1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
914 Elf_Internal_Sym *sym,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
939 bind = ELF_ST_BIND (sym->st_info);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
959 bed = get_elf_backend_data (abfd);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
981 newdyn = (abfd->flags & DYNAMIC) != 0;
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
992 if (bfd_is_und_section (sec))
994 if (bind != STB_WEAK)
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
1003 hi->dynamic_def = 1;
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1011 if (h->root.type == bfd_link_hash_new)
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1020 switch (h->root.type)
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1050 *pold_weak = oldweak;
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1098 && !info->export_dynamic
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1127 if (h->type == STT_TLS)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1163 bfd_set_error (bfd_error_bad_value);
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1174 /* Make sure this symbol is dynamic. */
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1201 struct elf_link_hash_entry *vh = *sym_hash;
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1265 /* If a new weak symbol definition comes from a regular file and the
1266 old symbol comes from a dynamic library, we treat the new one as
1267 strong. Similarly, an old weak symbol definition from a regular
1268 file is treated as strong when the new symbol comes from a dynamic
1269 library. Further, an old weak symbol from a dynamic library is
1270 treated as strong if the new symbol is from a dynamic library.
1271 This reflects the way glibc's ld.so works.
1273 Do this before setting *type_change_ok or *size_change_ok so that
1274 we warn properly when dynamic library symbols are overridden. */
1276 if (newdef && !newdyn && olddyn)
1278 if (olddef && newdyn)
1281 /* Allow changes between different types of function symbol. */
1282 if (newfunc && oldfunc)
1283 *type_change_ok = TRUE;
1285 /* It's OK to change the type if either the existing symbol or the
1286 new symbol is weak. A type change is also OK if the old symbol
1287 is undefined and the new symbol is defined. */
1292 && h->root.type == bfd_link_hash_undefined))
1293 *type_change_ok = TRUE;
1295 /* It's OK to change the size if either the existing symbol or the
1296 new symbol is weak, or if the old symbol is undefined. */
1299 || h->root.type == bfd_link_hash_undefined)
1300 *size_change_ok = TRUE;
1302 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1303 symbol, respectively, appears to be a common symbol in a dynamic
1304 object. If a symbol appears in an uninitialized section, and is
1305 not weak, and is not a function, then it may be a common symbol
1306 which was resolved when the dynamic object was created. We want
1307 to treat such symbols specially, because they raise special
1308 considerations when setting the symbol size: if the symbol
1309 appears as a common symbol in a regular object, and the size in
1310 the regular object is larger, we must make sure that we use the
1311 larger size. This problematic case can always be avoided in C,
1312 but it must be handled correctly when using Fortran shared
1315 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1316 likewise for OLDDYNCOMMON and OLDDEF.
1318 Note that this test is just a heuristic, and that it is quite
1319 possible to have an uninitialized symbol in a shared object which
1320 is really a definition, rather than a common symbol. This could
1321 lead to some minor confusion when the symbol really is a common
1322 symbol in some regular object. However, I think it will be
1328 && (sec->flags & SEC_ALLOC) != 0
1329 && (sec->flags & SEC_LOAD) == 0
1332 newdyncommon = TRUE;
1334 newdyncommon = FALSE;
1338 && h->root.type == bfd_link_hash_defined
1340 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1341 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1344 olddyncommon = TRUE;
1346 olddyncommon = FALSE;
1348 /* We now know everything about the old and new symbols. We ask the
1349 backend to check if we can merge them. */
1350 if (bed->merge_symbol != NULL)
1352 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1357 /* If both the old and the new symbols look like common symbols in a
1358 dynamic object, set the size of the symbol to the larger of the
1363 && sym->st_size != h->size)
1365 /* Since we think we have two common symbols, issue a multiple
1366 common warning if desired. Note that we only warn if the
1367 size is different. If the size is the same, we simply let
1368 the old symbol override the new one as normally happens with
1369 symbols defined in dynamic objects. */
1371 if (! ((*info->callbacks->multiple_common)
1372 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1375 if (sym->st_size > h->size)
1376 h->size = sym->st_size;
1378 *size_change_ok = TRUE;
1381 /* If we are looking at a dynamic object, and we have found a
1382 definition, we need to see if the symbol was already defined by
1383 some other object. If so, we want to use the existing
1384 definition, and we do not want to report a multiple symbol
1385 definition error; we do this by clobbering *PSEC to be
1386 bfd_und_section_ptr.
1388 We treat a common symbol as a definition if the symbol in the
1389 shared library is a function, since common symbols always
1390 represent variables; this can cause confusion in principle, but
1391 any such confusion would seem to indicate an erroneous program or
1392 shared library. We also permit a common symbol in a regular
1393 object to override a weak symbol in a shared object. */
1398 || (h->root.type == bfd_link_hash_common
1399 && (newweak || newfunc))))
1403 newdyncommon = FALSE;
1405 *psec = sec = bfd_und_section_ptr;
1406 *size_change_ok = TRUE;
1408 /* If we get here when the old symbol is a common symbol, then
1409 we are explicitly letting it override a weak symbol or
1410 function in a dynamic object, and we don't want to warn about
1411 a type change. If the old symbol is a defined symbol, a type
1412 change warning may still be appropriate. */
1414 if (h->root.type == bfd_link_hash_common)
1415 *type_change_ok = TRUE;
1418 /* Handle the special case of an old common symbol merging with a
1419 new symbol which looks like a common symbol in a shared object.
1420 We change *PSEC and *PVALUE to make the new symbol look like a
1421 common symbol, and let _bfd_generic_link_add_one_symbol do the
1425 && h->root.type == bfd_link_hash_common)
1429 newdyncommon = FALSE;
1430 *pvalue = sym->st_size;
1431 *psec = sec = bed->common_section (oldsec);
1432 *size_change_ok = TRUE;
1435 /* Skip weak definitions of symbols that are already defined. */
1436 if (newdef && olddef && newweak)
1438 /* Don't skip new non-IR weak syms. */
1439 if (!(oldbfd != NULL
1440 && (oldbfd->flags & BFD_PLUGIN) != 0
1441 && (abfd->flags & BFD_PLUGIN) == 0))
1444 /* Merge st_other. If the symbol already has a dynamic index,
1445 but visibility says it should not be visible, turn it into a
1447 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1448 if (h->dynindx != -1)
1449 switch (ELF_ST_VISIBILITY (h->other))
1453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1458 /* If the old symbol is from a dynamic object, and the new symbol is
1459 a definition which is not from a dynamic object, then the new
1460 symbol overrides the old symbol. Symbols from regular files
1461 always take precedence over symbols from dynamic objects, even if
1462 they are defined after the dynamic object in the link.
1464 As above, we again permit a common symbol in a regular object to
1465 override a definition in a shared object if the shared object
1466 symbol is a function or is weak. */
1471 || (bfd_is_com_section (sec)
1472 && (oldweak || oldfunc)))
1477 /* Change the hash table entry to undefined, and let
1478 _bfd_generic_link_add_one_symbol do the right thing with the
1481 h->root.type = bfd_link_hash_undefined;
1482 h->root.u.undef.abfd = h->root.u.def.section->owner;
1483 *size_change_ok = TRUE;
1486 olddyncommon = FALSE;
1488 /* We again permit a type change when a common symbol may be
1489 overriding a function. */
1491 if (bfd_is_com_section (sec))
1495 /* If a common symbol overrides a function, make sure
1496 that it isn't defined dynamically nor has type
1499 h->type = STT_NOTYPE;
1501 *type_change_ok = TRUE;
1504 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1507 /* This union may have been set to be non-NULL when this symbol
1508 was seen in a dynamic object. We must force the union to be
1509 NULL, so that it is correct for a regular symbol. */
1510 h->verinfo.vertree = NULL;
1513 /* Handle the special case of a new common symbol merging with an
1514 old symbol that looks like it might be a common symbol defined in
1515 a shared object. Note that we have already handled the case in
1516 which a new common symbol should simply override the definition
1517 in the shared library. */
1520 && bfd_is_com_section (sec)
1523 /* It would be best if we could set the hash table entry to a
1524 common symbol, but we don't know what to use for the section
1525 or the alignment. */
1526 if (! ((*info->callbacks->multiple_common)
1527 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1530 /* If the presumed common symbol in the dynamic object is
1531 larger, pretend that the new symbol has its size. */
1533 if (h->size > *pvalue)
1536 /* We need to remember the alignment required by the symbol
1537 in the dynamic object. */
1538 BFD_ASSERT (pold_alignment);
1539 *pold_alignment = h->root.u.def.section->alignment_power;
1542 olddyncommon = FALSE;
1544 h->root.type = bfd_link_hash_undefined;
1545 h->root.u.undef.abfd = h->root.u.def.section->owner;
1547 *size_change_ok = TRUE;
1548 *type_change_ok = TRUE;
1550 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1553 h->verinfo.vertree = NULL;
1558 /* Handle the case where we had a versioned symbol in a dynamic
1559 library and now find a definition in a normal object. In this
1560 case, we make the versioned symbol point to the normal one. */
1561 flip->root.type = h->root.type;
1562 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1563 h->root.type = bfd_link_hash_indirect;
1564 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1565 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1569 flip->ref_dynamic = 1;
1576 /* This function is called to create an indirect symbol from the
1577 default for the symbol with the default version if needed. The
1578 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1579 set DYNSYM if the new indirect symbol is dynamic. */
1582 _bfd_elf_add_default_symbol (bfd *abfd,
1583 struct bfd_link_info *info,
1584 struct elf_link_hash_entry *h,
1586 Elf_Internal_Sym *sym,
1589 bfd_boolean *dynsym,
1590 bfd_boolean override)
1592 bfd_boolean type_change_ok;
1593 bfd_boolean size_change_ok;
1596 struct elf_link_hash_entry *hi;
1597 struct bfd_link_hash_entry *bh;
1598 const struct elf_backend_data *bed;
1599 bfd_boolean collect;
1600 bfd_boolean dynamic;
1602 size_t len, shortlen;
1605 /* If this symbol has a version, and it is the default version, we
1606 create an indirect symbol from the default name to the fully
1607 decorated name. This will cause external references which do not
1608 specify a version to be bound to this version of the symbol. */
1609 p = strchr (name, ELF_VER_CHR);
1610 if (p == NULL || p[1] != ELF_VER_CHR)
1615 /* We are overridden by an old definition. We need to check if we
1616 need to create the indirect symbol from the default name. */
1617 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1619 BFD_ASSERT (hi != NULL);
1622 while (hi->root.type == bfd_link_hash_indirect
1623 || hi->root.type == bfd_link_hash_warning)
1625 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1631 bed = get_elf_backend_data (abfd);
1632 collect = bed->collect;
1633 dynamic = (abfd->flags & DYNAMIC) != 0;
1635 shortlen = p - name;
1636 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1637 if (shortname == NULL)
1639 memcpy (shortname, name, shortlen);
1640 shortname[shortlen] = '\0';
1642 /* We are going to create a new symbol. Merge it with any existing
1643 symbol with this name. For the purposes of the merge, act as
1644 though we were defining the symbol we just defined, although we
1645 actually going to define an indirect symbol. */
1646 type_change_ok = FALSE;
1647 size_change_ok = FALSE;
1649 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1650 NULL, NULL, &hi, &skip, &override,
1651 &type_change_ok, &size_change_ok))
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1662 0, name, FALSE, collect, &bh)))
1664 hi = (struct elf_link_hash_entry *) bh;
1668 /* In this case the symbol named SHORTNAME is overriding the
1669 indirect symbol we want to add. We were planning on making
1670 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1671 is the name without a version. NAME is the fully versioned
1672 name, and it is the default version.
1674 Overriding means that we already saw a definition for the
1675 symbol SHORTNAME in a regular object, and it is overriding
1676 the symbol defined in the dynamic object.
1678 When this happens, we actually want to change NAME, the
1679 symbol we just added, to refer to SHORTNAME. This will cause
1680 references to NAME in the shared object to become references
1681 to SHORTNAME in the regular object. This is what we expect
1682 when we override a function in a shared object: that the
1683 references in the shared object will be mapped to the
1684 definition in the regular object. */
1686 while (hi->root.type == bfd_link_hash_indirect
1687 || hi->root.type == bfd_link_hash_warning)
1688 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1690 h->root.type = bfd_link_hash_indirect;
1691 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1695 hi->ref_dynamic = 1;
1699 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1704 /* Now set HI to H, so that the following code will set the
1705 other fields correctly. */
1709 /* Check if HI is a warning symbol. */
1710 if (hi->root.type == bfd_link_hash_warning)
1711 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 /* If there is a duplicate definition somewhere, then HI may not
1714 point to an indirect symbol. We will have reported an error to
1715 the user in that case. */
1717 if (hi->root.type == bfd_link_hash_indirect)
1719 struct elf_link_hash_entry *ht;
1721 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1722 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1724 /* See if the new flags lead us to realize that the symbol must
1730 if (! info->executable
1737 if (hi->ref_regular)
1743 /* We also need to define an indirection from the nondefault version
1747 len = strlen (name);
1748 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1749 if (shortname == NULL)
1751 memcpy (shortname, name, shortlen);
1752 memcpy (shortname + shortlen, p + 1, len - shortlen);
1754 /* Once again, merge with any existing symbol. */
1755 type_change_ok = FALSE;
1756 size_change_ok = FALSE;
1758 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1759 NULL, NULL, &hi, &skip, &override,
1760 &type_change_ok, &size_change_ok))
1768 /* Here SHORTNAME is a versioned name, so we don't expect to see
1769 the type of override we do in the case above unless it is
1770 overridden by a versioned definition. */
1771 if (hi->root.type != bfd_link_hash_defined
1772 && hi->root.type != bfd_link_hash_defweak)
1773 (*_bfd_error_handler)
1774 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1780 if (! (_bfd_generic_link_add_one_symbol
1781 (info, abfd, shortname, BSF_INDIRECT,
1782 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1784 hi = (struct elf_link_hash_entry *) bh;
1786 /* If there is a duplicate definition somewhere, then HI may not
1787 point to an indirect symbol. We will have reported an error
1788 to the user in that case. */
1790 if (hi->root.type == bfd_link_hash_indirect)
1792 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1794 /* See if the new flags lead us to realize that the symbol
1800 if (! info->executable
1806 if (hi->ref_regular)
1816 /* This routine is used to export all defined symbols into the dynamic
1817 symbol table. It is called via elf_link_hash_traverse. */
1820 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1822 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1824 /* Ignore indirect symbols. These are added by the versioning code. */
1825 if (h->root.type == bfd_link_hash_indirect)
1828 /* Ignore this if we won't export it. */
1829 if (!eif->info->export_dynamic && !h->dynamic)
1832 if (h->dynindx == -1
1833 && (h->def_regular || h->ref_regular)
1834 && ! bfd_hide_sym_by_version (eif->info->version_info,
1835 h->root.root.string))
1837 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1847 /* Look through the symbols which are defined in other shared
1848 libraries and referenced here. Update the list of version
1849 dependencies. This will be put into the .gnu.version_r section.
