1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
40 #include "arch-utils.h"
43 #include "mips-tdep.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
50 #include "sim-regno.h"
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
60 /* The sizes of floating point registers. */
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
69 static const char *mips_abi_string;
71 static const char *mips_abi_strings[] = {
82 struct frame_extra_info
84 mips_extra_func_info_t proc_desc;
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
96 static const char *size_enums[] = {
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
120 static int mips_debug = 0;
122 /* MIPS specific per-architecture information */
125 /* from the elf header */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int gdb_target_is_mips64;
138 int default_mask_address_p;
141 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
142 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
144 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
146 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
148 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
150 /* Return the currently configured (or set) saved register size. */
152 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
154 static const char *mips_saved_regsize_string = size_auto;
156 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
158 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
159 functions to test, set, or clear bit 0 of addresses. */
162 is_mips16_addr (CORE_ADDR addr)
168 make_mips16_addr (CORE_ADDR addr)
174 unmake_mips16_addr (CORE_ADDR addr)
176 return ((addr) & ~1);
179 /* Return the contents of register REGNUM as a signed integer. */
182 read_signed_register (int regnum)
184 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
185 deprecated_read_register_gen (regnum, buf);
186 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
190 read_signed_register_pid (int regnum, ptid_t ptid)
195 if (ptid_equal (ptid, inferior_ptid))
196 return read_signed_register (regnum);
198 save_ptid = inferior_ptid;
200 inferior_ptid = ptid;
202 retval = read_signed_register (regnum);
204 inferior_ptid = save_ptid;
209 /* Return the MIPS ABI associated with GDBARCH. */
211 mips_abi (struct gdbarch *gdbarch)
213 return gdbarch_tdep (gdbarch)->mips_abi;
217 mips_saved_regsize (void)
219 if (mips_saved_regsize_string == size_auto)
220 return MIPS_DEFAULT_SAVED_REGSIZE;
221 else if (mips_saved_regsize_string == size_64)
223 else /* if (mips_saved_regsize_string == size_32) */
227 /* Functions for setting and testing a bit in a minimal symbol that
228 marks it as 16-bit function. The MSB of the minimal symbol's
229 "info" field is used for this purpose. This field is already
230 being used to store the symbol size, so the assumption is
231 that the symbol size cannot exceed 2^31.
233 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
234 i.e. refers to a 16-bit function, and sets a "special" bit in a
235 minimal symbol to mark it as a 16-bit function
237 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
238 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
239 the "info" field with the "special" bit masked out */
242 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
244 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
246 MSYMBOL_INFO (msym) = (char *)
247 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
248 SYMBOL_VALUE_ADDRESS (msym) |= 1;
253 msymbol_is_special (struct minimal_symbol *msym)
255 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
259 msymbol_size (struct minimal_symbol *msym)
261 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
264 /* XFER a value from the big/little/left end of the register.
265 Depending on the size of the value it might occupy the entire
266 register or just part of it. Make an allowance for this, aligning
267 things accordingly. */
270 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
271 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
274 bfd_byte reg[MAX_REGISTER_SIZE];
276 gdb_assert (reg_num >= NUM_REGS);
277 /* Need to transfer the left or right part of the register, based on
278 the targets byte order. */
282 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
284 case BFD_ENDIAN_LITTLE:
287 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
291 internal_error (__FILE__, __LINE__, "bad switch");
294 fprintf_unfiltered (gdb_stderr,
295 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
296 reg_num, reg_offset, buf_offset, length);
297 if (mips_debug && out != NULL)
300 fprintf_unfiltered (gdb_stdlog, "out ");
301 for (i = 0; i < length; i++)
302 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
305 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
307 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
308 if (mips_debug && in != NULL)
311 fprintf_unfiltered (gdb_stdlog, "in ");
312 for (i = 0; i < length; i++)
313 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
316 fprintf_unfiltered (gdb_stdlog, "\n");
319 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
320 compatiblity mode. A return value of 1 means that we have
321 physical 64-bit registers, but should treat them as 32-bit registers. */
324 mips2_fp_compat (void)
326 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
328 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
332 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
333 in all the places we deal with FP registers. PR gdb/413. */
334 /* Otherwise check the FR bit in the status register - it controls
335 the FP compatiblity mode. If it is clear we are in compatibility
337 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
344 /* Indicate that the ABI makes use of double-precision registers
345 provided by the FPU (rather than combining pairs of registers to
346 form double-precision values). Do not use "TARGET_IS_MIPS64" to
347 determine if the ABI is using double-precision registers. See also
349 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
351 /* The amount of space reserved on the stack for registers. This is
352 different to MIPS_SAVED_REGSIZE as it determines the alignment of
353 data allocated after the registers have run out. */
355 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
357 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
359 static const char *mips_stack_argsize_string = size_auto;
362 mips_stack_argsize (void)
364 if (mips_stack_argsize_string == size_auto)
365 return MIPS_DEFAULT_STACK_ARGSIZE;
366 else if (mips_stack_argsize_string == size_64)
368 else /* if (mips_stack_argsize_string == size_32) */
372 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
374 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
376 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
378 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
379 struct frame_info *, int);
381 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
383 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
385 static int mips_set_processor_type (char *);
387 static void mips_show_processor_type_command (char *, int);
389 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
391 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
392 struct frame_info *next_frame,
395 static CORE_ADDR after_prologue (CORE_ADDR pc,
396 mips_extra_func_info_t proc_desc);
398 static struct type *mips_float_register_type (void);
399 static struct type *mips_double_register_type (void);
401 /* This value is the model of MIPS in use. It is derived from the value
402 of the PrID register. */
404 char *mips_processor_type;
406 char *tmp_mips_processor_type;
408 /* The list of available "set mips " and "show mips " commands */
410 static struct cmd_list_element *setmipscmdlist = NULL;
411 static struct cmd_list_element *showmipscmdlist = NULL;
413 /* A set of original names, to be used when restoring back to generic
414 registers from a specific set. */
415 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
417 /* Integer registers 0 thru 31 are handled explicitly by
418 mips_register_name(). Processor specific registers 32 and above
419 are listed in the sets of register names assigned to
420 mips_processor_reg_names. */
421 static char **mips_processor_reg_names = mips_generic_reg_names;
423 /* Return the name of the register corresponding to REGNO. */
425 mips_register_name (int regno)
427 /* GPR names for all ABIs other than n32/n64. */
428 static char *mips_gpr_names[] = {
429 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
430 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
431 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
432 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
435 /* GPR names for n32 and n64 ABIs. */
436 static char *mips_n32_n64_gpr_names[] = {
437 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
438 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
439 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
440 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
443 enum mips_abi abi = mips_abi (current_gdbarch);
445 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
446 don't make the raw register names visible. */
447 int rawnum = regno % NUM_REGS;
448 if (regno < NUM_REGS)
451 /* The MIPS integer registers are always mapped from 0 to 31. The
452 names of the registers (which reflects the conventions regarding
453 register use) vary depending on the ABI. */
454 if (0 <= rawnum && rawnum < 32)
456 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
457 return mips_n32_n64_gpr_names[rawnum];
459 return mips_gpr_names[rawnum];
461 else if (32 <= rawnum && rawnum < NUM_REGS)
462 return mips_processor_reg_names[rawnum - 32];
464 internal_error (__FILE__, __LINE__,
465 "mips_register_name: bad register number %d", rawnum);
469 /* Names of IDT R3041 registers. */
471 char *mips_r3041_reg_names[] = {
472 "sr", "lo", "hi", "bad", "cause","pc",
473 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
474 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
475 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
476 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
477 "fsr", "fir", "",/*"fp"*/ "",
478 "", "", "bus", "ccfg", "", "", "", "",
479 "", "", "port", "cmp", "", "", "epc", "prid",
482 /* Names of IDT R3051 registers. */
484 char *mips_r3051_reg_names[] = {
485 "sr", "lo", "hi", "bad", "cause","pc",
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "fsr", "fir", ""/*"fp"*/, "",
491 "inx", "rand", "elo", "", "ctxt", "", "", "",
492 "", "", "ehi", "", "", "", "epc", "prid",
495 /* Names of IDT R3081 registers. */
497 char *mips_r3081_reg_names[] = {
498 "sr", "lo", "hi", "bad", "cause","pc",
499 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
500 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
501 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
502 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
503 "fsr", "fir", ""/*"fp"*/, "",
504 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
505 "", "", "ehi", "", "", "", "epc", "prid",
508 /* Names of LSI 33k registers. */
510 char *mips_lsi33k_reg_names[] = {
511 "epc", "hi", "lo", "sr", "cause","badvaddr",
512 "dcic", "bpc", "bda", "", "", "", "", "",
513 "", "", "", "", "", "", "", "",
514 "", "", "", "", "", "", "", "",
515 "", "", "", "", "", "", "", "",
517 "", "", "", "", "", "", "", "",
518 "", "", "", "", "", "", "", "",
524 } mips_processor_type_table[] = {
525 { "generic", mips_generic_reg_names },
526 { "r3041", mips_r3041_reg_names },
527 { "r3051", mips_r3051_reg_names },
528 { "r3071", mips_r3081_reg_names },
529 { "r3081", mips_r3081_reg_names },
530 { "lsi33k", mips_lsi33k_reg_names },
535 /* Return the groups that a MIPS register can be categorised into. */
538 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
539 struct reggroup *reggroup)
544 int rawnum = regnum % NUM_REGS;
545 int pseudo = regnum / NUM_REGS;
546 if (reggroup == all_reggroup)
548 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
549 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
550 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
551 (gdbarch), as not all architectures are multi-arch. */
552 raw_p = rawnum < NUM_REGS;
553 if (REGISTER_NAME (regnum) == NULL
554 || REGISTER_NAME (regnum)[0] == '\0')
556 if (reggroup == float_reggroup)
557 return float_p && pseudo;
558 if (reggroup == vector_reggroup)
559 return vector_p && pseudo;
560 if (reggroup == general_reggroup)
561 return (!vector_p && !float_p) && pseudo;
562 /* Save the pseudo registers. Need to make certain that any code
563 extracting register values from a saved register cache also uses
565 if (reggroup == save_reggroup)
566 return raw_p && pseudo;
567 /* Restore the same pseudo register. */
568 if (reggroup == restore_reggroup)
569 return raw_p && pseudo;
573 /* Map the symbol table registers which live in the range [1 *
574 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
578 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
579 int cookednum, void *buf)
581 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
582 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
586 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
587 int cookednum, const void *buf)
589 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
590 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
593 /* Table to translate MIPS16 register field to actual register number. */
594 static int mips16_to_32_reg[8] =
595 {16, 17, 2, 3, 4, 5, 6, 7};
597 /* Heuristic_proc_start may hunt through the text section for a long
598 time across a 2400 baud serial line. Allows the user to limit this
601 static unsigned int heuristic_fence_post = 0;
603 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
604 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
605 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
606 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
607 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
608 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
609 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
610 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
611 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
612 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
613 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
614 this will corrupt pdr.iline. Fortunately we don't use it. */
615 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
616 #define _PROC_MAGIC_ 0x0F0F0F0F
617 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
618 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
620 struct linked_proc_info
622 struct mips_extra_func_info info;
623 struct linked_proc_info *next;
625 *linked_proc_desc_table = NULL;
628 mips_print_extra_frame_info (struct frame_info *fi)
631 && get_frame_extra_info (fi)
632 && get_frame_extra_info (fi)->proc_desc
633 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
634 printf_filtered (" frame pointer is at %s+%s\n",
635 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
636 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
639 /* Number of bytes of storage in the actual machine representation for
640 register N. NOTE: This indirectly defines the register size
641 transfered by the GDB protocol. */
643 static int mips64_transfers_32bit_regs_p = 0;
646 mips_register_raw_size (int regnum)
648 gdb_assert (regnum >= 0);
649 if (regnum < NUM_REGS)
651 /* For compatibility with old code, implemnt the broken register raw
652 size map for the raw registers.
654 NOTE: cagney/2003-06-15: This is so bogus. The register's
655 raw size is changing according to the ABI
656 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
657 combination of REGISTER_RAW_SIZE and REGISTER_BYTE. */
658 if (mips64_transfers_32bit_regs_p)
659 return REGISTER_VIRTUAL_SIZE (regnum);
660 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
661 && FP_REGISTER_DOUBLE)
662 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
668 else if (regnum < 2 * NUM_REGS)
670 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
671 registers, but always return the virtual size. */
672 int rawnum = regnum % NUM_REGS;
673 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum));
676 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
679 /* Register offset in a buffer for each register.
681 FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE
682 should strictly return the layout of the buffer. Unfortunatly
683 remote.c and the MIPS have come to rely on a custom layout that
684 doesn't 1:1 map onto the register type. */
687 mips_register_byte (int regnum)
689 gdb_assert (regnum >= 0);
690 if (regnum < NUM_REGS)
691 /* Pick up the relevant per-tm file register byte method. */
692 return MIPS_REGISTER_BYTE (regnum);
693 else if (regnum < 2 * NUM_REGS)
697 /* Start with the end of the raw register buffer - assum that
698 MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */
699 byte = MIPS_REGISTER_BYTE (NUM_REGS);
700 /* Add space for all the proceeding registers based on their
702 for (reg = NUM_REGS; reg < regnum; reg++)
703 byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch,
708 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
711 /* Convert between RAW and VIRTUAL registers. The RAW register size
712 defines the remote-gdb packet. */
715 mips_register_convertible (int reg_nr)
717 if (mips64_transfers_32bit_regs_p)
720 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
724 mips_register_convert_to_virtual (int n, struct type *virtual_type,
725 char *raw_buf, char *virt_buf)
727 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
729 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
730 TYPE_LENGTH (virtual_type));
734 TYPE_LENGTH (virtual_type));
738 mips_register_convert_to_raw (struct type *virtual_type, int n,
739 const char *virt_buf, char *raw_buf)
741 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
742 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
743 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
745 TYPE_LENGTH (virtual_type));
749 TYPE_LENGTH (virtual_type));
753 mips_convert_register_p (int regnum, struct type *type)
755 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
756 && REGISTER_RAW_SIZE (regnum) == 4
757 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
758 && TYPE_CODE(type) == TYPE_CODE_FLT
759 && TYPE_LENGTH(type) == 8);
763 mips_register_to_value (struct frame_info *frame, int regnum,
764 struct type *type, void *to)
766 frame_read_register (frame, regnum + 0, (char *) to + 4);
767 frame_read_register (frame, regnum + 1, (char *) to + 0);
771 mips_value_to_register (struct frame_info *frame, int regnum,
772 struct type *type, const void *from)
774 put_frame_register (frame, regnum + 0, (const char *) from + 4);
775 put_frame_register (frame, regnum + 1, (const char *) from + 0);
778 /* Return the GDB type object for the "standard" data type of data in
782 mips_register_type (struct gdbarch *gdbarch, int regnum)
784 /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw
785 registers. Even return the same type. */
786 int rawnum = regnum % NUM_REGS;
787 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
788 #ifdef MIPS_REGISTER_TYPE
789 return MIPS_REGISTER_TYPE (rawnum);
791 if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32)
793 /* Floating point registers... */
794 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
795 return builtin_type_ieee_double_big;
797 return builtin_type_ieee_double_little;
799 else if (rawnum == PS_REGNUM /* CR */)
800 return builtin_type_uint32;
801 else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM)
802 return builtin_type_uint32;
805 /* Everything else...
806 Return type appropriate for width of register. */
807 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
808 return builtin_type_uint64;
810 return builtin_type_uint32;
815 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
820 return read_signed_register (SP_REGNUM);
823 /* Should the upper word of 64-bit addresses be zeroed? */
824 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
827 mips_mask_address_p (void)
829 switch (mask_address_var)
831 case AUTO_BOOLEAN_TRUE:
833 case AUTO_BOOLEAN_FALSE:
836 case AUTO_BOOLEAN_AUTO:
837 return MIPS_DEFAULT_MASK_ADDRESS_P;
839 internal_error (__FILE__, __LINE__,
840 "mips_mask_address_p: bad switch");
846 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
848 switch (mask_address_var)
850 case AUTO_BOOLEAN_TRUE:
851 printf_filtered ("The 32 bit mips address mask is enabled\n");
853 case AUTO_BOOLEAN_FALSE:
854 printf_filtered ("The 32 bit mips address mask is disabled\n");
856 case AUTO_BOOLEAN_AUTO:
857 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
858 mips_mask_address_p () ? "enabled" : "disabled");
861 internal_error (__FILE__, __LINE__,
862 "show_mask_address: bad switch");
867 /* Should call_function allocate stack space for a struct return? */
870 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
872 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
876 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
878 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
881 /* Should call_function pass struct by reference?
