3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
120 case "${invalid_p}" in
122 if test -n "${predefault}" -a "${predefault}" != "0"
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
132 echo "Predicate function ${function} with invalid_p." 1>&2
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
146 if [ -n "${postdefault}" ]
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
151 fallbackdefault="${predefault}"
156 #NOT YET: See gdbarch.log for basic verification of
171 fallback_default_p ()
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
177 class_is_variable_p ()
185 class_is_function_p ()
188 *f* | *F* | *m* | *M* ) true ;;
193 class_is_multiarch_p ()
201 class_is_predicate_p ()
204 *F* | *V* | *M* ) true ;;
218 # dump out/verify the doco
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
249 # The name of the MACRO that this method is to be accessed by.
253 # For functions, the return type; for variables, the data type
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
352 # If FMT is empty, ``%ld'' is used.
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
359 # If PRINT is empty, ``(long)'' is used.
363 # An optional indicator for any predicte to wrap around the
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
370 # If PRINT_P is empty, ``1'' is always used.
377 echo "Bad field ${field}"
385 # See below (DOCO) for description of each field
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
474 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
475 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
477 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
482 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
487 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
492 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
497 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
498 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
500 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
501 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
502 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
503 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 # MAP a GDB RAW register number onto a simulator register number. See
505 # also include/...-sim.h.
506 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
507 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
508 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
509 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
510 # setjmp/longjmp support.
511 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
513 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
514 # much better but at least they are vaguely consistent). The headers
515 # and body contain convoluted #if/#else sequences for determine how
516 # things should be compiled. Instead of trying to mimic that
517 # behaviour here (and hence entrench it further) gdbarch simply
518 # reqires that these methods be set up from the word go. This also
519 # avoids any potential problems with moving beyond multi-arch partial.
520 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
523 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
524 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
525 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
526 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
534 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
536 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
537 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
538 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
539 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
540 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
542 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
543 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
544 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
546 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
547 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
548 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
550 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
551 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
552 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
554 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
555 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
556 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
558 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
559 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
562 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
564 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
566 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
567 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
568 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
569 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
571 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
572 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
573 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
575 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
576 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
578 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
579 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
580 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
581 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
582 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
583 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
584 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
585 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
586 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
588 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
590 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
591 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
592 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
593 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
594 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
595 # note, per UNWIND_PC's doco, that while the two have similar
596 # interfaces they have very different underlying implementations.
597 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
598 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
599 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
600 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
601 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
602 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
604 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
605 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
606 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
607 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
608 # FIXME: kettenis/2003-03-08: This should be replaced by a function
609 # parametrized with (at least) the regcache.
610 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
611 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
612 v:2:PARM_BOUNDARY:int:parm_boundary
614 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
615 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
616 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
617 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
618 # On some machines there are bits in addresses which are not really
619 # part of the address, but are used by the kernel, the hardware, etc.
620 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
621 # we get a "real" address such as one would find in a symbol table.
622 # This is used only for addresses of instructions, and even then I'm
623 # not sure it's used in all contexts. It exists to deal with there
624 # being a few stray bits in the PC which would mislead us, not as some
625 # sort of generic thing to handle alignment or segmentation (it's
626 # possible it should be in TARGET_READ_PC instead).
627 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
628 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
630 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
631 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
632 # the target needs software single step. An ISA method to implement it.
634 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
635 # using the breakpoint system instead of blatting memory directly (as with rs6000).
637 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
638 # single step. If not, then implement single step using breakpoints.
639 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
640 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
641 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
644 # For SVR4 shared libraries, each call goes through a small piece of
645 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
646 # to nonzero if we are currently stopped in one of these.
647 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
649 # Some systems also have trampoline code for returning from shared libs.
650 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
652 # Sigtramp is a routine that the kernel calls (which then calls the
653 # signal handler). On most machines it is a library routine that is
654 # linked into the executable.
656 # This macro, given a program counter value and the name of the
657 # function in which that PC resides (which can be null if the name is
658 # not known), returns nonzero if the PC and name show that we are in
661 # On most machines just see if the name is sigtramp (and if we have
662 # no name, assume we are not in sigtramp).
664 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
665 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
666 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
667 # own local NAME lookup.
669 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
670 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
672 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
673 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
674 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
675 # A target might have problems with watchpoints as soon as the stack
676 # frame of the current function has been destroyed. This mostly happens
677 # as the first action in a funtion's epilogue. in_function_epilogue_p()
678 # is defined to return a non-zero value if either the given addr is one
679 # instruction after the stack destroying instruction up to the trailing
680 # return instruction or if we can figure out that the stack frame has
681 # already been invalidated regardless of the value of addr. Targets
682 # which don't suffer from that problem could just let this functionality
684 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
685 # Given a vector of command-line arguments, return a newly allocated
686 # string which, when passed to the create_inferior function, will be
687 # parsed (on Unix systems, by the shell) to yield the same vector.
688 # This function should call error() if the argument vector is not
689 # representable for this target or if this target does not support
690 # command-line arguments.
691 # ARGC is the number of elements in the vector.
692 # ARGV is an array of strings, one per argument.
693 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
694 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
695 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
696 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
697 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
698 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
699 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
700 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
701 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
702 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
703 # Is a register in a group
704 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
711 exec > new-gdbarch.log
712 function_list | while do_read
715 ${class} ${macro}(${actual})
716 ${returntype} ${function} ($formal)${attrib}
720 eval echo \"\ \ \ \ ${r}=\${${r}}\"
722 if class_is_predicate_p && fallback_default_p
724 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
728 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
730 echo "Error: postdefault is useless when invalid_p=0" 1>&2
734 if class_is_multiarch_p
736 if class_is_predicate_p ; then :
737 elif test "x${predefault}" = "x"
739 echo "Error: pure multi-arch function must have a predefault" 1>&2
748 compare_new gdbarch.log
754 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
756 /* Dynamic architecture support for GDB, the GNU debugger.
