1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
30 #include "safe-ctype.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
58 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
59 static int fits_in_signed_byte PARAMS ((offsetT));
60 static int fits_in_unsigned_byte PARAMS ((offsetT));
61 static int fits_in_unsigned_word PARAMS ((offsetT));
62 static int fits_in_signed_word PARAMS ((offsetT));
63 static int fits_in_unsigned_long PARAMS ((offsetT));
64 static int fits_in_signed_long PARAMS ((offsetT));
65 static int smallest_imm_type PARAMS ((offsetT));
66 static offsetT offset_in_range PARAMS ((offsetT, int));
67 static int add_prefix PARAMS ((unsigned int));
68 static void set_code_flag PARAMS ((int));
69 static void set_16bit_gcc_code_flag PARAMS ((int));
70 static void set_intel_syntax PARAMS ((int));
71 static void set_cpu_arch PARAMS ((int));
74 static bfd_reloc_code_real_type reloc
75 PARAMS ((int, int, int, bfd_reloc_code_real_type));
76 #define RELOC_ENUM enum bfd_reloc_code_real
78 #define RELOC_ENUM int
82 #define DEFAULT_ARCH "i386"
84 static const char *default_arch = DEFAULT_ARCH;
86 /* 'md_assemble ()' gathers together information and puts it into a
93 const reg_entry *regs;
98 /* TM holds the template for the insn were currently assembling. */
101 /* SUFFIX holds the instruction mnemonic suffix if given.
102 (e.g. 'l' for 'movl') */
105 /* OPERANDS gives the number of given operands. */
106 unsigned int operands;
108 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
109 of given register, displacement, memory operands and immediate
111 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
113 /* TYPES [i] is the type (see above #defines) which tells us how to
114 use OP[i] for the corresponding operand. */
115 unsigned int types[MAX_OPERANDS];
117 /* Displacement expression, immediate expression, or register for each
119 union i386_op op[MAX_OPERANDS];
121 /* Flags for operands. */
122 unsigned int flags[MAX_OPERANDS];
123 #define Operand_PCrel 1
125 /* Relocation type for operand */
126 RELOC_ENUM reloc[MAX_OPERANDS];
128 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
129 the base index byte below. */
130 const reg_entry *base_reg;
131 const reg_entry *index_reg;
132 unsigned int log2_scale_factor;
134 /* SEG gives the seg_entries of this insn. They are zero unless
135 explicit segment overrides are given. */
136 const seg_entry *seg[2];
138 /* PREFIX holds all the given prefix opcodes (usually null).
139 PREFIXES is the number of prefix opcodes. */
140 unsigned int prefixes;
141 unsigned char prefix[MAX_PREFIXES];
143 /* RM and SIB are the modrm byte and the sib byte where the
144 addressing modes of this insn are encoded. */
151 typedef struct _i386_insn i386_insn;
153 /* List of chars besides those in app.c:symbol_chars that can start an
154 operand. Used to prevent the scrubber eating vital white-space. */
156 const char extra_symbol_chars[] = "*%-(@";
158 const char extra_symbol_chars[] = "*%-(";
161 /* This array holds the chars that always start a comment. If the
162 pre-processor is disabled, these aren't very useful. */
163 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
164 /* Putting '/' here makes it impossible to use the divide operator.
165 However, we need it for compatibility with SVR4 systems. */
166 const char comment_chars[] = "#/";
167 #define PREFIX_SEPARATOR '\\'
169 const char comment_chars[] = "#";
170 #define PREFIX_SEPARATOR '/'
173 /* This array holds the chars that only start a comment at the beginning of
174 a line. If the line seems to have the form '# 123 filename'
175 .line and .file directives will appear in the pre-processed output.
176 Note that input_file.c hand checks for '#' at the beginning of the
177 first line of the input file. This is because the compiler outputs
178 #NO_APP at the beginning of its output.
179 Also note that comments started like this one will always work if
180 '/' isn't otherwise defined. */
181 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
182 const char line_comment_chars[] = "";
184 const char line_comment_chars[] = "/";
187 const char line_separator_chars[] = ";";
189 /* Chars that can be used to separate mant from exp in floating point
191 const char EXP_CHARS[] = "eE";
193 /* Chars that mean this number is a floating point constant
196 const char FLT_CHARS[] = "fFdDxX";
198 /* Tables for lexical analysis. */
199 static char mnemonic_chars[256];
200 static char register_chars[256];
201 static char operand_chars[256];
202 static char identifier_chars[256];
203 static char digit_chars[256];
205 /* Lexical macros. */
206 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
207 #define is_operand_char(x) (operand_chars[(unsigned char) x])
208 #define is_register_char(x) (register_chars[(unsigned char) x])
209 #define is_space_char(x) ((x) == ' ')
210 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
211 #define is_digit_char(x) (digit_chars[(unsigned char) x])
213 /* All non-digit non-letter charcters that may occur in an operand. */
214 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
216 /* md_assemble() always leaves the strings it's passed unaltered. To
217 effect this we maintain a stack of saved characters that we've smashed
218 with '\0's (indicating end of strings for various sub-fields of the
219 assembler instruction). */
220 static char save_stack[32];
221 static char *save_stack_p;
222 #define END_STRING_AND_SAVE(s) \
223 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
224 #define RESTORE_END_STRING(s) \
225 do { *(s) = *--save_stack_p; } while (0)
227 /* The instruction we're assembling. */
230 /* Possible templates for current insn. */
231 static const templates *current_templates;
233 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
234 static expressionS disp_expressions[2], im_expressions[2];
236 /* Current operand we are working on. */
237 static int this_operand;
239 /* We support four different modes. FLAG_CODE variable is used to distinguish
246 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
248 static enum flag_code flag_code;
249 static int use_rela_relocations = 0;
251 /* The names used to print error messages. */
252 static const char *flag_code_names[] =
259 /* 1 for intel syntax,
261 static int intel_syntax = 0;
263 /* 1 if register prefix % not required. */
264 static int allow_naked_reg = 0;
266 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
267 leave, push, and pop instructions so that gcc has the same stack
268 frame as in 32 bit mode. */
269 static char stackop_size = '\0';
271 /* Non-zero to quieten some warnings. */
272 static int quiet_warnings = 0;
275 static const char *cpu_arch_name = NULL;
277 /* CPU feature flags. */
278 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
280 /* If set, conditional jumps are not automatically promoted to handle
281 larger than a byte offset. */
282 static unsigned int no_cond_jump_promotion = 0;
284 /* Interface to relax_segment.
285 There are 3 major relax states for 386 jump insns because the
286 different types of jumps add different sizes to frags when we're
287 figuring out what sort of jump to choose to reach a given label. */
290 #define UNCOND_JUMP 0
292 #define COND_JUMP86 2
297 #define SMALL16 (SMALL|CODE16)
299 #define BIG16 (BIG|CODE16)
303 #define INLINE __inline__
309 #define ENCODE_RELAX_STATE(type, size) \
310 ((relax_substateT) (((type) << 2) | (size)))
311 #define TYPE_FROM_RELAX_STATE(s) \
313 #define DISP_SIZE_FROM_RELAX_STATE(s) \
314 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
316 /* This table is used by relax_frag to promote short jumps to long
317 ones where necessary. SMALL (short) jumps may be promoted to BIG
318 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
319 don't allow a short jump in a 32 bit code segment to be promoted to
320 a 16 bit offset jump because it's slower (requires data size
321 prefix), and doesn't work, unless the destination is in the bottom
322 64k of the code segment (The top 16 bits of eip are zeroed). */
324 const relax_typeS md_relax_table[] =
327 1) most positive reach of this state,
328 2) most negative reach of this state,
329 3) how many bytes this mode will have in the variable part of the frag
330 4) which index into the table to try if we can't fit into this one. */
332 /* UNCOND_JUMP states. */
333 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
334 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
335 /* dword jmp adds 4 bytes to frag:
336 0 extra opcode bytes, 4 displacement bytes. */
338 /* word jmp adds 2 byte2 to frag:
339 0 extra opcode bytes, 2 displacement bytes. */
342 /* COND_JUMP states. */
343 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
344 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
345 /* dword conditionals adds 5 bytes to frag:
346 1 extra opcode byte, 4 displacement bytes. */
348 /* word conditionals add 3 bytes to frag:
349 1 extra opcode byte, 2 displacement bytes. */
352 /* COND_JUMP86 states. */
353 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
354 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
355 /* dword conditionals adds 5 bytes to frag:
356 1 extra opcode byte, 4 displacement bytes. */
358 /* word conditionals add 4 bytes to frag:
359 1 displacement byte and a 3 byte long branch insn. */
363 static const arch_entry cpu_arch[] = {
365 {"i186", Cpu086|Cpu186 },
366 {"i286", Cpu086|Cpu186|Cpu286 },
367 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
368 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
369 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
370 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
371 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
372 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
373 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
374 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
375 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
376 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
381 i386_align_code (fragP, count)
385 /* Various efficient no-op patterns for aligning code labels.
386 Note: Don't try to assemble the instructions in the comments.
387 0L and 0w are not legal. */
388 static const char f32_1[] =
390 static const char f32_2[] =
391 {0x89,0xf6}; /* movl %esi,%esi */
392 static const char f32_3[] =
393 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
394 static const char f32_4[] =
395 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_5[] =
398 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
399 static const char f32_6[] =
400 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
401 static const char f32_7[] =
402 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_8[] =
405 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
406 static const char f32_9[] =
407 {0x89,0xf6, /* movl %esi,%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_10[] =
410 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_11[] =
413 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
414 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
415 static const char f32_12[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
418 static const char f32_13[] =
419 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_14[] =
422 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
423 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
424 static const char f32_15[] =
425 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
426 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
427 static const char f16_3[] =
428 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
429 static const char f16_4[] =
430 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_5[] =
433 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
434 static const char f16_6[] =
435 {0x89,0xf6, /* mov %si,%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_7[] =
438 {0x8d,0x74,0x00, /* lea 0(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char f16_8[] =
441 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
442 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
443 static const char *const f32_patt[] = {
444 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
445 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
447 static const char *const f16_patt[] = {
448 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
449 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
452 /* ??? We can't use these fillers for x86_64, since they often kills the
453 upper halves. Solve later. */
454 if (flag_code == CODE_64BIT)
457 if (count > 0 && count <= 15)
459 if (flag_code == CODE_16BIT)
461 memcpy (fragP->fr_literal + fragP->fr_fix,
462 f16_patt[count - 1], count);
464 /* Adjust jump offset. */
465 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
468 memcpy (fragP->fr_literal + fragP->fr_fix,
469 f32_patt[count - 1], count);
470 fragP->fr_var = count;
474 static char *output_invalid PARAMS ((int c));
475 static int i386_operand PARAMS ((char *operand_string));
476 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
477 static const reg_entry *parse_register PARAMS ((char *reg_string,
481 static void s_bss PARAMS ((int));
484 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
486 static INLINE unsigned int
487 mode_from_disp_size (t)
490 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
494 fits_in_signed_byte (num)
497 return (num >= -128) && (num <= 127);
501 fits_in_unsigned_byte (num)
504 return (num & 0xff) == num;
508 fits_in_unsigned_word (num)
511 return (num & 0xffff) == num;
515 fits_in_signed_word (num)
518 return (-32768 <= num) && (num <= 32767);
521 fits_in_signed_long (num)
522 offsetT num ATTRIBUTE_UNUSED;
527 return (!(((offsetT) -1 << 31) & num)
528 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
530 } /* fits_in_signed_long() */
532 fits_in_unsigned_long (num)
533 offsetT num ATTRIBUTE_UNUSED;
538 return (num & (((offsetT) 2 << 31) - 1)) == num;
540 } /* fits_in_unsigned_long() */
543 smallest_imm_type (num)
546 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
548 /* This code is disabled on the 486 because all the Imm1 forms
549 in the opcode table are slower on the i486. They're the
550 versions with the implicitly specified single-position
551 displacement, which has another syntax if you really want to
554 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
556 return (fits_in_signed_byte (num)
557 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
558 : fits_in_unsigned_byte (num)
559 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
560 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
561 ? (Imm16 | Imm32 | Imm32S | Imm64)
562 : fits_in_signed_long (num)
563 ? (Imm32 | Imm32S | Imm64)
564 : fits_in_unsigned_long (num)
570 offset_in_range (val, size)
578 case 1: mask = ((addressT) 1 << 8) - 1; break;
579 case 2: mask = ((addressT) 1 << 16) - 1; break;
580 case 4: mask = ((addressT) 2 << 31) - 1; break;
582 case 8: mask = ((addressT) 2 << 63) - 1; break;
587 /* If BFD64, sign extend val. */
588 if (!use_rela_relocations)
589 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
590 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
592 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
594 char buf1[40], buf2[40];
596 sprint_value (buf1, val);
597 sprint_value (buf2, val & mask);
598 as_warn (_("%s shortened to %s"), buf1, buf2);
603 /* Returns 0 if attempting to add a prefix where one from the same
604 class already exists, 1 if non rep/repne added, 2 if rep/repne
613 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
621 case CS_PREFIX_OPCODE:
622 case DS_PREFIX_OPCODE:
623 case ES_PREFIX_OPCODE:
624 case FS_PREFIX_OPCODE:
625 case GS_PREFIX_OPCODE:
626 case SS_PREFIX_OPCODE:
630 case REPNE_PREFIX_OPCODE:
631 case REPE_PREFIX_OPCODE:
634 case LOCK_PREFIX_OPCODE:
642 case ADDR_PREFIX_OPCODE:
646 case DATA_PREFIX_OPCODE:
653 as_bad (_("same type of prefix used twice"));
658 i.prefix[q] = prefix;
663 set_code_flag (value)
667 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
668 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
669 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
671 as_bad (_("64bit mode not supported on this CPU."));
673 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
675 as_bad (_("32bit mode not supported on this CPU."));
681 set_16bit_gcc_code_flag (new_code_flag)
684 flag_code = new_code_flag;
685 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
686 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
691 set_intel_syntax (syntax_flag)
694 /* Find out if register prefixing is specified. */
695 int ask_naked_reg = 0;
698 if (! is_end_of_line[(unsigned char) *input_line_pointer])
700 char *string = input_line_pointer;
701 int e = get_symbol_end ();