882 For each architecture, structs are passed either by
883 value or by reference, depending on their size. */
886 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
888 enum type_code typecode = TYPE_CODE (check_typedef (type));
889 int len = TYPE_LENGTH (check_typedef (type));
891 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
892 return (len > MIPS_SAVED_REGSIZE);
898 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
900 return 0; /* Assumption: N32/N64 never passes struct by ref. */
904 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
906 return 0; /* Assumption: O32/O64 never passes struct by ref. */
909 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
912 pc_is_mips16 (bfd_vma memaddr)
914 struct minimal_symbol *sym;
916 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
917 if (is_mips16_addr (memaddr))
920 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
921 the high bit of the info field. Use this to decide if the function is
922 MIPS16 or normal MIPS. */
923 sym = lookup_minimal_symbol_by_pc (memaddr);
925 return msymbol_is_special (sym);
930 /* MIPS believes that the PC has a sign extended value. Perhaphs the
931 all registers should be sign extended for simplicity? */
934 mips_read_pc (ptid_t ptid)
936 return read_signed_register_pid (PC_REGNUM, ptid);
939 /* This returns the PC of the first inst after the prologue. If we can't
940 find the prologue, then return 0. */
943 after_prologue (CORE_ADDR pc,
944 mips_extra_func_info_t proc_desc)
946 struct symtab_and_line sal;
947 CORE_ADDR func_addr, func_end;
949 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
950 to read the stack pointer from the current machine state, because
951 the current machine state has nothing to do with the information
952 we need from the proc_desc; and the process may or may not exist
955 proc_desc = find_proc_desc (pc, NULL, 0);
959 /* If function is frameless, then we need to do it the hard way. I
960 strongly suspect that frameless always means prologueless... */
961 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
962 && PROC_FRAME_OFFSET (proc_desc) == 0)
966 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
967 return 0; /* Unknown */
969 sal = find_pc_line (func_addr, 0);
971 if (sal.end < func_end)
974 /* The line after the prologue is after the end of the function. In this
975 case, tell the caller to find the prologue the hard way. */
980 /* Decode a MIPS32 instruction that saves a register in the stack, and
981 set the appropriate bit in the general register mask or float register mask
982 to indicate which register is saved. This is a helper function
983 for mips_find_saved_regs. */
986 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
987 unsigned long *float_mask)
991 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
992 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
993 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
995 /* It might be possible to use the instruction to
996 find the offset, rather than the code below which
997 is based on things being in a certain order in the
998 frame, but figuring out what the instruction's offset
999 is relative to might be a little tricky. */
1000 reg = (inst & 0x001f0000) >> 16;
1001 *gen_mask |= (1 << reg);
1003 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
1004 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
1005 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
1008 reg = ((inst & 0x001f0000) >> 16);
1009 *float_mask |= (1 << reg);
1013 /* Decode a MIPS16 instruction that saves a register in the stack, and
1014 set the appropriate bit in the general register or float register mask
1015 to indicate which register is saved. This is a helper function
1016 for mips_find_saved_regs. */
1019 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
1021 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1023 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1024 *gen_mask |= (1 << reg);
1026 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1028 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1029 *gen_mask |= (1 << reg);
1031 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
1032 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1033 *gen_mask |= (1 << RA_REGNUM);
1037 /* Fetch and return instruction from the specified location. If the PC
1038 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1041 mips_fetch_instruction (CORE_ADDR addr)
1043 char buf[MIPS_INSTLEN];
1047 if (pc_is_mips16 (addr))
1049 instlen = MIPS16_INSTLEN;
1050 addr = unmake_mips16_addr (addr);
1053 instlen = MIPS_INSTLEN;
1054 status = read_memory_nobpt (addr, buf, instlen);
1056 memory_error (status, addr);
1057 return extract_unsigned_integer (buf, instlen);
1061 /* These the fields of 32 bit mips instructions */
1062 #define mips32_op(x) (x >> 26)
1063 #define itype_op(x) (x >> 26)
1064 #define itype_rs(x) ((x >> 21) & 0x1f)
1065 #define itype_rt(x) ((x >> 16) & 0x1f)
1066 #define itype_immediate(x) (x & 0xffff)
1068 #define jtype_op(x) (x >> 26)
1069 #define jtype_target(x) (x & 0x03ffffff)
1071 #define rtype_op(x) (x >> 26)
1072 #define rtype_rs(x) ((x >> 21) & 0x1f)
1073 #define rtype_rt(x) ((x >> 16) & 0x1f)
1074 #define rtype_rd(x) ((x >> 11) & 0x1f)
1075 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1076 #define rtype_funct(x) (x & 0x3f)
1079 mips32_relative_offset (unsigned long inst)
1082 x = itype_immediate (inst);
1083 if (x & 0x8000) /* sign bit set */
1085 x |= 0xffff0000; /* sign extension */
1091 /* Determine whate to set a single step breakpoint while considering
1092 branch prediction */
1094 mips32_next_pc (CORE_ADDR pc)
1098 inst = mips_fetch_instruction (pc);
1099 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1101 if (itype_op (inst) >> 2 == 5)
1102 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1104 op = (itype_op (inst) & 0x03);
1114 goto greater_branch;
1119 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1120 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1122 int tf = itype_rt (inst) & 0x01;
1123 int cnum = itype_rt (inst) >> 2;
1124 int fcrcs = read_signed_register (FCRCS_REGNUM);
1125 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1127 if (((cond >> cnum) & 0x01) == tf)
1128 pc += mips32_relative_offset (inst) + 4;
1133 pc += 4; /* Not a branch, next instruction is easy */
1136 { /* This gets way messy */
1138 /* Further subdivide into SPECIAL, REGIMM and other */
1139 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1141 case 0: /* SPECIAL */
1142 op = rtype_funct (inst);
1147 /* Set PC to that address */
1148 pc = read_signed_register (rtype_rs (inst));
1154 break; /* end SPECIAL */
1155 case 1: /* REGIMM */
1157 op = itype_rt (inst); /* branch condition */
1162 case 16: /* BLTZAL */
1163 case 18: /* BLTZALL */
1165 if (read_signed_register (itype_rs (inst)) < 0)
1166 pc += mips32_relative_offset (inst) + 4;
1168 pc += 8; /* after the delay slot */
1172 case 17: /* BGEZAL */
1173 case 19: /* BGEZALL */
1174 greater_equal_branch:
1175 if (read_signed_register (itype_rs (inst)) >= 0)
1176 pc += mips32_relative_offset (inst) + 4;
1178 pc += 8; /* after the delay slot */
1180 /* All of the other instructions in the REGIMM category */
1185 break; /* end REGIMM */
1190 reg = jtype_target (inst) << 2;
1191 /* Upper four bits get never changed... */
1192 pc = reg + ((pc + 4) & 0xf0000000);
1195 /* FIXME case JALX : */
1198 reg = jtype_target (inst) << 2;
1199 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1200 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1202 break; /* The new PC will be alternate mode */
1203 case 4: /* BEQ, BEQL */
1205 if (read_signed_register (itype_rs (inst)) ==
1206 read_signed_register (itype_rt (inst)))
1207 pc += mips32_relative_offset (inst) + 4;
1211 case 5: /* BNE, BNEL */
1213 if (read_signed_register (itype_rs (inst)) !=
1214 read_signed_register (itype_rt (inst)))
1215 pc += mips32_relative_offset (inst) + 4;
1219 case 6: /* BLEZ, BLEZL */
1221 if (read_signed_register (itype_rs (inst) <= 0))
1222 pc += mips32_relative_offset (inst) + 4;
1228 greater_branch: /* BGTZ, BGTZL */
1229 if (read_signed_register (itype_rs (inst) > 0))
1230 pc += mips32_relative_offset (inst) + 4;
1237 } /* mips32_next_pc */
1239 /* Decoding the next place to set a breakpoint is irregular for the
1240 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1241 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1242 We dont want to set a single step instruction on the extend instruction
1246 /* Lots of mips16 instruction formats */
1247 /* Predicting jumps requires itype,ritype,i8type
1248 and their extensions extItype,extritype,extI8type
1250 enum mips16_inst_fmts
1252 itype, /* 0 immediate 5,10 */
1253 ritype, /* 1 5,3,8 */
1254 rrtype, /* 2 5,3,3,5 */
1255 rritype, /* 3 5,3,3,5 */
1256 rrrtype, /* 4 5,3,3,3,2 */
1257 rriatype, /* 5 5,3,3,1,4 */
1258 shifttype, /* 6 5,3,3,3,2 */
1259 i8type, /* 7 5,3,8 */
1260 i8movtype, /* 8 5,3,3,5 */
1261 i8mov32rtype, /* 9 5,3,5,3 */
1262 i64type, /* 10 5,3,8 */
1263 ri64type, /* 11 5,3,3,5 */
1264 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1265 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1266 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1267 extRRItype, /* 15 5,5,5,5,3,3,5 */
1268 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1269 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1270 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1271 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1272 extRi64type, /* 20 5,6,5,5,3,3,5 */
1273 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1275 /* I am heaping all the fields of the formats into one structure and
1276 then, only the fields which are involved in instruction extension */
1280 unsigned int regx; /* Function in i8 type */
1285 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1286 for the bits which make up the immediatate extension. */
1289 extended_offset (unsigned int extension)
1292 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1294 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1296 value |= extension & 0x01f; /* extract 4:0 */
1300 /* Only call this function if you know that this is an extendable
1301 instruction, It wont malfunction, but why make excess remote memory references?
1302 If the immediate operands get sign extended or somthing, do it after
1303 the extension is performed.
1305 /* FIXME: Every one of these cases needs to worry about sign extension
1306 when the offset is to be used in relative addressing */
1310 fetch_mips_16 (CORE_ADDR pc)
1313 pc &= 0xfffffffe; /* clear the low order bit */
1314 target_read_memory (pc, buf, 2);
1315 return extract_unsigned_integer (buf, 2);
1319 unpack_mips16 (CORE_ADDR pc,
1320 unsigned int extension,
1322 enum mips16_inst_fmts insn_format,
1323 struct upk_mips16 *upk)
1328 switch (insn_format)
1335 value = extended_offset (extension);
1336 value = value << 11; /* rom for the original value */
1337 value |= inst & 0x7ff; /* eleven bits from instruction */
1341 value = inst & 0x7ff;
1342 /* FIXME : Consider sign extension */
1351 { /* A register identifier and an offset */
1352 /* Most of the fields are the same as I type but the
1353 immediate value is of a different length */
1357 value = extended_offset (extension);
1358 value = value << 8; /* from the original instruction */
1359 value |= inst & 0xff; /* eleven bits from instruction */
1360 regx = (extension >> 8) & 0x07; /* or i8 funct */
1361 if (value & 0x4000) /* test the sign bit , bit 26 */
1363 value &= ~0x3fff; /* remove the sign bit */
1369 value = inst & 0xff; /* 8 bits */
1370 regx = (inst >> 8) & 0x07; /* or i8 funct */
1371 /* FIXME: Do sign extension , this format needs it */
1372 if (value & 0x80) /* THIS CONFUSES ME */
1374 value &= 0xef; /* remove the sign bit */
1384 unsigned long value;
1385 unsigned int nexthalf;
1386 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1387 value = value << 16;
1388 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1396 internal_error (__FILE__, __LINE__,
1399 upk->offset = offset;
1406 add_offset_16 (CORE_ADDR pc, int offset)
1408 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1412 extended_mips16_next_pc (CORE_ADDR pc,
1413 unsigned int extension,
1416 int op = (insn >> 11);
1419 case 2: /* Branch */
1422 struct upk_mips16 upk;
1423 unpack_mips16 (pc, extension, insn, itype, &upk);
1424 offset = upk.offset;
1430 pc += (offset << 1) + 2;
1433 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1435 struct upk_mips16 upk;
1436 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1437 pc = add_offset_16 (pc, upk.offset);
1438 if ((insn >> 10) & 0x01) /* Exchange mode */
1439 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1446 struct upk_mips16 upk;
1448 unpack_mips16 (pc, extension, insn, ritype, &upk);
1449 reg = read_signed_register (upk.regx);
1451 pc += (upk.offset << 1) + 2;
1458 struct upk_mips16 upk;
1460 unpack_mips16 (pc, extension, insn, ritype, &upk);
1461 reg = read_signed_register (upk.regx);
1463 pc += (upk.offset << 1) + 2;
1468 case 12: /* I8 Formats btez btnez */
1470 struct upk_mips16 upk;
1472 unpack_mips16 (pc, extension, insn, i8type, &upk);
1473 /* upk.regx contains the opcode */
1474 reg = read_signed_register (24); /* Test register is 24 */
1475 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1476 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1477 /* pc = add_offset_16(pc,upk.offset) ; */
1478 pc += (upk.offset << 1) + 2;
1483 case 29: /* RR Formats JR, JALR, JALR-RA */
1485 struct upk_mips16 upk;
1486 /* upk.fmt = rrtype; */
1491 upk.regx = (insn >> 8) & 0x07;
1492 upk.regy = (insn >> 5) & 0x07;
1500 break; /* Function return instruction */
1506 break; /* BOGUS Guess */
1508 pc = read_signed_register (reg);
1515 /* This is an instruction extension. Fetch the real instruction
1516 (which follows the extension) and decode things based on
1520 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1533 mips16_next_pc (CORE_ADDR pc)
1535 unsigned int insn = fetch_mips_16 (pc);
1536 return extended_mips16_next_pc (pc, 0, insn);
1539 /* The mips_next_pc function supports single_step when the remote
1540 target monitor or stub is not developed enough to do a single_step.
1541 It works by decoding the current instruction and predicting where a
1542 branch will go. This isnt hard because all the data is available.
1543 The MIPS32 and MIPS16 variants are quite different */
1545 mips_next_pc (CORE_ADDR pc)
1548 return mips16_next_pc (pc);
1550 return mips32_next_pc (pc);
1553 /* Set up the 'saved_regs' array. This is a data structure containing
1554 the addresses on the stack where each register has been saved, for
1555 each stack frame. Registers that have not been saved will have
1556 zero here. The stack pointer register is special: rather than the
1557 address where the stack register has been saved,
1558 saved_regs[SP_REGNUM] will have the actual value of the previous
1559 frame's stack register. */
1562 mips_find_saved_regs (struct frame_info *fci)
1565 /* r0 bit means kernel trap */
1567 /* What registers have been saved? Bitmasks. */
1568 unsigned long gen_mask, float_mask;
1569 mips_extra_func_info_t proc_desc;
1571 CORE_ADDR *saved_regs;
1573 if (get_frame_saved_regs (fci) != NULL)
1575 saved_regs = frame_saved_regs_zalloc (fci);
1577 /* If it is the frame for sigtramp, the saved registers are located
1578 in a sigcontext structure somewhere on the stack. If the stack
1579 layout for sigtramp changes we might have to change these
1580 constants and the companion fixup_sigtramp in mdebugread.c */
1581 #ifndef SIGFRAME_BASE
1582 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1583 above the sigtramp frame. */
1584 #define SIGFRAME_BASE MIPS_REGSIZE
1585 /* FIXME! Are these correct?? */
1586 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1587 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1588 #define SIGFRAME_FPREGSAVE_OFF \
1589 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1591 #ifndef SIGFRAME_REG_SIZE
1592 /* FIXME! Is this correct?? */
1593 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1595 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1597 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1599 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1600 + ireg * SIGFRAME_REG_SIZE);
1601 set_reg_offset (saved_regs, ireg, reg_position);
1603 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1605 CORE_ADDR reg_position = (get_frame_base (fci)
1606 + SIGFRAME_FPREGSAVE_OFF
1607 + ireg * SIGFRAME_REG_SIZE);
1608 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1611 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1612 /* SP_REGNUM, contains the value and not the address. */
1613 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1617 proc_desc = get_frame_extra_info (fci)->proc_desc;
1618 if (proc_desc == NULL)
1619 /* I'm not sure how/whether this can happen. Normally when we
1620 can't find a proc_desc, we "synthesize" one using
1621 heuristic_proc_desc and set the saved_regs right away. */
1624 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1625 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1626 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1628 if (/* In any frame other than the innermost or a frame interrupted
1629 by a signal, we assume that all registers have been saved.
1630 This assumes that all register saves in a function happen
1631 before the first function call. */
1632 (get_next_frame (fci) == NULL
1633 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1635 /* In a dummy frame we know exactly where things are saved. */
1636 && !PROC_DESC_IS_DUMMY (proc_desc)
1638 /* Don't bother unless we are inside a function prologue.
1639 Outside the prologue, we know where everything is. */
1641 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1643 /* Not sure exactly what kernel_trap means, but if it means the
1644 kernel saves the registers without a prologue doing it, we
1645 better not examine the prologue to see whether registers
1646 have been saved yet. */
1649 /* We need to figure out whether the registers that the
1650 proc_desc claims are saved have been saved yet. */
1654 /* Bitmasks; set if we have found a save for the register. */
1655 unsigned long gen_save_found = 0;
1656 unsigned long float_save_found = 0;
1659 /* If the address is odd, assume this is MIPS16 code. */
1660 addr = PROC_LOW_ADDR (proc_desc);
1661 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1663 /* Scan through this function's instructions preceding the
1664 current PC, and look for those that save registers. */
1665 while (addr < get_frame_pc (fci))
1667 inst = mips_fetch_instruction (addr);
1668 if (pc_is_mips16 (addr))
1669 mips16_decode_reg_save (inst, &gen_save_found);
1671 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1674 gen_mask = gen_save_found;
1675 float_mask = float_save_found;
1678 /* Fill in the offsets for the registers which gen_mask says were
1681 CORE_ADDR reg_position = (get_frame_base (fci)
1682 + PROC_REG_OFFSET (proc_desc));
1683 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1684 if (gen_mask & 0x80000000)
1686 set_reg_offset (saved_regs, ireg, reg_position);
1687 reg_position -= MIPS_SAVED_REGSIZE;
1691 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1692 order of that normally used by gcc. Therefore, we have to fetch
1693 the first instruction of the function, and if it's an entry
1694 instruction that saves $s0 or $s1, correct their saved addresses. */
1695 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1697 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1698 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1702 int sreg_count = (inst >> 6) & 3;
1704 /* Check if the ra register was pushed on the stack. */
1705 CORE_ADDR reg_position = (get_frame_base (fci)
1706 + PROC_REG_OFFSET (proc_desc));
1708 reg_position -= MIPS_SAVED_REGSIZE;
1710 /* Check if the s0 and s1 registers were pushed on the
1712 for (reg = 16; reg < sreg_count + 16; reg++)
1714 set_reg_offset (saved_regs, reg, reg_position);
1715 reg_position -= MIPS_SAVED_REGSIZE;
1720 /* Fill in the offsets for the registers which float_mask says were
1723 CORE_ADDR reg_position = (get_frame_base (fci)
1724 + PROC_FREG_OFFSET (proc_desc));
1726 /* Fill in the offsets for the float registers which float_mask
1728 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1729 if (float_mask & 0x80000000)
1731 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1733 /* On a big endian 32 bit ABI, floating point registers
1734 are paired to form doubles such that the most
1735 significant part is in $f[N+1] and the least
1736 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1737 registers are also spilled as a pair and stored as a
1740 When little-endian the least significant part is
1741 stored first leading to the memory order $f[N] and
1744 Unfortunatly, when big-endian the most significant
1745 part of the double is stored first, and the least
1746 significant is stored second. This leads to the
1747 registers being ordered in memory as firt $f[N+1] and
1750 For the big-endian case make certain that the
1751 addresses point at the correct (swapped) locations
1752 $f[N] and $f[N+1] pair (keep in mind that
1753 reg_position is decremented each time through the
1756 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1757 reg_position - MIPS_SAVED_REGSIZE);
1759 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1760 reg_position + MIPS_SAVED_REGSIZE);
1763 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1764 reg_position -= MIPS_SAVED_REGSIZE;
1767 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1770 /* SP_REGNUM, contains the value and not the address. */
1771 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1775 read_next_frame_reg (struct frame_info *fi, int regno)
1777 /* Always a pseudo. */
1778 gdb_assert (regno >= NUM_REGS);
1782 regcache_cooked_read_signed (current_regcache, regno, &val);
1785 else if ((regno % NUM_REGS) == SP_REGNUM)
1786 /* The SP_REGNUM is special, its value is stored in saved_regs.
