx;
7718 struct mips_elf_link_hash_entry *h;
7721 /* Look at the relocation information to figure out which symbol
7724 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7727 (*_bfd_error_handler)
7728 (_("%B: Warning: cannot determine the target function for"
7729 " stub section `%s'"),
7731 bfd_set_error (bfd_error_bad_value);
7735 if (r_symndx < extsymoff
7736 || sym_hashes[r_symndx - extsymoff] == NULL)
7740 /* This stub is for a local symbol. This stub will only be
7741 needed if there is some relocation (R_MIPS16_26) in this BFD
7742 that refers to this symbol. */
7743 for (o = abfd->sections; o != NULL; o = o->next)
7745 Elf_Internal_Rela *sec_relocs;
7746 const Elf_Internal_Rela *r, *rend;
7748 /* We can ignore stub sections when looking for relocs. */
7749 if ((o->flags & SEC_RELOC) == 0
7750 || o->reloc_count == 0
7751 || section_allows_mips16_refs_p (o))
7755 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7757 if (sec_relocs == NULL)
7760 rend = sec_relocs + o->reloc_count;
7761 for (r = sec_relocs; r < rend; r++)
7762 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7763 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7766 if (elf_section_data (o)->relocs != sec_relocs)
7775 /* There is no non-call reloc for this stub, so we do
7776 not need it. Since this function is called before
7777 the linker maps input sections to output sections, we
7778 can easily discard it by setting the SEC_EXCLUDE
7780 sec->flags |= SEC_EXCLUDE;
7784 /* Record this stub in an array of local symbol call_stubs for
7786 if (elf_tdata (abfd)->local_call_stubs == NULL)
7788 unsigned long symcount;
7792 if (elf_bad_symtab (abfd))
7793 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7795 symcount = symtab_hdr->sh_info;
7796 amt = symcount * sizeof (asection *);
7797 n = bfd_zalloc (abfd, amt);
7800 elf_tdata (abfd)->local_call_stubs = n;
7803 sec->flags |= SEC_KEEP;
7804 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7806 /* We don't need to set mips16_stubs_seen in this case.
7807 That flag is used to see whether we need to look through
7808 the global symbol table for stubs. We don't need to set
7809 it here, because we just have a local stub. */
7813 h = ((struct mips_elf_link_hash_entry *)
7814 sym_hashes[r_symndx - extsymoff]);
7816 /* H is the symbol this stub is for. */
7818 if (CALL_FP_STUB_P (name))
7819 loc = &h->call_fp_stub;
7821 loc = &h->call_stub;
7823 /* If we already have an appropriate stub for this function, we
7824 don't need another one, so we can discard this one. Since
7825 this function is called before the linker maps input sections
7826 to output sections, we can easily discard it by setting the
7827 SEC_EXCLUDE flag. */
7830 sec->flags |= SEC_EXCLUDE;
7834 sec->flags |= SEC_KEEP;
7836 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7842 for (rel = relocs; rel < rel_end; ++rel)
7844 unsigned long r_symndx;
7845 unsigned int r_type;
7846 struct elf_link_hash_entry *h;
7847 bfd_boolean can_make_dynamic_p;
7849 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7850 r_type = ELF_R_TYPE (abfd, rel->r_info);
7852 if (r_symndx < extsymoff)
7854 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7856 (*_bfd_error_handler)
7857 (_("%B: Malformed reloc detected for section %s"),
7859 bfd_set_error (bfd_error_bad_value);
7864 h = sym_hashes[r_symndx - extsymoff];
7866 && (h->root.type == bfd_link_hash_indirect
7867 || h->root.type == bfd_link_hash_warning))
7868 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7871 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7872 relocation into a dynamic one. */
7873 can_make_dynamic_p = FALSE;
7878 case R_MIPS_CALL_HI16:
7879 case R_MIPS_CALL_LO16:
7880 case R_MIPS_GOT_HI16:
7881 case R_MIPS_GOT_LO16:
7882 case R_MIPS_GOT_PAGE:
7883 case R_MIPS_GOT_OFST:
7884 case R_MIPS_GOT_DISP:
7885 case R_MIPS_TLS_GOTTPREL:
7887 case R_MIPS_TLS_LDM:
7888 case R_MIPS16_GOT16:
7889 case R_MIPS16_CALL16:
7890 case R_MIPS16_TLS_GOTTPREL:
7891 case R_MIPS16_TLS_GD:
7892 case R_MIPS16_TLS_LDM:
7893 case R_MICROMIPS_GOT16:
7894 case R_MICROMIPS_CALL16:
7895 case R_MICROMIPS_CALL_HI16:
7896 case R_MICROMIPS_CALL_LO16:
7897 case R_MICROMIPS_GOT_HI16:
7898 case R_MICROMIPS_GOT_LO16:
7899 case R_MICROMIPS_GOT_PAGE:
7900 case R_MICROMIPS_GOT_OFST:
7901 case R_MICROMIPS_GOT_DISP:
7902 case R_MICROMIPS_TLS_GOTTPREL:
7903 case R_MICROMIPS_TLS_GD:
7904 case R_MICROMIPS_TLS_LDM:
7906 elf_hash_table (info)->dynobj = dynobj = abfd;
7907 if (!mips_elf_create_got_section (dynobj, info))
7909 if (htab->is_vxworks && !info->shared)
7911 (*_bfd_error_handler)
7912 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7913 abfd, (unsigned long) rel->r_offset);
7914 bfd_set_error (bfd_error_bad_value);
7919 /* This is just a hint; it can safely be ignored. Don't set
7920 has_static_relocs for the corresponding symbol. */
7922 case R_MICROMIPS_JALR:
7928 /* In VxWorks executables, references to external symbols
7929 must be handled using copy relocs or PLT entries; it is not
7930 possible to convert this relocation into a dynamic one.
7932 For executables that use PLTs and copy-relocs, we have a
7933 choice between converting the relocation into a dynamic
7934 one or using copy relocations or PLT entries. It is
7935 usually better to do the former, unless the relocation is
7936 against a read-only section. */
7939 && !htab->is_vxworks
7940 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7941 && !(!info->nocopyreloc
7942 && !PIC_OBJECT_P (abfd)
7943 && MIPS_ELF_READONLY_SECTION (sec))))
7944 && (sec->flags & SEC_ALLOC) != 0)
7946 can_make_dynamic_p = TRUE;
7948 elf_hash_table (info)->dynobj = dynobj = abfd;
7951 /* For sections that are not SEC_ALLOC a copy reloc would be
7952 output if possible (implying questionable semantics for
7953 read-only data objects) or otherwise the final link would
7954 fail as ld.so will not process them and could not therefore
7955 handle any outstanding dynamic relocations.
7957 For such sections that are also SEC_DEBUGGING, we can avoid
7958 these problems by simply ignoring any relocs as these
7959 sections have a predefined use and we know it is safe to do
7962 This is needed in cases such as a global symbol definition
7963 in a shared library causing a common symbol from an object
7964 file to be converted to an undefined reference. If that
7965 happens, then all the relocations against this symbol from
7966 SEC_DEBUGGING sections in the object file will resolve to
7968 if ((sec->flags & SEC_DEBUGGING) != 0)
7973 /* Most static relocations require pointer equality, except
7976 h->pointer_equality_needed = TRUE;
7982 case R_MICROMIPS_26_S1:
7983 case R_MICROMIPS_PC7_S1:
7984 case R_MICROMIPS_PC10_S1:
7985 case R_MICROMIPS_PC16_S1:
7986 case R_MICROMIPS_PC23_S2:
7988 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7994 /* Relocations against the special VxWorks __GOTT_BASE__ and
7995 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7996 room for them in .rela.dyn. */
7997 if (is_gott_symbol (info, h))
8001 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8005 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8006 if (MIPS_ELF_READONLY_SECTION (sec))
8007 /* We tell the dynamic linker that there are
8008 relocations against the text segment. */
8009 info->flags |= DF_TEXTREL;
8012 else if (call_lo16_reloc_p (r_type)
8013 || got_lo16_reloc_p (r_type)
8014 || got_disp_reloc_p (r_type)
8015 || (got16_reloc_p (r_type) && htab->is_vxworks))
8017 /* We may need a local GOT entry for this relocation. We
8018 don't count R_MIPS_GOT_PAGE because we can estimate the
8019 maximum number of pages needed by looking at the size of
8020 the segment. Similar comments apply to R_MIPS*_GOT16 and
8021 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8022 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8023 R_MIPS_CALL_HI16 because these are always followed by an
8024 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8025 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8026 rel->r_addend, info, 0))
8031 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8032 ELF_ST_IS_MIPS16 (h->other)))
8033 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8038 case R_MIPS16_CALL16:
8039 case R_MICROMIPS_CALL16:
8042 (*_bfd_error_handler)
8043 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8044 abfd, (unsigned long) rel->r_offset);
8045 bfd_set_error (bfd_error_bad_value);
8050 case R_MIPS_CALL_HI16:
8051 case R_MIPS_CALL_LO16:
8052 case R_MICROMIPS_CALL_HI16:
8053 case R_MICROMIPS_CALL_LO16:
8056 /* Make sure there is room in the regular GOT to hold the
8057 function's address. We may eliminate it in favour of
8058 a .got.plt entry later; see mips_elf_count_got_symbols. */
8059 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8062 /* We need a stub, not a plt entry for the undefined
8063 function. But we record it as if it needs plt. See
8064 _bfd_elf_adjust_dynamic_symbol. */
8070 case R_MIPS_GOT_PAGE:
8071 case R_MICROMIPS_GOT_PAGE:
8072 /* If this is a global, overridable symbol, GOT_PAGE will
8073 decay to GOT_DISP, so we'll need a GOT entry for it. */
8076 struct mips_elf_link_hash_entry *hmips =
8077 (struct mips_elf_link_hash_entry *) h;
8079 /* This symbol is definitely not overridable. */
8080 if (hmips->root.def_regular
8081 && ! (info->shared && ! info->symbolic
8082 && ! hmips->root.forced_local))
8087 case R_MIPS16_GOT16:
8089 case R_MIPS_GOT_HI16:
8090 case R_MIPS_GOT_LO16:
8091 case R_MICROMIPS_GOT16:
8092 case R_MICROMIPS_GOT_HI16:
8093 case R_MICROMIPS_GOT_LO16:
8094 if (!h || got_page_reloc_p (r_type))
8096 /* This relocation needs (or may need, if h != NULL) a
8097 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8098 know for sure until we know whether the symbol is
8100 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8102 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8104 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8105 addend = mips_elf_read_rel_addend (abfd, rel,
8107 if (got16_reloc_p (r_type))
8108 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8111 addend <<= howto->rightshift;
8114 addend = rel->r_addend;
8115 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8121 case R_MIPS_GOT_DISP:
8122 case R_MICROMIPS_GOT_DISP:
8123 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8128 case R_MIPS_TLS_GOTTPREL:
8129 case R_MIPS16_TLS_GOTTPREL:
8130 case R_MICROMIPS_TLS_GOTTPREL:
8132 info->flags |= DF_STATIC_TLS;
8135 case R_MIPS_TLS_LDM:
8136 case R_MIPS16_TLS_LDM:
8137 case R_MICROMIPS_TLS_LDM:
8138 if (tls_ldm_reloc_p (r_type))
8140 r_symndx = STN_UNDEF;
8146 case R_MIPS16_TLS_GD:
8147 case R_MICROMIPS_TLS_GD:
8148 /* This symbol requires a global offset table entry, or two
8149 for TLS GD relocations. */
8153 flag = (tls_gd_reloc_p (r_type)
8155 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8158 struct mips_elf_link_hash_entry *hmips =
8159 (struct mips_elf_link_hash_entry *) h;
8160 hmips->tls_type |= flag;
8162 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8168 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8170 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8181 /* In VxWorks executables, references to external symbols
8182 are handled using copy relocs or PLT stubs, so there's
8183 no need to add a .rela.dyn entry for this relocation. */
8184 if (can_make_dynamic_p)
8188 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8192 if (info->shared && h == NULL)
8194 /* When creating a shared object, we must copy these
8195 reloc types into the output file as R_MIPS_REL32
8196 relocs. Make room for this reloc in .rel(a).dyn. */
8197 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8198 if (MIPS_ELF_READONLY_SECTION (sec))
8199 /* We tell the dynamic linker that there are
8200 relocations against the text segment. */
8201 info->flags |= DF_TEXTREL;
8205 struct mips_elf_link_hash_entry *hmips;
8207 /* For a shared object, we must copy this relocation
8208 unless the symbol turns out to be undefined and
8209 weak with non-default visibility, in which case
8210 it will be left as zero.
8212 We could elide R_MIPS_REL32 for locally binding symbols
8213 in shared libraries, but do not yet do so.
8215 For an executable, we only need to copy this
8216 reloc if the symbol is defined in a dynamic
8218 hmips = (struct mips_elf_link_hash_entry *) h;
8219 ++hmips->possibly_dynamic_relocs;
8220 if (MIPS_ELF_READONLY_SECTION (sec))
8221 /* We need it to tell the dynamic linker if there
8222 are relocations against the text segment. */
8223 hmips->readonly_reloc = TRUE;
8227 if (SGI_COMPAT (abfd))
8228 mips_elf_hash_table (info)->compact_rel_size +=
8229 sizeof (Elf32_External_crinfo);
8233 case R_MIPS_GPREL16:
8234 case R_MIPS_LITERAL:
8235 case R_MIPS_GPREL32:
8236 case R_MICROMIPS_26_S1:
8237 case R_MICROMIPS_GPREL16:
8238 case R_MICROMIPS_LITERAL:
8239 case R_MICROMIPS_GPREL7_S2:
8240 if (SGI_COMPAT (abfd))
8241 mips_elf_hash_table (info)->compact_rel_size +=
8242 sizeof (Elf32_External_crinfo);
8245 /* This relocation describes the C++ object vtable hierarchy.
8246 Reconstruct it for later use during GC. */
8247 case R_MIPS_GNU_VTINHERIT:
8248 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8252 /* This relocation describes which C++ vtable entries are actually
8253 used. Record for later use during GC. */
8254 case R_MIPS_GNU_VTENTRY:
8255 BFD_ASSERT (h != NULL);
8257 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8265 /* We must not create a stub for a symbol that has relocations
8266 related to taking the function's address. This doesn't apply to
8267 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8268 a normal .got entry. */
8269 if (!htab->is_vxworks && h != NULL)
8273 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8275 case R_MIPS16_CALL16:
8277 case R_MIPS_CALL_HI16:
8278 case R_MIPS_CALL_LO16:
8280 case R_MICROMIPS_CALL16:
8281 case R_MICROMIPS_CALL_HI16:
8282 case R_MICROMIPS_CALL_LO16:
8283 case R_MICROMIPS_JALR:
8287 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8288 if there is one. We only need to handle global symbols here;
8289 we decide whether to keep or delete stubs for local symbols
8290 when processing the stub's relocations. */
8292 && !mips16_call_reloc_p (r_type)
8293 && !section_allows_mips16_refs_p (sec))
8295 struct mips_elf_link_hash_entry *mh;
8297 mh = (struct mips_elf_link_hash_entry *) h;
8298 mh->need_fn_stub = TRUE;
8301 /* Refuse some position-dependent relocations when creating a
8302 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8303 not PIC, but we can create dynamic relocations and the result
8304 will be fine. Also do not refuse R_MIPS_LO16, which can be
8305 combined with R_MIPS_GOT16. */
8313 case R_MIPS_HIGHEST:
8314 case R_MICROMIPS_HI16:
8315 case R_MICROMIPS_HIGHER:
8316 case R_MICROMIPS_HIGHEST:
8317 /* Don't refuse a high part relocation if it's against
8318 no symbol (e.g. part of a compound relocation). */
8319 if (r_symndx == STN_UNDEF)
8322 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8323 and has a special meaning. */
8324 if (!NEWABI_P (abfd) && h != NULL
8325 && strcmp (h->root.root.string, "_gp_disp") == 0)
8328 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8329 if (is_gott_symbol (info, h))
8336 case R_MICROMIPS_26_S1:
8337 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8338 (*_bfd_error_handler)
8339 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8341 (h) ? h->root.root.string : "a local symbol");
8342 bfd_set_error (bfd_error_bad_value);
8354 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8355 struct bfd_link_info *link_info,
8358 Elf_Internal_Rela *internal_relocs;
8359 Elf_Internal_Rela *irel, *irelend;
8360 Elf_Internal_Shdr *symtab_hdr;
8361 bfd_byte *contents = NULL;
8363 bfd_boolean changed_contents = FALSE;
8364 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8365 Elf_Internal_Sym *isymbuf = NULL;
8367 /* We are not currently changing any sizes, so only one pass. */
8370 if (link_info->relocatable)
8373 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8374 link_info->keep_memory);
8375 if (internal_relocs == NULL)
8378 irelend = internal_relocs + sec->reloc_count
8379 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8381 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8383 for (irel = internal_relocs; irel < irelend; irel++)
8386 bfd_signed_vma sym_offset;
8387 unsigned int r_type;
8388 unsigned long r_symndx;
8390 unsigned long instruction;
8392 /* Turn jalr into bgezal, and jr into beq, if they're marked
8393 with a JALR relocation, that indicate where they jump to.
8394 This saves some pipeline bubbles. */
8395 r_type = ELF_R_TYPE (abfd, irel->r_info);
8396 if (r_type != R_MIPS_JALR)
8399 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8400 /* Compute the address of the jump target. */
8401 if (r_symndx >= extsymoff)
8403 struct mips_elf_link_hash_entry *h
8404 = ((struct mips_elf_link_hash_entry *)
8405 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8407 while (h->root.root.type == bfd_link_hash_indirect
8408 || h->root.root.type == bfd_link_hash_warning)
8409 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8411 /* If a symbol is undefined, or if it may be overridden,
8413 if (! ((h->root.root.type == bfd_link_hash_defined
8414 || h->root.root.type == bfd_link_hash_defweak)
8415 && h->root.root.u.def.section)
8416 || (link_info->shared && ! link_info->symbolic
8417 && !h->root.forced_local))
8420 sym_sec = h->root.root.u.def.section;
8421 if (sym_sec->output_section)
8422 symval = (h->root.root.u.def.value
8423 + sym_sec->output_section->vma
8424 + sym_sec->output_offset);
8426 symval = h->root.root.u.def.value;
8430 Elf_Internal_Sym *isym;
8432 /* Read this BFD's symbols if we haven't done so already. */
8433 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8435 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8436 if (isymbuf == NULL)
8437 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8438 symtab_hdr->sh_info, 0,
8440 if (isymbuf == NULL)
8444 isym = isymbuf + r_symndx;
8445 if (isym->st_shndx == SHN_UNDEF)
8447 else if (isym->st_shndx == SHN_ABS)
8448 sym_sec = bfd_abs_section_ptr;
8449 else if (isym->st_shndx == SHN_COMMON)
8450 sym_sec = bfd_com_section_ptr;
8453 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8454 symval = isym->st_value
8455 + sym_sec->output_section->vma
8456 + sym_sec->output_offset;
8459 /* Compute branch offset, from delay slot of the jump to the
8461 sym_offset = (symval + irel->r_addend)
8462 - (sec_start + irel->r_offset + 4);
8464 /* Branch offset must be properly aligned. */
8465 if ((sym_offset & 3) != 0)
8470 /* Check that it's in range. */
8471 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8474 /* Get the section contents if we haven't done so already. */
8475 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8478 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8480 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8481 if ((instruction & 0xfc1fffff) == 0x0000f809)
8482 instruction = 0x04110000;
8483 /* If it was jr <reg>, turn it into b <target>. */
8484 else if ((instruction & 0xfc1fffff) == 0x00000008)
8485 instruction = 0x10000000;
8489 instruction |= (sym_offset & 0xffff);
8490 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8491 changed_contents = TRUE;
8494 if (contents != NULL
8495 && elf_section_data (sec)->this_hdr.contents != contents)
8497 if (!changed_contents && !link_info->keep_memory)
8501 /* Cache the section contents for elf_link_input_bfd. */
8502 elf_section_data (sec)->this_hdr.contents = contents;
8508 if (contents != NULL
8509 && elf_section_data (sec)->this_hdr.contents != contents)
8514 /* Allocate space for global sym dynamic relocs. */
8517 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8519 struct bfd_link_info *info = inf;
8521 struct mips_elf_link_hash_entry *hmips;
8522 struct mips_elf_link_hash_table *htab;
8524 htab = mips_elf_hash_table (info);
8525 BFD_ASSERT (htab != NULL);
8527 dynobj = elf_hash_table (info)->dynobj;
8528 hmips = (struct mips_elf_link_hash_entry *) h;
8530 /* VxWorks executables are handled elsewhere; we only need to
8531 allocate relocations in shared objects. */
8532 if (htab->is_vxworks && !info->shared)
8535 /* Ignore indirect symbols. All relocations against such symbols
8536 will be redirected to the target symbol. */
8537 if (h->root.type == bfd_link_hash_indirect)
8540 /* If this symbol is defined in a dynamic object, or we are creating
8541 a shared library, we will need to copy any R_MIPS_32 or
8542 R_MIPS_REL32 relocs against it into the output file. */
8543 if (! info->relocatable
8544 && hmips->possibly_dynamic_relocs != 0
8545 && (h->root.type == bfd_link_hash_defweak
8549 bfd_boolean do_copy = TRUE;
8551 if (h->root.type == bfd_link_hash_undefweak)
8553 /* Do not copy relocations for undefined weak symbols with
8554 non-default visibility. */
8555 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8558 /* Make sure undefined weak symbols are output as a dynamic
8560 else if (h->dynindx == -1 && !h->forced_local)
8562 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8569 /* Even though we don't directly need a GOT entry for this symbol,
8570 the SVR4 psABI requires it to have a dynamic symbol table
8571 index greater that DT_MIPS_GOTSYM if there are dynamic
8572 relocations against it.
