1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
39 #include "dictionary.h"
40 #include "cp-support.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
48 extern int overload_debug;
49 /* Local functions. */
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
54 static struct value *search_struct_field (char *, struct value *, int,
57 static struct value *search_struct_method (char *, struct value **,
59 int, int *, struct type *);
61 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
62 const char *func_name,
63 const char *qualified_name,
64 struct symbol ***oload_syms,
65 struct badness_vector **oload_champ_bv);
68 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
69 const char *func_name,
70 const char *qualified_name,
72 struct symbol ***oload_syms,
73 struct badness_vector **oload_champ_bv,
76 static int find_oload_champ (struct type **arg_types, int nargs, int method,
78 struct fn_field *fns_ptr,
79 struct symbol **oload_syms,
80 struct badness_vector **oload_champ_bv);
82 static int oload_method_static (int method, struct fn_field *fns_ptr,
85 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
88 oload_classification classify_oload_match (struct badness_vector
93 static int check_field_in (struct type *, const char *);
95 static struct value *value_struct_elt_for_reference (struct type *domain,
102 static struct value *value_namespace_elt (const struct type *curtype,
106 static struct value *value_maybe_namespace_elt (const struct type *curtype,
110 static CORE_ADDR allocate_space_in_inferior (int);
112 static struct value *cast_into_complex (struct type *, struct value *);
114 static struct fn_field *find_method_list (struct value ** argp, char *method,
116 struct type *type, int *num_fns,
117 struct type **basetype,
120 void _initialize_valops (void);
122 /* Flag for whether we want to abandon failed expression evals by default. */
125 static int auto_abandon = 0;
128 int overload_resolution = 0;
130 show_overload_resolution (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
133 fprintf_filtered (file, _("\
134 Overload resolution in evaluating C++ functions is %s.\n"),
138 /* Find the address of function name NAME in the inferior. */
141 find_function_in_inferior (const char *name)
144 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
147 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
149 error (_("\"%s\" exists in this program but is not a function."),
152 return value_of_variable (sym, NULL);
156 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
161 type = lookup_pointer_type (builtin_type_char);
162 type = lookup_function_type (type);
163 type = lookup_pointer_type (type);
164 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
165 return value_from_pointer (type, maddr);
169 if (!target_has_execution)
170 error (_("evaluation of this expression requires the target program to be active"));
172 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
177 /* Allocate NBYTES of space in the inferior using the inferior's malloc
178 and return a value that is a pointer to the allocated space. */
181 value_allocate_space_in_inferior (int len)
183 struct value *blocklen;
184 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
186 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
187 val = call_function_by_hand (val, 1, &blocklen);
188 if (value_logical_not (val))
190 if (!target_has_execution)
191 error (_("No memory available to program now: you need to start the target first"));
193 error (_("No memory available to program: call to malloc failed"));
199 allocate_space_in_inferior (int len)
201 return value_as_long (value_allocate_space_in_inferior (len));
204 /* Cast value ARG2 to type TYPE and return as a value.
205 More general than a C cast: accepts any two types of the same length,
206 and if ARG2 is an lvalue it can be cast into anything at all. */
207 /* In C++, casts may change pointer or object representations. */
210 value_cast (struct type *type, struct value *arg2)
212 enum type_code code1;
213 enum type_code code2;
217 int convert_to_boolean = 0;
219 if (value_type (arg2) == type)
222 CHECK_TYPEDEF (type);
223 code1 = TYPE_CODE (type);
224 arg2 = coerce_ref (arg2);
225 type2 = check_typedef (value_type (arg2));
227 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
228 is treated like a cast to (TYPE [N])OBJECT,
229 where N is sizeof(OBJECT)/sizeof(TYPE). */
230 if (code1 == TYPE_CODE_ARRAY)
232 struct type *element_type = TYPE_TARGET_TYPE (type);
233 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
234 if (element_length > 0
235 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
237 struct type *range_type = TYPE_INDEX_TYPE (type);
238 int val_length = TYPE_LENGTH (type2);
239 LONGEST low_bound, high_bound, new_length;
240 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
241 low_bound = 0, high_bound = 0;
242 new_length = val_length / element_length;
243 if (val_length % element_length != 0)
244 warning (_("array element type size does not divide object size in cast"));
245 /* FIXME-type-allocation: need a way to free this type when we are
247 range_type = create_range_type ((struct type *) NULL,
248 TYPE_TARGET_TYPE (range_type),
250 new_length + low_bound - 1);
251 deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL,
252 element_type, range_type));
257 if (current_language->c_style_arrays
258 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
259 arg2 = value_coerce_array (arg2);
261 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
262 arg2 = value_coerce_function (arg2);
264 type2 = check_typedef (value_type (arg2));
265 code2 = TYPE_CODE (type2);
267 if (code1 == TYPE_CODE_COMPLEX)
268 return cast_into_complex (type, arg2);
269 if (code1 == TYPE_CODE_BOOL)
271 code1 = TYPE_CODE_INT;
272 convert_to_boolean = 1;
274 if (code1 == TYPE_CODE_CHAR)
275 code1 = TYPE_CODE_INT;
276 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
277 code2 = TYPE_CODE_INT;
279 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
280 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
282 if (code1 == TYPE_CODE_STRUCT
283 && code2 == TYPE_CODE_STRUCT
284 && TYPE_NAME (type) != 0)
286 /* Look in the type of the source to see if it contains the
287 type of the target as a superclass. If so, we'll need to
288 offset the object in addition to changing its type. */
289 struct value *v = search_struct_field (type_name_no_tag (type),
293 deprecated_set_value_type (v, type);
297 if (code1 == TYPE_CODE_FLT && scalar)
298 return value_from_double (type, value_as_double (arg2));
299 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
300 || code1 == TYPE_CODE_RANGE)
301 && (scalar || code2 == TYPE_CODE_PTR))
305 if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
306 && (code2 == TYPE_CODE_PTR))
309 struct value *retvalp;
311 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
313 /* With HP aCC, pointers to data members have a bias */
314 case TYPE_CODE_MEMBER:
315 retvalp = value_from_longest (type, value_as_long (arg2));
316 /* force evaluation */
317 ptr = (unsigned int *) value_contents (retvalp);
318 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
321 /* While pointers to methods don't really point to a function */
322 case TYPE_CODE_METHOD:
323 error (_("Pointers to methods not supported with HP aCC"));
326 break; /* fall out and go to normal handling */
330 /* When we cast pointers to integers, we mustn't use
331 POINTER_TO_ADDRESS to find the address the pointer
332 represents, as value_as_long would. GDB should evaluate
333 expressions just as the compiler would --- and the compiler
334 sees a cast as a simple reinterpretation of the pointer's
336 if (code2 == TYPE_CODE_PTR)
337 longest = extract_unsigned_integer (value_contents (arg2),
338 TYPE_LENGTH (type2));
340 longest = value_as_long (arg2);
341 return value_from_longest (type, convert_to_boolean ?
342 (LONGEST) (longest ? 1 : 0) : longest);
344 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
345 code2 == TYPE_CODE_ENUM ||
346 code2 == TYPE_CODE_RANGE))
348 /* TYPE_LENGTH (type) is the length of a pointer, but we really
349 want the length of an address! -- we are really dealing with
350 addresses (i.e., gdb representations) not pointers (i.e.,
351 target representations) here.
353 This allows things like "print *(int *)0x01000234" to work
354 without printing a misleading message -- which would
355 otherwise occur when dealing with a target having two byte
356 pointers and four byte addresses. */
358 int addr_bit = TARGET_ADDR_BIT;
360 LONGEST longest = value_as_long (arg2);
361 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
363 if (longest >= ((LONGEST) 1 << addr_bit)
364 || longest <= -((LONGEST) 1 << addr_bit))
365 warning (_("value truncated"));
367 return value_from_longest (type, longest);
369 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
371 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
373 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
374 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
375 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
376 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
377 && !value_logical_not (arg2))
381 /* Look in the type of the source to see if it contains the
382 type of the target as a superclass. If so, we'll need to
383 offset the pointer rather than just change its type. */
384 if (TYPE_NAME (t1) != NULL)
386 v = search_struct_field (type_name_no_tag (t1),
387 value_ind (arg2), 0, t2, 1);
391 deprecated_set_value_type (v, type);
396 /* Look in the type of the target to see if it contains the
397 type of the source as a superclass. If so, we'll need to
398 offset the pointer rather than just change its type.
