1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GAS.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
25 #include "bfd_stdint.h"
27 #include "safe-ctype.h"
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
36 #include "dwarf2dbg.h"
38 /* Types of processor to assemble for. */
40 #define CPU_DEFAULT AARCH64_ARCH_V8
43 #define streq(a, b) (strcmp (a, b) == 0)
45 #define END_OF_INSN '\0'
47 static aarch64_feature_set cpu_variant;
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
62 /* Which ABI to use. */
71 #define DEFAULT_ARCH "aarch64"
74 /* DEFAULT_ARCH is initialized in gas/configure.tgt. */
75 static const char *default_arch = DEFAULT_ARCH;
77 /* AArch64 ABI for the output file. */
78 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
80 /* When non-zero, program to a 32-bit model, in which the C data types
81 int, long and all pointer types are 32-bit objects (ILP32); or to a
82 64-bit model, in which the C int type is 32-bits but the C long type
83 and all pointer types are 64-bit objects (LP64). */
84 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
99 /* Bits for DEFINED field in vector_type_el. */
100 #define NTA_HASTYPE 1
101 #define NTA_HASINDEX 2
102 #define NTA_HASVARWIDTH 4
104 struct vector_type_el
106 enum vector_el_type type;
107 unsigned char defined;
112 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116 bfd_reloc_code_real_type type;
119 enum aarch64_opnd opnd;
121 unsigned need_libopcodes_p : 1;
124 struct aarch64_instruction
126 /* libopcodes structure for instruction intermediate representation. */
128 /* Record assembly errors found during the parsing. */
131 enum aarch64_operand_error_kind kind;
134 /* The condition that appears in the assembly line. */
136 /* Relocation information (including the GAS internal fixup). */
138 /* Need to generate an immediate in the literal pool. */
139 unsigned gen_lit_pool : 1;
142 typedef struct aarch64_instruction aarch64_instruction;
144 static aarch64_instruction inst;
146 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
147 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
149 /* Diagnostics inline function utilities.
151 These are lightweight utilities which should only be called by parse_operands
152 and other parsers. GAS processes each assembly line by parsing it against
153 instruction template(s), in the case of multiple templates (for the same
154 mnemonic name), those templates are tried one by one until one succeeds or
155 all fail. An assembly line may fail a few templates before being
156 successfully parsed; an error saved here in most cases is not a user error
157 but an error indicating the current template is not the right template.
158 Therefore it is very important that errors can be saved at a low cost during
159 the parsing; we don't want to slow down the whole parsing by recording
160 non-user errors in detail.
162 Remember that the objective is to help GAS pick up the most appropriate
163 error message in the case of multiple templates, e.g. FMOV which has 8
169 inst.parsing_error.kind = AARCH64_OPDE_NIL;
170 inst.parsing_error.error = NULL;
173 static inline bfd_boolean
176 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
179 static inline const char *
180 get_error_message (void)
182 return inst.parsing_error.error;
185 static inline enum aarch64_operand_error_kind
186 get_error_kind (void)
188 return inst.parsing_error.kind;
192 set_error (enum aarch64_operand_error_kind kind, const char *error)
194 inst.parsing_error.kind = kind;
195 inst.parsing_error.error = error;
199 set_recoverable_error (const char *error)
201 set_error (AARCH64_OPDE_RECOVERABLE, error);
204 /* Use the DESC field of the corresponding aarch64_operand entry to compose
205 the error message. */
207 set_default_error (void)
209 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
213 set_syntax_error (const char *error)
215 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
219 set_first_syntax_error (const char *error)
222 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226 set_fatal_syntax_error (const char *error)
228 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
231 /* Number of littlenums required to hold an extended precision number. */
232 #define MAX_LITTLENUMS 6
234 /* Return value for certain parsers when the parsing fails; those parsers
235 return the information of the parsed result, e.g. register number, on
237 #define PARSE_FAIL -1
239 /* This is an invalid condition code that means no conditional field is
241 #define COND_ALWAYS 0x10
245 const char *template;
251 const char *template;
258 bfd_reloc_code_real_type reloc;
261 /* Macros to define the register types and masks for the purpose
264 #undef AARCH64_REG_TYPES
265 #define AARCH64_REG_TYPES \
266 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
267 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
268 BASIC_REG_TYPE(SP_32) /* wsp */ \
269 BASIC_REG_TYPE(SP_64) /* sp */ \
270 BASIC_REG_TYPE(Z_32) /* wzr */ \
271 BASIC_REG_TYPE(Z_64) /* xzr */ \
272 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
273 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
274 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
275 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
276 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
277 BASIC_REG_TYPE(VN) /* v[0-31] */ \
278 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
279 BASIC_REG_TYPE(PN) /* p[0-15] */ \
280 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
281 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
282 /* Typecheck: same, plus SVE registers. */ \
283 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
285 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
286 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
288 /* Typecheck: same, plus SVE registers. */ \
289 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
292 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
293 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
294 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
295 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
296 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
298 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
299 /* Typecheck: any [BHSDQ]P FP. */ \
300 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
301 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
302 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
307 /* Typecheck: as above, but also Zn and Pn. This should only be \
308 used for SVE instructions, since Zn and Pn are valid symbols \
309 in other contexts. */ \
310 MULTI_REG_TYPE(R_Z_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
312 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
313 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
314 | REG_TYPE(ZN) | REG_TYPE(PN)) \
315 /* Any integer register; used for error messages only. */ \
316 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
317 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
318 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
319 /* Pseudo type to mark the end of the enumerator sequence. */ \
322 #undef BASIC_REG_TYPE
323 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
324 #undef MULTI_REG_TYPE
325 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
327 /* Register type enumerators. */
328 typedef enum aarch64_reg_type_
330 /* A list of REG_TYPE_*. */
334 #undef BASIC_REG_TYPE
335 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
337 #define REG_TYPE(T) (1 << REG_TYPE_##T)
338 #undef MULTI_REG_TYPE
339 #define MULTI_REG_TYPE(T,V) V,
341 /* Structure for a hash table entry for a register. */
345 unsigned char number;
346 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
347 unsigned char builtin;
350 /* Values indexed by aarch64_reg_type to assist the type checking. */
351 static const unsigned reg_type_masks[] =
356 #undef BASIC_REG_TYPE
358 #undef MULTI_REG_TYPE
359 #undef AARCH64_REG_TYPES
361 /* Diagnostics used when we don't get a register of the expected type.
362 Note: this has to synchronized with aarch64_reg_type definitions
365 get_reg_expected_msg (aarch64_reg_type reg_type)
372 msg = N_("integer 32-bit register expected");
375 msg = N_("integer 64-bit register expected");
378 msg = N_("integer register expected");
380 case REG_TYPE_R64_SP:
381 msg = N_("64-bit integer or SP register expected");
383 case REG_TYPE_SVE_BASE:
384 msg = N_("base register expected");
387 msg = N_("integer or zero register expected");
389 case REG_TYPE_SVE_OFFSET:
390 msg = N_("offset register expected");
393 msg = N_("integer or SP register expected");
395 case REG_TYPE_R_Z_SP:
396 msg = N_("integer, zero or SP register expected");
399 msg = N_("8-bit SIMD scalar register expected");
402 msg = N_("16-bit SIMD scalar or floating-point half precision "
403 "register expected");
406 msg = N_("32-bit SIMD scalar or floating-point single precision "
407 "register expected");
410 msg = N_("64-bit SIMD scalar or floating-point double precision "
411 "register expected");
414 msg = N_("128-bit SIMD scalar or floating-point quad precision "
415 "register expected");
417 case REG_TYPE_R_Z_BHSDQ_V:
418 case REG_TYPE_R_Z_BHSDQ_VZP:
419 msg = N_("register expected");
421 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
422 msg = N_("SIMD scalar or floating-point register expected");
424 case REG_TYPE_VN: /* any V reg */
425 msg = N_("vector register expected");
428 msg = N_("SVE vector register expected");
431 msg = N_("SVE predicate register expected");
434 as_fatal (_("invalid register type %d"), reg_type);
439 /* Some well known registers that we refer to directly elsewhere. */
442 /* Instructions take 4 bytes in the object file. */
445 static struct hash_control *aarch64_ops_hsh;
446 static struct hash_control *aarch64_cond_hsh;
447 static struct hash_control *aarch64_shift_hsh;
448 static struct hash_control *aarch64_sys_regs_hsh;
449 static struct hash_control *aarch64_pstatefield_hsh;
450 static struct hash_control *aarch64_sys_regs_ic_hsh;
451 static struct hash_control *aarch64_sys_regs_dc_hsh;
452 static struct hash_control *aarch64_sys_regs_at_hsh;
453 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
454 static struct hash_control *aarch64_reg_hsh;
455 static struct hash_control *aarch64_barrier_opt_hsh;
456 static struct hash_control *aarch64_nzcv_hsh;
457 static struct hash_control *aarch64_pldop_hsh;
458 static struct hash_control *aarch64_hint_opt_hsh;
460 /* Stuff needed to resolve the label ambiguity
469 static symbolS *last_label_seen;
471 /* Literal pool structure. Held on a per-section
472 and per-sub-section basis. */
474 #define MAX_LITERAL_POOL_SIZE 1024
475 typedef struct literal_expression
478 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
479 LITTLENUM_TYPE * bignum;
480 } literal_expression;
482 typedef struct literal_pool
484 literal_expression literals[MAX_LITERAL_POOL_SIZE];
485 unsigned int next_free_entry;
491 struct literal_pool *next;
494 /* Pointer to a linked list of literal pools. */
495 static literal_pool *list_of_pools = NULL;
499 /* This array holds the chars that always start a comment. If the
500 pre-processor is disabled, these aren't very useful. */
501 const char comment_chars[] = "";
503 /* This array holds the chars that only start a comment at the beginning of
504 a line. If the line seems to have the form '# 123 filename'
505 .line and .file directives will appear in the pre-processed output. */
506 /* Note that input_file.c hand checks for '#' at the beginning of the
507 first line of the input file. This is because the compiler outputs
508 #NO_APP at the beginning of its output. */
509 /* Also note that comments like this one will always work. */
510 const char line_comment_chars[] = "#";
512 const char line_separator_chars[] = ";";
514 /* Chars that can be used to separate mant
515 from exp in floating point numbers. */
516 const char EXP_CHARS[] = "eE";
518 /* Chars that mean this number is a floating point constant. */
522 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
524 /* Prefix character that indicates the start of an immediate value. */
525 #define is_immediate_prefix(C) ((C) == '#')
527 /* Separator character handling. */
529 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
531 static inline bfd_boolean
532 skip_past_char (char **str, char c)
543 #define skip_past_comma(str) skip_past_char (str, ',')
545 /* Arithmetic expressions (possibly involving symbols). */
547 static bfd_boolean in_my_get_expression_p = FALSE;
549 /* Third argument to my_get_expression. */
550 #define GE_NO_PREFIX 0
551 #define GE_OPT_PREFIX 1
553 /* Return TRUE if the string pointed by *STR is successfully parsed
554 as an valid expression; *EP will be filled with the information of
555 such an expression. Otherwise return FALSE. */
558 my_get_expression (expressionS * ep, char **str, int prefix_mode,
563 int prefix_present_p = 0;
570 if (is_immediate_prefix (**str))
573 prefix_present_p = 1;
580 memset (ep, 0, sizeof (expressionS));
582 save_in = input_line_pointer;
583 input_line_pointer = *str;
584 in_my_get_expression_p = TRUE;
585 seg = expression (ep);
586 in_my_get_expression_p = FALSE;
588 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
590 /* We found a bad expression in md_operand(). */
591 *str = input_line_pointer;
592 input_line_pointer = save_in;
593 if (prefix_present_p && ! error_p ())
594 set_fatal_syntax_error (_("bad expression"));
596 set_first_syntax_error (_("bad expression"));
601 if (seg != absolute_section
602 && seg != text_section
603 && seg != data_section
604 && seg != bss_section && seg != undefined_section)
606 set_syntax_error (_("bad segment"));
607 *str = input_line_pointer;
608 input_line_pointer = save_in;
615 *str = input_line_pointer;
616 input_line_pointer = save_in;
620 /* Turn a string in input_line_pointer into a floating point constant
621 of type TYPE, and store the appropriate bytes in *LITP. The number
622 of LITTLENUMS emitted is stored in *SIZEP. An error message is
623 returned, or NULL on OK. */
626 md_atof (int type, char *litP, int *sizeP)
628 return ieee_md_atof (type, litP, sizeP, target_big_endian);
631 /* We handle all bad expressions here, so that we can report the faulty
632 instruction in the error message. */
634 md_operand (expressionS * exp)
636 if (in_my_get_expression_p)
637 exp->X_op = O_illegal;
640 /* Immediate values. */
642 /* Errors may be set multiple times during parsing or bit encoding
643 (particularly in the Neon bits), but usually the earliest error which is set
644 will be the most meaningful. Avoid overwriting it with later (cascading)
645 errors by calling this function. */
648 first_error (const char *error)
651 set_syntax_error (error);
654 /* Similar to first_error, but this function accepts formatted error
657 first_error_fmt (const char *format, ...)
662 /* N.B. this single buffer will not cause error messages for different
663 instructions to pollute each other; this is because at the end of
664 processing of each assembly line, error message if any will be
665 collected by as_bad. */
666 static char buffer[size];
670 int ret ATTRIBUTE_UNUSED;
671 va_start (args, format);
672 ret = vsnprintf (buffer, size, format, args);
673 know (ret <= size - 1 && ret >= 0);
675 set_syntax_error (buffer);
679 /* Register parsing. */
681 /* Generic register parser which is called by other specialized
683 CCP points to what should be the beginning of a register name.
684 If it is indeed a valid register name, advance CCP over it and
685 return the reg_entry structure; otherwise return NULL.
686 It does not issue diagnostics. */
689 parse_reg (char **ccp)
695 #ifdef REGISTER_PREFIX
696 if (*start != REGISTER_PREFIX)
702 if (!ISALPHA (*p) || !is_name_beginner (*p))
707 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
709 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
718 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
721 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
723 return (reg_type_masks[type] & (1 << reg->type)) != 0;
726 /* Try to parse a base or offset register. Allow SVE base and offset
727 registers if REG_TYPE includes SVE registers. Return the register
728 entry on success, setting *QUALIFIER to the register qualifier.
729 Return null otherwise.
731 Note that this function does not issue any diagnostics. */
733 static const reg_entry *
734 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
735 aarch64_opnd_qualifier_t *qualifier)
738 const reg_entry *reg = parse_reg (&str);
748 *qualifier = AARCH64_OPND_QLF_W;
754 *qualifier = AARCH64_OPND_QLF_X;
758 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
761 switch (TOLOWER (str[1]))
764 *qualifier = AARCH64_OPND_QLF_S_S;
767 *qualifier = AARCH64_OPND_QLF_S_D;
784 /* Try to parse a base or offset register. Return the register entry
785 on success, setting *QUALIFIER to the register qualifier. Return null
788 Note that this function does not issue any diagnostics. */
790 static const reg_entry *
791 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
793 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
796 /* Parse the qualifier of a vector register or vector element of type
797 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
798 succeeds; otherwise return FALSE.
800 Accept only one occurrence of:
801 8b 16b 2h 4h 8h 2s 4s 1d 2d
804 parse_vector_type_for_operand (aarch64_reg_type reg_type,
805 struct vector_type_el *parsed_type, char **str)
809 unsigned element_size;
810 enum vector_el_type type;
813 gas_assert (*ptr == '.');
816 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
821 width = strtoul (ptr, &ptr, 10);
822 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
824 first_error_fmt (_("bad size %d in vector width specifier"), width);
829 switch (TOLOWER (*ptr))
848 if (reg_type == REG_TYPE_ZN || width == 1)
857 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
859 first_error (_("missing element size"));
862 if (width != 0 && width * element_size != 64 && width * element_size != 128
863 && !(width == 2 && element_size == 16))
866 ("invalid element size %d and vector size combination %c"),
872 parsed_type->type = type;
873 parsed_type->width = width;
880 /* *STR contains an SVE zero/merge predication suffix. Parse it into
881 *PARSED_TYPE and point *STR at the end of the suffix. */
884 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
889 gas_assert (*ptr == '/');
891 switch (TOLOWER (*ptr))
894 parsed_type->type = NT_zero;
897 parsed_type->type = NT_merge;
900 if (*ptr != '\0' && *ptr != ',')
901 first_error_fmt (_("unexpected character `%c' in predication type"),
904 first_error (_("missing predication type"));
907 parsed_type->width = 0;
912 /* Parse a register of the type TYPE.
914 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
915 name or the parsed register is not of TYPE.
917 Otherwise return the register number, and optionally fill in the actual
918 type of the register in *RTYPE when multiple alternatives were given, and
919 return the register shape and element index information in *TYPEINFO.
921 IN_REG_LIST should be set with TRUE if the caller is parsing a register
925 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
926 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
929 const reg_entry *reg = parse_reg (&str);
930 struct vector_type_el atype;
931 struct vector_type_el parsetype;
932 bfd_boolean is_typed_vecreg = FALSE;
935 atype.type = NT_invtype;
943 set_default_error ();
947 if (! aarch64_check_reg_type (reg, type))
949 DEBUG_TRACE ("reg type check failed");
950 set_default_error ();
955 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
956 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
960 if (!parse_vector_type_for_operand (type, &parsetype, &str))
965 if (!parse_predication_for_operand (&parsetype, &str))
969 /* Register if of the form Vn.[bhsdq]. */
970 is_typed_vecreg = TRUE;
972 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
974 /* The width is always variable; we don't allow an integer width
976 gas_assert (parsetype.width == 0);
977 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
979 else if (parsetype.width == 0)
980 /* Expect index. In the new scheme we cannot have
981 Vn.[bhsdq] represent a scalar. Therefore any
982 Vn.[bhsdq] should have an index following it.
983 Except in reglists of course. */
984 atype.defined |= NTA_HASINDEX;
986 atype.defined |= NTA_HASTYPE;
988 atype.type = parsetype.type;
989 atype.width = parsetype.width;
992 if (skip_past_char (&str, '['))
996 /* Reject Sn[index] syntax. */
997 if (!is_typed_vecreg)
999 first_error (_("this type of register can't be indexed"));
1005 first_error (_("index not allowed inside register list"));
1009 atype.defined |= NTA_HASINDEX;
1011 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1013 if (exp.X_op != O_constant)
1015 first_error (_("constant expression required"));
1019 if (! skip_past_char (&str, ']'))
1022 atype.index = exp.X_add_number;
1024 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1026 /* Indexed vector register expected. */
1027 first_error (_("indexed vector register expected"));
1031 /* A vector reg Vn should be typed or indexed. */
1032 if (type == REG_TYPE_VN && atype.defined == 0)
1034 first_error (_("invalid use of vector register"));
1050 Return the register number on success; return PARSE_FAIL otherwise.
1052 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1053 the register (e.g. NEON double or quad reg when either has been requested).
1055 If this is a NEON vector register with additional type information, fill
1056 in the struct pointed to by VECTYPE (if non-NULL).
1058 This parser does not handle register list. */
1061 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1062 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1064 struct vector_type_el atype;
1066 int reg = parse_typed_reg (&str, type, rtype, &atype,
1067 /*in_reg_list= */ FALSE);
1069 if (reg == PARSE_FAIL)
1080 static inline bfd_boolean
1081 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1085 && e1.defined == e2.defined
1086 && e1.width == e2.width && e1.index == e2.index;
1089 /* This function parses a list of vector registers of type TYPE.
1090 On success, it returns the parsed register list information in the
1091 following encoded format:
1093 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1094 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1096 The information of the register shape and/or index is returned in
1099 It returns PARSE_FAIL if the register list is invalid.
1101 The list contains one to four registers.
1102 Each register can be one of:
1105 All <T> should be identical.
1106 All <index> should be identical.
1107 There are restrictions on <Vt> numbers which are checked later
1108 (by reg_list_valid_p). */
1111 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1112 struct vector_type_el *vectype)
1116 struct vector_type_el typeinfo, typeinfo_first;
1121 bfd_boolean error = FALSE;
1122 bfd_boolean expect_index = FALSE;
1126 set_syntax_error (_("expecting {"));
1132 typeinfo_first.defined = 0;
1133 typeinfo_first.type = NT_invtype;
1134 typeinfo_first.width = -1;
1135 typeinfo_first.index = 0;
1144 str++; /* skip over '-' */
1147 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1148 /*in_reg_list= */ TRUE);
1149 if (val == PARSE_FAIL)
1151 set_first_syntax_error (_("invalid vector register in list"));
1155 /* reject [bhsd]n */
1156 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1158 set_first_syntax_error (_("invalid scalar register in list"));
1163 if (typeinfo.defined & NTA_HASINDEX)
1164 expect_index = TRUE;
1168 if (val < val_range)
1170 set_first_syntax_error
1171 (_("invalid range in vector register list"));
1180 typeinfo_first = typeinfo;
1181 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1183 set_first_syntax_error
1184 (_("type mismatch in vector register list"));
1189 for (i = val_range; i <= val; i++)
1191 ret_val |= i << (5 * nb_regs);
1196 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1198 skip_whitespace (str);
1201 set_first_syntax_error (_("end of vector register list not found"));
1206 skip_whitespace (str);
1210 if (skip_past_char (&str, '['))
1214 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1215 if (exp.X_op != O_constant)
1217 set_first_syntax_error (_("constant expression required."));
1220 if (! skip_past_char (&str, ']'))
1223 typeinfo_first.index = exp.X_add_number;
1227 set_first_syntax_error (_("expected index"));
1234 set_first_syntax_error (_("too many registers in vector register list"));
1237 else if (nb_regs == 0)
1239 set_first_syntax_error (_("empty vector register list"));
1245 *vectype = typeinfo_first;
1247 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1250 /* Directives: register aliases. */
1253 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1258 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1261 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1264 /* Only warn about a redefinition if it's not defined as the
1266 else if (new->number != number || new->type != type)
1267 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1272 name = xstrdup (str);
1273 new = XNEW (reg_entry);
1276 new->number = number;
1278 new->builtin = FALSE;
1280 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1286 /* Look for the .req directive. This is of the form:
1288 new_register_name .req existing_register_name
1290 If we find one, or if it looks sufficiently like one that we want to
1291 handle any error here, return TRUE. Otherwise return FALSE. */
1294 create_register_alias (char *newname, char *p)
1296 const reg_entry *old;
1297 char *oldname, *nbuf;
1300 /* The input scrubber ensures that whitespace after the mnemonic is
1301 collapsed to single spaces. */
1303 if (strncmp (oldname, " .req ", 6) != 0)
1307 if (*oldname == '\0')
1310 old = hash_find (aarch64_reg_hsh, oldname);
1313 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1317 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1318 the desired alias name, and p points to its end. If not, then
1319 the desired alias name is in the global original_case_string. */
1320 #ifdef TC_CASE_SENSITIVE
1323 newname = original_case_string;
1324 nlen = strlen (newname);
1327 nbuf = xmemdup0 (newname, nlen);
1329 /* Create aliases under the new name as stated; an all-lowercase
1330 version of the new name; and an all-uppercase version of the new
1332 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1334 for (p = nbuf; *p; p++)
1337 if (strncmp (nbuf, newname, nlen))
1339 /* If this attempt to create an additional alias fails, do not bother
1340 trying to create the all-lower case alias. We will fail and issue
1341 a second, duplicate error message. This situation arises when the
1342 programmer does something like:
1345 The second .req creates the "Foo" alias but then fails to create
1346 the artificial FOO alias because it has already been created by the
1348 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1355 for (p = nbuf; *p; p++)
1358 if (strncmp (nbuf, newname, nlen))
1359 insert_reg_alias (nbuf, old->number, old->type);
1366 /* Should never be called, as .req goes between the alias and the
1367 register name, not at the beginning of the line. */
1369 s_req (int a ATTRIBUTE_UNUSED)
1371 as_bad (_("invalid syntax for .req directive"));
1374 /* The .unreq directive deletes an alias which was previously defined
1375 by .req. For example:
1381 s_unreq (int a ATTRIBUTE_UNUSED)
1386 name = input_line_pointer;
1388 while (*input_line_pointer != 0
1389 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1390 ++input_line_pointer;
1392 saved_char = *input_line_pointer;
1393 *input_line_pointer = 0;
1396 as_bad (_("invalid syntax for .unreq directive"));
1399 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1402 as_bad (_("unknown register alias '%s'"), name);
1403 else if (reg->builtin)
1404 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1411 hash_delete (aarch64_reg_hsh, name, FALSE);
1412 free ((char *) reg->name);
1415 /* Also locate the all upper case and all lower case versions.