8574 VxWorks does not enforce the same mapping between the GOT
8575 and the symbol table, so the same requirement does not
8577 if (!htab->is_vxworks)
8579 if (hmips->global_got_area > GGA_RELOC_ONLY)
8580 hmips->global_got_area = GGA_RELOC_ONLY;
8581 hmips->got_only_for_calls = FALSE;
8584 mips_elf_allocate_dynamic_relocations
8585 (dynobj, info, hmips->possibly_dynamic_relocs);
8586 if (hmips->readonly_reloc)
8587 /* We tell the dynamic linker that there are relocations
8588 against the text segment. */
8589 info->flags |= DF_TEXTREL;
8596 /* Adjust a symbol defined by a dynamic object and referenced by a
8597 regular object. The current definition is in some section of the
8598 dynamic object, but we're not including those sections. We have to
8599 change the definition to something the rest of the link can
8603 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8604 struct elf_link_hash_entry *h)
8607 struct mips_elf_link_hash_entry *hmips;
8608 struct mips_elf_link_hash_table *htab;
8610 htab = mips_elf_hash_table (info);
8611 BFD_ASSERT (htab != NULL);
8613 dynobj = elf_hash_table (info)->dynobj;
8614 hmips = (struct mips_elf_link_hash_entry *) h;
8616 /* Make sure we know what is going on here. */
8617 BFD_ASSERT (dynobj != NULL
8619 || h->u.weakdef != NULL
8622 && !h->def_regular)));
8624 hmips = (struct mips_elf_link_hash_entry *) h;
8626 /* If there are call relocations against an externally-defined symbol,
8627 see whether we can create a MIPS lazy-binding stub for it. We can
8628 only do this if all references to the function are through call
8629 relocations, and in that case, the traditional lazy-binding stubs
8630 are much more efficient than PLT entries.
8632 Traditional stubs are only available on SVR4 psABI-based systems;
8633 VxWorks always uses PLTs instead. */
8634 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8636 if (! elf_hash_table (info)->dynamic_sections_created)
8639 /* If this symbol is not defined in a regular file, then set
8640 the symbol to the stub location. This is required to make
8641 function pointers compare as equal between the normal
8642 executable and the shared library. */
8643 if (!h->def_regular)
8645 hmips->needs_lazy_stub = TRUE;
8646 htab->lazy_stub_count++;
8650 /* As above, VxWorks requires PLT entries for externally-defined
8651 functions that are only accessed through call relocations.
8653 Both VxWorks and non-VxWorks targets also need PLT entries if there
8654 are static-only relocations against an externally-defined function.
8655 This can technically occur for shared libraries if there are
8656 branches to the symbol, although it is unlikely that this will be
8657 used in practice due to the short ranges involved. It can occur
8658 for any relative or absolute relocation in executables; in that
8659 case, the PLT entry becomes the function's canonical address. */
8660 else if (((h->needs_plt && !hmips->no_fn_stub)
8661 || (h->type == STT_FUNC && hmips->has_static_relocs))
8662 && htab->use_plts_and_copy_relocs
8663 && !SYMBOL_CALLS_LOCAL (info, h)
8664 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8665 && h->root.type == bfd_link_hash_undefweak))
8667 /* If this is the first symbol to need a PLT entry, allocate room
8669 if (htab->splt->size == 0)
8671 BFD_ASSERT (htab->sgotplt->size == 0);
8673 /* If we're using the PLT additions to the psABI, each PLT
8674 entry is 16 bytes and the PLT0 entry is 32 bytes.
8675 Encourage better cache usage by aligning. We do this
8676 lazily to avoid pessimizing traditional objects. */
8677 if (!htab->is_vxworks
8678 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8681 /* Make sure that .got.plt is word-aligned. We do this lazily
8682 for the same reason as above. */
8683 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8684 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8687 htab->splt->size += htab->plt_header_size;
8689 /* On non-VxWorks targets, the first two entries in .got.plt
8691 if (!htab->is_vxworks)
8693 += get_elf_backend_data (dynobj)->got_header_size;
8695 /* On VxWorks, also allocate room for the header's
8696 .rela.plt.unloaded entries. */
8697 if (htab->is_vxworks && !info->shared)
8698 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8701 /* Assign the next .plt entry to this symbol. */
8702 h->plt.offset = htab->splt->size;
8703 htab->splt->size += htab->plt_entry_size;
8705 /* If the output file has no definition of the symbol, set the
8706 symbol's value to the address of the stub. */
8707 if (!info->shared && !h->def_regular)
8709 h->root.u.def.section = htab->splt;
8710 h->root.u.def.value = h->plt.offset;
8711 /* For VxWorks, point at the PLT load stub rather than the
8712 lazy resolution stub; this stub will become the canonical
8713 function address. */
8714 if (htab->is_vxworks)
8715 h->root.u.def.value += 8;
8718 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8720 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8721 htab->srelplt->size += (htab->is_vxworks
8722 ? MIPS_ELF_RELA_SIZE (dynobj)
8723 : MIPS_ELF_REL_SIZE (dynobj));
8725 /* Make room for the .rela.plt.unloaded relocations. */
8726 if (htab->is_vxworks && !info->shared)
8727 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8729 /* All relocations against this symbol that could have been made
8730 dynamic will now refer to the PLT entry instead. */
8731 hmips->possibly_dynamic_relocs = 0;
8736 /* If this is a weak symbol, and there is a real definition, the
8737 processor independent code will have arranged for us to see the
8738 real definition first, and we can just use the same value. */
8739 if (h->u.weakdef != NULL)
8741 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8742 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8743 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8744 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8748 /* Otherwise, there is nothing further to do for symbols defined
8749 in regular objects. */
8753 /* There's also nothing more to do if we'll convert all relocations
8754 against this symbol into dynamic relocations. */
8755 if (!hmips->has_static_relocs)
8758 /* We're now relying on copy relocations. Complain if we have
8759 some that we can't convert. */
8760 if (!htab->use_plts_and_copy_relocs || info->shared)
8762 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8763 "dynamic symbol %s"),
8764 h->root.root.string);
8765 bfd_set_error (bfd_error_bad_value);
8769 /* We must allocate the symbol in our .dynbss section, which will
8770 become part of the .bss section of the executable. There will be
8771 an entry for this symbol in the .dynsym section. The dynamic
8772 object will contain position independent code, so all references
8773 from the dynamic object to this symbol will go through the global
8774 offset table. The dynamic linker will use the .dynsym entry to
8775 determine the address it must put in the global offset table, so
8776 both the dynamic object and the regular object will refer to the
8777 same memory location for the variable. */
8779 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8781 if (htab->is_vxworks)
8782 htab->srelbss->size += sizeof (Elf32_External_Rela);
8784 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8788 /* All relocations against this symbol that could have been made
8789 dynamic will now refer to the local copy instead. */
8790 hmips->possibly_dynamic_relocs = 0;
8792 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8795 /* This function is called after all the input files have been read,
8796 and the input sections have been assigned to output sections. We
8797 check for any mips16 stub sections that we can discard. */
8800 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8801 struct bfd_link_info *info)
8804 struct mips_elf_link_hash_table *htab;
8805 struct mips_htab_traverse_info hti;
8807 htab = mips_elf_hash_table (info);
8808 BFD_ASSERT (htab != NULL);
8810 /* The .reginfo section has a fixed size. */
8811 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8813 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8816 hti.output_bfd = output_bfd;
8818 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8819 mips_elf_check_symbols, &hti);
8826 /* If the link uses a GOT, lay it out and work out its size. */
8829 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8833 struct mips_got_info *g;
8834 bfd_size_type loadable_size = 0;
8835 bfd_size_type page_gotno;
8837 struct mips_elf_count_tls_arg count_tls_arg;
8838 struct mips_elf_link_hash_table *htab;
8840 htab = mips_elf_hash_table (info);
8841 BFD_ASSERT (htab != NULL);
8847 dynobj = elf_hash_table (info)->dynobj;
8850 /* Allocate room for the reserved entries. VxWorks always reserves
8851 3 entries; other objects only reserve 2 entries. */
8852 BFD_ASSERT (g->assigned_gotno == 0);
8853 if (htab->is_vxworks)
8854 htab->reserved_gotno = 3;
8856 htab->reserved_gotno = 2;
8857 g->local_gotno += htab->reserved_gotno;
8858 g->assigned_gotno = htab->reserved_gotno;
8860 /* Replace entries for indirect and warning symbols with entries for
8861 the target symbol. */
8862 if (!mips_elf_resolve_final_got_entries (g))
8865 /* Count the number of GOT symbols. */
8866 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8868 /* Calculate the total loadable size of the output. That
8869 will give us the maximum number of GOT_PAGE entries
8871 for (sub = info->input_bfds; sub; sub = sub->link_next)
8873 asection *subsection;
8875 for (subsection = sub->sections;
8877 subsection = subsection->next)
8879 if ((subsection->flags & SEC_ALLOC) == 0)
8881 loadable_size += ((subsection->size + 0xf)
8882 &~ (bfd_size_type) 0xf);
8886 if (htab->is_vxworks)
8887 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8888 relocations against local symbols evaluate to "G", and the EABI does
8889 not include R_MIPS_GOT_PAGE. */
8892 /* Assume there are two loadable segments consisting of contiguous
8893 sections. Is 5 enough? */
8894 page_gotno = (loadable_size >> 16) + 5;
8896 /* Choose the smaller of the two estimates; both are intended to be
8898 if (page_gotno > g->page_gotno)
8899 page_gotno = g->page_gotno;
8901 g->local_gotno += page_gotno;
8902 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8903 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8905 /* We need to calculate tls_gotno for global symbols at this point
8906 instead of building it up earlier, to avoid doublecounting
8907 entries for one global symbol from multiple input files. */
8908 count_tls_arg.info = info;
8909 count_tls_arg.needed = 0;
8910 elf_link_hash_traverse (elf_hash_table (info),
8911 mips_elf_count_global_tls_entries,
8913 g->tls_gotno += count_tls_arg.needed;
8914 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8916 /* VxWorks does not support multiple GOTs. It initializes $gp to
8917 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8919 if (htab->is_vxworks)
8921 /* VxWorks executables do not need a GOT. */
8924 /* Each VxWorks GOT entry needs an explicit relocation. */
8927 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8929 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8932 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8934 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8939 struct mips_elf_count_tls_arg arg;
8941 /* Set up TLS entries. */
8942 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8943 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8945 /* Allocate room for the TLS relocations. */
8948 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8949 elf_link_hash_traverse (elf_hash_table (info),
8950 mips_elf_count_global_tls_relocs,
8953 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8959 /* Estimate the size of the .MIPS.stubs section. */
8962 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8964 struct mips_elf_link_hash_table *htab;
8965 bfd_size_type dynsymcount;
8967 htab = mips_elf_hash_table (info);
8968 BFD_ASSERT (htab != NULL);
8970 if (htab->lazy_stub_count == 0)
8973 /* IRIX rld assumes that a function stub isn't at the end of the .text
8974 section, so add a dummy entry to the end. */
8975 htab->lazy_stub_count++;
8977 /* Get a worst-case estimate of the number of dynamic symbols needed.
8978 At this point, dynsymcount does not account for section symbols
8979 and count_section_dynsyms may overestimate the number that will
8981 dynsymcount = (elf_hash_table (info)->dynsymcount
8982 + count_section_dynsyms (output_bfd, info));
8984 /* Determine the size of one stub entry. */
8985 htab->function_stub_size = (dynsymcount > 0x10000
8986 ? MIPS_FUNCTION_STUB_BIG_SIZE
8987 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8989 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8992 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8993 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8994 allocate an entry in the stubs section. */
8997 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8999 struct mips_elf_link_hash_table *htab;
9001 htab = (struct mips_elf_link_hash_table *) data;
9002 if (h->needs_lazy_stub)
9004 h->root.root.u.def.section = htab->sstubs;
9005 h->root.root.u.def.value = htab->sstubs->size;
9006 h->root.plt.offset = htab->sstubs->size;
9007 htab->sstubs->size += htab->function_stub_size;
9012 /* Allocate offsets in the stubs section to each symbol that needs one.
9013 Set the final size of the .MIPS.stub section. */
9016 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9018 struct mips_elf_link_hash_table *htab;
9020 htab = mips_elf_hash_table (info);
9021 BFD_ASSERT (htab != NULL);
9023 if (htab->lazy_stub_count == 0)
9026 htab->sstubs->size = 0;
9027 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9028 htab->sstubs->size += htab->function_stub_size;
9029 BFD_ASSERT (htab->sstubs->size
9030 == htab->lazy_stub_count * htab->function_stub_size);
9033 /* Set the sizes of the dynamic sections. */
9036 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9037 struct bfd_link_info *info)
9040 asection *s, *sreldyn;
9041 bfd_boolean reltext;
9042 struct mips_elf_link_hash_table *htab;
9044 htab = mips_elf_hash_table (info);
9045 BFD_ASSERT (htab != NULL);
9046 dynobj = elf_hash_table (info)->dynobj;
9047 BFD_ASSERT (dynobj != NULL);
9049 if (elf_hash_table (info)->dynamic_sections_created)
9051 /* Set the contents of the .interp section to the interpreter. */
9052 if (info->executable)
9054 s = bfd_get_linker_section (dynobj, ".interp");
9055 BFD_ASSERT (s != NULL);
9057 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9059 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9062 /* Create a symbol for the PLT, if we know that we are using it. */
9063 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9065 struct elf_link_hash_entry *h;
9067 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9069 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9070 "_PROCEDURE_LINKAGE_TABLE_");
9071 htab->root.hplt = h;
9078 /* Allocate space for global sym dynamic relocs. */
9079 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9081 mips_elf_estimate_stub_size (output_bfd, info);
9083 if (!mips_elf_lay_out_got (output_bfd, info))
9086 mips_elf_lay_out_lazy_stubs (info);
9088 /* The check_relocs and adjust_dynamic_symbol entry points have
9089 determined the sizes of the various dynamic sections. Allocate
9092 for (s = dynobj->sections; s != NULL; s = s->next)
9096 /* It's OK to base decisions on the section name, because none
9097 of the dynobj section names depend upon the input files. */
9098 name = bfd_get_section_name (dynobj, s);
9100 if ((s->flags & SEC_LINKER_CREATED) == 0)
9103 if (CONST_STRNEQ (name, ".rel"))
9107 const char *outname;
9110 /* If this relocation section applies to a read only
9111 section, then we probably need a DT_TEXTREL entry.
9112 If the relocation section is .rel(a).dyn, we always
9113 assert a DT_TEXTREL entry rather than testing whether
9114 there exists a relocation to a read only section or
9116 outname = bfd_get_section_name (output_bfd,
9118 target = bfd_get_section_by_name (output_bfd, outname + 4);
9120 && (target->flags & SEC_READONLY) != 0
9121 && (target->flags & SEC_ALLOC) != 0)
9122 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9125 /* We use the reloc_count field as a counter if we need
9126 to copy relocs into the output file. */
9127 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9130 /* If combreloc is enabled, elf_link_sort_relocs() will
9131 sort relocations, but in a different way than we do,
9132 and before we're done creating relocations. Also, it
9133 will move them around between input sections'
9134 relocation's contents, so our sorting would be
9135 broken, so don't let it run. */
9136 info->combreloc = 0;
9139 else if (! info->shared
9140 && ! mips_elf_hash_table (info)->use_rld_obj_head
9141 && CONST_STRNEQ (name, ".rld_map"))
9143 /* We add a room for __rld_map. It will be filled in by the
9144 rtld to contain a pointer to the _r_debug structure. */
9145 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9147 else if (SGI_COMPAT (output_bfd)
9148 && CONST_STRNEQ (name, ".compact_rel"))
9149 s->size += mips_elf_hash_table (info)->compact_rel_size;
9150 else if (s == htab->splt)
9152 /* If the last PLT entry has a branch delay slot, allocate
9153 room for an extra nop to fill the delay slot. This is
9154 for CPUs without load interlocking. */
9155 if (! LOAD_INTERLOCKS_P (output_bfd)
9156 && ! htab->is_vxworks && s->size > 0)
9159 else if (! CONST_STRNEQ (name, ".init")
9161 && s != htab->sgotplt
9162 && s != htab->sstubs
9163 && s != htab->sdynbss)
9165 /* It's not one of our sections, so don't allocate space. */
9171 s->flags |= SEC_EXCLUDE;
9175 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9178 /* Allocate memory for the section contents. */
9179 s->contents = bfd_zalloc (dynobj, s->size);
9180 if (s->contents == NULL)
9182 bfd_set_error (bfd_error_no_memory);
9187 if (elf_hash_table (info)->dynamic_sections_created)
9189 /* Add some entries to the .dynamic section. We fill in the
9190 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9191 must add the entries now so that we get the correct size for
9192 the .dynamic section. */
9194 /* SGI object has the equivalence of DT_DEBUG in the
9195 DT_MIPS_RLD_MAP entry. This must come first because glibc
9196 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9197 may only look at the first one they see. */
9199 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9202 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9203 used by the debugger. */
9204 if (info->executable
9205 && !SGI_COMPAT (output_bfd)
9206 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9209 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9210 info->flags |= DF_TEXTREL;
9212 if ((info->flags & DF_TEXTREL) != 0)
9214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9217 /* Clear the DF_TEXTREL flag. It will be set again if we
9218 write out an actual text relocation; we may not, because
9219 at this point we do not know whether e.g. any .eh_frame
9220 absolute relocations have been converted to PC-relative. */
9221 info->flags &= ~DF_TEXTREL;
9224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9227 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9228 if (htab->is_vxworks)
9230 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9231 use any of the DT_MIPS_* tags. */
9232 if (sreldyn && sreldyn->size > 0)
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9246 if (sreldyn && sreldyn->size > 0)
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9254 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9258 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9261 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9264 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9267 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9270 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9279 if (IRIX_COMPAT (dynobj) == ict_irix5
9280 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9283 if (IRIX_COMPAT (dynobj) == ict_irix6
9284 && (bfd_get_section_by_name
9285 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9286 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9289 if (htab->splt->size > 0)
9291 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9294 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9297 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9300 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9303 if (htab->is_vxworks
9304 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9311 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9312 Adjust its R_ADDEND field so that it is correct for the output file.