399 FIXME: This fails silently with virtual inheritance. */
400 if (TYPE_NAME (t2) != NULL)
402 v = search_struct_field (type_name_no_tag (t2),
403 value_zero (t1, not_lval), 0, t1, 1);
406 CORE_ADDR addr2 = value_as_address (arg2);
407 addr2 -= (VALUE_ADDRESS (v)
409 + value_embedded_offset (v));
410 return value_from_pointer (type, addr2);
414 /* No superclass found, just fall through to change ptr type. */
416 deprecated_set_value_type (arg2, type);
417 arg2 = value_change_enclosing_type (arg2, type);
418 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
421 else if (VALUE_LVAL (arg2) == lval_memory)
422 return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2));
423 else if (code1 == TYPE_CODE_VOID)
425 return value_zero (builtin_type_void, not_lval);
429 error (_("Invalid cast."));
434 /* Create a value of type TYPE that is zero, and return it. */
437 value_zero (struct type *type, enum lval_type lv)
439 struct value *val = allocate_value (type);
440 VALUE_LVAL (val) = lv;
445 /* Return a value with type TYPE located at ADDR.
447 Call value_at only if the data needs to be fetched immediately;
448 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
449 value_at_lazy instead. value_at_lazy simply records the address of
450 the data and sets the lazy-evaluation-required flag. The lazy flag
451 is tested in the value_contents macro, which is used if and when
452 the contents are actually required.
454 Note: value_at does *NOT* handle embedded offsets; perform such
455 adjustments before or after calling it. */
458 value_at (struct type *type, CORE_ADDR addr)
462 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
463 error (_("Attempt to dereference a generic pointer."));
465 val = allocate_value (type);
467 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
469 VALUE_LVAL (val) = lval_memory;
470 VALUE_ADDRESS (val) = addr;
475 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478 value_at_lazy (struct type *type, CORE_ADDR addr)
482 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
483 error (_("Attempt to dereference a generic pointer."));
485 val = allocate_value (type);
487 VALUE_LVAL (val) = lval_memory;
488 VALUE_ADDRESS (val) = addr;
489 set_value_lazy (val, 1);
494 /* Called only from the value_contents and value_contents_all()
495 macros, if the current data for a variable needs to be loaded into
496 value_contents(VAL). Fetches the data from the user's process, and
497 clears the lazy flag to indicate that the data in the buffer is
500 If the value is zero-length, we avoid calling read_memory, which would
501 abort. We mark the value as fetched anyway -- all 0 bytes of it.
503 This function returns a value because it is used in the value_contents
504 macro as part of an expression, where a void would not work. The
508 value_fetch_lazy (struct value *val)
510 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
511 int length = TYPE_LENGTH (value_enclosing_type (val));
513 struct type *type = value_type (val);
515 read_memory (addr, value_contents_all_raw (val), length);
517 set_value_lazy (val, 0);
522 /* Store the contents of FROMVAL into the location of TOVAL.
523 Return a new value with the location of TOVAL and contents of FROMVAL. */
526 value_assign (struct value *toval, struct value *fromval)
530 struct frame_id old_frame;
532 if (!deprecated_value_modifiable (toval))
533 error (_("Left operand of assignment is not a modifiable lvalue."));
535 toval = coerce_ref (toval);
537 type = value_type (toval);
538 if (VALUE_LVAL (toval) != lval_internalvar)
539 fromval = value_cast (type, fromval);
541 fromval = coerce_array (fromval);
542 CHECK_TYPEDEF (type);
544 /* Since modifying a register can trash the frame chain, and modifying memory
545 can trash the frame cache, we save the old frame and then restore the new
547 old_frame = get_frame_id (deprecated_selected_frame);
549 switch (VALUE_LVAL (toval))
551 case lval_internalvar:
552 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
553 val = value_copy (VALUE_INTERNALVAR (toval)->value);
554 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
555 set_value_embedded_offset (val, value_embedded_offset (fromval));
556 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
559 case lval_internalvar_component:
560 set_internalvar_component (VALUE_INTERNALVAR (toval),
561 value_offset (toval),
562 value_bitpos (toval),
563 value_bitsize (toval),
569 const bfd_byte *dest_buffer;
570 CORE_ADDR changed_addr;
572 char buffer[sizeof (LONGEST)];
574 if (value_bitsize (toval))
576 /* We assume that the argument to read_memory is in units of
577 host chars. FIXME: Is that correct? */
578 changed_len = (value_bitpos (toval)
579 + value_bitsize (toval)
583 if (changed_len > (int) sizeof (LONGEST))
584 error (_("Can't handle bitfields which don't fit in a %d bit word."),
585 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
587 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
588 buffer, changed_len);
589 modify_field (buffer, value_as_long (fromval),
590 value_bitpos (toval), value_bitsize (toval));
591 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
592 dest_buffer = buffer;
596 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
597 changed_len = TYPE_LENGTH (type);
598 dest_buffer = value_contents (fromval);
601 write_memory (changed_addr, dest_buffer, changed_len);
602 if (deprecated_memory_changed_hook)
603 deprecated_memory_changed_hook (changed_addr, changed_len);
609 struct frame_info *frame;
612 /* Figure out which frame this is in currently. */
613 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
614 value_reg = VALUE_REGNUM (toval);
617 error (_("Value being assigned to is no longer active."));
619 if (VALUE_LVAL (toval) == lval_register
620 && CONVERT_REGISTER_P (VALUE_REGNUM (toval), type))
622 /* If TOVAL is a special machine register requiring
623 conversion of program values to a special raw format. */
624 VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval),
625 type, value_contents (fromval));
629 /* TOVAL is stored in a series of registers in the frame
630 specified by the structure. Copy that value out,
631 modify it, and copy it back in. */
639 /* Locate the first register that falls in the value that
640 needs to be transfered. Compute the offset of the
641 value in that register. */
644 for (reg_offset = value_reg, offset = 0;
645 offset + register_size (current_gdbarch, reg_offset) <= value_offset (toval);
647 byte_offset = value_offset (toval) - offset;
650 /* Compute the number of register aligned values that need
652 if (value_bitsize (toval))
653 amount_to_copy = byte_offset + 1;
655 amount_to_copy = byte_offset + TYPE_LENGTH (type);
657 /* And a bounce buffer. Be slightly over generous. */
658 buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE);
661 for (regno = reg_offset, amount_copied = 0;
662 amount_copied < amount_to_copy;
663 amount_copied += register_size (current_gdbarch, regno), regno++)
664 frame_register_read (frame, regno, buffer + amount_copied);
666 /* Modify what needs to be modified. */
667 if (value_bitsize (toval))
668 modify_field (buffer + byte_offset,
669 value_as_long (fromval),
670 value_bitpos (toval), value_bitsize (toval));
672 memcpy (buffer + byte_offset, value_contents (fromval),
676 for (regno = reg_offset, amount_copied = 0;
677 amount_copied < amount_to_copy;
678 amount_copied += register_size (current_gdbarch, regno), regno++)
679 put_frame_register (frame, regno, buffer + amount_copied);
682 if (deprecated_register_changed_hook)
683 deprecated_register_changed_hook (-1);
684 observer_notify_target_changed (¤t_target);
689 error (_("Left operand of assignment is not an lvalue."));
692 /* Assigning to the stack pointer, frame pointer, and other
693 (architecture and calling convention specific) registers may
694 cause the frame cache to be out of date. Assigning to memory
695 also can. We just do this on all assignments to registers or
696 memory, for simplicity's sake; I doubt the slowdown matters. */
697 switch (VALUE_LVAL (toval))
702 reinit_frame_cache ();
704 /* Having destoroyed the frame cache, restore the selected frame. */
706 /* FIXME: cagney/2002-11-02: There has to be a better way of
707 doing this. Instead of constantly saving/restoring the
708 frame. Why not create a get_selected_frame() function that,
709 having saved the selected frame's ID can automatically
710 re-find the previously selected frame automatically. */
713 struct frame_info *fi = frame_find_by_id (old_frame);
723 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
724 If the field is signed, and is negative, then sign extend. */
725 if ((value_bitsize (toval) > 0)
726 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
728 LONGEST fieldval = value_as_long (fromval);
729 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
732 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
733 fieldval |= ~valmask;
735 fromval = value_from_longest (type, fieldval);
738 val = value_copy (toval);
739 memcpy (value_contents_raw (val), value_contents (fromval),
741 deprecated_set_value_type (val, type);
742 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
743 set_value_embedded_offset (val, value_embedded_offset (fromval));
744 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
749 /* Extend a value VAL to COUNT repetitions of its type. */
752 value_repeat (struct value *arg1, int count)
756 if (VALUE_LVAL (arg1) != lval_memory)
757 error (_("Only values in memory can be extended with '@'."));
759 error (_("Invalid number %d of repetitions."), count);
761 val = allocate_repeat_value (value_enclosing_type (arg1), count);
763 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
764 value_contents_all_raw (val),
765 TYPE_LENGTH (value_enclosing_type (val)));