703 if (strcmp (string, "prefix") == 0)
705 else if (strcmp (string, "noprefix") == 0)
708 as_bad (_("bad argument to syntax directive."));
709 *input_line_pointer = e;
711 demand_empty_rest_of_line ();
713 intel_syntax = syntax_flag;
715 if (ask_naked_reg == 0)
718 allow_naked_reg = (intel_syntax
719 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
721 /* Conservative default. */
726 allow_naked_reg = (ask_naked_reg < 0);
731 int dummy ATTRIBUTE_UNUSED;
735 if (! is_end_of_line[(unsigned char) *input_line_pointer])
737 char *string = input_line_pointer;
738 int e = get_symbol_end ();
741 for (i = 0; cpu_arch[i].name; i++)
743 if (strcmp (string, cpu_arch[i].name) == 0)
745 cpu_arch_name = cpu_arch[i].name;
746 cpu_arch_flags = (cpu_arch[i].flags
747 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
751 if (!cpu_arch[i].name)
752 as_bad (_("no such architecture: `%s'"), string);
754 *input_line_pointer = e;
757 as_bad (_("missing cpu architecture"));
759 no_cond_jump_promotion = 0;
760 if (*input_line_pointer == ','
761 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
763 char *string = ++input_line_pointer;
764 int e = get_symbol_end ();
766 if (strcmp (string, "nojumps") == 0)
767 no_cond_jump_promotion = 1;
768 else if (strcmp (string, "jumps") == 0)
771 as_bad (_("no such architecture modifier: `%s'"), string);
773 *input_line_pointer = e;
776 demand_empty_rest_of_line ();
779 const pseudo_typeS md_pseudo_table[] =
781 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
782 {"align", s_align_bytes, 0},
784 {"align", s_align_ptwo, 0},
786 {"arch", set_cpu_arch, 0},
790 {"ffloat", float_cons, 'f'},
791 {"dfloat", float_cons, 'd'},
792 {"tfloat", float_cons, 'x'},
794 {"noopt", s_ignore, 0},
795 {"optim", s_ignore, 0},
796 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
797 {"code16", set_code_flag, CODE_16BIT},
798 {"code32", set_code_flag, CODE_32BIT},
799 {"code64", set_code_flag, CODE_64BIT},
800 {"intel_syntax", set_intel_syntax, 1},
801 {"att_syntax", set_intel_syntax, 0},
802 {"file", dwarf2_directive_file, 0},
803 {"loc", dwarf2_directive_loc, 0},
807 /* For interface with expression (). */
808 extern char *input_line_pointer;
810 /* Hash table for instruction mnemonic lookup. */
811 static struct hash_control *op_hash;
813 /* Hash table for register lookup. */
814 static struct hash_control *reg_hash;
820 if (!strcmp (default_arch, "x86_64"))
821 return bfd_mach_x86_64;
822 else if (!strcmp (default_arch, "i386"))
823 return bfd_mach_i386_i386;
825 as_fatal (_("Unknown architecture"));
832 const char *hash_err;
834 /* Initialize op_hash hash table. */
835 op_hash = hash_new ();
838 register const template *optab;
839 register templates *core_optab;
841 /* Setup for loop. */
843 core_optab = (templates *) xmalloc (sizeof (templates));
844 core_optab->start = optab;
849 if (optab->name == NULL
850 || strcmp (optab->name, (optab - 1)->name) != 0)
852 /* different name --> ship out current template list;
853 add to hash table; & begin anew. */
854 core_optab->end = optab;
855 hash_err = hash_insert (op_hash,
860 as_fatal (_("Internal Error: Can't hash %s: %s"),
864 if (optab->name == NULL)
866 core_optab = (templates *) xmalloc (sizeof (templates));
867 core_optab->start = optab;
872 /* Initialize reg_hash hash table. */
873 reg_hash = hash_new ();
875 register const reg_entry *regtab;
877 for (regtab = i386_regtab;
878 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
881 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
883 as_fatal (_("Internal Error: Can't hash %s: %s"),
889 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
894 for (c = 0; c < 256; c++)
899 mnemonic_chars[c] = c;
900 register_chars[c] = c;
901 operand_chars[c] = c;
903 else if (ISLOWER (c))
905 mnemonic_chars[c] = c;
906 register_chars[c] = c;
907 operand_chars[c] = c;
909 else if (ISUPPER (c))
911 mnemonic_chars[c] = TOLOWER (c);
912 register_chars[c] = mnemonic_chars[c];
913 operand_chars[c] = c;
916 if (ISALPHA (c) || ISDIGIT (c))
917 identifier_chars[c] = c;
920 identifier_chars[c] = c;
921 operand_chars[c] = c;
926 identifier_chars['@'] = '@';
928 digit_chars['-'] = '-';
929 identifier_chars['_'] = '_';
930 identifier_chars['.'] = '.';
932 for (p = operand_special_chars; *p != '\0'; p++)
933 operand_chars[(unsigned char) *p] = *p;
936 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
937 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
939 record_alignment (text_section, 2);
940 record_alignment (data_section, 2);
941 record_alignment (bss_section, 2);
947 i386_print_statistics (file)
950 hash_print_statistics (file, "i386 opcode", op_hash);
951 hash_print_statistics (file, "i386 register", reg_hash);
956 /* Debugging routines for md_assemble. */
957 static void pi PARAMS ((char *, i386_insn *));
958 static void pte PARAMS ((template *));
959 static void pt PARAMS ((unsigned int));
960 static void pe PARAMS ((expressionS *));
961 static void ps PARAMS ((symbolS *));
970 fprintf (stdout, "%s: template ", line);
972 fprintf (stdout, " address: base %s index %s scale %x\n",
973 x->base_reg ? x->base_reg->reg_name : "none",
974 x->index_reg ? x->index_reg->reg_name : "none",
975 x->log2_scale_factor);
976 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
977 x->rm.mode, x->rm.reg, x->rm.regmem);
978 fprintf (stdout, " sib: base %x index %x scale %x\n",
979 x->sib.base, x->sib.index, x->sib.scale);
980 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
981 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
982 for (i = 0; i < x->operands; i++)
984 fprintf (stdout, " #%d: ", i + 1);
986 fprintf (stdout, "\n");
988 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
989 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
990 if (x->types[i] & Imm)
992 if (x->types[i] & Disp)
1002 fprintf (stdout, " %d operands ", t->operands);
1003 fprintf (stdout, "opcode %x ", t->base_opcode);
1004 if (t->extension_opcode != None)
1005 fprintf (stdout, "ext %x ", t->extension_opcode);
1006 if (t->opcode_modifier & D)
1007 fprintf (stdout, "D");
1008 if (t->opcode_modifier & W)
1009 fprintf (stdout, "W");
1010 fprintf (stdout, "\n");
1011 for (i = 0; i < t->operands; i++)
1013 fprintf (stdout, " #%d type ", i + 1);
1014 pt (t->operand_types[i]);
1015 fprintf (stdout, "\n");
1023 fprintf (stdout, " operation %d\n", e->X_op);
1024 fprintf (stdout, " add_number %ld (%lx)\n",
1025 (long) e->X_add_number, (long) e->X_add_number);
1026 if (e->X_add_symbol)
1028 fprintf (stdout, " add_symbol ");
1029 ps (e->X_add_symbol);
1030 fprintf (stdout, "\n");
1034 fprintf (stdout, " op_symbol ");
1035 ps (e->X_op_symbol);
1036 fprintf (stdout, "\n");
1044 fprintf (stdout, "%s type %s%s",
1046 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1047 segment_name (S_GET_SEGMENT (s)));
1069 { BaseIndex, "BaseIndex" },
1073 { Disp32S, "d32s" },
1075 { InOutPortReg, "InOutPortReg" },
1076 { ShiftCount, "ShiftCount" },
1077 { Control, "control reg" },
1078 { Test, "test reg" },
1079 { Debug, "debug reg" },
1080 { FloatReg, "FReg" },
1081 { FloatAcc, "FAcc" },
1085 { JumpAbsolute, "Jump Absolute" },
1096 register struct type_name *ty;
1098 for (ty = type_names; ty->mask; ty++)
1100 fprintf (stdout, "%s, ", ty->tname);
1104 #endif /* DEBUG386 */
1107 tc_i386_force_relocation (fixp)
1110 #ifdef BFD_ASSEMBLER
1111 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1112 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1117 return fixp->fx_r_type == 7;
1121 #ifdef BFD_ASSEMBLER
1123 static bfd_reloc_code_real_type
1124 reloc (size, pcrel, sign, other)
1128 bfd_reloc_code_real_type other;
1130 if (other != NO_RELOC)
1136 as_bad (_("There are no unsigned pc-relative relocations"));
1139 case 1: return BFD_RELOC_8_PCREL;
1140 case 2: return BFD_RELOC_16_PCREL;
1141 case 4: return BFD_RELOC_32_PCREL;
1143 as_bad (_("can not do %d byte pc-relative relocation"), size);
1150 case 4: return BFD_RELOC_X86_64_32S;
1155 case 1: return BFD_RELOC_8;
1156 case 2: return BFD_RELOC_16;
1157 case 4: return BFD_RELOC_32;
1158 case 8: return BFD_RELOC_64;
1160 as_bad (_("can not do %s %d byte relocation"),
1161 sign ? "signed" : "unsigned", size);
1165 return BFD_RELOC_NONE;
1168 /* Here we decide which fixups can be adjusted to make them relative to
1169 the beginning of the section instead of the symbol. Basically we need
1170 to make sure that the dynamic relocations are done correctly, so in
1171 some cases we force the original symbol to be used. */
1174 tc_i386_fix_adjustable (fixP)
1177 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1178 /* Prevent all adjustments to global symbols, or else dynamic
1179 linking will not work correctly. */
1180 if (S_IS_EXTERNAL (fixP->fx_addsy)
1181 || S_IS_WEAK (fixP->fx_addsy)
1182 /* Don't adjust pc-relative references to merge sections in 64-bit
1184 || (use_rela_relocations
1185 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1189 /* adjust_reloc_syms doesn't know about the GOT. */
1190 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1191 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1192 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1193 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1194 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1195 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1196 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1197 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1202 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1203 #define BFD_RELOC_16 0
1204 #define BFD_RELOC_32 0
1205 #define BFD_RELOC_16_PCREL 0
1206 #define BFD_RELOC_32_PCREL 0
1207 #define BFD_RELOC_386_PLT32 0
1208 #define BFD_RELOC_386_GOT32 0
1209 #define BFD_RELOC_386_GOTOFF 0
1210 #define BFD_RELOC_X86_64_PLT32 0
1211 #define BFD_RELOC_X86_64_GOT32 0
1212 #define BFD_RELOC_X86_64_GOTPCREL 0
1215 static int intel_float_operand PARAMS ((char *mnemonic));
1218 intel_float_operand (mnemonic)
1221 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1224 if (mnemonic[0] == 'f')
1230 /* This is the guts of the machine-dependent assembler. LINE points to a
1231 machine dependent instruction. This function is supposed to emit
1232 the frags/bytes it assembles to. */
1238 /* Points to template once we've found it. */
1243 char mnemonic[MAX_MNEM_SIZE];
1245 /* Initialize globals. */
1246 memset (&i, '\0', sizeof (i));
1247 for (j = 0; j < MAX_OPERANDS; j++)
1248 i.reloc[j] = NO_RELOC;
1249 memset (disp_expressions, '\0', sizeof (disp_expressions));
1250 memset (im_expressions, '\0', sizeof (im_expressions));
1251 save_stack_p = save_stack;
1253 /* First parse an instruction mnemonic & call i386_operand for the operands.
1254 We assume that the scrubber has arranged it so that line[0] is the valid
1255 start of a (possibly prefixed) mnemonic. */
1258 char *token_start = l;
1261 /* Non-zero if we found a prefix only acceptable with string insns. */
1262 const char *expecting_string_instruction = NULL;
1267 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1270 if (mnem_p >= mnemonic + sizeof (mnemonic))
1272 as_bad (_("no such instruction: `%s'"), token_start);
1277 if (!is_space_char (*l)
1278 && *l != END_OF_INSN
1279 && *l != PREFIX_SEPARATOR
1282 as_bad (_("invalid character %s in mnemonic"),
1283 output_invalid (*l));
1286 if (token_start == l)
1288 if (*l == PREFIX_SEPARATOR)
1289 as_bad (_("expecting prefix; got nothing"));
1291 as_bad (_("expecting mnemonic; got nothing"));
1295 /* Look up instruction (or prefix) via hash table. */
1296 current_templates = hash_find (op_hash, mnemonic);
1298 if (*l != END_OF_INSN
1299 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1300 && current_templates
1301 && (current_templates->start->opcode_modifier & IsPrefix))
1303 /* If we are in 16-bit mode, do not allow addr16 or data16.
1304 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1305 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1306 && flag_code != CODE_64BIT
1307 && (((current_templates->start->opcode_modifier & Size32) != 0)
1308 ^ (flag_code == CODE_16BIT)))
1310 as_bad (_("redundant %s prefix"),
1311 current_templates->start->name);
1314 /* Add prefix, checking for repeated prefixes. */
1315 switch (add_prefix (current_templates->start->base_opcode))
1320 expecting_string_instruction = current_templates->start->name;
1323 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1330 if (!current_templates)
1332 /* See if we can get a match by trimming off a suffix. */
1335 case WORD_MNEM_SUFFIX:
1336 case BYTE_MNEM_SUFFIX:
1337 case QWORD_MNEM_SUFFIX:
1338 i.suffix = mnem_p[-1];
1340 current_templates = hash_find (op_hash, mnemonic);
1342 case SHORT_MNEM_SUFFIX:
1343 case LONG_MNEM_SUFFIX:
1346 i.suffix = mnem_p[-1];
1348 current_templates = hash_find (op_hash, mnemonic);
1356 if (intel_float_operand (mnemonic))
1357 i.suffix = SHORT_MNEM_SUFFIX;
1359 i.suffix = LONG_MNEM_SUFFIX;
1361 current_templates = hash_find (op_hash, mnemonic);
1365 if (!current_templates)
1367 as_bad (_("no such instruction: `%s'"), token_start);
1372 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1374 /* Check for a branch hint. We allow ",pt" and ",pn" for
1375 predict taken and predict not taken respectively.
1376 I'm not sure that branch hints actually do anything on loop
1377 and jcxz insns (JumpByte) for current Pentium4 chips. They
1378 may work in the future and it doesn't hurt to accept them
1380 if (l[0] == ',' && l[1] == 'p')
1384 if (! add_prefix (DS_PREFIX_OPCODE))
1388 else if (l[2] == 'n')
1390 if (! add_prefix (CS_PREFIX_OPCODE))
1396 /* Any other comma loses. */
1399 as_bad (_("invalid character %s in mnemonic"),
1400 output_invalid (*l));
1404 /* Check if instruction is supported on specified architecture. */
1405 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1406 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1408 as_warn (_("`%s' is not supported on `%s'"),
1409 current_templates->start->name, cpu_arch_name);
1411 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1413 as_warn (_("use .code16 to ensure correct addressing mode"));
1416 /* Check for rep/repne without a string instruction. */
1417 if (expecting_string_instruction
1418 && !(current_templates->start->opcode_modifier & IsString))
1420 as_bad (_("expecting string instruction after `%s'"),
1421 expecting_string_instruction);
1425 /* There may be operands to parse. */
1426 if (*l != END_OF_INSN)
1428 /* 1 if operand is pending after ','. */
1429 unsigned int expecting_operand = 0;
1431 /* Non-zero if operand parens not balanced. */
1432 unsigned int paren_not_balanced;
1436 /* Skip optional white space before operand. */
1437 if (is_space_char (*l))
1439 if (!is_operand_char (*l) && *l != END_OF_INSN)
1441 as_bad (_("invalid character %s before operand %d"),
1442 output_invalid (*l),
1446 token_start = l; /* after white space */
1447 paren_not_balanced = 0;
1448 while (paren_not_balanced || *l != ',')
1450 if (*l == END_OF_INSN)
1452 if (paren_not_balanced)
1455 as_bad (_("unbalanced parenthesis in operand %d."),
1458 as_bad (_("unbalanced brackets in operand %d."),
1463 break; /* we are done */
1465 else if (!is_operand_char (*l) && !is_space_char (*l))
1467 as_bad (_("invalid character %s in operand %d"),
1468 output_invalid (*l),
1475 ++paren_not_balanced;
1477 --paren_not_balanced;
1482 ++paren_not_balanced;
1484 --paren_not_balanced;
1488 if (l != token_start)
1489 { /* Yes, we've read in another operand. */
1490 unsigned int operand_ok;
1491 this_operand = i.operands++;
1492 if (i.operands > MAX_OPERANDS)
1494 as_bad (_("spurious operands; (%d operands/instruction max)"),
1498 /* Now parse operand adding info to 'i' as we go along. */
1499 END_STRING_AND_SAVE (l);
1503 i386_intel_operand (token_start,
1504 intel_float_operand (mnemonic));
1506 operand_ok = i386_operand (token_start);
1508 RESTORE_END_STRING (l);
1514 if (expecting_operand)
1516 expecting_operand_after_comma:
1517 as_bad (_("expecting operand after ','; got nothing"));
1522 as_bad (_("expecting operand before ','; got nothing"));
1527 /* Now *l must be either ',' or END_OF_INSN. */
1530 if (*++l == END_OF_INSN)
1532 /* Just skip it, if it's \n complain. */
1533 goto expecting_operand_after_comma;
1535 expecting_operand = 1;
1538 while (*l != END_OF_INSN);
1542 /* Now we've parsed the mnemonic into a set of templates, and have the
1545 Next, we find a template that matches the given insn,
1546 making sure the overlap of the given operands types is consistent
1547 with the template operand types. */
1549 #define MATCH(overlap, given, template) \
1550 ((overlap & ~JumpAbsolute) \
1551 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1553 /* If given types r0 and r1 are registers they must be of the same type
1554 unless the expected operand type register overlap is null.