1787 In fact, it is so special that it can even only be fetched
1788 using a raw register number! Once this code as been converted
1789 to frame-unwind the problem goes away. */
1790 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1792 return frame_unwind_register_signed (fi, regno);
1796 /* mips_addr_bits_remove - remove useless address bits */
1799 mips_addr_bits_remove (CORE_ADDR addr)
1801 if (GDB_TARGET_IS_MIPS64)
1803 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1805 /* This hack is a work-around for existing boards using
1806 PMON, the simulator, and any other 64-bit targets that
1807 doesn't have true 64-bit addressing. On these targets,
1808 the upper 32 bits of addresses are ignored by the
1809 hardware. Thus, the PC or SP are likely to have been
1810 sign extended to all 1s by instruction sequences that
1811 load 32-bit addresses. For example, a typical piece of
1812 code that loads an address is this:
1813 lui $r2, <upper 16 bits>
1814 ori $r2, <lower 16 bits>
1815 But the lui sign-extends the value such that the upper 32
1816 bits may be all 1s. The workaround is simply to mask off
1817 these bits. In the future, gcc may be changed to support
1818 true 64-bit addressing, and this masking will have to be
1820 addr &= (CORE_ADDR) 0xffffffff;
1823 else if (mips_mask_address_p ())
1825 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1826 masking off bits, instead, the actual target should be asking
1827 for the address to be converted to a valid pointer. */
1828 /* Even when GDB is configured for some 32-bit targets
1829 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1830 so CORE_ADDR is 64 bits. So we still have to mask off
1831 useless bits from addresses. */
1832 addr &= (CORE_ADDR) 0xffffffff;
1837 /* mips_software_single_step() is called just before we want to resume
1838 the inferior, if we want to single-step it but there is no hardware
1839 or kernel single-step support (MIPS on GNU/Linux for example). We find
1840 the target of the coming instruction and breakpoint it.
1842 single_step is also called just after the inferior stops. If we had
1843 set up a simulated single-step, we undo our damage. */
1846 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1848 static CORE_ADDR next_pc;
1849 typedef char binsn_quantum[BREAKPOINT_MAX];
1850 static binsn_quantum break_mem;
1853 if (insert_breakpoints_p)
1855 pc = read_register (PC_REGNUM);
1856 next_pc = mips_next_pc (pc);
1858 target_insert_breakpoint (next_pc, break_mem);
1861 target_remove_breakpoint (next_pc, break_mem);
1865 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1870 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1871 : get_next_frame (prev)
1872 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1874 tmp = SKIP_TRAMPOLINE_CODE (pc);
1875 return tmp ? tmp : pc;
1880 mips_frame_saved_pc (struct frame_info *frame)
1884 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1887 /* Always unwind the cooked PC register value. */
1888 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1893 mips_extra_func_info_t proc_desc
1894 = get_frame_extra_info (frame)->proc_desc;
1895 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1896 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1899 /* We have to get the saved pc from the sigcontext if it is
1900 a signal handler frame. */
1901 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1902 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1903 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1906 return ADDR_BITS_REMOVE (saved_pc);
1909 static struct mips_extra_func_info temp_proc_desc;
1911 /* This hack will go away once the get_prev_frame() code has been
1912 modified to set the frame's type first. That is BEFORE init extra
1913 frame info et.al. is called. This is because it will become
1914 possible to skip the init extra info call for sigtramp and dummy
1916 static CORE_ADDR *temp_saved_regs;
1918 /* Set a register's saved stack address in temp_saved_regs. If an
1919 address has already been set for this register, do nothing; this
1920 way we will only recognize the first save of a given register in a
1923 For simplicity, save the address in both [0 .. NUM_REGS) and
1924 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1925 is used as it is only second range (the ABI instead of ISA
1926 registers) that comes into play when finding saved registers in a
1930 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1932 if (saved_regs[regno] == 0)
1934 saved_regs[regno + 0 * NUM_REGS] = offset;
1935 saved_regs[regno + 1 * NUM_REGS] = offset;
1940 /* Test whether the PC points to the return instruction at the
1941 end of a function. */
1944 mips_about_to_return (CORE_ADDR pc)
1946 if (pc_is_mips16 (pc))
1947 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1948 generates a "jr $ra"; other times it generates code to load
1949 the return address from the stack to an accessible register (such
1950 as $a3), then a "jr" using that register. This second case
1951 is almost impossible to distinguish from an indirect jump
1952 used for switch statements, so we don't even try. */
1953 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1955 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1959 /* This fencepost looks highly suspicious to me. Removing it also
1960 seems suspicious as it could affect remote debugging across serial
1964 heuristic_proc_start (CORE_ADDR pc)
1971 pc = ADDR_BITS_REMOVE (pc);
1973 fence = start_pc - heuristic_fence_post;
1977 if (heuristic_fence_post == UINT_MAX
1978 || fence < VM_MIN_ADDRESS)
1979 fence = VM_MIN_ADDRESS;
1981 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1983 /* search back for previous return */
1984 for (start_pc -= instlen;; start_pc -= instlen)
1985 if (start_pc < fence)
1987 /* It's not clear to me why we reach this point when
1988 stop_soon, but with this test, at least we
1989 don't print out warnings for every child forked (eg, on
1991 if (stop_soon == NO_STOP_QUIETLY)
1993 static int blurb_printed = 0;
1995 warning ("Warning: GDB can't find the start of the function at 0x%s.",
2000 /* This actually happens frequently in embedded
2001 development, when you first connect to a board
2002 and your stack pointer and pc are nowhere in
2003 particular. This message needs to give people
2004 in that situation enough information to
2005 determine that it's no big deal. */
2006 printf_filtered ("\n\
2007 GDB is unable to find the start of the function at 0x%s\n\
2008 and thus can't determine the size of that function's stack frame.\n\
2009 This means that GDB may be unable to access that stack frame, or\n\
2010 the frames below it.\n\
2011 This problem is most likely caused by an invalid program counter or\n\
2013 However, if you think GDB should simply search farther back\n\
2014 from 0x%s for code which looks like the beginning of a\n\
2015 function, you can increase the range of the search using the `set\n\
2016 heuristic-fence-post' command.\n",
2017 paddr_nz (pc), paddr_nz (pc));
2024 else if (pc_is_mips16 (start_pc))
2026 unsigned short inst;
2028 /* On MIPS16, any one of the following is likely to be the
2029 start of a function:
2033 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2034 inst = mips_fetch_instruction (start_pc);
2035 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2036 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2037 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2038 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2040 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2041 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2046 else if (mips_about_to_return (start_pc))
2048 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
2055 /* Fetch the immediate value from a MIPS16 instruction.
2056 If the previous instruction was an EXTEND, use it to extend
2057 the upper bits of the immediate value. This is a helper function
2058 for mips16_heuristic_proc_desc. */
2061 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2062 unsigned short inst, /* current instruction */
2063 int nbits, /* number of bits in imm field */
2064 int scale, /* scale factor to be applied to imm */
2065 int is_signed) /* is the imm field signed? */
2069 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2071 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2072 if (offset & 0x8000) /* check for negative extend */
2073 offset = 0 - (0x10000 - (offset & 0xffff));
2074 return offset | (inst & 0x1f);
2078 int max_imm = 1 << nbits;
2079 int mask = max_imm - 1;
2080 int sign_bit = max_imm >> 1;
2082 offset = inst & mask;
2083 if (is_signed && (offset & sign_bit))
2084 offset = 0 - (max_imm - offset);
2085 return offset * scale;
2090 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2091 stream from start_pc to limit_pc. */
2094 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2095 struct frame_info *next_frame, CORE_ADDR sp)
2098 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2099 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2100 unsigned inst = 0; /* current instruction */
2101 unsigned entry_inst = 0; /* the entry instruction */
2104 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2105 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2107 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2109 /* Save the previous instruction. If it's an EXTEND, we'll extract
2110 the immediate offset extension from it in mips16_get_imm. */
2113 /* Fetch and decode the instruction. */
2114 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2115 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2116 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2118 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2119 if (offset < 0) /* negative stack adjustment? */
2120 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2122 /* Exit loop if a positive stack adjustment is found, which
2123 usually means that the stack cleanup code in the function
2124 epilogue is reached. */
2127 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2129 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2130 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2131 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2132 set_reg_offset (temp_saved_regs, reg, sp + offset);
2134 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2136 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2137 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2138 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2139 set_reg_offset (temp_saved_regs, reg, sp + offset);
2141 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2143 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2144 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2145 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2147 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2149 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2150 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2151 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2153 else if (inst == 0x673d) /* move $s1, $sp */
2156 PROC_FRAME_REG (&temp_proc_desc) = 17;
2158 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2160 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2161 frame_addr = sp + offset;
2162 PROC_FRAME_REG (&temp_proc_desc) = 17;
2163 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2165 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2167 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2168 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2169 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2170 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2172 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2174 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2175 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2176 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2177 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2179 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2180 entry_inst = inst; /* save for later processing */
2181 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2182 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2185 /* The entry instruction is typically the first instruction in a function,
2186 and it stores registers at offsets relative to the value of the old SP
2187 (before the prologue). But the value of the sp parameter to this
2188 function is the new SP (after the prologue has been executed). So we
2189 can't calculate those offsets until we've seen the entire prologue,
2190 and can calculate what the old SP must have been. */
2191 if (entry_inst != 0)
2193 int areg_count = (entry_inst >> 8) & 7;
2194 int sreg_count = (entry_inst >> 6) & 3;
2196 /* The entry instruction always subtracts 32 from the SP. */
2197 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2199 /* Now we can calculate what the SP must have been at the
2200 start of the function prologue. */
2201 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2203 /* Check if a0-a3 were saved in the caller's argument save area. */
2204 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2206 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2207 set_reg_offset (temp_saved_regs, reg, sp + offset);
2208 offset += MIPS_SAVED_REGSIZE;
2211 /* Check if the ra register was pushed on the stack. */
2213 if (entry_inst & 0x20)
2215 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2216 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2217 offset -= MIPS_SAVED_REGSIZE;
2220 /* Check if the s0 and s1 registers were pushed on the stack. */
2221 for (reg = 16; reg < sreg_count + 16; reg++)
2223 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2224 set_reg_offset (temp_saved_regs, reg, sp + offset);
2225 offset -= MIPS_SAVED_REGSIZE;
2231 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2232 struct frame_info *next_frame, CORE_ADDR sp)
2235 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2237 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2238 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2239 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2240 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2241 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2243 unsigned long inst, high_word, low_word;
2246 /* Fetch the instruction. */
2247 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2249 /* Save some code by pre-extracting some useful fields. */
2250 high_word = (inst >> 16) & 0xffff;
2251 low_word = inst & 0xffff;
2252 reg = high_word & 0x1f;
2254 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2255 || high_word == 0x23bd /* addi $sp,$sp,-i */
2256 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2258 if (low_word & 0x8000) /* negative stack adjustment? */
2259 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2261 /* Exit loop if a positive stack adjustment is found, which
2262 usually means that the stack cleanup code in the function
2263 epilogue is reached. */
2266 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2268 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2269 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2271 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2273 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2274 but the register size used is only 32 bits. Make the address
2275 for the saved register point to the lower 32 bits. */
2276 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2277 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2279 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2281 /* Old gcc frame, r30 is virtual frame pointer. */
2282 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2283 frame_addr = sp + low_word;
2284 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2286 unsigned alloca_adjust;
2287 PROC_FRAME_REG (&temp_proc_desc) = 30;
2288 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2289 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2290 if (alloca_adjust > 0)
2292 /* FP > SP + frame_size. This may be because
2293 * of an alloca or somethings similar.
2294 * Fix sp to "pre-alloca" value, and try again.
2296 sp += alloca_adjust;
2301 /* move $30,$sp. With different versions of gas this will be either
2302 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2303 Accept any one of these. */
2304 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2306 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2307 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2309 unsigned alloca_adjust;
2310 PROC_FRAME_REG (&temp_proc_desc) = 30;
2311 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2312 alloca_adjust = (unsigned) (frame_addr - sp);
2313 if (alloca_adjust > 0)
2315 /* FP > SP + frame_size. This may be because
2316 * of an alloca or somethings similar.
2317 * Fix sp to "pre-alloca" value, and try again.
2319 sp += alloca_adjust;
2324 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2326 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2327 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2332 static mips_extra_func_info_t
2333 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2334 struct frame_info *next_frame, int cur_frame)
2339 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2345 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2346 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2347 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2348 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2349 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2350 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2352 if (start_pc + 200 < limit_pc)
2353 limit_pc = start_pc + 200;
2354 if (pc_is_mips16 (start_pc))
2355 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2357 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2358 return &temp_proc_desc;
2361 struct mips_objfile_private
2367 /* Global used to communicate between non_heuristic_proc_desc and
2368 compare_pdr_entries within qsort (). */
2369 static bfd *the_bfd;
2372 compare_pdr_entries (const void *a, const void *b)
2374 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2375 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2379 else if (lhs == rhs)
2385 static mips_extra_func_info_t
2386 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2388 CORE_ADDR startaddr;
2389 mips_extra_func_info_t proc_desc;
2390 struct block *b = block_for_pc (pc);
2392 struct obj_section *sec;
2393 struct mips_objfile_private *priv;
2395 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2398 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2400 *addrptr = startaddr;
2404 sec = find_pc_section (pc);
2407 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2409 /* Search the ".pdr" section generated by GAS. This includes most of
2410 the information normally found in ECOFF PDRs. */
2412 the_bfd = sec->objfile->obfd;
2414 && (the_bfd->format == bfd_object
2415 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2416 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2418 /* Right now GAS only outputs the address as a four-byte sequence.
2419 This means that we should not bother with this method on 64-bit
2420 targets (until that is fixed). */
2422 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2423 sizeof (struct mips_objfile_private));
2425 sec->objfile->obj_private = priv;
2427 else if (priv == NULL)
2431 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2432 sizeof (struct mips_objfile_private));
2434 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2437 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2438 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2440 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2441 priv->contents, 0, priv->size);
2443 /* In general, the .pdr section is sorted. However, in the
2444 presence of multiple code sections (and other corner cases)
2445 it can become unsorted. Sort it so that we can use a faster
2447 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2452 sec->objfile->obj_private = priv;
2456 if (priv->size != 0)
2462 high = priv->size / 32;
2468 mid = (low + high) / 2;
2470 ptr = priv->contents + mid * 32;
2471 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2472 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2473 SECT_OFF_TEXT (sec->objfile));
2474 if (pdr_pc == startaddr)
2476 if (pdr_pc > startaddr)
2481 while (low != high);
2485 struct symbol *sym = find_pc_function (pc);
2487 /* Fill in what we need of the proc_desc. */
2488 proc_desc = (mips_extra_func_info_t)
2489 obstack_alloc (&sec->objfile->psymbol_obstack,
2490 sizeof (struct mips_extra_func_info));
2491 PROC_LOW_ADDR (proc_desc) = startaddr;
2493 /* Only used for dummy frames. */
2494 PROC_HIGH_ADDR (proc_desc) = 0;
2496 PROC_FRAME_OFFSET (proc_desc)
2497 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2498 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2500 PROC_FRAME_ADJUST (proc_desc) = 0;
2501 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2503 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2505 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2507 PROC_FREG_OFFSET (proc_desc)
2508 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2509 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2511 proc_desc->pdr.isym = (long) sym;
2521 if (startaddr > BLOCK_START (b))
2523 /* This is the "pathological" case referred to in a comment in
2524 print_frame_info. It might be better to move this check into
2529 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2531 /* If we never found a PDR for this function in symbol reading, then
2532 examine prologues to find the information. */
2535 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2536 if (PROC_FRAME_REG (proc_desc) == -1)
2546 static mips_extra_func_info_t
2547 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2549 mips_extra_func_info_t proc_desc;
2550 CORE_ADDR startaddr = 0;
2552 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2556 /* IF this is the topmost frame AND
2557 * (this proc does not have debugging information OR
2558 * the PC is in the procedure prologue)
2559 * THEN create a "heuristic" proc_desc (by analyzing
2560 * the actual code) to replace the "official" proc_desc.
2562 if (next_frame == NULL)
2564 struct symtab_and_line val;
2565 struct symbol *proc_symbol =
2566 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2570 val = find_pc_line (BLOCK_START
2571 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2573 val.pc = val.end ? val.end : pc;
2575 if (!proc_symbol || pc < val.pc)
2577 mips_extra_func_info_t found_heuristic =
2578 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2579 pc, next_frame, cur_frame);
2580 if (found_heuristic)
2581 proc_desc = found_heuristic;
2587 /* Is linked_proc_desc_table really necessary? It only seems to be used
2588 by procedure call dummys. However, the procedures being called ought
2589 to have their own proc_descs, and even if they don't,
2590 heuristic_proc_desc knows how to create them! */
2592 register struct linked_proc_info *link;
2594 for (link = linked_proc_desc_table; link; link = link->next)
2595 if (PROC_LOW_ADDR (&link->info) <= pc
2596 && PROC_HIGH_ADDR (&link->info) > pc)
2600 startaddr = heuristic_proc_start (pc);
2603 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2609 get_frame_pointer (struct frame_info *frame,
2610 mips_extra_func_info_t proc_desc)
2612 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2613 + PROC_FRAME_OFFSET (proc_desc)
2614 - PROC_FRAME_ADJUST (proc_desc));
2617 static mips_extra_func_info_t cached_proc_desc;
2620 mips_frame_chain (struct frame_info *frame)
2622 mips_extra_func_info_t proc_desc;
2624 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2626 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
2629 /* Check if the PC is inside a call stub. If it is, fetch the
2630 PC of the caller of that stub. */
2631 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2634 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2636 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2637 is well, frame->frame the bottom of the current frame will
2638 contain that value. */
2639 return get_frame_base (frame);
2642 /* Look up the procedure descriptor for this PC. */
2643 proc_desc = find_proc_desc (saved_pc, frame, 1);
2647 cached_proc_desc = proc_desc;
2649 /* If no frame pointer and frame size is zero, we must be at end
2650 of stack (or otherwise hosed). If we don't check frame size,
2651 we loop forever if we see a zero size frame. */
2652 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2653 && PROC_FRAME_OFFSET (proc_desc) == 0
2654 /* The previous frame from a sigtramp frame might be frameless
2655 and have frame size zero. */
2656 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2657 /* For a generic dummy frame, let get_frame_pointer() unwind a
2658 register value saved as part of the dummy frame call. */
2659 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2662 return get_frame_pointer (frame, proc_desc);
2666 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2669 mips_extra_func_info_t proc_desc;
2671 if (get_frame_type (fci) == DUMMY_FRAME)
2674 /* Use proc_desc calculated in frame_chain. When there is no
2675 next frame, i.e, get_next_frame (fci) == NULL, we call
2676 find_proc_desc () to calculate it, passing an explicit
2677 NULL as the frame parameter. */
2679 get_next_frame (fci)
2681 : find_proc_desc (get_frame_pc (fci),
2682 NULL /* i.e, get_next_frame (fci) */,
2685 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2687 deprecated_set_frame_saved_regs_hack (fci, NULL);
2688 get_frame_extra_info (fci)->proc_desc =
2689 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2692 /* Fixup frame-pointer - only needed for top frame */
2693 /* This may not be quite right, if proc has a real frame register.
2694 Get the value of the frame relative sp, procedure might have been
2695 interrupted by a signal at it's very start. */
2696 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2697 && !PROC_DESC_IS_DUMMY (proc_desc))
2698 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2699 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2700 /* Do not ``fix'' fci->frame. It will have the value of the
2701 generic dummy frame's top-of-stack (since the draft
2702 fci->frame is obtained by returning the unwound stack
2703 pointer) and that is what we want. That way the fci->frame
2704 value will match the top-of-stack value that was saved as
2705 part of the dummy frames data. */
2708 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2710 if (proc_desc == &temp_proc_desc)
2714 /* Do not set the saved registers for a sigtramp frame,
2715 mips_find_saved_registers will do that for us. We can't
2716 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2718 /* FIXME: cagney/2002-11-18: This problem will go away once
2719 frame.c:get_prev_frame() is modified to set the frame's
2720 type before calling functions like this. */
2721 find_pc_partial_function (get_frame_pc (fci), &name,
2722 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2723 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2725 frame_saved_regs_zalloc (fci);
2726 /* Set value of previous frame's stack pointer.