766 VALUE_LVAL (val) = lval_memory;
767 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
773 value_of_variable (struct symbol *var, struct block *b)
776 struct frame_info *frame = NULL;
779 frame = NULL; /* Use selected frame. */
780 else if (symbol_read_needs_frame (var))
782 frame = block_innermost_frame (b);
785 if (BLOCK_FUNCTION (b)
786 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
787 error (_("No frame is currently executing in block %s."),
788 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
790 error (_("No frame is currently executing in specified block"));
794 val = read_var_value (var, frame);
796 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
801 /* Given a value which is an array, return a value which is a pointer to its
802 first element, regardless of whether or not the array has a nonzero lower
805 FIXME: A previous comment here indicated that this routine should be
806 substracting the array's lower bound. It's not clear to me that this
807 is correct. Given an array subscripting operation, it would certainly
808 work to do the adjustment here, essentially computing:
810 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
812 However I believe a more appropriate and logical place to account for
813 the lower bound is to do so in value_subscript, essentially computing:
815 (&array[0] + ((index - lowerbound) * sizeof array[0]))
817 As further evidence consider what would happen with operations other
818 than array subscripting, where the caller would get back a value that
819 had an address somewhere before the actual first element of the array,
820 and the information about the lower bound would be lost because of
821 the coercion to pointer type.
825 value_coerce_array (struct value *arg1)
827 struct type *type = check_typedef (value_type (arg1));
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error (_("Attempt to take address of value not located in memory."));
832 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
833 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
836 /* Given a value which is a function, return a value which is a pointer
840 value_coerce_function (struct value *arg1)
842 struct value *retval;
844 if (VALUE_LVAL (arg1) != lval_memory)
845 error (_("Attempt to take address of value not located in memory."));
847 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
848 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
852 /* Return a pointer value for the object for which ARG1 is the contents. */
855 value_addr (struct value *arg1)
859 struct type *type = check_typedef (value_type (arg1));
860 if (TYPE_CODE (type) == TYPE_CODE_REF)
862 /* Copy the value, but change the type from (T&) to (T*).
863 We keep the same location information, which is efficient,
864 and allows &(&X) to get the location containing the reference. */
865 arg2 = value_copy (arg1);
866 deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type)));
869 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
870 return value_coerce_function (arg1);
872 if (VALUE_LVAL (arg1) != lval_memory)
873 error (_("Attempt to take address of value not located in memory."));
875 /* Get target memory address */
876 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
877 (VALUE_ADDRESS (arg1)
878 + value_offset (arg1)
879 + value_embedded_offset (arg1)));
881 /* This may be a pointer to a base subobject; so remember the
882 full derived object's type ... */
883 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
884 /* ... and also the relative position of the subobject in the full object */
885 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
889 /* Given a value of a pointer type, apply the C unary * operator to it. */
892 value_ind (struct value *arg1)
894 struct type *base_type;
897 arg1 = coerce_array (arg1);
899 base_type = check_typedef (value_type (arg1));
901 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
902 error (_("not implemented: member types in value_ind"));
904 /* Allow * on an integer so we can cast it to whatever we want.
905 This returns an int, which seems like the most C-like thing
906 to do. "long long" variables are rare enough that
907 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
908 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
909 return value_at_lazy (builtin_type_int,
910 (CORE_ADDR) value_as_long (arg1));
911 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
913 struct type *enc_type;
914 /* We may be pointing to something embedded in a larger object */
915 /* Get the real type of the enclosing object */
916 enc_type = check_typedef (value_enclosing_type (arg1));
917 enc_type = TYPE_TARGET_TYPE (enc_type);
918 /* Retrieve the enclosing object pointed to */
919 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
920 - value_pointed_to_offset (arg1)));
922 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
923 /* Add embedding info */
924 arg2 = value_change_enclosing_type (arg2, enc_type);
925 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
927 /* We may be pointing to an object of some derived type */
928 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
932 error (_("Attempt to take contents of a non-pointer value."));
933 return 0; /* For lint -- never reached */
936 /* Pushing small parts of stack frames. */
938 /* Push one word (the size of object that a register holds). */
941 push_word (CORE_ADDR sp, ULONGEST word)
943 int len = DEPRECATED_REGISTER_SIZE;
944 char buffer[MAX_REGISTER_SIZE];
946 store_unsigned_integer (buffer, len, word);
947 if (INNER_THAN (1, 2))
949 /* stack grows downward */
951 write_memory (sp, buffer, len);
955 /* stack grows upward */
956 write_memory (sp, buffer, len);
963 /* Push LEN bytes with data at BUFFER. */
966 push_bytes (CORE_ADDR sp, char *buffer, int len)
968 if (INNER_THAN (1, 2))
970 /* stack grows downward */
972 write_memory (sp, buffer, len);
976 /* stack grows upward */
977 write_memory (sp, buffer, len);
984 /* Create a value for an array by allocating space in the inferior, copying
985 the data into that space, and then setting up an array value.
987 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
988 populated from the values passed in ELEMVEC.
990 The element type of the array is inherited from the type of the
991 first element, and all elements must have the same size (though we
992 don't currently enforce any restriction on their types). */
995 value_array (int lowbound, int highbound, struct value **elemvec)
999 unsigned int typelength;
1001 struct type *rangetype;
1002 struct type *arraytype;
1005 /* Validate that the bounds are reasonable and that each of the elements
1006 have the same size. */
1008 nelem = highbound - lowbound + 1;
1011 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1013 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1014 for (idx = 1; idx < nelem; idx++)
1016 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1018 error (_("array elements must all be the same size"));
1022 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1023 lowbound, highbound);
1024 arraytype = create_array_type ((struct type *) NULL,
1025 value_enclosing_type (elemvec[0]), rangetype);
1027 if (!current_language->c_style_arrays)
1029 val = allocate_value (arraytype);
1030 for (idx = 0; idx < nelem; idx++)
1032 memcpy (value_contents_all_raw (val) + (idx * typelength),
1033 value_contents_all (elemvec[idx]),
1039 /* Allocate space to store the array in the inferior, and then initialize
1040 it by copying in each element. FIXME: Is it worth it to create a
1041 local buffer in which to collect each value and then write all the
1042 bytes in one operation? */
1044 addr = allocate_space_in_inferior (nelem * typelength);
1045 for (idx = 0; idx < nelem; idx++)
1047 write_memory (addr + (idx * typelength),
1048 value_contents_all (elemvec[idx]),
1052 /* Create the array type and set up an array value to be evaluated lazily. */
1054 val = value_at_lazy (arraytype, addr);
1058 /* Create a value for a string constant by allocating space in the inferior,
1059 copying the data into that space, and returning the address with type
1060 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1062 Note that string types are like array of char types with a lower bound of
1063 zero and an upper bound of LEN - 1. Also note that the string may contain
1064 embedded null bytes. */
1067 value_string (char *ptr, int len)
1070 int lowbound = current_language->string_lower_bound;
1071 struct type *rangetype = create_range_type ((struct type *) NULL,
1073 lowbound, len + lowbound - 1);
1074 struct type *stringtype
1075 = create_string_type ((struct type *) NULL, rangetype);
1078 if (current_language->c_style_arrays == 0)
1080 val = allocate_value (stringtype);
1081 memcpy (value_contents_raw (val), ptr, len);
1086 /* Allocate space to store the string in the inferior, and then
1087 copy LEN bytes from PTR in gdb to that address in the inferior. */
1089 addr = allocate_space_in_inferior (len);
1090 write_memory (addr, ptr, len);
1092 val = value_at_lazy (stringtype, addr);
1097 value_bitstring (char *ptr, int len)
1100 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1102 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1103 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1104 val = allocate_value (type);
1105 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1109 /* See if we can pass arguments in T2 to a function which takes arguments
1110 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1111 vector. If some arguments need coercion of some sort, then the coerced
1112 values are written into T2. Return value is 0 if the arguments could be
1113 matched, or the position at which they differ if not.