1555 Note that Acc in a template matches every size of reg. */
1556 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1557 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1558 ((g0) & Reg) == ((g1) & Reg) || \
1559 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1562 register unsigned int overlap0, overlap1;
1563 unsigned int overlap2;
1564 unsigned int found_reverse_match;
1567 /* All intel opcodes have reversed operands except for "bound" and
1568 "enter". We also don't reverse intersegment "jmp" and "call"
1569 instructions with 2 immediate operands so that the immediate segment
1570 precedes the offset, as it does when in AT&T mode. "enter" and the
1571 intersegment "jmp" and "call" instructions are the only ones that
1572 have two immediate operands. */
1573 if (intel_syntax && i.operands > 1
1574 && (strcmp (mnemonic, "bound") != 0)
1575 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1577 union i386_op temp_op;
1578 unsigned int temp_type;
1579 RELOC_ENUM temp_reloc;
1583 if (i.operands == 2)
1588 else if (i.operands == 3)
1593 temp_type = i.types[xchg2];
1594 i.types[xchg2] = i.types[xchg1];
1595 i.types[xchg1] = temp_type;
1596 temp_op = i.op[xchg2];
1597 i.op[xchg2] = i.op[xchg1];
1598 i.op[xchg1] = temp_op;
1599 temp_reloc = i.reloc[xchg2];
1600 i.reloc[xchg2] = i.reloc[xchg1];
1601 i.reloc[xchg1] = temp_reloc;
1603 if (i.mem_operands == 2)
1605 const seg_entry *temp_seg;
1606 temp_seg = i.seg[0];
1607 i.seg[0] = i.seg[1];
1608 i.seg[1] = temp_seg;
1614 /* Try to ensure constant immediates are represented in the smallest
1616 char guess_suffix = 0;
1620 guess_suffix = i.suffix;
1621 else if (i.reg_operands)
1623 /* Figure out a suffix from the last register operand specified.
1624 We can't do this properly yet, ie. excluding InOutPortReg,
1625 but the following works for instructions with immediates.
1626 In any case, we can't set i.suffix yet. */
1627 for (op = i.operands; --op >= 0;)
1628 if (i.types[op] & Reg)
1630 if (i.types[op] & Reg8)
1631 guess_suffix = BYTE_MNEM_SUFFIX;
1632 else if (i.types[op] & Reg16)
1633 guess_suffix = WORD_MNEM_SUFFIX;
1634 else if (i.types[op] & Reg32)
1635 guess_suffix = LONG_MNEM_SUFFIX;
1636 else if (i.types[op] & Reg64)
1637 guess_suffix = QWORD_MNEM_SUFFIX;
1641 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1642 guess_suffix = WORD_MNEM_SUFFIX;
1644 for (op = i.operands; --op >= 0;)
1645 if (i.types[op] & Imm)
1647 switch (i.op[op].imms->X_op)
1650 /* If a suffix is given, this operand may be shortened. */
1651 switch (guess_suffix)
1653 case LONG_MNEM_SUFFIX:
1654 i.types[op] |= Imm32 | Imm64;
1656 case WORD_MNEM_SUFFIX:
1657 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1659 case BYTE_MNEM_SUFFIX:
1660 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1664 /* If this operand is at most 16 bits, convert it
1665 to a signed 16 bit number before trying to see
1666 whether it will fit in an even smaller size.
1667 This allows a 16-bit operand such as $0xffe0 to
1668 be recognised as within Imm8S range. */
1669 if ((i.types[op] & Imm16)
1670 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1672 i.op[op].imms->X_add_number =
1673 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1675 if ((i.types[op] & Imm32)
1676 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1678 i.op[op].imms->X_add_number =
1679 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1681 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1682 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1683 if (guess_suffix == QWORD_MNEM_SUFFIX)
1684 i.types[op] &= ~Imm32;
1689 /* Symbols and expressions. */
1691 /* Convert symbolic operand to proper sizes for matching. */
1692 switch (guess_suffix)
1694 case QWORD_MNEM_SUFFIX:
1695 i.types[op] = Imm64 | Imm32S;
1697 case LONG_MNEM_SUFFIX:
1698 i.types[op] = Imm32 | Imm64;
1700 case WORD_MNEM_SUFFIX:
1701 i.types[op] = Imm16 | Imm32 | Imm64;
1704 case BYTE_MNEM_SUFFIX:
1705 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1714 if (i.disp_operands)
1716 /* Try to use the smallest displacement type too. */
1719 for (op = i.operands; --op >= 0;)
1720 if ((i.types[op] & Disp)
1721 && i.op[op].disps->X_op == O_constant)
1723 offsetT disp = i.op[op].disps->X_add_number;
1725 if (i.types[op] & Disp16)
1727 /* We know this operand is at most 16 bits, so
1728 convert to a signed 16 bit number before trying
1729 to see whether it will fit in an even smaller
1732 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1734 else if (i.types[op] & Disp32)
1736 /* We know this operand is at most 32 bits, so convert to a
1737 signed 32 bit number before trying to see whether it will
1738 fit in an even smaller size. */
1739 disp &= (((offsetT) 2 << 31) - 1);
1740 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1742 if (flag_code == CODE_64BIT)
1744 if (fits_in_signed_long (disp))
1745 i.types[op] |= Disp32S;
1746 if (fits_in_unsigned_long (disp))
1747 i.types[op] |= Disp32;
1749 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1750 && fits_in_signed_byte (disp))
1751 i.types[op] |= Disp8;
1758 found_reverse_match = 0;
1759 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1761 : (i.suffix == WORD_MNEM_SUFFIX
1763 : (i.suffix == SHORT_MNEM_SUFFIX
1765 : (i.suffix == LONG_MNEM_SUFFIX
1767 : (i.suffix == QWORD_MNEM_SUFFIX
1769 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1771 for (t = current_templates->start;
1772 t < current_templates->end;
1775 /* Must have right number of operands. */
1776 if (i.operands != t->operands)
1779 /* Check the suffix, except for some instructions in intel mode. */
1780 if ((t->opcode_modifier & suffix_check)
1782 && (t->opcode_modifier & IgnoreSize))
1784 && t->base_opcode == 0xd9
1785 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1786 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1789 /* Do not verify operands when there are none. */
1790 else if (!t->operands)
1792 if (t->cpu_flags & ~cpu_arch_flags)
1794 /* We've found a match; break out of loop. */
1798 overlap0 = i.types[0] & t->operand_types[0];
1799 switch (t->operands)
1802 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1807 overlap1 = i.types[1] & t->operand_types[1];
1808 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1809 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1810 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1811 t->operand_types[0],
1812 overlap1, i.types[1],
1813 t->operand_types[1]))
1815 /* Check if other direction is valid ... */
1816 if ((t->opcode_modifier & (D|FloatD)) == 0)
1819 /* Try reversing direction of operands. */
1820 overlap0 = i.types[0] & t->operand_types[1];
1821 overlap1 = i.types[1] & t->operand_types[0];
1822 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1823 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1824 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1825 t->operand_types[1],
1826 overlap1, i.types[1],
1827 t->operand_types[0]))
1829 /* Does not match either direction. */
1832 /* found_reverse_match holds which of D or FloatDR
1834 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1836 /* Found a forward 2 operand match here. */
1837 else if (t->operands == 3)
1839 /* Here we make use of the fact that there are no
1840 reverse match 3 operand instructions, and all 3
1841 operand instructions only need to be checked for
1842 register consistency between operands 2 and 3. */
1843 overlap2 = i.types[2] & t->operand_types[2];
1844 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1845 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1846 t->operand_types[1],
1847 overlap2, i.types[2],
1848 t->operand_types[2]))
1852 /* Found either forward/reverse 2 or 3 operand match here:
1853 slip through to break. */
1855 if (t->cpu_flags & ~cpu_arch_flags)
1857 found_reverse_match = 0;
1860 /* We've found a match; break out of loop. */
1863 if (t == current_templates->end)
1865 /* We found no match. */
1866 as_bad (_("suffix or operands invalid for `%s'"),
1867 current_templates->start->name);
1871 if (!quiet_warnings)
1874 && ((i.types[0] & JumpAbsolute)
1875 != (t->operand_types[0] & JumpAbsolute)))
1877 as_warn (_("indirect %s without `*'"), t->name);
1880 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1881 == (IsPrefix|IgnoreSize))
1883 /* Warn them that a data or address size prefix doesn't
1884 affect assembly of the next line of code. */
1885 as_warn (_("stand-alone `%s' prefix"), t->name);
1889 /* Copy the template we found. */
1891 if (found_reverse_match)
1893 /* If we found a reverse match we must alter the opcode
1894 direction bit. found_reverse_match holds bits to change
1895 (different for int & float insns). */
1897 i.tm.base_opcode ^= found_reverse_match;
1899 i.tm.operand_types[0] = t->operand_types[1];
1900 i.tm.operand_types[1] = t->operand_types[0];
1903 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1906 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1907 i.tm.base_opcode ^= FloatR;
1909 if (i.tm.opcode_modifier & FWait)
1910 if (! add_prefix (FWAIT_OPCODE))
1913 /* Check string instruction segment overrides. */
1914 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1916 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1917 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1919 if (i.seg[0] != NULL && i.seg[0] != &es)
1921 as_bad (_("`%s' operand %d must use `%%es' segment"),
1926 /* There's only ever one segment override allowed per instruction.
1927 This instruction possibly has a legal segment override on the
1928 second operand, so copy the segment to where non-string
1929 instructions store it, allowing common code. */
1930 i.seg[0] = i.seg[1];
1932 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1934 if (i.seg[1] != NULL && i.seg[1] != &es)
1936 as_bad (_("`%s' operand %d must use `%%es' segment"),
1944 /* If matched instruction specifies an explicit instruction mnemonic
1946 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1948 if (i.tm.opcode_modifier & Size16)
1949 i.suffix = WORD_MNEM_SUFFIX;
1950 else if (i.tm.opcode_modifier & Size64)
1951 i.suffix = QWORD_MNEM_SUFFIX;
1953 i.suffix = LONG_MNEM_SUFFIX;
1955 else if (i.reg_operands)
1957 /* If there's no instruction mnemonic suffix we try to invent one
1958 based on register operands. */
1961 /* We take i.suffix from the last register operand specified,
1962 Destination register type is more significant than source
1965 for (op = i.operands; --op >= 0;)
1966 if ((i.types[op] & Reg)
1967 && !(i.tm.operand_types[op] & InOutPortReg))
1969 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1970 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1971 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1976 else if (i.suffix == BYTE_MNEM_SUFFIX)
1979 for (op = i.operands; --op >= 0;)
1981 /* If this is an eight bit register, it's OK. If it's
1982 the 16 or 32 bit version of an eight bit register,
1983 we will just use the low portion, and that's OK too. */
1984 if (i.types[op] & Reg8)
1987 /* movzx and movsx should not generate this warning. */
1989 && (i.tm.base_opcode == 0xfb7
1990 || i.tm.base_opcode == 0xfb6
1991 || i.tm.base_opcode == 0x63
1992 || i.tm.base_opcode == 0xfbe
1993 || i.tm.base_opcode == 0xfbf))
1996 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1998 /* Check that the template allows eight bit regs
1999 This kills insns such as `orb $1,%edx', which
2000 maybe should be allowed. */
2001 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
2005 /* Prohibit these changes in the 64bit mode, since
2006 the lowering is more complicated. */
2007 if (flag_code == CODE_64BIT
2008 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2009 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2010 i.op[op].regs->reg_name,
2012 #if REGISTER_WARNINGS
2014 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2015 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2017 + (i.types[op] & Reg16
2018 ? REGNAM_AL - REGNAM_AX
2019 : REGNAM_AL - REGNAM_EAX))->reg_name,
2020 i.op[op].regs->reg_name,
2025 /* Any other register is bad. */
2026 if (i.types[op] & (Reg | RegMMX | RegXMM
2028 | Control | Debug | Test
2029 | FloatReg | FloatAcc))
2031 as_bad (_("`%%%s' not allowed with `%s%c'"),
2032 i.op[op].regs->reg_name,
2039 else if (i.suffix == LONG_MNEM_SUFFIX)
2043 for (op = i.operands; --op >= 0;)
2044 /* Reject eight bit registers, except where the template
2045 requires them. (eg. movzb) */
2046 if ((i.types[op] & Reg8) != 0
2047 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2049 as_bad (_("`%%%s' not allowed with `%s%c'"),
2050 i.op[op].regs->reg_name,
2055 /* Warn if the e prefix on a general reg is missing. */
2056 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2057 && (i.types[op] & Reg16) != 0
2058 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2060 /* Prohibit these changes in the 64bit mode, since
2061 the lowering is more complicated. */
2062 if (flag_code == CODE_64BIT)
2063 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2064 i.op[op].regs->reg_name,
2066 #if REGISTER_WARNINGS
2068 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2069 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2070 i.op[op].regs->reg_name,
2074 /* Warn if the r prefix on a general reg is missing. */
2075 else if ((i.types[op] & Reg64) != 0
2076 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2078 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2079 i.op[op].regs->reg_name,
2083 else if (i.suffix == QWORD_MNEM_SUFFIX)
2087 for (op = i.operands; --op >= 0; )
2088 /* Reject eight bit registers, except where the template
2089 requires them. (eg. movzb) */
2090 if ((i.types[op] & Reg8) != 0
2091 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2093 as_bad (_("`%%%s' not allowed with `%s%c'"),
2094 i.op[op].regs->reg_name,
2099 /* Warn if the e prefix on a general reg is missing. */
2100 else if (((i.types[op] & Reg16) != 0
2101 || (i.types[op] & Reg32) != 0)
2102 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2104 /* Prohibit these changes in the 64bit mode, since
2105 the lowering is more complicated. */
2106 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2107 i.op[op].regs->reg_name,
2111 else if (i.suffix == WORD_MNEM_SUFFIX)
2114 for (op = i.operands; --op >= 0;)
2115 /* Reject eight bit registers, except where the template
2116 requires them. (eg. movzb) */
2117 if ((i.types[op] & Reg8) != 0
2118 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2120 as_bad (_("`%%%s' not allowed with `%s%c'"),
2121 i.op[op].regs->reg_name,
2126 /* Warn if the e prefix on a general reg is present. */
2127 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2128 && (i.types[op] & Reg32) != 0
2129 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2131 /* Prohibit these changes in the 64bit mode, since
2132 the lowering is more complicated. */
2133 if (flag_code == CODE_64BIT)
2134 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2135 i.op[op].regs->reg_name,
2138 #if REGISTER_WARNINGS
2139 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2140 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2141 i.op[op].regs->reg_name,
2146 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2147 /* Do nothing if the instruction is going to ignore the prefix. */
2152 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2154 i.suffix = stackop_size;
2156 /* Make still unresolved immediate matches conform to size of immediate
2157 given in i.suffix. Note: overlap2 cannot be an immediate! */
2158 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2159 && overlap0 != Imm8 && overlap0 != Imm8S
2160 && overlap0 != Imm16 && overlap0 != Imm32S
2161 && overlap0 != Imm32 && overlap0 != Imm64)
2165 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2166 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2167 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2169 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2170 || overlap0 == (Imm16 | Imm32)
2171 || overlap0 == (Imm16 | Imm32S))
2174 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2176 if (overlap0 != Imm8 && overlap0 != Imm8S
2177 && overlap0 != Imm16 && overlap0 != Imm32S
2178 && overlap0 != Imm32 && overlap0 != Imm64)
2180 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2184 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2185 && overlap1 != Imm8 && overlap1 != Imm8S
2186 && overlap1 != Imm16 && overlap1 != Imm32S
2187 && overlap1 != Imm32 && overlap1 != Imm64)
2191 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2192 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2193 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2195 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2196 || overlap1 == (Imm16 | Imm32)
2197 || overlap1 == (Imm16 | Imm32S))
2200 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2202 if (overlap1 != Imm8 && overlap1 != Imm8S
2203 && overlap1 != Imm16 && overlap1 != Imm32S
2204 && overlap1 != Imm32 && overlap1 != Imm64)
2206 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2210 assert ((overlap2 & Imm) == 0);
2212 i.types[0] = overlap0;
2213 if (overlap0 & ImplicitRegister)
2215 if (overlap0 & Imm1)
2216 i.imm_operands = 0; /* kludge for shift insns. */
2218 i.types[1] = overlap1;
2219 if (overlap1 & ImplicitRegister)
2222 i.types[2] = overlap2;
2223 if (overlap2 & ImplicitRegister)
2226 /* Finalize opcode. First, we change the opcode based on the operand
2227 size given by i.suffix: We need not change things for byte insns. */
2229 if (!i.suffix && (i.tm.opcode_modifier & W))
2231 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2235 /* For movzx and movsx, need to check the register type. */
2237 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2238 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2240 unsigned int prefix = DATA_PREFIX_OPCODE;
2242 if ((i.op[1].regs->reg_type & Reg16) != 0)
2243 if (!add_prefix (prefix))
2247 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2249 /* It's not a byte, select word/dword operation. */
2250 if (i.tm.opcode_modifier & W)
2252 if (i.tm.opcode_modifier & ShortForm)
2253 i.tm.base_opcode |= 8;
2255 i.tm.base_opcode |= 1;
2257 /* Now select between word & dword operations via the operand
2258 size prefix, except for instructions that will ignore this
2260 if (i.suffix != QWORD_MNEM_SUFFIX
2261 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2262 && !(i.tm.opcode_modifier & IgnoreSize))
2264 unsigned int prefix = DATA_PREFIX_OPCODE;
2265 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2266 prefix = ADDR_PREFIX_OPCODE;
2268 if (! add_prefix (prefix))
2272 if (i.suffix != QWORD_MNEM_SUFFIX && (flag_code == CODE_64BIT)
2273 && !(i.tm.opcode_modifier & IgnoreSize)
2274 && (i.tm.opcode_modifier & JumpByte))
2276 if (! add_prefix (ADDR_PREFIX_OPCODE))
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
2282 && !(i.tm.opcode_modifier & NoRex64))
2285 if (flag_code < CODE_64BIT)
2287 as_bad (_("64bit operations available only in 64bit modes."));
2292 /* Size floating point instruction. */
2293 if (i.suffix == LONG_MNEM_SUFFIX)
2295 if (i.tm.opcode_modifier & FloatMF)
2296 i.tm.base_opcode ^= 4;
2300 if (i.tm.opcode_modifier & ImmExt)
2302 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2303 opcode suffix which is coded in the same place as an 8-bit
2304 immediate field would be. Here we fake an 8-bit immediate
2305 operand from the opcode suffix stored in tm.extension_opcode. */
2309 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2311 exp = &im_expressions[i.imm_operands++];
2312 i.op[i.operands].imms = exp;
2313 i.types[i.operands++] = Imm8;
2314 exp->X_op = O_constant;
2315 exp->X_add_number = i.tm.extension_opcode;
2316 i.tm.extension_opcode = None;
2319 /* For insns with operands there are more diddles to do to the opcode. */
2322 /* Default segment register this instruction will use
2323 for memory accesses. 0 means unknown.