2727 Remember that saved_regs[SP_REGNUM] is special in
2728 that it contains the value of the stack pointer
2729 register. The other saved_regs values are addresses
2730 (in the inferior) at which a given register's value
2732 set_reg_offset (temp_saved_regs, SP_REGNUM,
2733 get_frame_base (fci));
2734 set_reg_offset (temp_saved_regs, PC_REGNUM,
2735 temp_saved_regs[RA_REGNUM]);
2736 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2737 SIZEOF_FRAME_SAVED_REGS);
2741 /* hack: if argument regs are saved, guess these contain args */
2742 /* assume we can't tell how many args for now */
2743 get_frame_extra_info (fci)->num_args = -1;
2744 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2746 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2748 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2755 /* MIPS stack frames are almost impenetrable. When execution stops,
2756 we basically have to look at symbol information for the function
2757 that we stopped in, which tells us *which* register (if any) is
2758 the base of the frame pointer, and what offset from that register
2759 the frame itself is at.
2761 This presents a problem when trying to examine a stack in memory
2762 (that isn't executing at the moment), using the "frame" command. We
2763 don't have a PC, nor do we have any registers except SP.
2765 This routine takes two arguments, SP and PC, and tries to make the
2766 cached frames look as if these two arguments defined a frame on the
2767 cache. This allows the rest of info frame to extract the important
2768 arguments without difficulty. */
2771 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2774 error ("MIPS frame specifications require two arguments: sp and pc");
2776 return create_new_frame (argv[0], argv[1]);
2779 /* According to the current ABI, should the type be passed in a
2780 floating-point register (assuming that there is space)? When there
2781 is no FPU, FP are not even considered as possibile candidates for
2782 FP registers and, consequently this returns false - forces FP
2783 arguments into integer registers. */
2786 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2788 return ((typecode == TYPE_CODE_FLT
2790 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2791 && TYPE_NFIELDS (arg_type) == 1
2792 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2793 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2796 /* On o32, argument passing in GPRs depends on the alignment of the type being
2797 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2800 mips_type_needs_double_align (struct type *type)
2802 enum type_code typecode = TYPE_CODE (type);
2804 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2806 else if (typecode == TYPE_CODE_STRUCT)
2808 if (TYPE_NFIELDS (type) < 1)
2810 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2812 else if (typecode == TYPE_CODE_UNION)
2816 n = TYPE_NFIELDS (type);
2817 for (i = 0; i < n; i++)
2818 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2825 /* Macros to round N up or down to the next A boundary;
2826 A must be a power of two. */
2828 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2829 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2831 /* Adjust the address downward (direction of stack growth) so that it
2832 is correctly aligned for a new stack frame. */
2834 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2836 return ROUND_DOWN (addr, 16);
2840 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2841 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2842 struct value **args, CORE_ADDR sp, int struct_return,
2843 CORE_ADDR struct_addr)
2849 int stack_offset = 0;
2851 /* For shared libraries, "t9" needs to point at the function
2853 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2855 /* Set the return address register to point to the entry point of
2856 the program, where a breakpoint lies in wait. */
2857 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2859 /* First ensure that the stack and structure return address (if any)
2860 are properly aligned. The stack has to be at least 64-bit
2861 aligned even on 32-bit machines, because doubles must be 64-bit
2862 aligned. For n32 and n64, stack frames need to be 128-bit
2863 aligned, so we round to this widest known alignment. */
2865 sp = ROUND_DOWN (sp, 16);
2866 struct_addr = ROUND_DOWN (struct_addr, 16);
2868 /* Now make space on the stack for the args. We allocate more
2869 than necessary for EABI, because the first few arguments are
2870 passed in registers, but that's OK. */
2871 for (argnum = 0; argnum < nargs; argnum++)
2872 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2873 MIPS_STACK_ARGSIZE);
2874 sp -= ROUND_UP (len, 16);
2877 fprintf_unfiltered (gdb_stdlog,
2878 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2879 paddr_nz (sp), ROUND_UP (len, 16));
2881 /* Initialize the integer and float register pointers. */
2883 float_argreg = FPA0_REGNUM;
2885 /* The struct_return pointer occupies the first parameter-passing reg. */
2889 fprintf_unfiltered (gdb_stdlog,
2890 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2891 argreg, paddr_nz (struct_addr));
2892 write_register (argreg++, struct_addr);
2895 /* Now load as many as possible of the first arguments into
2896 registers, and push the rest onto the stack. Loop thru args
2897 from first to last. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2901 char valbuf[MAX_REGISTER_SIZE];
2902 struct value *arg = args[argnum];
2903 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2904 int len = TYPE_LENGTH (arg_type);
2905 enum type_code typecode = TYPE_CODE (arg_type);
2908 fprintf_unfiltered (gdb_stdlog,
2909 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2910 argnum + 1, len, (int) typecode);
2912 /* The EABI passes structures that do not fit in a register by
2914 if (len > MIPS_SAVED_REGSIZE
2915 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2917 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2918 typecode = TYPE_CODE_PTR;
2919 len = MIPS_SAVED_REGSIZE;
2922 fprintf_unfiltered (gdb_stdlog, " push");
2925 val = (char *) VALUE_CONTENTS (arg);
2927 /* 32-bit ABIs always start floating point arguments in an
2928 even-numbered floating point register. Round the FP register
2929 up before the check to see if there are any FP registers
2930 left. Non MIPS_EABI targets also pass the FP in the integer
2931 registers so also round up normal registers. */
2932 if (!FP_REGISTER_DOUBLE
2933 && fp_register_arg_p (typecode, arg_type))
2935 if ((float_argreg & 1))
2939 /* Floating point arguments passed in registers have to be
2940 treated specially. On 32-bit architectures, doubles
2941 are passed in register pairs; the even register gets
2942 the low word, and the odd register gets the high word.
2943 On non-EABI processors, the first two floating point arguments are
2944 also copied to general registers, because MIPS16 functions
2945 don't use float registers for arguments. This duplication of
2946 arguments in general registers can't hurt non-MIPS16 functions
2947 because those registers are normally skipped. */
2948 /* MIPS_EABI squeezes a struct that contains a single floating
2949 point value into an FP register instead of pushing it onto the
2951 if (fp_register_arg_p (typecode, arg_type)
2952 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2954 if (!FP_REGISTER_DOUBLE && len == 8)
2956 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2957 unsigned long regval;
2959 /* Write the low word of the double to the even register(s). */
2960 regval = extract_unsigned_integer (val + low_offset, 4);
2962 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2963 float_argreg, phex (regval, 4));
2964 write_register (float_argreg++, regval);
2966 /* Write the high word of the double to the odd register(s). */
2967 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2969 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2970 float_argreg, phex (regval, 4));
2971 write_register (float_argreg++, regval);
2975 /* This is a floating point value that fits entirely
2976 in a single register. */
2977 /* On 32 bit ABI's the float_argreg is further adjusted
2978 above to ensure that it is even register aligned. */
2979 LONGEST regval = extract_unsigned_integer (val, len);
2981 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2982 float_argreg, phex (regval, len));
2983 write_register (float_argreg++, regval);
2988 /* Copy the argument to general registers or the stack in
2989 register-sized pieces. Large arguments are split between
2990 registers and stack. */
2991 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2992 are treated specially: Irix cc passes them in registers
2993 where gcc sometimes puts them on the stack. For maximum
2994 compatibility, we will put them in both places. */
2995 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2996 (len % MIPS_SAVED_REGSIZE != 0));
2998 /* Note: Floating-point values that didn't fit into an FP
2999 register are only written to memory. */
3002 /* Remember if the argument was written to the stack. */
3003 int stack_used_p = 0;
3005 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3008 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3011 /* Write this portion of the argument to the stack. */
3012 if (argreg > MIPS_LAST_ARG_REGNUM
3014 || fp_register_arg_p (typecode, arg_type))
3016 /* Should shorter than int integer values be
3017 promoted to int before being stored? */
3018 int longword_offset = 0;
3021 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3023 if (MIPS_STACK_ARGSIZE == 8 &&
3024 (typecode == TYPE_CODE_INT ||
3025 typecode == TYPE_CODE_PTR ||
3026 typecode == TYPE_CODE_FLT) && len <= 4)
3027 longword_offset = MIPS_STACK_ARGSIZE - len;
3028 else if ((typecode == TYPE_CODE_STRUCT ||
3029 typecode == TYPE_CODE_UNION) &&
3030 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
3031 longword_offset = MIPS_STACK_ARGSIZE - len;
3036 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3037 paddr_nz (stack_offset));
3038 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3039 paddr_nz (longword_offset));
3042 addr = sp + stack_offset + longword_offset;
3047 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3049 for (i = 0; i < partial_len; i++)
3051 fprintf_unfiltered (gdb_stdlog, "%02x",
3055 write_memory (addr, val, partial_len);
3058 /* Note!!! This is NOT an else clause. Odd sized
3059 structs may go thru BOTH paths. Floating point
3060 arguments will not. */
3061 /* Write this portion of the argument to a general
3062 purpose register. */
3063 if (argreg <= MIPS_LAST_ARG_REGNUM
3064 && !fp_register_arg_p (typecode, arg_type))
3066 LONGEST regval = extract_unsigned_integer (val, partial_len);
3069 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3071 phex (regval, MIPS_SAVED_REGSIZE));
3072 write_register (argreg, regval);
3079 /* Compute the the offset into the stack at which we
3080 will copy the next parameter.
3082 In the new EABI (and the NABI32), the stack_offset
3083 only needs to be adjusted when it has been used. */
3086 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3090 fprintf_unfiltered (gdb_stdlog, "\n");
3093 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3095 /* Return adjusted stack pointer. */
3099 /* N32/N64 version of push_dummy_call. */
3102 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3103 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3104 struct value **args, CORE_ADDR sp, int struct_return,
3105 CORE_ADDR struct_addr)
3111 int stack_offset = 0;
3113 /* For shared libraries, "t9" needs to point at the function
3115 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3117 /* Set the return address register to point to the entry point of
3118 the program, where a breakpoint lies in wait. */
3119 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3121 /* First ensure that the stack and structure return address (if any)
3122 are properly aligned. The stack has to be at least 64-bit
3123 aligned even on 32-bit machines, because doubles must be 64-bit
3124 aligned. For n32 and n64, stack frames need to be 128-bit
3125 aligned, so we round to this widest known alignment. */
3127 sp = ROUND_DOWN (sp, 16);
3128 struct_addr = ROUND_DOWN (struct_addr, 16);
3130 /* Now make space on the stack for the args. */
3131 for (argnum = 0; argnum < nargs; argnum++)
3132 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3133 MIPS_STACK_ARGSIZE);
3134 sp -= ROUND_UP (len, 16);
3137 fprintf_unfiltered (gdb_stdlog,
3138 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
3139 paddr_nz (sp), ROUND_UP (len, 16));
3141 /* Initialize the integer and float register pointers. */
3143 float_argreg = FPA0_REGNUM;
3145 /* The struct_return pointer occupies the first parameter-passing reg. */
3149 fprintf_unfiltered (gdb_stdlog,
3150 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3151 argreg, paddr_nz (struct_addr));
3152 write_register (argreg++, struct_addr);
3155 /* Now load as many as possible of the first arguments into
3156 registers, and push the rest onto the stack. Loop thru args
3157 from first to last. */
3158 for (argnum = 0; argnum < nargs; argnum++)
3161 char valbuf[MAX_REGISTER_SIZE];
3162 struct value *arg = args[argnum];
3163 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3164 int len = TYPE_LENGTH (arg_type);
3165 enum type_code typecode = TYPE_CODE (arg_type);
3168 fprintf_unfiltered (gdb_stdlog,
3169 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3170 argnum + 1, len, (int) typecode);
3172 val = (char *) VALUE_CONTENTS (arg);
3174 if (fp_register_arg_p (typecode, arg_type)
3175 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3177 /* This is a floating point value that fits entirely
3178 in a single register. */
3179 /* On 32 bit ABI's the float_argreg is further adjusted
3180 above to ensure that it is even register aligned. */
3181 LONGEST regval = extract_unsigned_integer (val, len);
3183 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3184 float_argreg, phex (regval, len));
3185 write_register (float_argreg++, regval);
3188 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3189 argreg, phex (regval, len));
3190 write_register (argreg, regval);
3195 /* Copy the argument to general registers or the stack in
3196 register-sized pieces. Large arguments are split between
3197 registers and stack. */
3198 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3199 are treated specially: Irix cc passes them in registers
3200 where gcc sometimes puts them on the stack. For maximum
3201 compatibility, we will put them in both places. */
3202 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3203 (len % MIPS_SAVED_REGSIZE != 0));
3204 /* Note: Floating-point values that didn't fit into an FP
3205 register are only written to memory. */
3208 /* Rememer if the argument was written to the stack. */
3209 int stack_used_p = 0;
3210 int partial_len = len < MIPS_SAVED_REGSIZE ?
3211 len : MIPS_SAVED_REGSIZE;
3214 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3217 /* Write this portion of the argument to the stack. */
3218 if (argreg > MIPS_LAST_ARG_REGNUM
3220 || fp_register_arg_p (typecode, arg_type))
3222 /* Should shorter than int integer values be
3223 promoted to int before being stored? */
3224 int longword_offset = 0;
3227 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3229 if (MIPS_STACK_ARGSIZE == 8 &&
3230 (typecode == TYPE_CODE_INT ||
3231 typecode == TYPE_CODE_PTR ||
3232 typecode == TYPE_CODE_FLT) && len <= 4)
3233 longword_offset = MIPS_STACK_ARGSIZE - len;
3238 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3239 paddr_nz (stack_offset));
3240 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3241 paddr_nz (longword_offset));
3244 addr = sp + stack_offset + longword_offset;
3249 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3251 for (i = 0; i < partial_len; i++)
3253 fprintf_unfiltered (gdb_stdlog, "%02x",
3257 write_memory (addr, val, partial_len);
3260 /* Note!!! This is NOT an else clause. Odd sized
3261 structs may go thru BOTH paths. Floating point
3262 arguments will not. */
3263 /* Write this portion of the argument to a general
3264 purpose register. */
3265 if (argreg <= MIPS_LAST_ARG_REGNUM
3266 && !fp_register_arg_p (typecode, arg_type))
3268 LONGEST regval = extract_unsigned_integer (val, partial_len);
3270 /* A non-floating-point argument being passed in a
3271 general register. If a struct or union, and if
3272 the remaining length is smaller than the register
3273 size, we have to adjust the register value on
3276 It does not seem to be necessary to do the
3277 same for integral types.
3279 cagney/2001-07-23: gdb/179: Also, GCC, when
3280 outputting LE O32 with sizeof (struct) <
3281 MIPS_SAVED_REGSIZE, generates a left shift as
3282 part of storing the argument in a register a
3283 register (the left shift isn't generated when
3284 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3285 is quite possible that this is GCC contradicting
3286 the LE/O32 ABI, GDB has not been adjusted to
3287 accommodate this. Either someone needs to
3288 demonstrate that the LE/O32 ABI specifies such a
3289 left shift OR this new ABI gets identified as
3290 such and GDB gets tweaked accordingly. */
3292 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3293 && partial_len < MIPS_SAVED_REGSIZE
3294 && (typecode == TYPE_CODE_STRUCT ||
3295 typecode == TYPE_CODE_UNION))
3296 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3300 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3302 phex (regval, MIPS_SAVED_REGSIZE));
3303 write_register (argreg, regval);
3310 /* Compute the the offset into the stack at which we
3311 will copy the next parameter.
3313 In N32 (N64?), the stack_offset only needs to be
3314 adjusted when it has been used. */
3317 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3321 fprintf_unfiltered (gdb_stdlog, "\n");
3324 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3326 /* Return adjusted stack pointer. */
3330 /* O32 version of push_dummy_call. */
3333 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3334 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3335 struct value **args, CORE_ADDR sp, int struct_return,
3336 CORE_ADDR struct_addr)
3342 int stack_offset = 0;
3344 /* For shared libraries, "t9" needs to point at the function
3346 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3348 /* Set the return address register to point to the entry point of
3349 the program, where a breakpoint lies in wait. */
3350 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3352 /* First ensure that the stack and structure return address (if any)
3353 are properly aligned. The stack has to be at least 64-bit
3354 aligned even on 32-bit machines, because doubles must be 64-bit
3355 aligned. For n32 and n64, stack frames need to be 128-bit
3356 aligned, so we round to this widest known alignment. */
3358 sp = ROUND_DOWN (sp, 16);
3359 struct_addr = ROUND_DOWN (struct_addr, 16);
3361 /* Now make space on the stack for the args. */
3362 for (argnum = 0; argnum < nargs; argnum++)
3363 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3364 MIPS_STACK_ARGSIZE);
3365 sp -= ROUND_UP (len, 16);
3368 fprintf_unfiltered (gdb_stdlog,
3369 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3370 paddr_nz (sp), ROUND_UP (len, 16));
3372 /* Initialize the integer and float register pointers. */
3374 float_argreg = FPA0_REGNUM;
3376 /* The struct_return pointer occupies the first parameter-passing reg. */
3380 fprintf_unfiltered (gdb_stdlog,
3381 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3382 argreg, paddr_nz (struct_addr));
3383 write_register (argreg++, struct_addr);
3384 stack_offset += MIPS_STACK_ARGSIZE;
3387 /* Now load as many as possible of the first arguments into
3388 registers, and push the rest onto the stack. Loop thru args
3389 from first to last. */
3390 for (argnum = 0; argnum < nargs; argnum++)
3393 char valbuf[MAX_REGISTER_SIZE];
3394 struct value *arg = args[argnum];
3395 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3396 int len = TYPE_LENGTH (arg_type);
3397 enum type_code typecode = TYPE_CODE (arg_type);
3400 fprintf_unfiltered (gdb_stdlog,
3401 "mips_o32_push_dummy_call: %d len=%d type=%d",
3402 argnum + 1, len, (int) typecode);
3404 val = (char *) VALUE_CONTENTS (arg);
3406 /* 32-bit ABIs always start floating point arguments in an
3407 even-numbered floating point register. Round the FP register
3408 up before the check to see if there are any FP registers
3409 left. O32/O64 targets also pass the FP in the integer
3410 registers so also round up normal registers. */
3411 if (!FP_REGISTER_DOUBLE
3412 && fp_register_arg_p (typecode, arg_type))
3414 if ((float_argreg & 1))
3418 /* Floating point arguments passed in registers have to be
3419 treated specially. On 32-bit architectures, doubles
3420 are passed in register pairs; the even register gets
3421 the low word, and the odd register gets the high word.