1850 This function is called via elf_link_hash_traverse. */
1853 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1856 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1857 Elf_Internal_Verneed *t;
1858 Elf_Internal_Vernaux *a;
1861 /* We only care about symbols defined in shared objects with version
1866 || h->verinfo.verdef == NULL)
1869 /* See if we already know about this version. */
1870 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1874 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1878 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1884 /* This is a new version. Add it to tree we are building. */
1889 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892 rinfo->failed = TRUE;
1896 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1897 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1898 elf_tdata (rinfo->info->output_bfd)->verref = t;
1902 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1905 rinfo->failed = TRUE;
1909 /* Note that we are copying a string pointer here, and testing it
1910 above. If bfd_elf_string_from_elf_section is ever changed to
1911 discard the string data when low in memory, this will have to be
1913 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1915 a->vna_flags = h->verinfo.verdef->vd_flags;
1916 a->vna_nextptr = t->vn_auxptr;
1918 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1928 /* Figure out appropriate versions for all the symbols. We may not
1929 have the version number script until we have read all of the input
1930 files, so until that point we don't know which symbols should be
1931 local. This function is called via elf_link_hash_traverse. */
1934 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1936 struct elf_info_failed *sinfo;
1937 struct bfd_link_info *info;
1938 const struct elf_backend_data *bed;
1939 struct elf_info_failed eif;
1943 sinfo = (struct elf_info_failed *) data;
1946 /* Fix the symbol flags. */
1949 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 sinfo->failed = TRUE;
1956 /* We only need version numbers for symbols defined in regular
1958 if (!h->def_regular)
1961 bed = get_elf_backend_data (info->output_bfd);
1962 p = strchr (h->root.root.string, ELF_VER_CHR);
1963 if (p != NULL && h->verinfo.vertree == NULL)
1965 struct bfd_elf_version_tree *t;
1970 /* There are two consecutive ELF_VER_CHR characters if this is
1971 not a hidden symbol. */
1973 if (*p == ELF_VER_CHR)
1979 /* If there is no version string, we can just return out. */
1987 /* Look for the version. If we find it, it is no longer weak. */
1988 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1990 if (strcmp (t->name, p) == 0)
1994 struct bfd_elf_version_expr *d;
1996 len = p - h->root.root.string;
1997 alc = (char *) bfd_malloc (len);
2000 sinfo->failed = TRUE;
2003 memcpy (alc, h->root.root.string, len - 1);
2004 alc[len - 1] = '\0';
2005 if (alc[len - 2] == ELF_VER_CHR)
2006 alc[len - 2] = '\0';
2008 h->verinfo.vertree = t;
2012 if (t->globals.list != NULL)
2013 d = (*t->match) (&t->globals, NULL, alc);
2015 /* See if there is anything to force this symbol to
2017 if (d == NULL && t->locals.list != NULL)
2019 d = (*t->match) (&t->locals, NULL, alc);
2022 && ! info->export_dynamic)
2023 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2031 /* If we are building an application, we need to create a
2032 version node for this version. */
2033 if (t == NULL && info->executable)
2035 struct bfd_elf_version_tree **pp;
2038 /* If we aren't going to export this symbol, we don't need
2039 to worry about it. */
2040 if (h->dynindx == -1)
2044 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2047 sinfo->failed = TRUE;
2052 t->name_indx = (unsigned int) -1;
2056 /* Don't count anonymous version tag. */
2057 if (sinfo->info->version_info != NULL
2058 && sinfo->info->version_info->vernum == 0)
2060 for (pp = &sinfo->info->version_info;
2064 t->vernum = version_index;
2068 h->verinfo.vertree = t;
2072 /* We could not find the version for a symbol when
2073 generating a shared archive. Return an error. */
2074 (*_bfd_error_handler)
2075 (_("%B: version node not found for symbol %s"),
2076 info->output_bfd, h->root.root.string);
2077 bfd_set_error (bfd_error_bad_value);
2078 sinfo->failed = TRUE;
2086 /* If we don't have a version for this symbol, see if we can find
2088 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2093 = bfd_find_version_for_sym (sinfo->info->version_info,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2109 Returns FALSE if something goes wrong. */
2112 elf_link_read_relocs_from_section (bfd *abfd,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137 bed = get_elf_backend_data (abfd);
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2146 bfd_set_error (bfd_error_wrong_format);
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2163 if ((size_t) r_symndx >= nsyms)
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2174 else if (r_symndx != STN_UNDEF)
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 struct bfd_elf_section_data *esdo = elf_section_data (o);
2212 Elf_Internal_Rela *internal_rela_relocs;
2214 if (esdo->relocs != NULL)
2215 return esdo->relocs;
2217 if (o->reloc_count == 0)
2220 if (internal_relocs == NULL)
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2234 if (external_relocs == NULL)
2236 bfd_size_type size = 0;
2239 size += esdo->rel.hdr->sh_size;
2241 size += esdo->rela.hdr->sh_size;
2243 alloc1 = bfd_malloc (size);
2246 external_relocs = alloc1;
2249 internal_rela_relocs = internal_relocs;
2252 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2256 external_relocs = (((bfd_byte *) external_relocs)
2257 + esdo->rel.hdr->sh_size);
2258 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2259 * bed->s->int_rels_per_ext_rel);
2263 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2265 internal_rela_relocs)))
2268 /* Cache the results for next time, if we can. */
2270 esdo->relocs = internal_relocs;
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2278 return internal_relocs;
2286 bfd_release (abfd, alloc2);
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2297 _bfd_elf_link_size_reloc_section (bfd *abfd,
2298 struct bfd_elf_section_reloc_data *reldata)
2300 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 if (reldata->hashes == NULL && reldata->count)
2315 struct elf_link_hash_entry **p;
2317 p = (struct elf_link_hash_entry **)
2318 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2322 reldata->hashes = p;
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2333 _bfd_elf_link_output_relocs (bfd *output_bfd,
2334 asection *input_section,
2335 Elf_Internal_Shdr *input_rel_hdr,
2336 Elf_Internal_Rela *internal_relocs,
2337 struct elf_link_hash_entry **rel_hash
2340 Elf_Internal_Rela *irela;
2341 Elf_Internal_Rela *irelaend;
2343 struct bfd_elf_section_reloc_data *output_reldata;
2344 asection *output_section;
2345 const struct elf_backend_data *bed;
2346 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2347 struct bfd_elf_section_data *esdo;
2349 output_section = input_section->output_section;
2351 bed = get_elf_backend_data (output_bfd);
2352 esdo = elf_section_data (output_section);
2353 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2355 output_reldata = &esdo->rel;
2356 swap_out = bed->s->swap_reloc_out;
2358 else if (esdo->rela.hdr
2359 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2361 output_reldata = &esdo->rela;
2362 swap_out = bed->s->swap_reloca_out;
2366 (*_bfd_error_handler)
2367 (_("%B: relocation size mismatch in %B section %A"),
2368 output_bfd, input_section->owner, input_section);
2369 bfd_set_error (bfd_error_wrong_format);
2373 erel = output_reldata->hdr->contents;
2374 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2375 irela = internal_relocs;
2376 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2377 * bed->s->int_rels_per_ext_rel);
2378 while (irela < irelaend)
2380 (*swap_out) (output_bfd, irela, erel);
2381 irela += bed->s->int_rels_per_ext_rel;
2382 erel += input_rel_hdr->sh_entsize;
2385 /* Bump the counter, so that we know where to add the next set of
2387 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2392 /* Make weak undefined symbols in PIE dynamic. */
2395 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2400 && h->root.type == bfd_link_hash_undefweak)
2401 return bfd_elf_link_record_dynamic_symbol (info, h);
2406 /* Fix up the flags for a symbol. This handles various cases which
2407 can only be fixed after all the input files are seen. This is
2408 currently called by both adjust_dynamic_symbol and
2409 assign_sym_version, which is unnecessary but perhaps more robust in
2410 the face of future changes. */
2413 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2414 struct elf_info_failed *eif)
2416 const struct elf_backend_data *bed;
2418 /* If this symbol was mentioned in a non-ELF file, try to set
2419 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2420 permit a non-ELF file to correctly refer to a symbol defined in
2421 an ELF dynamic object. */
2424 while (h->root.type == bfd_link_hash_indirect)
2425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2427 if (h->root.type != bfd_link_hash_defined
2428 && h->root.type != bfd_link_hash_defweak)
2431 h->ref_regular_nonweak = 1;
2435 if (h->root.u.def.section->owner != NULL
2436 && (bfd_get_flavour (h->root.u.def.section->owner)
2437 == bfd_target_elf_flavour))
2440 h->ref_regular_nonweak = 1;
2446 if (h->dynindx == -1
2450 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2459 /* Unfortunately, NON_ELF is only correct if the symbol
2460 was first seen in a non-ELF file. Fortunately, if the symbol
2461 was first seen in an ELF file, we're probably OK unless the
2462 symbol was defined in a non-ELF file. Catch that case here.
2463 FIXME: We're still in trouble if the symbol was first seen in
2464 a dynamic object, and then later in a non-ELF regular object. */
2465 if ((h->root.type == bfd_link_hash_defined
2466 || h->root.type == bfd_link_hash_defweak)
2468 && (h->root.u.def.section->owner != NULL
2469 ? (bfd_get_flavour (h->root.u.def.section->owner)
2470 != bfd_target_elf_flavour)
2471 : (bfd_is_abs_section (h->root.u.def.section)
2472 && !h->def_dynamic)))
2476 /* Backend specific symbol fixup. */
2477 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2478 if (bed->elf_backend_fixup_symbol
2479 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2482 /* If this is a final link, and the symbol was defined as a common
2483 symbol in a regular object file, and there was no definition in
2484 any dynamic object, then the linker will have allocated space for
2485 the symbol in a common section but the DEF_REGULAR
2486 flag will not have been set. */
2487 if (h->root.type == bfd_link_hash_defined
2491 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2494 /* If -Bsymbolic was used (which means to bind references to global
2495 symbols to the definition within the shared object), and this
2496 symbol was defined in a regular object, then it actually doesn't
2497 need a PLT entry. Likewise, if the symbol has non-default
2498 visibility. If the symbol has hidden or internal visibility, we
2499 will force it local. */
2501 && eif->info->shared
2502 && is_elf_hash_table (eif->info->hash)
2503 && (SYMBOLIC_BIND (eif->info, h)
2504 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2507 bfd_boolean force_local;
2509 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2510 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2511 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2514 /* If a weak undefined symbol has non-default visibility, we also
2515 hide it from the dynamic linker. */
2516 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2517 && h->root.type == bfd_link_hash_undefweak)
2518 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2520 /* If this is a weak defined symbol in a dynamic object, and we know
2521 the real definition in the dynamic object, copy interesting flags
2522 over to the real definition. */
2523 if (h->u.weakdef != NULL)
2525 /* If the real definition is defined by a regular object file,
2526 don't do anything special. See the longer description in
2527 _bfd_elf_adjust_dynamic_symbol, below. */
2528 if (h->u.weakdef->def_regular)
2529 h->u.weakdef = NULL;
2532 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2534 while (h->root.type == bfd_link_hash_indirect)
2535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2538 || h->root.type == bfd_link_hash_defweak);
2539 BFD_ASSERT (weakdef->def_dynamic);
2540 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2541 || weakdef->root.type == bfd_link_hash_defweak);
2542 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2549 /* Make the backend pick a good value for a dynamic symbol. This is
2550 called via elf_link_hash_traverse, and also calls itself
2554 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2556 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2558 const struct elf_backend_data *bed;
2560 if (! is_elf_hash_table (eif->info->hash))
2563 /* Ignore indirect symbols. These are added by the versioning code. */
2564 if (h->root.type == bfd_link_hash_indirect)
2567 /* Fix the symbol flags. */
2568 if (! _bfd_elf_fix_symbol_flags (h, eif))
2571 /* If this symbol does not require a PLT entry, and it is not
2572 defined by a dynamic object, or is not referenced by a regular
2573 object, ignore it. We do have to handle a weak defined symbol,
2574 even if no regular object refers to it, if we decided to add it
2575 to the dynamic symbol table. FIXME: Do we normally need to worry
2576 about symbols which are defined by one dynamic object and
2577 referenced by another one? */
2579 && h->type != STT_GNU_IFUNC
2583 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2585 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2589 /* If we've already adjusted this symbol, don't do it again. This
2590 can happen via a recursive call. */
2591 if (h->dynamic_adjusted)
2594 /* Don't look at this symbol again. Note that we must set this
2595 after checking the above conditions, because we may look at a
2596 symbol once, decide not to do anything, and then get called
2597 recursively later after REF_REGULAR is set below. */
2598 h->dynamic_adjusted = 1;
2600 /* If this is a weak definition, and we know a real definition, and
2601 the real symbol is not itself defined by a regular object file,
2602 then get a good value for the real definition. We handle the
2603 real symbol first, for the convenience of the backend routine.
2605 Note that there is a confusing case here. If the real definition
2606 is defined by a regular object file, we don't get the real symbol
2607 from the dynamic object, but we do get the weak symbol. If the
2608 processor backend uses a COPY reloc, then if some routine in the
2609 dynamic object changes the real symbol, we will not see that
2610 change in the corresponding weak symbol. This is the way other
2611 ELF linkers work as well, and seems to be a result of the shared
2614 I will clarify this issue. Most SVR4 shared libraries define the
2615 variable _timezone and define timezone as a weak synonym. The
2616 tzset call changes _timezone. If you write
2617 extern int timezone;
2619 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2620 you might expect that, since timezone is a synonym for _timezone,
2621 the same number will print both times. However, if the processor
2622 backend uses a COPY reloc, then actually timezone will be copied
2623 into your process image, and, since you define _timezone
2624 yourself, _timezone will not. Thus timezone and _timezone will
2625 wind up at different memory locations. The tzset call will set
2626 _timezone, leaving timezone unchanged. */
2628 if (h->u.weakdef != NULL)
2630 /* If we get to this point, there is an implicit reference to
2631 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2632 h->u.weakdef->ref_regular = 1;
2634 /* Ensure that the backend adjust_dynamic_symbol function sees
2635 H->U.WEAKDEF before H by recursively calling ourselves. */
2636 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2640 /* If a symbol has no type and no size and does not require a PLT
2641 entry, then we are probably about to do the wrong thing here: we
2642 are probably going to create a COPY reloc for an empty object.
2643 This case can arise when a shared object is built with assembly
2644 code, and the assembly code fails to set the symbol type. */
2646 && h->type == STT_NOTYPE
2648 (*_bfd_error_handler)
2649 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2650 h->root.root.string);
2652 dynobj = elf_hash_table (eif->info)->dynobj;
2653 bed = get_elf_backend_data (dynobj);
2655 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2664 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2668 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2671 unsigned int power_of_two;
2673 asection *sec = h->root.u.def.section;
2675 /* The section aligment of definition is the maximum alignment
2676 requirement of symbols defined in the section. Since we don't
2677 know the symbol alignment requirement, we start with the
2678 maximum alignment and check low bits of the symbol address
2679 for the minimum alignment. */
2680 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2681 mask = ((bfd_vma) 1 << power_of_two) - 1;
2682 while ((h->root.u.def.value & mask) != 0)
2688 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2691 /* Adjust the section alignment if needed. */
2692 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2697 /* We make sure that the symbol will be aligned properly. */
2698 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2700 /* Define the symbol as being at this point in DYNBSS. */
2701 h->root.u.def.section = dynbss;
2702 h->root.u.def.value = dynbss->size;
2704 /* Increment the size of DYNBSS to make room for the symbol. */
2705 dynbss->size += h->size;
2710 /* Adjust all external symbols pointing into SEC_MERGE sections
2711 to reflect the object merging within the sections. */
2714 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2718 if ((h->root.type == bfd_link_hash_defined
2719 || h->root.type == bfd_link_hash_defweak)
2720 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2721 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2723 bfd *output_bfd = (bfd *) data;
2725 h->root.u.def.value =
2726 _bfd_merged_section_offset (output_bfd,
2727 &h->root.u.def.section,
2728 elf_section_data (sec)->sec_info,
2729 h->root.u.def.value);
2735 /* Returns false if the symbol referred to by H should be considered
2736 to resolve local to the current module, and true if it should be
2737 considered to bind dynamically. */
2740 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2741 struct bfd_link_info *info,
2742 bfd_boolean not_local_protected)
2744 bfd_boolean binding_stays_local_p;
2745 const struct elf_backend_data *bed;
2746 struct elf_link_hash_table *hash_table;
2751 while (h->root.type == bfd_link_hash_indirect
2752 || h->root.type == bfd_link_hash_warning)
2753 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2755 /* If it was forced local, then clearly it's not dynamic. */
2756 if (h->dynindx == -1)
2758 if (h->forced_local)
2761 /* Identify the cases where name binding rules say that a
2762 visible symbol resolves locally. */
2763 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2765 switch (ELF_ST_VISIBILITY (h->other))
2772 hash_table = elf_hash_table (info);
2773 if (!is_elf_hash_table (hash_table))
2776 bed = get_elf_backend_data (hash_table->dynobj);
2778 /* Proper resolution for function pointer equality may require
2779 that these symbols perhaps be resolved dynamically, even though
2780 we should be resolving them to the current module. */
2781 if (!not_local_protected || !bed->is_function_type (h->type))
2782 binding_stays_local_p = TRUE;
2789 /* If it isn't defined locally, then clearly it's dynamic. */
2790 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2793 /* Otherwise, the symbol is dynamic if binding rules don't tell
2794 us that it remains local. */
2795 return !binding_stays_local_p;
2798 /* Return true if the symbol referred to by H should be considered
2799 to resolve local to the current module, and false otherwise. Differs
2800 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2801 undefined symbols. The two functions are virtually identical except
2802 for the place where forced_local and dynindx == -1 are tested. If
2803 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2804 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2805 the symbol is local only for defined symbols.