1115 STATICP is nonzero if the T1 argument list came from a
1116 static member function. T2 will still include the ``this'' pointer,
1117 but it will be skipped.
1119 For non-static member functions, we ignore the first argument,
1120 which is the type of the instance variable. This is because we want
1121 to handle calls with objects from derived classes. This is not
1122 entirely correct: we should actually check to make sure that a
1123 requested operation is type secure, shouldn't we? FIXME. */
1126 typecmp (int staticp, int varargs, int nargs,
1127 struct field t1[], struct value *t2[])
1132 internal_error (__FILE__, __LINE__, _("typecmp: no argument list"));
1134 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1139 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1142 struct type *tt1, *tt2;
1147 tt1 = check_typedef (t1[i].type);
1148 tt2 = check_typedef (value_type (t2[i]));
1150 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1151 /* We should be doing hairy argument matching, as below. */
1152 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1154 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1155 t2[i] = value_coerce_array (t2[i]);
1157 t2[i] = value_addr (t2[i]);
1161 /* djb - 20000715 - Until the new type structure is in the
1162 place, and we can attempt things like implicit conversions,
1163 we need to do this so you can take something like a map<const
1164 char *>, and properly access map["hello"], because the
1165 argument to [] will be a reference to a pointer to a char,
1166 and the argument will be a pointer to a char. */
1167 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1168 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1170 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1172 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1173 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1174 TYPE_CODE(tt2) == TYPE_CODE_REF)
1176 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1178 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1180 /* Array to pointer is a `trivial conversion' according to the ARM. */
1182 /* We should be doing much hairier argument matching (see section 13.2
1183 of the ARM), but as a quick kludge, just check for the same type
1185 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1188 if (varargs || t2[i] == NULL)
1193 /* Helper function used by value_struct_elt to recurse through baseclasses.
1194 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1195 and search in it assuming it has (class) type TYPE.
1196 If found, return value, else return NULL.
1198 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1199 look for a baseclass named NAME. */
1201 static struct value *
1202 search_struct_field (char *name, struct value *arg1, int offset,
1203 struct type *type, int looking_for_baseclass)
1206 int nbases = TYPE_N_BASECLASSES (type);
1208 CHECK_TYPEDEF (type);
1210 if (!looking_for_baseclass)
1211 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1213 char *t_field_name = TYPE_FIELD_NAME (type, i);
1215 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1218 if (TYPE_FIELD_STATIC (type, i))
1220 v = value_static_field (type, i);
1222 error (_("field %s is nonexistent or has been optimised out"),
1227 v = value_primitive_field (arg1, offset, i, type);
1229 error (_("there is no field named %s"), name);
1235 && (t_field_name[0] == '\0'
1236 || (TYPE_CODE (type) == TYPE_CODE_UNION
1237 && (strcmp_iw (t_field_name, "else") == 0))))
1239 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1240 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1241 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1243 /* Look for a match through the fields of an anonymous union,
1244 or anonymous struct. C++ provides anonymous unions.
1246 In the GNU Chill (now deleted from GDB)
1247 implementation of variant record types, each
1248 <alternative field> has an (anonymous) union type,
1249 each member of the union represents a <variant
1250 alternative>. Each <variant alternative> is
1251 represented as a struct, with a member for each
1255 int new_offset = offset;
1257 /* This is pretty gross. In G++, the offset in an
1258 anonymous union is relative to the beginning of the
1259 enclosing struct. In the GNU Chill (now deleted
1260 from GDB) implementation of variant records, the
1261 bitpos is zero in an anonymous union field, so we
1262 have to add the offset of the union here. */
1263 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1264 || (TYPE_NFIELDS (field_type) > 0
1265 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1266 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1268 v = search_struct_field (name, arg1, new_offset, field_type,
1269 looking_for_baseclass);
1276 for (i = 0; i < nbases; i++)
1279 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1280 /* If we are looking for baseclasses, this is what we get when we
1281 hit them. But it could happen that the base part's member name
1282 is not yet filled in. */
1283 int found_baseclass = (looking_for_baseclass
1284 && TYPE_BASECLASS_NAME (type, i) != NULL
1285 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1287 if (BASETYPE_VIA_VIRTUAL (type, i))
1290 struct value *v2 = allocate_value (basetype);
1292 boffset = baseclass_offset (type, i,
1293 value_contents (arg1) + offset,
1294 VALUE_ADDRESS (arg1)
1295 + value_offset (arg1) + offset);
1297 error (_("virtual baseclass botch"));
1299 /* The virtual base class pointer might have been clobbered by the
1300 user program. Make sure that it still points to a valid memory
1304 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1306 CORE_ADDR base_addr;
1308 base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1309 if (target_read_memory (base_addr, value_contents_raw (v2),
1310 TYPE_LENGTH (basetype)) != 0)
1311 error (_("virtual baseclass botch"));
1312 VALUE_LVAL (v2) = lval_memory;
1313 VALUE_ADDRESS (v2) = base_addr;
1317 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1318 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1319 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1320 set_value_offset (v2, value_offset (arg1) + boffset);
1321 if (value_lazy (arg1))
1322 set_value_lazy (v2, 1);
1324 memcpy (value_contents_raw (v2),
1325 value_contents_raw (arg1) + boffset,
1326 TYPE_LENGTH (basetype));
1329 if (found_baseclass)
1331 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1332 looking_for_baseclass);
1334 else if (found_baseclass)
1335 v = value_primitive_field (arg1, offset, i, type);
1337 v = search_struct_field (name, arg1,
1338 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1339 basetype, looking_for_baseclass);
1347 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1348 * in an object pointed to by VALADDR (on the host), assumed to be of
1349 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1350 * looking (in case VALADDR is the contents of an enclosing object).
1352 * This routine recurses on the primary base of the derived class because
1353 * the virtual base entries of the primary base appear before the other
1354 * virtual base entries.
1356 * If the virtual base is not found, a negative integer is returned.
1357 * The magnitude of the negative integer is the number of entries in
1358 * the virtual table to skip over (entries corresponding to various
1359 * ancestral classes in the chain of primary bases).
1361 * Important: This assumes the HP / Taligent C++ runtime
1362 * conventions. Use baseclass_offset() instead to deal with g++
1366 find_rt_vbase_offset (struct type *type, struct type *basetype,
1367 const bfd_byte *valaddr, int offset, int *boffset_p,
1370 int boffset; /* offset of virtual base */
1371 int index; /* displacement to use in virtual table */
1375 CORE_ADDR vtbl; /* the virtual table pointer */
1376 struct type *pbc; /* the primary base class */
1378 /* Look for the virtual base recursively in the primary base, first.