1416 Do not complain if we cannot find one or the other as it
1417 was probably deleted above. */
1419 nbuf = strdup (name);
1420 for (p = nbuf; *p; p++)
1422 reg = hash_find (aarch64_reg_hsh, nbuf);
1425 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1426 free ((char *) reg->name);
1430 for (p = nbuf; *p; p++)
1432 reg = hash_find (aarch64_reg_hsh, nbuf);
1435 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1436 free ((char *) reg->name);
1444 *input_line_pointer = saved_char;
1445 demand_empty_rest_of_line ();
1448 /* Directives: Instruction set selection. */
1451 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1452 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1453 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1454 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1456 /* Create a new mapping symbol for the transition to STATE. */
1459 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1462 const char *symname;
1469 type = BSF_NO_FLAGS;
1473 type = BSF_NO_FLAGS;
1479 symbolP = symbol_new (symname, now_seg, value, frag);
1480 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1482 /* Save the mapping symbols for future reference. Also check that
1483 we do not place two mapping symbols at the same offset within a
1484 frag. We'll handle overlap between frags in
1485 check_mapping_symbols.
1487 If .fill or other data filling directive generates zero sized data,
1488 the mapping symbol for the following code will have the same value
1489 as the one generated for the data filling directive. In this case,
1490 we replace the old symbol with the new one at the same address. */
1493 if (frag->tc_frag_data.first_map != NULL)
1495 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1496 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1499 frag->tc_frag_data.first_map = symbolP;
1501 if (frag->tc_frag_data.last_map != NULL)
1503 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1504 S_GET_VALUE (symbolP));
1505 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1506 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1509 frag->tc_frag_data.last_map = symbolP;
1512 /* We must sometimes convert a region marked as code to data during
1513 code alignment, if an odd number of bytes have to be padded. The
1514 code mapping symbol is pushed to an aligned address. */
1517 insert_data_mapping_symbol (enum mstate state,
1518 valueT value, fragS * frag, offsetT bytes)
1520 /* If there was already a mapping symbol, remove it. */
1521 if (frag->tc_frag_data.last_map != NULL
1522 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1523 frag->fr_address + value)
1525 symbolS *symp = frag->tc_frag_data.last_map;
1529 know (frag->tc_frag_data.first_map == symp);
1530 frag->tc_frag_data.first_map = NULL;
1532 frag->tc_frag_data.last_map = NULL;
1533 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1536 make_mapping_symbol (MAP_DATA, value, frag);
1537 make_mapping_symbol (state, value + bytes, frag);
1540 static void mapping_state_2 (enum mstate state, int max_chars);
1542 /* Set the mapping state to STATE. Only call this when about to
1543 emit some STATE bytes to the file. */
1546 mapping_state (enum mstate state)
1548 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1550 if (state == MAP_INSN)
1551 /* AArch64 instructions require 4-byte alignment. When emitting
1552 instructions into any section, record the appropriate section
1554 record_alignment (now_seg, 2);
1556 if (mapstate == state)
1557 /* The mapping symbol has already been emitted.
1558 There is nothing else to do. */
1561 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1562 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1563 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1564 evaluated later in the next else. */
1566 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1568 /* Only add the symbol if the offset is > 0:
1569 if we're at the first frag, check it's size > 0;
1570 if we're not at the first frag, then for sure
1571 the offset is > 0. */
1572 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1573 const int add_symbol = (frag_now != frag_first)
1574 || (frag_now_fix () > 0);
1577 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1581 mapping_state_2 (state, 0);
1584 /* Same as mapping_state, but MAX_CHARS bytes have already been
1585 allocated. Put the mapping symbol that far back. */
1588 mapping_state_2 (enum mstate state, int max_chars)
1590 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1592 if (!SEG_NORMAL (now_seg))
1595 if (mapstate == state)
1596 /* The mapping symbol has already been emitted.
1597 There is nothing else to do. */
1600 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1601 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1604 #define mapping_state(x) /* nothing */
1605 #define mapping_state_2(x, y) /* nothing */
1608 /* Directives: sectioning and alignment. */
1611 s_bss (int ignore ATTRIBUTE_UNUSED)
1613 /* We don't support putting frags in the BSS segment, we fake it by
1614 marking in_bss, then looking at s_skip for clues. */
1615 subseg_set (bss_section, 0);
1616 demand_empty_rest_of_line ();
1617 mapping_state (MAP_DATA);
1621 s_even (int ignore ATTRIBUTE_UNUSED)
1623 /* Never make frag if expect extra pass. */
1625 frag_align (1, 0, 0);
1627 record_alignment (now_seg, 1);
1629 demand_empty_rest_of_line ();
1632 /* Directives: Literal pools. */
1634 static literal_pool *
1635 find_literal_pool (int size)
1639 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1641 if (pool->section == now_seg
1642 && pool->sub_section == now_subseg && pool->size == size)
1649 static literal_pool *
1650 find_or_make_literal_pool (int size)
1652 /* Next literal pool ID number. */
1653 static unsigned int latest_pool_num = 1;
1656 pool = find_literal_pool (size);
1660 /* Create a new pool. */
1661 pool = XNEW (literal_pool);
1665 /* Currently we always put the literal pool in the current text
1666 section. If we were generating "small" model code where we
1667 knew that all code and initialised data was within 1MB then
1668 we could output literals to mergeable, read-only data
1671 pool->next_free_entry = 0;
1672 pool->section = now_seg;
1673 pool->sub_section = now_subseg;
1675 pool->next = list_of_pools;
1676 pool->symbol = NULL;
1678 /* Add it to the list. */
1679 list_of_pools = pool;
1682 /* New pools, and emptied pools, will have a NULL symbol. */
1683 if (pool->symbol == NULL)
1685 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1686 (valueT) 0, &zero_address_frag);
1687 pool->id = latest_pool_num++;
1694 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1695 Return TRUE on success, otherwise return FALSE. */
1697 add_to_lit_pool (expressionS *exp, int size)
1702 pool = find_or_make_literal_pool (size);
1704 /* Check if this literal value is already in the pool. */
1705 for (entry = 0; entry < pool->next_free_entry; entry++)
1707 expressionS * litexp = & pool->literals[entry].exp;
1709 if ((litexp->X_op == exp->X_op)
1710 && (exp->X_op == O_constant)
1711 && (litexp->X_add_number == exp->X_add_number)
1712 && (litexp->X_unsigned == exp->X_unsigned))
1715 if ((litexp->X_op == exp->X_op)
1716 && (exp->X_op == O_symbol)
1717 && (litexp->X_add_number == exp->X_add_number)
1718 && (litexp->X_add_symbol == exp->X_add_symbol)
1719 && (litexp->X_op_symbol == exp->X_op_symbol))
1723 /* Do we need to create a new entry? */
1724 if (entry == pool->next_free_entry)
1726 if (entry >= MAX_LITERAL_POOL_SIZE)
1728 set_syntax_error (_("literal pool overflow"));
1732 pool->literals[entry].exp = *exp;
1733 pool->next_free_entry += 1;
1734 if (exp->X_op == O_big)
1736 /* PR 16688: Bignums are held in a single global array. We must
1737 copy and preserve that value now, before it is overwritten. */
1738 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1740 memcpy (pool->literals[entry].bignum, generic_bignum,
1741 CHARS_PER_LITTLENUM * exp->X_add_number);
1744 pool->literals[entry].bignum = NULL;
1747 exp->X_op = O_symbol;
1748 exp->X_add_number = ((int) entry) * size;
1749 exp->X_add_symbol = pool->symbol;
1754 /* Can't use symbol_new here, so have to create a symbol and then at
1755 a later date assign it a value. That's what these functions do. */
1758 symbol_locate (symbolS * symbolP,
1759 const char *name,/* It is copied, the caller can modify. */
1760 segT segment, /* Segment identifier (SEG_<something>). */
1761 valueT valu, /* Symbol value. */
1762 fragS * frag) /* Associated fragment. */
1765 char *preserved_copy_of_name;
1767 name_length = strlen (name) + 1; /* +1 for \0. */
1768 obstack_grow (¬es, name, name_length);
1769 preserved_copy_of_name = obstack_finish (¬es);
1771 #ifdef tc_canonicalize_symbol_name
1772 preserved_copy_of_name =
1773 tc_canonicalize_symbol_name (preserved_copy_of_name);
1776 S_SET_NAME (symbolP, preserved_copy_of_name);
1778 S_SET_SEGMENT (symbolP, segment);
1779 S_SET_VALUE (symbolP, valu);
1780 symbol_clear_list_pointers (symbolP);
1782 symbol_set_frag (symbolP, frag);
1784 /* Link to end of symbol chain. */
1786 extern int symbol_table_frozen;
1788 if (symbol_table_frozen)
1792 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1794 obj_symbol_new_hook (symbolP);
1796 #ifdef tc_symbol_new_hook
1797 tc_symbol_new_hook (symbolP);
1801 verify_symbol_chain (symbol_rootP, symbol_lastP);
1802 #endif /* DEBUG_SYMS */
1807 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1814 for (align = 2; align <= 4; align++)
1816 int size = 1 << align;
1818 pool = find_literal_pool (size);
1819 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1822 /* Align pool as you have word accesses.
1823 Only make a frag if we have to. */
1825 frag_align (align, 0, 0);
1827 mapping_state (MAP_DATA);
1829 record_alignment (now_seg, align);
1831 sprintf (sym_name, "$$lit_\002%x", pool->id);
1833 symbol_locate (pool->symbol, sym_name, now_seg,
1834 (valueT) frag_now_fix (), frag_now);
1835 symbol_table_insert (pool->symbol);
1837 for (entry = 0; entry < pool->next_free_entry; entry++)
1839 expressionS * exp = & pool->literals[entry].exp;
1841 if (exp->X_op == O_big)
1843 /* PR 16688: Restore the global bignum value. */
1844 gas_assert (pool->literals[entry].bignum != NULL);
1845 memcpy (generic_bignum, pool->literals[entry].bignum,
1846 CHARS_PER_LITTLENUM * exp->X_add_number);
1849 /* First output the expression in the instruction to the pool. */
1850 emit_expr (exp, size); /* .word|.xword */
1852 if (exp->X_op == O_big)
1854 free (pool->literals[entry].bignum);
1855 pool->literals[entry].bignum = NULL;
1859 /* Mark the pool as empty. */
1860 pool->next_free_entry = 0;
1861 pool->symbol = NULL;
1866 /* Forward declarations for functions below, in the MD interface
1868 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1869 static struct reloc_table_entry * find_reloc_table_entry (char **);
1871 /* Directives: Data. */
1872 /* N.B. the support for relocation suffix in this directive needs to be
1873 implemented properly. */
1876 s_aarch64_elf_cons (int nbytes)
1880 #ifdef md_flush_pending_output
1881 md_flush_pending_output ();
1884 if (is_it_end_of_statement ())
1886 demand_empty_rest_of_line ();
1890 #ifdef md_cons_align
1891 md_cons_align (nbytes);
1894 mapping_state (MAP_DATA);
1897 struct reloc_table_entry *reloc;
1901 if (exp.X_op != O_symbol)
1902 emit_expr (&exp, (unsigned int) nbytes);
1905 skip_past_char (&input_line_pointer, '#');
1906 if (skip_past_char (&input_line_pointer, ':'))
1908 reloc = find_reloc_table_entry (&input_line_pointer);
1910 as_bad (_("unrecognized relocation suffix"));
1912 as_bad (_("unimplemented relocation suffix"));
1913 ignore_rest_of_line ();
1917 emit_expr (&exp, (unsigned int) nbytes);
1920 while (*input_line_pointer++ == ',');
1922 /* Put terminator back into stream. */
1923 input_line_pointer--;
1924 demand_empty_rest_of_line ();
1927 #endif /* OBJ_ELF */
1929 /* Output a 32-bit word, but mark as an instruction. */
1932 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1936 #ifdef md_flush_pending_output
1937 md_flush_pending_output ();
1940 if (is_it_end_of_statement ())
1942 demand_empty_rest_of_line ();
1946 /* Sections are assumed to start aligned. In executable section, there is no
1947 MAP_DATA symbol pending. So we only align the address during
1948 MAP_DATA --> MAP_INSN transition.
1949 For other sections, this is not guaranteed. */
1950 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1951 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1952 frag_align_code (2, 0);
1955 mapping_state (MAP_INSN);
1961 if (exp.X_op != O_constant)
1963 as_bad (_("constant expression required"));
1964 ignore_rest_of_line ();
1968 if (target_big_endian)
1970 unsigned int val = exp.X_add_number;
1971 exp.X_add_number = SWAP_32 (val);
1973 emit_expr (&exp, 4);
1975 while (*input_line_pointer++ == ',');
1977 /* Put terminator back into stream. */
1978 input_line_pointer--;
1979 demand_empty_rest_of_line ();
1983 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1986 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1992 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1993 BFD_RELOC_AARCH64_TLSDESC_ADD);
1995 demand_empty_rest_of_line ();
1998 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2001 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2005 /* Since we're just labelling the code, there's no need to define a
2008 /* Make sure there is enough room in this frag for the following
2009 blr. This trick only works if the blr follows immediately after
2010 the .tlsdesc directive. */
2012 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2013 BFD_RELOC_AARCH64_TLSDESC_CALL);
2015 demand_empty_rest_of_line ();
2018 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2021 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2027 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2028 BFD_RELOC_AARCH64_TLSDESC_LDR);
2030 demand_empty_rest_of_line ();
2032 #endif /* OBJ_ELF */
2034 static void s_aarch64_arch (int);
2035 static void s_aarch64_cpu (int);
2036 static void s_aarch64_arch_extension (int);
2038 /* This table describes all the machine specific pseudo-ops the assembler
2039 has to support. The fields are:
2040 pseudo-op name without dot
2041 function to call to execute this pseudo-op
2042 Integer arg to pass to the function. */
2044 const pseudo_typeS md_pseudo_table[] = {
2045 /* Never called because '.req' does not start a line. */
2047 {"unreq", s_unreq, 0},
2049 {"even", s_even, 0},
2050 {"ltorg", s_ltorg, 0},
2051 {"pool", s_ltorg, 0},
2052 {"cpu", s_aarch64_cpu, 0},
2053 {"arch", s_aarch64_arch, 0},
2054 {"arch_extension", s_aarch64_arch_extension, 0},
2055 {"inst", s_aarch64_inst, 0},
2057 {"tlsdescadd", s_tlsdescadd, 0},
2058 {"tlsdesccall", s_tlsdesccall, 0},
2059 {"tlsdescldr", s_tlsdescldr, 0},
2060 {"word", s_aarch64_elf_cons, 4},
2061 {"long", s_aarch64_elf_cons, 4},
2062 {"xword", s_aarch64_elf_cons, 8},
2063 {"dword", s_aarch64_elf_cons, 8},
2069 /* Check whether STR points to a register name followed by a comma or the
2070 end of line; REG_TYPE indicates which register types are checked
2071 against. Return TRUE if STR is such a register name; otherwise return
2072 FALSE. The function does not intend to produce any diagnostics, but since
2073 the register parser aarch64_reg_parse, which is called by this function,
2074 does produce diagnostics, we call clear_error to clear any diagnostics
2075 that may be generated by aarch64_reg_parse.
2076 Also, the function returns FALSE directly if there is any user error
2077 present at the function entry. This prevents the existing diagnostics
2078 state from being spoiled.
2079 The function currently serves parse_constant_immediate and
2080 parse_big_immediate only. */
2082 reg_name_p (char *str, aarch64_reg_type reg_type)
2086 /* Prevent the diagnostics state from being spoiled. */
2090 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2092 /* Clear the parsing error that may be set by the reg parser. */
2095 if (reg == PARSE_FAIL)
2098 skip_whitespace (str);
2099 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2105 /* Parser functions used exclusively in instruction operands. */
2107 /* Parse an immediate expression which may not be constant.
2109 To prevent the expression parser from pushing a register name
2110 into the symbol table as an undefined symbol, firstly a check is
2111 done to find out whether STR is a register of type REG_TYPE followed
2112 by a comma or the end of line. Return FALSE if STR is such a string. */
2115 parse_immediate_expression (char **str, expressionS *exp,
2116 aarch64_reg_type reg_type)
2118 if (reg_name_p (*str, reg_type))
2120 set_recoverable_error (_("immediate operand required"));
2124 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2126 if (exp->X_op == O_absent)
2128 set_fatal_syntax_error (_("missing immediate expression"));
2135 /* Constant immediate-value read function for use in insn parsing.
2136 STR points to the beginning of the immediate (with the optional
2137 leading #); *VAL receives the value. REG_TYPE says which register
2138 names should be treated as registers rather than as symbolic immediates.
2140 Return TRUE on success; otherwise return FALSE. */
2143 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2147 if (! parse_immediate_expression (str, &exp, reg_type))
2150 if (exp.X_op != O_constant)
2152 set_syntax_error (_("constant expression required"));
2156 *val = exp.X_add_number;
2161 encode_imm_float_bits (uint32_t imm)
2163 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2164 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2167 /* Return TRUE if the single-precision floating-point value encoded in IMM
2168 can be expressed in the AArch64 8-bit signed floating-point format with
2169 3-bit exponent and normalized 4 bits of precision; in other words, the
2170 floating-point value must be expressable as
2171 (+/-) n / 16 * power (2, r)
2172 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2175 aarch64_imm_float_p (uint32_t imm)
2177 /* If a single-precision floating-point value has the following bit
2178 pattern, it can be expressed in the AArch64 8-bit floating-point
2181 3 32222222 2221111111111
2182 1 09876543 21098765432109876543210
2183 n Eeeeeexx xxxx0000000000000000000
2185 where n, e and each x are either 0 or 1 independently, with
2190 /* Prepare the pattern for 'Eeeeee'. */
2191 if (((imm >> 30) & 0x1) == 0)
2192 pattern = 0x3e000000;
2194 pattern = 0x40000000;
2196 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2197 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2200 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2201 as an IEEE float without any loss of precision. Store the value in
2205 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2207 /* If a double-precision floating-point value has the following bit
2208 pattern, it can be expressed in a float:
2210 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2211 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2212 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2214 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2215 if Eeee_eeee != 1111_1111
2217 where n, e, s and S are either 0 or 1 independently and where ~ is the
2221 uint32_t high32 = imm >> 32;
2222 uint32_t low32 = imm;
2224 /* Lower 29 bits need to be 0s. */
2225 if ((imm & 0x1fffffff) != 0)
2228 /* Prepare the pattern for 'Eeeeeeeee'. */
2229 if (((high32 >> 30) & 0x1) == 0)
2230 pattern = 0x38000000;
2232 pattern = 0x40000000;
2235 if ((high32 & 0x78000000) != pattern)
2238 /* Check Eeee_eeee != 1111_1111. */
2239 if ((high32 & 0x7ff00000) == 0x47f00000)
2242 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2243 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2244 | (low32 >> 29)); /* 3 S bits. */
2248 /* Return true if we should treat OPERAND as a double-precision
2249 floating-point operand rather than a single-precision one. */
2251 double_precision_operand_p (const aarch64_opnd_info *operand)
2253 /* Check for unsuffixed SVE registers, which are allowed
2254 for LDR and STR but not in instructions that require an
2255 immediate. We get better error messages if we arbitrarily
2256 pick one size, parse the immediate normally, and then
2257 report the match failure in the normal way. */
2258 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2259 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2262 /* Parse a floating-point immediate. Return TRUE on success and return the
2263 value in *IMMED in the format of IEEE754 single-precision encoding.
2264 *CCP points to the start of the string; DP_P is TRUE when the immediate
2265 is expected to be in double-precision (N.B. this only matters when
2266 hexadecimal representation is involved). REG_TYPE says which register
2267 names should be treated as registers rather than as symbolic immediates.
2269 This routine accepts any IEEE float; it is up to the callers to reject
2273 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2274 aarch64_reg_type reg_type)
2278 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2279 int found_fpchar = 0;
2281 unsigned fpword = 0;
2282 bfd_boolean hex_p = FALSE;
2284 skip_past_char (&str, '#');
2287 skip_whitespace (fpnum);
2289 if (strncmp (fpnum, "0x", 2) == 0)
2291 /* Support the hexadecimal representation of the IEEE754 encoding.
2292 Double-precision is expected when DP_P is TRUE, otherwise the
2293 representation should be in single-precision. */
2294 if (! parse_constant_immediate (&str, &val, reg_type))
2299 if (!can_convert_double_to_float (val, &fpword))
2302 else if ((uint64_t) val > 0xffffffff)
2311 if (reg_name_p (str, reg_type))
2313 set_recoverable_error (_("immediate operand required"));
2317 /* We must not accidentally parse an integer as a floating-point number.
2318 Make sure that the value we parse is not an integer by checking for
2319 special characters '.' or 'e'. */
2320 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2321 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2335 if ((str = atof_ieee (str, 's', words)) == NULL)
2338 /* Our FP word must be 32 bits (single-precision FP). */
2339 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2341 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2351 set_fatal_syntax_error (_("invalid floating-point constant"));
2355 /* Less-generic immediate-value read function with the possibility of loading
2356 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2359 To prevent the expression parser from pushing a register name into the
2360 symbol table as an undefined symbol, a check is firstly done to find
2361 out whether STR is a register of type REG_TYPE followed by a comma or
2362 the end of line. Return FALSE if STR is such a register. */
2365 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2369 if (reg_name_p (ptr, reg_type))
2371 set_syntax_error (_("immediate operand required"));
2375 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2377 if (inst.reloc.exp.X_op == O_constant)
2378 *imm = inst.reloc.exp.X_add_number;
2385 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2386 if NEED_LIBOPCODES is non-zero, the fixup will need
2387 assistance from the libopcodes. */
2390 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2391 const aarch64_opnd_info *operand,
2392 int need_libopcodes_p)
2394 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2395 reloc->opnd = operand->type;
2396 if (need_libopcodes_p)
2397 reloc->need_libopcodes_p = 1;
2400 /* Return TRUE if the instruction needs to be fixed up later internally by
2401 the GAS; otherwise return FALSE. */
2403 static inline bfd_boolean
2404 aarch64_gas_internal_fixup_p (void)
2406 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2409 /* Assign the immediate value to the relevant field in *OPERAND if
2410 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2411 needs an internal fixup in a later stage.