2324 This is only for optimizing out unnecessary segment overrides. */
2325 const seg_entry *default_seg = 0;
2327 /* The imul $imm, %reg instruction is converted into
2328 imul $imm, %reg, %reg, and the clr %reg instruction
2329 is converted into xor %reg, %reg. */
2330 if (i.tm.opcode_modifier & regKludge)
2332 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2333 /* Pretend we saw the extra register operand. */
2334 assert (i.op[first_reg_op + 1].regs == 0);
2335 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2336 i.types[first_reg_op + 1] = i.types[first_reg_op];
2340 if (i.tm.opcode_modifier & ShortForm)
2342 /* The register or float register operand is in operand 0 or 1. */
2343 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2344 /* Register goes in low 3 bits of opcode. */
2345 i.tm.base_opcode |= i.op[op].regs->reg_num;
2346 if (i.op[op].regs->reg_flags & RegRex)
2348 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2350 /* Warn about some common errors, but press on regardless.
2351 The first case can be generated by gcc (<= 2.8.1). */
2352 if (i.operands == 2)
2354 /* Reversed arguments on faddp, fsubp, etc. */
2355 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2356 i.op[1].regs->reg_name,
2357 i.op[0].regs->reg_name);
2361 /* Extraneous `l' suffix on fp insn. */
2362 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2363 i.op[0].regs->reg_name);
2367 else if (i.tm.opcode_modifier & Modrm)
2369 /* The opcode is completed (modulo i.tm.extension_opcode which
2370 must be put into the modrm byte).
2371 Now, we make the modrm & index base bytes based on all the
2372 info we've collected. */
2374 /* i.reg_operands MUST be the number of real register operands;
2375 implicit registers do not count. */
2376 if (i.reg_operands == 2)
2378 unsigned int source, dest;
2379 source = ((i.types[0]
2380 & (Reg | RegMMX | RegXMM
2382 | Control | Debug | Test))
2387 /* One of the register operands will be encoded in the
2388 i.tm.reg field, the other in the combined i.tm.mode
2389 and i.tm.regmem fields. If no form of this
2390 instruction supports a memory destination operand,
2391 then we assume the source operand may sometimes be
2392 a memory operand and so we need to store the
2393 destination in the i.rm.reg field. */
2394 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2396 i.rm.reg = i.op[dest].regs->reg_num;
2397 i.rm.regmem = i.op[source].regs->reg_num;
2398 if (i.op[dest].regs->reg_flags & RegRex)
2400 if (i.op[source].regs->reg_flags & RegRex)
2405 i.rm.reg = i.op[source].regs->reg_num;
2406 i.rm.regmem = i.op[dest].regs->reg_num;
2407 if (i.op[dest].regs->reg_flags & RegRex)
2409 if (i.op[source].regs->reg_flags & RegRex)
2414 { /* If it's not 2 reg operands... */
2417 unsigned int fake_zero_displacement = 0;
2418 unsigned int op = ((i.types[0] & AnyMem)
2420 : (i.types[1] & AnyMem) ? 1 : 2);
2427 if (! i.disp_operands)
2428 fake_zero_displacement = 1;
2431 /* Operand is just <disp> */
2432 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2433 && (flag_code != CODE_64BIT))
2435 i.rm.regmem = NO_BASE_REGISTER_16;
2436 i.types[op] &= ~Disp;
2437 i.types[op] |= Disp16;
2439 else if (flag_code != CODE_64BIT
2440 || (i.prefix[ADDR_PREFIX] != 0))
2442 i.rm.regmem = NO_BASE_REGISTER;
2443 i.types[op] &= ~Disp;
2444 i.types[op] |= Disp32;
2448 /* 64bit mode overwrites the 32bit
2449 absolute addressing by RIP relative
2450 addressing and absolute addressing
2451 is encoded by one of the redundant
2454 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2455 i.sib.base = NO_BASE_REGISTER;
2456 i.sib.index = NO_INDEX_REGISTER;
2457 i.types[op] &= ~Disp;
2458 i.types[op] |= Disp32S;
2461 else /* ! i.base_reg && i.index_reg */
2463 i.sib.index = i.index_reg->reg_num;
2464 i.sib.base = NO_BASE_REGISTER;
2465 i.sib.scale = i.log2_scale_factor;
2466 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2467 i.types[op] &= ~Disp;
2468 if (flag_code != CODE_64BIT)
2469 i.types[op] |= Disp32; /* Must be 32 bit */
2471 i.types[op] |= Disp32S;
2472 if (i.index_reg->reg_flags & RegRex)
2476 /* RIP addressing for 64bit mode. */
2477 else if (i.base_reg->reg_type == BaseIndex)
2479 i.rm.regmem = NO_BASE_REGISTER;
2480 i.types[op] &= ~Disp;
2481 i.types[op] |= Disp32S;
2482 i.flags[op] = Operand_PCrel;
2484 else if (i.base_reg->reg_type & Reg16)
2486 switch (i.base_reg->reg_num)
2491 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2492 i.rm.regmem = i.index_reg->reg_num - 6;
2499 if ((i.types[op] & Disp) == 0)
2501 /* fake (%bp) into 0(%bp) */
2502 i.types[op] |= Disp8;
2503 fake_zero_displacement = 1;
2506 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2507 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2509 default: /* (%si) -> 4 or (%di) -> 5 */
2510 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2512 i.rm.mode = mode_from_disp_size (i.types[op]);
2514 else /* i.base_reg and 32/64 bit mode */
2516 if (flag_code == CODE_64BIT
2517 && (i.types[op] & Disp))
2519 if (i.types[op] & Disp8)
2520 i.types[op] = Disp8 | Disp32S;
2522 i.types[op] = Disp32S;
2524 i.rm.regmem = i.base_reg->reg_num;
2525 if (i.base_reg->reg_flags & RegRex)
2527 i.sib.base = i.base_reg->reg_num;
2528 /* x86-64 ignores REX prefix bit here to avoid
2529 decoder complications. */
2530 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2533 if (i.disp_operands == 0)
2535 fake_zero_displacement = 1;
2536 i.types[op] |= Disp8;
2539 else if (i.base_reg->reg_num == ESP_REG_NUM)
2543 i.sib.scale = i.log2_scale_factor;
2546 /* <disp>(%esp) becomes two byte modrm
2547 with no index register. We've already
2548 stored the code for esp in i.rm.regmem
2549 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2550 base register besides %esp will not use
2551 the extra modrm byte. */
2552 i.sib.index = NO_INDEX_REGISTER;
2553 #if ! SCALE1_WHEN_NO_INDEX
2554 /* Another case where we force the second
2556 if (i.log2_scale_factor)
2557 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2562 i.sib.index = i.index_reg->reg_num;
2563 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2564 if (i.index_reg->reg_flags & RegRex)
2567 i.rm.mode = mode_from_disp_size (i.types[op]);
2570 if (fake_zero_displacement)
2572 /* Fakes a zero displacement assuming that i.types[op]
2573 holds the correct displacement size. */
2576 assert (i.op[op].disps == 0);
2577 exp = &disp_expressions[i.disp_operands++];
2578 i.op[op].disps = exp;
2579 exp->X_op = O_constant;
2580 exp->X_add_number = 0;
2581 exp->X_add_symbol = (symbolS *) 0;
2582 exp->X_op_symbol = (symbolS *) 0;
2586 /* Fill in i.rm.reg or i.rm.regmem field with register
2587 operand (if any) based on i.tm.extension_opcode.
2588 Again, we must be careful to make sure that
2589 segment/control/debug/test/MMX registers are coded
2590 into the i.rm.reg field. */
2595 & (Reg | RegMMX | RegXMM
2597 | Control | Debug | Test))
2600 & (Reg | RegMMX | RegXMM
2602 | Control | Debug | Test))
2605 /* If there is an extension opcode to put here, the
2606 register number must be put into the regmem field. */
2607 if (i.tm.extension_opcode != None)
2609 i.rm.regmem = i.op[op].regs->reg_num;
2610 if (i.op[op].regs->reg_flags & RegRex)
2615 i.rm.reg = i.op[op].regs->reg_num;
2616 if (i.op[op].regs->reg_flags & RegRex)
2620 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2621 we must set it to 3 to indicate this is a register
2622 operand in the regmem field. */
2623 if (!i.mem_operands)
2627 /* Fill in i.rm.reg field with extension opcode (if any). */
2628 if (i.tm.extension_opcode != None)
2629 i.rm.reg = i.tm.extension_opcode;
2632 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2634 if (i.tm.base_opcode == POP_SEG_SHORT
2635 && i.op[0].regs->reg_num == 1)
2637 as_bad (_("you can't `pop %%cs'"));
2640 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2641 if (i.op[0].regs->reg_flags & RegRex)
2644 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2648 else if ((i.tm.opcode_modifier & IsString) != 0)
2650 /* For the string instructions that allow a segment override
2651 on one of their operands, the default segment is ds. */
2655 /* If a segment was explicitly specified,
2656 and the specified segment is not the default,
2657 use an opcode prefix to select it.
2658 If we never figured out what the default segment is,
2659 then default_seg will be zero at this point,
2660 and the specified segment prefix will always be used. */
2661 if ((i.seg[0]) && (i.seg[0] != default_seg))
2663 if (! add_prefix (i.seg[0]->seg_prefix))
2667 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2669 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2670 as_warn (_("translating to `%sp'"), i.tm.name);
2674 /* Handle conversion of 'int $3' --> special int3 insn. */
2675 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2677 i.tm.base_opcode = INT3_OPCODE;
2681 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2682 && i.op[0].disps->X_op == O_constant)
2684 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2685 the absolute address given by the constant. Since ix86 jumps and
2686 calls are pc relative, we need to generate a reloc. */
2687 i.op[0].disps->X_add_symbol = &abs_symbol;
2688 i.op[0].disps->X_op = O_symbol;
2691 if (i.tm.opcode_modifier & Rex64)
2694 /* For 8bit registers we would need an empty rex prefix.
2695 Also in the case instruction is already having prefix,
2696 we need to convert old registers to new ones. */
2698 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2699 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2700 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2701 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2705 for (x = 0; x < 2; x++)
2707 /* Look for 8bit operand that does use old registers. */
2708 if (i.types[x] & Reg8
2709 && !(i.op[x].regs->reg_flags & RegRex64))
2711 /* In case it is "hi" register, give up. */
2712 if (i.op[x].regs->reg_num > 3)
2713 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2714 i.op[x].regs->reg_name);
2716 /* Otherwise it is equivalent to the extended register.
2717 Since the encoding don't change this is merely cosmetical
2718 cleanup for debug output. */
2720 i.op[x].regs = i.op[x].regs + 8;
2725 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2727 | (i.rex.mode64 ? 8 : 0)
2728 | (i.rex.extX ? 4 : 0)
2729 | (i.rex.extY ? 2 : 0)
2730 | (i.rex.extZ ? 1 : 0));
2732 /* We are ready to output the insn. */
2736 /* Tie dwarf2 debug info to the address at the start of the insn.
2737 We can't do this after the insn has been output as the current
2738 frag may have been closed off. eg. by frag_var. */
2739 dwarf2_emit_insn (0);
2742 if (i.tm.opcode_modifier & Jump)
2746 relax_substateT subtype;
2751 if (flag_code == CODE_16BIT)
2755 if (i.prefix[DATA_PREFIX])
2761 /* Pentium4 branch hints. */
2762 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2763 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2768 if (i.prefix[REX_PREFIX])
2774 if (i.prefixes != 0 && !intel_syntax)
2775 as_warn (_("skipping prefixes on this instruction"));
2777 /* It's always a symbol; End frag & setup for relax.
2778 Make sure there is enough room in this frag for the largest
2779 instruction we may generate in md_convert_frag. This is 2
2780 bytes for the opcode and room for the prefix and largest
2782 frag_grow (prefix + 2 + 4);
2783 /* Prefix and 1 opcode byte go in fr_fix. */
2784 p = frag_more (prefix + 1);
2785 if (i.prefix[DATA_PREFIX])
2786 *p++ = DATA_PREFIX_OPCODE;
2787 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2788 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2789 *p++ = i.prefix[SEG_PREFIX];
2790 if (i.prefix[REX_PREFIX])
2791 *p++ = i.prefix[REX_PREFIX];
2792 *p = i.tm.base_opcode;
2794 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2795 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2796 else if ((cpu_arch_flags & Cpu386) != 0)
2797 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2799 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2802 sym = i.op[0].disps->X_add_symbol;
2803 off = i.op[0].disps->X_add_number;
2805 if (i.op[0].disps->X_op != O_constant
2806 && i.op[0].disps->X_op != O_symbol)
2808 /* Handle complex expressions. */
2809 sym = make_expr_symbol (i.op[0].disps);
2813 /* 1 possible extra opcode + 4 byte displacement go in var part.