2806 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2807 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2808 treatment of undefined weak symbols. For those that do not make
2809 undefined weak symbols dynamic, both functions may return false. */
2812 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2813 struct bfd_link_info *info,
2814 bfd_boolean local_protected)
2816 const struct elf_backend_data *bed;
2817 struct elf_link_hash_table *hash_table;
2819 /* If it's a local sym, of course we resolve locally. */
2823 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2824 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2825 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2828 /* Common symbols that become definitions don't get the DEF_REGULAR
2829 flag set, so test it first, and don't bail out. */
2830 if (ELF_COMMON_DEF_P (h))
2832 /* If we don't have a definition in a regular file, then we can't
2833 resolve locally. The sym is either undefined or dynamic. */
2834 else if (!h->def_regular)
2837 /* Forced local symbols resolve locally. */
2838 if (h->forced_local)
2841 /* As do non-dynamic symbols. */
2842 if (h->dynindx == -1)
2845 /* At this point, we know the symbol is defined and dynamic. In an
2846 executable it must resolve locally, likewise when building symbolic
2847 shared libraries. */
2848 if (info->executable || SYMBOLIC_BIND (info, h))
2851 /* Now deal with defined dynamic symbols in shared libraries. Ones
2852 with default visibility might not resolve locally. */
2853 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2856 hash_table = elf_hash_table (info);
2857 if (!is_elf_hash_table (hash_table))
2860 bed = get_elf_backend_data (hash_table->dynobj);
2862 /* STV_PROTECTED non-function symbols are local. */
2863 if (!bed->is_function_type (h->type))
2866 /* Function pointer equality tests may require that STV_PROTECTED
2867 symbols be treated as dynamic symbols. If the address of a
2868 function not defined in an executable is set to that function's
2869 plt entry in the executable, then the address of the function in
2870 a shared library must also be the plt entry in the executable. */
2871 return local_protected;
2874 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2875 aligned. Returns the first TLS output section. */
2877 struct bfd_section *
2878 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2880 struct bfd_section *sec, *tls;
2881 unsigned int align = 0;
2883 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2884 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2888 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2889 if (sec->alignment_power > align)
2890 align = sec->alignment_power;
2892 elf_hash_table (info)->tls_sec = tls;
2894 /* Ensure the alignment of the first section is the largest alignment,
2895 so that the tls segment starts aligned. */
2897 tls->alignment_power = align;
2902 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2904 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2905 Elf_Internal_Sym *sym)
2907 const struct elf_backend_data *bed;
2909 /* Local symbols do not count, but target specific ones might. */
2910 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2911 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2914 bed = get_elf_backend_data (abfd);
2915 /* Function symbols do not count. */
2916 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2919 /* If the section is undefined, then so is the symbol. */
2920 if (sym->st_shndx == SHN_UNDEF)
2923 /* If the symbol is defined in the common section, then
2924 it is a common definition and so does not count. */
2925 if (bed->common_definition (sym))
2928 /* If the symbol is in a target specific section then we
2929 must rely upon the backend to tell us what it is. */
2930 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2931 /* FIXME - this function is not coded yet:
2933 return _bfd_is_global_symbol_definition (abfd, sym);
2935 Instead for now assume that the definition is not global,
2936 Even if this is wrong, at least the linker will behave
2937 in the same way that it used to do. */
2943 /* Search the symbol table of the archive element of the archive ABFD
2944 whose archive map contains a mention of SYMDEF, and determine if
2945 the symbol is defined in this element. */
2947 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2949 Elf_Internal_Shdr * hdr;
2950 bfd_size_type symcount;
2951 bfd_size_type extsymcount;
2952 bfd_size_type extsymoff;
2953 Elf_Internal_Sym *isymbuf;
2954 Elf_Internal_Sym *isym;
2955 Elf_Internal_Sym *isymend;
2958 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2962 if (! bfd_check_format (abfd, bfd_object))
2965 /* If we have already included the element containing this symbol in the
2966 link then we do not need to include it again. Just claim that any symbol
2967 it contains is not a definition, so that our caller will not decide to
2968 (re)include this element. */
2969 if (abfd->archive_pass)
2972 /* Select the appropriate symbol table. */
2973 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2974 hdr = &elf_tdata (abfd)->symtab_hdr;
2976 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2978 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2980 /* The sh_info field of the symtab header tells us where the
2981 external symbols start. We don't care about the local symbols. */
2982 if (elf_bad_symtab (abfd))
2984 extsymcount = symcount;
2989 extsymcount = symcount - hdr->sh_info;
2990 extsymoff = hdr->sh_info;
2993 if (extsymcount == 0)
2996 /* Read in the symbol table. */
2997 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2999 if (isymbuf == NULL)
3002 /* Scan the symbol table looking for SYMDEF. */
3004 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3008 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3013 if (strcmp (name, symdef->name) == 0)
3015 result = is_global_data_symbol_definition (abfd, isym);
3025 /* Add an entry to the .dynamic table. */
3028 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3032 struct elf_link_hash_table *hash_table;
3033 const struct elf_backend_data *bed;
3035 bfd_size_type newsize;
3036 bfd_byte *newcontents;
3037 Elf_Internal_Dyn dyn;
3039 hash_table = elf_hash_table (info);
3040 if (! is_elf_hash_table (hash_table))
3043 bed = get_elf_backend_data (hash_table->dynobj);
3044 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3045 BFD_ASSERT (s != NULL);
3047 newsize = s->size + bed->s->sizeof_dyn;
3048 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3049 if (newcontents == NULL)
3053 dyn.d_un.d_val = val;
3054 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3057 s->contents = newcontents;
3062 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3063 otherwise just check whether one already exists. Returns -1 on error,
3064 1 if a DT_NEEDED tag already exists, and 0 on success. */
3067 elf_add_dt_needed_tag (bfd *abfd,
3068 struct bfd_link_info *info,
3072 struct elf_link_hash_table *hash_table;
3073 bfd_size_type strindex;
3075 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3078 hash_table = elf_hash_table (info);
3079 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3080 if (strindex == (bfd_size_type) -1)
3083 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3086 const struct elf_backend_data *bed;
3089 bed = get_elf_backend_data (hash_table->dynobj);
3090 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3092 for (extdyn = sdyn->contents;
3093 extdyn < sdyn->contents + sdyn->size;
3094 extdyn += bed->s->sizeof_dyn)
3096 Elf_Internal_Dyn dyn;
3098 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3099 if (dyn.d_tag == DT_NEEDED
3100 && dyn.d_un.d_val == strindex)
3102 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3110 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3113 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3117 /* We were just checking for existence of the tag. */
3118 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3124 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3126 for (; needed != NULL; needed = needed->next)
3127 if (strcmp (soname, needed->name) == 0)
3133 /* Sort symbol by value, section, and size. */
3135 elf_sort_symbol (const void *arg1, const void *arg2)
3137 const struct elf_link_hash_entry *h1;
3138 const struct elf_link_hash_entry *h2;
3139 bfd_signed_vma vdiff;
3141 h1 = *(const struct elf_link_hash_entry **) arg1;
3142 h2 = *(const struct elf_link_hash_entry **) arg2;
3143 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3145 return vdiff > 0 ? 1 : -1;
3148 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3150 return sdiff > 0 ? 1 : -1;
3152 vdiff = h1->size - h2->size;
3153 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3156 /* This function is used to adjust offsets into .dynstr for
3157 dynamic symbols. This is called via elf_link_hash_traverse. */
3160 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3162 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3164 if (h->dynindx != -1)
3165 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3169 /* Assign string offsets in .dynstr, update all structures referencing
3173 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3175 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3176 struct elf_link_local_dynamic_entry *entry;
3177 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3178 bfd *dynobj = hash_table->dynobj;
3181 const struct elf_backend_data *bed;
3184 _bfd_elf_strtab_finalize (dynstr);
3185 size = _bfd_elf_strtab_size (dynstr);
3187 bed = get_elf_backend_data (dynobj);
3188 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3189 BFD_ASSERT (sdyn != NULL);
3191 /* Update all .dynamic entries referencing .dynstr strings. */
3192 for (extdyn = sdyn->contents;
3193 extdyn < sdyn->contents + sdyn->size;
3194 extdyn += bed->s->sizeof_dyn)
3196 Elf_Internal_Dyn dyn;
3198 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3202 dyn.d_un.d_val = size;
3212 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3217 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3220 /* Now update local dynamic symbols. */
3221 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3222 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3223 entry->isym.st_name);
3225 /* And the rest of dynamic symbols. */
3226 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3228 /* Adjust version definitions. */
3229 if (elf_tdata (output_bfd)->cverdefs)
3234 Elf_Internal_Verdef def;
3235 Elf_Internal_Verdaux defaux;
3237 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3241 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3243 p += sizeof (Elf_External_Verdef);
3244 if (def.vd_aux != sizeof (Elf_External_Verdef))
3246 for (i = 0; i < def.vd_cnt; ++i)
3248 _bfd_elf_swap_verdaux_in (output_bfd,
3249 (Elf_External_Verdaux *) p, &defaux);
3250 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3252 _bfd_elf_swap_verdaux_out (output_bfd,
3253 &defaux, (Elf_External_Verdaux *) p);
3254 p += sizeof (Elf_External_Verdaux);
3257 while (def.vd_next);
3260 /* Adjust version references. */
3261 if (elf_tdata (output_bfd)->verref)
3266 Elf_Internal_Verneed need;
3267 Elf_Internal_Vernaux needaux;
3269 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3273 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3275 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3276 _bfd_elf_swap_verneed_out (output_bfd, &need,
3277 (Elf_External_Verneed *) p);
3278 p += sizeof (Elf_External_Verneed);
3279 for (i = 0; i < need.vn_cnt; ++i)
3281 _bfd_elf_swap_vernaux_in (output_bfd,
3282 (Elf_External_Vernaux *) p, &needaux);
3283 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3285 _bfd_elf_swap_vernaux_out (output_bfd,
3287 (Elf_External_Vernaux *) p);
3288 p += sizeof (Elf_External_Vernaux);
3291 while (need.vn_next);
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 The default is to only match when the INPUT and OUTPUT are exactly
3302 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3305 return input == output;
3308 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3309 This version is used when different targets for the same architecture
3310 are virtually identical. */
3313 _bfd_elf_relocs_compatible (const bfd_target *input,
3314 const bfd_target *output)
3316 const struct elf_backend_data *obed, *ibed;
3318 if (input == output)
3321 ibed = xvec_get_elf_backend_data (input);
3322 obed = xvec_get_elf_backend_data (output);
3324 if (ibed->arch != obed->arch)
3327 /* If both backends are using this function, deem them compatible. */
3328 return ibed->relocs_compatible == obed->relocs_compatible;
3331 /* Add symbols from an ELF object file to the linker hash table. */
3334 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3336 Elf_Internal_Ehdr *ehdr;
3337 Elf_Internal_Shdr *hdr;
3338 bfd_size_type symcount;
3339 bfd_size_type extsymcount;
3340 bfd_size_type extsymoff;
3341 struct elf_link_hash_entry **sym_hash;
3342 bfd_boolean dynamic;
3343 Elf_External_Versym *extversym = NULL;
3344 Elf_External_Versym *ever;
3345 struct elf_link_hash_entry *weaks;
3346 struct elf_link_hash_entry **nondeflt_vers = NULL;
3347 bfd_size_type nondeflt_vers_cnt = 0;
3348 Elf_Internal_Sym *isymbuf = NULL;
3349 Elf_Internal_Sym *isym;
3350 Elf_Internal_Sym *isymend;
3351 const struct elf_backend_data *bed;
3352 bfd_boolean add_needed;
3353 struct elf_link_hash_table *htab;
3355 void *alloc_mark = NULL;
3356 struct bfd_hash_entry **old_table = NULL;
3357 unsigned int old_size = 0;
3358 unsigned int old_count = 0;
3359 void *old_tab = NULL;
3362 struct bfd_link_hash_entry *old_undefs = NULL;
3363 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3364 long old_dynsymcount = 0;
3365 bfd_size_type old_dynstr_size = 0;
3367 size_t hashsize = 0;
3369 htab = elf_hash_table (info);
3370 bed = get_elf_backend_data (abfd);
3372 if ((abfd->flags & DYNAMIC) == 0)
3378 /* You can't use -r against a dynamic object. Also, there's no
3379 hope of using a dynamic object which does not exactly match
3380 the format of the output file. */
3381 if (info->relocatable
3382 || !is_elf_hash_table (htab)
3383 || info->output_bfd->xvec != abfd->xvec)
3385 if (info->relocatable)
3386 bfd_set_error (bfd_error_invalid_operation);
3388 bfd_set_error (bfd_error_wrong_format);
3393 ehdr = elf_elfheader (abfd);
3394 if (info->warn_alternate_em
3395 && bed->elf_machine_code != ehdr->e_machine
3396 && ((bed->elf_machine_alt1 != 0
3397 && ehdr->e_machine == bed->elf_machine_alt1)
3398 || (bed->elf_machine_alt2 != 0
3399 && ehdr->e_machine == bed->elf_machine_alt2)))
3400 info->callbacks->einfo
3401 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3402 ehdr->e_machine, abfd, bed->elf_machine_code);
3404 /* As a GNU extension, any input sections which are named
3405 .gnu.warning.SYMBOL are treated as warning symbols for the given
3406 symbol. This differs from .gnu.warning sections, which generate
3407 warnings when they are included in an output file. */
3408 /* PR 12761: Also generate this warning when building shared libraries. */
3409 if (info->executable || info->shared)
3413 for (s = abfd->sections; s != NULL; s = s->next)
3417 name = bfd_get_section_name (abfd, s);
3418 if (CONST_STRNEQ (name, ".gnu.warning."))
3423 name += sizeof ".gnu.warning." - 1;
3425 /* If this is a shared object, then look up the symbol
3426 in the hash table. If it is there, and it is already
3427 been defined, then we will not be using the entry
3428 from this shared object, so we don't need to warn.
3429 FIXME: If we see the definition in a regular object
3430 later on, we will warn, but we shouldn't. The only
3431 fix is to keep track of what warnings we are supposed
3432 to emit, and then handle them all at the end of the
3436 struct elf_link_hash_entry *h;
3438 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3440 /* FIXME: What about bfd_link_hash_common? */
3442 && (h->root.type == bfd_link_hash_defined
3443 || h->root.type == bfd_link_hash_defweak))
3445 /* We don't want to issue this warning. Clobber
3446 the section size so that the warning does not
3447 get copied into the output file. */
3454 msg = (char *) bfd_alloc (abfd, sz + 1);
3458 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3463 if (! (_bfd_generic_link_add_one_symbol
3464 (info, abfd, name, BSF_WARNING, s, 0, msg,
3465 FALSE, bed->collect, NULL)))
3468 if (! info->relocatable)
3470 /* Clobber the section size so that the warning does
3471 not get copied into the output file. */
3474 /* Also set SEC_EXCLUDE, so that symbols defined in
3475 the warning section don't get copied to the output. */
3476 s->flags |= SEC_EXCLUDE;
3485 /* If we are creating a shared library, create all the dynamic
3486 sections immediately. We need to attach them to something,
3487 so we attach them to this BFD, provided it is the right
3488 format. FIXME: If there are no input BFD's of the same
3489 format as the output, we can't make a shared library. */
3491 && is_elf_hash_table (htab)
3492 && info->output_bfd->xvec == abfd->xvec
3493 && !htab->dynamic_sections_created)
3495 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3499 else if (!is_elf_hash_table (htab))
3504 const char *soname = NULL;
3506 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3509 /* ld --just-symbols and dynamic objects don't mix very well.
3510 ld shouldn't allow it. */
3511 if ((s = abfd->sections) != NULL
3512 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3515 /* If this dynamic lib was specified on the command line with
3516 --as-needed in effect, then we don't want to add a DT_NEEDED
3517 tag unless the lib is actually used. Similary for libs brought
3518 in by another lib's DT_NEEDED. When --no-add-needed is used
3519 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3520 any dynamic library in DT_NEEDED tags in the dynamic lib at
3522 add_needed = (elf_dyn_lib_class (abfd)
3523 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3524 | DYN_NO_NEEDED)) == 0;
3526 s = bfd_get_section_by_name (abfd, ".dynamic");
3531 unsigned int elfsec;
3532 unsigned long shlink;
3534 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3541 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3542 if (elfsec == SHN_BAD)
3543 goto error_free_dyn;
3544 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3546 for (extdyn = dynbuf;
3547 extdyn < dynbuf + s->size;
3548 extdyn += bed->s->sizeof_dyn)
3550 Elf_Internal_Dyn dyn;
3552 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3553 if (dyn.d_tag == DT_SONAME)
3555 unsigned int tagv = dyn.d_un.d_val;
3556 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3558 goto error_free_dyn;
3560 if (dyn.d_tag == DT_NEEDED)
3562 struct bfd_link_needed_list *n, **pn;
3564 unsigned int tagv = dyn.d_un.d_val;
3566 amt = sizeof (struct bfd_link_needed_list);
3567 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3568 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3569 if (n == NULL || fnm == NULL)
3570 goto error_free_dyn;
3571 amt = strlen (fnm) + 1;
3572 anm = (char *) bfd_alloc (abfd, amt);
3574 goto error_free_dyn;
3575 memcpy (anm, fnm, amt);
3579 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3583 if (dyn.d_tag == DT_RUNPATH)
3585 struct bfd_link_needed_list *n, **pn;
3587 unsigned int tagv = dyn.d_un.d_val;
3589 amt = sizeof (struct bfd_link_needed_list);
3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
3595 anm = (char *) bfd_alloc (abfd, amt);
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3602 for (pn = & runpath;
3608 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3609 if (!runpath && dyn.d_tag == DT_RPATH)
3611 struct bfd_link_needed_list *n, **pn;
3613 unsigned int tagv = dyn.d_un.d_val;
3615 amt = sizeof (struct bfd_link_needed_list);
3616 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3617 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3618 if (n == NULL || fnm == NULL)
3619 goto error_free_dyn;
3620 amt = strlen (fnm) + 1;
3621 anm = (char *) bfd_alloc (abfd, amt);
3623 goto error_free_dyn;
3624 memcpy (anm, fnm, amt);
3634 if (dyn.d_tag == DT_AUDIT)
3636 unsigned int tagv = dyn.d_un.d_val;
3637 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3644 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3645 frees all more recently bfd_alloc'd blocks as well. */
3651 struct bfd_link_needed_list **pn;
3652 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3657 /* We do not want to include any of the sections in a dynamic
3658 object in the output file. We hack by simply clobbering the
3659 list of sections in the BFD. This could be handled more
3660 cleanly by, say, a new section flag; the existing
3661 SEC_NEVER_LOAD flag is not the one we want, because that one
3662 still implies that the section takes up space in the output
3664 bfd_section_list_clear (abfd);
3666 /* Find the name to use in a DT_NEEDED entry that refers to this
3667 object. If the object has a DT_SONAME entry, we use it.