757 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
759 This file is part of GDB.
761 This program is free software; you can redistribute it and/or modify
762 it under the terms of the GNU General Public License as published by
763 the Free Software Foundation; either version 2 of the License, or
764 (at your option) any later version.
766 This program is distributed in the hope that it will be useful,
767 but WITHOUT ANY WARRANTY; without even the implied warranty of
768 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
769 GNU General Public License for more details.
771 You should have received a copy of the GNU General Public License
772 along with this program; if not, write to the Free Software
773 Foundation, Inc., 59 Temple Place - Suite 330,
774 Boston, MA 02111-1307, USA. */
776 /* This file was created with the aid of \`\`gdbarch.sh''.
778 The Bourne shell script \`\`gdbarch.sh'' creates the files
779 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
780 against the existing \`\`gdbarch.[hc]''. Any differences found
783 If editing this file, please also run gdbarch.sh and merge any
784 changes into that script. Conversely, when making sweeping changes
785 to this file, modifying gdbarch.sh and using its output may prove
801 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
803 /* Pull in function declarations refered to, indirectly, via macros. */
804 #include "inferior.h" /* For unsigned_address_to_pointer(). */
810 struct minimal_symbol;
814 extern struct gdbarch *current_gdbarch;
817 /* If any of the following are defined, the target wasn't correctly
821 #if defined (EXTRA_FRAME_INFO)
822 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
827 #if defined (FRAME_FIND_SAVED_REGS)
828 #error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
832 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
833 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
840 printf "/* The following are pre-initialized by GDBARCH. */\n"
841 function_list | while do_read
846 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
847 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
848 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#if GDB_MULTI_ARCH\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
853 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
862 printf "/* The following are initialized by the target dependent code. */\n"
863 function_list | while do_read
865 if [ -n "${comment}" ]
867 echo "${comment}" | sed \
872 if class_is_multiarch_p
874 if class_is_predicate_p
877 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
880 if class_is_predicate_p
883 printf "#if defined (${macro})\n"
884 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
885 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
886 printf "#if !defined (${macro}_P)\n"
887 printf "#define ${macro}_P() (1)\n"
891 printf "/* Default predicate for non- multi-arch targets. */\n"
892 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
893 printf "#define ${macro}_P() (0)\n"
896 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
897 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
898 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
901 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
905 if class_is_variable_p
907 if fallback_default_p || class_is_predicate_p
910 printf "/* Default (value) for non- multi-arch platforms. */\n"
911 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
912 echo "#define ${macro} (${fallbackdefault})" \
913 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
919 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
920 printf "#error \"Non multi-arch definition of ${macro}\"\n"
922 if test "${level}" = ""
924 printf "#if !defined (${macro})\n"
925 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 printf "#if GDB_MULTI_ARCH\n"
929 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
930 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
935 if class_is_function_p
937 if class_is_multiarch_p ; then :
938 elif fallback_default_p || class_is_predicate_p
941 printf "/* Default (function) for non- multi-arch platforms. */\n"
942 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
943 if [ "x${fallbackdefault}" = "x0" ]
945 if [ "x${actual}" = "x-" ]
947 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
949 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
952 # FIXME: Should be passing current_gdbarch through!
953 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
954 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
959 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
962 elif class_is_multiarch_p
964 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
968 if [ "x${formal}" = "xvoid" ]
970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
974 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
975 if class_is_multiarch_p ; then :
977 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
978 printf "#error \"Non multi-arch definition of ${macro}\"\n"
980 printf "#if GDB_MULTI_ARCH\n"
981 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
982 if [ "x${actual}" = "x" ]
984 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
985 elif [ "x${actual}" = "x-" ]
987 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
989 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1000 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1003 /* Mechanism for co-ordinating the selection of a specific
1006 GDB targets (*-tdep.c) can register an interest in a specific
1007 architecture. Other GDB components can register a need to maintain
1008 per-architecture data.
1010 The mechanisms below ensures that there is only a loose connection
1011 between the set-architecture command and the various GDB
1012 components. Each component can independently register their need
1013 to maintain architecture specific data with gdbarch.
1017 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1020 The more traditional mega-struct containing architecture specific
1021 data for all the various GDB components was also considered. Since
1022 GDB is built from a variable number of (fairly independent)
1023 components it was determined that the global aproach was not
1027 /* Register a new architectural family with GDB.
1029 Register support for the specified ARCHITECTURE with GDB. When
1030 gdbarch determines that the specified architecture has been
1031 selected, the corresponding INIT function is called.
1035 The INIT function takes two parameters: INFO which contains the
1036 information available to gdbarch about the (possibly new)
1037 architecture; ARCHES which is a list of the previously created
1038 \`\`struct gdbarch'' for this architecture.
1040 The INFO parameter is, as far as possible, be pre-initialized with
1041 information obtained from INFO.ABFD or the previously selected
1044 The ARCHES parameter is a linked list (sorted most recently used)
1045 of all the previously created architures for this architecture
1046 family. The (possibly NULL) ARCHES->gdbarch can used to access
1047 values from the previously selected architecture for this
1048 architecture family. The global \`\`current_gdbarch'' shall not be
1051 The INIT function shall return any of: NULL - indicating that it
1052 doesn't recognize the selected architecture; an existing \`\`struct
1053 gdbarch'' from the ARCHES list - indicating that the new
1054 architecture is just a synonym for an earlier architecture (see
1055 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1056 - that describes the selected architecture (see gdbarch_alloc()).