1379 * This is because the derived class object and its primary base
1380 * subobject share the primary virtual table. */
1383 pbc = TYPE_PRIMARY_BASE (type);
1386 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1389 *boffset_p = boffset;
1398 /* Find the index of the virtual base according to HP/Taligent
1399 runtime spec. (Depth-first, left-to-right.) */
1400 index = virtual_base_index_skip_primaries (basetype, type);
1404 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1409 /* pai: FIXME -- 32x64 possible problem */
1410 /* First word (4 bytes) in object layout is the vtable pointer */
1411 vtbl = *(CORE_ADDR *) (valaddr + offset);
1413 /* Before the constructor is invoked, things are usually zero'd out. */
1415 error (_("Couldn't find virtual table -- object may not be constructed yet."));
1418 /* Find virtual base's offset -- jump over entries for primary base
1419 * ancestors, then use the index computed above. But also adjust by
1420 * HP_ACC_VBASE_START for the vtable slots before the start of the
1421 * virtual base entries. Offset is negative -- virtual base entries
1422 * appear _before_ the address point of the virtual table. */
1424 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1427 /* epstein : FIXME -- added param for overlay section. May not be correct */
1428 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1429 boffset = value_as_long (vp);
1431 *boffset_p = boffset;
1436 /* Helper function used by value_struct_elt to recurse through baseclasses.
1437 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1438 and search in it assuming it has (class) type TYPE.
1439 If found, return value, else if name matched and args not return (value)-1,
1440 else return NULL. */
1442 static struct value *
1443 search_struct_method (char *name, struct value **arg1p,
1444 struct value **args, int offset,
1445 int *static_memfuncp, struct type *type)
1449 int name_matched = 0;
1450 char dem_opname[64];
1452 CHECK_TYPEDEF (type);
1453 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1455 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1456 /* FIXME! May need to check for ARM demangling here */
1457 if (strncmp (t_field_name, "__", 2) == 0 ||
1458 strncmp (t_field_name, "op", 2) == 0 ||
1459 strncmp (t_field_name, "type", 4) == 0)
1461 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1462 t_field_name = dem_opname;
1463 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1464 t_field_name = dem_opname;
1466 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1468 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1469 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1472 check_stub_method_group (type, i);
1473 if (j > 0 && args == 0)
1474 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1475 else if (j == 0 && args == 0)
1477 v = value_fn_field (arg1p, f, j, type, offset);
1484 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1485 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1486 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1487 TYPE_FN_FIELD_ARGS (f, j), args))
1489 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1490 return value_virtual_fn_field (arg1p, f, j, type, offset);
1491 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1492 *static_memfuncp = 1;
1493 v = value_fn_field (arg1p, f, j, type, offset);
1502 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1506 if (BASETYPE_VIA_VIRTUAL (type, i))
1508 if (TYPE_HAS_VTABLE (type))
1510 /* HP aCC compiled type, search for virtual base offset
1511 according to HP/Taligent runtime spec. */
1513 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1514 value_contents_all (*arg1p),
1515 offset + value_embedded_offset (*arg1p),
1516 &base_offset, &skip);
1518 error (_("Virtual base class offset not found in vtable"));
1522 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1523 const bfd_byte *base_valaddr;
1525 /* The virtual base class pointer might have been clobbered by the
1526 user program. Make sure that it still points to a valid memory
1529 if (offset < 0 || offset >= TYPE_LENGTH (type))
1531 bfd_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1532 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1533 + value_offset (*arg1p) + offset,
1534 tmp, TYPE_LENGTH (baseclass)) != 0)
1535 error (_("virtual baseclass botch"));
1539 base_valaddr = value_contents (*arg1p) + offset;
1542 baseclass_offset (type, i, base_valaddr,
1543 VALUE_ADDRESS (*arg1p)
1544 + value_offset (*arg1p) + offset);
1545 if (base_offset == -1)
1546 error (_("virtual baseclass botch"));
1551 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1553 v = search_struct_method (name, arg1p, args, base_offset + offset,
1554 static_memfuncp, TYPE_BASECLASS (type, i));
1555 if (v == (struct value *) - 1)
1561 /* FIXME-bothner: Why is this commented out? Why is it here? */
1562 /* *arg1p = arg1_tmp; */
1567 return (struct value *) - 1;
1572 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1573 extract the component named NAME from the ultimate target structure/union
1574 and return it as a value with its appropriate type.
1575 ERR is used in the error message if *ARGP's type is wrong.
1577 C++: ARGS is a list of argument types to aid in the selection of
1578 an appropriate method. Also, handle derived types.
1580 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1581 where the truthvalue of whether the function that was resolved was
1582 a static member function or not is stored.
1584 ERR is an error message to be printed in case the field is not found. */
1587 value_struct_elt (struct value **argp, struct value **args,
1588 char *name, int *static_memfuncp, char *err)
1593 *argp = coerce_array (*argp);
1595 t = check_typedef (value_type (*argp));
1597 /* Follow pointers until we get to a non-pointer. */
1599 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1601 *argp = value_ind (*argp);
1602 /* Don't coerce fn pointer to fn and then back again! */
1603 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1604 *argp = coerce_array (*argp);
1605 t = check_typedef (value_type (*argp));
1608 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1609 error (_("not implemented: member type in value_struct_elt"));
1611 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1612 && TYPE_CODE (t) != TYPE_CODE_UNION)
1613 error (_("Attempt to extract a component of a value that is not a %s."), err);
1615 /* Assume it's not, unless we see that it is. */
1616 if (static_memfuncp)
1617 *static_memfuncp = 0;
1621 /* if there are no arguments ...do this... */
1623 /* Try as a field first, because if we succeed, there
1624 is less work to be done. */
1625 v = search_struct_field (name, *argp, 0, t, 0);
1629 /* C++: If it was not found as a data field, then try to
1630 return it as a pointer to a method. */
1632 if (destructor_name_p (name, t))
1633 error (_("Cannot get value of destructor"));
1635 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1637 if (v == (struct value *) - 1)
1638 error (_("Cannot take address of a method"));
1641 if (TYPE_NFN_FIELDS (t))
1642 error (_("There is no member or method named %s."), name);
1644 error (_("There is no member named %s."), name);
1649 if (destructor_name_p (name, t))
1653 /* Destructors are a special case. */
1654 int m_index, f_index;
1657 if (get_destructor_fn_field (t, &m_index, &f_index))
1659 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1663 error (_("could not find destructor function named %s."), name);
1669 error (_("destructor should not have any argument"));
1673 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1675 if (v == (struct value *) - 1)
1677 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1681 /* See if user tried to invoke data as function. If so,
1682 hand it back. If it's not callable (i.e., a pointer to function),
1683 gdb should give an error. */
1684 v = search_struct_field (name, *argp, 0, t, 0);
1688 error (_("Structure has no component named %s."), name);
1692 /* Search through the methods of an object (and its bases)
1693 * to find a specified method. Return the pointer to the
1694 * fn_field list of overloaded instances.
1695 * Helper function for value_find_oload_list.
1696 * ARGP is a pointer to a pointer to a value (the object)
1697 * METHOD is a string containing the method name
1698 * OFFSET is the offset within the value
1699 * TYPE is the assumed type of the object
1700 * NUM_FNS is the number of overloaded instances
1701 * BASETYPE is set to the actual type of the subobject where the method is found
1702 * BOFFSET is the offset of the base subobject where the method is found */
1704 static struct fn_field *
1705 find_method_list (struct value **argp, char *method, int offset,
1706 struct type *type, int *num_fns,
1707 struct type **basetype, int *boffset)
1711 CHECK_TYPEDEF (type);
1715 /* First check in object itself */
1716 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1718 /* pai: FIXME What about operators and type conversions? */
1719 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1720 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1722 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1723 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1729 /* Resolve any stub methods. */
1730 check_stub_method_group (type, i);
1736 /* Not found in object, check in base subobjects */
1737 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1740 if (BASETYPE_VIA_VIRTUAL (type, i))
1742 if (TYPE_HAS_VTABLE (type))
1744 /* HP aCC compiled type, search for virtual base offset
1745 * according to HP/Taligent runtime spec. */
1747 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1748 value_contents_all (*argp),
1749 offset + value_embedded_offset (*argp),
1750 &base_offset, &skip);
1752 error (_("Virtual base class offset not found in vtable"));
1756 /* probably g++ runtime model */
1757 base_offset = value_offset (*argp) + offset;
1759 baseclass_offset (type, i,
1760 value_contents (*argp) + base_offset,
1761 VALUE_ADDRESS (*argp) + base_offset);
1762 if (base_offset == -1)
1763 error (_("virtual baseclass botch"));
1767 /* non-virtual base, simply use bit position from debug info */
1769 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1771 f = find_method_list (argp, method, base_offset + offset,
1772 TYPE_BASECLASS (type, i), num_fns, basetype,
1780 /* Return the list of overloaded methods of a specified name.