3422 On O32/O64, the first two floating point arguments are
3423 also copied to general registers, because MIPS16 functions
3424 don't use float registers for arguments. This duplication of
3425 arguments in general registers can't hurt non-MIPS16 functions
3426 because those registers are normally skipped. */
3428 if (fp_register_arg_p (typecode, arg_type)
3429 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3431 if (!FP_REGISTER_DOUBLE && len == 8)
3433 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3434 unsigned long regval;
3436 /* Write the low word of the double to the even register(s). */
3437 regval = extract_unsigned_integer (val + low_offset, 4);
3439 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3440 float_argreg, phex (regval, 4));
3441 write_register (float_argreg++, regval);
3443 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3444 argreg, phex (regval, 4));
3445 write_register (argreg++, regval);
3447 /* Write the high word of the double to the odd register(s). */
3448 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3450 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3451 float_argreg, phex (regval, 4));
3452 write_register (float_argreg++, regval);
3455 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3456 argreg, phex (regval, 4));
3457 write_register (argreg++, regval);
3461 /* This is a floating point value that fits entirely
3462 in a single register. */
3463 /* On 32 bit ABI's the float_argreg is further adjusted
3464 above to ensure that it is even register aligned. */
3465 LONGEST regval = extract_unsigned_integer (val, len);
3467 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3468 float_argreg, phex (regval, len));
3469 write_register (float_argreg++, regval);
3470 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3471 registers for each argument. The below is (my
3472 guess) to ensure that the corresponding integer
3473 register has reserved the same space. */
3475 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3476 argreg, phex (regval, len));
3477 write_register (argreg, regval);
3478 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3480 /* Reserve space for the FP register. */
3481 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3485 /* Copy the argument to general registers or the stack in
3486 register-sized pieces. Large arguments are split between
3487 registers and stack. */
3488 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3489 are treated specially: Irix cc passes them in registers
3490 where gcc sometimes puts them on the stack. For maximum
3491 compatibility, we will put them in both places. */
3492 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3493 (len % MIPS_SAVED_REGSIZE != 0));
3494 /* Structures should be aligned to eight bytes (even arg registers)
3495 on MIPS_ABI_O32, if their first member has double precision. */
3496 if (MIPS_SAVED_REGSIZE < 8
3497 && mips_type_needs_double_align (arg_type))
3502 /* Note: Floating-point values that didn't fit into an FP
3503 register are only written to memory. */
3506 /* Remember if the argument was written to the stack. */
3507 int stack_used_p = 0;
3509 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3512 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3515 /* Write this portion of the argument to the stack. */
3516 if (argreg > MIPS_LAST_ARG_REGNUM
3518 || fp_register_arg_p (typecode, arg_type))
3520 /* Should shorter than int integer values be
3521 promoted to int before being stored? */
3522 int longword_offset = 0;
3525 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3527 if (MIPS_STACK_ARGSIZE == 8 &&
3528 (typecode == TYPE_CODE_INT ||
3529 typecode == TYPE_CODE_PTR ||
3530 typecode == TYPE_CODE_FLT) && len <= 4)
3531 longword_offset = MIPS_STACK_ARGSIZE - len;
3536 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3537 paddr_nz (stack_offset));
3538 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3539 paddr_nz (longword_offset));
3542 addr = sp + stack_offset + longword_offset;
3547 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3549 for (i = 0; i < partial_len; i++)
3551 fprintf_unfiltered (gdb_stdlog, "%02x",
3555 write_memory (addr, val, partial_len);
3558 /* Note!!! This is NOT an else clause. Odd sized
3559 structs may go thru BOTH paths. Floating point
3560 arguments will not. */
3561 /* Write this portion of the argument to a general
3562 purpose register. */
3563 if (argreg <= MIPS_LAST_ARG_REGNUM
3564 && !fp_register_arg_p (typecode, arg_type))
3566 LONGEST regval = extract_signed_integer (val, partial_len);
3567 /* Value may need to be sign extended, because
3568 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3570 /* A non-floating-point argument being passed in a
3571 general register. If a struct or union, and if
3572 the remaining length is smaller than the register
3573 size, we have to adjust the register value on
3576 It does not seem to be necessary to do the
3577 same for integral types.
3579 Also don't do this adjustment on O64 binaries.
3581 cagney/2001-07-23: gdb/179: Also, GCC, when
3582 outputting LE O32 with sizeof (struct) <
3583 MIPS_SAVED_REGSIZE, generates a left shift as
3584 part of storing the argument in a register a
3585 register (the left shift isn't generated when
3586 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3587 is quite possible that this is GCC contradicting
3588 the LE/O32 ABI, GDB has not been adjusted to
3589 accommodate this. Either someone needs to
3590 demonstrate that the LE/O32 ABI specifies such a
3591 left shift OR this new ABI gets identified as
3592 such and GDB gets tweaked accordingly. */
3594 if (MIPS_SAVED_REGSIZE < 8
3595 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3596 && partial_len < MIPS_SAVED_REGSIZE
3597 && (typecode == TYPE_CODE_STRUCT ||
3598 typecode == TYPE_CODE_UNION))
3599 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3603 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3605 phex (regval, MIPS_SAVED_REGSIZE));
3606 write_register (argreg, regval);
3609 /* Prevent subsequent floating point arguments from
3610 being passed in floating point registers. */
3611 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3617 /* Compute the the offset into the stack at which we
3618 will copy the next parameter.
3620 In older ABIs, the caller reserved space for
3621 registers that contained arguments. This was loosely
3622 refered to as their "home". Consequently, space is
3623 always allocated. */
3625 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3629 fprintf_unfiltered (gdb_stdlog, "\n");
3632 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3634 /* Return adjusted stack pointer. */
3638 /* O64 version of push_dummy_call. */
3641 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3642 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3643 struct value **args, CORE_ADDR sp, int struct_return,
3644 CORE_ADDR struct_addr)
3650 int stack_offset = 0;
3652 /* For shared libraries, "t9" needs to point at the function
3654 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3656 /* Set the return address register to point to the entry point of
3657 the program, where a breakpoint lies in wait. */
3658 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3660 /* First ensure that the stack and structure return address (if any)
3661 are properly aligned. The stack has to be at least 64-bit
3662 aligned even on 32-bit machines, because doubles must be 64-bit
3663 aligned. For n32 and n64, stack frames need to be 128-bit
3664 aligned, so we round to this widest known alignment. */
3666 sp = ROUND_DOWN (sp, 16);
3667 struct_addr = ROUND_DOWN (struct_addr, 16);
3669 /* Now make space on the stack for the args. */
3670 for (argnum = 0; argnum < nargs; argnum++)
3671 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3672 MIPS_STACK_ARGSIZE);
3673 sp -= ROUND_UP (len, 16);
3676 fprintf_unfiltered (gdb_stdlog,
3677 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3678 paddr_nz (sp), ROUND_UP (len, 16));
3680 /* Initialize the integer and float register pointers. */
3682 float_argreg = FPA0_REGNUM;
3684 /* The struct_return pointer occupies the first parameter-passing reg. */
3688 fprintf_unfiltered (gdb_stdlog,
3689 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3690 argreg, paddr_nz (struct_addr));
3691 write_register (argreg++, struct_addr);
3692 stack_offset += MIPS_STACK_ARGSIZE;
3695 /* Now load as many as possible of the first arguments into
3696 registers, and push the rest onto the stack. Loop thru args
3697 from first to last. */
3698 for (argnum = 0; argnum < nargs; argnum++)
3701 char valbuf[MAX_REGISTER_SIZE];
3702 struct value *arg = args[argnum];
3703 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3704 int len = TYPE_LENGTH (arg_type);
3705 enum type_code typecode = TYPE_CODE (arg_type);
3708 fprintf_unfiltered (gdb_stdlog,
3709 "mips_o64_push_dummy_call: %d len=%d type=%d",
3710 argnum + 1, len, (int) typecode);
3712 val = (char *) VALUE_CONTENTS (arg);
3714 /* 32-bit ABIs always start floating point arguments in an
3715 even-numbered floating point register. Round the FP register
3716 up before the check to see if there are any FP registers
3717 left. O32/O64 targets also pass the FP in the integer
3718 registers so also round up normal registers. */
3719 if (!FP_REGISTER_DOUBLE
3720 && fp_register_arg_p (typecode, arg_type))
3722 if ((float_argreg & 1))
3726 /* Floating point arguments passed in registers have to be
3727 treated specially. On 32-bit architectures, doubles
3728 are passed in register pairs; the even register gets
3729 the low word, and the odd register gets the high word.
3730 On O32/O64, the first two floating point arguments are
3731 also copied to general registers, because MIPS16 functions
3732 don't use float registers for arguments. This duplication of
3733 arguments in general registers can't hurt non-MIPS16 functions
3734 because those registers are normally skipped. */
3736 if (fp_register_arg_p (typecode, arg_type)
3737 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3739 if (!FP_REGISTER_DOUBLE && len == 8)
3741 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3742 unsigned long regval;
3744 /* Write the low word of the double to the even register(s). */
3745 regval = extract_unsigned_integer (val + low_offset, 4);
3747 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3748 float_argreg, phex (regval, 4));
3749 write_register (float_argreg++, regval);
3751 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3752 argreg, phex (regval, 4));
3753 write_register (argreg++, regval);
3755 /* Write the high word of the double to the odd register(s). */
3756 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3758 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3759 float_argreg, phex (regval, 4));
3760 write_register (float_argreg++, regval);
3763 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3764 argreg, phex (regval, 4));
3765 write_register (argreg++, regval);
3769 /* This is a floating point value that fits entirely
3770 in a single register. */
3771 /* On 32 bit ABI's the float_argreg is further adjusted
3772 above to ensure that it is even register aligned. */
3773 LONGEST regval = extract_unsigned_integer (val, len);
3775 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3776 float_argreg, phex (regval, len));
3777 write_register (float_argreg++, regval);
3778 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3779 registers for each argument. The below is (my
3780 guess) to ensure that the corresponding integer
3781 register has reserved the same space. */
3783 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3784 argreg, phex (regval, len));
3785 write_register (argreg, regval);
3786 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3788 /* Reserve space for the FP register. */
3789 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3793 /* Copy the argument to general registers or the stack in
3794 register-sized pieces. Large arguments are split between
3795 registers and stack. */
3796 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3797 are treated specially: Irix cc passes them in registers
3798 where gcc sometimes puts them on the stack. For maximum
3799 compatibility, we will put them in both places. */
3800 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3801 (len % MIPS_SAVED_REGSIZE != 0));
3802 /* Structures should be aligned to eight bytes (even arg registers)
3803 on MIPS_ABI_O32, if their first member has double precision. */
3804 if (MIPS_SAVED_REGSIZE < 8
3805 && mips_type_needs_double_align (arg_type))
3810 /* Note: Floating-point values that didn't fit into an FP
3811 register are only written to memory. */
3814 /* Remember if the argument was written to the stack. */
3815 int stack_used_p = 0;
3817 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3820 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3823 /* Write this portion of the argument to the stack. */
3824 if (argreg > MIPS_LAST_ARG_REGNUM
3826 || fp_register_arg_p (typecode, arg_type))
3828 /* Should shorter than int integer values be
3829 promoted to int before being stored? */
3830 int longword_offset = 0;
3833 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3835 if (MIPS_STACK_ARGSIZE == 8 &&
3836 (typecode == TYPE_CODE_INT ||
3837 typecode == TYPE_CODE_PTR ||
3838 typecode == TYPE_CODE_FLT) && len <= 4)
3839 longword_offset = MIPS_STACK_ARGSIZE - len;
3844 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3845 paddr_nz (stack_offset));
3846 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3847 paddr_nz (longword_offset));
3850 addr = sp + stack_offset + longword_offset;
3855 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3857 for (i = 0; i < partial_len; i++)
3859 fprintf_unfiltered (gdb_stdlog, "%02x",
3863 write_memory (addr, val, partial_len);
3866 /* Note!!! This is NOT an else clause. Odd sized
3867 structs may go thru BOTH paths. Floating point
3868 arguments will not. */
3869 /* Write this portion of the argument to a general
3870 purpose register. */
3871 if (argreg <= MIPS_LAST_ARG_REGNUM
3872 && !fp_register_arg_p (typecode, arg_type))
3874 LONGEST regval = extract_signed_integer (val, partial_len);
3875 /* Value may need to be sign extended, because
3876 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3878 /* A non-floating-point argument being passed in a
3879 general register. If a struct or union, and if
3880 the remaining length is smaller than the register
3881 size, we have to adjust the register value on
3884 It does not seem to be necessary to do the
3885 same for integral types.
3887 Also don't do this adjustment on O64 binaries.
3889 cagney/2001-07-23: gdb/179: Also, GCC, when
3890 outputting LE O32 with sizeof (struct) <
3891 MIPS_SAVED_REGSIZE, generates a left shift as
3892 part of storing the argument in a register a
3893 register (the left shift isn't generated when
3894 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3895 is quite possible that this is GCC contradicting
3896 the LE/O32 ABI, GDB has not been adjusted to
3897 accommodate this. Either someone needs to
3898 demonstrate that the LE/O32 ABI specifies such a
3899 left shift OR this new ABI gets identified as
3900 such and GDB gets tweaked accordingly. */
3902 if (MIPS_SAVED_REGSIZE < 8
3903 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3904 && partial_len < MIPS_SAVED_REGSIZE
3905 && (typecode == TYPE_CODE_STRUCT ||
3906 typecode == TYPE_CODE_UNION))
3907 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3911 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3913 phex (regval, MIPS_SAVED_REGSIZE));
3914 write_register (argreg, regval);
3917 /* Prevent subsequent floating point arguments from
3918 being passed in floating point registers. */
3919 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3925 /* Compute the the offset into the stack at which we
3926 will copy the next parameter.
3928 In older ABIs, the caller reserved space for
3929 registers that contained arguments. This was loosely
3930 refered to as their "home". Consequently, space is
3931 always allocated. */
3933 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3937 fprintf_unfiltered (gdb_stdlog, "\n");
3940 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3942 /* Return adjusted stack pointer. */
3947 mips_pop_frame (void)
3949 register int regnum;
3950 struct frame_info *frame = get_current_frame ();
3951 CORE_ADDR new_sp = get_frame_base (frame);
3952 mips_extra_func_info_t proc_desc;
3954 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3956 generic_pop_dummy_frame ();
3957 flush_cached_frames ();
3961 proc_desc = get_frame_extra_info (frame)->proc_desc;
3962 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3963 mips_find_saved_regs (frame);
3964 for (regnum = 0; regnum < NUM_REGS; regnum++)
3965 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3966 && get_frame_saved_regs (frame)[regnum])
3968 /* Floating point registers must not be sign extended,
3969 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3971 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3972 write_register (regnum,
3973 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3974 MIPS_SAVED_REGSIZE));
3976 write_register (regnum,
3977 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3978 MIPS_SAVED_REGSIZE));
3981 write_register (SP_REGNUM, new_sp);
3982 flush_cached_frames ();
3984 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3986 struct linked_proc_info *pi_ptr, *prev_ptr;
3988 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3990 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3992 if (&pi_ptr->info == proc_desc)
3997 error ("Can't locate dummy extra frame info\n");
3999 if (prev_ptr != NULL)
4000 prev_ptr->next = pi_ptr->next;
4002 linked_proc_desc_table = pi_ptr->next;
4006 write_register (HI_REGNUM,
4007 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
4008 MIPS_SAVED_REGSIZE));
4009 write_register (LO_REGNUM,
4010 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
4011 MIPS_SAVED_REGSIZE));
4012 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
4013 write_register (FCRCS_REGNUM,
4014 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
4015 MIPS_SAVED_REGSIZE));
4019 /* Floating point register management.
4021 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4022 64bit operations, these early MIPS cpus treat fp register pairs
4023 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4024 registers and offer a compatibility mode that emulates the MIPS2 fp
4025 model. When operating in MIPS2 fp compat mode, later cpu's split
4026 double precision floats into two 32-bit chunks and store them in
4027 consecutive fp regs. To display 64-bit floats stored in this
4028 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4029 Throw in user-configurable endianness and you have a real mess.
4031 The way this works is:
4032 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4033 double-precision value will be split across two logical registers.
4034 The lower-numbered logical register will hold the low-order bits,
4035 regardless of the processor's endianness.
4036 - If we are on a 64-bit processor, and we are looking for a
4037 single-precision value, it will be in the low ordered bits
4038 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4039 save slot in memory.
4040 - If we are in 64-bit mode, everything is straightforward.
4042 Note that this code only deals with "live" registers at the top of the
4043 stack. We will attempt to deal with saved registers later, when
4044 the raw/cooked register interface is in place. (We need a general
4045 interface that can deal with dynamic saved register sizes -- fp
4046 regs could be 32 bits wide in one frame and 64 on the frame above
4049 static struct type *
4050 mips_float_register_type (void)
4052 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4053 return builtin_type_ieee_single_big;
4055 return builtin_type_ieee_single_little;
4058 static struct type *
4059 mips_double_register_type (void)
4061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4062 return builtin_type_ieee_double_big;
4064 return builtin_type_ieee_double_little;
4067 /* Copy a 32-bit single-precision value from the current frame
4068 into rare_buffer. */
4071 mips_read_fp_register_single (struct frame_info *frame, int regno,
4074 int raw_size = REGISTER_RAW_SIZE (regno);
4075 char *raw_buffer = alloca (raw_size);
4077 if (!frame_register_read (frame, regno, raw_buffer))
4078 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4081 /* We have a 64-bit value for this register. Find the low-order
4085 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4090 memcpy (rare_buffer, raw_buffer + offset, 4);
4094 memcpy (rare_buffer, raw_buffer, 4);
4098 /* Copy a 64-bit double-precision value from the current frame into
4099 rare_buffer. This may include getting half of it from the next
4103 mips_read_fp_register_double (struct frame_info *frame, int regno,
4106 int raw_size = REGISTER_RAW_SIZE (regno);
4108 if (raw_size == 8 && !mips2_fp_compat ())
4110 /* We have a 64-bit value for this register, and we should use
4112 if (!frame_register_read (frame, regno, rare_buffer))
4113 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4117 if ((regno - FP0_REGNUM) & 1)
4118 internal_error (__FILE__, __LINE__,
4119 "mips_read_fp_register_double: bad access to "
4120 "odd-numbered FP register");
4122 /* mips_read_fp_register_single will find the correct 32 bits from
4124 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4126 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4127 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4131 mips_read_fp_register_single (frame, regno, rare_buffer);
4132 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4138 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4140 { /* do values for FP (float) regs */
4142 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4143 int inv1, inv2, namelen;
4145 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4147 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4148 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4151 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4153 /* 4-byte registers: Print hex and floating. Also print even
4154 numbered registers as doubles. */
4155 mips_read_fp_register_single (frame, regnum, raw_buffer);
4156 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4158 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4160 fprintf_filtered (file, " flt: ");
4162 fprintf_filtered (file, " <invalid float> ");
4164 fprintf_filtered (file, "%-17.9g", flt1);
4166 if (regnum % 2 == 0)
4168 mips_read_fp_register_double (frame, regnum, raw_buffer);
4169 doub = unpack_double (mips_double_register_type (), raw_buffer,
4172 fprintf_filtered (file, " dbl: ");
4174 fprintf_filtered (file, "<invalid double>");
4176 fprintf_filtered (file, "%-24.17g", doub);
4181 /* Eight byte registers: print each one as hex, float and double. */
4182 mips_read_fp_register_single (frame, regnum, raw_buffer);
4183 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4185 mips_read_fp_register_double (frame, regnum, raw_buffer);
4186 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4189 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4191 fprintf_filtered (file, " flt: ");
4193 fprintf_filtered (file, "<invalid float>");
4195 fprintf_filtered (file, "%-17.9g", flt1);
4197 fprintf_filtered (file, " dbl: ");
4199 fprintf_filtered (file, "<invalid double>");
4201 fprintf_filtered (file, "%-24.17g", doub);
4206 mips_print_register (struct ui_file *file, struct frame_info *frame,
4207 int regnum, int all)
4209 struct gdbarch *gdbarch = get_frame_arch (frame);
4210 char raw_buffer[MAX_REGISTER_SIZE];
4213 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4215 mips_print_fp_register (file, frame, regnum);
4219 /* Get the data in raw format. */
4220 if (!frame_register_read (frame, regnum, raw_buffer))
4222 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4226 fputs_filtered (REGISTER_NAME (regnum), file);
4228 /* The problem with printing numeric register names (r26, etc.) is that
4229 the user can't use them on input. Probably the best solution is to
4230 fix it so that either the numeric or the funky (a2, etc.) names
4231 are accepted on input. */
4232 if (regnum < MIPS_NUMREGS)
4233 fprintf_filtered (file, "(r%d): ", regnum);
4235 fprintf_filtered (file, ": ");
4237 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4238 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4242 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4246 /* Replacement for generic do_registers_info.