9313 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9314 and sections respectively; both use symbol indexes. */
9317 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9318 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9319 asection **local_sections, Elf_Internal_Rela *rel)
9321 unsigned int r_type, r_symndx;
9322 Elf_Internal_Sym *sym;
9325 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9327 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9328 if (gprel16_reloc_p (r_type)
9329 || r_type == R_MIPS_GPREL32
9330 || literal_reloc_p (r_type))
9332 rel->r_addend += _bfd_get_gp_value (input_bfd);
9333 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9336 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9337 sym = local_syms + r_symndx;
9339 /* Adjust REL's addend to account for section merging. */
9340 if (!info->relocatable)
9342 sec = local_sections[r_symndx];
9343 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9346 /* This would normally be done by the rela_normal code in elflink.c. */
9347 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9348 rel->r_addend += local_sections[r_symndx]->output_offset;
9352 /* Handle relocations against symbols from removed linkonce sections,
9353 or sections discarded by a linker script. We use this wrapper around
9354 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9355 on 64-bit ELF targets. In this case for any relocation handled, which
9356 always be the first in a triplet, the remaining two have to be processed
9357 together with the first, even if they are R_MIPS_NONE. It is the symbol
9358 index referred by the first reloc that applies to all the three and the
9359 remaining two never refer to an object symbol. And it is the final
9360 relocation (the last non-null one) that determines the output field of
9361 the whole relocation so retrieve the corresponding howto structure for
9362 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9364 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9365 and therefore requires to be pasted in a loop. It also defines a block
9366 and does not protect any of its arguments, hence the extra brackets. */
9369 mips_reloc_against_discarded_section (bfd *output_bfd,
9370 struct bfd_link_info *info,
9371 bfd *input_bfd, asection *input_section,
9372 Elf_Internal_Rela **rel,
9373 const Elf_Internal_Rela **relend,
9374 bfd_boolean rel_reloc,
9375 reloc_howto_type *howto,
9378 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9379 int count = bed->s->int_rels_per_ext_rel;
9380 unsigned int r_type;
9383 for (i = count - 1; i > 0; i--)
9385 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9386 if (r_type != R_MIPS_NONE)
9388 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9394 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9395 (*rel), count, (*relend),
9396 howto, i, contents);
9401 /* Relocate a MIPS ELF section. */
9404 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9405 bfd *input_bfd, asection *input_section,
9406 bfd_byte *contents, Elf_Internal_Rela *relocs,
9407 Elf_Internal_Sym *local_syms,
9408 asection **local_sections)
9410 Elf_Internal_Rela *rel;
9411 const Elf_Internal_Rela *relend;
9413 bfd_boolean use_saved_addend_p = FALSE;
9414 const struct elf_backend_data *bed;
9416 bed = get_elf_backend_data (output_bfd);
9417 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9418 for (rel = relocs; rel < relend; ++rel)
9422 reloc_howto_type *howto;
9423 bfd_boolean cross_mode_jump_p;
9424 /* TRUE if the relocation is a RELA relocation, rather than a
9426 bfd_boolean rela_relocation_p = TRUE;
9427 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9429 unsigned long r_symndx;
9431 Elf_Internal_Shdr *symtab_hdr;
9432 struct elf_link_hash_entry *h;
9433 bfd_boolean rel_reloc;
9435 rel_reloc = (NEWABI_P (input_bfd)
9436 && mips_elf_rel_relocation_p (input_bfd, input_section,
9438 /* Find the relocation howto for this relocation. */
9439 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9441 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9442 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9443 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9445 sec = local_sections[r_symndx];
9450 unsigned long extsymoff;
9453 if (!elf_bad_symtab (input_bfd))
9454 extsymoff = symtab_hdr->sh_info;
9455 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9456 while (h->root.type == bfd_link_hash_indirect
9457 || h->root.type == bfd_link_hash_warning)
9458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9461 if (h->root.type == bfd_link_hash_defined
9462 || h->root.type == bfd_link_hash_defweak)
9463 sec = h->root.u.def.section;
9466 if (sec != NULL && discarded_section (sec))
9468 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9469 input_section, &rel, &relend,
9470 rel_reloc, howto, contents);
9474 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9476 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9477 64-bit code, but make sure all their addresses are in the
9478 lowermost or uppermost 32-bit section of the 64-bit address
9479 space. Thus, when they use an R_MIPS_64 they mean what is
9480 usually meant by R_MIPS_32, with the exception that the
9481 stored value is sign-extended to 64 bits. */
9482 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9484 /* On big-endian systems, we need to lie about the position
9486 if (bfd_big_endian (input_bfd))
9490 if (!use_saved_addend_p)
9492 /* If these relocations were originally of the REL variety,
9493 we must pull the addend out of the field that will be
9494 relocated. Otherwise, we simply use the contents of the
9496 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9499 rela_relocation_p = FALSE;
9500 addend = mips_elf_read_rel_addend (input_bfd, rel,
9502 if (hi16_reloc_p (r_type)
9503 || (got16_reloc_p (r_type)
9504 && mips_elf_local_relocation_p (input_bfd, rel,
9507 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9511 name = h->root.root.string;
9513 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9514 local_syms + r_symndx,
9516 (*_bfd_error_handler)
9517 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9518 input_bfd, input_section, name, howto->name,
9523 addend <<= howto->rightshift;
9526 addend = rel->r_addend;
9527 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9528 local_syms, local_sections, rel);
9531 if (info->relocatable)
9533 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9534 && bfd_big_endian (input_bfd))
9537 if (!rela_relocation_p && rel->r_addend)
9539 addend += rel->r_addend;
9540 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9541 addend = mips_elf_high (addend);
9542 else if (r_type == R_MIPS_HIGHER)
9543 addend = mips_elf_higher (addend);
9544 else if (r_type == R_MIPS_HIGHEST)
9545 addend = mips_elf_highest (addend);
9547 addend >>= howto->rightshift;
9549 /* We use the source mask, rather than the destination
9550 mask because the place to which we are writing will be
9551 source of the addend in the final link. */
9552 addend &= howto->src_mask;
9554 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9555 /* See the comment above about using R_MIPS_64 in the 32-bit
9556 ABI. Here, we need to update the addend. It would be
9557 possible to get away with just using the R_MIPS_32 reloc
9558 but for endianness. */
9564 if (addend & ((bfd_vma) 1 << 31))
9566 sign_bits = ((bfd_vma) 1 << 32) - 1;
9573 /* If we don't know that we have a 64-bit type,
9574 do two separate stores. */
9575 if (bfd_big_endian (input_bfd))
9577 /* Store the sign-bits (which are most significant)
9579 low_bits = sign_bits;
9585 high_bits = sign_bits;
9587 bfd_put_32 (input_bfd, low_bits,
9588 contents + rel->r_offset);
9589 bfd_put_32 (input_bfd, high_bits,
9590 contents + rel->r_offset + 4);
9594 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9595 input_bfd, input_section,
9600 /* Go on to the next relocation. */
9604 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9605 relocations for the same offset. In that case we are
9606 supposed to treat the output of each relocation as the addend
9608 if (rel + 1 < relend
9609 && rel->r_offset == rel[1].r_offset
9610 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9611 use_saved_addend_p = TRUE;
9613 use_saved_addend_p = FALSE;
9615 /* Figure out what value we are supposed to relocate. */
9616 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9617 input_section, info, rel,
9618 addend, howto, local_syms,
9619 local_sections, &value,
9620 &name, &cross_mode_jump_p,
9621 use_saved_addend_p))
9623 case bfd_reloc_continue:
9624 /* There's nothing to do. */
9627 case bfd_reloc_undefined:
9628 /* mips_elf_calculate_relocation already called the
9629 undefined_symbol callback. There's no real point in
9630 trying to perform the relocation at this point, so we
9631 just skip ahead to the next relocation. */
9634 case bfd_reloc_notsupported:
9635 msg = _("internal error: unsupported relocation error");
9636 info->callbacks->warning
9637 (info, msg, name, input_bfd, input_section, rel->r_offset);
9640 case bfd_reloc_overflow:
9641 if (use_saved_addend_p)
9642 /* Ignore overflow until we reach the last relocation for
9643 a given location. */
9647 struct mips_elf_link_hash_table *htab;
9649 htab = mips_elf_hash_table (info);
9650 BFD_ASSERT (htab != NULL);
9651 BFD_ASSERT (name != NULL);
9652 if (!htab->small_data_overflow_reported
9653 && (gprel16_reloc_p (howto->type)
9654 || literal_reloc_p (howto->type)))
9656 msg = _("small-data section exceeds 64KB;"
9657 " lower small-data size limit (see option -G)");
9659 htab->small_data_overflow_reported = TRUE;
9660 (*info->callbacks->einfo) ("%P: %s\n", msg);
9662 if (! ((*info->callbacks->reloc_overflow)
9663 (info, NULL, name, howto->name, (bfd_vma) 0,
9664 input_bfd, input_section, rel->r_offset)))
9672 case bfd_reloc_outofrange:
9673 if (jal_reloc_p (howto->type))
9675 msg = _("JALX to a non-word-aligned address");
9676 info->callbacks->warning
9677 (info, msg, name, input_bfd, input_section, rel->r_offset);
9687 /* If we've got another relocation for the address, keep going
9688 until we reach the last one. */
9689 if (use_saved_addend_p)
9695 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9696 /* See the comment above about using R_MIPS_64 in the 32-bit
9697 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9698 that calculated the right value. Now, however, we
9699 sign-extend the 32-bit result to 64-bits, and store it as a
9700 64-bit value. We are especially generous here in that we
9701 go to extreme lengths to support this usage on systems with
9702 only a 32-bit VMA. */
9708 if (value & ((bfd_vma) 1 << 31))
9710 sign_bits = ((bfd_vma) 1 << 32) - 1;
9717 /* If we don't know that we have a 64-bit type,
9718 do two separate stores. */
9719 if (bfd_big_endian (input_bfd))
9721 /* Undo what we did above. */
9723 /* Store the sign-bits (which are most significant)
9725 low_bits = sign_bits;
9731 high_bits = sign_bits;
9733 bfd_put_32 (input_bfd, low_bits,
9734 contents + rel->r_offset);
9735 bfd_put_32 (input_bfd, high_bits,
9736 contents + rel->r_offset + 4);
9740 /* Actually perform the relocation. */
9741 if (! mips_elf_perform_relocation (info, howto, rel, value,
9742 input_bfd, input_section,
9743 contents, cross_mode_jump_p))
9750 /* A function that iterates over each entry in la25_stubs and fills
9751 in the code for each one. DATA points to a mips_htab_traverse_info. */
9754 mips_elf_create_la25_stub (void **slot, void *data)
9756 struct mips_htab_traverse_info *hti;
9757 struct mips_elf_link_hash_table *htab;
9758 struct mips_elf_la25_stub *stub;
9761 bfd_vma offset, target, target_high, target_low;
9763 stub = (struct mips_elf_la25_stub *) *slot;
9764 hti = (struct mips_htab_traverse_info *) data;
9765 htab = mips_elf_hash_table (hti->info);
9766 BFD_ASSERT (htab != NULL);
9768 /* Create the section contents, if we haven't already. */
9769 s = stub->stub_section;
9773 loc = bfd_malloc (s->size);
9782 /* Work out where in the section this stub should go. */
9783 offset = stub->offset;
9785 /* Work out the target address. */
9786 target = mips_elf_get_la25_target (stub, &s);
9787 target += s->output_section->vma + s->output_offset;
9789 target_high = ((target + 0x8000) >> 16) & 0xffff;
9790 target_low = (target & 0xffff);
9792 if (stub->stub_section != htab->strampoline)
9794 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9795 of the section and write the two instructions at the end. */
9796 memset (loc, 0, offset);
9798 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9800 bfd_put_micromips_32 (hti->output_bfd,
9801 LA25_LUI_MICROMIPS (target_high),
9803 bfd_put_micromips_32 (hti->output_bfd,
9804 LA25_ADDIU_MICROMIPS (target_low),
9809 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9810 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9815 /* This is trampoline. */
9817 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9819 bfd_put_micromips_32 (hti->output_bfd,
9820 LA25_LUI_MICROMIPS (target_high), loc);
9821 bfd_put_micromips_32 (hti->output_bfd,
9822 LA25_J_MICROMIPS (target), loc + 4);
9823 bfd_put_micromips_32 (hti->output_bfd,
9824 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9825 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9829 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9830 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9831 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9832 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9838 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9839 adjust it appropriately now. */
9842 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9843 const char *name, Elf_Internal_Sym *sym)
9845 /* The linker script takes care of providing names and values for
9846 these, but we must place them into the right sections. */
9847 static const char* const text_section_symbols[] = {
9850 "__dso_displacement",
9852 "__program_header_table",
9856 static const char* const data_section_symbols[] = {
9864 const char* const *p;
9867 for (i = 0; i < 2; ++i)
9868 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9871 if (strcmp (*p, name) == 0)
9873 /* All of these symbols are given type STT_SECTION by the
9875 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9876 sym->st_other = STO_PROTECTED;
9878 /* The IRIX linker puts these symbols in special sections. */
9880 sym->st_shndx = SHN_MIPS_TEXT;
9882 sym->st_shndx = SHN_MIPS_DATA;
9888 /* Finish up dynamic symbol handling. We set the contents of various
9889 dynamic sections here. */
9892 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9893 struct bfd_link_info *info,
9894 struct elf_link_hash_entry *h,
9895 Elf_Internal_Sym *sym)
9899 struct mips_got_info *g, *gg;
9902 struct mips_elf_link_hash_table *htab;
9903 struct mips_elf_link_hash_entry *hmips;
9905 htab = mips_elf_hash_table (info);
9906 BFD_ASSERT (htab != NULL);
9907 dynobj = elf_hash_table (info)->dynobj;
9908 hmips = (struct mips_elf_link_hash_entry *) h;
9910 BFD_ASSERT (!htab->is_vxworks);
9912 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9914 /* We've decided to create a PLT entry for this symbol. */
9916 bfd_vma header_address, plt_index, got_address;
9917 bfd_vma got_address_high, got_address_low, load;
9918 const bfd_vma *plt_entry;
9920 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9921 BFD_ASSERT (h->dynindx != -1);
9922 BFD_ASSERT (htab->splt != NULL);
9923 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9924 BFD_ASSERT (!h->def_regular);
9926 /* Calculate the address of the PLT header. */
9927 header_address = (htab->splt->output_section->vma
9928 + htab->splt->output_offset);
9930 /* Calculate the index of the entry. */
9931 plt_index = ((h->plt.offset - htab->plt_header_size)
9932 / htab->plt_entry_size);
9934 /* Calculate the address of the .got.plt entry. */
9935 got_address = (htab->sgotplt->output_section->vma
9936 + htab->sgotplt->output_offset
9937 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9938 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9939 got_address_low = got_address & 0xffff;
9941 /* Initially point the .got.plt entry at the PLT header. */
9942 loc = (htab->sgotplt->contents
9943 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9944 if (ABI_64_P (output_bfd))
9945 bfd_put_64 (output_bfd, header_address, loc);
9947 bfd_put_32 (output_bfd, header_address, loc);
9949 /* Find out where the .plt entry should go. */
9950 loc = htab->splt->contents + h->plt.offset;
9952 /* Pick the load opcode. */
9953 load = MIPS_ELF_LOAD_WORD (output_bfd);
9955 /* Fill in the PLT entry itself. */
9956 plt_entry = mips_exec_plt_entry;
9957 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9958 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9960 if (! LOAD_INTERLOCKS_P (output_bfd))
9962 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9963 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9967 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9968 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9971 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9972 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9973 plt_index, h->dynindx,
9974 R_MIPS_JUMP_SLOT, got_address);
9976 /* We distinguish between PLT entries and lazy-binding stubs by
9977 giving the former an st_other value of STO_MIPS_PLT. Set the
9978 flag and leave the value if there are any relocations in the
9979 binary where pointer equality matters. */
9980 sym->st_shndx = SHN_UNDEF;
9981 if (h->pointer_equality_needed)
9982 sym->st_other = STO_MIPS_PLT;
9986 else if (h->plt.offset != MINUS_ONE)
9988 /* We've decided to create a lazy-binding stub. */
9989 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9991 /* This symbol has a stub. Set it up. */
9993 BFD_ASSERT (h->dynindx != -1);
9995 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9996 || (h->dynindx <= 0xffff));
9998 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9999 sign extension at runtime in the stub, resulting in a negative
10001 if (h->dynindx & ~0x7fffffff)
10004 /* Fill the stub. */
10006 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10008 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10010 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10012 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10016 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10019 /* If a large stub is not required and sign extension is not a
10020 problem, then use legacy code in the stub. */
10021 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10022 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10023 else if (h->dynindx & ~0x7fff)
10024 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10026 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10029 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10030 memcpy (htab->sstubs->contents + h->plt.offset,
10031 stub, htab->function_stub_size);
10033 /* Mark the symbol as undefined. plt.offset != -1 occurs
10034 only for the referenced symbol. */
10035 sym->st_shndx = SHN_UNDEF;
10037 /* The run-time linker uses the st_value field of the symbol
10038 to reset the global offset table entry for this external
10039 to its stub address when unlinking a shared object. */
10040 sym->st_value = (htab->sstubs->output_section->vma
10041 + htab->sstubs->output_offset
10045 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10046 refer to the stub, since only the stub uses the standard calling