1058 The DUMP_TDEP function shall print out all target specific values.
1059 Care should be taken to ensure that the function works in both the
1060 multi-arch and non- multi-arch cases. */
1064 struct gdbarch *gdbarch;
1065 struct gdbarch_list *next;
1070 /* Use default: NULL (ZERO). */
1071 const struct bfd_arch_info *bfd_arch_info;
1073 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1076 /* Use default: NULL (ZERO). */
1079 /* Use default: NULL (ZERO). */
1080 struct gdbarch_tdep_info *tdep_info;
1082 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1083 enum gdb_osabi osabi;
1086 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1087 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1089 /* DEPRECATED - use gdbarch_register() */
1090 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1092 extern void gdbarch_register (enum bfd_architecture architecture,
1093 gdbarch_init_ftype *,
1094 gdbarch_dump_tdep_ftype *);
1097 /* Return a freshly allocated, NULL terminated, array of the valid
1098 architecture names. Since architectures are registered during the
1099 _initialize phase this function only returns useful information
1100 once initialization has been completed. */
1102 extern const char **gdbarch_printable_names (void);
1105 /* Helper function. Search the list of ARCHES for a GDBARCH that
1106 matches the information provided by INFO. */
1108 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1111 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1112 basic initialization using values obtained from the INFO andTDEP
1113 parameters. set_gdbarch_*() functions are called to complete the
1114 initialization of the object. */
1116 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1119 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1120 It is assumed that the caller freeds the \`\`struct
1123 extern void gdbarch_free (struct gdbarch *);
1126 /* Helper function. Force an update of the current architecture.
1128 The actual architecture selected is determined by INFO, \`\`(gdb) set
1129 architecture'' et.al., the existing architecture and BFD's default
1130 architecture. INFO should be initialized to zero and then selected
1131 fields should be updated.
1133 Returns non-zero if the update succeeds */
1135 extern int gdbarch_update_p (struct gdbarch_info info);
1139 /* Register per-architecture data-pointer.
1141 Reserve space for a per-architecture data-pointer. An identifier
1142 for the reserved data-pointer is returned. That identifer should
1143 be saved in a local static variable.
1145 The per-architecture data-pointer is either initialized explicitly
1146 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1147 gdbarch_data()). FREE() is called to delete either an existing
1148 data-pointer overridden by set_gdbarch_data() or when the
1149 architecture object is being deleted.
1151 When a previously created architecture is re-selected, the
1152 per-architecture data-pointer for that previous architecture is
1153 restored. INIT() is not re-called.
1155 Multiple registrarants for any architecture are allowed (and
1156 strongly encouraged). */
1158 struct gdbarch_data;
1160 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1161 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1163 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1164 gdbarch_data_free_ftype *free);
1165 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1166 struct gdbarch_data *data,
1169 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1172 /* Register per-architecture memory region.
1174 Provide a memory-region swap mechanism. Per-architecture memory
1175 region are created. These memory regions are swapped whenever the
1176 architecture is changed. For a new architecture, the memory region
1177 is initialized with zero (0) and the INIT function is called.
1179 Memory regions are swapped / initialized in the order that they are
1180 registered. NULL DATA and/or INIT values can be specified.
1182 New code should use register_gdbarch_data(). */
1184 typedef void (gdbarch_swap_ftype) (void);
1185 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1186 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1190 /* The target-system-dependent byte order is dynamic */
1192 extern int target_byte_order;
1193 #ifndef TARGET_BYTE_ORDER
1194 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1197 extern int target_byte_order_auto;
1198 #ifndef TARGET_BYTE_ORDER_AUTO
1199 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1204 /* The target-system-dependent BFD architecture is dynamic */
1206 extern int target_architecture_auto;
1207 #ifndef TARGET_ARCHITECTURE_AUTO
1208 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1211 extern const struct bfd_arch_info *target_architecture;
1212 #ifndef TARGET_ARCHITECTURE
1213 #define TARGET_ARCHITECTURE (target_architecture + 0)
1217 /* The target-system-dependent disassembler is semi-dynamic */
1219 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1220 unsigned int len, disassemble_info *info);
1222 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1223 disassemble_info *info);
1225 extern void dis_asm_print_address (bfd_vma addr,
1226 disassemble_info *info);
1228 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1229 extern disassemble_info tm_print_insn_info;
1230 #ifndef TARGET_PRINT_INSN_INFO
1231 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1236 /* Set the dynamic target-system-dependent parameters (architecture,
1237 byte-order, ...) using information found in the BFD */
1239 extern void set_gdbarch_from_file (bfd *);
1242 /* Initialize the current architecture to the "first" one we find on
1245 extern void initialize_current_architecture (void);