4247 Print regs in pretty columns. */
4250 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4253 fprintf_filtered (file, " ");
4254 mips_print_fp_register (file, frame, regnum);
4255 fprintf_filtered (file, "\n");
4260 /* Print a row's worth of GP (int) registers, with name labels above */
4263 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4266 struct gdbarch *gdbarch = get_frame_arch (frame);
4267 /* do values for GP (int) regs */
4268 char raw_buffer[MAX_REGISTER_SIZE];
4269 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4273 /* For GP registers, we print a separate row of names above the vals */
4274 fprintf_filtered (file, " ");
4275 for (col = 0, regnum = start_regnum;
4276 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4279 if (*REGISTER_NAME (regnum) == '\0')
4280 continue; /* unused register */
4281 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4282 break; /* end the row: reached FP register */
4283 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4284 REGISTER_NAME (regnum));
4287 /* print the R0 to R31 names */
4288 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4289 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4291 fprintf_filtered (file, "\n ");
4293 /* now print the values in hex, 4 or 8 to the row */
4294 for (col = 0, regnum = start_regnum;
4295 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4298 if (*REGISTER_NAME (regnum) == '\0')
4299 continue; /* unused register */
4300 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4301 break; /* end row: reached FP register */
4302 /* OK: get the data in raw format. */
4303 if (!frame_register_read (frame, regnum, raw_buffer))
4304 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4305 /* pad small registers */
4306 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4307 printf_filtered (" ");
4308 /* Now print the register value in hex, endian order. */
4309 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4310 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4311 byte < REGISTER_RAW_SIZE (regnum);
4313 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4315 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4318 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4319 fprintf_filtered (file, " ");
4322 if (col > 0) /* ie. if we actually printed anything... */
4323 fprintf_filtered (file, "\n");
4328 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4331 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4332 struct frame_info *frame, int regnum, int all)
4334 if (regnum != -1) /* do one specified register */
4336 gdb_assert (regnum >= NUM_REGS);
4337 if (*(REGISTER_NAME (regnum)) == '\0')
4338 error ("Not a valid register for the current processor type");
4340 mips_print_register (file, frame, regnum, 0);
4341 fprintf_filtered (file, "\n");
4344 /* do all (or most) registers */
4347 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4349 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4351 if (all) /* true for "INFO ALL-REGISTERS" command */
4352 regnum = print_fp_register_row (file, frame, regnum);
4354 regnum += MIPS_NUMREGS; /* skip floating point regs */
4357 regnum = print_gp_register_row (file, frame, regnum);
4362 /* Is this a branch with a delay slot? */
4364 static int is_delayed (unsigned long);
4367 is_delayed (unsigned long insn)
4370 for (i = 0; i < NUMOPCODES; ++i)
4371 if (mips_opcodes[i].pinfo != INSN_MACRO
4372 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4374 return (i < NUMOPCODES
4375 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4376 | INSN_COND_BRANCH_DELAY
4377 | INSN_COND_BRANCH_LIKELY)));
4381 mips_step_skips_delay (CORE_ADDR pc)
4383 char buf[MIPS_INSTLEN];
4385 /* There is no branch delay slot on MIPS16. */
4386 if (pc_is_mips16 (pc))
4389 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4390 /* If error reading memory, guess that it is not a delayed branch. */
4392 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4396 /* Skip the PC past function prologue instructions (32-bit version).
4397 This is a helper function for mips_skip_prologue. */
4400 mips32_skip_prologue (CORE_ADDR pc)
4404 int seen_sp_adjust = 0;
4405 int load_immediate_bytes = 0;
4407 /* Skip the typical prologue instructions. These are the stack adjustment
4408 instruction and the instructions that save registers on the stack
4409 or in the gcc frame. */
4410 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4412 unsigned long high_word;
4414 inst = mips_fetch_instruction (pc);
4415 high_word = (inst >> 16) & 0xffff;
4417 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4418 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4420 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4421 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4423 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4424 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4425 && (inst & 0x001F0000)) /* reg != $zero */
4428 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4430 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4432 continue; /* reg != $zero */
4434 /* move $s8,$sp. With different versions of gas this will be either
4435 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4436 Accept any one of these. */
4437 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4440 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4442 else if (high_word == 0x3c1c) /* lui $gp,n */
4444 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4446 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4447 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4449 /* The following instructions load $at or $t0 with an immediate
4450 value in preparation for a stack adjustment via
4451 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4452 a local variable, so we accept them only before a stack adjustment
4453 instruction was seen. */
4454 else if (!seen_sp_adjust)
4456 if (high_word == 0x3c01 || /* lui $at,n */
4457 high_word == 0x3c08) /* lui $t0,n */
4459 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4462 else if (high_word == 0x3421 || /* ori $at,$at,n */
4463 high_word == 0x3508 || /* ori $t0,$t0,n */
4464 high_word == 0x3401 || /* ori $at,$zero,n */
4465 high_word == 0x3408) /* ori $t0,$zero,n */
4467 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4477 /* In a frameless function, we might have incorrectly
4478 skipped some load immediate instructions. Undo the skipping
4479 if the load immediate was not followed by a stack adjustment. */
4480 if (load_immediate_bytes && !seen_sp_adjust)
4481 pc -= load_immediate_bytes;
4485 /* Skip the PC past function prologue instructions (16-bit version).
4486 This is a helper function for mips_skip_prologue. */
4489 mips16_skip_prologue (CORE_ADDR pc)
4492 int extend_bytes = 0;
4493 int prev_extend_bytes;
4495 /* Table of instructions likely to be found in a function prologue. */
4498 unsigned short inst;
4499 unsigned short mask;
4506 , /* addiu $sp,offset */
4510 , /* daddiu $sp,offset */
4514 , /* sw reg,n($sp) */
4518 , /* sd reg,n($sp) */
4522 , /* sw $ra,n($sp) */
4526 , /* sd $ra,n($sp) */
4534 , /* sw $a0-$a3,n($s1) */
4538 , /* move reg,$a0-$a3 */
4542 , /* entry pseudo-op */
4546 , /* addiu $s1,$sp,n */
4549 } /* end of table marker */
4552 /* Skip the typical prologue instructions. These are the stack adjustment
4553 instruction and the instructions that save registers on the stack
4554 or in the gcc frame. */
4555 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4557 unsigned short inst;
4560 inst = mips_fetch_instruction (pc);
4562 /* Normally we ignore an extend instruction. However, if it is
4563 not followed by a valid prologue instruction, we must adjust
4564 the pc back over the extend so that it won't be considered
4565 part of the prologue. */
4566 if ((inst & 0xf800) == 0xf000) /* extend */
4568 extend_bytes = MIPS16_INSTLEN;
4571 prev_extend_bytes = extend_bytes;
4574 /* Check for other valid prologue instructions besides extend. */
4575 for (i = 0; table[i].mask != 0; i++)
4576 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4578 if (table[i].mask != 0) /* it was in table? */
4579 continue; /* ignore it */
4583 /* Return the current pc, adjusted backwards by 2 if
4584 the previous instruction was an extend. */
4585 return pc - prev_extend_bytes;
4591 /* To skip prologues, I use this predicate. Returns either PC itself
4592 if the code at PC does not look like a function prologue; otherwise
4593 returns an address that (if we're lucky) follows the prologue. If
4594 LENIENT, then we must skip everything which is involved in setting
4595 up the frame (it's OK to skip more, just so long as we don't skip
4596 anything which might clobber the registers which are being saved.
4597 We must skip more in the case where part of the prologue is in the
4598 delay slot of a non-prologue instruction). */
4601 mips_skip_prologue (CORE_ADDR pc)
4603 /* See if we can determine the end of the prologue via the symbol table.
4604 If so, then return either PC, or the PC after the prologue, whichever
4607 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4609 if (post_prologue_pc != 0)
4610 return max (pc, post_prologue_pc);
4612 /* Can't determine prologue from the symbol table, need to examine
4615 if (pc_is_mips16 (pc))
4616 return mips16_skip_prologue (pc);
4618 return mips32_skip_prologue (pc);
4621 /* Determine how a return value is stored within the MIPS register
4622 file, given the return type `valtype'. */
4624 struct return_value_word
4633 return_value_location (struct type *valtype,
4634 struct return_value_word *hi,
4635 struct return_value_word *lo)
4637 int len = TYPE_LENGTH (valtype);
4639 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4640 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4641 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4643 if (!FP_REGISTER_DOUBLE && len == 8)
4645 /* We need to break a 64bit float in two 32 bit halves and
4646 spread them across a floating-point register pair. */
4647 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4648 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4649 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4650 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4652 hi->reg_offset = lo->reg_offset;
4653 lo->reg = FP0_REGNUM + 0;
4654 hi->reg = FP0_REGNUM + 1;
4660 /* The floating point value fits in a single floating-point
4662 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4663 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4666 lo->reg = FP0_REGNUM;
4677 /* Locate a result possibly spread across two registers. */
4679 lo->reg = regnum + 0;
4680 hi->reg = regnum + 1;
4681 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4682 && len < MIPS_SAVED_REGSIZE)
4684 /* "un-left-justify" the value in the low register */
4685 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4690 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4691 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4692 && len < MIPS_SAVED_REGSIZE * 2
4693 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4694 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4696 /* "un-left-justify" the value spread across two registers. */
4697 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4698 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4700 hi->len = len - lo->len;
4704 /* Only perform a partial copy of the second register. */
4707 if (len > MIPS_SAVED_REGSIZE)
4709 lo->len = MIPS_SAVED_REGSIZE;
4710 hi->len = len - MIPS_SAVED_REGSIZE;
4718 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4719 && REGISTER_RAW_SIZE (regnum) == 8
4720 && MIPS_SAVED_REGSIZE == 4)
4722 /* Account for the fact that only the least-signficant part
4723 of the register is being used */
4724 lo->reg_offset += 4;
4725 hi->reg_offset += 4;
4728 hi->buf_offset = lo->len;
4732 /* Given a return value in `regbuf' with a type `valtype', extract and
4733 copy its value into `valbuf'. */
4736 mips_eabi_extract_return_value (struct type *valtype,
4740 struct return_value_word lo;
4741 struct return_value_word hi;
4742 return_value_location (valtype, &hi, &lo);
4744 memcpy (valbuf + lo.buf_offset,
4745 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4749 memcpy (valbuf + hi.buf_offset,
4750 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4755 mips_o64_extract_return_value (struct type *valtype,
4759 struct return_value_word lo;
4760 struct return_value_word hi;
4761 return_value_location (valtype, &hi, &lo);
4763 memcpy (valbuf + lo.buf_offset,
4764 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4768 memcpy (valbuf + hi.buf_offset,
4769 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4773 /* Given a return value in `valbuf' with a type `valtype', write it's
4774 value into the appropriate register. */
4777 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4779 char raw_buffer[MAX_REGISTER_SIZE];
4780 struct return_value_word lo;
4781 struct return_value_word hi;
4782 return_value_location (valtype, &hi, &lo);
4784 memset (raw_buffer, 0, sizeof (raw_buffer));
4785 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4786 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4787 REGISTER_RAW_SIZE (lo.reg));
4791 memset (raw_buffer, 0, sizeof (raw_buffer));
4792 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4793 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4794 REGISTER_RAW_SIZE (hi.reg));
4799 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4801 char raw_buffer[MAX_REGISTER_SIZE];
4802 struct return_value_word lo;
4803 struct return_value_word hi;
4804 return_value_location (valtype, &hi, &lo);
4806 memset (raw_buffer, 0, sizeof (raw_buffer));
4807 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4808 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4809 REGISTER_RAW_SIZE (lo.reg));
4813 memset (raw_buffer, 0, sizeof (raw_buffer));
4814 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4815 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4816 REGISTER_RAW_SIZE (hi.reg));
4820 /* O32 ABI stuff. */
4823 mips_o32_xfer_return_value (struct type *type,
4824 struct regcache *regcache,
4825 bfd_byte *in, const bfd_byte *out)
4827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4828 if (TYPE_CODE (type) == TYPE_CODE_FLT
4829 && TYPE_LENGTH (type) == 4
4830 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4832 /* A single-precision floating-point value. It fits in the
4833 least significant part of FP0. */
4835 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4836 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4837 TARGET_BYTE_ORDER, in, out, 0);
4839 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4840 && TYPE_LENGTH (type) == 8
4841 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4843 /* A double-precision floating-point value. The most
4844 significant part goes in FP1, and the least significant in
4847 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4848 switch (TARGET_BYTE_ORDER)
4850 case BFD_ENDIAN_LITTLE:
4851 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4852 TARGET_BYTE_ORDER, in, out, 0);
4853 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4854 TARGET_BYTE_ORDER, in, out, 4);
4856 case BFD_ENDIAN_BIG:
4857 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4858 TARGET_BYTE_ORDER, in, out, 0);
4859 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4860 TARGET_BYTE_ORDER, in, out, 4);
4863 internal_error (__FILE__, __LINE__, "bad switch");
4867 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4868 && TYPE_NFIELDS (type) <= 2
4869 && TYPE_NFIELDS (type) >= 1
4870 && ((TYPE_NFIELDS (type) == 1
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4873 || (TYPE_NFIELDS (type) == 2
4874 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4876 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4878 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4880 /* A struct that contains one or two floats. Each value is part
4881 in the least significant part of their floating point
4883 bfd_byte reg[MAX_REGISTER_SIZE];
4886 for (field = 0, regnum = FP0_REGNUM;
4887 field < TYPE_NFIELDS (type);
4888 field++, regnum += 2)
4890 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4893 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4894 mips_xfer_register (regcache, NUM_REGS + regnum,
4895 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4896 TARGET_BYTE_ORDER, in, out, offset);
4901 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4902 || TYPE_CODE (type) == TYPE_CODE_UNION)
4904 /* A structure or union. Extract the left justified value,
4905 regardless of the byte order. I.e. DO NOT USE
4909 for (offset = 0, regnum = V0_REGNUM;
4910 offset < TYPE_LENGTH (type);
4911 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4913 int xfer = REGISTER_RAW_SIZE (regnum);
4914 if (offset + xfer > TYPE_LENGTH (type))
4915 xfer = TYPE_LENGTH (type) - offset;
4917 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4918 offset, xfer, regnum);
4919 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4920 BFD_ENDIAN_UNKNOWN, in, out, offset);
4926 /* A scalar extract each part but least-significant-byte
4927 justified. o32 thinks registers are 4 byte, regardless of
4928 the ISA. mips_stack_argsize controls this. */
4931 for (offset = 0, regnum = V0_REGNUM;
4932 offset < TYPE_LENGTH (type);
4933 offset += mips_stack_argsize (), regnum++)
4935 int xfer = mips_stack_argsize ();
4937 if (offset + xfer > TYPE_LENGTH (type))
4938 xfer = TYPE_LENGTH (type) - offset;
4940 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4941 offset, xfer, regnum);
4942 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4943 TARGET_BYTE_ORDER, in, out, offset);
4949 mips_o32_extract_return_value (struct type *type,
4950 struct regcache *regcache,
4953 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4957 mips_o32_store_return_value (struct type *type, char *valbuf)
4959 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4962 /* N32/N44 ABI stuff. */
4965 mips_n32n64_xfer_return_value (struct type *type,
4966 struct regcache *regcache,
4967 bfd_byte *in, const bfd_byte *out)
4969 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4970 if (TYPE_CODE (type) == TYPE_CODE_FLT
4971 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4973 /* A floating-point value belongs in the least significant part
4976 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4977 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4978 TARGET_BYTE_ORDER, in, out, 0);
4980 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4981 && TYPE_NFIELDS (type) <= 2
4982 && TYPE_NFIELDS (type) >= 1
4983 && ((TYPE_NFIELDS (type) == 1
4984 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4986 || (TYPE_NFIELDS (type) == 2
4987 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4989 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4991 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4993 /* A struct that contains one or two floats. Each value is part
4994 in the least significant part of their floating point
4996 bfd_byte reg[MAX_REGISTER_SIZE];
4999 for (field = 0, regnum = FP0_REGNUM;
5000 field < TYPE_NFIELDS (type);
5001 field++, regnum += 2)
5003 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5006 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
5007 mips_xfer_register (regcache, NUM_REGS + regnum,
5008 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5009 TARGET_BYTE_ORDER, in, out, offset);
5012 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5013 || TYPE_CODE (type) == TYPE_CODE_UNION)
5015 /* A structure or union. Extract the left justified value,
5016 regardless of the byte order. I.e. DO NOT USE
5020 for (offset = 0, regnum = V0_REGNUM;
5021 offset < TYPE_LENGTH (type);
5022 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5024 int xfer = REGISTER_RAW_SIZE (regnum);
5025 if (offset + xfer > TYPE_LENGTH (type))
5026 xfer = TYPE_LENGTH (type) - offset;
5028 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5029 offset, xfer, regnum);
5030 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5031 BFD_ENDIAN_UNKNOWN, in, out, offset);
5036 /* A scalar extract each part but least-significant-byte
5040 for (offset = 0, regnum = V0_REGNUM;
5041 offset < TYPE_LENGTH (type);
5042 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5044 int xfer = REGISTER_RAW_SIZE (regnum);
5046 if (offset + xfer > TYPE_LENGTH (type))
5047 xfer = TYPE_LENGTH (type) - offset;
5049 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5050 offset, xfer, regnum);
5051 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5052 TARGET_BYTE_ORDER, in, out, offset);
5058 mips_n32n64_extract_return_value (struct type *type,
5059 struct regcache *regcache,
5062 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5066 mips_n32n64_store_return_value (struct type *type, char *valbuf)
5068 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
5072 mips_extract_struct_value_address (struct regcache *regcache)
5074 /* FIXME: This will only work at random. The caller passes the
5075 struct_return address in V0, but it is not preserved. It may
5076 still be there, or this may be a random value. */
5079 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5083 /* Exported procedure: Is PC in the signal trampoline code */
5086 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5088 if (sigtramp_address == 0)
5090 return (pc >= sigtramp_address && pc < sigtramp_end);
5093 /* Root of all "set mips "/"show mips " commands. This will eventually be
5094 used for all MIPS-specific commands. */
5097 show_mips_command (char *args, int from_tty)
5099 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5103 set_mips_command (char *args, int from_tty)
5105 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5106 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5109 /* Commands to show/set the MIPS FPU type. */
5112 show_mipsfpu_command (char *args, int from_tty)
5115 switch (MIPS_FPU_TYPE)
5117 case MIPS_FPU_SINGLE:
5118 fpu = "single-precision";
5120 case MIPS_FPU_DOUBLE:
5121 fpu = "double-precision";
5124 fpu = "absent (none)";
5127 internal_error (__FILE__, __LINE__, "bad switch");
5129 if (mips_fpu_type_auto)