10048 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10050 BFD_ASSERT (hmips->need_fn_stub);
10051 sym->st_value = (hmips->fn_stub->output_section->vma
10052 + hmips->fn_stub->output_offset);
10053 sym->st_size = hmips->fn_stub->size;
10054 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10057 BFD_ASSERT (h->dynindx != -1
10058 || h->forced_local);
10061 g = htab->got_info;
10062 BFD_ASSERT (g != NULL);
10064 /* Run through the global symbol table, creating GOT entries for all
10065 the symbols that need them. */
10066 if (hmips->global_got_area != GGA_NONE)
10071 value = sym->st_value;
10072 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10073 R_MIPS_GOT16, info);
10074 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10077 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10079 struct mips_got_entry e, *p;
10085 e.abfd = output_bfd;
10090 for (g = g->next; g->next != gg; g = g->next)
10093 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10096 offset = p->gotidx;
10098 || (elf_hash_table (info)->dynamic_sections_created
10100 && p->d.h->root.def_dynamic
10101 && !p->d.h->root.def_regular))
10103 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10104 the various compatibility problems, it's easier to mock
10105 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10106 mips_elf_create_dynamic_relocation to calculate the
10107 appropriate addend. */
10108 Elf_Internal_Rela rel[3];
10110 memset (rel, 0, sizeof (rel));
10111 if (ABI_64_P (output_bfd))
10112 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10114 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10115 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10118 if (! (mips_elf_create_dynamic_relocation
10119 (output_bfd, info, rel,
10120 e.d.h, NULL, sym->st_value, &entry, sgot)))
10124 entry = sym->st_value;
10125 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10130 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10131 name = h->root.root.string;
10132 if (strcmp (name, "_DYNAMIC") == 0
10133 || h == elf_hash_table (info)->hgot)
10134 sym->st_shndx = SHN_ABS;
10135 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10136 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10138 sym->st_shndx = SHN_ABS;
10139 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10142 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10144 sym->st_shndx = SHN_ABS;
10145 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10146 sym->st_value = elf_gp (output_bfd);
10148 else if (SGI_COMPAT (output_bfd))
10150 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10151 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10153 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10154 sym->st_other = STO_PROTECTED;
10156 sym->st_shndx = SHN_MIPS_DATA;
10158 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10160 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10161 sym->st_other = STO_PROTECTED;
10162 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10163 sym->st_shndx = SHN_ABS;
10165 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10167 if (h->type == STT_FUNC)
10168 sym->st_shndx = SHN_MIPS_TEXT;
10169 else if (h->type == STT_OBJECT)
10170 sym->st_shndx = SHN_MIPS_DATA;
10174 /* Emit a copy reloc, if needed. */
10180 BFD_ASSERT (h->dynindx != -1);
10181 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10183 s = mips_elf_rel_dyn_section (info, FALSE);
10184 symval = (h->root.u.def.section->output_section->vma
10185 + h->root.u.def.section->output_offset
10186 + h->root.u.def.value);
10187 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10188 h->dynindx, R_MIPS_COPY, symval);
10191 /* Handle the IRIX6-specific symbols. */
10192 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10193 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10195 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10196 treat MIPS16 symbols like any other. */
10197 if (ELF_ST_IS_MIPS16 (sym->st_other))
10199 BFD_ASSERT (sym->st_value & 1);
10200 sym->st_other -= STO_MIPS16;
10206 /* Likewise, for VxWorks. */
10209 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10210 struct bfd_link_info *info,
10211 struct elf_link_hash_entry *h,
10212 Elf_Internal_Sym *sym)
10216 struct mips_got_info *g;
10217 struct mips_elf_link_hash_table *htab;
10218 struct mips_elf_link_hash_entry *hmips;
10220 htab = mips_elf_hash_table (info);
10221 BFD_ASSERT (htab != NULL);
10222 dynobj = elf_hash_table (info)->dynobj;
10223 hmips = (struct mips_elf_link_hash_entry *) h;
10225 if (h->plt.offset != (bfd_vma) -1)
10228 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10229 Elf_Internal_Rela rel;
10230 static const bfd_vma *plt_entry;
10232 BFD_ASSERT (h->dynindx != -1);
10233 BFD_ASSERT (htab->splt != NULL);
10234 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10236 /* Calculate the address of the .plt entry. */
10237 plt_address = (htab->splt->output_section->vma
10238 + htab->splt->output_offset
10241 /* Calculate the index of the entry. */
10242 plt_index = ((h->plt.offset - htab->plt_header_size)
10243 / htab->plt_entry_size);
10245 /* Calculate the address of the .got.plt entry. */
10246 got_address = (htab->sgotplt->output_section->vma
10247 + htab->sgotplt->output_offset
10250 /* Calculate the offset of the .got.plt entry from
10251 _GLOBAL_OFFSET_TABLE_. */
10252 got_offset = mips_elf_gotplt_index (info, h);
10254 /* Calculate the offset for the branch at the start of the PLT
10255 entry. The branch jumps to the beginning of .plt. */
10256 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10258 /* Fill in the initial value of the .got.plt entry. */
10259 bfd_put_32 (output_bfd, plt_address,
10260 htab->sgotplt->contents + plt_index * 4);
10262 /* Find out where the .plt entry should go. */
10263 loc = htab->splt->contents + h->plt.offset;
10267 plt_entry = mips_vxworks_shared_plt_entry;
10268 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10269 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10273 bfd_vma got_address_high, got_address_low;
10275 plt_entry = mips_vxworks_exec_plt_entry;
10276 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10277 got_address_low = got_address & 0xffff;
10279 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10280 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10281 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10282 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10283 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10284 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10285 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10286 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10288 loc = (htab->srelplt2->contents
10289 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10291 /* Emit a relocation for the .got.plt entry. */
10292 rel.r_offset = got_address;
10293 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10294 rel.r_addend = h->plt.offset;
10295 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10297 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10298 loc += sizeof (Elf32_External_Rela);
10299 rel.r_offset = plt_address + 8;
10300 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10301 rel.r_addend = got_offset;
10302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10304 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10305 loc += sizeof (Elf32_External_Rela);
10307 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10308 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10311 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10312 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10313 rel.r_offset = got_address;
10314 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10316 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10318 if (!h->def_regular)
10319 sym->st_shndx = SHN_UNDEF;
10322 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10325 g = htab->got_info;
10326 BFD_ASSERT (g != NULL);
10328 /* See if this symbol has an entry in the GOT. */
10329 if (hmips->global_got_area != GGA_NONE)
10332 Elf_Internal_Rela outrel;
10336 /* Install the symbol value in the GOT. */
10337 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10338 R_MIPS_GOT16, info);
10339 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10341 /* Add a dynamic relocation for it. */
10342 s = mips_elf_rel_dyn_section (info, FALSE);
10343 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10344 outrel.r_offset = (sgot->output_section->vma
10345 + sgot->output_offset
10347 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10348 outrel.r_addend = 0;
10349 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10352 /* Emit a copy reloc, if needed. */
10355 Elf_Internal_Rela rel;
10357 BFD_ASSERT (h->dynindx != -1);
10359 rel.r_offset = (h->root.u.def.section->output_section->vma
10360 + h->root.u.def.section->output_offset
10361 + h->root.u.def.value);
10362 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10364 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10365 htab->srelbss->contents
10366 + (htab->srelbss->reloc_count
10367 * sizeof (Elf32_External_Rela)));
10368 ++htab->srelbss->reloc_count;
10371 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10372 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10373 sym->st_value &= ~1;
10378 /* Write out a plt0 entry to the beginning of .plt. */
10381 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10384 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10385 static const bfd_vma *plt_entry;
10386 struct mips_elf_link_hash_table *htab;
10388 htab = mips_elf_hash_table (info);
10389 BFD_ASSERT (htab != NULL);
10391 if (ABI_64_P (output_bfd))
10392 plt_entry = mips_n64_exec_plt0_entry;
10393 else if (ABI_N32_P (output_bfd))
10394 plt_entry = mips_n32_exec_plt0_entry;
10396 plt_entry = mips_o32_exec_plt0_entry;
10398 /* Calculate the value of .got.plt. */
10399 gotplt_value = (htab->sgotplt->output_section->vma
10400 + htab->sgotplt->output_offset);
10401 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10402 gotplt_value_low = gotplt_value & 0xffff;
10404 /* The PLT sequence is not safe for N64 if .got.plt's address can
10405 not be loaded in two instructions. */
10406 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10407 || ~(gotplt_value | 0x7fffffff) == 0);
10409 /* Install the PLT header. */
10410 loc = htab->splt->contents;
10411 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10412 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10413 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10414 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10415 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10416 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10417 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10418 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10421 /* Install the PLT header for a VxWorks executable and finalize the
10422 contents of .rela.plt.unloaded. */
10425 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10427 Elf_Internal_Rela rela;
10429 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10430 static const bfd_vma *plt_entry;
10431 struct mips_elf_link_hash_table *htab;
10433 htab = mips_elf_hash_table (info);
10434 BFD_ASSERT (htab != NULL);
10436 plt_entry = mips_vxworks_exec_plt0_entry;
10438 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10439 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10440 + htab->root.hgot->root.u.def.section->output_offset
10441 + htab->root.hgot->root.u.def.value);
10443 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10444 got_value_low = got_value & 0xffff;
10446 /* Calculate the address of the PLT header. */
10447 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10449 /* Install the PLT header. */
10450 loc = htab->splt->contents;
10451 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10452 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10453 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10454 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10455 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10456 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10458 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10459 loc = htab->srelplt2->contents;
10460 rela.r_offset = plt_address;
10461 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10463 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10464 loc += sizeof (Elf32_External_Rela);
10466 /* Output the relocation for the following addiu of
10467 %lo(_GLOBAL_OFFSET_TABLE_). */
10468 rela.r_offset += 4;
10469 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10470 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10471 loc += sizeof (Elf32_External_Rela);
10473 /* Fix up the remaining relocations. They may have the wrong
10474 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10475 in which symbols were output. */
10476 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10478 Elf_Internal_Rela rel;
10480 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10481 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10483 loc += sizeof (Elf32_External_Rela);
10485 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10486 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10487 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10488 loc += sizeof (Elf32_External_Rela);
10490 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10491 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10493 loc += sizeof (Elf32_External_Rela);
10497 /* Install the PLT header for a VxWorks shared library. */
10500 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10503 struct mips_elf_link_hash_table *htab;
10505 htab = mips_elf_hash_table (info);
10506 BFD_ASSERT (htab != NULL);
10508 /* We just need to copy the entry byte-by-byte. */
10509 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10510 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10511 htab->splt->contents + i * 4);
10514 /* Finish up the dynamic sections. */
10517 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10518 struct bfd_link_info *info)
10523 struct mips_got_info *gg, *g;
10524 struct mips_elf_link_hash_table *htab;
10526 htab = mips_elf_hash_table (info);
10527 BFD_ASSERT (htab != NULL);
10529 dynobj = elf_hash_table (info)->dynobj;
10531 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10534 gg = htab->got_info;
10536 if (elf_hash_table (info)->dynamic_sections_created)
10539 int dyn_to_skip = 0, dyn_skipped = 0;
10541 BFD_ASSERT (sdyn != NULL);
10542 BFD_ASSERT (gg != NULL);
10544 g = mips_elf_got_for_ibfd (gg, output_bfd);
10545 BFD_ASSERT (g != NULL);
10547 for (b = sdyn->contents;
10548 b < sdyn->contents + sdyn->size;
10549 b += MIPS_ELF_DYN_SIZE (dynobj))
10551 Elf_Internal_Dyn dyn;
10555 bfd_boolean swap_out_p;
10557 /* Read in the current dynamic entry. */
10558 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10560 /* Assume that we're going to modify it and write it out. */
10566 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10570 BFD_ASSERT (htab->is_vxworks);
10571 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10575 /* Rewrite DT_STRSZ. */
10577 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10582 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10585 case DT_MIPS_PLTGOT:
10587 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10590 case DT_MIPS_RLD_VERSION:
10591 dyn.d_un.d_val = 1; /* XXX */
10594 case DT_MIPS_FLAGS:
10595 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10598 case DT_MIPS_TIME_STAMP:
10602 dyn.d_un.d_val = t;
10606 case DT_MIPS_ICHECKSUM:
10608 swap_out_p = FALSE;
10611 case DT_MIPS_IVERSION:
10613 swap_out_p = FALSE;
10616 case DT_MIPS_BASE_ADDRESS:
10617 s = output_bfd->sections;
10618 BFD_ASSERT (s != NULL);
10619 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10622 case DT_MIPS_LOCAL_GOTNO:
10623 dyn.d_un.d_val = g->local_gotno;
10626 case DT_MIPS_UNREFEXTNO:
10627 /* The index into the dynamic symbol table which is the
10628 entry of the first external symbol that is not
10629 referenced within the same object. */
10630 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10633 case DT_MIPS_GOTSYM:
10634 if (gg->global_gotsym)
10636 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10639 /* In case if we don't have global got symbols we default
10640 to setting DT_MIPS_GOTSYM to the same value as
10641 DT_MIPS_SYMTABNO, so we just fall through. */
10643 case DT_MIPS_SYMTABNO:
10645 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10646 s = bfd_get_section_by_name (output_bfd, name);
10647 BFD_ASSERT (s != NULL);
10649 dyn.d_un.d_val = s->size / elemsize;
10652 case DT_MIPS_HIPAGENO:
10653 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10656 case DT_MIPS_RLD_MAP:
10658 struct elf_link_hash_entry *h;
10659 h = mips_elf_hash_table (info)->rld_symbol;
10662 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10663 swap_out_p = FALSE;
10666 s = h->root.u.def.section;
10667 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10668 + h->root.u.def.value);
10672 case DT_MIPS_OPTIONS:
10673 s = (bfd_get_section_by_name
10674 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10675 dyn.d_un.d_ptr = s->vma;
10679 BFD_ASSERT (htab->is_vxworks);
10680 /* The count does not include the JUMP_SLOT relocations. */
10682 dyn.d_un.d_val -= htab->srelplt->size;
10686 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10687 if (htab->is_vxworks)
10688 dyn.d_un.d_val = DT_RELA;
10690 dyn.d_un.d_val = DT_REL;
10694 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10695 dyn.d_un.d_val = htab->srelplt->size;
10699 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10700 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10701 + htab->srelplt->output_offset);
10705 /* If we didn't need any text relocations after all, delete
10706 the dynamic tag. */
10707 if (!(info->flags & DF_TEXTREL))
10709 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10710 swap_out_p = FALSE;
10715 /* If we didn't need any text relocations after all, clear
10716 DF_TEXTREL from DT_FLAGS. */
10717 if (!(info->flags & DF_TEXTREL))
10718 dyn.d_un.d_val &= ~DF_TEXTREL;
10720 swap_out_p = FALSE;
10724 swap_out_p = FALSE;
10725 if (htab->is_vxworks
10726 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10731 if (swap_out_p || dyn_skipped)
10732 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10733 (dynobj, &dyn, b - dyn_skipped);
10737 dyn_skipped += dyn_to_skip;
10742 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10743 if (dyn_skipped > 0)
10744 memset (b - dyn_skipped, 0, dyn_skipped);
10747 if (sgot != NULL && sgot->size > 0
10748 && !bfd_is_abs_section (sgot->output_section))
10750 if (htab->is_vxworks)
10752 /* The first entry of the global offset table points to the
10753 ".dynamic" section. The second is initialized by the
10754 loader and contains the shared library identifier.
10755 The third is also initialized by the loader and points
10756 to the lazy resolution stub. */
10757 MIPS_ELF_PUT_WORD (output_bfd,
10758 sdyn->output_offset + sdyn->output_section->vma,
10760 MIPS_ELF_PUT_WORD (output_bfd, 0,
10761 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10762 MIPS_ELF_PUT_WORD (output_bfd, 0,
10764 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10768 /* The first entry of the global offset table will be filled at
10769 runtime. The second entry will be used by some runtime loaders.