2412 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2413 IMM.VALUE that may get assigned with the constant. */
2415 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2416 aarch64_opnd_info *operand,
2418 int need_libopcodes_p,
2421 if (reloc->exp.X_op == O_constant)
2424 operand->addr.offset.imm = reloc->exp.X_add_number;
2426 operand->imm.value = reloc->exp.X_add_number;
2427 reloc->type = BFD_RELOC_UNUSED;
2431 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2432 /* Tell libopcodes to ignore this operand or not. This is helpful
2433 when one of the operands needs to be fixed up later but we need
2434 libopcodes to check the other operands. */
2435 operand->skip = skip_p;
2439 /* Relocation modifiers. Each entry in the table contains the textual
2440 name for the relocation which may be placed before a symbol used as
2441 a load/store offset, or add immediate. It must be surrounded by a
2442 leading and trailing colon, for example:
2444 ldr x0, [x1, #:rello:varsym]
2445 add x0, x1, #:rello:varsym */
2447 struct reloc_table_entry
2451 bfd_reloc_code_real_type adr_type;
2452 bfd_reloc_code_real_type adrp_type;
2453 bfd_reloc_code_real_type movw_type;
2454 bfd_reloc_code_real_type add_type;
2455 bfd_reloc_code_real_type ldst_type;
2456 bfd_reloc_code_real_type ld_literal_type;
2459 static struct reloc_table_entry reloc_table[] = {
2460 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2465 BFD_RELOC_AARCH64_ADD_LO12,
2466 BFD_RELOC_AARCH64_LDST_LO12,
2469 /* Higher 21 bits of pc-relative page offset: ADRP */
2472 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2478 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2481 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2487 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2491 BFD_RELOC_AARCH64_MOVW_G0,
2496 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2500 BFD_RELOC_AARCH64_MOVW_G0_S,
2505 /* Less significant bits 0-15 of address/value: MOVK, no check */
2509 BFD_RELOC_AARCH64_MOVW_G0_NC,
2514 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2518 BFD_RELOC_AARCH64_MOVW_G1,
2523 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2527 BFD_RELOC_AARCH64_MOVW_G1_S,
2532 /* Less significant bits 16-31 of address/value: MOVK, no check */
2536 BFD_RELOC_AARCH64_MOVW_G1_NC,
2541 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2545 BFD_RELOC_AARCH64_MOVW_G2,
2550 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2554 BFD_RELOC_AARCH64_MOVW_G2_S,
2559 /* Less significant bits 32-47 of address/value: MOVK, no check */
2563 BFD_RELOC_AARCH64_MOVW_G2_NC,
2568 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2572 BFD_RELOC_AARCH64_MOVW_G3,
2577 /* Get to the page containing GOT entry for a symbol. */
2580 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2584 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2586 /* 12 bit offset into the page containing GOT entry for that symbol. */
2592 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2595 /* 0-15 bits of address/value: MOVk, no check. */
2599 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2604 /* Most significant bits 16-31 of address/value: MOVZ. */
2608 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2613 /* 15 bit offset into the page containing GOT entry for that symbol. */
2619 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2622 /* Get to the page containing GOT TLS entry for a symbol */
2623 {"gottprel_g0_nc", 0,
2626 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2631 /* Get to the page containing GOT TLS entry for a symbol */
2635 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2640 /* Get to the page containing GOT TLS entry for a symbol */
2642 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2643 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2649 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2654 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2658 /* Lower 16 bits address/value: MOVk. */
2662 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2667 /* Most significant bits 16-31 of address/value: MOVZ. */
2671 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2676 /* Get to the page containing GOT TLS entry for a symbol */
2678 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2679 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2683 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2685 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2690 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
2691 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2694 /* Get to the page containing GOT TLS entry for a symbol.
2695 The same as GD, we allocate two consecutive GOT slots
2696 for module index and module offset, the only difference
2697 with GD is the module offset should be initialized to
2698 zero without any outstanding runtime relocation. */
2700 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2701 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2707 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2708 {"tlsldm_lo12_nc", 0,
2712 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2716 /* 12 bit offset into the module TLS base address. */
2721 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2722 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2725 /* Same as dtprel_lo12, no overflow check. */
2726 {"dtprel_lo12_nc", 0,
2730 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2731 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2734 /* bits[23:12] of offset to the module TLS base address. */
2739 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2743 /* bits[15:0] of offset to the module TLS base address. */
2747 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2752 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2756 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2761 /* bits[31:16] of offset to the module TLS base address. */
2765 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2770 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2774 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2779 /* bits[47:32] of offset to the module TLS base address. */
2783 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2788 /* Lower 16 bit offset into GOT entry for a symbol */
2789 {"tlsdesc_off_g0_nc", 0,
2792 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2797 /* Higher 16 bit offset into GOT entry for a symbol */
2798 {"tlsdesc_off_g1", 0,
2801 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2806 /* Get to the page containing GOT TLS entry for a symbol */
2809 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2813 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2815 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2816 {"gottprel_lo12", 0,
2821 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2824 /* Get tp offset for a symbol. */
2829 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2833 /* Get tp offset for a symbol. */
2838 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2842 /* Get tp offset for a symbol. */
2847 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2851 /* Get tp offset for a symbol. */
2852 {"tprel_lo12_nc", 0,
2856 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2860 /* Most significant bits 32-47 of address/value: MOVZ. */
2864 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2869 /* Most significant bits 16-31 of address/value: MOVZ. */
2873 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2878 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2882 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2887 /* Most significant bits 0-15 of address/value: MOVZ. */
2891 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2896 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2900 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2905 /* 15bit offset from got entry to base address of GOT table. */
2911 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2914 /* 14bit offset from got entry to base address of GOT table. */
2920 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2924 /* Given the address of a pointer pointing to the textual name of a
2925 relocation as may appear in assembler source, attempt to find its
2926 details in reloc_table. The pointer will be updated to the character
2927 after the trailing colon. On failure, NULL will be returned;
2928 otherwise return the reloc_table_entry. */
2930 static struct reloc_table_entry *
2931 find_reloc_table_entry (char **str)
2934 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2936 int length = strlen (reloc_table[i].name);
2938 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2939 && (*str)[length] == ':')
2941 *str += (length + 1);
2942 return &reloc_table[i];
2949 /* Mode argument to parse_shift and parser_shifter_operand. */
2950 enum parse_shift_mode
2952 SHIFTED_NONE, /* no shifter allowed */
2953 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2955 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2957 SHIFTED_LSL, /* bare "lsl #n" */
2958 SHIFTED_MUL, /* bare "mul #n" */
2959 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2960 SHIFTED_MUL_VL, /* "mul vl" */
2961 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2964 /* Parse a <shift> operator on an AArch64 data processing instruction.
2965 Return TRUE on success; otherwise return FALSE. */
2967 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2969 const struct aarch64_name_value_pair *shift_op;
2970 enum aarch64_modifier_kind kind;
2976 for (p = *str; ISALPHA (*p); p++)
2981 set_syntax_error (_("shift expression expected"));
2985 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2987 if (shift_op == NULL)
2989 set_syntax_error (_("shift operator expected"));
2993 kind = aarch64_get_operand_modifier (shift_op);
2995 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2997 set_syntax_error (_("invalid use of 'MSL'"));
3001 if (kind == AARCH64_MOD_MUL
3002 && mode != SHIFTED_MUL
3003 && mode != SHIFTED_MUL_VL)
3005 set_syntax_error (_("invalid use of 'MUL'"));
3011 case SHIFTED_LOGIC_IMM:
3012 if (aarch64_extend_operator_p (kind))
3014 set_syntax_error (_("extending shift is not permitted"));
3019 case SHIFTED_ARITH_IMM:
3020 if (kind == AARCH64_MOD_ROR)
3022 set_syntax_error (_("'ROR' shift is not permitted"));
3028 if (kind != AARCH64_MOD_LSL)
3030 set_syntax_error (_("only 'LSL' shift is permitted"));
3036 if (kind != AARCH64_MOD_MUL)
3038 set_syntax_error (_("only 'MUL' is permitted"));
3043 case SHIFTED_MUL_VL:
3044 /* "MUL VL" consists of two separate tokens. Require the first
3045 token to be "MUL" and look for a following "VL". */
3046 if (kind == AARCH64_MOD_MUL)
3048 skip_whitespace (p);
3049 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3052 kind = AARCH64_MOD_MUL_VL;
3056 set_syntax_error (_("only 'MUL VL' is permitted"));
3059 case SHIFTED_REG_OFFSET:
3060 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3061 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3063 set_fatal_syntax_error
3064 (_("invalid shift for the register offset addressing mode"));
3069 case SHIFTED_LSL_MSL:
3070 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3072 set_syntax_error (_("invalid shift operator"));
3081 /* Whitespace can appear here if the next thing is a bare digit. */
3082 skip_whitespace (p);
3084 /* Parse shift amount. */
3086 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3087 exp.X_op = O_absent;
3090 if (is_immediate_prefix (*p))
3095 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3097 if (kind == AARCH64_MOD_MUL_VL)
3098 /* For consistency, give MUL VL the same shift amount as an implicit
3100 operand->shifter.amount = 1;
3101 else if (exp.X_op == O_absent)
3103 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
3105 set_syntax_error (_("missing shift amount"));
3108 operand->shifter.amount = 0;
3110 else if (exp.X_op != O_constant)
3112 set_syntax_error (_("constant shift amount required"));
3115 /* For parsing purposes, MUL #n has no inherent range. The range
3116 depends on the operand and will be checked by operand-specific
3118 else if (kind != AARCH64_MOD_MUL
3119 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3121 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3126 operand->shifter.amount = exp.X_add_number;
3127 operand->shifter.amount_present = 1;
3130 operand->shifter.operator_present = 1;
3131 operand->shifter.kind = kind;
3137 /* Parse a <shifter_operand> for a data processing instruction:
3140 #<immediate>, LSL #imm
3142 Validation of immediate operands is deferred to md_apply_fix.
3144 Return TRUE on success; otherwise return FALSE. */
3147 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3148 enum parse_shift_mode mode)
3152 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3157 /* Accept an immediate expression. */
3158 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3161 /* Accept optional LSL for arithmetic immediate values. */
3162 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3163 if (! parse_shift (&p, operand, SHIFTED_LSL))
3166 /* Not accept any shifter for logical immediate values. */
3167 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3168 && parse_shift (&p, operand, mode))
3170 set_syntax_error (_("unexpected shift operator"));
3178 /* Parse a <shifter_operand> for a data processing instruction:
3183 #<immediate>, LSL #imm
3185 where <shift> is handled by parse_shift above, and the last two
3186 cases are handled by the function above.
3188 Validation of immediate operands is deferred to md_apply_fix.
3190 Return TRUE on success; otherwise return FALSE. */
3193 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3194 enum parse_shift_mode mode)
3196 const reg_entry *reg;
3197 aarch64_opnd_qualifier_t qualifier;
3198 enum aarch64_operand_class opd_class
3199 = aarch64_get_operand_class (operand->type);
3201 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3204 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3206 set_syntax_error (_("unexpected register in the immediate operand"));
3210 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3212 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3216 operand->reg.regno = reg->number;
3217 operand->qualifier = qualifier;
3219 /* Accept optional shift operation on register. */
3220 if (! skip_past_comma (str))
3223 if (! parse_shift (str, operand, mode))
3228 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3231 (_("integer register expected in the extended/shifted operand "
3236 /* We have a shifted immediate variable. */
3237 return parse_shifter_operand_imm (str, operand, mode);
3240 /* Return TRUE on success; return FALSE otherwise. */
3243 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3244 enum parse_shift_mode mode)
3248 /* Determine if we have the sequence of characters #: or just :
3249 coming next. If we do, then we check for a :rello: relocation
3250 modifier. If we don't, punt the whole lot to
3251 parse_shifter_operand. */
3253 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3255 struct reloc_table_entry *entry;
3263 /* Try to parse a relocation. Anything else is an error. */
3264 if (!(entry = find_reloc_table_entry (str)))
3266 set_syntax_error (_("unknown relocation modifier"));
3270 if (entry->add_type == 0)
3273 (_("this relocation modifier is not allowed on this instruction"));
3277 /* Save str before we decompose it. */
3280 /* Next, we parse the expression. */
3281 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3284 /* Record the relocation type (use the ADD variant here). */
3285 inst.reloc.type = entry->add_type;
3286 inst.reloc.pc_rel = entry->pc_rel;
3288 /* If str is empty, we've reached the end, stop here. */
3292 /* Otherwise, we have a shifted reloc modifier, so rewind to
3293 recover the variable name and continue parsing for the shifter. */
3295 return parse_shifter_operand_imm (str, operand, mode);
3298 return parse_shifter_operand (str, operand, mode);
3301 /* Parse all forms of an address expression. Information is written
3302 to *OPERAND and/or inst.reloc.
3304 The A64 instruction set has the following addressing modes:
3307 [base] // in SIMD ld/st structure
3308 [base{,#0}] // in ld/st exclusive
3310 [base,Xm{,LSL #imm}]
3311 [base,Xm,SXTX {#imm}]
3312 [base,Wm,(S|U)XTW {#imm}]
3317 [base],Xm // in SIMD ld/st structure
3318 PC-relative (literal)
3322 [base,Zm.D{,LSL #imm}]
3323 [base,Zm.S,(S|U)XTW {#imm}]
3324 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3327 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3328 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3329 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3331 (As a convenience, the notation "=immediate" is permitted in conjunction
3332 with the pc-relative literal load instructions to automatically place an
3333 immediate value or symbolic address in a nearby literal pool and generate
3334 a hidden label which references it.)
3336 Upon a successful parsing, the address structure in *OPERAND will be
3337 filled in the following way:
3339 .base_regno = <base>
3340 .offset.is_reg // 1 if the offset is a register
3342 .offset.regno = <Rm>
3344 For different addressing modes defined in the A64 ISA:
3347 .pcrel=0; .preind=1; .postind=0; .writeback=0
3349 .pcrel=0; .preind=1; .postind=0; .writeback=1
3351 .pcrel=0; .preind=0; .postind=1; .writeback=1
3352 PC-relative (literal)
3353 .pcrel=1; .preind=1; .postind=0; .writeback=0
3355 The shift/extension information, if any, will be stored in .shifter.
3356 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3357 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3358 corresponding register.
3360 BASE_TYPE says which types of base register should be accepted and
3361 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3362 is the type of shifter that is allowed for immediate offsets,
3363 or SHIFTED_NONE if none.
3365 In all other respects, it is the caller's responsibility to check
3366 for addressing modes not supported by the instruction, and to set
3370 parse_address_main (char **str, aarch64_opnd_info *operand,
3371 aarch64_opnd_qualifier_t *base_qualifier,
3372 aarch64_opnd_qualifier_t *offset_qualifier,
3373 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3374 enum parse_shift_mode imm_shift_mode)
3377 const reg_entry *reg;
3378 expressionS *exp = &inst.reloc.exp;
3380 *base_qualifier = AARCH64_OPND_QLF_NIL;
3381 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3382 if (! skip_past_char (&p, '['))
3384 /* =immediate or label. */
3385 operand->addr.pcrel = 1;
3386 operand->addr.preind = 1;
3388 /* #:<reloc_op>:<symbol> */
3389 skip_past_char (&p, '#');
3390 if (skip_past_char (&p, ':'))
3392 bfd_reloc_code_real_type ty;
3393 struct reloc_table_entry *entry;
3395 /* Try to parse a relocation modifier. Anything else is
3397 entry = find_reloc_table_entry (&p);
3400 set_syntax_error (_("unknown relocation modifier"));
3404 switch (operand->type)
3406 case AARCH64_OPND_ADDR_PCREL21:
3408 ty = entry->adr_type;
3412 ty = entry->ld_literal_type;
3419 (_("this relocation modifier is not allowed on this "
3425 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3427 set_syntax_error (_("invalid relocation expression"));
3431 /* #:<reloc_op>:<expr> */
3432 /* Record the relocation type. */
3433 inst.reloc.type = ty;
3434 inst.reloc.pc_rel = entry->pc_rel;
3439 if (skip_past_char (&p, '='))
3440 /* =immediate; need to generate the literal in the literal pool. */
3441 inst.gen_lit_pool = 1;
3443 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3445 set_syntax_error (_("invalid address"));
3456 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3457 if (!reg || !aarch64_check_reg_type (reg, base_type))
3459 set_syntax_error (_(get_reg_expected_msg (base_type)));
3462 operand->addr.base_regno = reg->number;
3465 if (skip_past_comma (&p))
3468 operand->addr.preind = 1;
3470 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3473 if (!aarch64_check_reg_type (reg, offset_type))
3475 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3480 operand->addr.offset.regno = reg->number;
3481 operand->addr.offset.is_reg = 1;
3482 /* Shifted index. */
3483 if (skip_past_comma (&p))
3486 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3487 /* Use the diagnostics set in parse_shift, so not set new
3488 error message here. */
3492 [base,Xm{,LSL #imm}]
3493 [base,Xm,SXTX {#imm}]
3494 [base,Wm,(S|U)XTW {#imm}] */
3495 if (operand->shifter.kind == AARCH64_MOD_NONE
3496 || operand->shifter.kind == AARCH64_MOD_LSL
3497 || operand->shifter.kind == AARCH64_MOD_SXTX)
3499 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3501 set_syntax_error (_("invalid use of 32-bit register offset"));
3504 if (aarch64_get_qualifier_esize (*base_qualifier)
3505 != aarch64_get_qualifier_esize (*offset_qualifier))
3507 set_syntax_error (_("offset has different size from base"));
3511 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3513 set_syntax_error (_("invalid use of 64-bit register offset"));
3519 /* [Xn,#:<reloc_op>:<symbol> */
3520 skip_past_char (&p, '#');
3521 if (skip_past_char (&p, ':'))
3523 struct reloc_table_entry *entry;
3525 /* Try to parse a relocation modifier. Anything else is
3527 if (!(entry = find_reloc_table_entry (&p)))
3529 set_syntax_error (_("unknown relocation modifier"));
3533 if (entry->ldst_type == 0)
3536 (_("this relocation modifier is not allowed on this "
3541 /* [Xn,#:<reloc_op>: */
3542 /* We now have the group relocation table entry corresponding to
3543 the name in the assembler source. Next, we parse the
3545 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3547 set_syntax_error (_("invalid relocation expression"));
3551 /* [Xn,#:<reloc_op>:<expr> */
3552 /* Record the load/store relocation type. */
3553 inst.reloc.type = entry->ldst_type;
3554 inst.reloc.pc_rel = entry->pc_rel;
3558 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3560 set_syntax_error (_("invalid expression in the address"));
3564 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3565 /* [Xn,<expr>,<shifter> */
3566 if (! parse_shift (&p, operand, imm_shift_mode))
3572 if (! skip_past_char (&p, ']'))
3574 set_syntax_error (_("']' expected"));
3578 if (skip_past_char (&p, '!'))
3580 if (operand->addr.preind && operand->addr.offset.is_reg)
3582 set_syntax_error (_("register offset not allowed in pre-indexed "
3583 "addressing mode"));
3587 operand->addr.writeback = 1;
3589 else if (skip_past_comma (&p))
3592 operand->addr.postind = 1;
3593 operand->addr.writeback = 1;
3595 if (operand->addr.preind)
3597 set_syntax_error (_("cannot combine pre- and post-indexing"));
3601 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3605 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3607 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3611 operand->addr.offset.regno = reg->number;
3612 operand->addr.offset.is_reg = 1;
3614 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3617 set_syntax_error (_("invalid expression in the address"));
3622 /* If at this point neither .preind nor .postind is set, we have a
3623 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3624 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3626 if (operand->addr.writeback)
3629 set_syntax_error (_("missing offset in the pre-indexed address"));
3632 operand->addr.preind = 1;
3633 inst.reloc.exp.X_op = O_constant;
3634 inst.reloc.exp.X_add_number = 0;
3641 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3644 parse_address (char **str, aarch64_opnd_info *operand)
3646 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3647 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3648 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3651 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3652 The arguments have the same meaning as for parse_address_main.
3653 Return TRUE on success. */
3655 parse_sve_address (char **str, aarch64_opnd_info *operand,
3656 aarch64_opnd_qualifier_t *base_qualifier,
3657 aarch64_opnd_qualifier_t *offset_qualifier)
3659 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3660 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3664 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3665 Return TRUE on success; otherwise return FALSE. */
3667 parse_half (char **str, int *internal_fixup_p)
3671 skip_past_char (&p, '#');
3673 gas_assert (internal_fixup_p);
3674 *internal_fixup_p = 0;
3678 struct reloc_table_entry *entry;
3680 /* Try to parse a relocation. Anything else is an error. */
3682 if (!(entry = find_reloc_table_entry (&p)))
3684 set_syntax_error (_("unknown relocation modifier"));
3688 if (entry->movw_type == 0)
3691 (_("this relocation modifier is not allowed on this instruction"));
3695 inst.reloc.type = entry->movw_type;
3698 *internal_fixup_p = 1;
3700 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3707 /* Parse an operand for an ADRP instruction:
3709 Return TRUE on success; otherwise return FALSE. */
3712 parse_adrp (char **str)
3719 struct reloc_table_entry *entry;
3721 /* Try to parse a relocation. Anything else is an error. */
3723 if (!(entry = find_reloc_table_entry (&p)))
3725 set_syntax_error (_("unknown relocation modifier"));
3729 if (entry->adrp_type == 0)
3732 (_("this relocation modifier is not allowed on this instruction"));
3736 inst.reloc.type = entry->adrp_type;
3739 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3741 inst.reloc.pc_rel = 1;
3743 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3750 /* Miscellaneous. */
3752 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3753 of SIZE tokens in which index I gives the token for field value I,
3754 or is null if field value I is invalid. REG_TYPE says which register
3755 names should be treated as registers rather than as symbolic immediates.
3757 Return true on success, moving *STR past the operand and storing the
3758 field value in *VAL. */
3761 parse_enum_string (char **str, int64_t *val, const char *const *array,
3762 size_t size, aarch64_reg_type reg_type)
3768 /* Match C-like tokens. */
3770 while (ISALNUM (*q))
3773 for (i = 0; i < size; ++i)
3775 && strncasecmp (array[i], p, q - p) == 0
3776 && array[i][q - p] == 0)
3783 if (!parse_immediate_expression (&p, &exp, reg_type))
3786 if (exp.X_op == O_constant
3787 && (uint64_t) exp.X_add_number < size)
3789 *val = exp.X_add_number;
3794 /* Use the default error for this operand. */
3798 /* Parse an option for a preload instruction. Returns the encoding for the
3799 option, or PARSE_FAIL. */
3802 parse_pldop (char **str)
3805 const struct aarch64_name_value_pair *o;
3808 while (ISALNUM (*q))
3811 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3819 /* Parse an option for a barrier instruction. Returns the encoding for the
3820 option, or PARSE_FAIL. */
3823 parse_barrier (char **str)
3826 const asm_barrier_opt *o;
3829 while (ISALPHA (*q))
3832 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3840 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3841 return 0 if successful. Otherwise return PARSE_FAIL. */
3844 parse_barrier_psb (char **str,
3845 const struct aarch64_name_value_pair ** hint_opt)
3848 const struct aarch64_name_value_pair *o;
3851 while (ISALPHA (*q))
3854 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3857 set_fatal_syntax_error
3858 ( _("unknown or missing option to PSB"));
3862 if (o->value != 0x11)
3864 /* PSB only accepts option name 'CSYNC'. */
3866 (_("the specified option is not accepted for PSB"));
3875 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3876 Returns the encoding for the option, or PARSE_FAIL.
3878 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3879 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3881 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3882 field, otherwise as a system register.