5130 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5133 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5139 set_mipsfpu_command (char *args, int from_tty)
5141 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5142 show_mipsfpu_command (args, from_tty);
5146 set_mipsfpu_single_command (char *args, int from_tty)
5148 mips_fpu_type = MIPS_FPU_SINGLE;
5149 mips_fpu_type_auto = 0;
5150 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5154 set_mipsfpu_double_command (char *args, int from_tty)
5156 mips_fpu_type = MIPS_FPU_DOUBLE;
5157 mips_fpu_type_auto = 0;
5158 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5162 set_mipsfpu_none_command (char *args, int from_tty)
5164 mips_fpu_type = MIPS_FPU_NONE;
5165 mips_fpu_type_auto = 0;
5166 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5170 set_mipsfpu_auto_command (char *args, int from_tty)
5172 mips_fpu_type_auto = 1;
5175 /* Command to set the processor type. */
5178 mips_set_processor_type_command (char *args, int from_tty)
5182 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5184 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5185 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5186 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5188 /* Restore the value. */
5189 tmp_mips_processor_type = xstrdup (mips_processor_type);
5194 if (!mips_set_processor_type (tmp_mips_processor_type))
5196 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5197 /* Restore its value. */
5198 tmp_mips_processor_type = xstrdup (mips_processor_type);
5203 mips_show_processor_type_command (char *args, int from_tty)
5207 /* Modify the actual processor type. */
5210 mips_set_processor_type (char *str)
5217 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5219 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5221 mips_processor_type = str;
5222 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5224 /* FIXME tweak fpu flag too */
5231 /* Attempt to identify the particular processor model by reading the
5235 mips_read_processor_type (void)
5239 prid = read_register (PRID_REGNUM);
5241 if ((prid & ~0xf) == 0x700)
5242 return savestring ("r3041", strlen ("r3041"));
5247 /* Just like reinit_frame_cache, but with the right arguments to be
5248 callable as an sfunc. */
5251 reinit_frame_cache_sfunc (char *args, int from_tty,
5252 struct cmd_list_element *c)
5254 reinit_frame_cache ();
5258 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5260 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5261 mips_extra_func_info_t proc_desc;
5263 /* Search for the function containing this address. Set the low bit
5264 of the address when searching, in case we were given an even address
5265 that is the start of a 16-bit function. If we didn't do this,
5266 the search would fail because the symbol table says the function
5267 starts at an odd address, i.e. 1 byte past the given address. */
5268 memaddr = ADDR_BITS_REMOVE (memaddr);
5269 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5271 /* Make an attempt to determine if this is a 16-bit function. If
5272 the procedure descriptor exists and the address therein is odd,
5273 it's definitely a 16-bit function. Otherwise, we have to just
5274 guess that if the address passed in is odd, it's 16-bits. */
5275 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5276 disassembler needs to be able to locally determine the ISA, and
5277 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5281 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5282 info->mach = bfd_mach_mips16;
5286 if (pc_is_mips16 (memaddr))
5287 info->mach = bfd_mach_mips16;
5290 /* Round down the instruction address to the appropriate boundary. */
5291 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5293 /* Set the disassembler options. */
5294 if (tdep->mips_abi == MIPS_ABI_N32
5295 || tdep->mips_abi == MIPS_ABI_N64)
5297 /* Set up the disassembler info, so that we get the right
5298 register names from libopcodes. */
5299 if (tdep->mips_abi == MIPS_ABI_N32)
5300 info->disassembler_options = "gpr-names=n32";
5302 info->disassembler_options = "gpr-names=64";
5303 info->flavour = bfd_target_elf_flavour;
5306 /* This string is not recognized explicitly by the disassembler,
5307 but it tells the disassembler to not try to guess the ABI from
5308 the bfd elf headers, such that, if the user overrides the ABI
5309 of a program linked as NewABI, the disassembly will follow the
5310 register naming conventions specified by the user. */
5311 info->disassembler_options = "gpr-names=32";
5313 /* Call the appropriate disassembler based on the target endian-ness. */
5314 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5315 return print_insn_big_mips (memaddr, info);
5317 return print_insn_little_mips (memaddr, info);
5320 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5321 counter value to determine whether a 16- or 32-bit breakpoint should be
5322 used. It returns a pointer to a string of bytes that encode a breakpoint
5323 instruction, stores the length of the string to *lenptr, and adjusts pc
5324 (if necessary) to point to the actual memory location where the
5325 breakpoint should be inserted. */
5327 static const unsigned char *
5328 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5330 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5332 if (pc_is_mips16 (*pcptr))
5334 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5335 *pcptr = unmake_mips16_addr (*pcptr);
5336 *lenptr = sizeof (mips16_big_breakpoint);
5337 return mips16_big_breakpoint;
5341 /* The IDT board uses an unusual breakpoint value, and
5342 sometimes gets confused when it sees the usual MIPS
5343 breakpoint instruction. */
5344 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5345 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5346 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5348 *lenptr = sizeof (big_breakpoint);
5350 if (strcmp (target_shortname, "mips") == 0)
5351 return idt_big_breakpoint;
5352 else if (strcmp (target_shortname, "ddb") == 0
5353 || strcmp (target_shortname, "pmon") == 0
5354 || strcmp (target_shortname, "lsi") == 0)
5355 return pmon_big_breakpoint;
5357 return big_breakpoint;
5362 if (pc_is_mips16 (*pcptr))
5364 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5365 *pcptr = unmake_mips16_addr (*pcptr);
5366 *lenptr = sizeof (mips16_little_breakpoint);
5367 return mips16_little_breakpoint;
5371 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5372 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5373 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5375 *lenptr = sizeof (little_breakpoint);
5377 if (strcmp (target_shortname, "mips") == 0)
5378 return idt_little_breakpoint;
5379 else if (strcmp (target_shortname, "ddb") == 0
5380 || strcmp (target_shortname, "pmon") == 0
5381 || strcmp (target_shortname, "lsi") == 0)
5382 return pmon_little_breakpoint;
5384 return little_breakpoint;
5389 /* If PC is in a mips16 call or return stub, return the address of the target
5390 PC, which is either the callee or the caller. There are several
5391 cases which must be handled:
5393 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5394 target PC is in $31 ($ra).
5395 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5396 and the target PC is in $2.
5397 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5398 before the jal instruction, this is effectively a call stub
5399 and the the target PC is in $2. Otherwise this is effectively
5400 a return stub and the target PC is in $18.
5402 See the source code for the stubs in gcc/config/mips/mips16.S for
5405 This function implements the SKIP_TRAMPOLINE_CODE macro.
5409 mips_skip_stub (CORE_ADDR pc)
5412 CORE_ADDR start_addr;
5414 /* Find the starting address and name of the function containing the PC. */
5415 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5418 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5419 target PC is in $31 ($ra). */
5420 if (strcmp (name, "__mips16_ret_sf") == 0
5421 || strcmp (name, "__mips16_ret_df") == 0)
5422 return read_signed_register (RA_REGNUM);
5424 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5426 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5427 and the target PC is in $2. */
5428 if (name[19] >= '0' && name[19] <= '9')
5429 return read_signed_register (2);
5431 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5432 before the jal instruction, this is effectively a call stub
5433 and the the target PC is in $2. Otherwise this is effectively
5434 a return stub and the target PC is in $18. */
5435 else if (name[19] == 's' || name[19] == 'd')
5437 if (pc == start_addr)
5439 /* Check if the target of the stub is a compiler-generated
5440 stub. Such a stub for a function bar might have a name
5441 like __fn_stub_bar, and might look like this:
5446 la $1,bar (becomes a lui/addiu pair)
5448 So scan down to the lui/addi and extract the target
5449 address from those two instructions. */
5451 CORE_ADDR target_pc = read_signed_register (2);
5455 /* See if the name of the target function is __fn_stub_*. */
5456 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5458 if (strncmp (name, "__fn_stub_", 10) != 0
5459 && strcmp (name, "etext") != 0
5460 && strcmp (name, "_etext") != 0)
5463 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5464 The limit on the search is arbitrarily set to 20
5465 instructions. FIXME. */
5466 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5468 inst = mips_fetch_instruction (target_pc);
5469 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5470 pc = (inst << 16) & 0xffff0000; /* high word */
5471 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5472 return pc | (inst & 0xffff); /* low word */
5475 /* Couldn't find the lui/addui pair, so return stub address. */
5479 /* This is the 'return' part of a call stub. The return
5480 address is in $r18. */
5481 return read_signed_register (18);
5484 return 0; /* not a stub */
5488 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5489 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5492 mips_in_call_stub (CORE_ADDR pc, char *name)
5494 CORE_ADDR start_addr;
5496 /* Find the starting address of the function containing the PC. If the
5497 caller didn't give us a name, look it up at the same time. */
5498 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5501 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5503 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5504 if (name[19] >= '0' && name[19] <= '9')
5506 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5507 before the jal instruction, this is effectively a call stub. */
5508 else if (name[19] == 's' || name[19] == 'd')
5509 return pc == start_addr;
5512 return 0; /* not a stub */
5516 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5517 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5520 mips_in_return_stub (CORE_ADDR pc, char *name)
5522 CORE_ADDR start_addr;
5524 /* Find the starting address of the function containing the PC. */
5525 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5528 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5529 if (strcmp (name, "__mips16_ret_sf") == 0
5530 || strcmp (name, "__mips16_ret_df") == 0)
5533 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5534 i.e. after the jal instruction, this is effectively a return stub. */
5535 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5536 && (name[19] == 's' || name[19] == 'd')
5537 && pc != start_addr)
5540 return 0; /* not a stub */
5544 /* Return non-zero if the PC is in a library helper function that should
5545 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5548 mips_ignore_helper (CORE_ADDR pc)
5552 /* Find the starting address and name of the function containing the PC. */
5553 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5556 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5557 that we want to ignore. */
5558 return (strcmp (name, "__mips16_ret_sf") == 0
5559 || strcmp (name, "__mips16_ret_df") == 0);
5563 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5564 the register stored on the stack (32) is different to its real raw
5565 size (64). The below ensures that registers are fetched from the
5566 stack using their ABI size and then stored into the RAW_BUFFER
5567 using their raw size.
5569 The alternative to adding this function would be to add an ABI
5570 macro - REGISTER_STACK_SIZE(). */
5573 mips_get_saved_register (char *raw_buffer,
5576 struct frame_info *frame,
5578 enum lval_type *lvalp)
5581 enum lval_type lvalx;
5585 /* Always a pseudo. */
5586 gdb_assert (regnum >= NUM_REGS);
5588 /* Make certain that all needed parameters are present. */
5593 if (optimizedp == NULL)
5594 optimizedp = &optimizedx;
5596 if ((regnum % NUM_REGS) == SP_REGNUM)
5597 /* The SP_REGNUM is special, its value is stored in saved_regs.
5598 In fact, it is so special that it can even only be fetched
5599 using a raw register number! Once this code as been converted
5600 to frame-unwind the problem goes away. */
5601 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5602 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5603 &realnumx, raw_buffer);
5605 /* Get it from the next frame. */
5606 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5607 regnum, optimizedp, lvalp, addrp,
5608 &realnumx, raw_buffer);
5611 /* Immediately after a function call, return the saved pc.
5612 Can't always go through the frames for this because on some machines
5613 the new frame is not set up until the new function executes
5614 some instructions. */
5617 mips_saved_pc_after_call (struct frame_info *frame)
5619 return read_signed_register (RA_REGNUM);
5623 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5624 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5627 mips_stab_reg_to_regnum (int num)
5630 if (num >= 0 && num < 32)
5632 else if (num >= 38 && num < 70)
5633 regnum = num + FP0_REGNUM - 38;
5639 /* This will hopefully (eventually) provoke a warning. Should
5640 we be calling complaint() here? */
5641 return NUM_REGS + NUM_PSEUDO_REGS;
5642 return NUM_REGS + regnum;
5646 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5647 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5650 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5653 if (num >= 0 && num < 32)
5655 else if (num >= 32 && num < 64)
5656 regnum = num + FP0_REGNUM - 32;
5662 /* This will hopefully (eventually) provoke a warning. Should we
5663 be calling complaint() here? */
5664 return NUM_REGS + NUM_PSEUDO_REGS;
5665 return NUM_REGS + regnum;
5669 mips_register_sim_regno (int regnum)
5671 /* Only makes sense to supply raw registers. */
5672 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5673 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5674 decide if it is valid. Should instead define a standard sim/gdb
5675 register numbering scheme. */
5676 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5677 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5680 return LEGACY_SIM_REGNO_IGNORE;
5684 /* Convert an integer into an address. By first converting the value
5685 into a pointer and then extracting it signed, the address is
5686 guarenteed to be correctly sign extended. */
5689 mips_integer_to_address (struct type *type, void *buf)
5691 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5692 LONGEST val = unpack_long (type, buf);
5693 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5694 return extract_signed_integer (tmp,
5695 TYPE_LENGTH (builtin_type_void_data_ptr));
5699 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5701 enum mips_abi *abip = (enum mips_abi *) obj;
5702 const char *name = bfd_get_section_name (abfd, sect);
5704 if (*abip != MIPS_ABI_UNKNOWN)
5707 if (strncmp (name, ".mdebug.", 8) != 0)
5710 if (strcmp (name, ".mdebug.abi32") == 0)
5711 *abip = MIPS_ABI_O32;
5712 else if (strcmp (name, ".mdebug.abiN32") == 0)
5713 *abip = MIPS_ABI_N32;
5714 else if (strcmp (name, ".mdebug.abi64") == 0)
5715 *abip = MIPS_ABI_N64;
5716 else if (strcmp (name, ".mdebug.abiO64") == 0)
5717 *abip = MIPS_ABI_O64;
5718 else if (strcmp (name, ".mdebug.eabi32") == 0)
5719 *abip = MIPS_ABI_EABI32;
5720 else if (strcmp (name, ".mdebug.eabi64") == 0)
5721 *abip = MIPS_ABI_EABI64;
5723 warning ("unsupported ABI %s.", name + 8);
5726 static enum mips_abi
5727 global_mips_abi (void)
5731 for (i = 0; mips_abi_strings[i] != NULL; i++)
5732 if (mips_abi_strings[i] == mips_abi_string)
5733 return (enum mips_abi) i;
5735 internal_error (__FILE__, __LINE__,
5736 "unknown ABI string");
5739 static struct gdbarch *
5740 mips_gdbarch_init (struct gdbarch_info info,
5741 struct gdbarch_list *arches)
5743 struct gdbarch *gdbarch;
5744 struct gdbarch_tdep *tdep;
5746 enum mips_abi mips_abi, found_abi, wanted_abi;
5753 /* First of all, extract the elf_flags, if available. */
5754 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5755 elf_flags = elf_elfheader (info.abfd)->e_flags;
5758 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5759 switch ((elf_flags & EF_MIPS_ABI))
5761 case E_MIPS_ABI_O32:
5762 mips_abi = MIPS_ABI_O32;
5764 case E_MIPS_ABI_O64:
5765 mips_abi = MIPS_ABI_O64;
5767 case E_MIPS_ABI_EABI32:
5768 mips_abi = MIPS_ABI_EABI32;
5770 case E_MIPS_ABI_EABI64:
5771 mips_abi = MIPS_ABI_EABI64;
5774 if ((elf_flags & EF_MIPS_ABI2))
5775 mips_abi = MIPS_ABI_N32;
5777 mips_abi = MIPS_ABI_UNKNOWN;
5781 /* GCC creates a pseudo-section whose name describes the ABI. */
5782 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5783 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5785 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5786 Use the ABI from the last architecture if there is one. */
5787 if (info.abfd == NULL && arches != NULL)
5788 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5790 /* Try the architecture for any hint of the correct ABI. */
5791 if (mips_abi == MIPS_ABI_UNKNOWN
5792 && info.bfd_arch_info != NULL
5793 && info.bfd_arch_info->arch == bfd_arch_mips)
5795 switch (info.bfd_arch_info->mach)
5797 case bfd_mach_mips3900:
5798 mips_abi = MIPS_ABI_EABI32;
5800 case bfd_mach_mips4100:
5801 case bfd_mach_mips5000:
5802 mips_abi = MIPS_ABI_EABI64;
5804 case bfd_mach_mips8000:
5805 case bfd_mach_mips10000:
5806 /* On Irix, ELF64 executables use the N64 ABI. The
5807 pseudo-sections which describe the ABI aren't present
5808 on IRIX. (Even for executables created by gcc.) */
5809 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5810 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5811 mips_abi = MIPS_ABI_N64;
5813 mips_abi = MIPS_ABI_N32;
5818 if (mips_abi == MIPS_ABI_UNKNOWN)
5819 mips_abi = MIPS_ABI_O32;
5821 /* Now that we have found what the ABI for this binary would be,
5822 check whether the user is overriding it. */
5823 found_abi = mips_abi;
5824 wanted_abi = global_mips_abi ();
5825 if (wanted_abi != MIPS_ABI_UNKNOWN)
5826 mips_abi = wanted_abi;
5830 fprintf_unfiltered (gdb_stdlog,
5831 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5833 fprintf_unfiltered (gdb_stdlog,
5834 "mips_gdbarch_init: mips_abi = %d\n",
5836 fprintf_unfiltered (gdb_stdlog,
5837 "mips_gdbarch_init: found_mips_abi = %d\n",
5841 /* try to find a pre-existing architecture */
5842 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5844 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5846 /* MIPS needs to be pedantic about which ABI the object is
5848 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5850 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5852 return arches->gdbarch;
5855 /* Need a new architecture. Fill in a target specific vector. */
5856 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5857 gdbarch = gdbarch_alloc (&info, tdep);
5858 tdep->elf_flags = elf_flags;
5860 /* Initially set everything according to the default ABI/ISA. */
5861 set_gdbarch_short_bit (gdbarch, 16);
5862 set_gdbarch_int_bit (gdbarch, 32);
5863 set_gdbarch_float_bit (gdbarch, 32);
5864 set_gdbarch_double_bit (gdbarch, 64);
5865 set_gdbarch_long_double_bit (gdbarch, 64);
5866 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5867 set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte);
5868 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5869 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5870 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5871 tdep->found_abi = found_abi;
5872 tdep->mips_abi = mips_abi;
5874 set_gdbarch_elf_make_msymbol_special (gdbarch,
5875 mips_elf_make_msymbol_special);
5878 if (info.osabi == GDB_OSABI_IRIX)
5882 set_gdbarch_num_regs (gdbarch, num_regs);
5883 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5888 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5889 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5890 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5891 tdep->mips_default_saved_regsize = 4;
5892 tdep->mips_default_stack_argsize = 4;
5893 tdep->mips_fp_register_double = 0;
5894 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5895 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5896 tdep->gdb_target_is_mips64 = 0;
5897 tdep->default_mask_address_p = 0;
5898 set_gdbarch_long_bit (gdbarch, 32);
5899 set_gdbarch_ptr_bit (gdbarch, 32);
5900 set_gdbarch_long_long_bit (gdbarch, 64);
5901 set_gdbarch_reg_struct_has_addr (gdbarch,
5902 mips_o32_reg_struct_has_addr);
5903 set_gdbarch_use_struct_convention (gdbarch,
5904 always_use_struct_convention);
5907 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5908 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5909 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5910 tdep->mips_default_saved_regsize = 8;
5911 tdep->mips_default_stack_argsize = 8;
5912 tdep->mips_fp_register_double = 1;
5913 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5914 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5915 tdep->gdb_target_is_mips64 = 1;
5916 tdep->default_mask_address_p = 0;
5917 set_gdbarch_long_bit (gdbarch, 32);
5918 set_gdbarch_ptr_bit (gdbarch, 32);
5919 set_gdbarch_long_long_bit (gdbarch, 64);
5920 set_gdbarch_reg_struct_has_addr (gdbarch,
5921 mips_o32_reg_struct_has_addr);
5922 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5924 case MIPS_ABI_EABI32:
5925 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5926 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5927 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5928 tdep->mips_default_saved_regsize = 4;
5929 tdep->mips_default_stack_argsize = 4;
5930 tdep->mips_fp_register_double = 0;
5931 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5932 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5933 tdep->gdb_target_is_mips64 = 0;
5934 tdep->default_mask_address_p = 0;
5935 set_gdbarch_long_bit (gdbarch, 32);
5936 set_gdbarch_ptr_bit (gdbarch, 32);
5937 set_gdbarch_long_long_bit (gdbarch, 64);
5938 set_gdbarch_reg_struct_has_addr (gdbarch,
5939 mips_eabi_reg_struct_has_addr);
5940 set_gdbarch_use_struct_convention (gdbarch,
5941 mips_eabi_use_struct_convention);
5943 case MIPS_ABI_EABI64:
5944 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5945 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5946 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5947 tdep->mips_default_saved_regsize = 8;
5948 tdep->mips_default_stack_argsize = 8;
5949 tdep->mips_fp_register_double = 1;
5950 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5951 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5952 tdep->gdb_target_is_mips64 = 1;
5953 tdep->default_mask_address_p = 0;
5954 set_gdbarch_long_bit (gdbarch, 64);
5955 set_gdbarch_ptr_bit (gdbarch, 64);
5956 set_gdbarch_long_long_bit (gdbarch, 64);
5957 set_gdbarch_reg_struct_has_addr (gdbarch,
5958 mips_eabi_reg_struct_has_addr);
5959 set_gdbarch_use_struct_convention (gdbarch,
5960 mips_eabi_use_struct_convention);
5963 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5964 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5965 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5966 tdep->mips_default_saved_regsize = 8;
5967 tdep->mips_default_stack_argsize = 8;
5968 tdep->mips_fp_register_double = 1;
5969 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5970 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5971 tdep->gdb_target_is_mips64 = 1;
5972 tdep->default_mask_address_p = 0;
5973 set_gdbarch_long_bit (gdbarch, 32);
5974 set_gdbarch_ptr_bit (gdbarch, 32);
5975 set_gdbarch_long_long_bit (gdbarch, 64);
5976 set_gdbarch_use_struct_convention (gdbarch,
5977 mips_n32n64_use_struct_convention);
5978 set_gdbarch_reg_struct_has_addr (gdbarch,
5979 mips_n32n64_reg_struct_has_addr);
5982 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5983 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5984 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5985 tdep->mips_default_saved_regsize = 8;
5986 tdep->mips_default_stack_argsize = 8;
5987 tdep->mips_fp_register_double = 1;
5988 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5989 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5990 tdep->gdb_target_is_mips64 = 1;
5991 tdep->default_mask_address_p = 0;
5992 set_gdbarch_long_bit (gdbarch, 64);
5993 set_gdbarch_ptr_bit (gdbarch, 64);
5994 set_gdbarch_long_long_bit (gdbarch, 64);
5995 set_gdbarch_use_struct_convention (gdbarch,
5996 mips_n32n64_use_struct_convention);
5997 set_gdbarch_reg_struct_has_addr (gdbarch,
5998 mips_n32n64_reg_struct_has_addr);
6001 internal_error (__FILE__, __LINE__,
6002 "unknown ABI in switch");
6005 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6006 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6009 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6010 flag in object files because to do so would make it impossible to
6011 link with libraries compiled without "-gp32". This is
6012 unnecessarily restrictive.
6014 We could solve this problem by adding "-gp32" multilibs to gcc,
6015 but to set this flag before gcc is built with such multilibs will
6016 break too many systems.''
6018 But even more unhelpfully, the default linker output target for
6019 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6020 for 64-bit programs - you need to change the ABI to change this,
6021 and not all gcc targets support that currently. Therefore using
6022 this flag to detect 32-bit mode would do the wrong thing given
6023 the current gcc - it would make GDB treat these 64-bit programs
6024 as 32-bit programs by default. */
6026 /* enable/disable the MIPS FPU */
6027 if (!mips_fpu_type_auto)
6028 tdep->mips_fpu_type = mips_fpu_type;
6029 else if (info.bfd_arch_info != NULL
6030 && info.bfd_arch_info->arch == bfd_arch_mips)
6031 switch (info.bfd_arch_info->mach)
6033 case bfd_mach_mips3900:
6034 case bfd_mach_mips4100:
6035 case bfd_mach_mips4111:
6036 tdep->mips_fpu_type = MIPS_FPU_NONE;
6038 case bfd_mach_mips4650:
6039 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
6042 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6046 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6048 /* MIPS version of register names. NOTE: At present the MIPS
6049 register name management is part way between the old -
6050 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
6051 Further work on it is required. */
6052 /* NOTE: many targets (esp. embedded) do not go thru the
6053 gdbarch_register_name vector at all, instead bypassing it
6054 by defining REGISTER_NAMES. */
6055 set_gdbarch_register_name (gdbarch, mips_register_name);
6056 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6057 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
6058 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
6059 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6061 /* Add/remove bits from an address. The MIPS needs be careful to
6062 ensure that all 32 bit addresses are sign extended to 64 bits. */
6063 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6065 /* There's a mess in stack frame creation. See comments in
6066 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6067 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6068 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
6070 /* Map debug register numbers onto internal register numbers. */
6071 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6072 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6073 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6074 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6075 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6077 /* Initialize a frame */
6078 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6079 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6081 /* MIPS version of CALL_DUMMY */
6083 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6084 replaced by a command, and all targets will default to on stack
6085 (regardless of the stack's execute status). */
6086 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6087 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6088 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6089 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6090 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6091 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6092 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6094 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6095 set_gdbarch_frameless_function_invocation (gdbarch,
6096 generic_frameless_function_invocation_not);
6097 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6098 set_gdbarch_frame_args_skip (gdbarch, 0);
6100 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6102 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6103 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6104 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6106 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6107 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6109 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6110 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6111 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6113 set_gdbarch_function_start_offset (gdbarch, 0);
6115 set_gdbarch_register_type (gdbarch, mips_register_type);
6117 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6118 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6120 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6122 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6123 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6124 need to all be folded into the target vector. Since they are
6125 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6126 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6128 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6130 /* Hook in OS ABI-specific overrides, if they have been registered. */
6131 gdbarch_init_osabi (info, gdbarch);
6133 set_gdbarch_extract_struct_value_address (gdbarch,
6134 mips_extract_struct_value_address);
6136 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6138 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6139 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6145 mips_abi_update (char *ignore_args, int from_tty,
6146 struct cmd_list_element *c)
6148 struct gdbarch_info info;
6150 /* Force the architecture to update, and (if it's a MIPS architecture)
6151 mips_gdbarch_init will take care of the rest. */
6152 gdbarch_info_init (&info);
6153 gdbarch_update_p (info);
6156 /* Print out which MIPS ABI is in use. */
6159 show_mips_abi (char *ignore_args, int from_tty)
6161 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6163 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6166 enum mips_abi global_abi = global_mips_abi ();
6167 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6168 const char *actual_abi_str = mips_abi_strings[actual_abi];
6170 if (global_abi == MIPS_ABI_UNKNOWN)
6171 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6173 else if (global_abi == actual_abi)
6175 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6179 /* Probably shouldn't happen... */
6181 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6183 mips_abi_strings[global_abi]);
6189 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6191 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6195 int ef_mips_32bitmode;
6196 /* determine the ISA */
6197 switch (tdep->elf_flags & EF_MIPS_ARCH)
6215 /* determine the size of a pointer */
6216 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: ef_mips_arch = %d\n",
6226 fprintf_unfiltered (file,
6227 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6229 mips_abi_strings[tdep->mips_abi]);
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6232 mips_mask_address_p (),
6233 tdep->default_mask_address_p);
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6237 FP_REGISTER_DOUBLE);
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6240 MIPS_DEFAULT_FPU_TYPE,
6241 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6242 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6243 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: MIPS_EABI = %d\n",
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6250 MIPS_LAST_FP_ARG_REGNUM,
6251 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6255 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6256 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6257 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6261 MIPS_DEFAULT_SAVED_REGSIZE);
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6264 FP_REGISTER_DOUBLE);
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6267 MIPS_DEFAULT_STACK_ARGSIZE);
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6270 MIPS_STACK_ARGSIZE);
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: A0_REGNUM = %d\n",
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6279 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6282 XSTRING (ATTACH_DETACH));
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6291 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6294 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6303 FIRST_EMBED_REGNUM);
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6309 GDB_TARGET_IS_MIPS64);
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: HI_REGNUM = %d\n",
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6315 XSTRING (IGNORE_HELPER_CALL (PC)));
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6318 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6321 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: LO_REGNUM = %d\n",
6328 #ifdef MACHINE_CPROC_FP_OFFSET
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6331 MACHINE_CPROC_FP_OFFSET);
6333 #ifdef MACHINE_CPROC_PC_OFFSET
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6336 MACHINE_CPROC_PC_OFFSET);
6338 #ifdef MACHINE_CPROC_SP_OFFSET
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6341 MACHINE_CPROC_SP_OFFSET);
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6355 MIPS_LAST_ARG_REGNUM,
6356 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6364 MIPS_SAVED_REGSIZE);
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: OP_LDFPR = used?\n");
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: OP_LDGPR = used?\n");
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: PRID_REGNUM = %d\n",
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6374 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: PROC_PC_REG = function?\n");
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: PS_REGNUM = %d\n",
6402 fprintf_unfiltered (file,
6403 "mips_dump_tdep: RA_REGNUM = %d\n",
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6407 fprintf_unfiltered (file,
6408 "mips_dump_tdep: ROUND_DOWN = function?\n");
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: ROUND_UP = function?\n");
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: SAVED_BYTES = %d\n",
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: SAVED_FP = %d\n",
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: SAVED_PC = %d\n",
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6428 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6429 fprintf_unfiltered (file,
6430 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6436 SIGFRAME_FPREGSAVE_OFF);
6437 fprintf_unfiltered (file,
6438 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6440 fprintf_unfiltered (file,
6441 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6442 SIGFRAME_REGSAVE_OFF);
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6446 fprintf_unfiltered (file,
6447 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6448 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6449 fprintf_unfiltered (file,
6450 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6451 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6452 fprintf_unfiltered (file,
6453 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6454 SOFTWARE_SINGLE_STEP_P ());
6455 fprintf_unfiltered (file,
6456 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6457 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6458 #ifdef STACK_END_ADDR
6459 fprintf_unfiltered (file,
6460 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6463 fprintf_unfiltered (file,
6464 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6465 XSTRING (STEP_SKIPS_DELAY (PC)));
6466 fprintf_unfiltered (file,
6467 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6468 STEP_SKIPS_DELAY_P);
6469 fprintf_unfiltered (file,
6470 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6471 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6472 fprintf_unfiltered (file,
6473 "mips_dump_tdep: T9_REGNUM = %d\n",
6475 fprintf_unfiltered (file,
6476 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6477 fprintf_unfiltered (file,
6478 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6479 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6480 fprintf_unfiltered (file,
6481 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6482 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6484 fprintf_unfiltered (file,
6485 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6486 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6489 fprintf_unfiltered (file,
6490 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6493 #ifdef TRACE_FLAVOR_SIZE
6494 fprintf_unfiltered (file,
6495 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6499 fprintf_unfiltered (file,
6500 "mips_dump_tdep: TRACE_SET # %s\n",
6501 XSTRING (TRACE_SET (X,STATE)));
6503 #ifdef UNUSED_REGNUM
6504 fprintf_unfiltered (file,
6505 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6508 fprintf_unfiltered (file,
6509 "mips_dump_tdep: V0_REGNUM = %d\n",
6511 fprintf_unfiltered (file,
6512 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6513 (long) VM_MIN_ADDRESS);
6515 fprintf_unfiltered (file,
6516 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6519 fprintf_unfiltered (file,
6520 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6522 fprintf_unfiltered (file,
6523 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6527 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6530 _initialize_mips_tdep (void)
6532 static struct cmd_list_element *mipsfpulist = NULL;
6533 struct cmd_list_element *c;
6535 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6536 if (MIPS_ABI_LAST + 1
6537 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6538 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6540 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6542 /* Add root prefix command for all "set mips"/"show mips" commands */
6543 add_prefix_cmd ("mips", no_class, set_mips_command,
6544 "Various MIPS specific commands.",
6545 &setmipscmdlist, "set mips ", 0, &setlist);
6547 add_prefix_cmd ("mips", no_class, show_mips_command,
6548 "Various MIPS specific commands.",
6549 &showmipscmdlist, "show mips ", 0, &showlist);
6551 /* Allow the user to override the saved register size. */
6552 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6555 &mips_saved_regsize_string, "\
6556 Set size of general purpose registers saved on the stack.\n\
6557 This option can be set to one of:\n\
6558 32 - Force GDB to treat saved GP registers as 32-bit\n\
6559 64 - Force GDB to treat saved GP registers as 64-bit\n\
6560 auto - Allow GDB to use the target's default setting or autodetect the\n\
6561 saved GP register size from information contained in the executable.\n\
6566 /* Allow the user to override the argument stack size. */
6567 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6570 &mips_stack_argsize_string, "\
6571 Set the amount of stack space reserved for each argument.\n\
6572 This option can be set to one of:\n\
6573 32 - Force GDB to allocate 32-bit chunks per argument\n\
6574 64 - Force GDB to allocate 64-bit chunks per argument\n\
6575 auto - Allow GDB to determine the correct setting from the current\n\
6576 target and executable (default)",
6580 /* Allow the user to override the ABI. */
6581 c = add_set_enum_cmd
6582 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6583 "Set the ABI used by this program.\n"
6584 "This option can be set to one of:\n"
6585 " auto - the default ABI associated with the current binary\n"
6593 set_cmd_sfunc (c, mips_abi_update);
6594 add_cmd ("abi", class_obscure, show_mips_abi,
6595 "Show ABI in use by MIPS target", &showmipscmdlist);
6597 /* Let the user turn off floating point and set the fence post for
6598 heuristic_proc_start. */
6600 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6601 "Set use of MIPS floating-point coprocessor.",
6602 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6603 add_cmd ("single", class_support, set_mipsfpu_single_command,
6604 "Select single-precision MIPS floating-point coprocessor.",
6606 add_cmd ("double", class_support, set_mipsfpu_double_command,
6607 "Select double-precision MIPS floating-point coprocessor.",
6609 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6610 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6611 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6612 add_cmd ("none", class_support, set_mipsfpu_none_command,
6613 "Select no MIPS floating-point coprocessor.",
6615 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6616 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6617 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6618 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6619 "Select MIPS floating-point coprocessor automatically.",
6621 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6622 "Show current use of MIPS floating-point coprocessor target.",
6625 /* We really would like to have both "0" and "unlimited" work, but
6626 command.c doesn't deal with that. So make it a var_zinteger
6627 because the user can always use "999999" or some such for unlimited. */
6628 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6629 (char *) &heuristic_fence_post,
6631 Set the distance searched for the start of a function.\n\
6632 If you are debugging a stripped executable, GDB needs to search through the\n\
6633 program for the start of a function. This command sets the distance of the\n\
6634 search. The only need to set it is when debugging a stripped executable.",
6636 /* We need to throw away the frame cache when we set this, since it
6637 might change our ability to get backtraces. */
6638 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6639 add_show_from_set (c, &showlist);
6641 /* Allow the user to control whether the upper bits of 64-bit
6642 addresses should be zeroed. */
6643 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6644 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6645 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6646 allow GDB to determine the correct value.\n", "\
6647 Show zeroing of upper 32 bits of 64-bit addresses.",
6648 NULL, show_mask_address,
6649 &setmipscmdlist, &showmipscmdlist);
6651 /* Allow the user to control the size of 32 bit registers within the
6652 raw remote packet. */
6653 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6656 (char *)&mips64_transfers_32bit_regs_p, "\
6657 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6658 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6659 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6660 64 bits for others. Use \"off\" to disable compatibility mode",
6664 /* Debug this files internals. */
6665 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6666 &mips_debug, "Set mips debugging.\n\
6667 When non-zero, mips specific debugging is enabled.", &setdebuglist),