10770 This isn't the case of IRIX rld. */
10771 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10772 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10773 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10776 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10777 = MIPS_ELF_GOT_SIZE (output_bfd);
10780 /* Generate dynamic relocations for the non-primary gots. */
10781 if (gg != NULL && gg->next)
10783 Elf_Internal_Rela rel[3];
10784 bfd_vma addend = 0;
10786 memset (rel, 0, sizeof (rel));
10787 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10789 for (g = gg->next; g->next != gg; g = g->next)
10791 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10792 + g->next->tls_gotno;
10794 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10795 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10796 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10798 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10800 if (! info->shared)
10803 while (got_index < g->assigned_gotno)
10805 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10806 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10807 if (!(mips_elf_create_dynamic_relocation
10808 (output_bfd, info, rel, NULL,
10809 bfd_abs_section_ptr,
10810 0, &addend, sgot)))
10812 BFD_ASSERT (addend == 0);
10817 /* The generation of dynamic relocations for the non-primary gots
10818 adds more dynamic relocations. We cannot count them until
10821 if (elf_hash_table (info)->dynamic_sections_created)
10824 bfd_boolean swap_out_p;
10826 BFD_ASSERT (sdyn != NULL);
10828 for (b = sdyn->contents;
10829 b < sdyn->contents + sdyn->size;
10830 b += MIPS_ELF_DYN_SIZE (dynobj))
10832 Elf_Internal_Dyn dyn;
10835 /* Read in the current dynamic entry. */
10836 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10838 /* Assume that we're going to modify it and write it out. */
10844 /* Reduce DT_RELSZ to account for any relocations we
10845 decided not to make. This is for the n64 irix rld,
10846 which doesn't seem to apply any relocations if there
10847 are trailing null entries. */
10848 s = mips_elf_rel_dyn_section (info, FALSE);
10849 dyn.d_un.d_val = (s->reloc_count
10850 * (ABI_64_P (output_bfd)
10851 ? sizeof (Elf64_Mips_External_Rel)
10852 : sizeof (Elf32_External_Rel)));
10853 /* Adjust the section size too. Tools like the prelinker
10854 can reasonably expect the values to the same. */
10855 elf_section_data (s->output_section)->this_hdr.sh_size
10860 swap_out_p = FALSE;
10865 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10872 Elf32_compact_rel cpt;
10874 if (SGI_COMPAT (output_bfd))
10876 /* Write .compact_rel section out. */
10877 s = bfd_get_linker_section (dynobj, ".compact_rel");
10881 cpt.num = s->reloc_count;
10883 cpt.offset = (s->output_section->filepos
10884 + sizeof (Elf32_External_compact_rel));
10887 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10888 ((Elf32_External_compact_rel *)
10891 /* Clean up a dummy stub function entry in .text. */
10892 if (htab->sstubs != NULL)
10894 file_ptr dummy_offset;
10896 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10897 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10898 memset (htab->sstubs->contents + dummy_offset, 0,
10899 htab->function_stub_size);
10904 /* The psABI says that the dynamic relocations must be sorted in
10905 increasing order of r_symndx. The VxWorks EABI doesn't require
10906 this, and because the code below handles REL rather than RELA
10907 relocations, using it for VxWorks would be outright harmful. */
10908 if (!htab->is_vxworks)
10910 s = mips_elf_rel_dyn_section (info, FALSE);
10912 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10914 reldyn_sorting_bfd = output_bfd;
10916 if (ABI_64_P (output_bfd))
10917 qsort ((Elf64_External_Rel *) s->contents + 1,
10918 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10919 sort_dynamic_relocs_64);
10921 qsort ((Elf32_External_Rel *) s->contents + 1,
10922 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10923 sort_dynamic_relocs);
10928 if (htab->splt && htab->splt->size > 0)
10930 if (htab->is_vxworks)
10933 mips_vxworks_finish_shared_plt (output_bfd, info);
10935 mips_vxworks_finish_exec_plt (output_bfd, info);
10939 BFD_ASSERT (!info->shared);
10940 mips_finish_exec_plt (output_bfd, info);
10947 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10950 mips_set_isa_flags (bfd *abfd)
10954 switch (bfd_get_mach (abfd))
10957 case bfd_mach_mips3000:
10958 val = E_MIPS_ARCH_1;
10961 case bfd_mach_mips3900:
10962 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10965 case bfd_mach_mips6000:
10966 val = E_MIPS_ARCH_2;
10969 case bfd_mach_mips4000:
10970 case bfd_mach_mips4300:
10971 case bfd_mach_mips4400:
10972 case bfd_mach_mips4600:
10973 val = E_MIPS_ARCH_3;
10976 case bfd_mach_mips4010:
10977 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10980 case bfd_mach_mips4100:
10981 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10984 case bfd_mach_mips4111:
10985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10988 case bfd_mach_mips4120:
10989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10992 case bfd_mach_mips4650:
10993 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10996 case bfd_mach_mips5400:
10997 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11000 case bfd_mach_mips5500:
11001 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11004 case bfd_mach_mips9000:
11005 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11008 case bfd_mach_mips5000:
11009 case bfd_mach_mips7000:
11010 case bfd_mach_mips8000:
11011 case bfd_mach_mips10000:
11012 case bfd_mach_mips12000:
11013 case bfd_mach_mips14000:
11014 case bfd_mach_mips16000:
11015 val = E_MIPS_ARCH_4;
11018 case bfd_mach_mips5:
11019 val = E_MIPS_ARCH_5;
11022 case bfd_mach_mips_loongson_2e:
11023 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11026 case bfd_mach_mips_loongson_2f:
11027 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11030 case bfd_mach_mips_sb1:
11031 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11034 case bfd_mach_mips_loongson_3a:
11035 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11038 case bfd_mach_mips_octeon:
11039 case bfd_mach_mips_octeonp:
11040 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11043 case bfd_mach_mips_xlr:
11044 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11047 case bfd_mach_mips_octeon2:
11048 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11051 case bfd_mach_mipsisa32:
11052 val = E_MIPS_ARCH_32;
11055 case bfd_mach_mipsisa64:
11056 val = E_MIPS_ARCH_64;
11059 case bfd_mach_mipsisa32r2:
11060 val = E_MIPS_ARCH_32R2;
11063 case bfd_mach_mipsisa64r2:
11064 val = E_MIPS_ARCH_64R2;
11067 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11068 elf_elfheader (abfd)->e_flags |= val;
11073 /* The final processing done just before writing out a MIPS ELF object
11074 file. This gets the MIPS architecture right based on the machine
11075 number. This is used by both the 32-bit and the 64-bit ABI. */
11078 _bfd_mips_elf_final_write_processing (bfd *abfd,
11079 bfd_boolean linker ATTRIBUTE_UNUSED)
11082 Elf_Internal_Shdr **hdrpp;
11086 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11087 is nonzero. This is for compatibility with old objects, which used
11088 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11089 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11090 mips_set_isa_flags (abfd);
11092 /* Set the sh_info field for .gptab sections and other appropriate
11093 info for each special section. */
11094 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11095 i < elf_numsections (abfd);
11098 switch ((*hdrpp)->sh_type)
11100 case SHT_MIPS_MSYM:
11101 case SHT_MIPS_LIBLIST:
11102 sec = bfd_get_section_by_name (abfd, ".dynstr");
11104 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11107 case SHT_MIPS_GPTAB:
11108 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11109 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11110 BFD_ASSERT (name != NULL
11111 && CONST_STRNEQ (name, ".gptab."));
11112 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11113 BFD_ASSERT (sec != NULL);
11114 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11117 case SHT_MIPS_CONTENT:
11118 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11119 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11120 BFD_ASSERT (name != NULL
11121 && CONST_STRNEQ (name, ".MIPS.content"));
11122 sec = bfd_get_section_by_name (abfd,
11123 name + sizeof ".MIPS.content" - 1);
11124 BFD_ASSERT (sec != NULL);
11125 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11128 case SHT_MIPS_SYMBOL_LIB:
11129 sec = bfd_get_section_by_name (abfd, ".dynsym");
11131 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11132 sec = bfd_get_section_by_name (abfd, ".liblist");
11134 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11137 case SHT_MIPS_EVENTS:
11138 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11139 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11140 BFD_ASSERT (name != NULL);
11141 if (CONST_STRNEQ (name, ".MIPS.events"))
11142 sec = bfd_get_section_by_name (abfd,
11143 name + sizeof ".MIPS.events" - 1);
11146 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11147 sec = bfd_get_section_by_name (abfd,
11149 + sizeof ".MIPS.post_rel" - 1));
11151 BFD_ASSERT (sec != NULL);
11152 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11159 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11163 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11164 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11169 /* See if we need a PT_MIPS_REGINFO segment. */
11170 s = bfd_get_section_by_name (abfd, ".reginfo");
11171 if (s && (s->flags & SEC_LOAD))
11174 /* See if we need a PT_MIPS_OPTIONS segment. */
11175 if (IRIX_COMPAT (abfd) == ict_irix6
11176 && bfd_get_section_by_name (abfd,
11177 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11180 /* See if we need a PT_MIPS_RTPROC segment. */
11181 if (IRIX_COMPAT (abfd) == ict_irix5
11182 && bfd_get_section_by_name (abfd, ".dynamic")
11183 && bfd_get_section_by_name (abfd, ".mdebug"))
11186 /* Allocate a PT_NULL header in dynamic objects. See
11187 _bfd_mips_elf_modify_segment_map for details. */
11188 if (!SGI_COMPAT (abfd)
11189 && bfd_get_section_by_name (abfd, ".dynamic"))
11195 /* Modify the segment map for an IRIX5 executable. */
11198 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11199 struct bfd_link_info *info)
11202 struct elf_segment_map *m, **pm;
11205 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11207 s = bfd_get_section_by_name (abfd, ".reginfo");
11208 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11210 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11211 if (m->p_type == PT_MIPS_REGINFO)
11216 m = bfd_zalloc (abfd, amt);
11220 m->p_type = PT_MIPS_REGINFO;
11222 m->sections[0] = s;
11224 /* We want to put it after the PHDR and INTERP segments. */
11225 pm = &elf_tdata (abfd)->segment_map;
11227 && ((*pm)->p_type == PT_PHDR
11228 || (*pm)->p_type == PT_INTERP))
11236 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11237 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11238 PT_MIPS_OPTIONS segment immediately following the program header
11240 if (NEWABI_P (abfd)
11241 /* On non-IRIX6 new abi, we'll have already created a segment
11242 for this section, so don't create another. I'm not sure this
11243 is not also the case for IRIX 6, but I can't test it right
11245 && IRIX_COMPAT (abfd) == ict_irix6)
11247 for (s = abfd->sections; s; s = s->next)
11248 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11253 struct elf_segment_map *options_segment;
11255 pm = &elf_tdata (abfd)->segment_map;
11257 && ((*pm)->p_type == PT_PHDR
11258 || (*pm)->p_type == PT_INTERP))
11261 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11263 amt = sizeof (struct elf_segment_map);
11264 options_segment = bfd_zalloc (abfd, amt);
11265 options_segment->next = *pm;
11266 options_segment->p_type = PT_MIPS_OPTIONS;
11267 options_segment->p_flags = PF_R;
11268 options_segment->p_flags_valid = TRUE;
11269 options_segment->count = 1;
11270 options_segment->sections[0] = s;
11271 *pm = options_segment;
11277 if (IRIX_COMPAT (abfd) == ict_irix5)
11279 /* If there are .dynamic and .mdebug sections, we make a room
11280 for the RTPROC header. FIXME: Rewrite without section names. */
11281 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11282 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11283 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11285 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11286 if (m->p_type == PT_MIPS_RTPROC)
11291 m = bfd_zalloc (abfd, amt);
11295 m->p_type = PT_MIPS_RTPROC;
11297 s = bfd_get_section_by_name (abfd, ".rtproc");
11302 m->p_flags_valid = 1;
11307 m->sections[0] = s;
11310 /* We want to put it after the DYNAMIC segment. */
11311 pm = &elf_tdata (abfd)->segment_map;
11312 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11322 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11323 .dynstr, .dynsym, and .hash sections, and everything in
11325 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11327 if ((*pm)->p_type == PT_DYNAMIC)
11330 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11332 /* For a normal mips executable the permissions for the PT_DYNAMIC
11333 segment are read, write and execute. We do that here since
11334 the code in elf.c sets only the read permission. This matters
11335 sometimes for the dynamic linker. */
11336 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11338 m->p_flags = PF_R | PF_W | PF_X;
11339 m->p_flags_valid = 1;
11342 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11343 glibc's dynamic linker has traditionally derived the number of
11344 tags from the p_filesz field, and sometimes allocates stack
11345 arrays of that size. An overly-big PT_DYNAMIC segment can
11346 be actively harmful in such cases. Making PT_DYNAMIC contain
11347 other sections can also make life hard for the prelinker,
11348 which might move one of the other sections to a different
11349 PT_LOAD segment. */
11350 if (SGI_COMPAT (abfd)
11353 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11355 static const char *sec_names[] =
11357 ".dynamic", ".dynstr", ".dynsym", ".hash"
11361 struct elf_segment_map *n;
11363 low = ~(bfd_vma) 0;
11365 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11367 s = bfd_get_section_by_name (abfd, sec_names[i]);
11368 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11375 if (high < s->vma + sz)
11376 high = s->vma + sz;
11381 for (s = abfd->sections; s != NULL; s = s->next)
11382 if ((s->flags & SEC_LOAD) != 0
11384 && s->vma + s->size <= high)
11387 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11388 n = bfd_zalloc (abfd, amt);
11395 for (s = abfd->sections; s != NULL; s = s->next)
11397 if ((s->flags & SEC_LOAD) != 0
11399 && s->vma + s->size <= high)
11401 n->sections[i] = s;
11410 /* Allocate a spare program header in dynamic objects so that tools
11411 like the prelinker can add an extra PT_LOAD entry.
11413 If the prelinker needs to make room for a new PT_LOAD entry, its
11414 standard procedure is to move the first (read-only) sections into
11415 the new (writable) segment. However, the MIPS ABI requires
11416 .dynamic to be in a read-only segment, and the section will often
11417 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11419 Although the prelinker could in principle move .dynamic to a
11420 writable segment, it seems better to allocate a spare program
11421 header instead, and avoid the need to move any sections.
11422 There is a long tradition of allocating spare dynamic tags,
11423 so allocating a spare program header seems like a natural
11426 If INFO is NULL, we may be copying an already prelinked binary
11427 with objcopy or strip, so do not add this header. */
11429 && !SGI_COMPAT (abfd)
11430 && bfd_get_section_by_name (abfd, ".dynamic"))
11432 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11433 if ((*pm)->p_type == PT_NULL)
11437 m = bfd_zalloc (abfd, sizeof (*m));
11441 m->p_type = PT_NULL;
11449 /* Return the section that should be marked against GC for a given
11453 _bfd_mips_elf_gc_mark_hook (asection *sec,
11454 struct bfd_link_info *info,
11455 Elf_Internal_Rela *rel,
11456 struct elf_link_hash_entry *h,
11457 Elf_Internal_Sym *sym)
11459 /* ??? Do mips16 stub sections need to be handled special? */
11462 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11464 case R_MIPS_GNU_VTINHERIT:
11465 case R_MIPS_GNU_VTENTRY:
11469 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11472 /* Update the got entry reference counts for the section being removed. */
11475 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11476 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11477 asection *sec ATTRIBUTE_UNUSED,
11478 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11481 Elf_Internal_Shdr *symtab_hdr;
11482 struct elf_link_hash_entry **sym_hashes;
11483 bfd_signed_vma *local_got_refcounts;
11484 const Elf_Internal_Rela *rel, *relend;
11485 unsigned long r_symndx;
11486 struct elf_link_hash_entry *h;
11488 if (info->relocatable)
11491 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11492 sym_hashes = elf_sym_hashes (abfd);
11493 local_got_refcounts = elf_local_got_refcounts (abfd);
11495 relend = relocs + sec->reloc_count;
11496 for (rel = relocs; rel < relend; rel++)
11497 switch (ELF_R_TYPE (abfd, rel->r_info))
11499 case R_MIPS16_GOT16:
11500 case R_MIPS16_CALL16:
11502 case R_MIPS_CALL16:
11503 case R_MIPS_CALL_HI16:
11504 case R_MIPS_CALL_LO16:
11505 case R_MIPS_GOT_HI16:
11506 case R_MIPS_GOT_LO16:
11507 case R_MIPS_GOT_DISP:
11508 case R_MIPS_GOT_PAGE:
11509 case R_MIPS_GOT_OFST:
11510 case R_MICROMIPS_GOT16:
11511 case R_MICROMIPS_CALL16:
11512 case R_MICROMIPS_CALL_HI16:
11513 case R_MICROMIPS_CALL_LO16:
11514 case R_MICROMIPS_GOT_HI16:
11515 case R_MICROMIPS_GOT_LO16:
11516 case R_MICROMIPS_GOT_DISP:
11517 case R_MICROMIPS_GOT_PAGE:
11518 case R_MICROMIPS_GOT_OFST:
11519 /* ??? It would seem that the existing MIPS code does no sort
11520 of reference counting or whatnot on its GOT and PLT entries,
11521 so it is not possible to garbage collect them at this time. */
11532 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11533 hiding the old indirect symbol. Process additional relocation
11534 information. Also called for weakdefs, in which case we just let
11535 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11538 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11539 struct elf_link_hash_entry *dir,
11540 struct elf_link_hash_entry *ind)
11542 struct mips_elf_link_hash_entry *dirmips, *indmips;
11544 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11546 dirmips = (struct mips_elf_link_hash_entry *) dir;
11547 indmips = (struct mips_elf_link_hash_entry *) ind;
11548 /* Any absolute non-dynamic relocations against an indirect or weak
11549 definition will be against the target symbol. */
11550 if (indmips->has_static_relocs)
11551 dirmips->has_static_relocs = TRUE;
11553 if (ind->root.type != bfd_link_hash_indirect)
11556 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11557 if (indmips->readonly_reloc)
11558 dirmips->readonly_reloc = TRUE;
11559 if (indmips->no_fn_stub)
11560 dirmips->no_fn_stub = TRUE;
11561 if (indmips->fn_stub)
11563 dirmips->fn_stub = indmips->fn_stub;
11564 indmips->fn_stub = NULL;
11566 if (indmips->need_fn_stub)
11568 dirmips->need_fn_stub = TRUE;
11569 indmips->need_fn_stub = FALSE;
11571 if (indmips->call_stub)
11573 dirmips->call_stub = indmips->call_stub;
11574 indmips->call_stub = NULL;
11576 if (indmips->call_fp_stub)
11578 dirmips->call_fp_stub = indmips->call_fp_stub;
11579 indmips->call_fp_stub = NULL;
11581 if (indmips->global_got_area < dirmips->global_got_area)
11582 dirmips->global_got_area = indmips->global_got_area;
11583 if (indmips->global_got_area < GGA_NONE)
11584 indmips->global_got_area = GGA_NONE;
11585 if (indmips->has_nonpic_branches)
11586 dirmips->has_nonpic_branches = TRUE;
11588 if (dirmips->tls_type == 0)
11589 dirmips->tls_type = indmips->tls_type;
11592 #define PDR_SIZE 32
11595 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11596 struct bfd_link_info *info)
11599 bfd_boolean ret = FALSE;
11600 unsigned char *tdata;
11603 o = bfd_get_section_by_name (abfd, ".pdr");
11608 if (o->size % PDR_SIZE != 0)
11610 if (o->output_section != NULL
11611 && bfd_is_abs_section (o->output_section))
11614 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11618 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11619 info->keep_memory);
11626 cookie->rel = cookie->rels;
11627 cookie->relend = cookie->rels + o->reloc_count;
11629 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11631 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11640 mips_elf_section_data (o)->u.tdata = tdata;
11641 o->size -= skip * PDR_SIZE;
11647 if (! info->keep_memory)
11648 free (cookie->rels);
11654 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11656 if (strcmp (sec->name, ".pdr") == 0)
11662 _bfd_mips_elf_write_section (bfd *output_bfd,
11663 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11664 asection *sec, bfd_byte *contents)
11666 bfd_byte *to, *from, *end;
11669 if (strcmp (sec->name, ".pdr") != 0)
11672 if (mips_elf_section_data (sec)->u.tdata == NULL)
11676 end = contents + sec->size;
11677 for (from = contents, i = 0;
11679 from += PDR_SIZE, i++)
11681 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11684 memcpy (to, from, PDR_SIZE);
11687 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11688 sec->output_offset, sec->size);
11692 /* microMIPS code retains local labels for linker relaxation. Omit them
11693 from output by default for clarity. */
11696 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11698 return _bfd_elf_is_local_label_name (abfd, sym->name);
11701 /* MIPS ELF uses a special find_nearest_line routine in order the
11702 handle the ECOFF debugging information. */
11704 struct mips_elf_find_line
11706 struct ecoff_debug_info d;
11707 struct ecoff_find_line i;
11711 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11712 asymbol **symbols, bfd_vma offset,
11713 const char **filename_ptr,
11714 const char **functionname_ptr,
11715 unsigned int *line_ptr)
11719 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11720 filename_ptr, functionname_ptr,
11724 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11725 section, symbols, offset,
11726 filename_ptr, functionname_ptr,
11727 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11728 &elf_tdata (abfd)->dwarf2_find_line_info))
11731 msec = bfd_get_section_by_name (abfd, ".mdebug");
11734 flagword origflags;
11735 struct mips_elf_find_line *fi;
11736 const struct ecoff_debug_swap * const swap =
11737 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11739 /* If we are called during a link, mips_elf_final_link may have
11740 cleared the SEC_HAS_CONTENTS field. We force it back on here
11741 if appropriate (which it normally will be). */
11742 origflags = msec->flags;
11743 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11744 msec->flags |= SEC_HAS_CONTENTS;
11746 fi = elf_tdata (abfd)->find_line_info;
11749 bfd_size_type external_fdr_size;
11752 struct fdr *fdr_ptr;
11753 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11755 fi = bfd_zalloc (abfd, amt);
11758 msec->flags = origflags;
11762 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11764 msec->flags = origflags;
11768 /* Swap in the FDR information. */
11769 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11770 fi->d.fdr = bfd_alloc (abfd, amt);
11771 if (fi->d.fdr == NULL)
11773 msec->flags = origflags;
11776 external_fdr_size = swap->external_fdr_size;
11777 fdr_ptr = fi->d.fdr;
11778 fraw_src = (char *) fi->d.external_fdr;
11779 fraw_end = (fraw_src
11780 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11781 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11782 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11784 elf_tdata (abfd)->find_line_info = fi;
11786 /* Note that we don't bother to ever free this information.