3886 parse_sys_reg (char **str, struct hash_control *sys_regs,
3887 int imple_defined_p, int pstatefield_p)
3891 const aarch64_sys_reg *o;
3895 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3897 *p++ = TOLOWER (*q);
3899 /* Assert that BUF be large enough. */
3900 gas_assert (p - buf == q - *str);
3902 o = hash_find (sys_regs, buf);
3905 if (!imple_defined_p)
3909 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3910 unsigned int op0, op1, cn, cm, op2;
3912 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3915 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3917 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3922 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3923 as_bad (_("selected processor does not support PSTATE field "
3925 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3926 as_bad (_("selected processor does not support system register "
3928 if (aarch64_sys_reg_deprecated_p (o))
3929 as_warn (_("system register name '%s' is deprecated and may be "
3930 "removed in a future release"), buf);
3938 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3939 for the option, or NULL. */
3941 static const aarch64_sys_ins_reg *
3942 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3946 const aarch64_sys_ins_reg *o;
3949 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3951 *p++ = TOLOWER (*q);
3954 o = hash_find (sys_ins_regs, buf);
3958 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3959 as_bad (_("selected processor does not support system register "
3966 #define po_char_or_fail(chr) do { \
3967 if (! skip_past_char (&str, chr)) \
3971 #define po_reg_or_fail(regtype) do { \
3972 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3973 if (val == PARSE_FAIL) \
3975 set_default_error (); \
3980 #define po_int_reg_or_fail(reg_type) do { \
3981 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
3982 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
3984 set_default_error (); \
3987 info->reg.regno = reg->number; \
3988 info->qualifier = qualifier; \
3991 #define po_imm_nc_or_fail() do { \
3992 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3996 #define po_imm_or_fail(min, max) do { \
3997 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3999 if (val < min || val > max) \
4001 set_fatal_syntax_error (_("immediate value out of range "\
4002 #min " to "#max)); \
4007 #define po_enum_or_fail(array) do { \
4008 if (!parse_enum_string (&str, &val, array, \
4009 ARRAY_SIZE (array), imm_reg_type)) \
4013 #define po_misc_or_fail(expr) do { \
4018 /* encode the 12-bit imm field of Add/sub immediate */
4019 static inline uint32_t
4020 encode_addsub_imm (uint32_t imm)
4025 /* encode the shift amount field of Add/sub immediate */
4026 static inline uint32_t
4027 encode_addsub_imm_shift_amount (uint32_t cnt)
4033 /* encode the imm field of Adr instruction */
4034 static inline uint32_t
4035 encode_adr_imm (uint32_t imm)
4037 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4038 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4041 /* encode the immediate field of Move wide immediate */
4042 static inline uint32_t
4043 encode_movw_imm (uint32_t imm)
4048 /* encode the 26-bit offset of unconditional branch */
4049 static inline uint32_t
4050 encode_branch_ofs_26 (uint32_t ofs)
4052 return ofs & ((1 << 26) - 1);
4055 /* encode the 19-bit offset of conditional branch and compare & branch */
4056 static inline uint32_t
4057 encode_cond_branch_ofs_19 (uint32_t ofs)
4059 return (ofs & ((1 << 19) - 1)) << 5;
4062 /* encode the 19-bit offset of ld literal */
4063 static inline uint32_t
4064 encode_ld_lit_ofs_19 (uint32_t ofs)
4066 return (ofs & ((1 << 19) - 1)) << 5;
4069 /* Encode the 14-bit offset of test & branch. */
4070 static inline uint32_t
4071 encode_tst_branch_ofs_14 (uint32_t ofs)
4073 return (ofs & ((1 << 14) - 1)) << 5;
4076 /* Encode the 16-bit imm field of svc/hvc/smc. */
4077 static inline uint32_t
4078 encode_svc_imm (uint32_t imm)
4083 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4084 static inline uint32_t
4085 reencode_addsub_switch_add_sub (uint32_t opcode)
4087 return opcode ^ (1 << 30);
4090 static inline uint32_t
4091 reencode_movzn_to_movz (uint32_t opcode)
4093 return opcode | (1 << 30);
4096 static inline uint32_t
4097 reencode_movzn_to_movn (uint32_t opcode)
4099 return opcode & ~(1 << 30);
4102 /* Overall per-instruction processing. */
4104 /* We need to be able to fix up arbitrary expressions in some statements.
4105 This is so that we can handle symbols that are an arbitrary distance from
4106 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4107 which returns part of an address in a form which will be valid for
4108 a data instruction. We do this by pushing the expression into a symbol
4109 in the expr_section, and creating a fix for that. */
4112 fix_new_aarch64 (fragS * frag,
4114 short int size, expressionS * exp, int pc_rel, int reloc)
4124 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4128 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4135 /* Diagnostics on operands errors. */
4137 /* By default, output verbose error message.
4138 Disable the verbose error message by -mno-verbose-error. */
4139 static int verbose_error_p = 1;
4141 #ifdef DEBUG_AARCH64
4142 /* N.B. this is only for the purpose of debugging. */
4143 const char* operand_mismatch_kind_names[] =
4146 "AARCH64_OPDE_RECOVERABLE",
4147 "AARCH64_OPDE_SYNTAX_ERROR",
4148 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4149 "AARCH64_OPDE_INVALID_VARIANT",
4150 "AARCH64_OPDE_OUT_OF_RANGE",
4151 "AARCH64_OPDE_UNALIGNED",
4152 "AARCH64_OPDE_REG_LIST",
4153 "AARCH64_OPDE_OTHER_ERROR",
4155 #endif /* DEBUG_AARCH64 */
4157 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4159 When multiple errors of different kinds are found in the same assembly
4160 line, only the error of the highest severity will be picked up for
4161 issuing the diagnostics. */
4163 static inline bfd_boolean
4164 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4165 enum aarch64_operand_error_kind rhs)
4167 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4168 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4169 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4170 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4171 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4172 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4173 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4174 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4178 /* Helper routine to get the mnemonic name from the assembly instruction
4179 line; should only be called for the diagnosis purpose, as there is
4180 string copy operation involved, which may affect the runtime
4181 performance if used in elsewhere. */
4184 get_mnemonic_name (const char *str)
4186 static char mnemonic[32];
4189 /* Get the first 15 bytes and assume that the full name is included. */
4190 strncpy (mnemonic, str, 31);
4191 mnemonic[31] = '\0';
4193 /* Scan up to the end of the mnemonic, which must end in white space,
4194 '.', or end of string. */
4195 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4200 /* Append '...' to the truncated long name. */
4201 if (ptr - mnemonic == 31)
4202 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4208 reset_aarch64_instruction (aarch64_instruction *instruction)
4210 memset (instruction, '\0', sizeof (aarch64_instruction));
4211 instruction->reloc.type = BFD_RELOC_UNUSED;
4214 /* Data structures storing one user error in the assembly code related to
4217 struct operand_error_record
4219 const aarch64_opcode *opcode;
4220 aarch64_operand_error detail;
4221 struct operand_error_record *next;
4224 typedef struct operand_error_record operand_error_record;
4226 struct operand_errors
4228 operand_error_record *head;
4229 operand_error_record *tail;
4232 typedef struct operand_errors operand_errors;
4234 /* Top-level data structure reporting user errors for the current line of
4236 The way md_assemble works is that all opcodes sharing the same mnemonic
4237 name are iterated to find a match to the assembly line. In this data
4238 structure, each of the such opcodes will have one operand_error_record
4239 allocated and inserted. In other words, excessive errors related with
4240 a single opcode are disregarded. */
4241 operand_errors operand_error_report;
4243 /* Free record nodes. */
4244 static operand_error_record *free_opnd_error_record_nodes = NULL;
4246 /* Initialize the data structure that stores the operand mismatch
4247 information on assembling one line of the assembly code. */
4249 init_operand_error_report (void)
4251 if (operand_error_report.head != NULL)
4253 gas_assert (operand_error_report.tail != NULL);
4254 operand_error_report.tail->next = free_opnd_error_record_nodes;
4255 free_opnd_error_record_nodes = operand_error_report.head;
4256 operand_error_report.head = NULL;
4257 operand_error_report.tail = NULL;
4260 gas_assert (operand_error_report.tail == NULL);
4263 /* Return TRUE if some operand error has been recorded during the
4264 parsing of the current assembly line using the opcode *OPCODE;
4265 otherwise return FALSE. */
4266 static inline bfd_boolean
4267 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4269 operand_error_record *record = operand_error_report.head;
4270 return record && record->opcode == opcode;
4273 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4274 OPCODE field is initialized with OPCODE.
4275 N.B. only one record for each opcode, i.e. the maximum of one error is
4276 recorded for each instruction template. */
4279 add_operand_error_record (const operand_error_record* new_record)
4281 const aarch64_opcode *opcode = new_record->opcode;
4282 operand_error_record* record = operand_error_report.head;
4284 /* The record may have been created for this opcode. If not, we need
4286 if (! opcode_has_operand_error_p (opcode))
4288 /* Get one empty record. */
4289 if (free_opnd_error_record_nodes == NULL)
4291 record = XNEW (operand_error_record);
4295 record = free_opnd_error_record_nodes;
4296 free_opnd_error_record_nodes = record->next;
4298 record->opcode = opcode;
4299 /* Insert at the head. */
4300 record->next = operand_error_report.head;
4301 operand_error_report.head = record;
4302 if (operand_error_report.tail == NULL)
4303 operand_error_report.tail = record;
4305 else if (record->detail.kind != AARCH64_OPDE_NIL
4306 && record->detail.index <= new_record->detail.index
4307 && operand_error_higher_severity_p (record->detail.kind,
4308 new_record->detail.kind))
4310 /* In the case of multiple errors found on operands related with a
4311 single opcode, only record the error of the leftmost operand and
4312 only if the error is of higher severity. */
4313 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4314 " the existing error %s on operand %d",
4315 operand_mismatch_kind_names[new_record->detail.kind],
4316 new_record->detail.index,
4317 operand_mismatch_kind_names[record->detail.kind],
4318 record->detail.index);
4322 record->detail = new_record->detail;
4326 record_operand_error_info (const aarch64_opcode *opcode,
4327 aarch64_operand_error *error_info)
4329 operand_error_record record;
4330 record.opcode = opcode;
4331 record.detail = *error_info;
4332 add_operand_error_record (&record);
4335 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4336 error message *ERROR, for operand IDX (count from 0). */
4339 record_operand_error (const aarch64_opcode *opcode, int idx,
4340 enum aarch64_operand_error_kind kind,
4343 aarch64_operand_error info;
4344 memset(&info, 0, sizeof (info));
4348 record_operand_error_info (opcode, &info);
4352 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4353 enum aarch64_operand_error_kind kind,
4354 const char* error, const int *extra_data)
4356 aarch64_operand_error info;
4360 info.data[0] = extra_data[0];
4361 info.data[1] = extra_data[1];
4362 info.data[2] = extra_data[2];
4363 record_operand_error_info (opcode, &info);
4367 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4368 const char* error, int lower_bound,
4371 int data[3] = {lower_bound, upper_bound, 0};
4372 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4376 /* Remove the operand error record for *OPCODE. */
4377 static void ATTRIBUTE_UNUSED
4378 remove_operand_error_record (const aarch64_opcode *opcode)
4380 if (opcode_has_operand_error_p (opcode))
4382 operand_error_record* record = operand_error_report.head;
4383 gas_assert (record != NULL && operand_error_report.tail != NULL);
4384 operand_error_report.head = record->next;
4385 record->next = free_opnd_error_record_nodes;
4386 free_opnd_error_record_nodes = record;
4387 if (operand_error_report.head == NULL)
4389 gas_assert (operand_error_report.tail == record);
4390 operand_error_report.tail = NULL;
4395 /* Given the instruction in *INSTR, return the index of the best matched
4396 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4398 Return -1 if there is no qualifier sequence; return the first match
4399 if there is multiple matches found. */
4402 find_best_match (const aarch64_inst *instr,
4403 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4405 int i, num_opnds, max_num_matched, idx;
4407 num_opnds = aarch64_num_of_operands (instr->opcode);
4410 DEBUG_TRACE ("no operand");
4414 max_num_matched = 0;
4417 /* For each pattern. */
4418 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4421 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4423 /* Most opcodes has much fewer patterns in the list. */
4424 if (empty_qualifier_sequence_p (qualifiers))
4426 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4430 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4431 if (*qualifiers == instr->operands[j].qualifier)
4434 if (num_matched > max_num_matched)
4436 max_num_matched = num_matched;
4441 DEBUG_TRACE ("return with %d", idx);
4445 /* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
4446 corresponding operands in *INSTR. */
4449 assign_qualifier_sequence (aarch64_inst *instr,
4450 const aarch64_opnd_qualifier_t *qualifiers)
4453 int num_opnds = aarch64_num_of_operands (instr->opcode);
4454 gas_assert (num_opnds);
4455 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4456 instr->operands[i].qualifier = *qualifiers;
4459 /* Print operands for the diagnosis purpose. */
4462 print_operands (char *buf, const aarch64_opcode *opcode,
4463 const aarch64_opnd_info *opnds)
4467 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4471 /* We regard the opcode operand info more, however we also look into
4472 the inst->operands to support the disassembling of the optional
4474 The two operand code should be the same in all cases, apart from
4475 when the operand can be optional. */
4476 if (opcode->operands[i] == AARCH64_OPND_NIL
4477 || opnds[i].type == AARCH64_OPND_NIL)
4480 /* Generate the operand string in STR. */
4481 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
4485 strcat (buf, i == 0 ? " " : ", ");
4487 /* Append the operand string. */
4492 /* Send to stderr a string as information. */
4495 output_info (const char *format, ...)
4501 file = as_where (&line);
4505 fprintf (stderr, "%s:%u: ", file, line);
4507 fprintf (stderr, "%s: ", file);
4509 fprintf (stderr, _("Info: "));
4510 va_start (args, format);
4511 vfprintf (stderr, format, args);
4513 (void) putc ('\n', stderr);
4516 /* Output one operand error record. */
4519 output_operand_error_record (const operand_error_record *record, char *str)
4521 const aarch64_operand_error *detail = &record->detail;
4522 int idx = detail->index;
4523 const aarch64_opcode *opcode = record->opcode;
4524 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4525 : AARCH64_OPND_NIL);
4527 switch (detail->kind)
4529 case AARCH64_OPDE_NIL:
4533 case AARCH64_OPDE_SYNTAX_ERROR:
4534 case AARCH64_OPDE_RECOVERABLE:
4535 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4536 case AARCH64_OPDE_OTHER_ERROR:
4537 /* Use the prepared error message if there is, otherwise use the
4538 operand description string to describe the error. */
4539 if (detail->error != NULL)
4542 as_bad (_("%s -- `%s'"), detail->error, str);
4544 as_bad (_("%s at operand %d -- `%s'"),
4545 detail->error, idx + 1, str);
4549 gas_assert (idx >= 0);
4550 as_bad (_("operand %d must be %s -- `%s'"), idx + 1,
4551 aarch64_get_operand_desc (opd_code), str);
4555 case AARCH64_OPDE_INVALID_VARIANT:
4556 as_bad (_("operand mismatch -- `%s'"), str);
4557 if (verbose_error_p)
4559 /* We will try to correct the erroneous instruction and also provide
4560 more information e.g. all other valid variants.
4562 The string representation of the corrected instruction and other
4563 valid variants are generated by
4565 1) obtaining the intermediate representation of the erroneous
4567 2) manipulating the IR, e.g. replacing the operand qualifier;
4568 3) printing out the instruction by calling the printer functions
4569 shared with the disassembler.
4571 The limitation of this method is that the exact input assembly
4572 line cannot be accurately reproduced in some cases, for example an
4573 optional operand present in the actual assembly line will be
4574 omitted in the output; likewise for the optional syntax rules,
4575 e.g. the # before the immediate. Another limitation is that the
4576 assembly symbols and relocation operations in the assembly line
4577 currently cannot be printed out in the error report. Last but not
4578 least, when there is other error(s) co-exist with this error, the
4579 'corrected' instruction may be still incorrect, e.g. given
4580 'ldnp h0,h1,[x0,#6]!'
4581 this diagnosis will provide the version:
4582 'ldnp s0,s1,[x0,#6]!'
4583 which is still not right. */
4584 size_t len = strlen (get_mnemonic_name (str));
4588 aarch64_inst *inst_base = &inst.base;
4589 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4592 reset_aarch64_instruction (&inst);
4593 inst_base->opcode = opcode;
4595 /* Reset the error report so that there is no side effect on the
4596 following operand parsing. */
4597 init_operand_error_report ();
4600 result = parse_operands (str + len, opcode)
4601 && programmer_friendly_fixup (&inst);
4602 gas_assert (result);
4603 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4605 gas_assert (!result);
4607 /* Find the most matched qualifier sequence. */
4608 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4609 gas_assert (qlf_idx > -1);
4611 /* Assign the qualifiers. */
4612 assign_qualifier_sequence (inst_base,
4613 opcode->qualifiers_list[qlf_idx]);
4615 /* Print the hint. */
4616 output_info (_(" did you mean this?"));
4617 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4618 print_operands (buf, opcode, inst_base->operands);
4619 output_info (_(" %s"), buf);
4621 /* Print out other variant(s) if there is any. */
4623 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4624 output_info (_(" other valid variant(s):"));
4626 /* For each pattern. */
4627 qualifiers_list = opcode->qualifiers_list;
4628 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4630 /* Most opcodes has much fewer patterns in the list.
4631 First NIL qualifier indicates the end in the list. */
4632 if (empty_qualifier_sequence_p (*qualifiers_list))
4637 /* Mnemonics name. */
4638 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4640 /* Assign the qualifiers. */
4641 assign_qualifier_sequence (inst_base, *qualifiers_list);
4643 /* Print instruction. */
4644 print_operands (buf, opcode, inst_base->operands);
4646 output_info (_(" %s"), buf);
4652 case AARCH64_OPDE_UNTIED_OPERAND:
4653 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4654 detail->index + 1, str);
4657 case AARCH64_OPDE_OUT_OF_RANGE:
4658 if (detail->data[0] != detail->data[1])
4659 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4660 detail->error ? detail->error : _("immediate value"),
4661 detail->data[0], detail->data[1], idx + 1, str);
4663 as_bad (_("%s must be %d at operand %d -- `%s'"),
4664 detail->error ? detail->error : _("immediate value"),
4665 detail->data[0], idx + 1, str);
4668 case AARCH64_OPDE_REG_LIST:
4669 if (detail->data[0] == 1)
4670 as_bad (_("invalid number of registers in the list; "
4671 "only 1 register is expected at operand %d -- `%s'"),
4674 as_bad (_("invalid number of registers in the list; "
4675 "%d registers are expected at operand %d -- `%s'"),
4676 detail->data[0], idx + 1, str);
4679 case AARCH64_OPDE_UNALIGNED:
4680 as_bad (_("immediate value must be a multiple of "
4681 "%d at operand %d -- `%s'"),
4682 detail->data[0], idx + 1, str);
4691 /* Process and output the error message about the operand mismatching.
4693 When this function is called, the operand error information had
4694 been collected for an assembly line and there will be multiple
4695 errors in the case of multiple instruction templates; output the
4696 error message that most closely describes the problem. */
4699 output_operand_error_report (char *str)
4701 int largest_error_pos;
4702 const char *msg = NULL;
4703 enum aarch64_operand_error_kind kind;
4704 operand_error_record *curr;
4705 operand_error_record *head = operand_error_report.head;
4706 operand_error_record *record = NULL;
4708 /* No error to report. */
4712 gas_assert (head != NULL && operand_error_report.tail != NULL);
4714 /* Only one error. */
4715 if (head == operand_error_report.tail)
4717 DEBUG_TRACE ("single opcode entry with error kind: %s",
4718 operand_mismatch_kind_names[head->detail.kind]);
4719 output_operand_error_record (head, str);
4723 /* Find the error kind of the highest severity. */
4724 DEBUG_TRACE ("multiple opcode entries with error kind");
4725 kind = AARCH64_OPDE_NIL;
4726 for (curr = head; curr != NULL; curr = curr->next)
4728 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4729 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4730 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4731 kind = curr->detail.kind;
4733 gas_assert (kind != AARCH64_OPDE_NIL);
4735 /* Pick up one of errors of KIND to report. */
4736 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4737 for (curr = head; curr != NULL; curr = curr->next)
4739 if (curr->detail.kind != kind)
4741 /* If there are multiple errors, pick up the one with the highest
4742 mismatching operand index. In the case of multiple errors with
4743 the equally highest operand index, pick up the first one or the
4744 first one with non-NULL error message. */
4745 if (curr->detail.index > largest_error_pos
4746 || (curr->detail.index == largest_error_pos && msg == NULL
4747 && curr->detail.error != NULL))
4749 largest_error_pos = curr->detail.index;
4751 msg = record->detail.error;
4755 gas_assert (largest_error_pos != -2 && record != NULL);
4756 DEBUG_TRACE ("Pick up error kind %s to report",
4757 operand_mismatch_kind_names[record->detail.kind]);
4760 output_operand_error_record (record, str);
4763 /* Write an AARCH64 instruction to buf - always little-endian. */
4765 put_aarch64_insn (char *buf, uint32_t insn)
4767 unsigned char *where = (unsigned char *) buf;
4769 where[1] = insn >> 8;
4770 where[2] = insn >> 16;
4771 where[3] = insn >> 24;
4775 get_aarch64_insn (char *buf)
4777 unsigned char *where = (unsigned char *) buf;
4779 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4784 output_inst (struct aarch64_inst *new_inst)
4788 to = frag_more (INSN_SIZE);
4790 frag_now->tc_frag_data.recorded = 1;
4792 put_aarch64_insn (to, inst.base.value);
4794 if (inst.reloc.type != BFD_RELOC_UNUSED)
4796 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4797 INSN_SIZE, &inst.reloc.exp,
4800 DEBUG_TRACE ("Prepared relocation fix up");
4801 /* Don't check the addend value against the instruction size,
4802 that's the job of our code in md_apply_fix(). */
4803 fixp->fx_no_overflow = 1;
4804 if (new_inst != NULL)
4805 fixp->tc_fix_data.inst = new_inst;
4806 if (aarch64_gas_internal_fixup_p ())
4808 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4809 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4810 fixp->fx_addnumber = inst.reloc.flags;
4814 dwarf2_emit_insn (INSN_SIZE);
4817 /* Link together opcodes of the same name. */
4821 aarch64_opcode *opcode;
4822 struct templates *next;
4825 typedef struct templates templates;
4828 lookup_mnemonic (const char *start, int len)
4830 templates *templ = NULL;
4832 templ = hash_find_n (aarch64_ops_hsh, start, len);
4836 /* Subroutine of md_assemble, responsible for looking up the primary
4837 opcode from the mnemonic the user wrote. STR points to the
4838 beginning of the mnemonic. */
4841 opcode_lookup (char **str)
4843 char *end, *base, *dot;
4844 const aarch64_cond *cond;
4848 /* Scan up to the end of the mnemonic, which must end in white space,
4849 '.', or end of string. */
4851 for (base = end = *str; is_part_of_name(*end); end++)
4852 if (*end == '.' && !dot)
4855 if (end == base || dot == base)
4858 inst.cond = COND_ALWAYS;
4860 /* Handle a possible condition. */
4863 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
4866 inst.cond = cond->value;
4882 if (inst.cond == COND_ALWAYS)
4884 /* Look for unaffixed mnemonic. */
4885 return lookup_mnemonic (base, len);
4889 /* append ".c" to mnemonic if conditional */
4890 memcpy (condname, base, len);
4891 memcpy (condname + len, ".c", 2);
4894 return lookup_mnemonic (base, len);
4900 /* Internal helper routine converting a vector_type_el structure *VECTYPE
4901 to a corresponding operand qualifier. */
4903 static inline aarch64_opnd_qualifier_t
4904 vectype_to_qualifier (const struct vector_type_el *vectype)
4906 /* Element size in bytes indexed by vector_el_type. */
4907 const unsigned char ele_size[5]
4909 const unsigned int ele_base [5] =
4911 AARCH64_OPND_QLF_V_8B,
4912 AARCH64_OPND_QLF_V_2H,
4913 AARCH64_OPND_QLF_V_2S,
4914 AARCH64_OPND_QLF_V_1D,
4915 AARCH64_OPND_QLF_V_1Q
4918 if (!vectype->defined || vectype->type == NT_invtype)
4919 goto vectype_conversion_fail;
4921 if (vectype->type == NT_zero)
4922 return AARCH64_OPND_QLF_P_Z;
4923 if (vectype->type == NT_merge)
4924 return AARCH64_OPND_QLF_P_M;
4926 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4928 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
4929 /* Vector element register. */
4930 return AARCH64_OPND_QLF_S_B + vectype->type;
4933 /* Vector register. */
4934 int reg_size = ele_size[vectype->type] * vectype->width;
4937 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
4938 goto vectype_conversion_fail;
4940 /* The conversion is by calculating the offset from the base operand
4941 qualifier for the vector type. The operand qualifiers are regular
4942 enough that the offset can established by shifting the vector width by
4943 a vector-type dependent amount. */
4945 if (vectype->type == NT_b)
4947 else if (vectype->type == NT_h || vectype->type == NT_s)
4949 else if (vectype->type >= NT_d)
4954 offset = ele_base [vectype->type] + (vectype->width >> shift);
4955 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4956 && offset <= AARCH64_OPND_QLF_V_1Q);
4960 vectype_conversion_fail:
4961 first_error (_("bad vector arrangement type"));
4962 return AARCH64_OPND_QLF_NIL;
4965 /* Process an optional operand that is found omitted from the assembly line.