1247 /* For non-multiarched targets, do any initialization of the default
1248 gdbarch object necessary after the _initialize_MODULE functions
1250 extern void initialize_non_multiarch (void);
1252 /* gdbarch trace variable */
1253 extern int gdbarch_debug;
1255 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1260 #../move-if-change new-gdbarch.h gdbarch.h
1261 compare_new gdbarch.h
1268 exec > new-gdbarch.c
1273 #include "arch-utils.h"
1277 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1279 /* Just include everything in sight so that the every old definition
1280 of macro is visible. */
1281 #include "gdb_string.h"
1285 #include "inferior.h"
1286 #include "breakpoint.h"
1287 #include "gdb_wait.h"
1288 #include "gdbcore.h"
1291 #include "gdbthread.h"
1292 #include "annotate.h"
1293 #include "symfile.h" /* for overlay functions */
1294 #include "value.h" /* For old tm.h/nm.h macros. */
1298 #include "floatformat.h"
1300 #include "gdb_assert.h"
1301 #include "gdb_string.h"
1302 #include "gdb-events.h"
1303 #include "reggroups.h"
1306 /* Static function declarations */
1308 static void verify_gdbarch (struct gdbarch *gdbarch);
1309 static void alloc_gdbarch_data (struct gdbarch *);
1310 static void free_gdbarch_data (struct gdbarch *);
1311 static void init_gdbarch_swap (struct gdbarch *);
1312 static void clear_gdbarch_swap (struct gdbarch *);
1313 static void swapout_gdbarch_swap (struct gdbarch *);
1314 static void swapin_gdbarch_swap (struct gdbarch *);
1316 /* Non-zero if we want to trace architecture code. */
1318 #ifndef GDBARCH_DEBUG
1319 #define GDBARCH_DEBUG 0
1321 int gdbarch_debug = GDBARCH_DEBUG;
1325 # gdbarch open the gdbarch object
1327 printf "/* Maintain the struct gdbarch object */\n"
1329 printf "struct gdbarch\n"
1331 printf " /* Has this architecture been fully initialized? */\n"
1332 printf " int initialized_p;\n"
1333 printf " /* basic architectural information */\n"
1334 function_list | while do_read
1338 printf " ${returntype} ${function};\n"
1342 printf " /* target specific vector. */\n"
1343 printf " struct gdbarch_tdep *tdep;\n"
1344 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1346 printf " /* per-architecture data-pointers */\n"
1347 printf " unsigned nr_data;\n"
1348 printf " void **data;\n"
1350 printf " /* per-architecture swap-regions */\n"
1351 printf " struct gdbarch_swap *swap;\n"
1354 /* Multi-arch values.
1356 When extending this structure you must:
1358 Add the field below.
1360 Declare set/get functions and define the corresponding
1363 gdbarch_alloc(): If zero/NULL is not a suitable default,
1364 initialize the new field.
1366 verify_gdbarch(): Confirm that the target updated the field
1369 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1372 \`\`startup_gdbarch()'': Append an initial value to the static
1373 variable (base values on the host's c-type system).
1375 get_gdbarch(): Implement the set/get functions (probably using
1376 the macro's as shortcuts).
1381 function_list | while do_read
1383 if class_is_variable_p
1385 printf " ${returntype} ${function};\n"
1386 elif class_is_function_p
1388 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1393 # A pre-initialized vector
1397 /* The default architecture uses host values (for want of a better
1401 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1403 printf "struct gdbarch startup_gdbarch =\n"
1405 printf " 1, /* Always initialized. */\n"
1406 printf " /* basic architecture information */\n"
1407 function_list | while do_read
1411 printf " ${staticdefault},\n"
1415 /* target specific vector and its dump routine */
1417 /*per-architecture data-pointers and swap regions */
1419 /* Multi-arch values */
1421 function_list | while do_read
1423 if class_is_function_p || class_is_variable_p
1425 printf " ${staticdefault},\n"
1429 /* startup_gdbarch() */
1432 struct gdbarch *current_gdbarch = &startup_gdbarch;
1434 /* Do any initialization needed for a non-multiarch configuration
1435 after the _initialize_MODULE functions have been run. */
1437 initialize_non_multiarch (void)
1439 alloc_gdbarch_data (&startup_gdbarch);
1440 /* Ensure that all swap areas are zeroed so that they again think
1441 they are starting from scratch. */
1442 clear_gdbarch_swap (&startup_gdbarch);
1443 init_gdbarch_swap (&startup_gdbarch);
1447 # Create a new gdbarch struct
1451 /* Create a new \`\`struct gdbarch'' based on information provided by
1452 \`\`struct gdbarch_info''. */
1457 gdbarch_alloc (const struct gdbarch_info *info,
1458 struct gdbarch_tdep *tdep)
1460 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1461 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1462 the current local architecture and not the previous global
1463 architecture. This ensures that the new architectures initial
1464 values are not influenced by the previous architecture. Once
1465 everything is parameterised with gdbarch, this will go away. */
1466 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1467 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1469 alloc_gdbarch_data (current_gdbarch);
1471 current_gdbarch->tdep = tdep;
1474 function_list | while do_read
1478 printf " current_gdbarch->${function} = info->${function};\n"
1482 printf " /* Force the explicit initialization of these. */\n"
1483 function_list | while do_read
1485 if class_is_function_p || class_is_variable_p
1487 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1489 printf " current_gdbarch->${function} = ${predefault};\n"
1494 /* gdbarch_alloc() */
1496 return current_gdbarch;
1500 # Free a gdbarch struct.
1504 /* Free a gdbarch struct. This should never happen in normal
1505 operation --- once you've created a gdbarch, you keep it around.