11787 find_nearest_line is either called all the time, as in
11788 objdump -l, so the information should be saved, or it is
11789 rarely called, as in ld error messages, so the memory
11790 wasted is unimportant. Still, it would probably be a
11791 good idea for free_cached_info to throw it away. */
11794 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11795 &fi->i, filename_ptr, functionname_ptr,
11798 msec->flags = origflags;
11802 msec->flags = origflags;
11805 /* Fall back on the generic ELF find_nearest_line routine. */
11807 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11808 filename_ptr, functionname_ptr,
11813 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11814 const char **filename_ptr,
11815 const char **functionname_ptr,
11816 unsigned int *line_ptr)
11819 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11820 functionname_ptr, line_ptr,
11821 & elf_tdata (abfd)->dwarf2_find_line_info);
11826 /* When are writing out the .options or .MIPS.options section,
11827 remember the bytes we are writing out, so that we can install the
11828 GP value in the section_processing routine. */
11831 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11832 const void *location,
11833 file_ptr offset, bfd_size_type count)
11835 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11839 if (elf_section_data (section) == NULL)
11841 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11842 section->used_by_bfd = bfd_zalloc (abfd, amt);
11843 if (elf_section_data (section) == NULL)
11846 c = mips_elf_section_data (section)->u.tdata;
11849 c = bfd_zalloc (abfd, section->size);
11852 mips_elf_section_data (section)->u.tdata = c;
11855 memcpy (c + offset, location, count);
11858 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11862 /* This is almost identical to bfd_generic_get_... except that some
11863 MIPS relocations need to be handled specially. Sigh. */
11866 _bfd_elf_mips_get_relocated_section_contents
11868 struct bfd_link_info *link_info,
11869 struct bfd_link_order *link_order,
11871 bfd_boolean relocatable,
11874 /* Get enough memory to hold the stuff */
11875 bfd *input_bfd = link_order->u.indirect.section->owner;
11876 asection *input_section = link_order->u.indirect.section;
11879 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11880 arelent **reloc_vector = NULL;
11883 if (reloc_size < 0)
11886 reloc_vector = bfd_malloc (reloc_size);
11887 if (reloc_vector == NULL && reloc_size != 0)
11890 /* read in the section */
11891 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11892 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11895 reloc_count = bfd_canonicalize_reloc (input_bfd,
11899 if (reloc_count < 0)
11902 if (reloc_count > 0)
11907 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11910 struct bfd_hash_entry *h;
11911 struct bfd_link_hash_entry *lh;
11912 /* Skip all this stuff if we aren't mixing formats. */
11913 if (abfd && input_bfd
11914 && abfd->xvec == input_bfd->xvec)
11918 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11919 lh = (struct bfd_link_hash_entry *) h;
11926 case bfd_link_hash_undefined:
11927 case bfd_link_hash_undefweak:
11928 case bfd_link_hash_common:
11931 case bfd_link_hash_defined:
11932 case bfd_link_hash_defweak:
11934 gp = lh->u.def.value;
11936 case bfd_link_hash_indirect:
11937 case bfd_link_hash_warning:
11939 /* @@FIXME ignoring warning for now */
11941 case bfd_link_hash_new:
11950 for (parent = reloc_vector; *parent != NULL; parent++)
11952 char *error_message = NULL;
11953 bfd_reloc_status_type r;
11955 /* Specific to MIPS: Deal with relocation types that require
11956 knowing the gp of the output bfd. */
11957 asymbol *sym = *(*parent)->sym_ptr_ptr;
11959 /* If we've managed to find the gp and have a special
11960 function for the relocation then go ahead, else default
11961 to the generic handling. */
11963 && (*parent)->howto->special_function
11964 == _bfd_mips_elf32_gprel16_reloc)
11965 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11966 input_section, relocatable,
11969 r = bfd_perform_relocation (input_bfd, *parent, data,
11971 relocatable ? abfd : NULL,
11976 asection *os = input_section->output_section;
11978 /* A partial link, so keep the relocs */
11979 os->orelocation[os->reloc_count] = *parent;
11983 if (r != bfd_reloc_ok)
11987 case bfd_reloc_undefined:
11988 if (!((*link_info->callbacks->undefined_symbol)
11989 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11990 input_bfd, input_section, (*parent)->address, TRUE)))
11993 case bfd_reloc_dangerous:
11994 BFD_ASSERT (error_message != NULL);
11995 if (!((*link_info->callbacks->reloc_dangerous)
11996 (link_info, error_message, input_bfd, input_section,
11997 (*parent)->address)))
12000 case bfd_reloc_overflow:
12001 if (!((*link_info->callbacks->reloc_overflow)
12003 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12004 (*parent)->howto->name, (*parent)->addend,
12005 input_bfd, input_section, (*parent)->address)))
12008 case bfd_reloc_outofrange:
12017 if (reloc_vector != NULL)
12018 free (reloc_vector);
12022 if (reloc_vector != NULL)
12023 free (reloc_vector);
12028 mips_elf_relax_delete_bytes (bfd *abfd,
12029 asection *sec, bfd_vma addr, int count)
12031 Elf_Internal_Shdr *symtab_hdr;
12032 unsigned int sec_shndx;
12033 bfd_byte *contents;
12034 Elf_Internal_Rela *irel, *irelend;
12035 Elf_Internal_Sym *isym;
12036 Elf_Internal_Sym *isymend;
12037 struct elf_link_hash_entry **sym_hashes;
12038 struct elf_link_hash_entry **end_hashes;
12039 struct elf_link_hash_entry **start_hashes;
12040 unsigned int symcount;
12042 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12043 contents = elf_section_data (sec)->this_hdr.contents;
12045 irel = elf_section_data (sec)->relocs;
12046 irelend = irel + sec->reloc_count;
12048 /* Actually delete the bytes. */
12049 memmove (contents + addr, contents + addr + count,
12050 (size_t) (sec->size - addr - count));
12051 sec->size -= count;
12053 /* Adjust all the relocs. */
12054 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12056 /* Get the new reloc address. */
12057 if (irel->r_offset > addr)
12058 irel->r_offset -= count;
12061 BFD_ASSERT (addr % 2 == 0);
12062 BFD_ASSERT (count % 2 == 0);
12064 /* Adjust the local symbols defined in this section. */
12065 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12066 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12067 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12068 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12069 isym->st_value -= count;
12071 /* Now adjust the global symbols defined in this section. */
12072 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12073 - symtab_hdr->sh_info);
12074 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12075 end_hashes = sym_hashes + symcount;
12077 for (; sym_hashes < end_hashes; sym_hashes++)
12079 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12081 if ((sym_hash->root.type == bfd_link_hash_defined
12082 || sym_hash->root.type == bfd_link_hash_defweak)
12083 && sym_hash->root.u.def.section == sec)
12085 bfd_vma value = sym_hash->root.u.def.value;
12087 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12088 value &= MINUS_TWO;
12090 sym_hash->root.u.def.value -= count;
12098 /* Opcodes needed for microMIPS relaxation as found in
12099 opcodes/micromips-opc.c. */
12101 struct opcode_descriptor {
12102 unsigned long match;
12103 unsigned long mask;
12106 /* The $ra register aka $31. */
12110 /* 32-bit instruction format register fields. */
12112 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12113 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12115 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12117 #define OP16_VALID_REG(r) \
12118 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12121 /* 32-bit and 16-bit branches. */
12123 static const struct opcode_descriptor b_insns_32[] = {
12124 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12125 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12126 { 0, 0 } /* End marker for find_match(). */
12129 static const struct opcode_descriptor bc_insn_32 =
12130 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12132 static const struct opcode_descriptor bz_insn_32 =
12133 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12135 static const struct opcode_descriptor bzal_insn_32 =
12136 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12138 static const struct opcode_descriptor beq_insn_32 =
12139 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12141 static const struct opcode_descriptor b_insn_16 =
12142 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12144 static const struct opcode_descriptor bz_insn_16 =
12145 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12148 /* 32-bit and 16-bit branch EQ and NE zero. */
12150 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12151 eq and second the ne. This convention is used when replacing a
12152 32-bit BEQ/BNE with the 16-bit version. */
12154 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12156 static const struct opcode_descriptor bz_rs_insns_32[] = {
12157 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12158 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12159 { 0, 0 } /* End marker for find_match(). */
12162 static const struct opcode_descriptor bz_rt_insns_32[] = {
12163 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12164 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12165 { 0, 0 } /* End marker for find_match(). */
12168 static const struct opcode_descriptor bzc_insns_32[] = {
12169 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12170 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12171 { 0, 0 } /* End marker for find_match(). */
12174 static const struct opcode_descriptor bz_insns_16[] = {
12175 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12176 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12177 { 0, 0 } /* End marker for find_match(). */
12180 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12182 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12183 #define BZ16_REG_FIELD(r) \
12184 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12187 /* 32-bit instructions with a delay slot. */
12189 static const struct opcode_descriptor jal_insn_32_bd16 =
12190 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12192 static const struct opcode_descriptor jal_insn_32_bd32 =
12193 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12195 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12196 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12198 static const struct opcode_descriptor j_insn_32 =
12199 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12201 static const struct opcode_descriptor jalr_insn_32 =
12202 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12204 /* This table can be compacted, because no opcode replacement is made. */
12206 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12207 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12209 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12210 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12212 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12213 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12214 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12215 { 0, 0 } /* End marker for find_match(). */
12218 /* This table can be compacted, because no opcode replacement is made. */
12220 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12221 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12223 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12224 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12225 { 0, 0 } /* End marker for find_match(). */
12229 /* 16-bit instructions with a delay slot. */
12231 static const struct opcode_descriptor jalr_insn_16_bd16 =
12232 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12234 static const struct opcode_descriptor jalr_insn_16_bd32 =
12235 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12237 static const struct opcode_descriptor jr_insn_16 =
12238 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12240 #define JR16_REG(opcode) ((opcode) & 0x1f)
12242 /* This table can be compacted, because no opcode replacement is made. */
12244 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12245 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12247 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12248 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12249 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12250 { 0, 0 } /* End marker for find_match(). */
12254 /* LUI instruction. */
12256 static const struct opcode_descriptor lui_insn =
12257 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12260 /* ADDIU instruction. */
12262 static const struct opcode_descriptor addiu_insn =
12263 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12265 static const struct opcode_descriptor addiupc_insn =
12266 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12268 #define ADDIUPC_REG_FIELD(r) \
12269 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12272 /* Relaxable instructions in a JAL delay slot: MOVE. */
12274 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12275 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12276 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12277 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12279 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12280 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12282 static const struct opcode_descriptor move_insns_32[] = {
12283 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12284 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12285 { 0, 0 } /* End marker for find_match(). */
12288 static const struct opcode_descriptor move_insn_16 =
12289 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12292 /* NOP instructions. */
12294 static const struct opcode_descriptor nop_insn_32 =
12295 { /* "nop", "", */ 0x00000000, 0xffffffff };
12297 static const struct opcode_descriptor nop_insn_16 =
12298 { /* "nop", "", */ 0x0c00, 0xffff };
12301 /* Instruction match support. */
12303 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12306 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12308 unsigned long indx;
12310 for (indx = 0; insn[indx].mask != 0; indx++)
12311 if (MATCH (opcode, insn[indx]))
12318 /* Branch and delay slot decoding support. */
12320 /* If PTR points to what *might* be a 16-bit branch or jump, then
12321 return the minimum length of its delay slot, otherwise return 0.
12322 Non-zero results are not definitive as we might be checking against
12323 the second half of another instruction. */
12326 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12328 unsigned long opcode;
12331 opcode = bfd_get_16 (abfd, ptr);
12332 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12333 /* 16-bit branch/jump with a 32-bit delay slot. */
12335 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12336 || find_match (opcode, ds_insns_16_bd16) >= 0)
12337 /* 16-bit branch/jump with a 16-bit delay slot. */
12340 /* No delay slot. */
12346 /* If PTR points to what *might* be a 32-bit branch or jump, then
12347 return the minimum length of its delay slot, otherwise return 0.
12348 Non-zero results are not definitive as we might be checking against
12349 the second half of another instruction. */
12352 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12354 unsigned long opcode;
12357 opcode = bfd_get_micromips_32 (abfd, ptr);
12358 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12359 /* 32-bit branch/jump with a 32-bit delay slot. */
12361 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12362 /* 32-bit branch/jump with a 16-bit delay slot. */
12365 /* No delay slot. */
12371 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12372 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12375 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12377 unsigned long opcode;
12379 opcode = bfd_get_16 (abfd, ptr);
12380 if (MATCH (opcode, b_insn_16)
12382 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12384 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12385 /* BEQZ16, BNEZ16 */
12386 || (MATCH (opcode, jalr_insn_16_bd32)
12388 && reg != JR16_REG (opcode) && reg != RA))
12394 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12395 then return TRUE, otherwise FALSE. */
12398 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12400 unsigned long opcode;
12402 opcode = bfd_get_micromips_32 (abfd, ptr);
12403 if (MATCH (opcode, j_insn_32)
12405 || MATCH (opcode, bc_insn_32)
12406 /* BC1F, BC1T, BC2F, BC2T */
12407 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12409 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12410 /* BGEZ, BGTZ, BLEZ, BLTZ */
12411 || (MATCH (opcode, bzal_insn_32)
12412 /* BGEZAL, BLTZAL */
12413 && reg != OP32_SREG (opcode) && reg != RA)
12414 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12415 /* JALR, JALR.HB, BEQ, BNE */
12416 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12422 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12423 IRELEND) at OFFSET indicate that there must be a compact branch there,
12424 then return TRUE, otherwise FALSE. */
12427 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12428 const Elf_Internal_Rela *internal_relocs,
12429 const Elf_Internal_Rela *irelend)
12431 const Elf_Internal_Rela *irel;
12432 unsigned long opcode;
12434 opcode = bfd_get_micromips_32 (abfd, ptr);
12435 if (find_match (opcode, bzc_insns_32) < 0)
12438 for (irel = internal_relocs; irel < irelend; irel++)
12439 if (irel->r_offset == offset
12440 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12446 /* Bitsize checking. */
12447 #define IS_BITSIZE(val, N) \
12448 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12449 - (1ULL << ((N) - 1))) == (val))
12453 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12454 struct bfd_link_info *link_info,
12455 bfd_boolean *again)
12457 Elf_Internal_Shdr *symtab_hdr;
12458 Elf_Internal_Rela *internal_relocs;
12459 Elf_Internal_Rela *irel, *irelend;
12460 bfd_byte *contents = NULL;
12461 Elf_Internal_Sym *isymbuf = NULL;
12463 /* Assume nothing changes. */
12466 /* We don't have to do anything for a relocatable link, if
12467 this section does not have relocs, or if this is not a
12470 if (link_info->relocatable
12471 || (sec->flags & SEC_RELOC) == 0
12472 || sec->reloc_count == 0
12473 || (sec->flags & SEC_CODE) == 0)
12476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12478 /* Get a copy of the native relocations. */
12479 internal_relocs = (_bfd_elf_link_read_relocs
12480 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12481 link_info->keep_memory));
12482 if (internal_relocs == NULL)
12485 /* Walk through them looking for relaxing opportunities. */
12486 irelend = internal_relocs + sec->reloc_count;
12487 for (irel = internal_relocs; irel < irelend; irel++)
12489 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12490 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12491 bfd_boolean target_is_micromips_code_p;
12492 unsigned long opcode;
12498 /* The number of bytes to delete for relaxation and from where
12499 to delete these bytes starting at irel->r_offset. */
12503 /* If this isn't something that can be relaxed, then ignore
12505 if (r_type != R_MICROMIPS_HI16
12506 && r_type != R_MICROMIPS_PC16_S1
12507 && r_type != R_MICROMIPS_26_S1)
12510 /* Get the section contents if we haven't done so already. */
12511 if (contents == NULL)
12513 /* Get cached copy if it exists. */
12514 if (elf_section_data (sec)->this_hdr.contents != NULL)
12515 contents = elf_section_data (sec)->this_hdr.contents;
12516 /* Go get them off disk. */
12517 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12520 ptr = contents + irel->r_offset;
12522 /* Read this BFD's local symbols if we haven't done so already. */
12523 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12525 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12526 if (isymbuf == NULL)
12527 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12528 symtab_hdr->sh_info, 0,
12530 if (isymbuf == NULL)
12534 /* Get the value of the symbol referred to by the reloc. */
12535 if (r_symndx < symtab_hdr->sh_info)
12537 /* A local symbol. */
12538 Elf_Internal_Sym *isym;
12541 isym = isymbuf + r_symndx;
12542 if (isym->st_shndx == SHN_UNDEF)
12543 sym_sec = bfd_und_section_ptr;
12544 else if (isym->st_shndx == SHN_ABS)
12545 sym_sec = bfd_abs_section_ptr;
12546 else if (isym->st_shndx == SHN_COMMON)
12547 sym_sec = bfd_com_section_ptr;
12549 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12550 symval = (isym->st_value
12551 + sym_sec->output_section->vma
12552 + sym_sec->output_offset);
12553 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12557 unsigned long indx;
12558 struct elf_link_hash_entry *h;
12560 /* An external symbol. */
12561 indx = r_symndx - symtab_hdr->sh_info;
12562 h = elf_sym_hashes (abfd)[indx];
12563 BFD_ASSERT (h != NULL);
12565 if (h->root.type != bfd_link_hash_defined
12566 && h->root.type != bfd_link_hash_defweak)
12567 /* This appears to be a reference to an undefined
12568 symbol. Just ignore it -- it will be caught by the
12569 regular reloc processing. */
12572 symval = (h->root.u.def.value
12573 + h->root.u.def.section->output_section->vma
12574 + h->root.u.def.section->output_offset);
12575 target_is_micromips_code_p = (!h->needs_plt
12576 && ELF_ST_IS_MICROMIPS (h->other));
12580 /* For simplicity of coding, we are going to modify the
12581 section contents, the section relocs, and the BFD symbol
12582 table. We must tell the rest of the code not to free up this
12583 information. It would be possible to instead create a table
12584 of changes which have to be made, as is done in coff-mips.c;
12585 that would be more work, but would require less memory when
12586 the linker is run. */
12588 /* Only 32-bit instructions relaxed. */
12589 if (irel->r_offset + 4 > sec->size)
12592 opcode = bfd_get_micromips_32 (abfd, ptr);
12594 /* This is the pc-relative distance from the instruction the
12595 relocation is applied to, to the symbol referred. */
12597 - (sec->output_section->vma + sec->output_offset)
12600 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12601 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12602 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12604 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12606 where pcrval has first to be adjusted to apply against the LO16
12607 location (we make the adjustment later on, when we have figured
12608 out the offset). */
12609 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12611 bfd_boolean bzc = FALSE;
12612 unsigned long nextopc;
12616 /* Give up if the previous reloc was a HI16 against this symbol
12618 if (irel > internal_relocs
12619 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12620 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12623 /* Or if the next reloc is not a LO16 against this symbol. */
12624 if (irel + 1 >= irelend
12625 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12626 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12629 /* Or if the second next reloc is a LO16 against this symbol too. */
12630 if (irel + 2 >= irelend
12631 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12632 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12635 /* See if the LUI instruction *might* be in a branch delay slot.
12636 We check whether what looks like a 16-bit branch or jump is
12637 actually an immediate argument to a compact branch, and let
12638 it through if so. */
12639 if (irel->r_offset >= 2
12640 && check_br16_dslot (abfd, ptr - 2)
12641 && !(irel->r_offset >= 4
12642 && (bzc = check_relocated_bzc (abfd,
12643 ptr - 4, irel->r_offset - 4,
12644 internal_relocs, irelend))))
12646 if (irel->r_offset >= 4
12648 && check_br32_dslot (abfd, ptr - 4))
12651 reg = OP32_SREG (opcode);
12653 /* We only relax adjacent instructions or ones separated with
12654 a branch or jump that has a delay slot. The branch or jump
12655 must not fiddle with the register used to hold the address.