1781 * ARGP is a pointer to a pointer to a value (the object)
1782 * METHOD is the method name
1783 * OFFSET is the offset within the value contents
1784 * NUM_FNS is the number of overloaded instances
1785 * BASETYPE is set to the type of the base subobject that defines the method
1786 * BOFFSET is the offset of the base subobject which defines the method */
1789 value_find_oload_method_list (struct value **argp, char *method, int offset,
1790 int *num_fns, struct type **basetype,
1795 t = check_typedef (value_type (*argp));
1797 /* code snarfed from value_struct_elt */
1798 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1800 *argp = value_ind (*argp);
1801 /* Don't coerce fn pointer to fn and then back again! */
1802 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1803 *argp = coerce_array (*argp);
1804 t = check_typedef (value_type (*argp));
1807 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1808 error (_("Not implemented: member type in value_find_oload_lis"));
1810 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1811 && TYPE_CODE (t) != TYPE_CODE_UNION)
1812 error (_("Attempt to extract a component of a value that is not a struct or union"));
1814 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1817 /* Given an array of argument types (ARGTYPES) (which includes an
1818 entry for "this" in the case of C++ methods), the number of
1819 arguments NARGS, the NAME of a function whether it's a method or
1820 not (METHOD), and the degree of laxness (LAX) in conforming to
1821 overload resolution rules in ANSI C++, find the best function that
1822 matches on the argument types according to the overload resolution
1825 In the case of class methods, the parameter OBJ is an object value
1826 in which to search for overloaded methods.
1828 In the case of non-method functions, the parameter FSYM is a symbol
1829 corresponding to one of the overloaded functions.
1831 Return value is an integer: 0 -> good match, 10 -> debugger applied
1832 non-standard coercions, 100 -> incompatible.
1834 If a method is being searched for, VALP will hold the value.
1835 If a non-method is being searched for, SYMP will hold the symbol for it.
1837 If a method is being searched for, and it is a static method,
1838 then STATICP will point to a non-zero value.
1840 Note: This function does *not* check the value of
1841 overload_resolution. Caller must check it to see whether overload
1842 resolution is permitted.
1846 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1847 int lax, struct value **objp, struct symbol *fsym,
1848 struct value **valp, struct symbol **symp, int *staticp)
1850 struct value *obj = (objp ? *objp : NULL);
1852 int oload_champ; /* Index of best overloaded function */
1854 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1856 struct value *temp = obj;
1857 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1858 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1859 int num_fns = 0; /* Number of overloaded instances being considered */
1860 struct type *basetype = NULL;
1864 struct cleanup *old_cleanups = NULL;
1866 const char *obj_type_name = NULL;
1867 char *func_name = NULL;
1868 enum oload_classification match_quality;
1870 /* Get the list of overloaded methods or functions */
1873 obj_type_name = TYPE_NAME (value_type (obj));
1874 /* Hack: evaluate_subexp_standard often passes in a pointer
1875 value rather than the object itself, so try again */
1876 if ((!obj_type_name || !*obj_type_name) &&
1877 (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1878 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1880 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1882 &basetype, &boffset);
1883 if (!fns_ptr || !num_fns)
1884 error (_("Couldn't find method %s%s%s"),
1886 (obj_type_name && *obj_type_name) ? "::" : "",
1888 /* If we are dealing with stub method types, they should have
1889 been resolved by find_method_list via value_find_oload_method_list
1891 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1892 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1893 fns_ptr, oload_syms, &oload_champ_bv);
1897 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1898 func_name = cp_func_name (qualified_name);
1900 /* If the name is NULL this must be a C-style function.
1901 Just return the same symbol. */
1902 if (func_name == NULL)
1908 old_cleanups = make_cleanup (xfree, func_name);
1909 make_cleanup (xfree, oload_syms);
1910 make_cleanup (xfree, oload_champ_bv);
1912 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1919 /* Check how bad the best match is. */
1922 = classify_oload_match (oload_champ_bv, nargs,
1923 oload_method_static (method, fns_ptr,
1926 if (match_quality == INCOMPATIBLE)
1929 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1931 (obj_type_name && *obj_type_name) ? "::" : "",
1934 error (_("Cannot resolve function %s to any overloaded instance"),
1937 else if (match_quality == NON_STANDARD)
1940 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1942 (obj_type_name && *obj_type_name) ? "::" : "",
1945 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1951 if (staticp != NULL)
1952 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1953 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1954 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1956 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1960 *symp = oload_syms[oload_champ];
1965 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1966 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1968 temp = value_addr (temp);
1972 if (old_cleanups != NULL)
1973 do_cleanups (old_cleanups);
1975 switch (match_quality)
1981 default: /* STANDARD */
1986 /* Find the best overload match, searching for FUNC_NAME in namespaces
1987 contained in QUALIFIED_NAME until it either finds a good match or
1988 runs out of namespaces. It stores the overloaded functions in
1989 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1990 calling function is responsible for freeing *OLOAD_SYMS and
1994 find_oload_champ_namespace (struct type **arg_types, int nargs,
1995 const char *func_name,
1996 const char *qualified_name,
1997 struct symbol ***oload_syms,
1998 struct badness_vector **oload_champ_bv)
2002 find_oload_champ_namespace_loop (arg_types, nargs,
2005 oload_syms, oload_champ_bv,
2011 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2012 how deep we've looked for namespaces, and the champ is stored in
2013 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2016 It is the caller's responsibility to free *OLOAD_SYMS and
2020 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2021 const char *func_name,
2022 const char *qualified_name,
2024 struct symbol ***oload_syms,
2025 struct badness_vector **oload_champ_bv,
2028 int next_namespace_len = namespace_len;
2029 int searched_deeper = 0;
2031 struct cleanup *old_cleanups;
2032 int new_oload_champ;
2033 struct symbol **new_oload_syms;
2034 struct badness_vector *new_oload_champ_bv;
2035 char *new_namespace;
2037 if (next_namespace_len != 0)
2039 gdb_assert (qualified_name[next_namespace_len] == ':');
2040 next_namespace_len += 2;
2043 += cp_find_first_component (qualified_name + next_namespace_len);
2045 /* Initialize these to values that can safely be xfree'd. */
2047 *oload_champ_bv = NULL;
2049 /* First, see if we have a deeper namespace we can search in. If we
2050 get a good match there, use it. */
2052 if (qualified_name[next_namespace_len] == ':')
2054 searched_deeper = 1;
2056 if (find_oload_champ_namespace_loop (arg_types, nargs,
2057 func_name, qualified_name,
2059 oload_syms, oload_champ_bv,
2066 /* If we reach here, either we're in the deepest namespace or we
2067 didn't find a good match in a deeper namespace. But, in the
2068 latter case, we still have a bad match in a deeper namespace;
2069 note that we might not find any match at all in the current
2070 namespace. (There's always a match in the deepest namespace,
2071 because this overload mechanism only gets called if there's a
2072 function symbol to start off with.) */
2074 old_cleanups = make_cleanup (xfree, *oload_syms);
2075 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2076 new_namespace = alloca (namespace_len + 1);
2077 strncpy (new_namespace, qualified_name, namespace_len);
2078 new_namespace[namespace_len] = '\0';
2079 new_oload_syms = make_symbol_overload_list (func_name,
2081 while (new_oload_syms[num_fns])
2084 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2085 NULL, new_oload_syms,
2086 &new_oload_champ_bv);
2088 /* Case 1: We found a good match. Free earlier matches (if any),
2089 and return it. Case 2: We didn't find a good match, but we're
2090 not the deepest function. Then go with the bad match that the
2091 deeper function found. Case 3: We found a bad match, and we're
2092 the deepest function. Then return what we found, even though
2093 it's a bad match. */
2095 if (new_oload_champ != -1
2096 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2098 *oload_syms = new_oload_syms;
2099 *oload_champ = new_oload_champ;
2100 *oload_champ_bv = new_oload_champ_bv;
2101 do_cleanups (old_cleanups);
2104 else if (searched_deeper)
2106 xfree (new_oload_syms);
2107 xfree (new_oload_champ_bv);
2108 discard_cleanups (old_cleanups);
2113 gdb_assert (new_oload_champ != -1);
2114 *oload_syms = new_oload_syms;
2115 *oload_champ = new_oload_champ;
2116 *oload_champ_bv = new_oload_champ_bv;
2117 discard_cleanups (old_cleanups);
2122 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2123 the best match from among the overloaded methods or functions
2124 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2125 The number of methods/functions in the list is given by NUM_FNS.