1506 However, if an architecture's init function encounters an error
1507 building the structure, it may need to clean up a partially
1508 constructed gdbarch. */
1511 gdbarch_free (struct gdbarch *arch)
1513 gdb_assert (arch != NULL);
1514 free_gdbarch_data (arch);
1519 # verify a new architecture
1522 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1526 verify_gdbarch (struct gdbarch *gdbarch)
1528 struct ui_file *log;
1529 struct cleanup *cleanups;
1532 /* Only perform sanity checks on a multi-arch target. */
1533 if (!GDB_MULTI_ARCH)
1535 log = mem_fileopen ();
1536 cleanups = make_cleanup_ui_file_delete (log);
1538 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1539 fprintf_unfiltered (log, "\n\tbyte-order");
1540 if (gdbarch->bfd_arch_info == NULL)
1541 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1542 /* Check those that need to be defined for the given multi-arch level. */
1544 function_list | while do_read
1546 if class_is_function_p || class_is_variable_p
1548 if [ "x${invalid_p}" = "x0" ]
1550 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1551 elif class_is_predicate_p
1553 printf " /* Skip verify of ${function}, has predicate */\n"
1554 # FIXME: See do_read for potential simplification
1555 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1557 printf " if (${invalid_p})\n"
1558 printf " gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1561 printf " if (gdbarch->${function} == ${predefault})\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${postdefault}" ]
1565 printf " if (gdbarch->${function} == 0)\n"
1566 printf " gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${invalid_p}" ]
1569 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1570 printf " && (${invalid_p}))\n"
1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1572 elif [ -n "${predefault}" ]
1574 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1575 printf " && (gdbarch->${function} == ${predefault}))\n"
1576 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1581 buf = ui_file_xstrdup (log, &dummy);
1582 make_cleanup (xfree, buf);
1583 if (strlen (buf) > 0)
1584 internal_error (__FILE__, __LINE__,
1585 "verify_gdbarch: the following are invalid ...%s",
1587 do_cleanups (cleanups);
1591 # dump the structure
1595 /* Print out the details of the current architecture. */
1597 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1598 just happens to match the global variable \`\`current_gdbarch''. That
1599 way macros refering to that variable get the local and not the global
1600 version - ulgh. Once everything is parameterised with gdbarch, this
1604 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1606 fprintf_unfiltered (file,
1607 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1610 function_list | sort -t: -k 3 | while do_read
1612 # First the predicate
1613 if class_is_predicate_p
1615 if class_is_multiarch_p
1617 printf " if (GDB_MULTI_ARCH)\n"
1618 printf " fprintf_unfiltered (file,\n"
1619 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1620 printf " gdbarch_${function}_p (current_gdbarch));\n"
1622 printf "#ifdef ${macro}_P\n"
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1625 printf " \"${macro}_P()\",\n"
1626 printf " XSTRING (${macro}_P ()));\n"
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1629 printf " ${macro}_P ());\n"
1633 # multiarch functions don't have macros.
1634 if class_is_multiarch_p
1636 printf " if (GDB_MULTI_ARCH)\n"
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1639 printf " (long) current_gdbarch->${function});\n"
1642 # Print the macro definition.
1643 printf "#ifdef ${macro}\n"
1644 if [ "x${returntype}" = "xvoid" ]
1646 printf "#if GDB_MULTI_ARCH\n"
1647 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1649 if class_is_function_p
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1653 printf " \"${macro}(${actual})\",\n"
1654 printf " XSTRING (${macro} (${actual})));\n"
1656 printf " fprintf_unfiltered (file,\n"
1657 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1658 printf " XSTRING (${macro}));\n"
1660 # Print the architecture vector value
1661 if [ "x${returntype}" = "xvoid" ]
1665 if [ "x${print_p}" = "x()" ]
1667 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1668 elif [ "x${print_p}" = "x0" ]
1670 printf " /* skip print of ${macro}, print_p == 0. */\n"
1671 elif [ -n "${print_p}" ]
1673 printf " if (${print_p})\n"
1674 printf " fprintf_unfiltered (file,\n"
1675 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1676 printf " ${print});\n"
1677 elif class_is_function_p
1679 printf " if (GDB_MULTI_ARCH)\n"
1680 printf " fprintf_unfiltered (file,\n"
1681 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1682 printf " (long) current_gdbarch->${function}\n"
1683 printf " /*${macro} ()*/);\n"
1685 printf " fprintf_unfiltered (file,\n"
1686 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1687 printf " ${print});\n"
1692 if (current_gdbarch->dump_tdep != NULL)
1693 current_gdbarch->dump_tdep (current_gdbarch, file);
1701 struct gdbarch_tdep *
1702 gdbarch_tdep (struct gdbarch *gdbarch)
1704 if (gdbarch_debug >= 2)
1705 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1706 return gdbarch->tdep;
1710 function_list | while do_read
1712 if class_is_predicate_p
1716 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1718 printf " gdb_assert (gdbarch != NULL);\n"
1719 if [ -n "${predicate}" ]
1721 printf " return ${predicate};\n"
1723 printf " return gdbarch->${function} != 0;\n"
1727 if class_is_function_p
1730 printf "${returntype}\n"
1731 if [ "x${formal}" = "xvoid" ]
1733 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1735 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1738 printf " gdb_assert (gdbarch != NULL);\n"
1739 printf " if (gdbarch->${function} == 0)\n"
1740 printf " internal_error (__FILE__, __LINE__,\n"
1741 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1742 if class_is_predicate_p && test -n "${predicate}"
1744 # Allow a call to a function with a predicate.