12656 Subtract 4 for the LUI itself. */
12657 offset = irel[1].r_offset - irel[0].r_offset;
12658 switch (offset - 4)
12663 if (check_br16 (abfd, ptr + 4, reg))
12667 if (check_br32 (abfd, ptr + 4, reg))
12674 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12676 /* Give up unless the same register is used with both
12678 if (OP32_SREG (nextopc) != reg)
12681 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12682 and rounding up to take masking of the two LSBs into account. */
12683 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12685 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12686 if (IS_BITSIZE (symval, 16))
12688 /* Fix the relocation's type. */
12689 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12691 /* Instructions using R_MICROMIPS_LO16 have the base or
12692 source register in bits 20:16. This register becomes $0
12693 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12694 nextopc &= ~0x001f0000;
12695 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12696 contents + irel[1].r_offset);
12699 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12700 We add 4 to take LUI deletion into account while checking
12701 the PC-relative distance. */
12702 else if (symval % 4 == 0
12703 && IS_BITSIZE (pcrval + 4, 25)
12704 && MATCH (nextopc, addiu_insn)
12705 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12706 && OP16_VALID_REG (OP32_TREG (nextopc)))
12708 /* Fix the relocation's type. */
12709 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12711 /* Replace ADDIU with the ADDIUPC version. */
12712 nextopc = (addiupc_insn.match
12713 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12715 bfd_put_micromips_32 (abfd, nextopc,
12716 contents + irel[1].r_offset);
12719 /* Can't do anything, give up, sigh... */
12723 /* Fix the relocation's type. */
12724 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12726 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12731 /* Compact branch relaxation -- due to the multitude of macros
12732 employed by the compiler/assembler, compact branches are not
12733 always generated. Obviously, this can/will be fixed elsewhere,
12734 but there is no drawback in double checking it here. */
12735 else if (r_type == R_MICROMIPS_PC16_S1
12736 && irel->r_offset + 5 < sec->size
12737 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12738 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12739 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12743 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12745 /* Replace BEQZ/BNEZ with the compact version. */
12746 opcode = (bzc_insns_32[fndopc].match
12747 | BZC32_REG_FIELD (reg)
12748 | (opcode & 0xffff)); /* Addend value. */
12750 bfd_put_micromips_32 (abfd, opcode, ptr);
12752 /* Delete the 16-bit delay slot NOP: two bytes from
12753 irel->offset + 4. */
12758 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12759 to check the distance from the next instruction, so subtract 2. */
12760 else if (r_type == R_MICROMIPS_PC16_S1
12761 && IS_BITSIZE (pcrval - 2, 11)
12762 && find_match (opcode, b_insns_32) >= 0)
12764 /* Fix the relocation's type. */
12765 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12767 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12770 | (opcode & 0x3ff)), /* Addend value. */
12773 /* Delete 2 bytes from irel->r_offset + 2. */
12778 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12779 to check the distance from the next instruction, so subtract 2. */
12780 else if (r_type == R_MICROMIPS_PC16_S1
12781 && IS_BITSIZE (pcrval - 2, 8)
12782 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12783 && OP16_VALID_REG (OP32_SREG (opcode)))
12784 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12785 && OP16_VALID_REG (OP32_TREG (opcode)))))
12789 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12791 /* Fix the relocation's type. */
12792 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12794 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12796 (bz_insns_16[fndopc].match
12797 | BZ16_REG_FIELD (reg)
12798 | (opcode & 0x7f)), /* Addend value. */
12801 /* Delete 2 bytes from irel->r_offset + 2. */
12806 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12807 else if (r_type == R_MICROMIPS_26_S1
12808 && target_is_micromips_code_p
12809 && irel->r_offset + 7 < sec->size
12810 && MATCH (opcode, jal_insn_32_bd32))
12812 unsigned long n32opc;
12813 bfd_boolean relaxed = FALSE;
12815 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12817 if (MATCH (n32opc, nop_insn_32))
12819 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12820 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12824 else if (find_match (n32opc, move_insns_32) >= 0)
12826 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12828 (move_insn_16.match
12829 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12830 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12835 /* Other 32-bit instructions relaxable to 16-bit
12836 instructions will be handled here later. */
12840 /* JAL with 32-bit delay slot that is changed to a JALS
12841 with 16-bit delay slot. */
12842 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12844 /* Delete 2 bytes from irel->r_offset + 6. */
12852 /* Note that we've changed the relocs, section contents, etc. */
12853 elf_section_data (sec)->relocs = internal_relocs;
12854 elf_section_data (sec)->this_hdr.contents = contents;
12855 symtab_hdr->contents = (unsigned char *) isymbuf;
12857 /* Delete bytes depending on the delcnt and deloff. */
12858 if (!mips_elf_relax_delete_bytes (abfd, sec,
12859 irel->r_offset + deloff, delcnt))
12862 /* That will change things, so we should relax again.
12863 Note that this is not required, and it may be slow. */
12868 if (isymbuf != NULL
12869 && symtab_hdr->contents != (unsigned char *) isymbuf)
12871 if (! link_info->keep_memory)
12875 /* Cache the symbols for elf_link_input_bfd. */
12876 symtab_hdr->contents = (unsigned char *) isymbuf;
12880 if (contents != NULL
12881 && elf_section_data (sec)->this_hdr.contents != contents)
12883 if (! link_info->keep_memory)
12887 /* Cache the section contents for elf_link_input_bfd. */
12888 elf_section_data (sec)->this_hdr.contents = contents;
12892 if (internal_relocs != NULL
12893 && elf_section_data (sec)->relocs != internal_relocs)
12894 free (internal_relocs);
12899 if (isymbuf != NULL
12900 && symtab_hdr->contents != (unsigned char *) isymbuf)
12902 if (contents != NULL
12903 && elf_section_data (sec)->this_hdr.contents != contents)
12905 if (internal_relocs != NULL
12906 && elf_section_data (sec)->relocs != internal_relocs)
12907 free (internal_relocs);
12912 /* Create a MIPS ELF linker hash table. */
12914 struct bfd_link_hash_table *
12915 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12917 struct mips_elf_link_hash_table *ret;
12918 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12920 ret = bfd_malloc (amt);
12924 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12925 mips_elf_link_hash_newfunc,
12926 sizeof (struct mips_elf_link_hash_entry),
12934 /* We no longer use this. */
12935 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12936 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12938 ret->procedure_count = 0;
12939 ret->compact_rel_size = 0;
12940 ret->use_rld_obj_head = FALSE;
12941 ret->rld_symbol = NULL;
12942 ret->mips16_stubs_seen = FALSE;
12943 ret->use_plts_and_copy_relocs = FALSE;
12944 ret->is_vxworks = FALSE;
12945 ret->small_data_overflow_reported = FALSE;
12946 ret->srelbss = NULL;
12947 ret->sdynbss = NULL;
12948 ret->srelplt = NULL;
12949 ret->srelplt2 = NULL;
12950 ret->sgotplt = NULL;
12952 ret->sstubs = NULL;
12954 ret->got_info = NULL;
12955 ret->plt_header_size = 0;
12956 ret->plt_entry_size = 0;
12957 ret->lazy_stub_count = 0;
12958 ret->function_stub_size = 0;
12959 ret->strampoline = NULL;
12960 ret->la25_stubs = NULL;
12961 ret->add_stub_section = NULL;
12963 return &ret->root.root;
12966 /* Likewise, but indicate that the target is VxWorks. */
12968 struct bfd_link_hash_table *
12969 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12971 struct bfd_link_hash_table *ret;
12973 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12976 struct mips_elf_link_hash_table *htab;
12978 htab = (struct mips_elf_link_hash_table *) ret;
12979 htab->use_plts_and_copy_relocs = TRUE;
12980 htab->is_vxworks = TRUE;
12985 /* A function that the linker calls if we are allowed to use PLTs
12986 and copy relocs. */
12989 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12991 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12994 /* We need to use a special link routine to handle the .reginfo and
12995 the .mdebug sections. We need to merge all instances of these
12996 sections together, not write them all out sequentially. */
12999 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13002 struct bfd_link_order *p;
13003 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13004 asection *rtproc_sec;
13005 Elf32_RegInfo reginfo;
13006 struct ecoff_debug_info debug;
13007 struct mips_htab_traverse_info hti;
13008 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13009 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13010 HDRR *symhdr = &debug.symbolic_header;
13011 void *mdebug_handle = NULL;
13016 struct mips_elf_link_hash_table *htab;
13018 static const char * const secname[] =
13020 ".text", ".init", ".fini", ".data",
13021 ".rodata", ".sdata", ".sbss", ".bss"
13023 static const int sc[] =
13025 scText, scInit, scFini, scData,
13026 scRData, scSData, scSBss, scBss
13029 /* Sort the dynamic symbols so that those with GOT entries come after
13031 htab = mips_elf_hash_table (info);
13032 BFD_ASSERT (htab != NULL);
13034 if (!mips_elf_sort_hash_table (abfd, info))
13037 /* Create any scheduled LA25 stubs. */
13039 hti.output_bfd = abfd;
13041 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13045 /* Get a value for the GP register. */
13046 if (elf_gp (abfd) == 0)
13048 struct bfd_link_hash_entry *h;
13050 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13051 if (h != NULL && h->type == bfd_link_hash_defined)
13052 elf_gp (abfd) = (h->u.def.value
13053 + h->u.def.section->output_section->vma
13054 + h->u.def.section->output_offset);
13055 else if (htab->is_vxworks
13056 && (h = bfd_link_hash_lookup (info->hash,
13057 "_GLOBAL_OFFSET_TABLE_",
13058 FALSE, FALSE, TRUE))
13059 && h->type == bfd_link_hash_defined)
13060 elf_gp (abfd) = (h->u.def.section->output_section->vma
13061 + h->u.def.section->output_offset
13063 else if (info->relocatable)
13065 bfd_vma lo = MINUS_ONE;
13067 /* Find the GP-relative section with the lowest offset. */
13068 for (o = abfd->sections; o != NULL; o = o->next)
13070 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13073 /* And calculate GP relative to that. */
13074 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13078 /* If the relocate_section function needs to do a reloc
13079 involving the GP value, it should make a reloc_dangerous
13080 callback to warn that GP is not defined. */
13084 /* Go through the sections and collect the .reginfo and .mdebug
13086 reginfo_sec = NULL;
13088 gptab_data_sec = NULL;
13089 gptab_bss_sec = NULL;
13090 for (o = abfd->sections; o != NULL; o = o->next)
13092 if (strcmp (o->name, ".reginfo") == 0)
13094 memset (®info, 0, sizeof reginfo);
13096 /* We have found the .reginfo section in the output file.
13097 Look through all the link_orders comprising it and merge
13098 the information together. */
13099 for (p = o->map_head.link_order; p != NULL; p = p->next)
13101 asection *input_section;
13103 Elf32_External_RegInfo ext;
13106 if (p->type != bfd_indirect_link_order)
13108 if (p->type == bfd_data_link_order)
13113 input_section = p->u.indirect.section;
13114 input_bfd = input_section->owner;
13116 if (! bfd_get_section_contents (input_bfd, input_section,
13117 &ext, 0, sizeof ext))
13120 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13122 reginfo.ri_gprmask |= sub.ri_gprmask;
13123 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13124 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13125 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13126 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13128 /* ri_gp_value is set by the function
13129 mips_elf32_section_processing when the section is
13130 finally written out. */
13132 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13133 elf_link_input_bfd ignores this section. */
13134 input_section->flags &= ~SEC_HAS_CONTENTS;
13137 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13138 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13140 /* Skip this section later on (I don't think this currently
13141 matters, but someday it might). */
13142 o->map_head.link_order = NULL;
13147 if (strcmp (o->name, ".mdebug") == 0)
13149 struct extsym_info einfo;
13152 /* We have found the .mdebug section in the output file.
13153 Look through all the link_orders comprising it and merge
13154 the information together. */
13155 symhdr->magic = swap->sym_magic;
13156 /* FIXME: What should the version stamp be? */
13157 symhdr->vstamp = 0;
13158 symhdr->ilineMax = 0;
13159 symhdr->cbLine = 0;
13160 symhdr->idnMax = 0;
13161 symhdr->ipdMax = 0;
13162 symhdr->isymMax = 0;
13163 symhdr->ioptMax = 0;
13164 symhdr->iauxMax = 0;
13165 symhdr->issMax = 0;
13166 symhdr->issExtMax = 0;
13167 symhdr->ifdMax = 0;
13169 symhdr->iextMax = 0;
13171 /* We accumulate the debugging information itself in the
13172 debug_info structure. */
13174 debug.external_dnr = NULL;
13175 debug.external_pdr = NULL;
13176 debug.external_sym = NULL;
13177 debug.external_opt = NULL;
13178 debug.external_aux = NULL;
13180 debug.ssext = debug.ssext_end = NULL;
13181 debug.external_fdr = NULL;
13182 debug.external_rfd = NULL;
13183 debug.external_ext = debug.external_ext_end = NULL;
13185 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13186 if (mdebug_handle == NULL)
13190 esym.cobol_main = 0;
13194 esym.asym.iss = issNil;
13195 esym.asym.st = stLocal;
13196 esym.asym.reserved = 0;
13197 esym.asym.index = indexNil;
13199 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13201 esym.asym.sc = sc[i];
13202 s = bfd_get_section_by_name (abfd, secname[i]);
13205 esym.asym.value = s->vma;
13206 last = s->vma + s->size;
13209 esym.asym.value = last;
13210 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13211 secname[i], &esym))
13215 for (p = o->map_head.link_order; p != NULL; p = p->next)
13217 asection *input_section;
13219 const struct ecoff_debug_swap *input_swap;
13220 struct ecoff_debug_info input_debug;
13224 if (p->type != bfd_indirect_link_order)
13226 if (p->type == bfd_data_link_order)
13231 input_section = p->u.indirect.section;
13232 input_bfd = input_section->owner;
13234 if (!is_mips_elf (input_bfd))
13236 /* I don't know what a non MIPS ELF bfd would be
13237 doing with a .mdebug section, but I don't really
13238 want to deal with it. */
13242 input_swap = (get_elf_backend_data (input_bfd)
13243 ->elf_backend_ecoff_debug_swap);
13245 BFD_ASSERT (p->size == input_section->size);
13247 /* The ECOFF linking code expects that we have already
13248 read in the debugging information and set up an
13249 ecoff_debug_info structure, so we do that now. */
13250 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13254 if (! (bfd_ecoff_debug_accumulate
13255 (mdebug_handle, abfd, &debug, swap, input_bfd,
13256 &input_debug, input_swap, info)))
13259 /* Loop through the external symbols. For each one with
13260 interesting information, try to find the symbol in
13261 the linker global hash table and save the information
13262 for the output external symbols. */
13263 eraw_src = input_debug.external_ext;
13264 eraw_end = (eraw_src
13265 + (input_debug.symbolic_header.iextMax
13266 * input_swap->external_ext_size));
13268 eraw_src < eraw_end;
13269 eraw_src += input_swap->external_ext_size)
13273 struct mips_elf_link_hash_entry *h;
13275 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13276 if (ext.asym.sc == scNil
13277 || ext.asym.sc == scUndefined
13278 || ext.asym.sc == scSUndefined)
13281 name = input_debug.ssext + ext.asym.iss;
13282 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13283 name, FALSE, FALSE, TRUE);
13284 if (h == NULL || h->esym.ifd != -2)
13289 BFD_ASSERT (ext.ifd
13290 < input_debug.symbolic_header.ifdMax);
13291 ext.ifd = input_debug.ifdmap[ext.ifd];
13297 /* Free up the information we just read. */
13298 free (input_debug.line);
13299 free (input_debug.external_dnr);
13300 free (input_debug.external_pdr);
13301 free (input_debug.external_sym);
13302 free (input_debug.external_opt);
13303 free (input_debug.external_aux);
13304 free (input_debug.ss);
13305 free (input_debug.ssext);
13306 free (input_debug.external_fdr);
13307 free (input_debug.external_rfd);
13308 free (input_debug.external_ext);
13310 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13311 elf_link_input_bfd ignores this section. */
13312 input_section->flags &= ~SEC_HAS_CONTENTS;
13315 if (SGI_COMPAT (abfd) && info->shared)
13317 /* Create .rtproc section. */
13318 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13319 if (rtproc_sec == NULL)
13321 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13322 | SEC_LINKER_CREATED | SEC_READONLY);
13324 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13327 if (rtproc_sec == NULL
13328 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13332 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13338 /* Build the external symbol information. */
13341 einfo.debug = &debug;
13343 einfo.failed = FALSE;
13344 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13345 mips_elf_output_extsym, &einfo);
13349 /* Set the size of the .mdebug section. */
13350 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13352 /* Skip this section later on (I don't think this currently
13353 matters, but someday it might). */
13354 o->map_head.link_order = NULL;
13359 if (CONST_STRNEQ (o->name, ".gptab."))