2814 Pass reloc in fr_var. */
2815 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
2817 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2821 if (i.tm.opcode_modifier & JumpByte)
2823 /* This is a loop or jecxz type instruction. */
2825 if (i.prefix[ADDR_PREFIX])
2827 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2830 /* Pentium4 branch hints. */
2831 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2832 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2834 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2843 if (flag_code == CODE_16BIT)
2846 if (i.prefix[DATA_PREFIX])
2848 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2858 if (i.prefix[REX_PREFIX])
2860 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2864 if (i.prefixes != 0 && !intel_syntax)
2865 as_warn (_("skipping prefixes on this instruction"));
2867 p = frag_more (1 + size);
2868 *p++ = i.tm.base_opcode;
2870 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2871 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2873 else if (i.tm.opcode_modifier & JumpInterSegment)
2880 if (flag_code == CODE_16BIT)
2884 if (i.prefix[DATA_PREFIX])
2890 if (i.prefix[REX_PREFIX])
2900 if (i.prefixes != 0 && !intel_syntax)
2901 as_warn (_("skipping prefixes on this instruction"));
2903 /* 1 opcode; 2 segment; offset */
2904 p = frag_more (prefix + 1 + 2 + size);
2906 if (i.prefix[DATA_PREFIX])
2907 *p++ = DATA_PREFIX_OPCODE;
2909 if (i.prefix[REX_PREFIX])
2910 *p++ = i.prefix[REX_PREFIX];
2912 *p++ = i.tm.base_opcode;
2913 if (i.op[1].imms->X_op == O_constant)
2915 offsetT n = i.op[1].imms->X_add_number;
2918 && !fits_in_unsigned_word (n)
2919 && !fits_in_signed_word (n))
2921 as_bad (_("16-bit jump out of range"));
2924 md_number_to_chars (p, n, size);
2927 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2928 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2929 if (i.op[0].imms->X_op != O_constant)
2930 as_bad (_("can't handle non absolute segment in `%s'"),
2932 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2936 /* Output normal instructions here. */
2939 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2940 byte for the SSE instructions to specify prefix they require. */
2941 if (i.tm.base_opcode & 0xff0000)
2942 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2944 /* The prefix bytes. */
2946 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2952 md_number_to_chars (p, (valueT) *q, 1);
2956 /* Now the opcode; be careful about word order here! */
2957 if (fits_in_unsigned_byte (i.tm.base_opcode))
2959 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2964 /* Put out high byte first: can't use md_number_to_chars! */
2965 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2966 *p = i.tm.base_opcode & 0xff;
2969 /* Now the modrm byte and sib byte (if present). */
2970 if (i.tm.opcode_modifier & Modrm)
2973 md_number_to_chars (p,
2974 (valueT) (i.rm.regmem << 0
2978 /* If i.rm.regmem == ESP (4)
2979 && i.rm.mode != (Register mode)
2981 ==> need second modrm byte. */
2982 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2984 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2987 md_number_to_chars (p,
2988 (valueT) (i.sib.base << 0
2990 | i.sib.scale << 6),
2995 if (i.disp_operands)
2997 register unsigned int n;
2999 for (n = 0; n < i.operands; n++)
3001 if (i.types[n] & Disp)
3003 if (i.op[n].disps->X_op == O_constant)
3009 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3012 if (i.types[n] & Disp8)
3014 if (i.types[n] & Disp64)
3017 val = offset_in_range (i.op[n].disps->X_add_number,
3019 p = frag_more (size);
3020 md_number_to_chars (p, val, size);
3026 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3028 /* The PC relative address is computed relative
3029 to the instruction boundary, so in case immediate
3030 fields follows, we need to adjust the value. */
3031 if (pcrel && i.imm_operands)
3034 register unsigned int n1;
3036 for (n1 = 0; n1 < i.operands; n1++)
3037 if (i.types[n1] & Imm)
3039 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3042 if (i.types[n1] & (Imm8 | Imm8S))
3044 if (i.types[n1] & Imm64)
3049 /* We should find the immediate. */
3050 if (n1 == i.operands)
3052 i.op[n].disps->X_add_number -= imm_size;
3055 if (i.types[n] & Disp32S)
3058 if (i.types[n] & (Disp16 | Disp64))
3061 if (i.types[n] & Disp64)
3065 p = frag_more (size);
3066 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3067 i.op[n].disps, pcrel,
3068 reloc (size, pcrel, sign, i.reloc[n]));
3074 /* Output immediate. */
3077 register unsigned int n;
3079 for (n = 0; n < i.operands; n++)
3081 if (i.types[n] & Imm)
3083 if (i.op[n].imms->X_op == O_constant)
3089 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3092 if (i.types[n] & (Imm8 | Imm8S))
3094 else if (i.types[n] & Imm64)
3097 val = offset_in_range (i.op[n].imms->X_add_number,
3099 p = frag_more (size);
3100 md_number_to_chars (p, val, size);
3104 /* Not absolute_section.
3105 Need a 32-bit fixup (don't support 8bit
3106 non-absolute imms). Try to support other
3108 RELOC_ENUM reloc_type;
3112 if ((i.types[n] & (Imm32S))
3113 && i.suffix == QWORD_MNEM_SUFFIX)
3115 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3118 if (i.types[n] & (Imm8 | Imm8S))
3120 if (i.types[n] & Imm64)
3124 p = frag_more (size);
3125 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3126 #ifdef BFD_ASSEMBLER
3127 if (reloc_type == BFD_RELOC_32
3129 && GOT_symbol == i.op[n].imms->X_add_symbol
3130 && (i.op[n].imms->X_op == O_symbol
3131 || (i.op[n].imms->X_op == O_add
3132 && ((symbol_get_value_expression
3133 (i.op[n].imms->X_op_symbol)->X_op)
3136 /* We don't support dynamic linking on x86-64 yet. */
3137 if (flag_code == CODE_64BIT)
3139 reloc_type = BFD_RELOC_386_GOTPC;
3140 i.op[n].imms->X_add_number += 3;
3143 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3144 i.op[n].imms, 0, reloc_type);
3156 #endif /* DEBUG386 */
3161 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3163 /* Parse operands of the form
3164 <symbol>@GOTOFF+<nnn>
3165 and similar .plt or .got references.
3167 If we find one, set up the correct relocation in RELOC and copy the
3168 input string, minus the `@GOTOFF' into a malloc'd buffer for
3169 parsing by the calling routine. Return this buffer, and if ADJUST
3170 is non-null set it to the length of the string we removed from the
3171 input line. Otherwise return NULL. */
3173 lex_got (reloc, adjust)
3177 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3178 static const struct {
3180 const RELOC_ENUM rel[NUM_FLAG_CODE];
3182 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3183 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3184 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3185 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3190 for (cp = input_line_pointer; *cp != '@'; cp++)
3191 if (is_end_of_line[(unsigned char) *cp])
3194 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3198 len = strlen (gotrel[j].str);
3199 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3201 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3204 char *tmpbuf, *past_reloc;
3206 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3210 if (GOT_symbol == NULL)
3211 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3213 /* Replace the relocation token with ' ', so that
3214 errors like foo@GOTOFF1 will be detected. */
3216 /* The length of the first part of our input line. */
3217 first = cp - input_line_pointer;
3219 /* The second part goes from after the reloc token until
3220 (and including) an end_of_line char. Don't use strlen
3221 here as the end_of_line char may not be a NUL. */
3222 past_reloc = cp + 1 + len;
3223 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3225 second = cp - past_reloc;
3227 /* Allocate and copy string. The trailing NUL shouldn't
3228 be necessary, but be safe. */
3229 tmpbuf = xmalloc (first + second + 2);
3230 memcpy (tmpbuf, input_line_pointer, first);
3231 tmpbuf[first] = ' ';
3232 memcpy (tmpbuf + first + 1, past_reloc, second);
3233 tmpbuf[first + second + 1] = '\0';
3237 as_bad (_("@%s reloc is not supported in %s bit mode"),
3238 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3243 /* Might be a symbol version string. Don't as_bad here. */
3247 /* x86_cons_fix_new is called via the expression parsing code when a
3248 reloc is needed. We use this hook to get the correct .got reloc. */
3249 static RELOC_ENUM got_reloc = NO_RELOC;
3252 x86_cons_fix_new (frag, off, len, exp)
3258 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3259 got_reloc = NO_RELOC;
3260 fix_new_exp (frag, off, len, exp, 0, r);
3264 x86_cons (exp, size)
3270 /* Handle @GOTOFF and the like in an expression. */
3272 char *gotfree_input_line;
3275 save = input_line_pointer;
3276 gotfree_input_line = lex_got (&got_reloc, &adjust);
3277 if (gotfree_input_line)
3278 input_line_pointer = gotfree_input_line;
3282 if (gotfree_input_line)
3284 /* expression () has merrily parsed up to the end of line,
3285 or a comma - in the wrong buffer. Transfer how far
3286 input_line_pointer has moved to the right buffer. */
3287 input_line_pointer = (save
3288 + (input_line_pointer - gotfree_input_line)
3290 free (gotfree_input_line);
3298 static int i386_immediate PARAMS ((char *));
3301 i386_immediate (imm_start)
3304 char *save_input_line_pointer;
3306 char *gotfree_input_line;
3311 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3313 as_bad (_("only 1 or 2 immediate operands are allowed"));
3317 exp = &im_expressions[i.imm_operands++];
3318 i.op[this_operand].imms = exp;
3320 if (is_space_char (*imm_start))
3323 save_input_line_pointer = input_line_pointer;
3324 input_line_pointer = imm_start;
3327 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3328 if (gotfree_input_line)
3329 input_line_pointer = gotfree_input_line;
3332 exp_seg = expression (exp);
3335 if (*input_line_pointer)
3336 as_bad (_("junk `%s' after expression"), input_line_pointer);
3338 input_line_pointer = save_input_line_pointer;
3340 if (gotfree_input_line)
3341 free (gotfree_input_line);
3344 if (exp->X_op == O_absent || exp->X_op == O_big)
3346 /* Missing or bad expr becomes absolute 0. */
3347 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3349 exp->X_op = O_constant;
3350 exp->X_add_number = 0;
3351 exp->X_add_symbol = (symbolS *) 0;
3352 exp->X_op_symbol = (symbolS *) 0;
3354 else if (exp->X_op == O_constant)
3356 /* Size it properly later. */
3357 i.types[this_operand] |= Imm64;
3358 /* If BFD64, sign extend val. */
3359 if (!use_rela_relocations)
3360 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3361 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3363 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3365 #ifdef BFD_ASSEMBLER
3366 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3368 && exp_seg != text_section
3369 && exp_seg != data_section
3370 && exp_seg != bss_section
3371 && exp_seg != undefined_section
3372 #ifdef BFD_ASSEMBLER
3373 && !bfd_is_com_section (exp_seg)
3377 #ifdef BFD_ASSEMBLER
3378 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3380 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3387 /* This is an address. The size of the address will be
3388 determined later, depending on destination register,
3389 suffix, or the default for the section. */
3390 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3396 static char *i386_scale PARAMS ((char *));
3403 char *save = input_line_pointer;
3405 input_line_pointer = scale;
3406 val = get_absolute_expression ();
3412 i.log2_scale_factor = 0;
3415 i.log2_scale_factor = 1;
3418 i.log2_scale_factor = 2;
3421 i.log2_scale_factor = 3;
3424 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3426 input_line_pointer = save;
3429 if (i.log2_scale_factor != 0 && ! i.index_reg)
3431 as_warn (_("scale factor of %d without an index register"),
3432 1 << i.log2_scale_factor);
3433 #if SCALE1_WHEN_NO_INDEX
3434 i.log2_scale_factor = 0;
3437 scale = input_line_pointer;
3438 input_line_pointer = save;
3442 static int i386_displacement PARAMS ((char *, char *));
3445 i386_displacement (disp_start, disp_end)
3449 register expressionS *exp;
3451 char *save_input_line_pointer;
3453 char *gotfree_input_line;
3455 int bigdisp = Disp32;
3457 if (flag_code == CODE_64BIT)
3459 if (!i.prefix[ADDR_PREFIX])
3462 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3464 i.types[this_operand] |= bigdisp;
3466 exp = &disp_expressions[i.disp_operands];
3467 i.op[this_operand].disps = exp;
3469 save_input_line_pointer = input_line_pointer;
3470 input_line_pointer = disp_start;
3471 END_STRING_AND_SAVE (disp_end);
3473 #ifndef GCC_ASM_O_HACK
3474 #define GCC_ASM_O_HACK 0
3477 END_STRING_AND_SAVE (disp_end + 1);
3478 if ((i.types[this_operand] & BaseIndex) != 0
3479 && displacement_string_end[-1] == '+')
3481 /* This hack is to avoid a warning when using the "o"
3482 constraint within gcc asm statements.
3485 #define _set_tssldt_desc(n,addr,limit,type) \
3486 __asm__ __volatile__ ( \
3488 "movw %w1,2+%0\n\t" \
3490 "movb %b1,4+%0\n\t" \
3491 "movb %4,5+%0\n\t" \
3492 "movb $0,6+%0\n\t" \
3493 "movb %h1,7+%0\n\t" \
3495 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3497 This works great except that the output assembler ends
3498 up looking a bit weird if it turns out that there is
3499 no offset. You end up producing code that looks like:
3512 So here we provide the missing zero. */
3514 *displacement_string_end = '0';
3518 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3519 if (gotfree_input_line)
3520 input_line_pointer = gotfree_input_line;
3523 exp_seg = expression (exp);
3526 if (*input_line_pointer)
3527 as_bad (_("junk `%s' after expression"), input_line_pointer);
3529 RESTORE_END_STRING (disp_end + 1);
3531 RESTORE_END_STRING (disp_end);
3532 input_line_pointer = save_input_line_pointer;
3534 if (gotfree_input_line)
3535 free (gotfree_input_line);
3538 #ifdef BFD_ASSEMBLER
3539 /* We do this to make sure that the section symbol is in
3540 the symbol table. We will ultimately change the relocation
3541 to be relative to the beginning of the section. */
3542 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3543 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3545 if (exp->X_op != O_symbol)
3547 as_bad (_("bad expression used with @%s"),
3548 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3554 if (S_IS_LOCAL (exp->X_add_symbol)
3555 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3556 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3557 exp->X_op = O_subtract;
3558 exp->X_op_symbol = GOT_symbol;
3559 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3560 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3562 i.reloc[this_operand] = BFD_RELOC_32;
3566 if (exp->X_op == O_absent || exp->X_op == O_big)
3568 /* Missing or bad expr becomes absolute 0. */
3569 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3571 exp->X_op = O_constant;
3572 exp->X_add_number = 0;
3573 exp->X_add_symbol = (symbolS *) 0;
3574 exp->X_op_symbol = (symbolS *) 0;
3577 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3578 if (exp->X_op != O_constant
3579 #ifdef BFD_ASSEMBLER
3580 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3582 && exp_seg != text_section
3583 && exp_seg != data_section
3584 && exp_seg != bss_section
3585 && exp_seg != undefined_section)
3587 #ifdef BFD_ASSEMBLER
3588 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3590 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3595 else if (flag_code == CODE_64BIT)
3596 i.types[this_operand] |= Disp32S | Disp32;
3600 static int i386_index_check PARAMS ((const char *));
3602 /* Make sure the memory operand we've been dealt is valid.