3668 Otherwise, if the generic linker stuck something in
3669 elf_dt_name, we use that. Otherwise, we just use the file
3671 if (soname == NULL || *soname == '\0')
3673 soname = elf_dt_name (abfd);
3674 if (soname == NULL || *soname == '\0')
3675 soname = bfd_get_filename (abfd);
3678 /* Save the SONAME because sometimes the linker emulation code
3679 will need to know it. */
3680 elf_dt_name (abfd) = soname;
3682 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3686 /* If we have already included this dynamic object in the
3687 link, just ignore it. There is no reason to include a
3688 particular dynamic object more than once. */
3692 /* Save the DT_AUDIT entry for the linker emulation code. */
3693 elf_dt_audit (abfd) = audit;
3696 /* If this is a dynamic object, we always link against the .dynsym
3697 symbol table, not the .symtab symbol table. The dynamic linker
3698 will only see the .dynsym symbol table, so there is no reason to
3699 look at .symtab for a dynamic object. */
3701 if (! dynamic || elf_dynsymtab (abfd) == 0)
3702 hdr = &elf_tdata (abfd)->symtab_hdr;
3704 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3706 symcount = hdr->sh_size / bed->s->sizeof_sym;
3708 /* The sh_info field of the symtab header tells us where the
3709 external symbols start. We don't care about the local symbols at
3711 if (elf_bad_symtab (abfd))
3713 extsymcount = symcount;
3718 extsymcount = symcount - hdr->sh_info;
3719 extsymoff = hdr->sh_info;
3723 if (extsymcount != 0)
3725 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3727 if (isymbuf == NULL)
3730 /* We store a pointer to the hash table entry for each external
3732 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3733 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3734 if (sym_hash == NULL)
3735 goto error_free_sym;
3736 elf_sym_hashes (abfd) = sym_hash;
3741 /* Read in any version definitions. */
3742 if (!_bfd_elf_slurp_version_tables (abfd,
3743 info->default_imported_symver))
3744 goto error_free_sym;
3746 /* Read in the symbol versions, but don't bother to convert them
3747 to internal format. */
3748 if (elf_dynversym (abfd) != 0)
3750 Elf_Internal_Shdr *versymhdr;
3752 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3753 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3754 if (extversym == NULL)
3755 goto error_free_sym;
3756 amt = versymhdr->sh_size;
3757 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3758 || bfd_bread (extversym, amt, abfd) != amt)
3759 goto error_free_vers;
3763 /* If we are loading an as-needed shared lib, save the symbol table
3764 state before we start adding symbols. If the lib turns out
3765 to be unneeded, restore the state. */
3766 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3771 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3773 struct bfd_hash_entry *p;
3774 struct elf_link_hash_entry *h;
3776 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3778 h = (struct elf_link_hash_entry *) p;
3779 entsize += htab->root.table.entsize;
3780 if (h->root.type == bfd_link_hash_warning)
3781 entsize += htab->root.table.entsize;
3785 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3786 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3787 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3788 if (old_tab == NULL)
3789 goto error_free_vers;
3791 /* Remember the current objalloc pointer, so that all mem for
3792 symbols added can later be reclaimed. */
3793 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3794 if (alloc_mark == NULL)
3795 goto error_free_vers;
3797 /* Make a special call to the linker "notice" function to
3798 tell it that we are about to handle an as-needed lib. */
3799 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3800 notice_as_needed, 0, NULL))
3801 goto error_free_vers;
3803 /* Clone the symbol table and sym hashes. Remember some
3804 pointers into the symbol table, and dynamic symbol count. */
3805 old_hash = (char *) old_tab + tabsize;
3806 old_ent = (char *) old_hash + hashsize;
3807 memcpy (old_tab, htab->root.table.table, tabsize);
3808 memcpy (old_hash, sym_hash, hashsize);
3809 old_undefs = htab->root.undefs;
3810 old_undefs_tail = htab->root.undefs_tail;
3811 old_table = htab->root.table.table;
3812 old_size = htab->root.table.size;
3813 old_count = htab->root.table.count;
3814 old_dynsymcount = htab->dynsymcount;
3815 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3817 for (i = 0; i < htab->root.table.size; i++)
3819 struct bfd_hash_entry *p;
3820 struct elf_link_hash_entry *h;
3822 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3824 memcpy (old_ent, p, htab->root.table.entsize);
3825 old_ent = (char *) old_ent + htab->root.table.entsize;
3826 h = (struct elf_link_hash_entry *) p;
3827 if (h->root.type == bfd_link_hash_warning)
3829 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3830 old_ent = (char *) old_ent + htab->root.table.entsize;
3837 ever = extversym != NULL ? extversym + extsymoff : NULL;
3838 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3840 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3844 asection *sec, *new_sec;
3847 struct elf_link_hash_entry *h;
3848 struct elf_link_hash_entry *hi;
3849 bfd_boolean definition;
3850 bfd_boolean size_change_ok;
3851 bfd_boolean type_change_ok;
3852 bfd_boolean new_weakdef;
3853 bfd_boolean new_weak;
3854 bfd_boolean old_weak;
3855 bfd_boolean override;
3857 unsigned int old_alignment;
3859 bfd * undef_bfd = NULL;
3863 flags = BSF_NO_FLAGS;
3865 value = isym->st_value;
3867 common = bed->common_definition (isym);
3869 bind = ELF_ST_BIND (isym->st_info);
3873 /* This should be impossible, since ELF requires that all
3874 global symbols follow all local symbols, and that sh_info
3875 point to the first global symbol. Unfortunately, Irix 5
3880 if (isym->st_shndx != SHN_UNDEF && !common)
3888 case STB_GNU_UNIQUE:
3889 flags = BSF_GNU_UNIQUE;
3893 /* Leave it up to the processor backend. */
3897 if (isym->st_shndx == SHN_UNDEF)
3898 sec = bfd_und_section_ptr;
3899 else if (isym->st_shndx == SHN_ABS)
3900 sec = bfd_abs_section_ptr;
3901 else if (isym->st_shndx == SHN_COMMON)
3903 sec = bfd_com_section_ptr;
3904 /* What ELF calls the size we call the value. What ELF
3905 calls the value we call the alignment. */
3906 value = isym->st_size;
3910 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3912 sec = bfd_abs_section_ptr;
3913 else if (discarded_section (sec))
3915 /* Symbols from discarded section are undefined. We keep
3917 sec = bfd_und_section_ptr;
3918 isym->st_shndx = SHN_UNDEF;
3920 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3924 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3927 goto error_free_vers;
3929 if (isym->st_shndx == SHN_COMMON
3930 && (abfd->flags & BFD_PLUGIN) != 0)
3932 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3936 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3938 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3940 goto error_free_vers;
3944 else if (isym->st_shndx == SHN_COMMON
3945 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3946 && !info->relocatable)
3948 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3953 | SEC_LINKER_CREATED);
3954 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3956 goto error_free_vers;
3960 else if (bed->elf_add_symbol_hook)
3962 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3964 goto error_free_vers;
3966 /* The hook function sets the name to NULL if this symbol
3967 should be skipped for some reason. */
3972 /* Sanity check that all possibilities were handled. */
3975 bfd_set_error (bfd_error_bad_value);
3976 goto error_free_vers;
3979 if (bfd_is_und_section (sec)
3980 || bfd_is_com_section (sec))
3985 size_change_ok = FALSE;
3986 type_change_ok = bed->type_change_ok;
3992 if (is_elf_hash_table (htab))
3994 Elf_Internal_Versym iver;
3995 unsigned int vernum = 0;
3998 /* If this is a definition of a symbol which was previously
3999 referenced, then make a note of the bfd that contained the
4000 reference. This is used if we need to refer to the source
4001 of the reference later on. */
4002 if (! bfd_is_und_section (sec))
4004 h = elf_link_hash_lookup (elf_hash_table (info), name,
4005 FALSE, FALSE, FALSE);
4008 && (h->root.type == bfd_link_hash_undefined
4009 || h->root.type == bfd_link_hash_undefweak)
4010 && h->root.u.undef.abfd)
4011 undef_bfd = h->root.u.undef.abfd;
4016 if (info->default_imported_symver)
4017 /* Use the default symbol version created earlier. */
4018 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4023 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4025 vernum = iver.vs_vers & VERSYM_VERSION;
4027 /* If this is a hidden symbol, or if it is not version
4028 1, we append the version name to the symbol name.
4029 However, we do not modify a non-hidden absolute symbol
4030 if it is not a function, because it might be the version
4031 symbol itself. FIXME: What if it isn't? */
4032 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4034 && (!bfd_is_abs_section (sec)
4035 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4038 size_t namelen, verlen, newlen;
4041 if (isym->st_shndx != SHN_UNDEF)
4043 if (vernum > elf_tdata (abfd)->cverdefs)
4045 else if (vernum > 1)
4047 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4053 (*_bfd_error_handler)
4054 (_("%B: %s: invalid version %u (max %d)"),
4056 elf_tdata (abfd)->cverdefs);
4057 bfd_set_error (bfd_error_bad_value);
4058 goto error_free_vers;
4063 /* We cannot simply test for the number of
4064 entries in the VERNEED section since the
4065 numbers for the needed versions do not start
4067 Elf_Internal_Verneed *t;
4070 for (t = elf_tdata (abfd)->verref;
4074 Elf_Internal_Vernaux *a;
4076 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4078 if (a->vna_other == vernum)
4080 verstr = a->vna_nodename;
4089 (*_bfd_error_handler)
4090 (_("%B: %s: invalid needed version %d"),
4091 abfd, name, vernum);
4092 bfd_set_error (bfd_error_bad_value);
4093 goto error_free_vers;
4097 namelen = strlen (name);
4098 verlen = strlen (verstr);
4099 newlen = namelen + verlen + 2;
4100 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4101 && isym->st_shndx != SHN_UNDEF)
4104 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4105 if (newname == NULL)
4106 goto error_free_vers;
4107 memcpy (newname, name, namelen);
4108 p = newname + namelen;
4110 /* If this is a defined non-hidden version symbol,
4111 we add another @ to the name. This indicates the
4112 default version of the symbol. */
4113 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4114 && isym->st_shndx != SHN_UNDEF)
4116 memcpy (p, verstr, verlen + 1);
4121 /* If necessary, make a second attempt to locate the bfd
4122 containing an unresolved reference to the current symbol. */
4123 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4125 h = elf_link_hash_lookup (elf_hash_table (info), name,
4126 FALSE, FALSE, FALSE);
4129 && (h->root.type == bfd_link_hash_undefined
4130 || h->root.type == bfd_link_hash_undefweak)
4131 && h->root.u.undef.abfd)
4132 undef_bfd = h->root.u.undef.abfd;
4135 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4136 &value, &old_weak, &old_alignment,
4137 sym_hash, &skip, &override,
4138 &type_change_ok, &size_change_ok))
4139 goto error_free_vers;
4148 while (h->root.type == bfd_link_hash_indirect
4149 || h->root.type == bfd_link_hash_warning)
4150 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4152 /* Remember the old alignment if this is a common symbol, so
4153 that we don't reduce the alignment later on. We can't
4154 check later, because _bfd_generic_link_add_one_symbol
4155 will set a default for the alignment which we want to
4156 override. We also remember the old bfd where the existing
4157 definition comes from. */
4158 switch (h->root.type)
4163 case bfd_link_hash_defined:
4164 case bfd_link_hash_defweak:
4165 old_bfd = h->root.u.def.section->owner;
4168 case bfd_link_hash_common:
4169 old_bfd = h->root.u.c.p->section->owner;
4170 old_alignment = h->root.u.c.p->alignment_power;
4174 if (elf_tdata (abfd)->verdef != NULL
4177 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4180 if (! (_bfd_generic_link_add_one_symbol
4181 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4182 (struct bfd_link_hash_entry **) sym_hash)))
4183 goto error_free_vers;
4186 /* We need to make sure that indirect symbol dynamic flags are
4189 while (h->root.type == bfd_link_hash_indirect
4190 || h->root.type == bfd_link_hash_warning)
4191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195 new_weak = (flags & BSF_WEAK) != 0;
4196 new_weakdef = FALSE;
4200 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4201 && is_elf_hash_table (htab)
4202 && h->u.weakdef == NULL)
4204 /* Keep a list of all weak defined non function symbols from
4205 a dynamic object, using the weakdef field. Later in this
4206 function we will set the weakdef field to the correct
4207 value. We only put non-function symbols from dynamic
4208 objects on this list, because that happens to be the only
4209 time we need to know the normal symbol corresponding to a
4210 weak symbol, and the information is time consuming to
4211 figure out. If the weakdef field is not already NULL,
4212 then this symbol was already defined by some previous
4213 dynamic object, and we will be using that previous
4214 definition anyhow. */
4216 h->u.weakdef = weaks;
4221 /* Set the alignment of a common symbol. */
4222 if ((common || bfd_is_com_section (sec))
4223 && h->root.type == bfd_link_hash_common)
4228 align = bfd_log2 (isym->st_value);
4231 /* The new symbol is a common symbol in a shared object.
4232 We need to get the alignment from the section. */
4233 align = new_sec->alignment_power;
4235 if (align > old_alignment)
4236 h->root.u.c.p->alignment_power = align;
4238 h->root.u.c.p->alignment_power = old_alignment;
4241 if (is_elf_hash_table (htab))
4245 /* Check the alignment when a common symbol is involved. This
4246 can change when a common symbol is overridden by a normal
4247 definition or a common symbol is ignored due to the old
4248 normal definition. We need to make sure the maximum
4249 alignment is maintained. */
4250 if ((old_alignment || common)
4251 && h->root.type != bfd_link_hash_common)
4253 unsigned int common_align;
4254 unsigned int normal_align;
4255 unsigned int symbol_align;
4259 symbol_align = ffs (h->root.u.def.value) - 1;
4260 if (h->root.u.def.section->owner != NULL
4261 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4263 normal_align = h->root.u.def.section->alignment_power;
4264 if (normal_align > symbol_align)
4265 normal_align = symbol_align;
4268 normal_align = symbol_align;
4272 common_align = old_alignment;
4273 common_bfd = old_bfd;
4278 common_align = bfd_log2 (isym->st_value);
4280 normal_bfd = old_bfd;
4283 if (normal_align < common_align)
4285 /* PR binutils/2735 */
4286 if (normal_bfd == NULL)
4287 (*_bfd_error_handler)
4288 (_("Warning: alignment %u of common symbol `%s' in %B"
4289 " is greater than the alignment (%u) of its section %A"),
4290 common_bfd, h->root.u.def.section,
4291 1 << common_align, name, 1 << normal_align);
4293 (*_bfd_error_handler)
4294 (_("Warning: alignment %u of symbol `%s' in %B"
4295 " is smaller than %u in %B"),
4296 normal_bfd, common_bfd,
4297 1 << normal_align, name, 1 << common_align);
4301 /* Remember the symbol size if it isn't undefined. */
4302 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4303 && (definition || h->size == 0))
4306 && h->size != isym->st_size
4307 && ! size_change_ok)
4308 (*_bfd_error_handler)
4309 (_("Warning: size of symbol `%s' changed"
4310 " from %lu in %B to %lu in %B"),
4312 name, (unsigned long) h->size,
4313 (unsigned long) isym->st_size);
4315 h->size = isym->st_size;
4318 /* If this is a common symbol, then we always want H->SIZE
4319 to be the size of the common symbol. The code just above
4320 won't fix the size if a common symbol becomes larger. We
4321 don't warn about a size change here, because that is
4322 covered by --warn-common. Allow changed between different
4324 if (h->root.type == bfd_link_hash_common)
4325 h->size = h->root.u.c.size;
4327 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4328 && ((definition && !new_weak)
4329 || (old_weak && h->root.type == bfd_link_hash_common)
4330 || h->type == STT_NOTYPE))
4332 unsigned int type = ELF_ST_TYPE (isym->st_info);
4334 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4336 if (type == STT_GNU_IFUNC
4337 && (abfd->flags & DYNAMIC) != 0)
4340 if (h->type != type)
4342 if (h->type != STT_NOTYPE && ! type_change_ok)
4343 (*_bfd_error_handler)
4344 (_("Warning: type of symbol `%s' changed"
4345 " from %d to %d in %B"),
4346 abfd, name, h->type, type);
4352 /* Merge st_other field. */
4353 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4355 /* Set a flag in the hash table entry indicating the type of
4356 reference or definition we just found. Keep a count of
4357 the number of dynamic symbols we find. A dynamic symbol
4358 is one which is referenced or defined by both a regular
4359 object and a shared object. */
4362 /* Plugin symbols aren't normal. Don't set def_regular or
4363 ref_regular for them, nor make them dynamic. */
4364 if ((abfd->flags & BFD_PLUGIN) != 0)
4371 if (bind != STB_WEAK)
4372 h->ref_regular_nonweak = 1;
4384 /* If the indirect symbol has been forced local, don't
4385 make the real symbol dynamic. */
4386 if ((h == hi || !hi->forced_local)
4387 && (! info->executable
4397 hi->ref_dynamic = 1;
4402 hi->def_dynamic = 1;
4405 /* If the indirect symbol has been forced local, don't
4406 make the real symbol dynamic. */
4407 if ((h == hi || !hi->forced_local)
4410 || (h->u.weakdef != NULL
4412 && h->u.weakdef->dynindx != -1)))
4416 /* We don't want to make debug symbol dynamic. */
4417 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4422 h->target_internal = isym->st_target_internal;
4423 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4426 /* Check to see if we need to add an indirect symbol for
4427 the default name. */
4428 if (definition || h->root.type == bfd_link_hash_common)
4429 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4430 &sec, &value, &dynsym,
4432 goto error_free_vers;
4434 if (definition && !dynamic)
4436 char *p = strchr (name, ELF_VER_CHR);
4437 if (p != NULL && p[1] != ELF_VER_CHR)
4439 /* Queue non-default versions so that .symver x, x@FOO
4440 aliases can be checked. */
4443 amt = ((isymend - isym + 1)
4444 * sizeof (struct elf_link_hash_entry *));
4446 (struct elf_link_hash_entry **) bfd_malloc (amt);
4448 goto error_free_vers;
4450 nondeflt_vers[nondeflt_vers_cnt++] = h;
4454 if (dynsym && h->dynindx == -1)
4456 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4457 goto error_free_vers;
4458 if (h->u.weakdef != NULL
4460 && h->u.weakdef->dynindx == -1)
4462 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4463 goto error_free_vers;
4466 else if (dynsym && h->dynindx != -1)
4467 /* If the symbol already has a dynamic index, but
4468 visibility says it should not be visible, turn it into
4470 switch (ELF_ST_VISIBILITY (h->other))
4474 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4479 /* Don't add DT_NEEDED for references from the dummy bfd. */
4483 && h->ref_regular_nonweak
4484 && (undef_bfd == NULL
4485 || (undef_bfd->flags & BFD_PLUGIN) == 0))
4486 || (h->ref_dynamic_nonweak
4487 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4488 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4491 const char *soname = elf_dt_name (abfd);
4493 /* A symbol from a library loaded via DT_NEEDED of some
4494 other library is referenced by a regular object.