13361 const char *subname;
13364 Elf32_External_gptab *ext_tab;
13367 /* The .gptab.sdata and .gptab.sbss sections hold
13368 information describing how the small data area would
13369 change depending upon the -G switch. These sections
13370 not used in executables files. */
13371 if (! info->relocatable)
13373 for (p = o->map_head.link_order; p != NULL; p = p->next)
13375 asection *input_section;
13377 if (p->type != bfd_indirect_link_order)
13379 if (p->type == bfd_data_link_order)
13384 input_section = p->u.indirect.section;
13386 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13387 elf_link_input_bfd ignores this section. */
13388 input_section->flags &= ~SEC_HAS_CONTENTS;
13391 /* Skip this section later on (I don't think this
13392 currently matters, but someday it might). */
13393 o->map_head.link_order = NULL;
13395 /* Really remove the section. */
13396 bfd_section_list_remove (abfd, o);
13397 --abfd->section_count;
13402 /* There is one gptab for initialized data, and one for
13403 uninitialized data. */
13404 if (strcmp (o->name, ".gptab.sdata") == 0)
13405 gptab_data_sec = o;
13406 else if (strcmp (o->name, ".gptab.sbss") == 0)
13410 (*_bfd_error_handler)
13411 (_("%s: illegal section name `%s'"),
13412 bfd_get_filename (abfd), o->name);
13413 bfd_set_error (bfd_error_nonrepresentable_section);
13417 /* The linker script always combines .gptab.data and
13418 .gptab.sdata into .gptab.sdata, and likewise for
13419 .gptab.bss and .gptab.sbss. It is possible that there is
13420 no .sdata or .sbss section in the output file, in which
13421 case we must change the name of the output section. */
13422 subname = o->name + sizeof ".gptab" - 1;
13423 if (bfd_get_section_by_name (abfd, subname) == NULL)
13425 if (o == gptab_data_sec)
13426 o->name = ".gptab.data";
13428 o->name = ".gptab.bss";
13429 subname = o->name + sizeof ".gptab" - 1;
13430 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13433 /* Set up the first entry. */
13435 amt = c * sizeof (Elf32_gptab);
13436 tab = bfd_malloc (amt);
13439 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13440 tab[0].gt_header.gt_unused = 0;
13442 /* Combine the input sections. */
13443 for (p = o->map_head.link_order; p != NULL; p = p->next)
13445 asection *input_section;
13447 bfd_size_type size;
13448 unsigned long last;
13449 bfd_size_type gpentry;
13451 if (p->type != bfd_indirect_link_order)
13453 if (p->type == bfd_data_link_order)
13458 input_section = p->u.indirect.section;
13459 input_bfd = input_section->owner;
13461 /* Combine the gptab entries for this input section one
13462 by one. We know that the input gptab entries are
13463 sorted by ascending -G value. */
13464 size = input_section->size;
13466 for (gpentry = sizeof (Elf32_External_gptab);
13468 gpentry += sizeof (Elf32_External_gptab))
13470 Elf32_External_gptab ext_gptab;
13471 Elf32_gptab int_gptab;
13477 if (! (bfd_get_section_contents
13478 (input_bfd, input_section, &ext_gptab, gpentry,
13479 sizeof (Elf32_External_gptab))))
13485 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13487 val = int_gptab.gt_entry.gt_g_value;
13488 add = int_gptab.gt_entry.gt_bytes - last;
13491 for (look = 1; look < c; look++)
13493 if (tab[look].gt_entry.gt_g_value >= val)
13494 tab[look].gt_entry.gt_bytes += add;
13496 if (tab[look].gt_entry.gt_g_value == val)
13502 Elf32_gptab *new_tab;
13505 /* We need a new table entry. */
13506 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13507 new_tab = bfd_realloc (tab, amt);
13508 if (new_tab == NULL)
13514 tab[c].gt_entry.gt_g_value = val;
13515 tab[c].gt_entry.gt_bytes = add;
13517 /* Merge in the size for the next smallest -G
13518 value, since that will be implied by this new
13521 for (look = 1; look < c; look++)
13523 if (tab[look].gt_entry.gt_g_value < val
13525 || (tab[look].gt_entry.gt_g_value
13526 > tab[max].gt_entry.gt_g_value)))
13530 tab[c].gt_entry.gt_bytes +=
13531 tab[max].gt_entry.gt_bytes;
13536 last = int_gptab.gt_entry.gt_bytes;
13539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13540 elf_link_input_bfd ignores this section. */
13541 input_section->flags &= ~SEC_HAS_CONTENTS;
13544 /* The table must be sorted by -G value. */
13546 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13548 /* Swap out the table. */
13549 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13550 ext_tab = bfd_alloc (abfd, amt);
13551 if (ext_tab == NULL)
13557 for (j = 0; j < c; j++)
13558 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13561 o->size = c * sizeof (Elf32_External_gptab);
13562 o->contents = (bfd_byte *) ext_tab;
13564 /* Skip this section later on (I don't think this currently
13565 matters, but someday it might). */
13566 o->map_head.link_order = NULL;
13570 /* Invoke the regular ELF backend linker to do all the work. */
13571 if (!bfd_elf_final_link (abfd, info))
13574 /* Now write out the computed sections. */
13576 if (reginfo_sec != NULL)
13578 Elf32_External_RegInfo ext;
13580 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
13581 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13585 if (mdebug_sec != NULL)
13587 BFD_ASSERT (abfd->output_has_begun);
13588 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13590 mdebug_sec->filepos))
13593 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13596 if (gptab_data_sec != NULL)
13598 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13599 gptab_data_sec->contents,
13600 0, gptab_data_sec->size))
13604 if (gptab_bss_sec != NULL)
13606 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13607 gptab_bss_sec->contents,
13608 0, gptab_bss_sec->size))
13612 if (SGI_COMPAT (abfd))
13614 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13615 if (rtproc_sec != NULL)
13617 if (! bfd_set_section_contents (abfd, rtproc_sec,
13618 rtproc_sec->contents,
13619 0, rtproc_sec->size))
13627 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13629 struct mips_mach_extension {
13630 unsigned long extension, base;
13634 /* An array describing how BFD machines relate to one another. The entries
13635 are ordered topologically with MIPS I extensions listed last. */
13637 static const struct mips_mach_extension mips_mach_extensions[] = {
13638 /* MIPS64r2 extensions. */
13639 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13640 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13641 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13643 /* MIPS64 extensions. */
13644 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13645 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13646 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13647 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13649 /* MIPS V extensions. */
13650 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13652 /* R10000 extensions. */
13653 { bfd_mach_mips12000, bfd_mach_mips10000 },
13654 { bfd_mach_mips14000, bfd_mach_mips10000 },
13655 { bfd_mach_mips16000, bfd_mach_mips10000 },
13657 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13658 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13659 better to allow vr5400 and vr5500 code to be merged anyway, since
13660 many libraries will just use the core ISA. Perhaps we could add
13661 some sort of ASE flag if this ever proves a problem. */
13662 { bfd_mach_mips5500, bfd_mach_mips5400 },
13663 { bfd_mach_mips5400, bfd_mach_mips5000 },
13665 /* MIPS IV extensions. */
13666 { bfd_mach_mips5, bfd_mach_mips8000 },
13667 { bfd_mach_mips10000, bfd_mach_mips8000 },
13668 { bfd_mach_mips5000, bfd_mach_mips8000 },
13669 { bfd_mach_mips7000, bfd_mach_mips8000 },
13670 { bfd_mach_mips9000, bfd_mach_mips8000 },
13672 /* VR4100 extensions. */
13673 { bfd_mach_mips4120, bfd_mach_mips4100 },
13674 { bfd_mach_mips4111, bfd_mach_mips4100 },
13676 /* MIPS III extensions. */
13677 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13678 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13679 { bfd_mach_mips8000, bfd_mach_mips4000 },
13680 { bfd_mach_mips4650, bfd_mach_mips4000 },
13681 { bfd_mach_mips4600, bfd_mach_mips4000 },
13682 { bfd_mach_mips4400, bfd_mach_mips4000 },
13683 { bfd_mach_mips4300, bfd_mach_mips4000 },
13684 { bfd_mach_mips4100, bfd_mach_mips4000 },
13685 { bfd_mach_mips4010, bfd_mach_mips4000 },
13687 /* MIPS32 extensions. */
13688 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13690 /* MIPS II extensions. */
13691 { bfd_mach_mips4000, bfd_mach_mips6000 },
13692 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13694 /* MIPS I extensions. */
13695 { bfd_mach_mips6000, bfd_mach_mips3000 },
13696 { bfd_mach_mips3900, bfd_mach_mips3000 }
13700 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13703 mips_mach_extends_p (unsigned long base, unsigned long extension)
13707 if (extension == base)
13710 if (base == bfd_mach_mipsisa32
13711 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13714 if (base == bfd_mach_mipsisa32r2
13715 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13718 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13719 if (extension == mips_mach_extensions[i].extension)
13721 extension = mips_mach_extensions[i].base;
13722 if (extension == base)
13730 /* Return true if the given ELF header flags describe a 32-bit binary. */
13733 mips_32bit_flags_p (flagword flags)
13735 return ((flags & EF_MIPS_32BITMODE) != 0
13736 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13737 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13738 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13739 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13740 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13741 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13745 /* Merge object attributes from IBFD into OBFD. Raise an error if
13746 there are conflicting attributes. */
13748 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13750 obj_attribute *in_attr;
13751 obj_attribute *out_attr;
13753 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13755 /* This is the first object. Copy the attributes. */
13756 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13758 /* Use the Tag_null value to indicate the attributes have been
13760 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13765 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13766 non-conflicting ones. */
13767 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13768 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13769 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13771 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13772 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13773 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13774 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13776 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13778 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13779 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13780 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13782 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13783 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13785 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13788 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13792 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13798 (_("Warning: %B uses hard float, %B uses soft float"),
13804 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13814 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13818 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13824 (_("Warning: %B uses hard float, %B uses soft float"),
13830 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13840 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13846 (_("Warning: %B uses hard float, %B uses soft float"),
13856 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13860 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13866 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13872 (_("Warning: %B uses hard float, %B uses soft float"),
13886 /* Merge Tag_compatibility attributes and any common GNU ones. */
13887 _bfd_elf_merge_object_attributes (ibfd, obfd);
13892 /* Merge backend specific data from an object file to the output
13893 object file when linking. */
13896 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13898 flagword old_flags;
13899 flagword new_flags;
13901 bfd_boolean null_input_bfd = TRUE;
13904 /* Check if we have the same endianness. */
13905 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13907 (*_bfd_error_handler)
13908 (_("%B: endianness incompatible with that of the selected emulation"),
13913 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13916 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13918 (*_bfd_error_handler)
13919 (_("%B: ABI is incompatible with that of the selected emulation"),
13924 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13927 new_flags = elf_elfheader (ibfd)->e_flags;
13928 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13929 old_flags = elf_elfheader (obfd)->e_flags;
13931 if (! elf_flags_init (obfd))
13933 elf_flags_init (obfd) = TRUE;
13934 elf_elfheader (obfd)->e_flags = new_flags;
13935 elf_elfheader (obfd)->e_ident[EI_CLASS]
13936 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13938 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13939 && (bfd_get_arch_info (obfd)->the_default
13940 || mips_mach_extends_p (bfd_get_mach (obfd),
13941 bfd_get_mach (ibfd))))
13943 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13944 bfd_get_mach (ibfd)))
13951 /* Check flag compatibility. */
13953 new_flags &= ~EF_MIPS_NOREORDER;
13954 old_flags &= ~EF_MIPS_NOREORDER;
13956 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13957 doesn't seem to matter. */
13958 new_flags &= ~EF_MIPS_XGOT;
13959 old_flags &= ~EF_MIPS_XGOT;
13961 /* MIPSpro generates ucode info in n64 objects. Again, we should
13962 just be able to ignore this. */
13963 new_flags &= ~EF_MIPS_UCODE;
13964 old_flags &= ~EF_MIPS_UCODE;
13966 /* DSOs should only be linked with CPIC code. */
13967 if ((ibfd->flags & DYNAMIC) != 0)
13968 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13970 if (new_flags == old_flags)
13973 /* Check to see if the input BFD actually contains any sections.
13974 If not, its flags may not have been initialised either, but it cannot
13975 actually cause any incompatibility. */
13976 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13978 /* Ignore synthetic sections and empty .text, .data and .bss sections
13979 which are automatically generated by gas. Also ignore fake
13980 (s)common sections, since merely defining a common symbol does
13981 not affect compatibility. */
13982 if ((sec->flags & SEC_IS_COMMON) == 0
13983 && strcmp (sec->name, ".reginfo")
13984 && strcmp (sec->name, ".mdebug")
13986 || (strcmp (sec->name, ".text")
13987 && strcmp (sec->name, ".data")
13988 && strcmp (sec->name, ".bss"))))
13990 null_input_bfd = FALSE;
13994 if (null_input_bfd)
13999 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14000 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14002 (*_bfd_error_handler)
14003 (_("%B: warning: linking abicalls files with non-abicalls files"),
14008 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14009 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14010 if (! (new_flags & EF_MIPS_PIC))
14011 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14013 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14014 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14016 /* Compare the ISAs. */
14017 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14019 (*_bfd_error_handler)
14020 (_("%B: linking 32-bit code with 64-bit code"),
14024 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14026 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14027 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14029 /* Copy the architecture info from IBFD to OBFD. Also copy
14030 the 32-bit flag (if set) so that we continue to recognise
14031 OBFD as a 32-bit binary. */
14032 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14033 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14034 elf_elfheader (obfd)->e_flags
14035 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14037 /* Copy across the ABI flags if OBFD doesn't use them
14038 and if that was what caused us to treat IBFD as 32-bit. */
14039 if ((old_flags & EF_MIPS_ABI) == 0
14040 && mips_32bit_flags_p (new_flags)
14041 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14042 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14046 /* The ISAs aren't compatible. */
14047 (*_bfd_error_handler)
14048 (_("%B: linking %s module with previous %s modules"),
14050 bfd_printable_name (ibfd),
14051 bfd_printable_name (obfd));
14056 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14057 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14059 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14060 does set EI_CLASS differently from any 32-bit ABI. */
14061 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14062 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14063 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14065 /* Only error if both are set (to different values). */
14066 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14067 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14068 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14070 (*_bfd_error_handler)
14071 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14073 elf_mips_abi_name (ibfd),
14074 elf_mips_abi_name (obfd));
14077 new_flags &= ~EF_MIPS_ABI;
14078 old_flags &= ~EF_MIPS_ABI;
14081 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14082 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14083 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14085 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14086 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14087 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14088 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14089 int micro_mis = old_m16 && new_micro;
14090 int m16_mis = old_micro && new_m16;
14092 if (m16_mis || micro_mis)
14094 (*_bfd_error_handler)
14095 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14097 m16_mis ? "MIPS16" : "microMIPS",
14098 m16_mis ? "microMIPS" : "MIPS16");
14102 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14104 new_flags &= ~ EF_MIPS_ARCH_ASE;
14105 old_flags &= ~ EF_MIPS_ARCH_ASE;
14108 /* Warn about any other mismatches */
14109 if (new_flags != old_flags)
14111 (*_bfd_error_handler)
14112 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14113 ibfd, (unsigned long) new_flags,
14114 (unsigned long) old_flags);
14120 bfd_set_error (bfd_error_bad_value);
14127 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14130 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14132 BFD_ASSERT (!elf_flags_init (abfd)
14133 || elf_elfheader (abfd)->e_flags == flags);
14135 elf_elfheader (abfd)->e_flags = flags;
14136 elf_flags_init (abfd) = TRUE;
14141 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14145 default: return "";
14146 case DT_MIPS_RLD_VERSION:
14147 return "MIPS_RLD_VERSION";
14148 case DT_MIPS_TIME_STAMP:
14149 return "MIPS_TIME_STAMP";
14150 case DT_MIPS_ICHECKSUM:
14151 return "MIPS_ICHECKSUM";
14152 case DT_MIPS_IVERSION:
14153 return "MIPS_IVERSION";
14154 case DT_MIPS_FLAGS:
14155 return "MIPS_FLAGS";
14156 case DT_MIPS_BASE_ADDRESS:
14157 return "MIPS_BASE_ADDRESS";
14159 return "MIPS_MSYM";
14160 case DT_MIPS_CONFLICT:
14161 return "MIPS_CONFLICT";
14162 case DT_MIPS_LIBLIST:
14163 return "MIPS_LIBLIST";
14164 case DT_MIPS_LOCAL_GOTNO:
14165 return "MIPS_LOCAL_GOTNO";
14166 case DT_MIPS_CONFLICTNO:
14167 return "MIPS_CONFLICTNO";
14168 case DT_MIPS_LIBLISTNO:
14169 return "MIPS_LIBLISTNO";
14170 case DT_MIPS_SYMTABNO:
14171 return "MIPS_SYMTABNO";
14172 case DT_MIPS_UNREFEXTNO:
14173 return "MIPS_UNREFEXTNO";
14174 case DT_MIPS_GOTSYM:
14175 return "MIPS_GOTSYM";
14176 case DT_MIPS_HIPAGENO:
14177 return "MIPS_HIPAGENO";
14178 case DT_MIPS_RLD_MAP:
14179 return "MIPS_RLD_MAP";
14180 case DT_MIPS_DELTA_CLASS:
14181 return "MIPS_DELTA_CLASS";
14182 case DT_MIPS_DELTA_CLASS_NO:
14183 return "MIPS_DELTA_CLASS_NO";
14184 case DT_MIPS_DELTA_INSTANCE:
14185 return "MIPS_DELTA_INSTANCE";
14186 case DT_MIPS_DELTA_INSTANCE_NO:
14187 return "MIPS_DELTA_INSTANCE_NO";
14188 case DT_MIPS_DELTA_RELOC:
14189 return "MIPS_DELTA_RELOC";
14190 case DT_MIPS_DELTA_RELOC_NO:
14191 return "MIPS_DELTA_RELOC_NO";
14192 case DT_MIPS_DELTA_SYM:
14193 return "MIPS_DELTA_SYM";
14194 case DT_MIPS_DELTA_SYM_NO:
14195 return "MIPS_DELTA_SYM_NO";
14196 case DT_MIPS_DELTA_CLASSSYM:
14197 return "MIPS_DELTA_CLASSSYM";
14198 case DT_MIPS_DELTA_CLASSSYM_NO:
14199 return "MIPS_DELTA_CLASSSYM_NO";
14200 case DT_MIPS_CXX_FLAGS:
14201 return "MIPS_CXX_FLAGS";
14202 case DT_MIPS_PIXIE_INIT:
14203 return "MIPS_PIXIE_INIT";
14204 case DT_MIPS_SYMBOL_LIB:
14205 return "MIPS_SYMBOL_LIB";
14206 case DT_MIPS_LOCALPAGE_GOTIDX:
14207 return "MIPS_LOCALPAGE_GOTIDX";
14208 case DT_MIPS_LOCAL_GOTIDX:
14209 return "MIPS_LOCAL_GOTIDX";
14210 case DT_MIPS_HIDDEN_GOTIDX:
14211 return "MIPS_HIDDEN_GOTIDX";
14212 case DT_MIPS_PROTECTED_GOTIDX:
14213 return "MIPS_PROTECTED_GOT_IDX";
14214 case DT_MIPS_OPTIONS:
14215 return "MIPS_OPTIONS";
14216 case DT_MIPS_INTERFACE:
14217 return "MIPS_INTERFACE";
14218 case DT_MIPS_DYNSTR_ALIGN:
14219 return "DT_MIPS_DYNSTR_ALIGN";
14220 case DT_MIPS_INTERFACE_SIZE:
14221 return "DT_MIPS_INTERFACE_SIZE";
14222 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14223 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14224 case DT_MIPS_PERF_SUFFIX:
14225 return "DT_MIPS_PERF_SUFFIX";
14226 case DT_MIPS_COMPACT_SIZE:
14227 return "DT_MIPS_COMPACT_SIZE";
14228 case DT_MIPS_GP_VALUE:
14229 return "DT_MIPS_GP_VALUE";
14230 case DT_MIPS_AUX_DYNAMIC:
14231 return "DT_MIPS_AUX_DYNAMIC";
14232 case DT_MIPS_PLTGOT:
14233 return "DT_MIPS_PLTGOT";
14234 case DT_MIPS_RWPLT:
14235 return "DT_MIPS_RWPLT";
14240 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14244 BFD_ASSERT (abfd != NULL && ptr != NULL);
14246 /* Print normal ELF private data. */
14247 _bfd_elf_print_private_bfd_data (abfd, ptr);
14249 /* xgettext:c-format */
14250 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14252 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14253 fprintf (file, _(" [abi=O32]"));
14254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14255 fprintf (file, _(" [abi=O64]"));
14256 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14257 fprintf (file, _(" [abi=EABI32]"));
14258 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14259 fprintf (file, _(" [abi=EABI64]"));
14260 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14261 fprintf (file, _(" [abi unknown]"));
14262 else if (ABI_N32_P (abfd))
14263 fprintf (file, _(" [abi=N32]"));
14264 else if (ABI_64_P (abfd))
14265 fprintf (file, _(" [abi=64]"));
14267 fprintf (file, _(" [no abi set]"));
14269 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14270 fprintf (file, " [mips1]");
14271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14272 fprintf (file, " [mips2]");
14273 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14274 fprintf (file, " [mips3]");
14275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14276 fprintf (file, " [mips4]");
14277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14278 fprintf (file, " [mips5]");
14279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14280 fprintf (file, " [mips32]");
14281 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14282 fprintf (file, " [mips64]");
14283 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14284 fprintf (file, " [mips32r2]");
14285 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14286 fprintf (file, " [mips64r2]");
14288 fprintf (file, _(" [unknown ISA]"));
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14291 fprintf (file, " [mdmx]");
14293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14294 fprintf (file, " [mips16]");
14296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14297 fprintf (file, " [micromips]");
14299 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14300 fprintf (file, " [32bitmode]");
14302 fprintf (file, _(" [not 32bitmode]"));
14304 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14305 fprintf (file, " [noreorder]");
14307 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14308 fprintf (file, " [PIC]");
14310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14311 fprintf (file, " [CPIC]");
14313 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14314 fprintf (file, " [XGOT]");
14316 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14317 fprintf (file, " [UCODE]");
14319 fputc ('\n', file);
14324 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14326 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14327 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14328 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14329 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14330 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14331 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14332 { NULL, 0, 0, 0, 0 }
14335 /* Merge non visibility st_other attributes. Ensure that the
14336 STO_OPTIONAL flag is copied into h->other, even if this is not a
14337 definiton of the symbol. */
14339 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14340 const Elf_Internal_Sym *isym,
14341 bfd_boolean definition,
14342 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14344 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14346 unsigned char other;
14348 other = (definition ? isym->st_other : h->other);
14349 other &= ~ELF_ST_VISIBILITY (-1);
14350 h->other = other | ELF_ST_VISIBILITY (h->other);
14354 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14355 h->other |= STO_OPTIONAL;
14358 /* Decide whether an undefined symbol is special and can be ignored.
14359 This is the case for OPTIONAL symbols on IRIX. */
14361 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14363 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14367 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14369 return (sym->st_shndx == SHN_COMMON
14370 || sym->st_shndx == SHN_MIPS_ACOMMON
14371 || sym->st_shndx == SHN_MIPS_SCOMMON);
14374 /* Return address for Ith PLT stub in section PLT, for relocation REL
14375 or (bfd_vma) -1 if it should not be included. */
14378 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14379 const arelent *rel ATTRIBUTE_UNUSED)
14382 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14383 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14387 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14389 struct mips_elf_link_hash_table *htab;
14390 Elf_Internal_Ehdr *i_ehdrp;
14392 i_ehdrp = elf_elfheader (abfd);
14395 htab = mips_elf_hash_table (link_info);
14396 BFD_ASSERT (htab != NULL);
14398 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14399 i_ehdrp->e_ident[EI_ABIVERSION] = 1;