3603 Return 1 on success, 0 on a failure. */
3606 i386_index_check (operand_string)
3607 const char *operand_string;
3610 #if INFER_ADDR_PREFIX
3616 if (flag_code == CODE_64BIT)
3618 if (i.prefix[ADDR_PREFIX] == 0)
3622 && ((i.base_reg->reg_type & Reg64) == 0)
3623 && (i.base_reg->reg_type != BaseIndex
3626 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3627 != (Reg64|BaseIndex))))
3634 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3636 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3637 != (Reg32|BaseIndex))))
3643 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3647 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3648 != (Reg16|BaseIndex)))
3650 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3651 != (Reg16|BaseIndex))
3653 && i.base_reg->reg_num < 6
3654 && i.index_reg->reg_num >= 6
3655 && i.log2_scale_factor == 0))))
3662 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3664 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3665 != (Reg32|BaseIndex))))
3671 #if INFER_ADDR_PREFIX
3672 if (flag_code != CODE_64BIT
3673 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3675 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3677 /* Change the size of any displacement too. At most one of
3678 Disp16 or Disp32 is set.
3679 FIXME. There doesn't seem to be any real need for separate
3680 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3681 Removing them would probably clean up the code quite a lot. */
3682 if (i.types[this_operand] & (Disp16|Disp32))
3683 i.types[this_operand] ^= (Disp16|Disp32);
3688 as_bad (_("`%s' is not a valid base/index expression"),
3692 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3694 flag_code_names[flag_code]);
3700 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3704 i386_operand (operand_string)
3705 char *operand_string;
3709 char *op_string = operand_string;
3711 if (is_space_char (*op_string))
3714 /* We check for an absolute prefix (differentiating,
3715 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3716 if (*op_string == ABSOLUTE_PREFIX)
3719 if (is_space_char (*op_string))
3721 i.types[this_operand] |= JumpAbsolute;
3724 /* Check if operand is a register. */
3725 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3726 && (r = parse_register (op_string, &end_op)) != NULL)
3728 /* Check for a segment override by searching for ':' after a
3729 segment register. */
3731 if (is_space_char (*op_string))
3733 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3738 i.seg[i.mem_operands] = &es;
3741 i.seg[i.mem_operands] = &cs;
3744 i.seg[i.mem_operands] = &ss;
3747 i.seg[i.mem_operands] = &ds;
3750 i.seg[i.mem_operands] = &fs;
3753 i.seg[i.mem_operands] = &gs;
3757 /* Skip the ':' and whitespace. */
3759 if (is_space_char (*op_string))
3762 if (!is_digit_char (*op_string)
3763 && !is_identifier_char (*op_string)
3764 && *op_string != '('
3765 && *op_string != ABSOLUTE_PREFIX)
3767 as_bad (_("bad memory operand `%s'"), op_string);
3770 /* Handle case of %es:*foo. */
3771 if (*op_string == ABSOLUTE_PREFIX)
3774 if (is_space_char (*op_string))
3776 i.types[this_operand] |= JumpAbsolute;
3778 goto do_memory_reference;
3782 as_bad (_("junk `%s' after register"), op_string);
3785 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3786 i.op[this_operand].regs = r;
3789 else if (*op_string == REGISTER_PREFIX)
3791 as_bad (_("bad register name `%s'"), op_string);
3794 else if (*op_string == IMMEDIATE_PREFIX)
3797 if (i.types[this_operand] & JumpAbsolute)
3799 as_bad (_("immediate operand illegal with absolute jump"));
3802 if (!i386_immediate (op_string))
3805 else if (is_digit_char (*op_string)
3806 || is_identifier_char (*op_string)
3807 || *op_string == '(')
3809 /* This is a memory reference of some sort. */
3812 /* Start and end of displacement string expression (if found). */
3813 char *displacement_string_start;
3814 char *displacement_string_end;
3816 do_memory_reference:
3817 if ((i.mem_operands == 1
3818 && (current_templates->start->opcode_modifier & IsString) == 0)
3819 || i.mem_operands == 2)
3821 as_bad (_("too many memory references for `%s'"),
3822 current_templates->start->name);
3826 /* Check for base index form. We detect the base index form by
3827 looking for an ')' at the end of the operand, searching
3828 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3830 base_string = op_string + strlen (op_string);
3833 if (is_space_char (*base_string))
3836 /* If we only have a displacement, set-up for it to be parsed later. */
3837 displacement_string_start = op_string;
3838 displacement_string_end = base_string + 1;
3840 if (*base_string == ')')
3843 unsigned int parens_balanced = 1;
3844 /* We've already checked that the number of left & right ()'s are
3845 equal, so this loop will not be infinite. */
3849 if (*base_string == ')')
3851 if (*base_string == '(')
3854 while (parens_balanced);
3856 temp_string = base_string;
3858 /* Skip past '(' and whitespace. */
3860 if (is_space_char (*base_string))
3863 if (*base_string == ','
3864 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3865 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3867 displacement_string_end = temp_string;
3869 i.types[this_operand] |= BaseIndex;
3873 base_string = end_op;
3874 if (is_space_char (*base_string))
3878 /* There may be an index reg or scale factor here. */
3879 if (*base_string == ',')
3882 if (is_space_char (*base_string))
3885 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3886 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3888 base_string = end_op;
3889 if (is_space_char (*base_string))
3891 if (*base_string == ',')
3894 if (is_space_char (*base_string))
3897 else if (*base_string != ')')
3899 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3904 else if (*base_string == REGISTER_PREFIX)
3906 as_bad (_("bad register name `%s'"), base_string);
3910 /* Check for scale factor. */
3911 if (*base_string != ')')
3913 char *end_scale = i386_scale (base_string);
3918 base_string = end_scale;
3919 if (is_space_char (*base_string))
3921 if (*base_string != ')')
3923 as_bad (_("expecting `)' after scale factor in `%s'"),
3928 else if (!i.index_reg)
3930 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3935 else if (*base_string != ')')
3937 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3942 else if (*base_string == REGISTER_PREFIX)
3944 as_bad (_("bad register name `%s'"), base_string);
3949 /* If there's an expression beginning the operand, parse it,
3950 assuming displacement_string_start and
3951 displacement_string_end are meaningful. */
3952 if (displacement_string_start != displacement_string_end)
3954 if (!i386_displacement (displacement_string_start,
3955 displacement_string_end))
3959 /* Special case for (%dx) while doing input/output op. */
3961 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3963 && i.log2_scale_factor == 0
3964 && i.seg[i.mem_operands] == 0
3965 && (i.types[this_operand] & Disp) == 0)
3967 i.types[this_operand] = InOutPortReg;
3971 if (i386_index_check (operand_string) == 0)
3977 /* It's not a memory operand; argh! */
3978 as_bad (_("invalid char %s beginning operand %d `%s'"),
3979 output_invalid (*op_string),
3984 return 1; /* Normal return. */
3987 /* md_estimate_size_before_relax()
3989 Called just before relax() for rs_machine_dependent frags. The x86
3990 assembler uses these frags to handle variable size jump
3993 Any symbol that is now undefined will not become defined.
3994 Return the correct fr_subtype in the frag.
3995 Return the initial "guess for variable size of frag" to caller.
3996 The guess is actually the growth beyond the fixed part. Whatever
3997 we do to grow the fixed or variable part contributes to our
4001 md_estimate_size_before_relax (fragP, segment)
4002 register fragS *fragP;
4003 register segT segment;
4005 /* We've already got fragP->fr_subtype right; all we have to do is
4006 check for un-relaxable symbols. On an ELF system, we can't relax
4007 an externally visible symbol, because it may be overridden by a
4009 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4010 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4011 || S_IS_EXTERNAL (fragP->fr_symbol)
4012 || S_IS_WEAK (fragP->fr_symbol)
4016 /* Symbol is undefined in this segment, or we need to keep a
4017 reloc so that weak symbols can be overridden. */
4018 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4019 RELOC_ENUM reloc_type;
4020 unsigned char *opcode;
4023 if (fragP->fr_var != NO_RELOC)
4024 reloc_type = fragP->fr_var;
4026 reloc_type = BFD_RELOC_16_PCREL;
4028 reloc_type = BFD_RELOC_32_PCREL;
4030 old_fr_fix = fragP->fr_fix;
4031 opcode = (unsigned char *) fragP->fr_opcode;
4033 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4036 /* Make jmp (0xeb) a (d)word displacement jump. */
4038 fragP->fr_fix += size;
4039 fix_new (fragP, old_fr_fix, size,
4041 fragP->fr_offset, 1,
4046 if (no_cond_jump_promotion)
4051 /* Negate the condition, and branch past an
4052 unconditional jump. */
4055 /* Insert an unconditional jump. */
4057 /* We added two extra opcode bytes, and have a two byte
4059 fragP->fr_fix += 2 + 2;
4060 fix_new (fragP, old_fr_fix + 2, 2,
4062 fragP->fr_offset, 1,
4069 if (no_cond_jump_promotion)
4072 /* This changes the byte-displacement jump 0x7N
4073 to the (d)word-displacement jump 0x0f,0x8N. */
4074 opcode[1] = opcode[0] + 0x10;
4075 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4076 /* We've added an opcode byte. */
4077 fragP->fr_fix += 1 + size;
4078 fix_new (fragP, old_fr_fix + 1, size,
4080 fragP->fr_offset, 1,
4085 BAD_CASE (fragP->fr_subtype);
4089 return fragP->fr_fix - old_fr_fix;
4093 /* Guess size depending on current relax state. Initially the relax
4094 state will correspond to a short jump and we return 1, because
4095 the variable part of the frag (the branch offset) is one byte
4096 long. However, we can relax a section more than once and in that
4097 case we must either set fr_subtype back to the unrelaxed state,
4098 or return the value for the appropriate branch. */
4099 return md_relax_table[fragP->fr_subtype].rlx_length;
4102 /* Called after relax() is finished.
4104 In: Address of frag.
4105 fr_type == rs_machine_dependent.
4106 fr_subtype is what the address relaxed to.
4108 Out: Any fixSs and constants are set up.
4109 Caller will turn frag into a ".space 0". */
4111 #ifndef BFD_ASSEMBLER
4113 md_convert_frag (headers, sec, fragP)
4114 object_headers *headers ATTRIBUTE_UNUSED;
4115 segT sec ATTRIBUTE_UNUSED;
4116 register fragS *fragP;
4119 md_convert_frag (abfd, sec, fragP)
4120 bfd *abfd ATTRIBUTE_UNUSED;
4121 segT sec ATTRIBUTE_UNUSED;
4122 register fragS *fragP;
4125 register unsigned char *opcode;
4126 unsigned char *where_to_put_displacement = NULL;
4127 offsetT target_address;
4128 offsetT opcode_address;
4129 unsigned int extension = 0;
4130 offsetT displacement_from_opcode_start;
4132 opcode = (unsigned char *) fragP->fr_opcode;
4134 /* Address we want to reach in file space. */
4135 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4137 /* Address opcode resides at in file space. */
4138 opcode_address = fragP->fr_address + fragP->fr_fix;
4140 /* Displacement from opcode start to fill into instruction. */
4141 displacement_from_opcode_start = target_address - opcode_address;
4143 if ((fragP->fr_subtype & BIG) == 0)
4145 /* Don't have to change opcode. */
4146 extension = 1; /* 1 opcode + 1 displacement */
4147 where_to_put_displacement = &opcode[1];
4151 if (no_cond_jump_promotion
4152 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4153 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4155 switch (fragP->fr_subtype)
4157 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4158 extension = 4; /* 1 opcode + 4 displacement */
4160 where_to_put_displacement = &opcode[1];
4163 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4164 extension = 2; /* 1 opcode + 2 displacement */
4166 where_to_put_displacement = &opcode[1];
4169 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4170 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4171 extension = 5; /* 2 opcode + 4 displacement */
4172 opcode[1] = opcode[0] + 0x10;
4173 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4174 where_to_put_displacement = &opcode[2];
4177 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4178 extension = 3; /* 2 opcode + 2 displacement */
4179 opcode[1] = opcode[0] + 0x10;
4180 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4181 where_to_put_displacement = &opcode[2];
4184 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4189 where_to_put_displacement = &opcode[3];
4193 BAD_CASE (fragP->fr_subtype);
4198 /* Now put displacement after opcode. */
4199 md_number_to_chars ((char *) where_to_put_displacement,
4200 (valueT) (displacement_from_opcode_start - extension),
4201 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4202 fragP->fr_fix += extension;
4205 /* Size of byte displacement jmp. */
4206 int md_short_jump_size = 2;
4208 /* Size of dword displacement jmp. */
4209 int md_long_jump_size = 5;
4211 /* Size of relocation record. */
4212 const int md_reloc_size = 8;
4215 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4217 addressT from_addr, to_addr;
4218 fragS *frag ATTRIBUTE_UNUSED;
4219 symbolS *to_symbol ATTRIBUTE_UNUSED;
4223 offset = to_addr - (from_addr + 2);
4224 /* Opcode for byte-disp jump. */
4225 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4226 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4230 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4232 addressT from_addr, to_addr;
4233 fragS *frag ATTRIBUTE_UNUSED;
4234 symbolS *to_symbol ATTRIBUTE_UNUSED;
4238 offset = to_addr - (from_addr + 5);
4239 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4240 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4243 /* Apply a fixup (fixS) to segment data, once it has been determined
4244 by our caller that we have all the info we need to fix it up.
4246 On the 386, immediates, displacements, and data pointers are all in
4247 the same (little-endian) format, so we don't need to care about which
4251 md_apply_fix3 (fixP, valP, seg)
4252 /* The fix we're to put in. */
4254 /* Pointer to the value of the bits. */
4256 /* Segment fix is from. */
4257 segT seg ATTRIBUTE_UNUSED;
4259 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4260 valueT value = * valP;
4262 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4265 switch (fixP->fx_r_type)
4271 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4274 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4277 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4282 /* This is a hack. There should be a better way to handle this.
4283 This covers for the fact that bfd_install_relocation will
4284 subtract the current location (for partial_inplace, PC relative
4285 relocations); see more below. */
4286 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4287 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4288 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4289 && fixP->fx_addsy && !use_rela_relocations)
4292 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4294 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4297 value += fixP->fx_where + fixP->fx_frag->fr_address;
4299 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4300 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4302 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4305 || (symbol_section_p (fixP->fx_addsy)
4306 && fseg != absolute_section))
4307 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4308 && ! S_IS_WEAK (fixP->fx_addsy)
4309 && S_IS_DEFINED (fixP->fx_addsy)
4310 && ! S_IS_COMMON (fixP->fx_addsy))
4312 /* Yes, we add the values in twice. This is because
4313 bfd_perform_relocation subtracts them out again. I think
4314 bfd_perform_relocation is broken, but I don't dare change
4316 value += fixP->fx_where + fixP->fx_frag->fr_address;
4320 #if defined (OBJ_COFF) && defined (TE_PE)
4321 /* For some reason, the PE format does not store a section
4322 address offset for a PC relative symbol. */
4323 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4324 value += md_pcrel_from (fixP);
4328 /* Fix a few things - the dynamic linker expects certain values here,
4329 and we must not dissappoint it. */
4330 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4331 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4333 switch (fixP->fx_r_type)
4335 case BFD_RELOC_386_PLT32:
4336 case BFD_RELOC_X86_64_PLT32:
4337 /* Make the jump instruction point to the address of the operand. At
4338 runtime we merely add the offset to the actual PLT entry. */
4341 case BFD_RELOC_386_GOTPC:
4343 /* This is tough to explain. We end up with this one if we have
4344 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4345 * here is to obtain the absolute address of the GOT, and it is strongly
4346 * preferable from a performance point of view to avoid using a runtime
4347 * relocation for this. The actual sequence of instructions often look
4353 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4355 * The call and pop essentially return the absolute address of
4356 * the label .L66 and store it in %ebx. The linker itself will
4357 * ultimately change the first operand of the addl so that %ebx points to
4358 * the GOT, but to keep things simple, the .o file must have this operand
4359 * set so that it generates not the absolute address of .L66, but the
4360 * absolute address of itself. This allows the linker itself simply
4361 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4362 * added in, and the addend of the relocation is stored in the operand
4363 * field for the instruction itself.