2126 Return the index of the best match; store an indication of the
2127 quality of the match in OLOAD_CHAMP_BV.
2129 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2132 find_oload_champ (struct type **arg_types, int nargs, int method,
2133 int num_fns, struct fn_field *fns_ptr,
2134 struct symbol **oload_syms,
2135 struct badness_vector **oload_champ_bv)
2138 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2139 int oload_champ = -1; /* Index of best overloaded function */
2140 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2141 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2143 *oload_champ_bv = NULL;
2145 /* Consider each candidate in turn */
2146 for (ix = 0; ix < num_fns; ix++)
2149 int static_offset = oload_method_static (method, fns_ptr, ix);
2151 struct type **parm_types;
2155 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2159 /* If it's not a method, this is the proper place */
2160 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2163 /* Prepare array of parameter types */
2164 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2165 for (jj = 0; jj < nparms; jj++)
2166 parm_types[jj] = (method
2167 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2168 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2170 /* Compare parameter types to supplied argument types. Skip THIS for
2172 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2173 nargs - static_offset);
2175 if (!*oload_champ_bv)
2177 *oload_champ_bv = bv;
2181 /* See whether current candidate is better or worse than previous best */
2182 switch (compare_badness (bv, *oload_champ_bv))
2185 oload_ambiguous = 1; /* top two contenders are equally good */
2188 oload_ambiguous = 2; /* incomparable top contenders */
2191 *oload_champ_bv = bv; /* new champion, record details */
2192 oload_ambiguous = 0;
2203 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2205 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2206 for (jj = 0; jj < nargs - static_offset; jj++)
2207 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2208 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2215 /* Return 1 if we're looking at a static method, 0 if we're looking at
2216 a non-static method or a function that isn't a method. */
2219 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2221 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2227 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2229 static enum oload_classification
2230 classify_oload_match (struct badness_vector *oload_champ_bv,
2236 for (ix = 1; ix <= nargs - static_offset; ix++)
2238 if (oload_champ_bv->rank[ix] >= 100)
2239 return INCOMPATIBLE; /* truly mismatched types */
2240 else if (oload_champ_bv->rank[ix] >= 10)
2241 return NON_STANDARD; /* non-standard type conversions needed */
2244 return STANDARD; /* Only standard conversions needed. */
2247 /* C++: return 1 is NAME is a legitimate name for the destructor
2248 of type TYPE. If TYPE does not have a destructor, or
2249 if NAME is inappropriate for TYPE, an error is signaled. */
2251 destructor_name_p (const char *name, const struct type *type)
2253 /* destructors are a special case. */
2257 char *dname = type_name_no_tag (type);
2258 char *cp = strchr (dname, '<');
2261 /* Do not compare the template part for template classes. */
2263 len = strlen (dname);
2266 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2267 error (_("name of destructor must equal name of class"));
2274 /* Helper function for check_field: Given TYPE, a structure/union,
2275 return 1 if the component named NAME from the ultimate
2276 target structure/union is defined, otherwise, return 0. */
2279 check_field_in (struct type *type, const char *name)
2283 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2285 char *t_field_name = TYPE_FIELD_NAME (type, i);
2286 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2290 /* C++: If it was not found as a data field, then try to
2291 return it as a pointer to a method. */
2293 /* Destructors are a special case. */
2294 if (destructor_name_p (name, type))
2296 int m_index, f_index;
2298 return get_destructor_fn_field (type, &m_index, &f_index);
2301 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2303 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2307 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2308 if (check_field_in (TYPE_BASECLASS (type, i), name))
2315 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2316 return 1 if the component named NAME from the ultimate
2317 target structure/union is defined, otherwise, return 0. */
2320 check_field (struct value *arg1, const char *name)
2324 arg1 = coerce_array (arg1);
2326 t = value_type (arg1);
2328 /* Follow pointers until we get to a non-pointer. */
2333 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2335 t = TYPE_TARGET_TYPE (t);
2338 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2339 error (_("not implemented: member type in check_field"));
2341 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2342 && TYPE_CODE (t) != TYPE_CODE_UNION)
2343 error (_("Internal error: `this' is not an aggregate"));
2345 return check_field_in (t, name);
2348 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2349 return the appropriate member. This function is used to resolve
2350 user expressions of the form "DOMAIN::NAME". For more details on
2351 what happens, see the comment before
2352 value_struct_elt_for_reference. */
2355 value_aggregate_elt (struct type *curtype,
2359 switch (TYPE_CODE (curtype))
2361 case TYPE_CODE_STRUCT:
2362 case TYPE_CODE_UNION:
2363 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2365 case TYPE_CODE_NAMESPACE:
2366 return value_namespace_elt (curtype, name, noside);
2368 internal_error (__FILE__, __LINE__,
2369 _("non-aggregate type in value_aggregate_elt"));
2373 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2374 return the address of this member as a "pointer to member"
2375 type. If INTYPE is non-null, then it will be the type
2376 of the member we are looking for. This will help us resolve
2377 "pointers to member functions". This function is used
2378 to resolve user expressions of the form "DOMAIN::NAME". */
2380 static struct value *
2381 value_struct_elt_for_reference (struct type *domain, int offset,
2382 struct type *curtype, char *name,
2383 struct type *intype,
2386 struct type *t = curtype;
2390 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2391 && TYPE_CODE (t) != TYPE_CODE_UNION)
2392 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2394 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2396 char *t_field_name = TYPE_FIELD_NAME (t, i);
2398 if (t_field_name && strcmp (t_field_name, name) == 0)
2400 if (TYPE_FIELD_STATIC (t, i))
2402 v = value_static_field (t, i);
2404 error (_("static field %s has been optimized out"),
2408 if (TYPE_FIELD_PACKED (t, i))
2409 error (_("pointers to bitfield members not allowed"));
2411 return value_from_longest
2412 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2414 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2418 /* C++: If it was not found as a data field, then try to
2419 return it as a pointer to a method. */
2421 /* Destructors are a special case. */
2422 if (destructor_name_p (name, t))
2424 error (_("member pointers to destructors not implemented yet"));
2427 /* Perform all necessary dereferencing. */
2428 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2429 intype = TYPE_TARGET_TYPE (intype);
2431 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2433 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2434 char dem_opname[64];
2436 if (strncmp (t_field_name, "__", 2) == 0 ||
2437 strncmp (t_field_name, "op", 2) == 0 ||
2438 strncmp (t_field_name, "type", 4) == 0)
2440 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2441 t_field_name = dem_opname;
2442 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2443 t_field_name = dem_opname;
2445 if (t_field_name && strcmp (t_field_name, name) == 0)
2447 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2448 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2450 check_stub_method_group (t, i);
2452 if (intype == 0 && j > 1)
2453 error (_("non-unique member `%s' requires type instantiation"), name);
2457 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2460 error (_("no member function matches that type instantiation"));
2465 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2467 return value_from_longest
2468 (lookup_reference_type
2469 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2471 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2475 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2476 0, VAR_DOMAIN, 0, NULL);
2483 v = read_var_value (s, 0);
2485 VALUE_TYPE (v) = lookup_reference_type
2486 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2494 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2499 if (BASETYPE_VIA_VIRTUAL (t, i))
2502 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2503 v = value_struct_elt_for_reference (domain,
2504 offset + base_offset,
2505 TYPE_BASECLASS (t, i),
2513 /* As a last chance, pretend that CURTYPE is a namespace, and look
2514 it up that way; this (frequently) works for types nested inside
2517 return value_maybe_namespace_elt (curtype, name, noside);
2520 /* C++: Return the member NAME of the namespace given by the type
2523 static struct value *
2524 value_namespace_elt (const struct type *curtype,
2528 struct value *retval = value_maybe_namespace_elt (curtype, name,
2532 error (_("No symbol \"%s\" in namespace \"%s\"."), name,
2533 TYPE_TAG_NAME (curtype));
2538 /* A helper function used by value_namespace_elt and
2539 value_struct_elt_for_reference. It looks up NAME inside the
2540 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2541 is a class and NAME refers to a type in CURTYPE itself (as opposed
2542 to, say, some base class of CURTYPE). */
2544 static struct value *
2545 value_maybe_namespace_elt (const struct type *curtype,
2549 const char *namespace_name = TYPE_TAG_NAME (curtype);
2552 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2553 get_selected_block (0), VAR_DOMAIN,
2558 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2559 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2560 return allocate_value (SYMBOL_TYPE (sym));
2562 return value_of_variable (sym, get_selected_block (0));
2565 /* Given a pointer value V, find the real (RTTI) type
2566 of the object it points to.