4966 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4967 instruction's opcode entry while IDX is the index of this omitted operand.
4971 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4972 int idx, aarch64_opnd_info *operand)
4974 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4975 gas_assert (optional_operand_p (opcode, idx));
4976 gas_assert (!operand->present);
4980 case AARCH64_OPND_Rd:
4981 case AARCH64_OPND_Rn:
4982 case AARCH64_OPND_Rm:
4983 case AARCH64_OPND_Rt:
4984 case AARCH64_OPND_Rt2:
4985 case AARCH64_OPND_Rs:
4986 case AARCH64_OPND_Ra:
4987 case AARCH64_OPND_Rt_SYS:
4988 case AARCH64_OPND_Rd_SP:
4989 case AARCH64_OPND_Rn_SP:
4990 case AARCH64_OPND_Rm_SP:
4991 case AARCH64_OPND_Fd:
4992 case AARCH64_OPND_Fn:
4993 case AARCH64_OPND_Fm:
4994 case AARCH64_OPND_Fa:
4995 case AARCH64_OPND_Ft:
4996 case AARCH64_OPND_Ft2:
4997 case AARCH64_OPND_Sd:
4998 case AARCH64_OPND_Sn:
4999 case AARCH64_OPND_Sm:
5000 case AARCH64_OPND_Vd:
5001 case AARCH64_OPND_Vn:
5002 case AARCH64_OPND_Vm:
5003 case AARCH64_OPND_VdD1:
5004 case AARCH64_OPND_VnD1:
5005 operand->reg.regno = default_value;
5008 case AARCH64_OPND_Ed:
5009 case AARCH64_OPND_En:
5010 case AARCH64_OPND_Em:
5011 operand->reglane.regno = default_value;
5014 case AARCH64_OPND_IDX:
5015 case AARCH64_OPND_BIT_NUM:
5016 case AARCH64_OPND_IMMR:
5017 case AARCH64_OPND_IMMS:
5018 case AARCH64_OPND_SHLL_IMM:
5019 case AARCH64_OPND_IMM_VLSL:
5020 case AARCH64_OPND_IMM_VLSR:
5021 case AARCH64_OPND_CCMP_IMM:
5022 case AARCH64_OPND_FBITS:
5023 case AARCH64_OPND_UIMM4:
5024 case AARCH64_OPND_UIMM3_OP1:
5025 case AARCH64_OPND_UIMM3_OP2:
5026 case AARCH64_OPND_IMM:
5027 case AARCH64_OPND_WIDTH:
5028 case AARCH64_OPND_UIMM7:
5029 case AARCH64_OPND_NZCV:
5030 case AARCH64_OPND_SVE_PATTERN:
5031 case AARCH64_OPND_SVE_PRFOP:
5032 operand->imm.value = default_value;
5035 case AARCH64_OPND_SVE_PATTERN_SCALED:
5036 operand->imm.value = default_value;
5037 operand->shifter.kind = AARCH64_MOD_MUL;
5038 operand->shifter.amount = 1;
5041 case AARCH64_OPND_EXCEPTION:
5042 inst.reloc.type = BFD_RELOC_UNUSED;
5045 case AARCH64_OPND_BARRIER_ISB:
5046 operand->barrier = aarch64_barrier_options + default_value;
5053 /* Process the relocation type for move wide instructions.
5054 Return TRUE on success; otherwise return FALSE. */
5057 process_movw_reloc_info (void)
5062 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5064 if (inst.base.opcode->op == OP_MOVK)
5065 switch (inst.reloc.type)
5067 case BFD_RELOC_AARCH64_MOVW_G0_S:
5068 case BFD_RELOC_AARCH64_MOVW_G1_S:
5069 case BFD_RELOC_AARCH64_MOVW_G2_S:
5070 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5071 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5072 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5073 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5075 (_("the specified relocation type is not allowed for MOVK"));
5081 switch (inst.reloc.type)
5083 case BFD_RELOC_AARCH64_MOVW_G0:
5084 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5085 case BFD_RELOC_AARCH64_MOVW_G0_S:
5086 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5087 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5088 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5089 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5090 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5091 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5092 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5093 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5096 case BFD_RELOC_AARCH64_MOVW_G1:
5097 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5098 case BFD_RELOC_AARCH64_MOVW_G1_S:
5099 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5100 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5101 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5102 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5103 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5104 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5105 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5106 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5109 case BFD_RELOC_AARCH64_MOVW_G2:
5110 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5111 case BFD_RELOC_AARCH64_MOVW_G2_S:
5112 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5113 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5116 set_fatal_syntax_error
5117 (_("the specified relocation type is not allowed for 32-bit "
5123 case BFD_RELOC_AARCH64_MOVW_G3:
5126 set_fatal_syntax_error
5127 (_("the specified relocation type is not allowed for 32-bit "
5134 /* More cases should be added when more MOVW-related relocation types
5135 are supported in GAS. */
5136 gas_assert (aarch64_gas_internal_fixup_p ());
5137 /* The shift amount should have already been set by the parser. */
5140 inst.base.operands[1].shifter.amount = shift;
5144 /* A primitive log calculator. */
5146 static inline unsigned int
5147 get_logsz (unsigned int size)
5149 const unsigned char ls[16] =
5150 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5156 gas_assert (ls[size - 1] != (unsigned char)-1);
5157 return ls[size - 1];
5160 /* Determine and return the real reloc type code for an instruction
5161 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5163 static inline bfd_reloc_code_real_type
5164 ldst_lo12_determine_real_reloc_type (void)
5167 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5168 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5170 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
5172 BFD_RELOC_AARCH64_LDST8_LO12,
5173 BFD_RELOC_AARCH64_LDST16_LO12,
5174 BFD_RELOC_AARCH64_LDST32_LO12,
5175 BFD_RELOC_AARCH64_LDST64_LO12,
5176 BFD_RELOC_AARCH64_LDST128_LO12
5179 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5180 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5181 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5182 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5183 BFD_RELOC_AARCH64_NONE
5186 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5187 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5188 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5189 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5190 BFD_RELOC_AARCH64_NONE
5194 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5195 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5197 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
5198 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5200 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5202 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5204 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5206 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5207 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5208 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5209 gas_assert (logsz <= 3);
5211 gas_assert (logsz <= 4);
5213 /* In reloc.c, these pseudo relocation types should be defined in similar
5214 order as above reloc_ldst_lo12 array. Because the array index calculation
5215 below relies on this. */
5216 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5219 /* Check whether a register list REGINFO is valid. The registers must be
5220 numbered in increasing order (modulo 32), in increments of one or two.
5222 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5225 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5228 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5230 uint32_t i, nb_regs, prev_regno, incr;
5232 nb_regs = 1 + (reginfo & 0x3);
5234 prev_regno = reginfo & 0x1f;
5235 incr = accept_alternate ? 2 : 1;
5237 for (i = 1; i < nb_regs; ++i)
5239 uint32_t curr_regno;
5241 curr_regno = reginfo & 0x1f;
5242 if (curr_regno != ((prev_regno + incr) & 0x1f))
5244 prev_regno = curr_regno;
5250 /* Generic instruction operand parser. This does no encoding and no
5251 semantic validation; it merely squirrels values away in the inst
5252 structure. Returns TRUE or FALSE depending on whether the
5253 specified grammar matched. */
5256 parse_operands (char *str, const aarch64_opcode *opcode)
5259 char *backtrack_pos = 0;
5260 const enum aarch64_opnd *operands = opcode->operands;
5261 aarch64_reg_type imm_reg_type;
5264 skip_whitespace (str);
5266 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5267 imm_reg_type = REG_TYPE_R_Z_BHSDQ_VZP;
5269 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5271 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5274 const reg_entry *reg;
5275 int comma_skipped_p = 0;
5276 aarch64_reg_type rtype;
5277 struct vector_type_el vectype;
5278 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5279 aarch64_opnd_info *info = &inst.base.operands[i];
5280 aarch64_reg_type reg_type;
5282 DEBUG_TRACE ("parse operand %d", i);
5284 /* Assign the operand code. */
5285 info->type = operands[i];
5287 if (optional_operand_p (opcode, i))
5289 /* Remember where we are in case we need to backtrack. */
5290 gas_assert (!backtrack_pos);
5291 backtrack_pos = str;
5294 /* Expect comma between operands; the backtrack mechanism will take
5295 care of cases of omitted optional operand. */
5296 if (i > 0 && ! skip_past_char (&str, ','))
5298 set_syntax_error (_("comma expected between operands"));
5302 comma_skipped_p = 1;
5304 switch (operands[i])
5306 case AARCH64_OPND_Rd:
5307 case AARCH64_OPND_Rn:
5308 case AARCH64_OPND_Rm:
5309 case AARCH64_OPND_Rt:
5310 case AARCH64_OPND_Rt2:
5311 case AARCH64_OPND_Rs:
5312 case AARCH64_OPND_Ra:
5313 case AARCH64_OPND_Rt_SYS:
5314 case AARCH64_OPND_PAIRREG:
5315 case AARCH64_OPND_SVE_Rm:
5316 po_int_reg_or_fail (REG_TYPE_R_Z);
5319 case AARCH64_OPND_Rd_SP:
5320 case AARCH64_OPND_Rn_SP:
5321 case AARCH64_OPND_SVE_Rn_SP:
5322 case AARCH64_OPND_Rm_SP:
5323 po_int_reg_or_fail (REG_TYPE_R_SP);
5326 case AARCH64_OPND_Rm_EXT:
5327 case AARCH64_OPND_Rm_SFT:
5328 po_misc_or_fail (parse_shifter_operand
5329 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5331 : SHIFTED_LOGIC_IMM)));
5332 if (!info->shifter.operator_present)
5334 /* Default to LSL if not present. Libopcodes prefers shifter
5335 kind to be explicit. */
5336 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5337 info->shifter.kind = AARCH64_MOD_LSL;
5338 /* For Rm_EXT, libopcodes will carry out further check on whether
5339 or not stack pointer is used in the instruction (Recall that
5340 "the extend operator is not optional unless at least one of
5341 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5345 case AARCH64_OPND_Fd:
5346 case AARCH64_OPND_Fn:
5347 case AARCH64_OPND_Fm:
5348 case AARCH64_OPND_Fa:
5349 case AARCH64_OPND_Ft:
5350 case AARCH64_OPND_Ft2:
5351 case AARCH64_OPND_Sd:
5352 case AARCH64_OPND_Sn:
5353 case AARCH64_OPND_Sm:
5354 case AARCH64_OPND_SVE_VZn:
5355 case AARCH64_OPND_SVE_Vd:
5356 case AARCH64_OPND_SVE_Vm:
5357 case AARCH64_OPND_SVE_Vn:
5358 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5359 if (val == PARSE_FAIL)
5361 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5364 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5366 info->reg.regno = val;
5367 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5370 case AARCH64_OPND_SVE_Pd:
5371 case AARCH64_OPND_SVE_Pg3:
5372 case AARCH64_OPND_SVE_Pg4_5:
5373 case AARCH64_OPND_SVE_Pg4_10:
5374 case AARCH64_OPND_SVE_Pg4_16:
5375 case AARCH64_OPND_SVE_Pm:
5376 case AARCH64_OPND_SVE_Pn:
5377 case AARCH64_OPND_SVE_Pt:
5378 reg_type = REG_TYPE_PN;
5381 case AARCH64_OPND_SVE_Za_5:
5382 case AARCH64_OPND_SVE_Za_16:
5383 case AARCH64_OPND_SVE_Zd:
5384 case AARCH64_OPND_SVE_Zm_5:
5385 case AARCH64_OPND_SVE_Zm_16:
5386 case AARCH64_OPND_SVE_Zn:
5387 case AARCH64_OPND_SVE_Zt:
5388 reg_type = REG_TYPE_ZN;
5391 case AARCH64_OPND_Vd:
5392 case AARCH64_OPND_Vn:
5393 case AARCH64_OPND_Vm:
5394 reg_type = REG_TYPE_VN;
5396 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5397 if (val == PARSE_FAIL)
5399 first_error (_(get_reg_expected_msg (reg_type)));
5402 if (vectype.defined & NTA_HASINDEX)
5405 info->reg.regno = val;
5406 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5407 && vectype.type == NT_invtype)
5408 /* Unqualified Pn and Zn registers are allowed in certain
5409 contexts. Rely on F_STRICT qualifier checking to catch
5411 info->qualifier = AARCH64_OPND_QLF_NIL;
5414 info->qualifier = vectype_to_qualifier (&vectype);
5415 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5420 case AARCH64_OPND_VdD1:
5421 case AARCH64_OPND_VnD1:
5422 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5423 if (val == PARSE_FAIL)
5425 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5428 if (vectype.type != NT_d || vectype.index != 1)
5430 set_fatal_syntax_error
5431 (_("the top half of a 128-bit FP/SIMD register is expected"));
5434 info->reg.regno = val;
5435 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5436 here; it is correct for the purpose of encoding/decoding since
5437 only the register number is explicitly encoded in the related
5438 instructions, although this appears a bit hacky. */
5439 info->qualifier = AARCH64_OPND_QLF_S_D;
5442 case AARCH64_OPND_SVE_Zm3_INDEX:
5443 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5444 case AARCH64_OPND_SVE_Zm4_INDEX:
5445 case AARCH64_OPND_SVE_Zn_INDEX:
5446 reg_type = REG_TYPE_ZN;
5447 goto vector_reg_index;
5449 case AARCH64_OPND_Ed:
5450 case AARCH64_OPND_En:
5451 case AARCH64_OPND_Em:
5452 reg_type = REG_TYPE_VN;
5454 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5455 if (val == PARSE_FAIL)
5457 first_error (_(get_reg_expected_msg (reg_type)));
5460 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5463 info->reglane.regno = val;
5464 info->reglane.index = vectype.index;
5465 info->qualifier = vectype_to_qualifier (&vectype);
5466 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5470 case AARCH64_OPND_SVE_ZnxN:
5471 case AARCH64_OPND_SVE_ZtxN:
5472 reg_type = REG_TYPE_ZN;
5473 goto vector_reg_list;
5475 case AARCH64_OPND_LVn:
5476 case AARCH64_OPND_LVt:
5477 case AARCH64_OPND_LVt_AL:
5478 case AARCH64_OPND_LEt:
5479 reg_type = REG_TYPE_VN;
5481 if (reg_type == REG_TYPE_ZN
5482 && get_opcode_dependent_value (opcode) == 1
5485 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5486 if (val == PARSE_FAIL)
5488 first_error (_(get_reg_expected_msg (reg_type)));
5491 info->reglist.first_regno = val;
5492 info->reglist.num_regs = 1;
5496 val = parse_vector_reg_list (&str, reg_type, &vectype);
5497 if (val == PARSE_FAIL)
5499 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5501 set_fatal_syntax_error (_("invalid register list"));
5504 info->reglist.first_regno = (val >> 2) & 0x1f;
5505 info->reglist.num_regs = (val & 0x3) + 1;
5507 if (operands[i] == AARCH64_OPND_LEt)
5509 if (!(vectype.defined & NTA_HASINDEX))
5511 info->reglist.has_index = 1;
5512 info->reglist.index = vectype.index;
5516 if (vectype.defined & NTA_HASINDEX)
5518 if (!(vectype.defined & NTA_HASTYPE))
5520 if (reg_type == REG_TYPE_ZN)
5521 set_fatal_syntax_error (_("missing type suffix"));
5525 info->qualifier = vectype_to_qualifier (&vectype);
5526 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5530 case AARCH64_OPND_CRn:
5531 case AARCH64_OPND_CRm:
5533 char prefix = *(str++);
5534 if (prefix != 'c' && prefix != 'C')
5537 po_imm_nc_or_fail ();
5540 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5543 info->qualifier = AARCH64_OPND_QLF_CR;
5544 info->imm.value = val;
5548 case AARCH64_OPND_SHLL_IMM:
5549 case AARCH64_OPND_IMM_VLSR:
5550 po_imm_or_fail (1, 64);
5551 info->imm.value = val;
5554 case AARCH64_OPND_CCMP_IMM:
5555 case AARCH64_OPND_SIMM5:
5556 case AARCH64_OPND_FBITS:
5557 case AARCH64_OPND_UIMM4:
5558 case AARCH64_OPND_UIMM3_OP1:
5559 case AARCH64_OPND_UIMM3_OP2:
5560 case AARCH64_OPND_IMM_VLSL:
5561 case AARCH64_OPND_IMM:
5562 case AARCH64_OPND_WIDTH:
5563 case AARCH64_OPND_SVE_INV_LIMM:
5564 case AARCH64_OPND_SVE_LIMM:
5565 case AARCH64_OPND_SVE_LIMM_MOV:
5566 case AARCH64_OPND_SVE_SHLIMM_PRED:
5567 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5568 case AARCH64_OPND_SVE_SHRIMM_PRED:
5569 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5570 case AARCH64_OPND_SVE_SIMM5:
5571 case AARCH64_OPND_SVE_SIMM5B:
5572 case AARCH64_OPND_SVE_SIMM6:
5573 case AARCH64_OPND_SVE_SIMM8:
5574 case AARCH64_OPND_SVE_UIMM3:
5575 case AARCH64_OPND_SVE_UIMM7:
5576 case AARCH64_OPND_SVE_UIMM8:
5577 case AARCH64_OPND_SVE_UIMM8_53:
5578 case AARCH64_OPND_IMM_ROT1:
5579 case AARCH64_OPND_IMM_ROT2:
5580 case AARCH64_OPND_IMM_ROT3:
5581 case AARCH64_OPND_SVE_IMM_ROT1:
5582 case AARCH64_OPND_SVE_IMM_ROT2:
5583 po_imm_nc_or_fail ();
5584 info->imm.value = val;
5587 case AARCH64_OPND_SVE_AIMM:
5588 case AARCH64_OPND_SVE_ASIMM:
5589 po_imm_nc_or_fail ();
5590 info->imm.value = val;
5591 skip_whitespace (str);
5592 if (skip_past_comma (&str))
5593 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5595 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5598 case AARCH64_OPND_SVE_PATTERN:
5599 po_enum_or_fail (aarch64_sve_pattern_array);
5600 info->imm.value = val;
5603 case AARCH64_OPND_SVE_PATTERN_SCALED:
5604 po_enum_or_fail (aarch64_sve_pattern_array);
5605 info->imm.value = val;
5606 if (skip_past_comma (&str)
5607 && !parse_shift (&str, info, SHIFTED_MUL))
5609 if (!info->shifter.operator_present)
5611 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5612 info->shifter.kind = AARCH64_MOD_MUL;
5613 info->shifter.amount = 1;
5617 case AARCH64_OPND_SVE_PRFOP:
5618 po_enum_or_fail (aarch64_sve_prfop_array);
5619 info->imm.value = val;
5622 case AARCH64_OPND_UIMM7:
5623 po_imm_or_fail (0, 127);
5624 info->imm.value = val;
5627 case AARCH64_OPND_IDX:
5628 case AARCH64_OPND_BIT_NUM:
5629 case AARCH64_OPND_IMMR:
5630 case AARCH64_OPND_IMMS:
5631 po_imm_or_fail (0, 63);
5632 info->imm.value = val;
5635 case AARCH64_OPND_IMM0:
5636 po_imm_nc_or_fail ();
5639 set_fatal_syntax_error (_("immediate zero expected"));
5642 info->imm.value = 0;
5645 case AARCH64_OPND_FPIMM0:
5648 bfd_boolean res1 = FALSE, res2 = FALSE;
5649 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5650 it is probably not worth the effort to support it. */
5651 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5654 || !(res2 = parse_constant_immediate (&str, &val,
5657 if ((res1 && qfloat == 0) || (res2 && val == 0))
5659 info->imm.value = 0;
5660 info->imm.is_fp = 1;
5663 set_fatal_syntax_error (_("immediate zero expected"));
5667 case AARCH64_OPND_IMM_MOV:
5670 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5671 reg_name_p (str, REG_TYPE_VN))
5674 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5676 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5677 later. fix_mov_imm_insn will try to determine a machine
5678 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5679 message if the immediate cannot be moved by a single
5681 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5682 inst.base.operands[i].skip = 1;
5686 case AARCH64_OPND_SIMD_IMM:
5687 case AARCH64_OPND_SIMD_IMM_SFT:
5688 if (! parse_big_immediate (&str, &val, imm_reg_type))
5690 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5692 /* need_libopcodes_p */ 1,
5695 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5696 shift, we don't check it here; we leave the checking to
5697 the libopcodes (operand_general_constraint_met_p). By
5698 doing this, we achieve better diagnostics. */
5699 if (skip_past_comma (&str)
5700 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5702 if (!info->shifter.operator_present
5703 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5705 /* Default to LSL if not present. Libopcodes prefers shifter
5706 kind to be explicit. */
5707 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5708 info->shifter.kind = AARCH64_MOD_LSL;
5712 case AARCH64_OPND_FPIMM:
5713 case AARCH64_OPND_SIMD_FPIMM:
5714 case AARCH64_OPND_SVE_FPIMM8:
5719 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5720 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5721 || !aarch64_imm_float_p (qfloat))
5724 set_fatal_syntax_error (_("invalid floating-point"
5728 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5729 inst.base.operands[i].imm.is_fp = 1;
5733 case AARCH64_OPND_SVE_I1_HALF_ONE:
5734 case AARCH64_OPND_SVE_I1_HALF_TWO:
5735 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5740 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5741 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5744 set_fatal_syntax_error (_("invalid floating-point"
5748 inst.base.operands[i].imm.value = qfloat;
5749 inst.base.operands[i].imm.is_fp = 1;
5753 case AARCH64_OPND_LIMM:
5754 po_misc_or_fail (parse_shifter_operand (&str, info,
5755 SHIFTED_LOGIC_IMM));
5756 if (info->shifter.operator_present)
5758 set_fatal_syntax_error
5759 (_("shift not allowed for bitmask immediate"));
5762 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5764 /* need_libopcodes_p */ 1,
5768 case AARCH64_OPND_AIMM:
5769 if (opcode->op == OP_ADD)
5770 /* ADD may have relocation types. */
5771 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5772 SHIFTED_ARITH_IMM));
5774 po_misc_or_fail (parse_shifter_operand (&str, info,
5775 SHIFTED_ARITH_IMM));
5776 switch (inst.reloc.type)
5778 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5779 info->shifter.amount = 12;
5781 case BFD_RELOC_UNUSED:
5782 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5783 if (info->shifter.kind != AARCH64_MOD_NONE)
5784 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5785 inst.reloc.pc_rel = 0;
5790 info->imm.value = 0;
5791 if (!info->shifter.operator_present)
5793 /* Default to LSL if not present. Libopcodes prefers shifter
5794 kind to be explicit. */
5795 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5796 info->shifter.kind = AARCH64_MOD_LSL;
5800 case AARCH64_OPND_HALF:
5802 /* #<imm16> or relocation. */
5803 int internal_fixup_p;
5804 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5805 if (internal_fixup_p)
5806 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5807 skip_whitespace (str);
5808 if (skip_past_comma (&str))
5810 /* {, LSL #<shift>} */
5811 if (! aarch64_gas_internal_fixup_p ())
5813 set_fatal_syntax_error (_("can't mix relocation modifier "
5814 "with explicit shift"));
5817 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5820 inst.base.operands[i].shifter.amount = 0;
5821 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5822 inst.base.operands[i].imm.value = 0;
5823 if (! process_movw_reloc_info ())
5828 case AARCH64_OPND_EXCEPTION:
5829 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5831 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5833 /* need_libopcodes_p */ 0,
5837 case AARCH64_OPND_NZCV:
5839 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5843 info->imm.value = nzcv->value;
5846 po_imm_or_fail (0, 15);
5847 info->imm.value = val;
5851 case AARCH64_OPND_COND:
5852 case AARCH64_OPND_COND1:
5857 while (ISALPHA (*str));
5858 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5859 if (info->cond == NULL)
5861 set_syntax_error (_("invalid condition"));
5864 else if (operands[i] == AARCH64_OPND_COND1
5865 && (info->cond->value & 0xe) == 0xe)
5867 /* Do not allow AL or NV. */
5868 set_default_error ();
5874 case AARCH64_OPND_ADDR_ADRP:
5875 po_misc_or_fail (parse_adrp (&str));
5876 /* Clear the value as operand needs to be relocated. */
5877 info->imm.value = 0;
5880 case AARCH64_OPND_ADDR_PCREL14:
5881 case AARCH64_OPND_ADDR_PCREL19:
5882 case AARCH64_OPND_ADDR_PCREL21:
5883 case AARCH64_OPND_ADDR_PCREL26:
5884 po_misc_or_fail (parse_address (&str, info));
5885 if (!info->addr.pcrel)
5887 set_syntax_error (_("invalid pc-relative address"));
5890 if (inst.gen_lit_pool
5891 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5893 /* Only permit "=value" in the literal load instructions.