4365 * Our job here is to fix the operand so that it would add the correct
4366 * offset so that %ebx would point to itself. The thing that is tricky is
4367 * that .-.L66 will point to the beginning of the instruction, so we need
4368 * to further modify the operand so that it will point to itself.
4369 * There are other cases where you have something like:
4371 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4373 * and here no correction would be required. Internally in the assembler
4374 * we treat operands of this form as not being pcrel since the '.' is
4375 * explicitly mentioned, and I wonder whether it would simplify matters
4376 * to do it this way. Who knows. In earlier versions of the PIC patches,
4377 * the pcrel_adjust field was used to store the correction, but since the
4378 * expression is not pcrel, I felt it would be confusing to do it this
4383 case BFD_RELOC_386_GOT32:
4384 case BFD_RELOC_X86_64_GOT32:
4385 value = 0; /* Fully resolved at runtime. No addend. */
4387 case BFD_RELOC_386_GOTOFF:
4388 case BFD_RELOC_X86_64_GOTPCREL:
4391 case BFD_RELOC_VTABLE_INHERIT:
4392 case BFD_RELOC_VTABLE_ENTRY:
4399 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4401 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4403 /* Are we finished with this relocation now? */
4404 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
4406 #ifdef BFD_ASSEMBLER
4407 else if (use_rela_relocations)
4409 fixP->fx_no_overflow = 1;
4413 md_number_to_chars (p, value, fixP->fx_size);
4416 #define MAX_LITTLENUMS 6
4418 /* Turn the string pointed to by litP into a floating point constant
4419 of type TYPE, and emit the appropriate bytes. The number of
4420 LITTLENUMS emitted is stored in *SIZEP. An error message is
4421 returned, or NULL on OK. */
4424 md_atof (type, litP, sizeP)
4430 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4431 LITTLENUM_TYPE *wordP;
4453 return _("Bad call to md_atof ()");
4455 t = atof_ieee (input_line_pointer, type, words);
4457 input_line_pointer = t;
4459 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4460 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4461 the bigendian 386. */
4462 for (wordP = words + prec - 1; prec--;)
4464 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4465 litP += sizeof (LITTLENUM_TYPE);
4470 char output_invalid_buf[8];
4477 sprintf (output_invalid_buf, "'%c'", c);
4479 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4480 return output_invalid_buf;
4483 /* REG_STRING starts *before* REGISTER_PREFIX. */
4485 static const reg_entry *
4486 parse_register (reg_string, end_op)
4490 char *s = reg_string;
4492 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4495 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4496 if (*s == REGISTER_PREFIX)
4499 if (is_space_char (*s))
4503 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4505 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4506 return (const reg_entry *) NULL;
4510 /* For naked regs, make sure that we are not dealing with an identifier.
4511 This prevents confusing an identifier like `eax_var' with register
4513 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4514 return (const reg_entry *) NULL;
4518 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4520 /* Handle floating point regs, allowing spaces in the (i) part. */
4521 if (r == i386_regtab /* %st is first entry of table */)
4523 if (is_space_char (*s))
4528 if (is_space_char (*s))
4530 if (*s >= '0' && *s <= '7')
4532 r = &i386_float_regtab[*s - '0'];
4534 if (is_space_char (*s))
4542 /* We have "%st(" then garbage. */
4543 return (const reg_entry *) NULL;
4548 && r->reg_flags & (RegRex64|RegRex)
4549 && flag_code != CODE_64BIT)
4551 return (const reg_entry *) NULL;
4557 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4558 const char *md_shortopts = "kVQ:sq";
4560 const char *md_shortopts = "q";
4563 struct option md_longopts[] = {
4564 #define OPTION_32 (OPTION_MD_BASE + 0)
4565 {"32", no_argument, NULL, OPTION_32},
4566 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4567 #define OPTION_64 (OPTION_MD_BASE + 1)
4568 {"64", no_argument, NULL, OPTION_64},
4570 {NULL, no_argument, NULL, 0}
4572 size_t md_longopts_size = sizeof (md_longopts);
4575 md_parse_option (c, arg)
4577 char *arg ATTRIBUTE_UNUSED;
4585 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4586 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4587 should be emitted or not. FIXME: Not implemented. */
4591 /* -V: SVR4 argument to print version ID. */
4593 print_version_id ();
4596 /* -k: Ignore for FreeBSD compatibility. */
4601 /* -s: On i386 Solaris, this tells the native assembler to use
4602 .stab instead of .stab.excl. We always use .stab anyhow. */
4607 const char **list, **l;
4609 list = bfd_target_list ();
4610 for (l = list; *l != NULL; l++)
4611 if (strcmp (*l, "elf64-x86-64") == 0)
4613 default_arch = "x86_64";
4617 as_fatal (_("No compiled in support for x86_64"));
4624 default_arch = "i386";
4634 md_show_usage (stream)
4637 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4638 fprintf (stream, _("\
4640 -V print assembler version number\n\
4642 -q quieten some warnings\n\
4645 fprintf (stream, _("\
4646 -q quieten some warnings\n"));
4650 #ifdef BFD_ASSEMBLER
4651 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4652 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4654 /* Pick the target format to use. */
4657 i386_target_format ()
4659 if (!strcmp (default_arch, "x86_64"))
4660 set_code_flag (CODE_64BIT);
4661 else if (!strcmp (default_arch, "i386"))
4662 set_code_flag (CODE_32BIT);
4664 as_fatal (_("Unknown architecture"));
4665 switch (OUTPUT_FLAVOR)
4667 #ifdef OBJ_MAYBE_AOUT
4668 case bfd_target_aout_flavour:
4669 return AOUT_TARGET_FORMAT;
4671 #ifdef OBJ_MAYBE_COFF
4672 case bfd_target_coff_flavour:
4675 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4676 case bfd_target_elf_flavour:
4678 if (flag_code == CODE_64BIT)
4679 use_rela_relocations = 1;
4680 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4689 #endif /* OBJ_MAYBE_ more than one */
4691 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4692 void i386_elf_emit_arch_note ()
4694 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4695 && cpu_arch_name != NULL)
4698 asection *seg = now_seg;
4699 subsegT subseg = now_subseg;
4700 Elf_Internal_Note i_note;
4701 Elf_External_Note e_note;
4702 asection *note_secp;
4705 /* Create the .note section. */
4706 note_secp = subseg_new (".note", 0);
4707 bfd_set_section_flags (stdoutput,
4709 SEC_HAS_CONTENTS | SEC_READONLY);
4711 /* Process the arch string. */
4712 len = strlen (cpu_arch_name);
4714 i_note.namesz = len + 1;
4716 i_note.type = NT_ARCH;
4717 p = frag_more (sizeof (e_note.namesz));
4718 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
4719 p = frag_more (sizeof (e_note.descsz));
4720 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
4721 p = frag_more (sizeof (e_note.type));
4722 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
4723 p = frag_more (len + 1);
4724 strcpy (p, cpu_arch_name);
4726 frag_align (2, 0, 0);
4728 subseg_set (seg, subseg);
4732 #endif /* BFD_ASSEMBLER */
4735 md_undefined_symbol (name)
4738 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4739 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4740 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4741 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4745 if (symbol_find (name))
4746 as_bad (_("GOT already in symbol table"));
4747 GOT_symbol = symbol_new (name, undefined_section,
4748 (valueT) 0, &zero_address_frag);
4755 /* Round up a section size to the appropriate boundary. */
4758 md_section_align (segment, size)
4759 segT segment ATTRIBUTE_UNUSED;
4762 #ifdef BFD_ASSEMBLER
4763 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4764 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4766 /* For a.out, force the section size to be aligned. If we don't do
4767 this, BFD will align it for us, but it will not write out the
4768 final bytes of the section. This may be a bug in BFD, but it is
4769 easier to fix it here since that is how the other a.out targets
4773 align = bfd_get_section_alignment (stdoutput, segment);
4774 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4782 /* On the i386, PC-relative offsets are relative to the start of the
4783 next instruction. That is, the address of the offset, plus its
4784 size, since the offset is always the last part of the insn. */
4787 md_pcrel_from (fixP)
4790 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4797 int ignore ATTRIBUTE_UNUSED;
4801 temp = get_absolute_expression ();
4802 subseg_set (bss_section, (subsegT) temp);
4803 demand_empty_rest_of_line ();
4808 #ifdef BFD_ASSEMBLER
4811 i386_validate_fix (fixp)
4814 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4816 /* GOTOFF relocation are nonsense in 64bit mode. */
4817 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4819 if (flag_code != CODE_64BIT)
4821 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4825 if (flag_code == CODE_64BIT)
4827 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4834 tc_gen_reloc (section, fixp)
4835 asection *section ATTRIBUTE_UNUSED;
4839 bfd_reloc_code_real_type code;
4841 switch (fixp->fx_r_type)
4843 case BFD_RELOC_X86_64_PLT32:
4844 case BFD_RELOC_X86_64_GOT32:
4845 case BFD_RELOC_X86_64_GOTPCREL:
4846 case BFD_RELOC_386_PLT32:
4847 case BFD_RELOC_386_GOT32:
4848 case BFD_RELOC_386_GOTOFF:
4849 case BFD_RELOC_386_GOTPC:
4850 case BFD_RELOC_X86_64_32S:
4852 case BFD_RELOC_VTABLE_ENTRY:
4853 case BFD_RELOC_VTABLE_INHERIT:
4854 code = fixp->fx_r_type;
4859 switch (fixp->fx_size)
4862 as_bad_where (fixp->fx_file, fixp->fx_line,
4863 _("can not do %d byte pc-relative relocation"),
4865 code = BFD_RELOC_32_PCREL;
4867 case 1: code = BFD_RELOC_8_PCREL; break;
4868 case 2: code = BFD_RELOC_16_PCREL; break;
4869 case 4: code = BFD_RELOC_32_PCREL; break;
4874 switch (fixp->fx_size)
4877 as_bad_where (fixp->fx_file, fixp->fx_line,
4878 _("can not do %d byte relocation"),
4880 code = BFD_RELOC_32;
4882 case 1: code = BFD_RELOC_8; break;
4883 case 2: code = BFD_RELOC_16; break;
4884 case 4: code = BFD_RELOC_32; break;
4885 case 8: code = BFD_RELOC_64; break;
4891 if (code == BFD_RELOC_32
4893 && fixp->fx_addsy == GOT_symbol)
4895 /* We don't support GOTPC on 64bit targets. */
4896 if (flag_code == CODE_64BIT)
4898 code = BFD_RELOC_386_GOTPC;
4901 rel = (arelent *) xmalloc (sizeof (arelent));
4902 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4903 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4905 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4906 if (!use_rela_relocations)
4908 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4909 vtable entry to be used in the relocation's section offset. */
4910 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4911 rel->address = fixp->fx_offset;
4914 rel->addend = fixp->fx_addnumber;
4918 /* Use the rela in 64bit mode. */
4921 rel->addend = fixp->fx_offset;
4923 rel->addend -= fixp->fx_size;
4926 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4927 if (rel->howto == NULL)
4929 as_bad_where (fixp->fx_file, fixp->fx_line,
4930 _("cannot represent relocation type %s"),
4931 bfd_get_reloc_code_name (code));
4932 /* Set howto to a garbage value so that we can keep going. */
4933 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4934 assert (rel->howto != NULL);
4940 #else /* ! BFD_ASSEMBLER */
4942 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4944 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4947 relax_addressT segment_address_in_file;
4949 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4950 Out: GNU LD relocation length code: 0, 1, or 2. */
4952 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4955 know (fixP->fx_addsy != NULL);
4957 md_number_to_chars (where,
4958 (valueT) (fixP->fx_frag->fr_address
4959 + fixP->fx_where - segment_address_in_file),
4962 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4963 ? S_GET_TYPE (fixP->fx_addsy)
4964 : fixP->fx_addsy->sy_number);
4966 where[6] = (r_symbolnum >> 16) & 0x0ff;
4967 where[5] = (r_symbolnum >> 8) & 0x0ff;
4968 where[4] = r_symbolnum & 0x0ff;
4969 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4970 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4971 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4974 #endif /* OBJ_AOUT or OBJ_BOUT. */
4976 #if defined (I386COFF)
4979 tc_coff_fix2rtype (fixP)
4982 if (fixP->fx_r_type == R_IMAGEBASE)
4985 return (fixP->fx_pcrel ?
4986 (fixP->fx_size == 1 ? R_PCRBYTE :
4987 fixP->fx_size == 2 ? R_PCRWORD :
4989 (fixP->fx_size == 1 ? R_RELBYTE :
4990 fixP->fx_size == 2 ? R_RELWORD :
4995 tc_coff_sizemachdep (frag)
4999 return (frag->fr_next->fr_address - frag->fr_address);
5004 #endif /* I386COFF */
5006 #endif /* ! BFD_ASSEMBLER */
5008 /* Parse operands using Intel syntax. This implements a recursive descent
5009 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5012 FIXME: We do not recognize the full operand grammar defined in the MASM
5013 documentation. In particular, all the structure/union and
5014 high-level macro operands are missing.
5016 Uppercase words are terminals, lower case words are non-terminals.
5017 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5018 bars '|' denote choices. Most grammar productions are implemented in
5019 functions called 'intel_<production>'.
5021 Initial production is 'expr'.
5027 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5029 constant digits [[ radixOverride ]]
5031 dataType BYTE | WORD | DWORD | QWORD | XWORD
5064 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5065 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5067 hexdigit a | b | c | d | e | f
5068 | A | B | C | D | E | F
5078 register specialRegister
5082 segmentRegister CS | DS | ES | FS | GS | SS
5084 specialRegister CR0 | CR2 | CR3
5085 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5086 | TR3 | TR4 | TR5 | TR6 | TR7
5088 We simplify the grammar in obvious places (e.g., register parsing is
5089 done by calling parse_register) and eliminate immediate left recursion
5090 to implement a recursive-descent parser.