1745 printf " /* Ignore predicate (${predicate}). */\n"
1747 printf " if (gdbarch_debug >= 2)\n"
1748 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1749 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1751 if class_is_multiarch_p
1758 if class_is_multiarch_p
1760 params="gdbarch, ${actual}"
1765 if [ "x${returntype}" = "xvoid" ]
1767 printf " gdbarch->${function} (${params});\n"
1769 printf " return gdbarch->${function} (${params});\n"
1774 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1775 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1777 printf " gdbarch->${function} = ${function};\n"
1779 elif class_is_variable_p
1782 printf "${returntype}\n"
1783 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1785 printf " gdb_assert (gdbarch != NULL);\n"
1786 if [ "x${invalid_p}" = "x0" ]
1788 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1789 elif [ -n "${invalid_p}" ]
1791 printf " if (${invalid_p})\n"
1792 printf " internal_error (__FILE__, __LINE__,\n"
1793 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1794 elif [ -n "${predefault}" ]
1796 printf " if (gdbarch->${function} == ${predefault})\n"
1797 printf " internal_error (__FILE__, __LINE__,\n"
1798 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1800 printf " if (gdbarch_debug >= 2)\n"
1801 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1802 printf " return gdbarch->${function};\n"
1806 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1807 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1809 printf " gdbarch->${function} = ${function};\n"
1811 elif class_is_info_p
1814 printf "${returntype}\n"
1815 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1817 printf " gdb_assert (gdbarch != NULL);\n"
1818 printf " if (gdbarch_debug >= 2)\n"
1819 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1820 printf " return gdbarch->${function};\n"
1825 # All the trailing guff
1829 /* Keep a registry of per-architecture data-pointers required by GDB
1836 gdbarch_data_init_ftype *init;
1837 gdbarch_data_free_ftype *free;
1840 struct gdbarch_data_registration
1842 struct gdbarch_data *data;
1843 struct gdbarch_data_registration *next;
1846 struct gdbarch_data_registry
1849 struct gdbarch_data_registration *registrations;
1852 struct gdbarch_data_registry gdbarch_data_registry =
1857 struct gdbarch_data *
1858 register_gdbarch_data (gdbarch_data_init_ftype *init,
1859 gdbarch_data_free_ftype *free)
1861 struct gdbarch_data_registration **curr;
1862 /* Append the new registraration. */
1863 for (curr = &gdbarch_data_registry.registrations;
1865 curr = &(*curr)->next);
1866 (*curr) = XMALLOC (struct gdbarch_data_registration);
1867 (*curr)->next = NULL;
1868 (*curr)->data = XMALLOC (struct gdbarch_data);
1869 (*curr)->data->index = gdbarch_data_registry.nr++;
1870 (*curr)->data->init = init;
1871 (*curr)->data->init_p = 1;
1872 (*curr)->data->free = free;
1873 return (*curr)->data;
1877 /* Create/delete the gdbarch data vector. */
1880 alloc_gdbarch_data (struct gdbarch *gdbarch)
1882 gdb_assert (gdbarch->data == NULL);
1883 gdbarch->nr_data = gdbarch_data_registry.nr;
1884 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1888 free_gdbarch_data (struct gdbarch *gdbarch)
1890 struct gdbarch_data_registration *rego;
1891 gdb_assert (gdbarch->data != NULL);
1892 for (rego = gdbarch_data_registry.registrations;
1896 struct gdbarch_data *data = rego->data;
1897 gdb_assert (data->index < gdbarch->nr_data);
1898 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1900 data->free (gdbarch, gdbarch->data[data->index]);
1901 gdbarch->data[data->index] = NULL;
1904 xfree (gdbarch->data);
1905 gdbarch->data = NULL;
1909 /* Initialize the current value of the specified per-architecture
1913 set_gdbarch_data (struct gdbarch *gdbarch,
1914 struct gdbarch_data *data,
1917 gdb_assert (data->index < gdbarch->nr_data);
1918 if (gdbarch->data[data->index] != NULL)
1920 gdb_assert (data->free != NULL);
1921 data->free (gdbarch, gdbarch->data[data->index]);
1923 gdbarch->data[data->index] = pointer;
1926 /* Return the current value of the specified per-architecture
1930 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1932 gdb_assert (data->index < gdbarch->nr_data);
1933 /* The data-pointer isn't initialized, call init() to get a value but
1934 only if the architecture initializaiton has completed. Otherwise
1935 punt - hope that the caller knows what they are doing. */
1936 if (gdbarch->data[data->index] == NULL
1937 && gdbarch->initialized_p)
1939 /* Be careful to detect an initialization cycle. */
1940 gdb_assert (data->init_p);
1942 gdb_assert (data->init != NULL);
1943 gdbarch->data[data->index] = data->init (gdbarch);
1945 gdb_assert (gdbarch->data[data->index] != NULL);
1947 return gdbarch->data[data->index];
1952 /* Keep a registry of swapped data required by GDB modules. */
1957 struct gdbarch_swap_registration *source;
1958 struct gdbarch_swap *next;
1961 struct gdbarch_swap_registration
1964 unsigned long sizeof_data;
1965 gdbarch_swap_ftype *init;
1966 struct gdbarch_swap_registration *next;
1969 struct gdbarch_swap_registry
1972 struct gdbarch_swap_registration *registrations;
1975 struct gdbarch_swap_registry gdbarch_swap_registry =
1981 register_gdbarch_swap (void *data,
1982 unsigned long sizeof_data,
1983 gdbarch_swap_ftype *init)
1985 struct gdbarch_swap_registration **rego;
1986 for (rego = &gdbarch_swap_registry.registrations;
1988 rego = &(*rego)->next);
1989 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1990 (*rego)->next = NULL;
1991 (*rego)->init = init;
1992 (*rego)->data = data;