2567 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2568 and refer to the values computed for the object pointed to. */
2571 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2573 struct value *target;
2575 target = value_ind (v);
2577 return value_rtti_type (target, full, top, using_enc);
2580 /* Given a value pointed to by ARGP, check its real run-time type, and
2581 if that is different from the enclosing type, create a new value
2582 using the real run-time type as the enclosing type (and of the same
2583 type as ARGP) and return it, with the embedded offset adjusted to
2584 be the correct offset to the enclosed object
2585 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2586 parameters, computed by value_rtti_type(). If these are available,
2587 they can be supplied and a second call to value_rtti_type() is avoided.
2588 (Pass RTYPE == NULL if they're not available */
2591 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2594 struct type *real_type;
2598 struct value *new_val;
2605 using_enc = xusing_enc;
2608 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2610 /* If no RTTI data, or if object is already complete, do nothing */
2611 if (!real_type || real_type == value_enclosing_type (argp))
2614 /* If we have the full object, but for some reason the enclosing
2615 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2618 argp = value_change_enclosing_type (argp, real_type);
2622 /* Check if object is in memory */
2623 if (VALUE_LVAL (argp) != lval_memory)
2625 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type));
2630 /* All other cases -- retrieve the complete object */
2631 /* Go back by the computed top_offset from the beginning of the object,
2632 adjusting for the embedded offset of argp if that's what value_rtti_type
2633 used for its computation. */
2634 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2635 (using_enc ? 0 : value_embedded_offset (argp)));
2636 deprecated_set_value_type (new_val, value_type (argp));
2637 set_value_embedded_offset (new_val, (using_enc
2638 ? top + value_embedded_offset (argp)
2646 /* Return the value of the local variable, if one exists.
2647 Flag COMPLAIN signals an error if the request is made in an
2648 inappropriate context. */
2651 value_of_local (const char *name, int complain)
2653 struct symbol *func, *sym;
2657 if (deprecated_selected_frame == 0)
2660 error (_("no frame selected"));
2665 func = get_frame_function (deprecated_selected_frame);
2669 error (_("no `%s' in nameless context"), name);
2674 b = SYMBOL_BLOCK_VALUE (func);
2675 if (dict_empty (BLOCK_DICT (b)))
2678 error (_("no args, no `%s'"), name);
2683 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2684 symbol instead of the LOC_ARG one (if both exist). */
2685 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2689 error (_("current stack frame does not contain a variable named `%s'"), name);
2694 ret = read_var_value (sym, deprecated_selected_frame);
2695 if (ret == 0 && complain)
2696 error (_("`%s' argument unreadable"), name);
2700 /* C++/Objective-C: return the value of the class instance variable,
2701 if one exists. Flag COMPLAIN signals an error if the request is
2702 made in an inappropriate context. */
2705 value_of_this (int complain)
2707 if (current_language->la_language == language_objc)
2708 return value_of_local ("self", complain);
2710 return value_of_local ("this", complain);
2713 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2714 long, starting at LOWBOUND. The result has the same lower bound as
2715 the original ARRAY. */
2718 value_slice (struct value *array, int lowbound, int length)
2720 struct type *slice_range_type, *slice_type, *range_type;
2721 LONGEST lowerbound, upperbound;
2722 struct value *slice;
2723 struct type *array_type;
2724 array_type = check_typedef (value_type (array));
2725 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2726 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2727 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2728 error (_("cannot take slice of non-array"));
2729 range_type = TYPE_INDEX_TYPE (array_type);
2730 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2731 error (_("slice from bad array or bitstring"));
2732 if (lowbound < lowerbound || length < 0
2733 || lowbound + length - 1 > upperbound)
2734 error (_("slice out of range"));
2735 /* FIXME-type-allocation: need a way to free this type when we are
2737 slice_range_type = create_range_type ((struct type *) NULL,
2738 TYPE_TARGET_TYPE (range_type),
2739 lowbound, lowbound + length - 1);
2740 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2743 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2744 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2745 slice = value_zero (slice_type, not_lval);
2746 for (i = 0; i < length; i++)
2748 int element = value_bit_index (array_type,
2749 value_contents (array),
2752 error (_("internal error accessing bitstring"));
2753 else if (element > 0)
2755 int j = i % TARGET_CHAR_BIT;
2756 if (BITS_BIG_ENDIAN)
2757 j = TARGET_CHAR_BIT - 1 - j;
2758 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2761 /* We should set the address, bitssize, and bitspos, so the clice
2762 can be used on the LHS, but that may require extensions to
2763 value_assign. For now, just leave as a non_lval. FIXME. */
2767 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2769 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2770 slice_type = create_array_type ((struct type *) NULL, element_type,
2772 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2773 slice = allocate_value (slice_type);
2774 if (value_lazy (array))
2775 set_value_lazy (slice, 1);
2777 memcpy (value_contents_writeable (slice),
2778 value_contents (array) + offset,
2779 TYPE_LENGTH (slice_type));
2780 if (VALUE_LVAL (array) == lval_internalvar)
2781 VALUE_LVAL (slice) = lval_internalvar_component;
2783 VALUE_LVAL (slice) = VALUE_LVAL (array);
2784 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2785 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2786 set_value_offset (slice, value_offset (array) + offset);
2791 /* Create a value for a FORTRAN complex number. Currently most of
2792 the time values are coerced to COMPLEX*16 (i.e. a complex number
2793 composed of 2 doubles. This really should be a smarter routine
2794 that figures out precision inteligently as opposed to assuming
2795 doubles. FIXME: fmb */
2798 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2801 struct type *real_type = TYPE_TARGET_TYPE (type);
2803 val = allocate_value (type);
2804 arg1 = value_cast (real_type, arg1);
2805 arg2 = value_cast (real_type, arg2);
2807 memcpy (value_contents_raw (val),
2808 value_contents (arg1), TYPE_LENGTH (real_type));
2809 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2810 value_contents (arg2), TYPE_LENGTH (real_type));
2814 /* Cast a value into the appropriate complex data type. */
2816 static struct value *
2817 cast_into_complex (struct type *type, struct value *val)
2819 struct type *real_type = TYPE_TARGET_TYPE (type);
2820 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2822 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2823 struct value *re_val = allocate_value (val_real_type);
2824 struct value *im_val = allocate_value (val_real_type);
2826 memcpy (value_contents_raw (re_val),
2827 value_contents (val), TYPE_LENGTH (val_real_type));
2828 memcpy (value_contents_raw (im_val),
2829 value_contents (val) + TYPE_LENGTH (val_real_type),
2830 TYPE_LENGTH (val_real_type));
2832 return value_literal_complex (re_val, im_val, type);
2834 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2835 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2836 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2838 error (_("cannot cast non-number to complex"));
2842 _initialize_valops (void)
2844 add_setshow_boolean_cmd ("overload-resolution", class_support,
2845 &overload_resolution, _("\
2846 Set overload resolution in evaluating C++ functions."), _("\
2847 Show overload resolution in evaluating C++ functions."), NULL,
2849 show_overload_resolution,
2850 &setlist, &showlist);
2851 overload_resolution = 1;