5130 /* Parsing structure for the intel syntax parser. Used to implement the
5131 semantic actions for the operand grammar. */
5132 struct intel_parser_s
5134 char *op_string; /* The string being parsed. */
5135 int got_a_float; /* Whether the operand is a float. */
5136 int op_modifier; /* Operand modifier. */
5137 int is_mem; /* 1 if operand is memory reference. */
5138 const reg_entry *reg; /* Last register reference found. */
5139 char *disp; /* Displacement string being built. */
5142 static struct intel_parser_s intel_parser;
5144 /* Token structure for parsing intel syntax. */
5147 int code; /* Token code. */
5148 const reg_entry *reg; /* Register entry for register tokens. */
5149 char *str; /* String representation. */
5152 static struct intel_token cur_token, prev_token;
5154 /* Token codes for the intel parser. Since T_SHORT is already used
5155 by COFF, undefine it first to prevent a warning. */
5170 /* Prototypes for intel parser functions. */
5171 static int intel_match_token PARAMS ((int code));
5172 static void intel_get_token PARAMS ((void));
5173 static void intel_putback_token PARAMS ((void));
5174 static int intel_expr PARAMS ((void));
5175 static int intel_e05 PARAMS ((void));
5176 static int intel_e05_1 PARAMS ((void));
5177 static int intel_e06 PARAMS ((void));
5178 static int intel_e06_1 PARAMS ((void));
5179 static int intel_e09 PARAMS ((void));
5180 static int intel_e09_1 PARAMS ((void));
5181 static int intel_e10 PARAMS ((void));
5182 static int intel_e10_1 PARAMS ((void));
5183 static int intel_e11 PARAMS ((void));
5186 i386_intel_operand (operand_string, got_a_float)
5187 char *operand_string;
5193 /* Initialize token holders. */
5194 cur_token.code = prev_token.code = T_NIL;
5195 cur_token.reg = prev_token.reg = NULL;
5196 cur_token.str = prev_token.str = NULL;
5198 /* Initialize parser structure. */
5199 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5202 strcpy (intel_parser.op_string, operand_string);
5203 intel_parser.got_a_float = got_a_float;
5204 intel_parser.op_modifier = -1;
5205 intel_parser.is_mem = 0;
5206 intel_parser.reg = NULL;
5207 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5208 if (intel_parser.disp == NULL)
5210 intel_parser.disp[0] = '\0';
5212 /* Read the first token and start the parser. */
5214 ret = intel_expr ();
5218 /* If we found a memory reference, hand it over to i386_displacement
5219 to fill in the rest of the operand fields. */
5220 if (intel_parser.is_mem)
5222 if ((i.mem_operands == 1
5223 && (current_templates->start->opcode_modifier & IsString) == 0)
5224 || i.mem_operands == 2)
5226 as_bad (_("too many memory references for '%s'"),
5227 current_templates->start->name);
5232 char *s = intel_parser.disp;
5235 /* Add the displacement expression. */
5237 ret = i386_displacement (s, s + strlen (s))
5238 && i386_index_check (s);
5242 /* Constant and OFFSET expressions are handled by i386_immediate. */
5243 else if (intel_parser.op_modifier == OFFSET_FLAT
5244 || intel_parser.reg == NULL)
5245 ret = i386_immediate (intel_parser.disp);
5249 free (intel_parser.disp);
5259 /* expr SHORT e05 */
5260 if (cur_token.code == T_SHORT)
5262 intel_parser.op_modifier = SHORT;
5263 intel_match_token (T_SHORT);
5265 return (intel_e05 ());
5270 return intel_e05 ();
5280 return (intel_e06 () && intel_e05_1 ());
5286 /* e05' addOp e06 e05' */
5287 if (cur_token.code == '+' || cur_token.code == '-')
5289 strcat (intel_parser.disp, cur_token.str);
5290 intel_match_token (cur_token.code);
5292 return (intel_e06 () && intel_e05_1 ());
5307 return (intel_e09 () && intel_e06_1 ());
5313 /* e06' mulOp e09 e06' */
5314 if (cur_token.code == '*' || cur_token.code == '/')
5316 strcat (intel_parser.disp, cur_token.str);
5317 intel_match_token (cur_token.code);
5319 return (intel_e09 () && intel_e06_1 ());
5327 /* e09 OFFSET e10 e09'
5336 /* e09 OFFSET e10 e09' */
5337 if (cur_token.code == T_OFFSET)
5339 intel_parser.is_mem = 0;
5340 intel_parser.op_modifier = OFFSET_FLAT;
5341 intel_match_token (T_OFFSET);
5343 return (intel_e10 () && intel_e09_1 ());
5348 return (intel_e10 () && intel_e09_1 ());
5354 /* e09' PTR e10 e09' */
5355 if (cur_token.code == T_PTR)
5357 if (prev_token.code == T_BYTE)
5358 i.suffix = BYTE_MNEM_SUFFIX;
5360 else if (prev_token.code == T_WORD)
5362 if (intel_parser.got_a_float == 2) /* "fi..." */
5363 i.suffix = SHORT_MNEM_SUFFIX;
5365 i.suffix = WORD_MNEM_SUFFIX;
5368 else if (prev_token.code == T_DWORD)
5370 if (intel_parser.got_a_float == 1) /* "f..." */
5371 i.suffix = SHORT_MNEM_SUFFIX;
5373 i.suffix = LONG_MNEM_SUFFIX;
5376 else if (prev_token.code == T_QWORD)
5378 if (intel_parser.got_a_float == 1) /* "f..." */
5379 i.suffix = LONG_MNEM_SUFFIX;
5381 i.suffix = QWORD_MNEM_SUFFIX;
5384 else if (prev_token.code == T_XWORD)
5385 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5389 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5393 intel_match_token (T_PTR);
5395 return (intel_e10 () && intel_e09_1 ());
5398 /* e09 : e10 e09' */
5399 else if (cur_token.code == ':')
5401 /* Mark as a memory operand only if it's not already known to be an
5402 offset expression. */
5403 if (intel_parser.op_modifier != OFFSET_FLAT)
5404 intel_parser.is_mem = 1;
5406 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5421 return (intel_e11 () && intel_e10_1 ());
5427 /* e10' [ expr ] e10' */
5428 if (cur_token.code == '[')
5430 intel_match_token ('[');
5432 /* Mark as a memory operand only if it's not already known to be an
5433 offset expression. If it's an offset expression, we need to keep
5435 if (intel_parser.op_modifier != OFFSET_FLAT)
5436 intel_parser.is_mem = 1;
5438 strcat (intel_parser.disp, "[");
5440 /* Add a '+' to the displacement string if necessary. */
5441 if (*intel_parser.disp != '\0'
5442 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5443 strcat (intel_parser.disp, "+");
5445 if (intel_expr () && intel_match_token (']'))
5447 /* Preserve brackets when the operand is an offset expression. */
5448 if (intel_parser.op_modifier == OFFSET_FLAT)
5449 strcat (intel_parser.disp, "]");
5451 return intel_e10_1 ();
5478 if (cur_token.code == '(')
5480 intel_match_token ('(');
5481 strcat (intel_parser.disp, "(");
5483 if (intel_expr () && intel_match_token (')'))
5485 strcat (intel_parser.disp, ")");
5493 else if (cur_token.code == '[')
5495 intel_match_token ('[');
5497 /* Mark as a memory operand only if it's not already known to be an
5498 offset expression. If it's an offset expression, we need to keep
5500 if (intel_parser.op_modifier != OFFSET_FLAT)
5501 intel_parser.is_mem = 1;
5503 strcat (intel_parser.disp, "[");
5505 /* Operands for jump/call inside brackets denote absolute addresses. */
5506 if (current_templates->start->opcode_modifier & Jump
5507 || current_templates->start->opcode_modifier & JumpDword
5508 || current_templates->start->opcode_modifier & JumpByte
5509 || current_templates->start->opcode_modifier & JumpInterSegment)
5510 i.types[this_operand] |= JumpAbsolute;
5512 /* Add a '+' to the displacement string if necessary. */
5513 if (*intel_parser.disp != '\0'
5514 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5515 strcat (intel_parser.disp, "+");
5517 if (intel_expr () && intel_match_token (']'))
5519 /* Preserve brackets when the operand is an offset expression. */
5520 if (intel_parser.op_modifier == OFFSET_FLAT)
5521 strcat (intel_parser.disp, "]");
5534 else if (cur_token.code == T_BYTE
5535 || cur_token.code == T_WORD
5536 || cur_token.code == T_DWORD
5537 || cur_token.code == T_QWORD
5538 || cur_token.code == T_XWORD)
5540 intel_match_token (cur_token.code);
5547 else if (cur_token.code == '$' || cur_token.code == '.')
5549 strcat (intel_parser.disp, cur_token.str);
5550 intel_match_token (cur_token.code);
5552 /* Mark as a memory operand only if it's not already known to be an
5553 offset expression. */
5554 if (intel_parser.op_modifier != OFFSET_FLAT)
5555 intel_parser.is_mem = 1;
5561 else if (cur_token.code == T_REG)
5563 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5565 intel_match_token (T_REG);
5567 /* Check for segment change. */
5568 if (cur_token.code == ':')
5570 if (reg->reg_type & (SReg2 | SReg3))
5572 switch (reg->reg_num)
5575 i.seg[i.mem_operands] = &es;
5578 i.seg[i.mem_operands] = &cs;
5581 i.seg[i.mem_operands] = &ss;
5584 i.seg[i.mem_operands] = &ds;
5587 i.seg[i.mem_operands] = &fs;
5590 i.seg[i.mem_operands] = &gs;
5596 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5601 /* Not a segment register. Check for register scaling. */
5602 else if (cur_token.code == '*')
5604 if (!intel_parser.is_mem)
5606 as_bad (_("Register scaling only allowed in memory operands."));
5610 /* What follows must be a valid scale. */
5611 if (intel_match_token ('*')
5612 && strchr ("01248", *cur_token.str))
5615 i.types[this_operand] |= BaseIndex;
5617 /* Set the scale after setting the register (otherwise,
5618 i386_scale will complain) */
5619 i386_scale (cur_token.str);
5620 intel_match_token (T_CONST);
5624 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5630 /* No scaling. If this is a memory operand, the register is either a
5631 base register (first occurrence) or an index register (second
5633 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5635 if (i.base_reg && i.index_reg)
5637 as_bad (_("Too many register references in memory operand.\n"));
5641 if (i.base_reg == NULL)
5646 i.types[this_operand] |= BaseIndex;
5649 /* Offset modifier. Add the register to the displacement string to be
5650 parsed as an immediate expression after we're done. */
5651 else if (intel_parser.op_modifier == OFFSET_FLAT)
5652 strcat (intel_parser.disp, reg->reg_name);
5654 /* It's neither base nor index nor offset. */
5657 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5658 i.op[this_operand].regs = reg;
5662 /* Since registers are not part of the displacement string (except
5663 when we're parsing offset operands), we may need to remove any
5664 preceding '+' from the displacement string. */
5665 if (*intel_parser.disp != '\0'
5666 && intel_parser.op_modifier != OFFSET_FLAT)
5668 char *s = intel_parser.disp;
5669 s += strlen (s) - 1;
5678 else if (cur_token.code == T_ID)
5680 /* Add the identifier to the displacement string. */
5681 strcat (intel_parser.disp, cur_token.str);
5682 intel_match_token (T_ID);
5684 /* The identifier represents a memory reference only if it's not
5685 preceded by an offset modifier. */
5686 if (intel_parser.op_modifier != OFFSET_FLAT)
5687 intel_parser.is_mem = 1;
5693 else if (cur_token.code == T_CONST
5694 || cur_token.code == '-'
5695 || cur_token.code == '+')
5699 /* Allow constants that start with `+' or `-'. */
5700 if (cur_token.code == '-' || cur_token.code == '+')
5702 strcat (intel_parser.disp, cur_token.str);
5703 intel_match_token (cur_token.code);
5704 if (cur_token.code != T_CONST)
5706 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5712 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5713 if (save_str == NULL)
5715 strcpy (save_str, cur_token.str);
5717 /* Get the next token to check for register scaling. */
5718 intel_match_token (cur_token.code);
5720 /* Check if this constant is a scaling factor for an index register. */
5721 if (cur_token.code == '*')
5723 if (intel_match_token ('*') && cur_token.code == T_REG)
5725 if (!intel_parser.is_mem)
5727 as_bad (_("Register scaling only allowed in memory operands."));
5731 /* The constant is followed by `* reg', so it must be
5733 if (strchr ("01248", *save_str))
5735 i.index_reg = cur_token.reg;
5736 i.types[this_operand] |= BaseIndex;
5738 /* Set the scale after setting the register (otherwise,
5739 i386_scale will complain) */
5740 i386_scale (save_str);
5741 intel_match_token (T_REG);
5743 /* Since registers are not part of the displacement
5744 string, we may need to remove any preceding '+' from
5745 the displacement string. */
5746 if (*intel_parser.disp != '\0')
5748 char *s = intel_parser.disp;
5749 s += strlen (s) - 1;
5762 /* The constant was not used for register scaling. Since we have
5763 already consumed the token following `*' we now need to put it
5764 back in the stream. */
5766 intel_putback_token ();
5769 /* Add the constant to the displacement string. */
5770 strcat (intel_parser.disp, save_str);
5776 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5780 /* Match the given token against cur_token. If they match, read the next
5781 token from the operand string. */
5783 intel_match_token (code)
5786 if (cur_token.code == code)
5793 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5798 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5803 const reg_entry *reg;
5804 struct intel_token new_token;
5806 new_token.code = T_NIL;
5807 new_token.reg = NULL;
5808 new_token.str = NULL;
5810 /* Free the memory allocated to the previous token and move
5811 cur_token to prev_token. */
5813 free (prev_token.str);
5815 prev_token = cur_token;
5817 /* Skip whitespace. */
5818 while (is_space_char (*intel_parser.op_string))
5819 intel_parser.op_string++;
5821 /* Return an empty token if we find nothing else on the line. */
5822 if (*intel_parser.op_string == '\0')
5824 cur_token = new_token;
5828 /* The new token cannot be larger than the remainder of the operand
5830 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5831 if (new_token.str == NULL)
5833 new_token.str[0] = '\0';
5835 if (strchr ("0123456789", *intel_parser.op_string))
5837 char *p = new_token.str;
5838 char *q = intel_parser.op_string;
5839 new_token.code = T_CONST;
5841 /* Allow any kind of identifier char to encompass floating point and
5842 hexadecimal numbers. */
5843 while (is_identifier_char (*q))
5847 /* Recognize special symbol names [0-9][bf]. */
5848 if (strlen (intel_parser.op_string) == 2
5849 && (intel_parser.op_string[1] == 'b'
5850 || intel_parser.op_string[1] == 'f'))
5851 new_token.code = T_ID;
5854 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5856 new_token.code = *intel_parser.op_string;
5857 new_token.str[0] = *intel_parser.op_string;
5858 new_token.str[1] = '\0';
5861 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5862 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5864 new_token.code = T_REG;
5865 new_token.reg = reg;
5867 if (*intel_parser.op_string == REGISTER_PREFIX)
5869 new_token.str[0] = REGISTER_PREFIX;
5870 new_token.str[1] = '\0';
5873 strcat (new_token.str, reg->reg_name);
5876 else if (is_identifier_char (*intel_parser.op_string))
5878 char *p = new_token.str;
5879 char *q = intel_parser.op_string;
5881 /* A '.' or '$' followed by an identifier char is an identifier.
5882 Otherwise, it's operator '.' followed by an expression. */
5883 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5885 new_token.code = *q;
5886 new_token.str[0] = *q;
5887 new_token.str[1] = '\0';
5891 while (is_identifier_char (*q) || *q == '@')
5895 if (strcasecmp (new_token.str, "BYTE") == 0)
5896 new_token.code = T_BYTE;
5898 else if (strcasecmp (new_token.str, "WORD") == 0)
5899 new_token.code = T_WORD;
5901 else if (strcasecmp (new_token.str, "DWORD") == 0)
5902 new_token.code = T_DWORD;
5904 else if (strcasecmp (new_token.str, "QWORD") == 0)
5905 new_token.code = T_QWORD;
5907 else if (strcasecmp (new_token.str, "XWORD") == 0)
5908 new_token.code = T_XWORD;
5910 else if (strcasecmp (new_token.str, "PTR") == 0)
5911 new_token.code = T_PTR;
5913 else if (strcasecmp (new_token.str, "SHORT") == 0)
5914 new_token.code = T_SHORT;
5916 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5918 new_token.code = T_OFFSET;
5920 /* ??? This is not mentioned in the MASM grammar but gcc
5921 makes use of it with -mintel-syntax. OFFSET may be
5922 followed by FLAT: */
5923 if (strncasecmp (q, " FLAT:", 6) == 0)
5924 strcat (new_token.str, " FLAT:");
5927 /* ??? This is not mentioned in the MASM grammar. */
5928 else if (strcasecmp (new_token.str, "FLAT") == 0)
5929 new_token.code = T_OFFSET;
5932 new_token.code = T_ID;
5937 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5939 intel_parser.op_string += strlen (new_token.str);
5940 cur_token = new_token;
5943 /* Put cur_token back into the token stream and make cur_token point to
5946 intel_putback_token ()
5948 intel_parser.op_string -= strlen (cur_token.str);
5949 free (cur_token.str);
5950 cur_token = prev_token;
5952 /* Forget prev_token. */
5953 prev_token.code = T_NIL;
5954 prev_token.reg = NULL;
5955 prev_token.str = NULL;