1993 (*rego)->sizeof_data = sizeof_data;
1997 clear_gdbarch_swap (struct gdbarch *gdbarch)
1999 struct gdbarch_swap *curr;
2000 for (curr = gdbarch->swap;
2004 memset (curr->source->data, 0, curr->source->sizeof_data);
2009 init_gdbarch_swap (struct gdbarch *gdbarch)
2011 struct gdbarch_swap_registration *rego;
2012 struct gdbarch_swap **curr = &gdbarch->swap;
2013 for (rego = gdbarch_swap_registry.registrations;
2017 if (rego->data != NULL)
2019 (*curr) = XMALLOC (struct gdbarch_swap);
2020 (*curr)->source = rego;
2021 (*curr)->swap = xmalloc (rego->sizeof_data);
2022 (*curr)->next = NULL;
2023 curr = &(*curr)->next;
2025 if (rego->init != NULL)
2031 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2033 struct gdbarch_swap *curr;
2034 for (curr = gdbarch->swap;
2037 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2041 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2043 struct gdbarch_swap *curr;
2044 for (curr = gdbarch->swap;
2047 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2051 /* Keep a registry of the architectures known by GDB. */
2053 struct gdbarch_registration
2055 enum bfd_architecture bfd_architecture;
2056 gdbarch_init_ftype *init;
2057 gdbarch_dump_tdep_ftype *dump_tdep;
2058 struct gdbarch_list *arches;
2059 struct gdbarch_registration *next;
2062 static struct gdbarch_registration *gdbarch_registry = NULL;
2065 append_name (const char ***buf, int *nr, const char *name)
2067 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2073 gdbarch_printable_names (void)
2077 /* Accumulate a list of names based on the registed list of
2079 enum bfd_architecture a;
2081 const char **arches = NULL;
2082 struct gdbarch_registration *rego;
2083 for (rego = gdbarch_registry;
2087 const struct bfd_arch_info *ap;
2088 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2090 internal_error (__FILE__, __LINE__,
2091 "gdbarch_architecture_names: multi-arch unknown");
2094 append_name (&arches, &nr_arches, ap->printable_name);
2099 append_name (&arches, &nr_arches, NULL);
2103 /* Just return all the architectures that BFD knows. Assume that
2104 the legacy architecture framework supports them. */
2105 return bfd_arch_list ();
2110 gdbarch_register (enum bfd_architecture bfd_architecture,
2111 gdbarch_init_ftype *init,
2112 gdbarch_dump_tdep_ftype *dump_tdep)
2114 struct gdbarch_registration **curr;
2115 const struct bfd_arch_info *bfd_arch_info;
2116 /* Check that BFD recognizes this architecture */
2117 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2118 if (bfd_arch_info == NULL)
2120 internal_error (__FILE__, __LINE__,
2121 "gdbarch: Attempt to register unknown architecture (%d)",
2124 /* Check that we haven't seen this architecture before */
2125 for (curr = &gdbarch_registry;
2127 curr = &(*curr)->next)
2129 if (bfd_architecture == (*curr)->bfd_architecture)
2130 internal_error (__FILE__, __LINE__,
2131 "gdbarch: Duplicate registraration of architecture (%s)",
2132 bfd_arch_info->printable_name);
2136 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2137 bfd_arch_info->printable_name,
2140 (*curr) = XMALLOC (struct gdbarch_registration);
2141 (*curr)->bfd_architecture = bfd_architecture;
2142 (*curr)->init = init;
2143 (*curr)->dump_tdep = dump_tdep;
2144 (*curr)->arches = NULL;
2145 (*curr)->next = NULL;
2146 /* When non- multi-arch, install whatever target dump routine we've
2147 been provided - hopefully that routine has been written correctly
2148 and works regardless of multi-arch. */
2149 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2150 && startup_gdbarch.dump_tdep == NULL)
2151 startup_gdbarch.dump_tdep = dump_tdep;
2155 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2156 gdbarch_init_ftype *init)
2158 gdbarch_register (bfd_architecture, init, NULL);
2162 /* Look for an architecture using gdbarch_info. Base search on only
2163 BFD_ARCH_INFO and BYTE_ORDER. */
2165 struct gdbarch_list *
2166 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2167 const struct gdbarch_info *info)
2169 for (; arches != NULL; arches = arches->next)
2171 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2173 if (info->byte_order != arches->gdbarch->byte_order)
2175 if (info->osabi != arches->gdbarch->osabi)
2183 /* Update the current architecture. Return ZERO if the update request
2187 gdbarch_update_p (struct gdbarch_info info)
2189 struct gdbarch *new_gdbarch;
2190 struct gdbarch *old_gdbarch;
2191 struct gdbarch_registration *rego;
2193 /* Fill in missing parts of the INFO struct using a number of
2194 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2196 /* \`\`(gdb) set architecture ...'' */
2197 if (info.bfd_arch_info == NULL
2198 && !TARGET_ARCHITECTURE_AUTO)
2199 info.bfd_arch_info = TARGET_ARCHITECTURE;
2200 if (info.bfd_arch_info == NULL
2201 && info.abfd != NULL
2202 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2203 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2204 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2205 if (info.bfd_arch_info == NULL)
2206 info.bfd_arch_info = TARGET_ARCHITECTURE;
2208 /* \`\`(gdb) set byte-order ...'' */
2209 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2210 && !TARGET_BYTE_ORDER_AUTO)
2211 info.byte_order = TARGET_BYTE_ORDER;
2212 /* From the INFO struct. */
2213 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2214 && info.abfd != NULL)
2215 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2216 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2217 : BFD_ENDIAN_UNKNOWN);
2218 /* From the current target. */
2219 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2220 info.byte_order = TARGET_BYTE_ORDER;