4495 Add a DT_NEEDED entry for it. Issue an error if
4496 --no-add-needed is used and the reference was not
4498 if (undef_bfd != NULL
4499 && h->ref_regular_nonweak
4500 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4502 (*_bfd_error_handler)
4503 (_("%B: undefined reference to symbol '%s'"),
4505 (*_bfd_error_handler)
4506 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4508 bfd_set_error (bfd_error_invalid_operation);
4509 goto error_free_vers;
4512 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4513 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4516 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4518 goto error_free_vers;
4520 BFD_ASSERT (ret == 0);
4525 if (extversym != NULL)
4531 if (isymbuf != NULL)
4537 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4541 /* Restore the symbol table. */
4542 if (bed->as_needed_cleanup)
4543 (*bed->as_needed_cleanup) (abfd, info);
4544 old_hash = (char *) old_tab + tabsize;
4545 old_ent = (char *) old_hash + hashsize;
4546 sym_hash = elf_sym_hashes (abfd);
4547 htab->root.table.table = old_table;
4548 htab->root.table.size = old_size;
4549 htab->root.table.count = old_count;
4550 memcpy (htab->root.table.table, old_tab, tabsize);
4551 memcpy (sym_hash, old_hash, hashsize);
4552 htab->root.undefs = old_undefs;
4553 htab->root.undefs_tail = old_undefs_tail;
4554 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4555 for (i = 0; i < htab->root.table.size; i++)
4557 struct bfd_hash_entry *p;
4558 struct elf_link_hash_entry *h;
4560 unsigned int alignment_power;
4562 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4564 h = (struct elf_link_hash_entry *) p;
4565 if (h->root.type == bfd_link_hash_warning)
4566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4567 if (h->dynindx >= old_dynsymcount
4568 && h->dynstr_index < old_dynstr_size)
4569 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4571 /* Preserve the maximum alignment and size for common
4572 symbols even if this dynamic lib isn't on DT_NEEDED
4573 since it can still be loaded at run time by another
4575 if (h->root.type == bfd_link_hash_common)
4577 size = h->root.u.c.size;
4578 alignment_power = h->root.u.c.p->alignment_power;
4583 alignment_power = 0;
4585 memcpy (p, old_ent, htab->root.table.entsize);
4586 old_ent = (char *) old_ent + htab->root.table.entsize;
4587 h = (struct elf_link_hash_entry *) p;
4588 if (h->root.type == bfd_link_hash_warning)
4590 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4591 old_ent = (char *) old_ent + htab->root.table.entsize;
4592 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4594 if (h->root.type == bfd_link_hash_common)
4596 if (size > h->root.u.c.size)
4597 h->root.u.c.size = size;
4598 if (alignment_power > h->root.u.c.p->alignment_power)
4599 h->root.u.c.p->alignment_power = alignment_power;
4604 /* Make a special call to the linker "notice" function to
4605 tell it that symbols added for crefs may need to be removed. */
4606 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4607 notice_not_needed, 0, NULL))
4608 goto error_free_vers;
4611 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4613 if (nondeflt_vers != NULL)
4614 free (nondeflt_vers);
4618 if (old_tab != NULL)
4620 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4621 notice_needed, 0, NULL))
4622 goto error_free_vers;
4627 /* Now that all the symbols from this input file are created, handle
4628 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4629 if (nondeflt_vers != NULL)
4631 bfd_size_type cnt, symidx;
4633 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4635 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4636 char *shortname, *p;
4638 p = strchr (h->root.root.string, ELF_VER_CHR);
4640 || (h->root.type != bfd_link_hash_defined
4641 && h->root.type != bfd_link_hash_defweak))
4644 amt = p - h->root.root.string;
4645 shortname = (char *) bfd_malloc (amt + 1);
4647 goto error_free_vers;
4648 memcpy (shortname, h->root.root.string, amt);
4649 shortname[amt] = '\0';
4651 hi = (struct elf_link_hash_entry *)
4652 bfd_link_hash_lookup (&htab->root, shortname,
4653 FALSE, FALSE, FALSE);
4655 && hi->root.type == h->root.type
4656 && hi->root.u.def.value == h->root.u.def.value
4657 && hi->root.u.def.section == h->root.u.def.section)
4659 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4660 hi->root.type = bfd_link_hash_indirect;
4661 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4662 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4663 sym_hash = elf_sym_hashes (abfd);
4665 for (symidx = 0; symidx < extsymcount; ++symidx)
4666 if (sym_hash[symidx] == hi)
4668 sym_hash[symidx] = h;
4674 free (nondeflt_vers);
4675 nondeflt_vers = NULL;
4678 /* Now set the weakdefs field correctly for all the weak defined
4679 symbols we found. The only way to do this is to search all the
4680 symbols. Since we only need the information for non functions in
4681 dynamic objects, that's the only time we actually put anything on
4682 the list WEAKS. We need this information so that if a regular
4683 object refers to a symbol defined weakly in a dynamic object, the
4684 real symbol in the dynamic object is also put in the dynamic
4685 symbols; we also must arrange for both symbols to point to the
4686 same memory location. We could handle the general case of symbol
4687 aliasing, but a general symbol alias can only be generated in
4688 assembler code, handling it correctly would be very time
4689 consuming, and other ELF linkers don't handle general aliasing
4693 struct elf_link_hash_entry **hpp;
4694 struct elf_link_hash_entry **hppend;
4695 struct elf_link_hash_entry **sorted_sym_hash;
4696 struct elf_link_hash_entry *h;
4699 /* Since we have to search the whole symbol list for each weak
4700 defined symbol, search time for N weak defined symbols will be
4701 O(N^2). Binary search will cut it down to O(NlogN). */
4702 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4703 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4704 if (sorted_sym_hash == NULL)
4706 sym_hash = sorted_sym_hash;
4707 hpp = elf_sym_hashes (abfd);
4708 hppend = hpp + extsymcount;
4710 for (; hpp < hppend; hpp++)
4714 && h->root.type == bfd_link_hash_defined
4715 && !bed->is_function_type (h->type))
4723 qsort (sorted_sym_hash, sym_count,
4724 sizeof (struct elf_link_hash_entry *),
4727 while (weaks != NULL)
4729 struct elf_link_hash_entry *hlook;
4735 weaks = hlook->u.weakdef;
4736 hlook->u.weakdef = NULL;
4738 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4739 || hlook->root.type == bfd_link_hash_defweak
4740 || hlook->root.type == bfd_link_hash_common
4741 || hlook->root.type == bfd_link_hash_indirect);
4742 slook = hlook->root.u.def.section;
4743 vlook = hlook->root.u.def.value;
4749 bfd_signed_vma vdiff;
4751 h = sorted_sym_hash[idx];
4752 vdiff = vlook - h->root.u.def.value;
4759 long sdiff = slook->id - h->root.u.def.section->id;
4769 /* We didn't find a value/section match. */
4773 /* With multiple aliases, or when the weak symbol is already
4774 strongly defined, we have multiple matching symbols and
4775 the binary search above may land on any of them. Step
4776 one past the matching symbol(s). */
4779 h = sorted_sym_hash[idx];
4780 if (h->root.u.def.section != slook
4781 || h->root.u.def.value != vlook)
4785 /* Now look back over the aliases. Since we sorted by size
4786 as well as value and section, we'll choose the one with
4787 the largest size. */
4790 h = sorted_sym_hash[idx];
4792 /* Stop if value or section doesn't match. */
4793 if (h->root.u.def.section != slook
4794 || h->root.u.def.value != vlook)
4796 else if (h != hlook)
4798 hlook->u.weakdef = h;
4800 /* If the weak definition is in the list of dynamic
4801 symbols, make sure the real definition is put
4803 if (hlook->dynindx != -1 && h->dynindx == -1)
4805 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4808 free (sorted_sym_hash);
4813 /* If the real definition is in the list of dynamic
4814 symbols, make sure the weak definition is put
4815 there as well. If we don't do this, then the
4816 dynamic loader might not merge the entries for the
4817 real definition and the weak definition. */
4818 if (h->dynindx != -1 && hlook->dynindx == -1)
4820 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4821 goto err_free_sym_hash;
4828 free (sorted_sym_hash);
4831 if (bed->check_directives
4832 && !(*bed->check_directives) (abfd, info))
4835 /* If this object is the same format as the output object, and it is
4836 not a shared library, then let the backend look through the
4839 This is required to build global offset table entries and to
4840 arrange for dynamic relocs. It is not required for the
4841 particular common case of linking non PIC code, even when linking
4842 against shared libraries, but unfortunately there is no way of
4843 knowing whether an object file has been compiled PIC or not.
4844 Looking through the relocs is not particularly time consuming.
4845 The problem is that we must either (1) keep the relocs in memory,
4846 which causes the linker to require additional runtime memory or
4847 (2) read the relocs twice from the input file, which wastes time.
4848 This would be a good case for using mmap.
4850 I have no idea how to handle linking PIC code into a file of a
4851 different format. It probably can't be done. */
4853 && is_elf_hash_table (htab)
4854 && bed->check_relocs != NULL
4855 && elf_object_id (abfd) == elf_hash_table_id (htab)
4856 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4860 for (o = abfd->sections; o != NULL; o = o->next)
4862 Elf_Internal_Rela *internal_relocs;
4865 if ((o->flags & SEC_RELOC) == 0
4866 || o->reloc_count == 0
4867 || ((info->strip == strip_all || info->strip == strip_debugger)
4868 && (o->flags & SEC_DEBUGGING) != 0)
4869 || bfd_is_abs_section (o->output_section))
4872 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4874 if (internal_relocs == NULL)
4877 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4879 if (elf_section_data (o)->relocs != internal_relocs)
4880 free (internal_relocs);
4887 /* If this is a non-traditional link, try to optimize the handling
4888 of the .stab/.stabstr sections. */
4890 && ! info->traditional_format
4891 && is_elf_hash_table (htab)
4892 && (info->strip != strip_all && info->strip != strip_debugger))
4896 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4897 if (stabstr != NULL)
4899 bfd_size_type string_offset = 0;
4902 for (stab = abfd->sections; stab; stab = stab->next)
4903 if (CONST_STRNEQ (stab->name, ".stab")
4904 && (!stab->name[5] ||
4905 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4906 && (stab->flags & SEC_MERGE) == 0
4907 && !bfd_is_abs_section (stab->output_section))
4909 struct bfd_elf_section_data *secdata;
4911 secdata = elf_section_data (stab);
4912 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4913 stabstr, &secdata->sec_info,
4916 if (secdata->sec_info)
4917 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4922 if (is_elf_hash_table (htab) && add_needed)
4924 /* Add this bfd to the loaded list. */
4925 struct elf_link_loaded_list *n;
4927 n = (struct elf_link_loaded_list *)
4928 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4932 n->next = htab->loaded;
4939 if (old_tab != NULL)
4941 if (nondeflt_vers != NULL)
4942 free (nondeflt_vers);
4943 if (extversym != NULL)
4946 if (isymbuf != NULL)
4952 /* Return the linker hash table entry of a symbol that might be
4953 satisfied by an archive symbol. Return -1 on error. */
4955 struct elf_link_hash_entry *
4956 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4957 struct bfd_link_info *info,
4960 struct elf_link_hash_entry *h;
4964 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4968 /* If this is a default version (the name contains @@), look up the
4969 symbol again with only one `@' as well as without the version.
4970 The effect is that references to the symbol with and without the
4971 version will be matched by the default symbol in the archive. */
4973 p = strchr (name, ELF_VER_CHR);
4974 if (p == NULL || p[1] != ELF_VER_CHR)
4977 /* First check with only one `@'. */
4978 len = strlen (name);
4979 copy = (char *) bfd_alloc (abfd, len);
4981 return (struct elf_link_hash_entry *) 0 - 1;
4983 first = p - name + 1;
4984 memcpy (copy, name, first);
4985 memcpy (copy + first, name + first + 1, len - first);
4987 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4990 /* We also need to check references to the symbol without the
4992 copy[first - 1] = '\0';
4993 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4994 FALSE, FALSE, TRUE);
4997 bfd_release (abfd, copy);
5001 /* Add symbols from an ELF archive file to the linker hash table. We
5002 don't use _bfd_generic_link_add_archive_symbols because of a
5003 problem which arises on UnixWare. The UnixWare libc.so is an
5004 archive which includes an entry libc.so.1 which defines a bunch of
5005 symbols. The libc.so archive also includes a number of other
5006 object files, which also define symbols, some of which are the same
5007 as those defined in libc.so.1. Correct linking requires that we
5008 consider each object file in turn, and include it if it defines any
5009 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5010 this; it looks through the list of undefined symbols, and includes
5011 any object file which defines them. When this algorithm is used on
5012 UnixWare, it winds up pulling in libc.so.1 early and defining a
5013 bunch of symbols. This means that some of the other objects in the
5014 archive are not included in the link, which is incorrect since they
5015 precede libc.so.1 in the archive.
5017 Fortunately, ELF archive handling is simpler than that done by
5018 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5019 oddities. In ELF, if we find a symbol in the archive map, and the
5020 symbol is currently undefined, we know that we must pull in that
5023 Unfortunately, we do have to make multiple passes over the symbol
5024 table until nothing further is resolved. */
5027 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5030 bfd_boolean *defined = NULL;
5031 bfd_boolean *included = NULL;
5035 const struct elf_backend_data *bed;
5036 struct elf_link_hash_entry * (*archive_symbol_lookup)
5037 (bfd *, struct bfd_link_info *, const char *);
5039 if (! bfd_has_map (abfd))
5041 /* An empty archive is a special case. */
5042 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5044 bfd_set_error (bfd_error_no_armap);
5048 /* Keep track of all symbols we know to be already defined, and all
5049 files we know to be already included. This is to speed up the
5050 second and subsequent passes. */
5051 c = bfd_ardata (abfd)->symdef_count;
5055 amt *= sizeof (bfd_boolean);
5056 defined = (bfd_boolean *) bfd_zmalloc (amt);
5057 included = (bfd_boolean *) bfd_zmalloc (amt);
5058 if (defined == NULL || included == NULL)
5061 symdefs = bfd_ardata (abfd)->symdefs;
5062 bed = get_elf_backend_data (abfd);
5063 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5076 symdefend = symdef + c;
5077 for (i = 0; symdef < symdefend; symdef++, i++)
5079 struct elf_link_hash_entry *h;
5081 struct bfd_link_hash_entry *undefs_tail;
5084 if (defined[i] || included[i])
5086 if (symdef->file_offset == last)
5092 h = archive_symbol_lookup (abfd, info, symdef->name);
5093 if (h == (struct elf_link_hash_entry *) 0 - 1)
5099 if (h->root.type == bfd_link_hash_common)
5101 /* We currently have a common symbol. The archive map contains
5102 a reference to this symbol, so we may want to include it. We
5103 only want to include it however, if this archive element
5104 contains a definition of the symbol, not just another common
5107 Unfortunately some archivers (including GNU ar) will put
5108 declarations of common symbols into their archive maps, as
5109 well as real definitions, so we cannot just go by the archive
5110 map alone. Instead we must read in the element's symbol
5111 table and check that to see what kind of symbol definition
5113 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5116 else if (h->root.type != bfd_link_hash_undefined)
5118 if (h->root.type != bfd_link_hash_undefweak)
5123 /* We need to include this archive member. */
5124 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5125 if (element == NULL)
5128 if (! bfd_check_format (element, bfd_object))
5131 /* Doublecheck that we have not included this object
5132 already--it should be impossible, but there may be
5133 something wrong with the archive. */
5134 if (element->archive_pass != 0)
5136 bfd_set_error (bfd_error_bad_value);
5139 element->archive_pass = 1;
5141 undefs_tail = info->hash->undefs_tail;
5143 if (!(*info->callbacks
5144 ->add_archive_element) (info, element, symdef->name, &element))
5146 if (!bfd_link_add_symbols (element, info))
5149 /* If there are any new undefined symbols, we need to make
5150 another pass through the archive in order to see whether
5151 they can be defined. FIXME: This isn't perfect, because
5152 common symbols wind up on undefs_tail and because an
5153 undefined symbol which is defined later on in this pass
5154 does not require another pass. This isn't a bug, but it
5155 does make the code less efficient than it could be. */
5156 if (undefs_tail != info->hash->undefs_tail)
5159 /* Look backward to mark all symbols from this object file
5160 which we have already seen in this pass. */
5164 included[mark] = TRUE;
5169 while (symdefs[mark].file_offset == symdef->file_offset);
5171 /* We mark subsequent symbols from this object file as we go
5172 on through the loop. */
5173 last = symdef->file_offset;
5184 if (defined != NULL)
5186 if (included != NULL)
5191 /* Given an ELF BFD, add symbols to the global hash table as
5195 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5197 switch (bfd_get_format (abfd))
5200 return elf_link_add_object_symbols (abfd, info);
5202 return elf_link_add_archive_symbols (abfd, info);
5204 bfd_set_error (bfd_error_wrong_format);
5209 struct hash_codes_info
5211 unsigned long *hashcodes;
5215 /* This function will be called though elf_link_hash_traverse to store
5216 all hash value of the exported symbols in an array. */
5219 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5221 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5227 /* Ignore indirect symbols. These are added by the versioning code. */
5228 if (h->dynindx == -1)
5231 name = h->root.root.string;
5232 p = strchr (name, ELF_VER_CHR);
5235 alc = (char *) bfd_malloc (p - name + 1);
5241 memcpy (alc, name, p - name);
5242 alc[p - name] = '\0';
5246 /* Compute the hash value. */
5247 ha = bfd_elf_hash (name);
5249 /* Store the found hash value in the array given as the argument. */
5250 *(inf->hashcodes)++ = ha;
5252 /* And store it in the struct so that we can put it in the hash table
5254 h->u.elf_hash_value = ha;
5262 struct collect_gnu_hash_codes
5265 const struct elf_backend_data *bed;
5266 unsigned long int nsyms;
5267 unsigned long int maskbits;
5268 unsigned long int *hashcodes;
5269 unsigned long int *hashval;
5270 unsigned long int *indx;
5271 unsigned long int *counts;
5274 long int min_dynindx;
5275 unsigned long int bucketcount;
5276 unsigned long int symindx;
5277 long int local_indx;
5278 long int shift1, shift2;
5279 unsigned long int mask;
5283 /* This function will be called though elf_link_hash_traverse to store
5284 all hash value of the exported symbols in an array. */
5287 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5289 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5295 /* Ignore indirect symbols. These are added by the versioning code. */
5296 if (h->dynindx == -1)
5299 /* Ignore also local symbols and undefined symbols. */
5300 if (! (*s->bed->elf_hash_symbol) (h))
5303 name = h->root.root.string;
5304 p = strchr (name, ELF_VER_CHR);
5307 alc = (char *) bfd_malloc (p - name + 1);
5313 memcpy (alc, name, p - name);
5314 alc[p - name] = '\0';
5318 /* Compute the hash value. */
5319 ha = bfd_elf_gnu_hash (name);
5321 /* Store the found hash value in the array for compute_bucket_count,
5322 and also for .dynsym reordering purposes. */
5323 s->hashcodes[s->nsyms] = ha;
5324 s->hashval[h->dynindx] = ha;
5326 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5327 s->min_dynindx = h->dynindx;
5335 /* This function will be called though elf_link_hash_traverse to do
5336 final dynaminc symbol renumbering. */
5339 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5341 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5342 unsigned long int bucket;
5343 unsigned long int val;
5345 /* Ignore indirect symbols. */
5346 if (h->dynindx == -1)
5349 /* Ignore also local symbols and undefined symbols. */
5350 if (! (*s->bed->elf_hash_symbol) (h))
5352 if (h->dynindx >= s->min_dynindx)
5353 h->dynindx = s->local_indx++;
5357 bucket = s->hashval[h->dynindx] % s->bucketcount;
5358 val = (s->hashval[h->dynindx] >> s->shift1)
5359 & ((s->maskbits >> s->shift1) - 1);
5360 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5362 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5363 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5364 if (s->counts[bucket] == 1)
5365 /* Last element terminates the chain. */
5367 bfd_put_32 (s->output_bfd, val,
5368 s->contents + (s->indx[bucket] - s->symindx) * 4);
5369 --s->counts[bucket];
5370 h->dynindx = s->indx[bucket]++;
5374 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5377 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5379 return !(h->forced_local
5380 || h->root.type == bfd_link_hash_undefined
5381 || h->root.type == bfd_link_hash_undefweak
5382 || ((h->root.type == bfd_link_hash_defined
5383 || h->root.type == bfd_link_hash_defweak)
5384 && h->root.u.def.section->output_section == NULL));
5387 /* Array used to determine the number of hash table buckets to use
5388 based on the number of symbols there are. If there are fewer than
5389 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5390 fewer than 37 we use 17 buckets, and so forth. We never use more
5391 than 32771 buckets. */
5393 static const size_t elf_buckets[] =
5395 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5399 /* Compute bucket count for hashing table. We do not use a static set
5400 of possible tables sizes anymore. Instead we determine for all
5401 possible reasonable sizes of the table the outcome (i.e., the
5402 number of collisions etc) and choose the best solution. The
5403 weighting functions are not too simple to allow the table to grow
5404 without bounds. Instead one of the weighting factors is the size.