5894 The literal will be generated by programmer_friendly_fixup. */
5895 set_syntax_error (_("invalid use of \"=immediate\""));
5898 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5900 set_syntax_error (_("unrecognized relocation suffix"));
5903 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5905 info->imm.value = inst.reloc.exp.X_add_number;
5906 inst.reloc.type = BFD_RELOC_UNUSED;
5910 info->imm.value = 0;
5911 if (inst.reloc.type == BFD_RELOC_UNUSED)
5912 switch (opcode->iclass)
5916 /* e.g. CBZ or B.COND */
5917 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5918 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5922 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5923 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5927 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5929 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5930 : BFD_RELOC_AARCH64_JUMP26;
5933 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5934 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5937 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5938 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5944 inst.reloc.pc_rel = 1;
5948 case AARCH64_OPND_ADDR_SIMPLE:
5949 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5951 /* [<Xn|SP>{, #<simm>}] */
5953 /* First use the normal address-parsing routines, to get
5954 the usual syntax errors. */
5955 po_misc_or_fail (parse_address (&str, info));
5956 if (info->addr.pcrel || info->addr.offset.is_reg
5957 || !info->addr.preind || info->addr.postind
5958 || info->addr.writeback)
5960 set_syntax_error (_("invalid addressing mode"));
5964 /* Then retry, matching the specific syntax of these addresses. */
5966 po_char_or_fail ('[');
5967 po_reg_or_fail (REG_TYPE_R64_SP);
5968 /* Accept optional ", #0". */
5969 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5970 && skip_past_char (&str, ','))
5972 skip_past_char (&str, '#');
5973 if (! skip_past_char (&str, '0'))
5975 set_fatal_syntax_error
5976 (_("the optional immediate offset can only be 0"));
5980 po_char_or_fail (']');
5984 case AARCH64_OPND_ADDR_REGOFF:
5985 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5986 po_misc_or_fail (parse_address (&str, info));
5988 if (info->addr.pcrel || !info->addr.offset.is_reg
5989 || !info->addr.preind || info->addr.postind
5990 || info->addr.writeback)
5992 set_syntax_error (_("invalid addressing mode"));
5995 if (!info->shifter.operator_present)
5997 /* Default to LSL if not present. Libopcodes prefers shifter
5998 kind to be explicit. */
5999 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6000 info->shifter.kind = AARCH64_MOD_LSL;
6002 /* Qualifier to be deduced by libopcodes. */
6005 case AARCH64_OPND_ADDR_SIMM7:
6006 po_misc_or_fail (parse_address (&str, info));
6007 if (info->addr.pcrel || info->addr.offset.is_reg
6008 || (!info->addr.preind && !info->addr.postind))
6010 set_syntax_error (_("invalid addressing mode"));
6013 if (inst.reloc.type != BFD_RELOC_UNUSED)
6015 set_syntax_error (_("relocation not allowed"));
6018 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6020 /* need_libopcodes_p */ 1,
6024 case AARCH64_OPND_ADDR_SIMM9:
6025 case AARCH64_OPND_ADDR_SIMM9_2:
6026 po_misc_or_fail (parse_address (&str, info));
6027 if (info->addr.pcrel || info->addr.offset.is_reg
6028 || (!info->addr.preind && !info->addr.postind)
6029 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6030 && info->addr.writeback))
6032 set_syntax_error (_("invalid addressing mode"));
6035 if (inst.reloc.type != BFD_RELOC_UNUSED)
6037 set_syntax_error (_("relocation not allowed"));
6040 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6042 /* need_libopcodes_p */ 1,
6046 case AARCH64_OPND_ADDR_SIMM10:
6047 po_misc_or_fail (parse_address (&str, info));
6048 if (info->addr.pcrel || info->addr.offset.is_reg
6049 || !info->addr.preind || info->addr.postind)
6051 set_syntax_error (_("invalid addressing mode"));
6054 if (inst.reloc.type != BFD_RELOC_UNUSED)
6056 set_syntax_error (_("relocation not allowed"));
6059 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6061 /* need_libopcodes_p */ 1,
6065 case AARCH64_OPND_ADDR_UIMM12:
6066 po_misc_or_fail (parse_address (&str, info));
6067 if (info->addr.pcrel || info->addr.offset.is_reg
6068 || !info->addr.preind || info->addr.writeback)
6070 set_syntax_error (_("invalid addressing mode"));
6073 if (inst.reloc.type == BFD_RELOC_UNUSED)
6074 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6075 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6077 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6079 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
6080 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6081 /* Leave qualifier to be determined by libopcodes. */
6084 case AARCH64_OPND_SIMD_ADDR_POST:
6085 /* [<Xn|SP>], <Xm|#<amount>> */
6086 po_misc_or_fail (parse_address (&str, info));
6087 if (!info->addr.postind || !info->addr.writeback)
6089 set_syntax_error (_("invalid addressing mode"));
6092 if (!info->addr.offset.is_reg)
6094 if (inst.reloc.exp.X_op == O_constant)
6095 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6098 set_fatal_syntax_error
6099 (_("writeback value must be an immediate constant"));
6106 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
6107 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6108 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6109 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6110 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6111 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6112 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6113 case AARCH64_OPND_SVE_ADDR_RI_U6:
6114 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6115 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6116 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6117 /* [X<n>{, #imm, MUL VL}]
6119 but recognizing SVE registers. */
6120 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6121 &offset_qualifier));
6122 if (base_qualifier != AARCH64_OPND_QLF_X)
6124 set_syntax_error (_("invalid addressing mode"));
6128 if (info->addr.pcrel || info->addr.offset.is_reg
6129 || !info->addr.preind || info->addr.writeback)
6131 set_syntax_error (_("invalid addressing mode"));
6134 if (inst.reloc.type != BFD_RELOC_UNUSED
6135 || inst.reloc.exp.X_op != O_constant)
6137 /* Make sure this has priority over
6138 "invalid addressing mode". */
6139 set_fatal_syntax_error (_("constant offset required"));
6142 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6145 case AARCH64_OPND_SVE_ADDR_RR:
6146 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6147 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6148 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6149 case AARCH64_OPND_SVE_ADDR_RX:
6150 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6151 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6152 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6153 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6154 but recognizing SVE registers. */
6155 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6156 &offset_qualifier));
6157 if (base_qualifier != AARCH64_OPND_QLF_X
6158 || offset_qualifier != AARCH64_OPND_QLF_X)
6160 set_syntax_error (_("invalid addressing mode"));
6165 case AARCH64_OPND_SVE_ADDR_RZ:
6166 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6167 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6168 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6169 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6170 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6171 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6172 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6173 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6174 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6175 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6176 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6177 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6178 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6179 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6180 &offset_qualifier));
6181 if (base_qualifier != AARCH64_OPND_QLF_X
6182 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6183 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6185 set_syntax_error (_("invalid addressing mode"));
6188 info->qualifier = offset_qualifier;
6191 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6192 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6193 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6194 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6195 /* [Z<n>.<T>{, #imm}] */
6196 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6197 &offset_qualifier));
6198 if (base_qualifier != AARCH64_OPND_QLF_S_S
6199 && base_qualifier != AARCH64_OPND_QLF_S_D)
6201 set_syntax_error (_("invalid addressing mode"));
6204 info->qualifier = base_qualifier;
6207 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6208 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6209 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6210 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6211 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6215 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6217 here since we get better error messages by leaving it to
6218 the qualifier checking routines. */
6219 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6220 &offset_qualifier));
6221 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6222 && base_qualifier != AARCH64_OPND_QLF_S_D)
6223 || offset_qualifier != base_qualifier)
6225 set_syntax_error (_("invalid addressing mode"));
6228 info->qualifier = base_qualifier;
6231 case AARCH64_OPND_SYSREG:
6232 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
6235 set_syntax_error (_("unknown or missing system register name"));
6238 inst.base.operands[i].sysreg = val;
6241 case AARCH64_OPND_PSTATEFIELD:
6242 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
6245 set_syntax_error (_("unknown or missing PSTATE field name"));
6248 inst.base.operands[i].pstatefield = val;
6251 case AARCH64_OPND_SYSREG_IC:
6252 inst.base.operands[i].sysins_op =
6253 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6255 case AARCH64_OPND_SYSREG_DC:
6256 inst.base.operands[i].sysins_op =
6257 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6259 case AARCH64_OPND_SYSREG_AT:
6260 inst.base.operands[i].sysins_op =
6261 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6263 case AARCH64_OPND_SYSREG_TLBI:
6264 inst.base.operands[i].sysins_op =
6265 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6267 if (inst.base.operands[i].sysins_op == NULL)
6269 set_fatal_syntax_error ( _("unknown or missing operation name"));
6274 case AARCH64_OPND_BARRIER:
6275 case AARCH64_OPND_BARRIER_ISB:
6276 val = parse_barrier (&str);
6277 if (val != PARSE_FAIL
6278 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6280 /* ISB only accepts options name 'sy'. */
6282 (_("the specified option is not accepted in ISB"));
6283 /* Turn off backtrack as this optional operand is present. */
6287 /* This is an extension to accept a 0..15 immediate. */
6288 if (val == PARSE_FAIL)
6289 po_imm_or_fail (0, 15);
6290 info->barrier = aarch64_barrier_options + val;
6293 case AARCH64_OPND_PRFOP:
6294 val = parse_pldop (&str);
6295 /* This is an extension to accept a 0..31 immediate. */
6296 if (val == PARSE_FAIL)
6297 po_imm_or_fail (0, 31);
6298 inst.base.operands[i].prfop = aarch64_prfops + val;
6301 case AARCH64_OPND_BARRIER_PSB:
6302 val = parse_barrier_psb (&str, &(info->hint_option));
6303 if (val == PARSE_FAIL)
6308 as_fatal (_("unhandled operand code %d"), operands[i]);
6311 /* If we get here, this operand was successfully parsed. */
6312 inst.base.operands[i].present = 1;
6316 /* The parse routine should already have set the error, but in case
6317 not, set a default one here. */
6319 set_default_error ();
6321 if (! backtrack_pos)
6322 goto parse_operands_return;
6325 /* We reach here because this operand is marked as optional, and
6326 either no operand was supplied or the operand was supplied but it
6327 was syntactically incorrect. In the latter case we report an
6328 error. In the former case we perform a few more checks before
6329 dropping through to the code to insert the default operand. */
6331 char *tmp = backtrack_pos;
6332 char endchar = END_OF_INSN;
6334 if (i != (aarch64_num_of_operands (opcode) - 1))
6336 skip_past_char (&tmp, ',');
6338 if (*tmp != endchar)
6339 /* The user has supplied an operand in the wrong format. */
6340 goto parse_operands_return;
6342 /* Make sure there is not a comma before the optional operand.
6343 For example the fifth operand of 'sys' is optional:
6345 sys #0,c0,c0,#0, <--- wrong
6346 sys #0,c0,c0,#0 <--- correct. */
6347 if (comma_skipped_p && i && endchar == END_OF_INSN)
6349 set_fatal_syntax_error
6350 (_("unexpected comma before the omitted optional operand"));
6351 goto parse_operands_return;
6355 /* Reaching here means we are dealing with an optional operand that is
6356 omitted from the assembly line. */
6357 gas_assert (optional_operand_p (opcode, i));
6359 process_omitted_operand (operands[i], opcode, i, info);
6361 /* Try again, skipping the optional operand at backtrack_pos. */
6362 str = backtrack_pos;
6365 /* Clear any error record after the omitted optional operand has been
6366 successfully handled. */
6370 /* Check if we have parsed all the operands. */
6371 if (*str != '\0' && ! error_p ())
6373 /* Set I to the index of the last present operand; this is
6374 for the purpose of diagnostics. */
6375 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6377 set_fatal_syntax_error
6378 (_("unexpected characters following instruction"));
6381 parse_operands_return:
6385 DEBUG_TRACE ("parsing FAIL: %s - %s",
6386 operand_mismatch_kind_names[get_error_kind ()],
6387 get_error_message ());
6388 /* Record the operand error properly; this is useful when there
6389 are multiple instruction templates for a mnemonic name, so that
6390 later on, we can select the error that most closely describes
6392 record_operand_error (opcode, i, get_error_kind (),
6393 get_error_message ());
6398 DEBUG_TRACE ("parsing SUCCESS");
6403 /* It does some fix-up to provide some programmer friendly feature while
6404 keeping the libopcodes happy, i.e. libopcodes only accepts
6405 the preferred architectural syntax.
6406 Return FALSE if there is any failure; otherwise return TRUE. */
6409 programmer_friendly_fixup (aarch64_instruction *instr)
6411 aarch64_inst *base = &instr->base;
6412 const aarch64_opcode *opcode = base->opcode;
6413 enum aarch64_op op = opcode->op;
6414 aarch64_opnd_info *operands = base->operands;
6416 DEBUG_TRACE ("enter");
6418 switch (opcode->iclass)
6421 /* TBNZ Xn|Wn, #uimm6, label
6422 Test and Branch Not Zero: conditionally jumps to label if bit number
6423 uimm6 in register Xn is not zero. The bit number implies the width of
6424 the register, which may be written and should be disassembled as Wn if
6425 uimm is less than 32. */
6426 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6428 if (operands[1].imm.value >= 32)
6430 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6434 operands[0].qualifier = AARCH64_OPND_QLF_X;
6438 /* LDR Wt, label | =value
6439 As a convenience assemblers will typically permit the notation
6440 "=value" in conjunction with the pc-relative literal load instructions
6441 to automatically place an immediate value or symbolic address in a
6442 nearby literal pool and generate a hidden label which references it.
6443 ISREG has been set to 0 in the case of =value. */
6444 if (instr->gen_lit_pool
6445 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6447 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6448 if (op == OP_LDRSW_LIT)
6450 if (instr->reloc.exp.X_op != O_constant
6451 && instr->reloc.exp.X_op != O_big
6452 && instr->reloc.exp.X_op != O_symbol)
6454 record_operand_error (opcode, 1,
6455 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6456 _("constant expression expected"));
6459 if (! add_to_lit_pool (&instr->reloc.exp, size))
6461 record_operand_error (opcode, 1,
6462 AARCH64_OPDE_OTHER_ERROR,
6463 _("literal pool insertion failed"));
6471 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6472 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6473 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6474 A programmer-friendly assembler should accept a destination Xd in
6475 place of Wd, however that is not the preferred form for disassembly.
6477 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6478 && operands[1].qualifier == AARCH64_OPND_QLF_W
6479 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6480 operands[0].qualifier = AARCH64_OPND_QLF_W;
6485 /* In the 64-bit form, the final register operand is written as Wm
6486 for all but the (possibly omitted) UXTX/LSL and SXTX
6488 As a programmer-friendly assembler, we accept e.g.
6489 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6490 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6491 int idx = aarch64_operand_index (opcode->operands,
6492 AARCH64_OPND_Rm_EXT);
6493 gas_assert (idx == 1 || idx == 2);
6494 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6495 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6496 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6497 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6498 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6499 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6507 DEBUG_TRACE ("exit with SUCCESS");
6511 /* Check for loads and stores that will cause unpredictable behavior. */
6514 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6516 aarch64_inst *base = &instr->base;
6517 const aarch64_opcode *opcode = base->opcode;
6518 const aarch64_opnd_info *opnds = base->operands;
6519 switch (opcode->iclass)
6526 /* Loading/storing the base register is unpredictable if writeback. */
6527 if ((aarch64_get_operand_class (opnds[0].type)
6528 == AARCH64_OPND_CLASS_INT_REG)
6529 && opnds[0].reg.regno == opnds[1].addr.base_regno
6530 && opnds[1].addr.base_regno != REG_SP
6531 && opnds[1].addr.writeback)
6532 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6535 case ldstnapair_offs:
6536 case ldstpair_indexed:
6537 /* Loading/storing the base register is unpredictable if writeback. */
6538 if ((aarch64_get_operand_class (opnds[0].type)
6539 == AARCH64_OPND_CLASS_INT_REG)
6540 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6541 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6542 && opnds[2].addr.base_regno != REG_SP
6543 && opnds[2].addr.writeback)
6544 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6545 /* Load operations must load different registers. */
6546 if ((opcode->opcode & (1 << 22))
6547 && opnds[0].reg.regno == opnds[1].reg.regno)
6548 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6555 /* A wrapper function to interface with libopcodes on encoding and
6556 record the error message if there is any.
6558 Return TRUE on success; otherwise return FALSE. */
6561 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6564 aarch64_operand_error error_info;
6565 error_info.kind = AARCH64_OPDE_NIL;
6566 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6570 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6571 record_operand_error_info (opcode, &error_info);
6576 #ifdef DEBUG_AARCH64
6578 dump_opcode_operands (const aarch64_opcode *opcode)
6581 while (opcode->operands[i] != AARCH64_OPND_NIL)
6583 aarch64_verbose ("\t\t opnd%d: %s", i,
6584 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6585 ? aarch64_get_operand_name (opcode->operands[i])
6586 : aarch64_get_operand_desc (opcode->operands[i]));
6590 #endif /* DEBUG_AARCH64 */
6592 /* This is the guts of the machine-dependent assembler. STR points to a
6593 machine dependent instruction. This function is supposed to emit
6594 the frags/bytes it assembles to. */
6597 md_assemble (char *str)
6600 templates *template;
6601 aarch64_opcode *opcode;
6602 aarch64_inst *inst_base;
6603 unsigned saved_cond;
6605 /* Align the previous label if needed. */
6606 if (last_label_seen != NULL)
6608 symbol_set_frag (last_label_seen, frag_now);
6609 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6610 S_SET_SEGMENT (last_label_seen, now_seg);
6613 inst.reloc.type = BFD_RELOC_UNUSED;
6615 DEBUG_TRACE ("\n\n");
6616 DEBUG_TRACE ("==============================");
6617 DEBUG_TRACE ("Enter md_assemble with %s", str);
6619 template = opcode_lookup (&p);
6622 /* It wasn't an instruction, but it might be a register alias of
6623 the form alias .req reg directive. */
6624 if (!create_register_alias (str, p))
6625 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6630 skip_whitespace (p);
6633 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6634 get_mnemonic_name (str), str);
6638 init_operand_error_report ();
6640 /* Sections are assumed to start aligned. In executable section, there is no
6641 MAP_DATA symbol pending. So we only align the address during
6642 MAP_DATA --> MAP_INSN transition.
6643 For other sections, this is not guaranteed. */
6644 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6645 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6646 frag_align_code (2, 0);
6648 saved_cond = inst.cond;
6649 reset_aarch64_instruction (&inst);
6650 inst.cond = saved_cond;
6652 /* Iterate through all opcode entries with the same mnemonic name. */
6655 opcode = template->opcode;
6657 DEBUG_TRACE ("opcode %s found", opcode->name);
6658 #ifdef DEBUG_AARCH64
6660 dump_opcode_operands (opcode);
6661 #endif /* DEBUG_AARCH64 */
6663 mapping_state (MAP_INSN);
6665 inst_base = &inst.base;
6666 inst_base->opcode = opcode;
6668 /* Truly conditionally executed instructions, e.g. b.cond. */
6669 if (opcode->flags & F_COND)
6671 gas_assert (inst.cond != COND_ALWAYS);
6672 inst_base->cond = get_cond_from_value (inst.cond);
6673 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6675 else if (inst.cond != COND_ALWAYS)
6677 /* It shouldn't arrive here, where the assembly looks like a
6678 conditional instruction but the found opcode is unconditional. */
6683 if (parse_operands (p, opcode)
6684 && programmer_friendly_fixup (&inst)
6685 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6687 /* Check that this instruction is supported for this CPU. */
6688 if (!opcode->avariant
6689 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6691 as_bad (_("selected processor does not support `%s'"), str);
6695 warn_unpredictable_ldst (&inst, str);
6697 if (inst.reloc.type == BFD_RELOC_UNUSED
6698 || !inst.reloc.need_libopcodes_p)
6702 /* If there is relocation generated for the instruction,
6703 store the instruction information for the future fix-up. */
6704 struct aarch64_inst *copy;
6705 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6706 copy = XNEW (struct aarch64_inst);
6707 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6713 template = template->next;
6714 if (template != NULL)
6716 reset_aarch64_instruction (&inst);
6717 inst.cond = saved_cond;
6720 while (template != NULL);
6722 /* Issue the error messages if any. */
6723 output_operand_error_report (str);
6726 /* Various frobbings of labels and their addresses. */
6729 aarch64_start_line_hook (void)
6731 last_label_seen = NULL;
6735 aarch64_frob_label (symbolS * sym)
6737 last_label_seen = sym;
6739 dwarf2_emit_label (sym);
6743 aarch64_data_in_code (void)
6745 if (!strncmp (input_line_pointer + 1, "data:", 5))
6747 *input_line_pointer = '/';
6748 input_line_pointer += 5;
6749 *input_line_pointer = 0;
6757 aarch64_canonicalize_symbol_name (char *name)
6761 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6762 *(name + len - 5) = 0;
6767 /* Table of all register names defined by default. The user can
6768 define additional names with .req. Note that all register names
6769 should appear in both upper and lowercase variants. Some registers
6770 also have mixed-case names. */
6772 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6773 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
6774 #define REGSET16(p,t) \
6775 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6776 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6777 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6778 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6779 #define REGSET31(p,t) \
6781 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6782 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6783 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6784 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6785 #define REGSET(p,t) \
6786 REGSET31(p,t), REGNUM(p,31,t)
6788 /* These go into aarch64_reg_hsh hash-table. */
6789 static const reg_entry reg_names[] = {
6790 /* Integer registers. */
6791 REGSET31 (x, R_64), REGSET31 (X, R_64),
6792 REGSET31 (w, R_32), REGSET31 (W, R_32),
6794 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6795 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6797 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6798 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6800 REGDEF (ip0, 16, R_64), REGDEF (IP0, 16, R_64),
6801 REGDEF (ip1, 17, R_64), REGDEF (IP1, 17, R_64),
6802 REGDEF (fp, 29, R_64), REGDEF (FP, 29, R_64),
6803 REGDEF (lr, 30, R_64), REGDEF (LR, 30, R_64),
6805 /* Floating-point single precision registers. */
6806 REGSET (s, FP_S), REGSET (S, FP_S),
6808 /* Floating-point double precision registers. */
6809 REGSET (d, FP_D), REGSET (D, FP_D),
6811 /* Floating-point half precision registers. */
6812 REGSET (h, FP_H), REGSET (H, FP_H),
6814 /* Floating-point byte precision registers. */
6815 REGSET (b, FP_B), REGSET (B, FP_B),
6817 /* Floating-point quad precision registers. */
6818 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6820 /* FP/SIMD registers. */
6821 REGSET (v, VN), REGSET (V, VN),
6823 /* SVE vector registers. */
6824 REGSET (z, ZN), REGSET (Z, ZN),
6826 /* SVE predicate registers. */
6827 REGSET16 (p, PN), REGSET16 (P, PN)
6844 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6845 static const asm_nzcv nzcv_names[] = {
6846 {"nzcv", B (n, z, c, v)},
6847 {"nzcV", B (n, z, c, V)},
6848 {"nzCv", B (n, z, C, v)},
6849 {"nzCV", B (n, z, C, V)},
6850 {"nZcv", B (n, Z, c, v)},
6851 {"nZcV", B (n, Z, c, V)},
6852 {"nZCv", B (n, Z, C, v)},
6853 {"nZCV", B (n, Z, C, V)},
6854 {"Nzcv", B (N, z, c, v)},
6855 {"NzcV", B (N, z, c, V)},
6856 {"NzCv", B (N, z, C, v)},
6857 {"NzCV", B (N, z, C, V)},
6858 {"NZcv", B (N, Z, c, v)},
6859 {"NZcV", B (N, Z, c, V)},
6860 {"NZCv", B (N, Z, C, v)},
6861 {"NZCV", B (N, Z, C, V)}
6874 /* MD interface: bits in the object file. */
6876 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6877 for use in the a.out file, and stores them in the array pointed to by buf.