2222 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2223 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2224 info.osabi = gdbarch_lookup_osabi (info.abfd);
2225 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2226 info.osabi = current_gdbarch->osabi;
2228 /* Must have found some sort of architecture. */
2229 gdb_assert (info.bfd_arch_info != NULL);
2233 fprintf_unfiltered (gdb_stdlog,
2234 "gdbarch_update: info.bfd_arch_info %s\n",
2235 (info.bfd_arch_info != NULL
2236 ? info.bfd_arch_info->printable_name
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: info.byte_order %d (%s)\n",
2241 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2242 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2244 fprintf_unfiltered (gdb_stdlog,
2245 "gdbarch_update: info.osabi %d (%s)\n",
2246 info.osabi, gdbarch_osabi_name (info.osabi));
2247 fprintf_unfiltered (gdb_stdlog,
2248 "gdbarch_update: info.abfd 0x%lx\n",
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_update: info.tdep_info 0x%lx\n",
2252 (long) info.tdep_info);
2255 /* Find the target that knows about this architecture. */
2256 for (rego = gdbarch_registry;
2259 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2264 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2268 /* Swap the data belonging to the old target out setting the
2269 installed data to zero. This stops the ->init() function trying
2270 to refer to the previous architecture's global data structures. */
2271 swapout_gdbarch_swap (current_gdbarch);
2272 clear_gdbarch_swap (current_gdbarch);
2274 /* Save the previously selected architecture, setting the global to
2275 NULL. This stops ->init() trying to use the previous
2276 architecture's configuration. The previous architecture may not
2277 even be of the same architecture family. The most recent
2278 architecture of the same family is found at the head of the
2279 rego->arches list. */
2280 old_gdbarch = current_gdbarch;
2281 current_gdbarch = NULL;
2283 /* Ask the target for a replacement architecture. */
2284 new_gdbarch = rego->init (info, rego->arches);
2286 /* Did the target like it? No. Reject the change and revert to the
2287 old architecture. */
2288 if (new_gdbarch == NULL)
2291 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2292 swapin_gdbarch_swap (old_gdbarch);
2293 current_gdbarch = old_gdbarch;
2297 /* Did the architecture change? No. Oops, put the old architecture
2299 if (old_gdbarch == new_gdbarch)
2302 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2304 new_gdbarch->bfd_arch_info->printable_name);
2305 swapin_gdbarch_swap (old_gdbarch);
2306 current_gdbarch = old_gdbarch;
2310 /* Is this a pre-existing architecture? Yes. Move it to the front
2311 of the list of architectures (keeping the list sorted Most
2312 Recently Used) and then copy it in. */
2314 struct gdbarch_list **list;
2315 for (list = ®o->arches;
2317 list = &(*list)->next)
2319 if ((*list)->gdbarch == new_gdbarch)
2321 struct gdbarch_list *this;
2323 fprintf_unfiltered (gdb_stdlog,
2324 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2326 new_gdbarch->bfd_arch_info->printable_name);
2329 (*list) = this->next;
2330 /* Insert in the front. */
2331 this->next = rego->arches;
2332 rego->arches = this;
2333 /* Copy the new architecture in. */
2334 current_gdbarch = new_gdbarch;
2335 swapin_gdbarch_swap (new_gdbarch);
2336 architecture_changed_event ();
2342 /* Prepend this new architecture to the architecture list (keep the
2343 list sorted Most Recently Used). */
2345 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2346 this->next = rego->arches;
2347 this->gdbarch = new_gdbarch;
2348 rego->arches = this;
2351 /* Switch to this new architecture marking it initialized. */
2352 current_gdbarch = new_gdbarch;
2353 current_gdbarch->initialized_p = 1;
2356 fprintf_unfiltered (gdb_stdlog,
2357 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2359 new_gdbarch->bfd_arch_info->printable_name);
2362 /* Check that the newly installed architecture is valid. Plug in
2363 any post init values. */
2364 new_gdbarch->dump_tdep = rego->dump_tdep;
2365 verify_gdbarch (new_gdbarch);
2367 /* Initialize the per-architecture memory (swap) areas.
2368 CURRENT_GDBARCH must be update before these modules are
2370 init_gdbarch_swap (new_gdbarch);
2372 /* Initialize the per-architecture data. CURRENT_GDBARCH
2373 must be updated before these modules are called. */
2374 architecture_changed_event ();
2377 gdbarch_dump (current_gdbarch, gdb_stdlog);
2385 /* Pointer to the target-dependent disassembly function. */
2386 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2387 disassemble_info tm_print_insn_info;
2390 extern void _initialize_gdbarch (void);
2393 _initialize_gdbarch (void)
2395 struct cmd_list_element *c;
2397 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2398 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2399 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2400 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2401 tm_print_insn_info.print_address_func = dis_asm_print_address;
2403 add_show_from_set (add_set_cmd ("arch",
2406 (char *)&gdbarch_debug,
2407 "Set architecture debugging.\\n\\
2408 When non-zero, architecture debugging is enabled.", &setdebuglist),
2410 c = add_set_cmd ("archdebug",
2413 (char *)&gdbarch_debug,
2414 "Set architecture debugging.\\n\\
2415 When non-zero, architecture debugging is enabled.", &setlist);
2417 deprecate_cmd (c, "set debug arch");
2418 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2424 #../move-if-change new-gdbarch.c gdbarch.c
2425 compare_new gdbarch.c