5405 Therefore the result is always a good payoff between few collisions
5406 (= short chain lengths) and table size. */
5408 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5409 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5410 unsigned long int nsyms,
5413 size_t best_size = 0;
5414 unsigned long int i;
5416 /* We have a problem here. The following code to optimize the table
5417 size requires an integer type with more the 32 bits. If
5418 BFD_HOST_U_64_BIT is set we know about such a type. */
5419 #ifdef BFD_HOST_U_64_BIT
5424 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5425 bfd *dynobj = elf_hash_table (info)->dynobj;
5426 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5427 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5428 unsigned long int *counts;
5430 unsigned int no_improvement_count = 0;
5432 /* Possible optimization parameters: if we have NSYMS symbols we say
5433 that the hashing table must at least have NSYMS/4 and at most
5435 minsize = nsyms / 4;
5438 best_size = maxsize = nsyms * 2;
5443 if ((best_size & 31) == 0)
5447 /* Create array where we count the collisions in. We must use bfd_malloc
5448 since the size could be large. */
5450 amt *= sizeof (unsigned long int);
5451 counts = (unsigned long int *) bfd_malloc (amt);
5455 /* Compute the "optimal" size for the hash table. The criteria is a
5456 minimal chain length. The minor criteria is (of course) the size
5458 for (i = minsize; i < maxsize; ++i)
5460 /* Walk through the array of hashcodes and count the collisions. */
5461 BFD_HOST_U_64_BIT max;
5462 unsigned long int j;
5463 unsigned long int fact;
5465 if (gnu_hash && (i & 31) == 0)
5468 memset (counts, '\0', i * sizeof (unsigned long int));
5470 /* Determine how often each hash bucket is used. */
5471 for (j = 0; j < nsyms; ++j)
5472 ++counts[hashcodes[j] % i];
5474 /* For the weight function we need some information about the
5475 pagesize on the target. This is information need not be 100%
5476 accurate. Since this information is not available (so far) we
5477 define it here to a reasonable default value. If it is crucial
5478 to have a better value some day simply define this value. */
5479 # ifndef BFD_TARGET_PAGESIZE
5480 # define BFD_TARGET_PAGESIZE (4096)
5483 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5485 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5488 /* Variant 1: optimize for short chains. We add the squares
5489 of all the chain lengths (which favors many small chain
5490 over a few long chains). */
5491 for (j = 0; j < i; ++j)
5492 max += counts[j] * counts[j];
5494 /* This adds penalties for the overall size of the table. */
5495 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5498 /* Variant 2: Optimize a lot more for small table. Here we
5499 also add squares of the size but we also add penalties for
5500 empty slots (the +1 term). */
5501 for (j = 0; j < i; ++j)
5502 max += (1 + counts[j]) * (1 + counts[j]);
5504 /* The overall size of the table is considered, but not as
5505 strong as in variant 1, where it is squared. */
5506 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5510 /* Compare with current best results. */
5511 if (max < best_chlen)
5515 no_improvement_count = 0;
5517 /* PR 11843: Avoid futile long searches for the best bucket size
5518 when there are a large number of symbols. */
5519 else if (++no_improvement_count == 100)
5526 #endif /* defined (BFD_HOST_U_64_BIT) */
5528 /* This is the fallback solution if no 64bit type is available or if we
5529 are not supposed to spend much time on optimizations. We select the
5530 bucket count using a fixed set of numbers. */
5531 for (i = 0; elf_buckets[i] != 0; i++)
5533 best_size = elf_buckets[i];
5534 if (nsyms < elf_buckets[i + 1])
5537 if (gnu_hash && best_size < 2)
5544 /* Size any SHT_GROUP section for ld -r. */
5547 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5551 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5552 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5553 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5558 /* Set a default stack segment size. The value in INFO wins. If it
5559 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5560 undefined it is initialized. */
5563 bfd_elf_stack_segment_size (bfd *output_bfd,
5564 struct bfd_link_info *info,
5565 const char *legacy_symbol,
5566 bfd_vma default_size)
5568 struct elf_link_hash_entry *h = NULL;
5570 /* Look for legacy symbol. */
5572 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5573 FALSE, FALSE, FALSE);
5574 if (h && (h->root.type == bfd_link_hash_defined
5575 || h->root.type == bfd_link_hash_defweak)
5577 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5579 /* The symbol has no type if specified on the command line. */
5580 h->type = STT_OBJECT;
5581 if (info->stacksize)
5582 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5583 output_bfd, legacy_symbol);
5584 else if (h->root.u.def.section != bfd_abs_section_ptr)
5585 (*_bfd_error_handler) (_("%B: %s not absolute"),
5586 output_bfd, legacy_symbol);
5588 info->stacksize = h->root.u.def.value;
5591 if (!info->stacksize)
5592 /* If the user didn't set a size, or explicitly inhibit the
5593 size, set it now. */
5594 info->stacksize = default_size;
5596 /* Provide the legacy symbol, if it is referenced. */
5597 if (h && (h->root.type == bfd_link_hash_undefined
5598 || h->root.type == bfd_link_hash_undefweak))
5600 struct bfd_link_hash_entry *bh = NULL;
5602 if (!(_bfd_generic_link_add_one_symbol
5603 (info, output_bfd, legacy_symbol,
5604 BSF_GLOBAL, bfd_abs_section_ptr,
5605 info->stacksize >= 0 ? info->stacksize : 0,
5606 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5609 h = (struct elf_link_hash_entry *) bh;
5611 h->type = STT_OBJECT;
5617 /* Set up the sizes and contents of the ELF dynamic sections. This is
5618 called by the ELF linker emulation before_allocation routine. We
5619 must set the sizes of the sections before the linker sets the
5620 addresses of the various sections. */
5623 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5626 const char *filter_shlib,
5628 const char *depaudit,
5629 const char * const *auxiliary_filters,
5630 struct bfd_link_info *info,
5631 asection **sinterpptr)
5633 bfd_size_type soname_indx;
5635 const struct elf_backend_data *bed;
5636 struct elf_info_failed asvinfo;
5640 soname_indx = (bfd_size_type) -1;
5642 if (!is_elf_hash_table (info->hash))
5645 bed = get_elf_backend_data (output_bfd);
5647 /* Any syms created from now on start with -1 in
5648 got.refcount/offset and plt.refcount/offset. */
5649 elf_hash_table (info)->init_got_refcount
5650 = elf_hash_table (info)->init_got_offset;
5651 elf_hash_table (info)->init_plt_refcount
5652 = elf_hash_table (info)->init_plt_offset;
5654 if (info->relocatable
5655 && !_bfd_elf_size_group_sections (info))
5658 /* The backend may have to create some sections regardless of whether
5659 we're dynamic or not. */
5660 if (bed->elf_backend_always_size_sections
5661 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5664 /* Determine any GNU_STACK segment requirements, after the backend
5665 has had a chance to set a default segment size. */
5666 if (info->execstack)
5667 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5668 else if (info->noexecstack)
5669 elf_stack_flags (output_bfd) = PF_R | PF_W;
5673 asection *notesec = NULL;
5676 for (inputobj = info->input_bfds;
5678 inputobj = inputobj->link_next)
5683 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5685 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5688 if (s->flags & SEC_CODE)
5692 else if (bed->default_execstack)
5695 if (notesec || info->stacksize > 0)
5696 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5697 if (notesec && exec && info->relocatable
5698 && notesec->output_section != bfd_abs_section_ptr)
5699 notesec->output_section->flags |= SEC_CODE;
5702 dynobj = elf_hash_table (info)->dynobj;
5704 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5706 struct elf_info_failed eif;
5707 struct elf_link_hash_entry *h;
5709 struct bfd_elf_version_tree *t;
5710 struct bfd_elf_version_expr *d;
5712 bfd_boolean all_defined;
5714 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5715 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5719 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5721 if (soname_indx == (bfd_size_type) -1
5722 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5728 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5730 info->flags |= DF_SYMBOLIC;
5738 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5740 if (indx == (bfd_size_type) -1)
5743 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5744 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5748 if (filter_shlib != NULL)
5752 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5753 filter_shlib, TRUE);
5754 if (indx == (bfd_size_type) -1
5755 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5759 if (auxiliary_filters != NULL)
5761 const char * const *p;
5763 for (p = auxiliary_filters; *p != NULL; p++)
5767 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5769 if (indx == (bfd_size_type) -1
5770 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5779 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5781 if (indx == (bfd_size_type) -1
5782 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5786 if (depaudit != NULL)
5790 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5792 if (indx == (bfd_size_type) -1
5793 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5800 /* If we are supposed to export all symbols into the dynamic symbol
5801 table (this is not the normal case), then do so. */
5802 if (info->export_dynamic
5803 || (info->executable && info->dynamic))
5805 elf_link_hash_traverse (elf_hash_table (info),
5806 _bfd_elf_export_symbol,
5812 /* Make all global versions with definition. */
5813 for (t = info->version_info; t != NULL; t = t->next)
5814 for (d = t->globals.list; d != NULL; d = d->next)
5815 if (!d->symver && d->literal)
5817 const char *verstr, *name;
5818 size_t namelen, verlen, newlen;
5819 char *newname, *p, leading_char;
5820 struct elf_link_hash_entry *newh;
5822 leading_char = bfd_get_symbol_leading_char (output_bfd);
5824 namelen = strlen (name) + (leading_char != '\0');
5826 verlen = strlen (verstr);
5827 newlen = namelen + verlen + 3;
5829 newname = (char *) bfd_malloc (newlen);
5830 if (newname == NULL)
5832 newname[0] = leading_char;
5833 memcpy (newname + (leading_char != '\0'), name, namelen);
5835 /* Check the hidden versioned definition. */
5836 p = newname + namelen;
5838 memcpy (p, verstr, verlen + 1);
5839 newh = elf_link_hash_lookup (elf_hash_table (info),
5840 newname, FALSE, FALSE,
5843 || (newh->root.type != bfd_link_hash_defined
5844 && newh->root.type != bfd_link_hash_defweak))
5846 /* Check the default versioned definition. */
5848 memcpy (p, verstr, verlen + 1);
5849 newh = elf_link_hash_lookup (elf_hash_table (info),
5850 newname, FALSE, FALSE,
5855 /* Mark this version if there is a definition and it is
5856 not defined in a shared object. */
5858 && !newh->def_dynamic
5859 && (newh->root.type == bfd_link_hash_defined
5860 || newh->root.type == bfd_link_hash_defweak))
5864 /* Attach all the symbols to their version information. */
5865 asvinfo.info = info;
5866 asvinfo.failed = FALSE;
5868 elf_link_hash_traverse (elf_hash_table (info),
5869 _bfd_elf_link_assign_sym_version,
5874 if (!info->allow_undefined_version)
5876 /* Check if all global versions have a definition. */
5878 for (t = info->version_info; t != NULL; t = t->next)
5879 for (d = t->globals.list; d != NULL; d = d->next)
5880 if (d->literal && !d->symver && !d->script)
5882 (*_bfd_error_handler)
5883 (_("%s: undefined version: %s"),
5884 d->pattern, t->name);
5885 all_defined = FALSE;
5890 bfd_set_error (bfd_error_bad_value);
5895 /* Find all symbols which were defined in a dynamic object and make
5896 the backend pick a reasonable value for them. */
5897 elf_link_hash_traverse (elf_hash_table (info),
5898 _bfd_elf_adjust_dynamic_symbol,
5903 /* Add some entries to the .dynamic section. We fill in some of the
5904 values later, in bfd_elf_final_link, but we must add the entries
5905 now so that we know the final size of the .dynamic section. */
5907 /* If there are initialization and/or finalization functions to
5908 call then add the corresponding DT_INIT/DT_FINI entries. */
5909 h = (info->init_function
5910 ? elf_link_hash_lookup (elf_hash_table (info),
5911 info->init_function, FALSE,
5918 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5921 h = (info->fini_function
5922 ? elf_link_hash_lookup (elf_hash_table (info),
5923 info->fini_function, FALSE,
5930 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5934 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5935 if (s != NULL && s->linker_has_input)
5937 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5938 if (! info->executable)
5943 for (sub = info->input_bfds; sub != NULL;
5944 sub = sub->link_next)
5945 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5946 for (o = sub->sections; o != NULL; o = o->next)
5947 if (elf_section_data (o)->this_hdr.sh_type
5948 == SHT_PREINIT_ARRAY)
5950 (*_bfd_error_handler)
5951 (_("%B: .preinit_array section is not allowed in DSO"),
5956 bfd_set_error (bfd_error_nonrepresentable_section);
5960 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5961 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5964 s = bfd_get_section_by_name (output_bfd, ".init_array");
5965 if (s != NULL && s->linker_has_input)
5967 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5968 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5971 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5972 if (s != NULL && s->linker_has_input)
5974 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5975 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5979 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5980 /* If .dynstr is excluded from the link, we don't want any of
5981 these tags. Strictly, we should be checking each section
5982 individually; This quick check covers for the case where
5983 someone does a /DISCARD/ : { *(*) }. */
5984 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5986 bfd_size_type strsize;
5988 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5989 if ((info->emit_hash
5990 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5991 || (info->emit_gnu_hash
5992 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5993 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5994 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5995 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5996 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5997 bed->s->sizeof_sym))
6002 /* The backend must work out the sizes of all the other dynamic
6005 && bed->elf_backend_size_dynamic_sections != NULL
6006 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6009 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6012 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6014 unsigned long section_sym_count;
6015 struct bfd_elf_version_tree *verdefs;
6018 /* Set up the version definition section. */
6019 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6020 BFD_ASSERT (s != NULL);
6022 /* We may have created additional version definitions if we are
6023 just linking a regular application. */
6024 verdefs = info->version_info;
6026 /* Skip anonymous version tag. */
6027 if (verdefs != NULL && verdefs->vernum == 0)
6028 verdefs = verdefs->next;
6030 if (verdefs == NULL && !info->create_default_symver)
6031 s->flags |= SEC_EXCLUDE;
6036 struct bfd_elf_version_tree *t;
6038 Elf_Internal_Verdef def;
6039 Elf_Internal_Verdaux defaux;
6040 struct bfd_link_hash_entry *bh;
6041 struct elf_link_hash_entry *h;
6047 /* Make space for the base version. */
6048 size += sizeof (Elf_External_Verdef);
6049 size += sizeof (Elf_External_Verdaux);
6052 /* Make space for the default version. */
6053 if (info->create_default_symver)
6055 size += sizeof (Elf_External_Verdef);
6059 for (t = verdefs; t != NULL; t = t->next)
6061 struct bfd_elf_version_deps *n;
6063 /* Don't emit base version twice. */
6067 size += sizeof (Elf_External_Verdef);
6068 size += sizeof (Elf_External_Verdaux);
6071 for (n = t->deps; n != NULL; n = n->next)
6072 size += sizeof (Elf_External_Verdaux);
6076 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6077 if (s->contents == NULL && s->size != 0)
6080 /* Fill in the version definition section. */
6084 def.vd_version = VER_DEF_CURRENT;
6085 def.vd_flags = VER_FLG_BASE;
6088 if (info->create_default_symver)
6090 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6091 def.vd_next = sizeof (Elf_External_Verdef);
6095 def.vd_aux = sizeof (Elf_External_Verdef);
6096 def.vd_next = (sizeof (Elf_External_Verdef)
6097 + sizeof (Elf_External_Verdaux));
6100 if (soname_indx != (bfd_size_type) -1)
6102 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6104 def.vd_hash = bfd_elf_hash (soname);
6105 defaux.vda_name = soname_indx;
6112 name = lbasename (output_bfd->filename);
6113 def.vd_hash = bfd_elf_hash (name);
6114 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6116 if (indx == (bfd_size_type) -1)
6118 defaux.vda_name = indx;
6120 defaux.vda_next = 0;
6122 _bfd_elf_swap_verdef_out (output_bfd, &def,
6123 (Elf_External_Verdef *) p);
6124 p += sizeof (Elf_External_Verdef);