6878 This knows about the endian-ness of the target machine and does
6879 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6880 2 (short) and 4 (long) Floating numbers are put out as a series of
6881 LITTLENUMS (shorts, here at least). */
6884 md_number_to_chars (char *buf, valueT val, int n)
6886 if (target_big_endian)
6887 number_to_chars_bigendian (buf, val, n);
6889 number_to_chars_littleendian (buf, val, n);
6892 /* MD interface: Sections. */
6894 /* Estimate the size of a frag before relaxing. Assume everything fits in
6898 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6904 /* Round up a section size to the appropriate boundary. */
6907 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6912 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
6913 of an rs_align_code fragment.
6915 Here we fill the frag with the appropriate info for padding the
6916 output stream. The resulting frag will consist of a fixed (fr_fix)
6917 and of a repeating (fr_var) part.
6919 The fixed content is always emitted before the repeating content and
6920 these two parts are used as follows in constructing the output:
6921 - the fixed part will be used to align to a valid instruction word
6922 boundary, in case that we start at a misaligned address; as no
6923 executable instruction can live at the misaligned location, we
6924 simply fill with zeros;
6925 - the variable part will be used to cover the remaining padding and
6926 we fill using the AArch64 NOP instruction.
6928 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6929 enough storage space for up to 3 bytes for padding the back to a valid
6930 instruction alignment and exactly 4 bytes to store the NOP pattern. */
6933 aarch64_handle_align (fragS * fragP)
6935 /* NOP = d503201f */
6936 /* AArch64 instructions are always little-endian. */
6937 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6939 int bytes, fix, noop_size;
6942 if (fragP->fr_type != rs_align_code)
6945 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6946 p = fragP->fr_literal + fragP->fr_fix;
6949 gas_assert (fragP->tc_frag_data.recorded);
6952 noop_size = sizeof (aarch64_noop);
6954 fix = bytes & (noop_size - 1);
6958 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6962 fragP->fr_fix += fix;
6966 memcpy (p, aarch64_noop, noop_size);
6967 fragP->fr_var = noop_size;
6970 /* Perform target specific initialisation of a frag.
6971 Note - despite the name this initialisation is not done when the frag
6972 is created, but only when its type is assigned. A frag can be created
6973 and used a long time before its type is set, so beware of assuming that
6974 this initialisation is performed first. */
6978 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6979 int max_chars ATTRIBUTE_UNUSED)
6983 #else /* OBJ_ELF is defined. */
6985 aarch64_init_frag (fragS * fragP, int max_chars)
6987 /* Record a mapping symbol for alignment frags. We will delete this
6988 later if the alignment ends up empty. */
6989 if (!fragP->tc_frag_data.recorded)
6990 fragP->tc_frag_data.recorded = 1;
6992 switch (fragP->fr_type)
6996 mapping_state_2 (MAP_DATA, max_chars);
6999 /* PR 20364: We can get alignment frags in code sections,
7000 so do not just assume that we should use the MAP_DATA state. */
7001 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7004 mapping_state_2 (MAP_INSN, max_chars);
7011 /* Initialize the DWARF-2 unwind information for this procedure. */
7014 tc_aarch64_frame_initial_instructions (void)
7016 cfi_add_CFA_def_cfa (REG_SP, 0);
7018 #endif /* OBJ_ELF */
7020 /* Convert REGNAME to a DWARF-2 register number. */
7023 tc_aarch64_regname_to_dw2regnum (char *regname)
7025 const reg_entry *reg = parse_reg (®name);
7031 case REG_TYPE_SP_32:
7032 case REG_TYPE_SP_64:
7042 return reg->number + 64;
7050 /* Implement DWARF2_ADDR_SIZE. */
7053 aarch64_dwarf2_addr_size (void)
7055 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7059 return bfd_arch_bits_per_address (stdoutput) / 8;
7062 /* MD interface: Symbol and relocation handling. */
7064 /* Return the address within the segment that a PC-relative fixup is
7065 relative to. For AArch64 PC-relative fixups applied to instructions
7066 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7069 md_pcrel_from_section (fixS * fixP, segT seg)
7071 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7073 /* If this is pc-relative and we are going to emit a relocation
7074 then we just want to put out any pipeline compensation that the linker
7075 will need. Otherwise we want to use the calculated base. */
7077 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7078 || aarch64_force_relocation (fixP)))
7081 /* AArch64 should be consistent for all pc-relative relocations. */
7082 return base + AARCH64_PCREL_OFFSET;
7085 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7086 Otherwise we have no need to default values of symbols. */
7089 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7092 if (name[0] == '_' && name[1] == 'G'
7093 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7097 if (symbol_find (name))
7098 as_bad (_("GOT already in the symbol table"));
7100 GOT_symbol = symbol_new (name, undefined_section,
7101 (valueT) 0, &zero_address_frag);
7111 /* Return non-zero if the indicated VALUE has overflowed the maximum
7112 range expressible by a unsigned number with the indicated number of
7116 unsigned_overflow (valueT value, unsigned bits)
7119 if (bits >= sizeof (valueT) * 8)
7121 lim = (valueT) 1 << bits;
7122 return (value >= lim);
7126 /* Return non-zero if the indicated VALUE has overflowed the maximum
7127 range expressible by an signed number with the indicated number of
7131 signed_overflow (offsetT value, unsigned bits)
7134 if (bits >= sizeof (offsetT) * 8)
7136 lim = (offsetT) 1 << (bits - 1);
7137 return (value < -lim || value >= lim);
7140 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7141 unsigned immediate offset load/store instruction, try to encode it as
7142 an unscaled, 9-bit, signed immediate offset load/store instruction.
7143 Return TRUE if it is successful; otherwise return FALSE.
7145 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7146 in response to the standard LDR/STR mnemonics when the immediate offset is
7147 unambiguous, i.e. when it is negative or unaligned. */
7150 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7153 enum aarch64_op new_op;
7154 const aarch64_opcode *new_opcode;
7156 gas_assert (instr->opcode->iclass == ldst_pos);
7158 switch (instr->opcode->op)
7160 case OP_LDRB_POS:new_op = OP_LDURB; break;
7161 case OP_STRB_POS: new_op = OP_STURB; break;
7162 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7163 case OP_LDRH_POS: new_op = OP_LDURH; break;
7164 case OP_STRH_POS: new_op = OP_STURH; break;
7165 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7166 case OP_LDR_POS: new_op = OP_LDUR; break;
7167 case OP_STR_POS: new_op = OP_STUR; break;
7168 case OP_LDRF_POS: new_op = OP_LDURV; break;
7169 case OP_STRF_POS: new_op = OP_STURV; break;
7170 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7171 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7172 default: new_op = OP_NIL; break;
7175 if (new_op == OP_NIL)
7178 new_opcode = aarch64_get_opcode (new_op);
7179 gas_assert (new_opcode != NULL);
7181 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7182 instr->opcode->op, new_opcode->op);
7184 aarch64_replace_opcode (instr, new_opcode);
7186 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7187 qualifier matching may fail because the out-of-date qualifier will
7188 prevent the operand being updated with a new and correct qualifier. */
7189 idx = aarch64_operand_index (instr->opcode->operands,
7190 AARCH64_OPND_ADDR_SIMM9);
7191 gas_assert (idx == 1);
7192 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7194 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7196 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7202 /* Called by fix_insn to fix a MOV immediate alias instruction.
7204 Operand for a generic move immediate instruction, which is an alias
7205 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7206 a 32-bit/64-bit immediate value into general register. An assembler error
7207 shall result if the immediate cannot be created by a single one of these
7208 instructions. If there is a choice, then to ensure reversability an
7209 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7212 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7214 const aarch64_opcode *opcode;
7216 /* Need to check if the destination is SP/ZR. The check has to be done
7217 before any aarch64_replace_opcode. */
7218 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7219 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7221 instr->operands[1].imm.value = value;
7222 instr->operands[1].skip = 0;
7226 /* Try the MOVZ alias. */
7227 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7228 aarch64_replace_opcode (instr, opcode);
7229 if (aarch64_opcode_encode (instr->opcode, instr,
7230 &instr->value, NULL, NULL))
7232 put_aarch64_insn (buf, instr->value);
7235 /* Try the MOVK alias. */
7236 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7237 aarch64_replace_opcode (instr, opcode);
7238 if (aarch64_opcode_encode (instr->opcode, instr,
7239 &instr->value, NULL, NULL))
7241 put_aarch64_insn (buf, instr->value);
7246 if (try_mov_bitmask_p)
7248 /* Try the ORR alias. */
7249 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7250 aarch64_replace_opcode (instr, opcode);
7251 if (aarch64_opcode_encode (instr->opcode, instr,
7252 &instr->value, NULL, NULL))
7254 put_aarch64_insn (buf, instr->value);
7259 as_bad_where (fixP->fx_file, fixP->fx_line,
7260 _("immediate cannot be moved by a single instruction"));
7263 /* An instruction operand which is immediate related may have symbol used
7264 in the assembly, e.g.
7267 .set u32, 0x00ffff00
7269 At the time when the assembly instruction is parsed, a referenced symbol,
7270 like 'u32' in the above example may not have been seen; a fixS is created
7271 in such a case and is handled here after symbols have been resolved.
7272 Instruction is fixed up with VALUE using the information in *FIXP plus
7273 extra information in FLAGS.
7275 This function is called by md_apply_fix to fix up instructions that need
7276 a fix-up described above but does not involve any linker-time relocation. */
7279 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7283 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7284 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7285 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7289 /* Now the instruction is about to be fixed-up, so the operand that
7290 was previously marked as 'ignored' needs to be unmarked in order
7291 to get the encoding done properly. */
7292 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7293 new_inst->operands[idx].skip = 0;
7296 gas_assert (opnd != AARCH64_OPND_NIL);
7300 case AARCH64_OPND_EXCEPTION:
7301 if (unsigned_overflow (value, 16))
7302 as_bad_where (fixP->fx_file, fixP->fx_line,
7303 _("immediate out of range"));
7304 insn = get_aarch64_insn (buf);
7305 insn |= encode_svc_imm (value);
7306 put_aarch64_insn (buf, insn);
7309 case AARCH64_OPND_AIMM:
7310 /* ADD or SUB with immediate.
7311 NOTE this assumes we come here with a add/sub shifted reg encoding
7312 3 322|2222|2 2 2 21111 111111
7313 1 098|7654|3 2 1 09876 543210 98765 43210
7314 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7315 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7316 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7317 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7319 3 322|2222|2 2 221111111111
7320 1 098|7654|3 2 109876543210 98765 43210
7321 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7322 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7323 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7324 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7325 Fields sf Rn Rd are already set. */
7326 insn = get_aarch64_insn (buf);
7330 insn = reencode_addsub_switch_add_sub (insn);
7334 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7335 && unsigned_overflow (value, 12))
7337 /* Try to shift the value by 12 to make it fit. */
7338 if (((value >> 12) << 12) == value
7339 && ! unsigned_overflow (value, 12 + 12))
7342 insn |= encode_addsub_imm_shift_amount (1);
7346 if (unsigned_overflow (value, 12))
7347 as_bad_where (fixP->fx_file, fixP->fx_line,
7348 _("immediate out of range"));
7350 insn |= encode_addsub_imm (value);
7352 put_aarch64_insn (buf, insn);
7355 case AARCH64_OPND_SIMD_IMM:
7356 case AARCH64_OPND_SIMD_IMM_SFT:
7357 case AARCH64_OPND_LIMM:
7358 /* Bit mask immediate. */
7359 gas_assert (new_inst != NULL);
7360 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7361 new_inst->operands[idx].imm.value = value;
7362 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7363 &new_inst->value, NULL, NULL))
7364 put_aarch64_insn (buf, new_inst->value);
7366 as_bad_where (fixP->fx_file, fixP->fx_line,
7367 _("invalid immediate"));
7370 case AARCH64_OPND_HALF:
7371 /* 16-bit unsigned immediate. */
7372 if (unsigned_overflow (value, 16))
7373 as_bad_where (fixP->fx_file, fixP->fx_line,
7374 _("immediate out of range"));
7375 insn = get_aarch64_insn (buf);
7376 insn |= encode_movw_imm (value & 0xffff);
7377 put_aarch64_insn (buf, insn);
7380 case AARCH64_OPND_IMM_MOV:
7381 /* Operand for a generic move immediate instruction, which is
7382 an alias instruction that generates a single MOVZ, MOVN or ORR
7383 instruction to loads a 32-bit/64-bit immediate value into general
7384 register. An assembler error shall result if the immediate cannot be
7385 created by a single one of these instructions. If there is a choice,
7386 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7387 and MOVZ or MOVN to ORR. */
7388 gas_assert (new_inst != NULL);
7389 fix_mov_imm_insn (fixP, buf, new_inst, value);
7392 case AARCH64_OPND_ADDR_SIMM7:
7393 case AARCH64_OPND_ADDR_SIMM9:
7394 case AARCH64_OPND_ADDR_SIMM9_2:
7395 case AARCH64_OPND_ADDR_SIMM10:
7396 case AARCH64_OPND_ADDR_UIMM12:
7397 /* Immediate offset in an address. */
7398 insn = get_aarch64_insn (buf);
7400 gas_assert (new_inst != NULL && new_inst->value == insn);
7401 gas_assert (new_inst->opcode->operands[1] == opnd
7402 || new_inst->opcode->operands[2] == opnd);
7404 /* Get the index of the address operand. */
7405 if (new_inst->opcode->operands[1] == opnd)
7406 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7409 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7412 /* Update the resolved offset value. */
7413 new_inst->operands[idx].addr.offset.imm = value;
7415 /* Encode/fix-up. */
7416 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7417 &new_inst->value, NULL, NULL))
7419 put_aarch64_insn (buf, new_inst->value);
7422 else if (new_inst->opcode->iclass == ldst_pos
7423 && try_to_encode_as_unscaled_ldst (new_inst))
7425 put_aarch64_insn (buf, new_inst->value);
7429 as_bad_where (fixP->fx_file, fixP->fx_line,
7430 _("immediate offset out of range"));
7435 as_fatal (_("unhandled operand code %d"), opnd);
7439 /* Apply a fixup (fixP) to segment data, once it has been determined
7440 by our caller that we have all the info we need to fix it up.
7442 Parameter valP is the pointer to the value of the bits. */
7445 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7447 offsetT value = *valP;
7449 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7451 unsigned flags = fixP->fx_addnumber;
7453 DEBUG_TRACE ("\n\n");
7454 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7455 DEBUG_TRACE ("Enter md_apply_fix");
7457 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7459 /* Note whether this will delete the relocation. */
7461 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7464 /* Process the relocations. */
7465 switch (fixP->fx_r_type)
7467 case BFD_RELOC_NONE:
7468 /* This will need to go in the object file. */
7473 case BFD_RELOC_8_PCREL:
7474 if (fixP->fx_done || !seg->use_rela_p)
7475 md_number_to_chars (buf, value, 1);
7479 case BFD_RELOC_16_PCREL:
7480 if (fixP->fx_done || !seg->use_rela_p)
7481 md_number_to_chars (buf, value, 2);
7485 case BFD_RELOC_32_PCREL:
7486 if (fixP->fx_done || !seg->use_rela_p)
7487 md_number_to_chars (buf, value, 4);
7491 case BFD_RELOC_64_PCREL:
7492 if (fixP->fx_done || !seg->use_rela_p)
7493 md_number_to_chars (buf, value, 8);
7496 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7497 /* We claim that these fixups have been processed here, even if
7498 in fact we generate an error because we do not have a reloc
7499 for them, so tc_gen_reloc() will reject them. */
7501 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7503 as_bad_where (fixP->fx_file, fixP->fx_line,
7504 _("undefined symbol %s used as an immediate value"),
7505 S_GET_NAME (fixP->fx_addsy));
7506 goto apply_fix_return;
7508 fix_insn (fixP, flags, value);
7511 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7512 if (fixP->fx_done || !seg->use_rela_p)
7515 as_bad_where (fixP->fx_file, fixP->fx_line,
7516 _("pc-relative load offset not word aligned"));
7517 if (signed_overflow (value, 21))
7518 as_bad_where (fixP->fx_file, fixP->fx_line,
7519 _("pc-relative load offset out of range"));
7520 insn = get_aarch64_insn (buf);
7521 insn |= encode_ld_lit_ofs_19 (value >> 2);
7522 put_aarch64_insn (buf, insn);
7526 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7527 if (fixP->fx_done || !seg->use_rela_p)
7529 if (signed_overflow (value, 21))
7530 as_bad_where (fixP->fx_file, fixP->fx_line,
7531 _("pc-relative address offset out of range"));
7532 insn = get_aarch64_insn (buf);
7533 insn |= encode_adr_imm (value);
7534 put_aarch64_insn (buf, insn);
7538 case BFD_RELOC_AARCH64_BRANCH19:
7539 if (fixP->fx_done || !seg->use_rela_p)
7542 as_bad_where (fixP->fx_file, fixP->fx_line,
7543 _("conditional branch target not word aligned"));
7544 if (signed_overflow (value, 21))
7545 as_bad_where (fixP->fx_file, fixP->fx_line,
7546 _("conditional branch out of range"));
7547 insn = get_aarch64_insn (buf);
7548 insn |= encode_cond_branch_ofs_19 (value >> 2);
7549 put_aarch64_insn (buf, insn);
7553 case BFD_RELOC_AARCH64_TSTBR14:
7554 if (fixP->fx_done || !seg->use_rela_p)
7557 as_bad_where (fixP->fx_file, fixP->fx_line,
7558 _("conditional branch target not word aligned"));
7559 if (signed_overflow (value, 16))
7560 as_bad_where (fixP->fx_file, fixP->fx_line,
7561 _("conditional branch out of range"));
7562 insn = get_aarch64_insn (buf);
7563 insn |= encode_tst_branch_ofs_14 (value >> 2);
7564 put_aarch64_insn (buf, insn);
7568 case BFD_RELOC_AARCH64_CALL26:
7569 case BFD_RELOC_AARCH64_JUMP26:
7570 if (fixP->fx_done || !seg->use_rela_p)
7573 as_bad_where (fixP->fx_file, fixP->fx_line,
7574 _("branch target not word aligned"));
7575 if (signed_overflow (value, 28))
7576 as_bad_where (fixP->fx_file, fixP->fx_line,
7577 _("branch out of range"));
7578 insn = get_aarch64_insn (buf);
7579 insn |= encode_branch_ofs_26 (value >> 2);
7580 put_aarch64_insn (buf, insn);
7584 case BFD_RELOC_AARCH64_MOVW_G0:
7585 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7586 case BFD_RELOC_AARCH64_MOVW_G0_S:
7587 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7590 case BFD_RELOC_AARCH64_MOVW_G1:
7591 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7592 case BFD_RELOC_AARCH64_MOVW_G1_S:
7593 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7596 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7598 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7599 /* Should always be exported to object file, see
7600 aarch64_force_relocation(). */
7601 gas_assert (!fixP->fx_done);
7602 gas_assert (seg->use_rela_p);
7604 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7606 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7607 /* Should always be exported to object file, see
7608 aarch64_force_relocation(). */
7609 gas_assert (!fixP->fx_done);
7610 gas_assert (seg->use_rela_p);
7612 case BFD_RELOC_AARCH64_MOVW_G2:
7613 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7614 case BFD_RELOC_AARCH64_MOVW_G2_S:
7617 case BFD_RELOC_AARCH64_MOVW_G3:
7620 if (fixP->fx_done || !seg->use_rela_p)
7622 insn = get_aarch64_insn (buf);
7626 /* REL signed addend must fit in 16 bits */
7627 if (signed_overflow (value, 16))
7628 as_bad_where (fixP->fx_file, fixP->fx_line,
7629 _("offset out of range"));
7633 /* Check for overflow and scale. */
7634 switch (fixP->fx_r_type)
7636 case BFD_RELOC_AARCH64_MOVW_G0:
7637 case BFD_RELOC_AARCH64_MOVW_G1:
7638 case BFD_RELOC_AARCH64_MOVW_G2:
7639 case BFD_RELOC_AARCH64_MOVW_G3:
7640 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7641 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7642 if (unsigned_overflow (value, scale + 16))
7643 as_bad_where (fixP->fx_file, fixP->fx_line,
7644 _("unsigned value out of range"));
7646 case BFD_RELOC_AARCH64_MOVW_G0_S:
7647 case BFD_RELOC_AARCH64_MOVW_G1_S:
7648 case BFD_RELOC_AARCH64_MOVW_G2_S:
7649 /* NOTE: We can only come here with movz or movn. */
7650 if (signed_overflow (value, scale + 16))
7651 as_bad_where (fixP->fx_file, fixP->fx_line,
7652 _("signed value out of range"));
7655 /* Force use of MOVN. */
7657 insn = reencode_movzn_to_movn (insn);
7661 /* Force use of MOVZ. */
7662 insn = reencode_movzn_to_movz (insn);
7666 /* Unchecked relocations. */
7672 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7673 insn |= encode_movw_imm (value & 0xffff);
7675 put_aarch64_insn (buf, insn);
7679 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7680 fixP->fx_r_type = (ilp32_p
7681 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7682 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7683 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7684 /* Should always be exported to object file, see
7685 aarch64_force_relocation(). */
7686 gas_assert (!fixP->fx_done);
7687 gas_assert (seg->use_rela_p);
7690 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7691 fixP->fx_r_type = (ilp32_p
7692 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7693 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
7694 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7695 /* Should always be exported to object file, see
7696 aarch64_force_relocation(). */
7697 gas_assert (!fixP->fx_done);
7698 gas_assert (seg->use_rela_p);
7701 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7702 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7703 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7704 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7705 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7706 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7707 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7708 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7709 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7710 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7711 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7712 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7713 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7714 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7715 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7716 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7717 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7718 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7719 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7720 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7721 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7722 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7723 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7724 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7725 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7726 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7727 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7728 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7729 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7730 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7731 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7732 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7733 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7734 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7735 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7736 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7737 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7738 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7739 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7740 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7741 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7742 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7743 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7744 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7745 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7746 /* Should always be exported to object file, see
7747 aarch64_force_relocation(). */
7748 gas_assert (!fixP->fx_done);
7749 gas_assert (seg->use_rela_p);
7752 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7753 /* Should always be exported to object file, see
7754 aarch64_force_relocation(). */
7755 fixP->fx_r_type = (ilp32_p
7756 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7757 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7758 gas_assert (!fixP->fx_done);
7759 gas_assert (seg->use_rela_p);
7762 case BFD_RELOC_AARCH64_ADD_LO12:
7763 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7764 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7765 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7766 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7767 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7768 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7769 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7770 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7771 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7772 case BFD_RELOC_AARCH64_LDST128_LO12:
7773 case BFD_RELOC_AARCH64_LDST16_LO12:
7774 case BFD_RELOC_AARCH64_LDST32_LO12:
7775 case BFD_RELOC_AARCH64_LDST64_LO12:
7776 case BFD_RELOC_AARCH64_LDST8_LO12:
7777 /* Should always be exported to object file, see
7778 aarch64_force_relocation(). */
7779 gas_assert (!fixP->fx_done);
7780 gas_assert (seg->use_rela_p);
7783 case BFD_RELOC_AARCH64_TLSDESC_ADD:
7784 case BFD_RELOC_AARCH64_TLSDESC_CALL:
7785 case BFD_RELOC_AARCH64_TLSDESC_LDR:
7788 case BFD_RELOC_UNUSED:
7789 /* An error will already have been reported. */
7793 as_bad_where (fixP->fx_file, fixP->fx_line,
7794 _("unexpected %s fixup"),
7795 bfd_get_reloc_code_name (fixP->fx_r_type));
7800 /* Free the allocated the struct aarch64_inst.
7801 N.B. currently there are very limited number of fix-up types actually use
7802 this field, so the impact on the performance should be minimal . */
7803 if (fixP->tc_fix_data.inst != NULL)
7804 free (fixP->tc_fix_data.inst);
7809 /* Translate internal representation of relocation info to BFD target
7813 tc_gen_reloc (asection * section, fixS * fixp)
7816 bfd_reloc_code_real_type code;
7818 reloc = XNEW (arelent);
7820 reloc->sym_ptr_ptr = XNEW (asymbol *);
7821 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7822 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7826 if (section->use_rela_p)
7827 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7829 fixp->fx_offset = reloc->address;
7831 reloc->addend = fixp->fx_offset;
7833 code = fixp->fx_r_type;
7838 code = BFD_RELOC_16_PCREL;
7843 code = BFD_RELOC_32_PCREL;
7848 code = BFD_RELOC_64_PCREL;
7855 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7856 if (reloc->howto == NULL)
7858 as_bad_where (fixp->fx_file, fixp->fx_line,
7860 ("cannot represent %s relocation in this object file format"),
7861 bfd_get_reloc_code_name (code));
7868 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7871 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7873 bfd_reloc_code_real_type type;
7877 FIXME: @@ Should look at CPU word size. */
7884 type = BFD_RELOC_16;
7887 type = BFD_RELOC_32;
7890 type = BFD_RELOC_64;
7893 as_bad (_("cannot do %u-byte relocation"), size);
7894 type = BFD_RELOC_UNUSED;
7898 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7902 aarch64_force_relocation (struct fix *fixp)
7904 switch (fixp->fx_r_type)
7906 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7907 /* Perform these "immediate" internal relocations
7908 even if the symbol is extern or weak. */
7911 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7912 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7913 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7914 /* Pseudo relocs that need to be fixed up according to
7918 case BFD_RELOC_AARCH64_ADD_LO12:
7919 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7920 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7921 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7922 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7923 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7924 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7925 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7926 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7927 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7928 case BFD_RELOC_AARCH64_LDST128_LO12:
7929 case BFD_RELOC_AARCH64_LDST16_LO12:
7930 case BFD_RELOC_AARCH64_LDST32_LO12:
7931 case BFD_RELOC_AARCH64_LDST64_LO12:
7932 case BFD_RELOC_AARCH64_LDST8_LO12:
7933 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7934 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7935 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7936 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7937 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7938 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7939 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7940 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7941 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7942 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7943 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7944 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7945 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7946 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7947 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7948 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7949 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7950 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7951 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7952 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7953 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7954 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7955 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7956 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7957 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7958 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7959 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7960 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7961 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7962 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7963 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7964 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7965 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7966 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7967 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7968 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7969 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7970 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7971 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7972 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7973 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7974 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7975 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7976 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7977 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7978 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7979 /* Always leave these relocations for the linker. */
7986 return generic_force_reloc (fixp);
7991 /* Implement md_after_parse_args. This is the earliest time we need to decide
7992 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
7995 aarch64_after_parse_args (void)
7997 if (aarch64_abi != AARCH64_ABI_NONE)
8000 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8001 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8002 aarch64_abi = AARCH64_ABI_ILP32;
8004 aarch64_abi = AARCH64_ABI_LP64;
8008 elf64_aarch64_target_format (void)
8010 if (strcmp (TARGET_OS, "cloudabi") == 0)
8012 /* FIXME: What to do for ilp32_p ? */
8013 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
8015 if (target_big_endian)
8016 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
8018 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
8022 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8024 elf_frob_symbol (symp, puntp);
8028 /* MD interface: Finalization. */
8030 /* A good place to do this, although this was probably not intended
8031 for this kind of use. We need to dump the literal pool before
8032 references are made to a null symbol pointer. */
8035 aarch64_cleanup (void)
8039 for (pool = list_of_pools; pool; pool = pool->next)
8041 /* Put it at the end of the relevant section. */
8042 subseg_set (pool->section, pool->sub_section);
8048 /* Remove any excess mapping symbols generated for alignment frags in
8049 SEC. We may have created a mapping symbol before a zero byte
8050 alignment; remove it if there's a mapping symbol after the
8053 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8054 void *dummy ATTRIBUTE_UNUSED)
8056 segment_info_type *seginfo = seg_info (sec);
8059 if (seginfo == NULL || seginfo->frchainP == NULL)
8062 for (fragp = seginfo->frchainP->frch_root;
8063 fragp != NULL; fragp = fragp->fr_next)
8065 symbolS *sym = fragp->tc_frag_data.last_map;
8066 fragS *next = fragp->fr_next;
8068 /* Variable-sized frags have been converted to fixed size by
8069 this point. But if this was variable-sized to start with,
8070 there will be a fixed-size frag after it. So don't handle
8072 if (sym == NULL || next == NULL)
8075 if (S_GET_VALUE (sym) < next->fr_address)
8076 /* Not at the end of this frag. */
8078 know (S_GET_VALUE (sym) == next->fr_address);
8082 if (next->tc_frag_data.first_map != NULL)
8084 /* Next frag starts with a mapping symbol. Discard this
8086 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8090 if (next->fr_next == NULL)
8092 /* This mapping symbol is at the end of the section. Discard
8094 know (next->fr_fix == 0 && next->fr_var == 0);
8095 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8099 /* As long as we have empty frags without any mapping symbols,
8101 /* If the next frag is non-empty and does not start with a
8102 mapping symbol, then this mapping symbol is required. */
8103 if (next->fr_address != next->fr_next->fr_address)
8106 next = next->fr_next;
8108 while (next != NULL);
8113 /* Adjust the symbol table. */
8116 aarch64_adjust_symtab (void)
8119 /* Remove any overlapping mapping symbols generated by alignment frags. */
8120 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8121 /* Now do generic ELF adjustments. */
8122 elf_adjust_symtab ();
8127 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8129 const char *hash_err;
8131 hash_err = hash_insert (table, key, value);
8133 printf ("Internal Error: Can't hash %s\n", key);
8137 fill_instruction_hash_table (void)
8139 aarch64_opcode *opcode = aarch64_opcode_table;
8141 while (opcode->name != NULL)
8143 templates *templ, *new_templ;
8144 templ = hash_find (aarch64_ops_hsh, opcode->name);
8146 new_templ = XNEW (templates);
8147 new_templ->opcode = opcode;
8148 new_templ->next = NULL;
8151 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8154 new_templ->next = templ->next;
8155 templ->next = new_templ;
8162 convert_to_upper (char *dst, const char *src, size_t num)
8165 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8166 *dst = TOUPPER (*src);
8170 /* Assume STR point to a lower-case string, allocate, convert and return
8171 the corresponding upper-case string. */
8172 static inline const char*
8173 get_upper_str (const char *str)
8176 size_t len = strlen (str);
8177 ret = XNEWVEC (char, len + 1);
8178 convert_to_upper (ret, str, len);
8182 /* MD interface: Initialization. */
8190 if ((aarch64_ops_hsh = hash_new ()) == NULL
8191 || (aarch64_cond_hsh = hash_new ()) == NULL
8192 || (aarch64_shift_hsh = hash_new ()) == NULL
8193 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8194 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8195 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8196 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8197 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8198 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8199 || (aarch64_reg_hsh = hash_new ()) == NULL
8200 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8201 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8202 || (aarch64_pldop_hsh = hash_new ()) == NULL
8203 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8204 as_fatal (_("virtual memory exhausted"));
8206 fill_instruction_hash_table ();
8208 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8209 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8210 (void *) (aarch64_sys_regs + i));
8212 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8213 checked_hash_insert (aarch64_pstatefield_hsh,
8214 aarch64_pstatefields[i].name,
8215 (void *) (aarch64_pstatefields + i));
8217 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8218 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8219 aarch64_sys_regs_ic[i].name,
8220 (void *) (aarch64_sys_regs_ic + i));
8222 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8223 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8224 aarch64_sys_regs_dc[i].name,
8225 (void *) (aarch64_sys_regs_dc + i));
8227 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8228 checked_hash_insert (aarch64_sys_regs_at_hsh,
8229 aarch64_sys_regs_at[i].name,
8230 (void *) (aarch64_sys_regs_at + i));
8232 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8233 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8234 aarch64_sys_regs_tlbi[i].name,
8235 (void *) (aarch64_sys_regs_tlbi + i));
8237 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8238 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8239 (void *) (reg_names + i));
8241 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8242 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8243 (void *) (nzcv_names + i));
8245 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8247 const char *name = aarch64_operand_modifiers[i].name;
8248 checked_hash_insert (aarch64_shift_hsh, name,
8249 (void *) (aarch64_operand_modifiers + i));
8250 /* Also hash the name in the upper case. */
8251 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8252 (void *) (aarch64_operand_modifiers + i));
8255 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8258 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8259 the same condition code. */
8260 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8262 const char *name = aarch64_conds[i].names[j];
8265 checked_hash_insert (aarch64_cond_hsh, name,
8266 (void *) (aarch64_conds + i));
8267 /* Also hash the name in the upper case. */
8268 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8269 (void *) (aarch64_conds + i));
8273 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8275 const char *name = aarch64_barrier_options[i].name;
8276 /* Skip xx00 - the unallocated values of option. */
8279 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8280 (void *) (aarch64_barrier_options + i));
8281 /* Also hash the name in the upper case. */
8282 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8283 (void *) (aarch64_barrier_options + i));
8286 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8288 const char* name = aarch64_prfops[i].name;
8289 /* Skip the unallocated hint encodings. */
8292 checked_hash_insert (aarch64_pldop_hsh, name,
8293 (void *) (aarch64_prfops + i));
8294 /* Also hash the name in the upper case. */
8295 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8296 (void *) (aarch64_prfops + i));
8299 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8301 const char* name = aarch64_hint_options[i].name;
8303 checked_hash_insert (aarch64_hint_opt_hsh, name,
8304 (void *) (aarch64_hint_options + i));
8305 /* Also hash the name in the upper case. */
8306 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8307 (void *) (aarch64_hint_options + i));
8310 /* Set the cpu variant based on the command-line options. */
8312 mcpu_cpu_opt = march_cpu_opt;
8315 mcpu_cpu_opt = &cpu_default;
8317 cpu_variant = *mcpu_cpu_opt;
8319 /* Record the CPU type. */
8320 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8322 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8325 /* Command line processing. */
8327 const char *md_shortopts = "m:";
8329 #ifdef AARCH64_BI_ENDIAN
8330 #define OPTION_EB (OPTION_MD_BASE + 0)
8331 #define OPTION_EL (OPTION_MD_BASE + 1)
8333 #if TARGET_BYTES_BIG_ENDIAN
8334 #define OPTION_EB (OPTION_MD_BASE + 0)
8336 #define OPTION_EL (OPTION_MD_BASE + 1)
8340 struct option md_longopts[] = {
8342 {"EB", no_argument, NULL, OPTION_EB},
8345 {"EL", no_argument, NULL, OPTION_EL},
8347 {NULL, no_argument, NULL, 0}
8350 size_t md_longopts_size = sizeof (md_longopts);
8352 struct aarch64_option_table
8354 const char *option; /* Option name to match. */
8355 const char *help; /* Help information. */
8356 int *var; /* Variable to change. */
8357 int value; /* What to change it to. */
8358 char *deprecated; /* If non-null, print this message. */
8361 static struct aarch64_option_table aarch64_opts[] = {
8362 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8363 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8365 #ifdef DEBUG_AARCH64
8366 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8367 #endif /* DEBUG_AARCH64 */
8368 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8370 {"mno-verbose-error", N_("do not output verbose error messages"),
8371 &verbose_error_p, 0, NULL},
8372 {NULL, NULL, NULL, 0, NULL}
8375 struct aarch64_cpu_option_table
8378 const aarch64_feature_set value;
8379 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8381 const char *canonical_name;
8384 /* This list should, at a minimum, contain all the cpu names
8385 recognized by GCC. */
8386 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8387 {"all", AARCH64_ANY, NULL},
8388 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8389 AARCH64_FEATURE_CRC), "Cortex-A35"},
8390 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8391 AARCH64_FEATURE_CRC), "Cortex-A53"},
8392 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8393 AARCH64_FEATURE_CRC), "Cortex-A57"},
8394 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8395 AARCH64_FEATURE_CRC), "Cortex-A72"},
8396 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8397 AARCH64_FEATURE_CRC), "Cortex-A73"},
8398 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8399 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8400 "Samsung Exynos M1"},
8401 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8402 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8404 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8405 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8406 "Qualcomm QDF24XX"},
8407 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8408 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8410 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8411 AARCH64_FEATURE_CRYPTO),
8413 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8414 in earlier releases and is superseded by 'xgene1' in all
8416 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8417 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8418 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8419 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8420 {"generic", AARCH64_ARCH_V8, NULL},
8422 {NULL, AARCH64_ARCH_NONE, NULL}
8425 struct aarch64_arch_option_table
8428 const aarch64_feature_set value;
8431 /* This list should, at a minimum, contain all the architecture names
8432 recognized by GCC. */
8433 static const struct aarch64_arch_option_table aarch64_archs[] = {
8434 {"all", AARCH64_ANY},
8435 {"armv8-a", AARCH64_ARCH_V8},
8436 {"armv8.1-a", AARCH64_ARCH_V8_1},
8437 {"armv8.2-a", AARCH64_ARCH_V8_2},
8438 {"armv8.3-a", AARCH64_ARCH_V8_3},
8439 {NULL, AARCH64_ARCH_NONE}
8442 /* ISA extensions. */
8443 struct aarch64_option_cpu_value_table
8446 const aarch64_feature_set value;
8447 const aarch64_feature_set require; /* Feature dependencies. */
8450 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8451 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8453 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
8454 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8455 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8457 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8459 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8460 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8461 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8463 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8465 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8467 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8468 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8469 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8470 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8471 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8473 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8474 AARCH64_FEATURE (AARCH64_FEATURE_F16
8475 | AARCH64_FEATURE_SIMD
8476 | AARCH64_FEATURE_COMPNUM, 0)},
8477 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8478 AARCH64_FEATURE (AARCH64_FEATURE_F16
8479 | AARCH64_FEATURE_SIMD, 0)},
8480 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8482 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8485 struct aarch64_long_option_table
8487 const char *option; /* Substring to match. */
8488 const char *help; /* Help information. */
8489 int (*func) (const char *subopt); /* Function to decode sub-option. */
8490 char *deprecated; /* If non-null, print this message. */
8493 /* Transitive closure of features depending on set. */
8494 static aarch64_feature_set
8495 aarch64_feature_disable_set (aarch64_feature_set set)
8497 const struct aarch64_option_cpu_value_table *opt;
8498 aarch64_feature_set prev = 0;
8500 while (prev != set) {
8502 for (opt = aarch64_features; opt->name != NULL; opt++)
8503 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8504 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8509 /* Transitive closure of dependencies of set. */
8510 static aarch64_feature_set
8511 aarch64_feature_enable_set (aarch64_feature_set set)
8513 const struct aarch64_option_cpu_value_table *opt;
8514 aarch64_feature_set prev = 0;
8516 while (prev != set) {
8518 for (opt = aarch64_features; opt->name != NULL; opt++)
8519 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8520 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8526 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8527 bfd_boolean ext_only)
8529 /* We insist on extensions being added before being removed. We achieve
8530 this by using the ADDING_VALUE variable to indicate whether we are
8531 adding an extension (1) or removing it (0) and only allowing it to
8532 change in the order -1 -> 1 -> 0. */
8533 int adding_value = -1;
8534 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8536 /* Copy the feature set, so that we can modify it. */
8540 while (str != NULL && *str != 0)
8542 const struct aarch64_option_cpu_value_table *opt;
8543 const char *ext = NULL;
8550 as_bad (_("invalid architectural extension"));
8554 ext = strchr (++str, '+');
8560 optlen = strlen (str);
8562 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8564 if (adding_value != 0)
8569 else if (optlen > 0)
8571 if (adding_value == -1)
8573 else if (adding_value != 1)
8575 as_bad (_("must specify extensions to add before specifying "
8576 "those to remove"));
8583 as_bad (_("missing architectural extension"));
8587 gas_assert (adding_value != -1);
8589 for (opt = aarch64_features; opt->name != NULL; opt++)
8590 if (strncmp (opt->name, str, optlen) == 0)
8592 aarch64_feature_set set;
8594 /* Add or remove the extension. */
8597 set = aarch64_feature_enable_set (opt->value);
8598 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8602 set = aarch64_feature_disable_set (opt->value);
8603 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8608 if (opt->name == NULL)
8610 as_bad (_("unknown architectural extension `%s'"), str);
8621 aarch64_parse_cpu (const char *str)
8623 const struct aarch64_cpu_option_table *opt;
8624 const char *ext = strchr (str, '+');
8630 optlen = strlen (str);
8634 as_bad (_("missing cpu name `%s'"), str);
8638 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8639 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8641 mcpu_cpu_opt = &opt->value;
8643 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
8648 as_bad (_("unknown cpu `%s'"), str);
8653 aarch64_parse_arch (const char *str)
8655 const struct aarch64_arch_option_table *opt;
8656 const char *ext = strchr (str, '+');
8662 optlen = strlen (str);
8666 as_bad (_("missing architecture name `%s'"), str);
8670 for (opt = aarch64_archs; opt->name != NULL; opt++)
8671 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8673 march_cpu_opt = &opt->value;
8675 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
8680 as_bad (_("unknown architecture `%s'\n"), str);
8685 struct aarch64_option_abi_value_table
8688 enum aarch64_abi_type value;
8691 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8692 {"ilp32", AARCH64_ABI_ILP32},
8693 {"lp64", AARCH64_ABI_LP64},
8697 aarch64_parse_abi (const char *str)
8703 as_bad (_("missing abi name `%s'"), str);
8707 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8708 if (strcmp (str, aarch64_abis[i].name) == 0)
8710 aarch64_abi = aarch64_abis[i].value;
8714 as_bad (_("unknown abi `%s'\n"), str);
8718 static struct aarch64_long_option_table aarch64_long_opts[] = {
8720 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8721 aarch64_parse_abi, NULL},
8722 #endif /* OBJ_ELF */
8723 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8724 aarch64_parse_cpu, NULL},
8725 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8726 aarch64_parse_arch, NULL},
8727 {NULL, NULL, 0, NULL}
8731 md_parse_option (int c, const char *arg)
8733 struct aarch64_option_table *opt;
8734 struct aarch64_long_option_table *lopt;
8740 target_big_endian = 1;
8746 target_big_endian = 0;
8751 /* Listing option. Just ignore these, we don't support additional
8756 for (opt = aarch64_opts; opt->option != NULL; opt++)
8758 if (c == opt->option[0]
8759 && ((arg == NULL && opt->option[1] == 0)
8760 || streq (arg, opt->option + 1)))
8762 /* If the option is deprecated, tell the user. */
8763 if (opt->deprecated != NULL)
8764 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8765 arg ? arg : "", _(opt->deprecated));
8767 if (opt->var != NULL)
8768 *opt->var = opt->value;
8774 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8776 /* These options are expected to have an argument. */
8777 if (c == lopt->option[0]
8779 && strncmp (arg, lopt->option + 1,
8780 strlen (lopt->option + 1)) == 0)
8782 /* If the option is deprecated, tell the user. */
8783 if (lopt->deprecated != NULL)
8784 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8785 _(lopt->deprecated));
8787 /* Call the sup-option parser. */
8788 return lopt->func (arg + strlen (lopt->option) - 1);
8799 md_show_usage (FILE * fp)
8801 struct aarch64_option_table *opt;
8802 struct aarch64_long_option_table *lopt;
8804 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8806 for (opt = aarch64_opts; opt->option != NULL; opt++)
8807 if (opt->help != NULL)
8808 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8810 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8811 if (lopt->help != NULL)
8812 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8816 -EB assemble code for a big-endian cpu\n"));
8821 -EL assemble code for a little-endian cpu\n"));
8825 /* Parse a .cpu directive. */
8828 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8830 const struct aarch64_cpu_option_table *opt;
8836 name = input_line_pointer;
8837 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8838 input_line_pointer++;
8839 saved_char = *input_line_pointer;
8840 *input_line_pointer = 0;
8842 ext = strchr (name, '+');
8845 optlen = ext - name;
8847 optlen = strlen (name);
8849 /* Skip the first "all" entry. */
8850 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8851 if (strlen (opt->name) == optlen
8852 && strncmp (name, opt->name, optlen) == 0)
8854 mcpu_cpu_opt = &opt->value;
8856 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8859 cpu_variant = *mcpu_cpu_opt;
8861 *input_line_pointer = saved_char;
8862 demand_empty_rest_of_line ();
8865 as_bad (_("unknown cpu `%s'"), name);
8866 *input_line_pointer = saved_char;
8867 ignore_rest_of_line ();
8871 /* Parse a .arch directive. */
8874 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8876 const struct aarch64_arch_option_table *opt;
8882 name = input_line_pointer;
8883 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8884 input_line_pointer++;
8885 saved_char = *input_line_pointer;
8886 *input_line_pointer = 0;
8888 ext = strchr (name, '+');
8891 optlen = ext - name;
8893 optlen = strlen (name);
8895 /* Skip the first "all" entry. */
8896 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8897 if (strlen (opt->name) == optlen
8898 && strncmp (name, opt->name, optlen) == 0)
8900 mcpu_cpu_opt = &opt->value;
8902 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8905 cpu_variant = *mcpu_cpu_opt;
8907 *input_line_pointer = saved_char;
8908 demand_empty_rest_of_line ();
8912 as_bad (_("unknown architecture `%s'\n"), name);
8913 *input_line_pointer = saved_char;
8914 ignore_rest_of_line ();
8917 /* Parse a .arch_extension directive. */
8920 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8923 char *ext = input_line_pointer;;
8925 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8926 input_line_pointer++;
8927 saved_char = *input_line_pointer;
8928 *input_line_pointer = 0;
8930 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8933 cpu_variant = *mcpu_cpu_opt;
8935 *input_line_pointer = saved_char;
8936 demand_empty_rest_of_line ();
8939 /* Copy symbol information. */
8942 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8944 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);