6125 if (info->create_default_symver)
6127 /* Add a symbol representing this version. */
6129 if (! (_bfd_generic_link_add_one_symbol
6130 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6132 get_elf_backend_data (dynobj)->collect, &bh)))
6134 h = (struct elf_link_hash_entry *) bh;
6137 h->type = STT_OBJECT;
6138 h->verinfo.vertree = NULL;
6140 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6143 /* Create a duplicate of the base version with the same
6144 aux block, but different flags. */
6147 def.vd_aux = sizeof (Elf_External_Verdef);
6149 def.vd_next = (sizeof (Elf_External_Verdef)
6150 + sizeof (Elf_External_Verdaux));
6153 _bfd_elf_swap_verdef_out (output_bfd, &def,
6154 (Elf_External_Verdef *) p);
6155 p += sizeof (Elf_External_Verdef);
6157 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6158 (Elf_External_Verdaux *) p);
6159 p += sizeof (Elf_External_Verdaux);
6161 for (t = verdefs; t != NULL; t = t->next)
6164 struct bfd_elf_version_deps *n;
6166 /* Don't emit the base version twice. */
6171 for (n = t->deps; n != NULL; n = n->next)
6174 /* Add a symbol representing this version. */
6176 if (! (_bfd_generic_link_add_one_symbol
6177 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6179 get_elf_backend_data (dynobj)->collect, &bh)))
6181 h = (struct elf_link_hash_entry *) bh;
6184 h->type = STT_OBJECT;
6185 h->verinfo.vertree = t;
6187 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6190 def.vd_version = VER_DEF_CURRENT;
6192 if (t->globals.list == NULL
6193 && t->locals.list == NULL
6195 def.vd_flags |= VER_FLG_WEAK;
6196 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6197 def.vd_cnt = cdeps + 1;
6198 def.vd_hash = bfd_elf_hash (t->name);
6199 def.vd_aux = sizeof (Elf_External_Verdef);
6202 /* If a basever node is next, it *must* be the last node in
6203 the chain, otherwise Verdef construction breaks. */
6204 if (t->next != NULL && t->next->vernum == 0)
6205 BFD_ASSERT (t->next->next == NULL);
6207 if (t->next != NULL && t->next->vernum != 0)
6208 def.vd_next = (sizeof (Elf_External_Verdef)
6209 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6211 _bfd_elf_swap_verdef_out (output_bfd, &def,
6212 (Elf_External_Verdef *) p);
6213 p += sizeof (Elf_External_Verdef);
6215 defaux.vda_name = h->dynstr_index;
6216 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6218 defaux.vda_next = 0;
6219 if (t->deps != NULL)
6220 defaux.vda_next = sizeof (Elf_External_Verdaux);
6221 t->name_indx = defaux.vda_name;
6223 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6224 (Elf_External_Verdaux *) p);
6225 p += sizeof (Elf_External_Verdaux);
6227 for (n = t->deps; n != NULL; n = n->next)
6229 if (n->version_needed == NULL)
6231 /* This can happen if there was an error in the
6233 defaux.vda_name = 0;
6237 defaux.vda_name = n->version_needed->name_indx;
6238 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6241 if (n->next == NULL)
6242 defaux.vda_next = 0;
6244 defaux.vda_next = sizeof (Elf_External_Verdaux);
6246 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6247 (Elf_External_Verdaux *) p);
6248 p += sizeof (Elf_External_Verdaux);
6252 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6253 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6256 elf_tdata (output_bfd)->cverdefs = cdefs;
6259 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6261 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6264 else if (info->flags & DF_BIND_NOW)
6266 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6272 if (info->executable)
6273 info->flags_1 &= ~ (DF_1_INITFIRST
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6280 /* Work out the size of the version reference section. */
6282 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6283 BFD_ASSERT (s != NULL);
6285 struct elf_find_verdep_info sinfo;
6288 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6289 if (sinfo.vers == 0)
6291 sinfo.failed = FALSE;
6293 elf_link_hash_traverse (elf_hash_table (info),
6294 _bfd_elf_link_find_version_dependencies,
6299 if (elf_tdata (output_bfd)->verref == NULL)
6300 s->flags |= SEC_EXCLUDE;
6303 Elf_Internal_Verneed *t;
6308 /* Build the version dependency section. */
6311 for (t = elf_tdata (output_bfd)->verref;
6315 Elf_Internal_Vernaux *a;
6317 size += sizeof (Elf_External_Verneed);
6319 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6320 size += sizeof (Elf_External_Vernaux);
6324 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6325 if (s->contents == NULL)
6329 for (t = elf_tdata (output_bfd)->verref;
6334 Elf_Internal_Vernaux *a;
6338 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6341 t->vn_version = VER_NEED_CURRENT;
6343 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6344 elf_dt_name (t->vn_bfd) != NULL
6345 ? elf_dt_name (t->vn_bfd)
6346 : lbasename (t->vn_bfd->filename),
6348 if (indx == (bfd_size_type) -1)
6351 t->vn_aux = sizeof (Elf_External_Verneed);
6352 if (t->vn_nextref == NULL)
6355 t->vn_next = (sizeof (Elf_External_Verneed)
6356 + caux * sizeof (Elf_External_Vernaux));
6358 _bfd_elf_swap_verneed_out (output_bfd, t,
6359 (Elf_External_Verneed *) p);
6360 p += sizeof (Elf_External_Verneed);
6362 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6364 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6365 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6366 a->vna_nodename, FALSE);
6367 if (indx == (bfd_size_type) -1)
6370 if (a->vna_nextptr == NULL)
6373 a->vna_next = sizeof (Elf_External_Vernaux);
6375 _bfd_elf_swap_vernaux_out (output_bfd, a,
6376 (Elf_External_Vernaux *) p);
6377 p += sizeof (Elf_External_Vernaux);
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6382 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6385 elf_tdata (output_bfd)->cverrefs = crefs;
6389 if ((elf_tdata (output_bfd)->cverrefs == 0
6390 && elf_tdata (output_bfd)->cverdefs == 0)
6391 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6392 §ion_sym_count) == 0)
6394 s = bfd_get_linker_section (dynobj, ".gnu.version");
6395 s->flags |= SEC_EXCLUDE;
6401 /* Find the first non-excluded output section. We'll use its
6402 section symbol for some emitted relocs. */
6404 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6408 for (s = output_bfd->sections; s != NULL; s = s->next)
6409 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6410 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6412 elf_hash_table (info)->text_index_section = s;
6417 /* Find two non-excluded output sections, one for code, one for data.
6418 We'll use their section symbols for some emitted relocs. */
6420 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6424 /* Data first, since setting text_index_section changes
6425 _bfd_elf_link_omit_section_dynsym. */
6426 for (s = output_bfd->sections; s != NULL; s = s->next)
6427 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6428 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6430 elf_hash_table (info)->data_index_section = s;
6434 for (s = output_bfd->sections; s != NULL; s = s->next)
6435 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6436 == (SEC_ALLOC | SEC_READONLY))
6437 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6439 elf_hash_table (info)->text_index_section = s;
6443 if (elf_hash_table (info)->text_index_section == NULL)
6444 elf_hash_table (info)->text_index_section
6445 = elf_hash_table (info)->data_index_section;
6449 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6451 const struct elf_backend_data *bed;
6453 if (!is_elf_hash_table (info->hash))
6456 bed = get_elf_backend_data (output_bfd);
6457 (*bed->elf_backend_init_index_section) (output_bfd, info);
6459 if (elf_hash_table (info)->dynamic_sections_created)
6463 bfd_size_type dynsymcount;
6464 unsigned long section_sym_count;
6465 unsigned int dtagcount;
6467 dynobj = elf_hash_table (info)->dynobj;
6469 /* Assign dynsym indicies. In a shared library we generate a
6470 section symbol for each output section, which come first.
6471 Next come all of the back-end allocated local dynamic syms,
6472 followed by the rest of the global symbols. */
6474 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6475 §ion_sym_count);
6477 /* Work out the size of the symbol version section. */
6478 s = bfd_get_linker_section (dynobj, ".gnu.version");
6479 BFD_ASSERT (s != NULL);
6480 if (dynsymcount != 0
6481 && (s->flags & SEC_EXCLUDE) == 0)
6483 s->size = dynsymcount * sizeof (Elf_External_Versym);
6484 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6485 if (s->contents == NULL)
6488 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6492 /* Set the size of the .dynsym and .hash sections. We counted
6493 the number of dynamic symbols in elf_link_add_object_symbols.
6494 We will build the contents of .dynsym and .hash when we build
6495 the final symbol table, because until then we do not know the
6496 correct value to give the symbols. We built the .dynstr
6497 section as we went along in elf_link_add_object_symbols. */
6498 s = bfd_get_linker_section (dynobj, ".dynsym");
6499 BFD_ASSERT (s != NULL);
6500 s->size = dynsymcount * bed->s->sizeof_sym;
6502 if (dynsymcount != 0)
6504 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6505 if (s->contents == NULL)
6508 /* The first entry in .dynsym is a dummy symbol.
6509 Clear all the section syms, in case we don't output them all. */
6510 ++section_sym_count;
6511 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6514 elf_hash_table (info)->bucketcount = 0;
6516 /* Compute the size of the hashing table. As a side effect this
6517 computes the hash values for all the names we export. */
6518 if (info->emit_hash)
6520 unsigned long int *hashcodes;
6521 struct hash_codes_info hashinf;
6523 unsigned long int nsyms;
6525 size_t hash_entry_size;
6527 /* Compute the hash values for all exported symbols. At the same
6528 time store the values in an array so that we could use them for
6530 amt = dynsymcount * sizeof (unsigned long int);
6531 hashcodes = (unsigned long int *) bfd_malloc (amt);
6532 if (hashcodes == NULL)
6534 hashinf.hashcodes = hashcodes;
6535 hashinf.error = FALSE;
6537 /* Put all hash values in HASHCODES. */
6538 elf_link_hash_traverse (elf_hash_table (info),
6539 elf_collect_hash_codes, &hashinf);
6546 nsyms = hashinf.hashcodes - hashcodes;
6548 = compute_bucket_count (info, hashcodes, nsyms, 0);
6551 if (bucketcount == 0)
6554 elf_hash_table (info)->bucketcount = bucketcount;
6556 s = bfd_get_linker_section (dynobj, ".hash");
6557 BFD_ASSERT (s != NULL);
6558 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6559 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6560 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6561 if (s->contents == NULL)
6564 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6565 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6566 s->contents + hash_entry_size);
6569 if (info->emit_gnu_hash)
6572 unsigned char *contents;
6573 struct collect_gnu_hash_codes cinfo;
6577 memset (&cinfo, 0, sizeof (cinfo));
6579 /* Compute the hash values for all exported symbols. At the same
6580 time store the values in an array so that we could use them for
6582 amt = dynsymcount * 2 * sizeof (unsigned long int);
6583 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6584 if (cinfo.hashcodes == NULL)
6587 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6588 cinfo.min_dynindx = -1;
6589 cinfo.output_bfd = output_bfd;
6592 /* Put all hash values in HASHCODES. */
6593 elf_link_hash_traverse (elf_hash_table (info),
6594 elf_collect_gnu_hash_codes, &cinfo);
6597 free (cinfo.hashcodes);
6602 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6604 if (bucketcount == 0)
6606 free (cinfo.hashcodes);
6610 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6611 BFD_ASSERT (s != NULL);
6613 if (cinfo.nsyms == 0)
6615 /* Empty .gnu.hash section is special. */
6616 BFD_ASSERT (cinfo.min_dynindx == -1);
6617 free (cinfo.hashcodes);
6618 s->size = 5 * 4 + bed->s->arch_size / 8;
6619 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6620 if (contents == NULL)
6622 s->contents = contents;
6623 /* 1 empty bucket. */
6624 bfd_put_32 (output_bfd, 1, contents);
6625 /* SYMIDX above the special symbol 0. */
6626 bfd_put_32 (output_bfd, 1, contents + 4);
6627 /* Just one word for bitmask. */
6628 bfd_put_32 (output_bfd, 1, contents + 8);
6629 /* Only hash fn bloom filter. */
6630 bfd_put_32 (output_bfd, 0, contents + 12);
6631 /* No hashes are valid - empty bitmask. */
6632 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6633 /* No hashes in the only bucket. */
6634 bfd_put_32 (output_bfd, 0,
6635 contents + 16 + bed->s->arch_size / 8);
6639 unsigned long int maskwords, maskbitslog2, x;
6640 BFD_ASSERT (cinfo.min_dynindx != -1);
6644 while ((x >>= 1) != 0)
6646 if (maskbitslog2 < 3)
6648 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6649 maskbitslog2 = maskbitslog2 + 3;
6651 maskbitslog2 = maskbitslog2 + 2;
6652 if (bed->s->arch_size == 64)
6654 if (maskbitslog2 == 5)
6660 cinfo.mask = (1 << cinfo.shift1) - 1;
6661 cinfo.shift2 = maskbitslog2;
6662 cinfo.maskbits = 1 << maskbitslog2;
6663 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6664 amt = bucketcount * sizeof (unsigned long int) * 2;
6665 amt += maskwords * sizeof (bfd_vma);
6666 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6667 if (cinfo.bitmask == NULL)
6669 free (cinfo.hashcodes);
6673 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6674 cinfo.indx = cinfo.counts + bucketcount;
6675 cinfo.symindx = dynsymcount - cinfo.nsyms;
6676 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6678 /* Determine how often each hash bucket is used. */
6679 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6680 for (i = 0; i < cinfo.nsyms; ++i)
6681 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6683 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6684 if (cinfo.counts[i] != 0)
6686 cinfo.indx[i] = cnt;
6687 cnt += cinfo.counts[i];
6689 BFD_ASSERT (cnt == dynsymcount);
6690 cinfo.bucketcount = bucketcount;
6691 cinfo.local_indx = cinfo.min_dynindx;
6693 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6694 s->size += cinfo.maskbits / 8;
6695 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6696 if (contents == NULL)
6698 free (cinfo.bitmask);
6699 free (cinfo.hashcodes);
6703 s->contents = contents;
6704 bfd_put_32 (output_bfd, bucketcount, contents);
6705 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6706 bfd_put_32 (output_bfd, maskwords, contents + 8);
6707 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6708 contents += 16 + cinfo.maskbits / 8;
6710 for (i = 0; i < bucketcount; ++i)
6712 if (cinfo.counts[i] == 0)
6713 bfd_put_32 (output_bfd, 0, contents);
6715 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6719 cinfo.contents = contents;
6721 /* Renumber dynamic symbols, populate .gnu.hash section. */
6722 elf_link_hash_traverse (elf_hash_table (info),
6723 elf_renumber_gnu_hash_syms, &cinfo);
6725 contents = s->contents + 16;
6726 for (i = 0; i < maskwords; ++i)
6728 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6730 contents += bed->s->arch_size / 8;
6733 free (cinfo.bitmask);
6734 free (cinfo.hashcodes);
6738 s = bfd_get_linker_section (dynobj, ".dynstr");
6739 BFD_ASSERT (s != NULL);
6741 elf_finalize_dynstr (output_bfd, info);
6743 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6745 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6746 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6753 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6756 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6759 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6760 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6763 /* Finish SHF_MERGE section merging. */
6766 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6771 if (!is_elf_hash_table (info->hash))
6774 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6775 if ((ibfd->flags & DYNAMIC) == 0)
6776 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6777 if ((sec->flags & SEC_MERGE) != 0
6778 && !bfd_is_abs_section (sec->output_section))
6780 struct bfd_elf_section_data *secdata;
6782 secdata = elf_section_data (sec);
6783 if (! _bfd_add_merge_section (abfd,
6784 &elf_hash_table (info)->merge_info,
6785 sec, &secdata->sec_info))
6787 else if (secdata->sec_info)
6788 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6791 if (elf_hash_table (info)->merge_info != NULL)
6792 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6793 merge_sections_remove_hook);
6797 /* Create an entry in an ELF linker hash table. */
6799 struct bfd_hash_entry *
6800 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6801 struct bfd_hash_table *table,
6804 /* Allocate the structure if it has not already been allocated by a
6808 entry = (struct bfd_hash_entry *)
6809 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6814 /* Call the allocation method of the superclass. */
6815 entry = _bfd_link_hash_newfunc (entry, table, string);
6818 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6819 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6821 /* Set local fields. */
6824 ret->got = htab->init_got_refcount;
6825 ret->plt = htab->init_plt_refcount;
6826 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6827 - offsetof (struct elf_link_hash_entry, size)));
6828 /* Assume that we have been called by a non-ELF symbol reader.
6829 This flag is then reset by the code which reads an ELF input
6830 file. This ensures that a symbol created by a non-ELF symbol
6831 reader will have the flag set correctly. */
6838 /* Copy data from an indirect symbol to its direct symbol, hiding the
6839 old indirect symbol. Also used for copying flags to a weakdef. */
6842 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6843 struct elf_link_hash_entry *dir,
6844 struct elf_link_hash_entry *ind)
6846 struct elf_link_hash_table *htab;
6848 /* Copy down any references that we may have already seen to the
6849 symbol which just became indirect. */
6851 dir->ref_dynamic |= ind->ref_dynamic;
6852 dir->ref_regular |= ind->ref_regular;
6853 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6854 dir->non_got_ref |= ind->non_got_ref;
6855 dir->needs_plt |= ind->needs_plt;
6856 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6858 if (ind->root.type != bfd_link_hash_indirect)
6861 /* Copy over the global and procedure linkage table refcount entries.
6862 These may have been already set up by a check_relocs routine. */
6863 htab = elf_hash_table (info);
6864 if (ind->got.refcount > htab->init_got_refcount.refcount)
6866 if (dir->got.refcount < 0)
6867 dir->got.refcount = 0;
6868 dir->got.refcount += ind->got.refcount;
6869 ind->got.refcount = htab->init_got_refcount.refcount;
6872 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6874 if (dir->plt.refcount < 0)
6875 dir->plt.refcount = 0;
6876 dir->plt.refcount += ind->plt.refcount;
6877 ind->plt.refcount = htab->init_plt_refcount.refcount;
6880 if (ind->dynindx != -1)
6882 if (dir->dynindx != -1)
6883 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6884 dir->dynindx = ind->dynindx;
6885 dir->dynstr_index = ind->dynstr_index;
6887 ind->dynstr_index = 0;
6892 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6893 struct elf_link_hash_entry *h,
6894 bfd_boolean force_local)
6896 /* STT_GNU_IFUNC symbol must go through PLT. */
6897 if (h->type != STT_GNU_IFUNC)
6899 h->plt = elf_hash_table (info)->init_plt_offset;
6904 h->forced_local = 1;
6905 if (h->dynindx != -1)
6908 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6914 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6918 _bfd_elf_link_hash_table_init
6919 (struct elf_link_hash_table *table,
6921 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6922 struct bfd_hash_table *,
6924 unsigned int entsize,
6925 enum elf_target_id target_id)
6928 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6930 table->init_got_refcount.refcount = can_refcount - 1;
6931 table->init_plt_refcount.refcount = can_refcount - 1;
6932 table->init_got_offset.offset = -(bfd_vma) 1;
6933 table->init_plt_offset.offset = -(bfd_vma) 1;
6934 /* The first dynamic symbol is a dummy. */
6935 table->dynsymcount = 1;
6937 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6939 table->root.type = bfd_link_elf_hash_table;
6940 table->hash_table_id = target_id;
6945 /* Create an ELF linker hash table. */
6947 struct bfd_link_hash_table *
6948 _bfd_elf_link_hash_table_create (bfd *abfd)
6950 struct elf_link_hash_table *ret;
6951 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6953 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6957 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6958 sizeof (struct elf_link_hash_entry),
6968 /* Destroy an ELF linker hash table. */
6971 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6973 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6974 if (htab->dynstr != NULL)
6975 _bfd_elf_strtab_free (htab->dynstr);
6976 _bfd_merge_sections_free (htab->merge_info);
6977 _bfd_generic_link_hash_table_free (hash);
6980 /* This is a hook for the ELF emulation code in the generic linker to
6981 tell the backend linker what file name to use for the DT_NEEDED
6982 entry for a dynamic object. */
6985 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6987 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6988 && bfd_get_format (abfd) == bfd_object)
6989 elf_dt_name (abfd) = name;
6993 bfd_elf_get_dyn_lib_class (bfd *abfd)
6996 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6997 && bfd_get_format (abfd) == bfd_object)
6998 lib_class = elf_dyn_lib_class (abfd);
7005 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7007 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7008 && bfd_get_format (abfd) == bfd_object)
7009 elf_dyn_lib_class (abfd) = lib_class;
7012 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7013 the linker ELF emulation code. */
7015 struct bfd_link_needed_list *
7016 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7017 struct bfd_link_info *info)
7019 if (! is_elf_hash_table (info->hash))
7021 return elf_hash_table (info)->needed;
7024 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7025 hook for the linker ELF emulation code. */
7027 struct bfd_link_needed_list *
7028 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7029 struct bfd_link_info *info)
7031 if (! is_elf_hash_table (info->hash))
7033 return elf_hash_table (info)->runpath;
7036 /* Get the name actually used for a dynamic object for a link. This
7037 is the SONAME entry if there is one. Otherwise, it is the string
7038 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7041 bfd_elf_get_dt_soname (bfd *abfd)
7043 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7044 && bfd_get_format (abfd) == bfd_object)
7045 return elf_dt_name (abfd);
7049 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7050 the ELF linker emulation code. */
7053 bfd_elf_get_bfd_needed_list (bfd *abfd,
7054 struct bfd_link_needed_list **pneeded)
7057 bfd_byte *dynbuf = NULL;
7058 unsigned int elfsec;
7059 unsigned long shlink;
7060 bfd_byte *extdyn, *extdynend;
7062 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7066 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7067 || bfd_get_format (abfd) != bfd_object)
7070 s = bfd_get_section_by_name (abfd, ".dynamic");
7071 if (s == NULL || s->size == 0)
7074 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7078 if (elfsec == SHN_BAD)
7081 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7083 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7084 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7087 extdynend = extdyn + s->size;
7088 for (; extdyn < extdynend; extdyn += extdynsize)
7090 Elf_Internal_Dyn dyn;
7092 (*swap_dyn_in) (abfd, extdyn, &dyn);
7094 if (dyn.d_tag == DT_NULL)
7097 if (dyn.d_tag == DT_NEEDED)
7100 struct bfd_link_needed_list *l;
7101 unsigned int tagv = dyn.d_un.d_val;
7104 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7109 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7130 struct elf_symbuf_symbol
7132 unsigned long st_name; /* Symbol name, index in string tbl */
7133 unsigned char st_info; /* Type and binding attributes */
7134 unsigned char st_other; /* Visibilty, and target specific */
7137 struct elf_symbuf_head
7139 struct elf_symbuf_symbol *ssym;
7140 bfd_size_type count;
7141 unsigned int st_shndx;
7148 Elf_Internal_Sym *isym;
7149 struct elf_symbuf_symbol *ssym;
7154 /* Sort references to symbols by ascending section number. */
7157 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7159 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7160 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7162 return s1->st_shndx - s2->st_shndx;
7166 elf_sym_name_compare (const void *arg1, const void *arg2)
7168 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7169 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7170 return strcmp (s1->name, s2->name);
7173 static struct elf_symbuf_head *
7174 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7176 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7177 struct elf_symbuf_symbol *ssym;
7178 struct elf_symbuf_head *ssymbuf, *ssymhead;
7179 bfd_size_type i, shndx_count, total_size;
7181 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7185 for (ind = indbuf, i = 0; i < symcount; i++)
7186 if (isymbuf[i].st_shndx != SHN_UNDEF)
7187 *ind++ = &isymbuf[i];
7190 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7191 elf_sort_elf_symbol);
7194 if (indbufend > indbuf)
7195 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7196 if (ind[0]->st_shndx != ind[1]->st_shndx)
7199 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7200 + (indbufend - indbuf) * sizeof (*ssym));
7201 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7202 if (ssymbuf == NULL)
7208 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7209 ssymbuf->ssym = NULL;
7210 ssymbuf->count = shndx_count;
7211 ssymbuf->st_shndx = 0;
7212 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7214 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7217 ssymhead->ssym = ssym;
7218 ssymhead->count = 0;
7219 ssymhead->st_shndx = (*ind)->st_shndx;
7221 ssym->st_name = (*ind)->st_name;
7222 ssym->st_info = (*ind)->st_info;
7223 ssym->st_other = (*ind)->st_other;
7226 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7227 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7234 /* Check if 2 sections define the same set of local and global
7238 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7239 struct bfd_link_info *info)
7242 const struct elf_backend_data *bed1, *bed2;
7243 Elf_Internal_Shdr *hdr1, *hdr2;
7244 bfd_size_type symcount1, symcount2;
7245 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7246 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7247 Elf_Internal_Sym *isym, *isymend;
7248 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7249 bfd_size_type count1, count2, i;
7250 unsigned int shndx1, shndx2;
7256 /* Both sections have to be in ELF. */
7257 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7258 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7261 if (elf_section_type (sec1) != elf_section_type (sec2))
7264 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7265 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7266 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7269 bed1 = get_elf_backend_data (bfd1);
7270 bed2 = get_elf_backend_data (bfd2);
7271 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7272 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7273 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7274 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7276 if (symcount1 == 0 || symcount2 == 0)
7282 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7283 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7285 if (ssymbuf1 == NULL)
7287 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7289 if (isymbuf1 == NULL)
7292 if (!info->reduce_memory_overheads)
7293 elf_tdata (bfd1)->symbuf = ssymbuf1
7294 = elf_create_symbuf (symcount1, isymbuf1);
7297 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7299 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7301 if (isymbuf2 == NULL)
7304 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7305 elf_tdata (bfd2)->symbuf = ssymbuf2
7306 = elf_create_symbuf (symcount2, isymbuf2);
7309 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7311 /* Optimized faster version. */
7312 bfd_size_type lo, hi, mid;
7313 struct elf_symbol *symp;
7314 struct elf_symbuf_symbol *ssym, *ssymend;
7317 hi = ssymbuf1->count;
7322 mid = (lo + hi) / 2;
7323 if (shndx1 < ssymbuf1[mid].st_shndx)
7325 else if (shndx1 > ssymbuf1[mid].st_shndx)
7329 count1 = ssymbuf1[mid].count;
7336 hi = ssymbuf2->count;
7341 mid = (lo + hi) / 2;
7342 if (shndx2 < ssymbuf2[mid].st_shndx)
7344 else if (shndx2 > ssymbuf2[mid].st_shndx)
7348 count2 = ssymbuf2[mid].count;
7354 if (count1 == 0 || count2 == 0 || count1 != count2)
7357 symtable1 = (struct elf_symbol *)
7358 bfd_malloc (count1 * sizeof (struct elf_symbol));
7359 symtable2 = (struct elf_symbol *)
7360 bfd_malloc (count2 * sizeof (struct elf_symbol));
7361 if (symtable1 == NULL || symtable2 == NULL)
7365 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7366 ssym < ssymend; ssym++, symp++)
7368 symp->u.ssym = ssym;
7369 symp->name = bfd_elf_string_from_elf_section (bfd1,
7375 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7376 ssym < ssymend; ssym++, symp++)
7378 symp->u.ssym = ssym;
7379 symp->name = bfd_elf_string_from_elf_section (bfd2,
7384 /* Sort symbol by name. */
7385 qsort (symtable1, count1, sizeof (struct elf_symbol),
7386 elf_sym_name_compare);
7387 qsort (symtable2, count1, sizeof (struct elf_symbol),
7388 elf_sym_name_compare);
7390 for (i = 0; i < count1; i++)
7391 /* Two symbols must have the same binding, type and name. */
7392 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7393 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7394 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7401 symtable1 = (struct elf_symbol *)
7402 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7403 symtable2 = (struct elf_symbol *)
7404 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7405 if (symtable1 == NULL || symtable2 == NULL)
7408 /* Count definitions in the section. */
7410 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7411 if (isym->st_shndx == shndx1)
7412 symtable1[count1++].u.isym = isym;
7415 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7416 if (isym->st_shndx == shndx2)
7417 symtable2[count2++].u.isym = isym;
7419 if (count1 == 0 || count2 == 0 || count1 != count2)
7422 for (i = 0; i < count1; i++)
7424 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7425 symtable1[i].u.isym->st_name);
7427 for (i = 0; i < count2; i++)
7429 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7430 symtable2[i].u.isym->st_name);
7432 /* Sort symbol by name. */
7433 qsort (symtable1, count1, sizeof (struct elf_symbol),
7434 elf_sym_name_compare);
7435 qsort (symtable2, count1, sizeof (struct elf_symbol),
7436 elf_sym_name_compare);
7438 for (i = 0; i < count1; i++)
7439 /* Two symbols must have the same binding, type and name. */
7440 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7441 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7442 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7460 /* Return TRUE if 2 section types are compatible. */
7463 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7464 bfd *bbfd, const asection *bsec)
7468 || abfd->xvec->flavour != bfd_target_elf_flavour
7469 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7472 return elf_section_type (asec) == elf_section_type (bsec);
7475 /* Final phase of ELF linker. */
7477 /* A structure we use to avoid passing large numbers of arguments. */
7479 struct elf_final_link_info
7481 /* General link information. */
7482 struct bfd_link_info *info;
7485 /* Symbol string table. */
7486 struct bfd_strtab_hash *symstrtab;
7487 /* .dynsym section. */
7488 asection *dynsym_sec;
7489 /* .hash section. */
7491 /* symbol version section (.gnu.version). */
7492 asection *symver_sec;
7493 /* Buffer large enough to hold contents of any section. */
7495 /* Buffer large enough to hold external relocs of any section. */
7496 void *external_relocs;
7497 /* Buffer large enough to hold internal relocs of any section. */
7498 Elf_Internal_Rela *internal_relocs;
7499 /* Buffer large enough to hold external local symbols of any input
7501 bfd_byte *external_syms;
7502 /* And a buffer for symbol section indices. */
7503 Elf_External_Sym_Shndx *locsym_shndx;
7504 /* Buffer large enough to hold internal local symbols of any input
7506 Elf_Internal_Sym *internal_syms;
7507 /* Array large enough to hold a symbol index for each local symbol
7508 of any input BFD. */
7510 /* Array large enough to hold a section pointer for each local
7511 symbol of any input BFD. */
7512 asection **sections;
7513 /* Buffer to hold swapped out symbols. */
7515 /* And one for symbol section indices. */
7516 Elf_External_Sym_Shndx *symshndxbuf;
7517 /* Number of swapped out symbols in buffer. */
7518 size_t symbuf_count;
7519 /* Number of symbols which fit in symbuf. */
7521 /* And same for symshndxbuf. */
7522 size_t shndxbuf_size;
7523 /* Number of STT_FILE syms seen. */
7524 size_t filesym_count;
7527 /* This struct is used to pass information to elf_link_output_extsym. */
7529 struct elf_outext_info
7532 bfd_boolean localsyms;
7533 bfd_boolean need_second_pass;
7534 bfd_boolean second_pass;
7535 struct elf_final_link_info *flinfo;
7539 /* Support for evaluating a complex relocation.
7541 Complex relocations are generalized, self-describing relocations. The
7542 implementation of them consists of two parts: complex symbols, and the
7543 relocations themselves.
7545 The relocations are use a reserved elf-wide relocation type code (R_RELC
7546 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7547 information (start bit, end bit, word width, etc) into the addend. This
7548 information is extracted from CGEN-generated operand tables within gas.
7550 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7551 internal) representing prefix-notation expressions, including but not
7552 limited to those sorts of expressions normally encoded as addends in the
7553 addend field. The symbol mangling format is:
7556 | <unary-operator> ':' <node>
7557 | <binary-operator> ':' <node> ':' <node>
7560 <literal> := 's' <digits=N> ':' <N character symbol name>
7561 | 'S' <digits=N> ':' <N character section name>
7565 <binary-operator> := as in C
7566 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7569 set_symbol_value (bfd *bfd_with_globals,
7570 Elf_Internal_Sym *isymbuf,
7575 struct elf_link_hash_entry **sym_hashes;
7576 struct elf_link_hash_entry *h;
7577 size_t extsymoff = locsymcount;
7579 if (symidx < locsymcount)
7581 Elf_Internal_Sym *sym;
7583 sym = isymbuf + symidx;
7584 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7586 /* It is a local symbol: move it to the
7587 "absolute" section and give it a value. */
7588 sym->st_shndx = SHN_ABS;
7589 sym->st_value = val;
7592 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7596 /* It is a global symbol: set its link type
7597 to "defined" and give it a value. */
7599 sym_hashes = elf_sym_hashes (bfd_with_globals);
7600 h = sym_hashes [symidx - extsymoff];
7601 while (h->root.type == bfd_link_hash_indirect
7602 || h->root.type == bfd_link_hash_warning)
7603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7604 h->root.type = bfd_link_hash_defined;
7605 h->root.u.def.value = val;
7606 h->root.u.def.section = bfd_abs_section_ptr;
7610 resolve_symbol (const char *name,
7612 struct elf_final_link_info *flinfo,
7614 Elf_Internal_Sym *isymbuf,
7617 Elf_Internal_Sym *sym;
7618 struct bfd_link_hash_entry *global_entry;
7619 const char *candidate = NULL;
7620 Elf_Internal_Shdr *symtab_hdr;
7623 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7625 for (i = 0; i < locsymcount; ++ i)
7629 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7632 candidate = bfd_elf_string_from_elf_section (input_bfd,
7633 symtab_hdr->sh_link,
7636 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7637 name, candidate, (unsigned long) sym->st_value);
7639 if (candidate && strcmp (candidate, name) == 0)
7641 asection *sec = flinfo->sections [i];
7643 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7644 *result += sec->output_offset + sec->output_section->vma;
7646 printf ("Found symbol with value %8.8lx\n",
7647 (unsigned long) *result);
7653 /* Hmm, haven't found it yet. perhaps it is a global. */
7654 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7655 FALSE, FALSE, TRUE);
7659 if (global_entry->type == bfd_link_hash_defined
7660 || global_entry->type == bfd_link_hash_defweak)
7662 *result = (global_entry->u.def.value
7663 + global_entry->u.def.section->output_section->vma
7664 + global_entry->u.def.section->output_offset);
7666 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7667 global_entry->root.string, (unsigned long) *result);
7676 resolve_section (const char *name,
7683 for (curr = sections; curr; curr = curr->next)
7684 if (strcmp (curr->name, name) == 0)
7686 *result = curr->vma;
7690 /* Hmm. still haven't found it. try pseudo-section names. */
7691 for (curr = sections; curr; curr = curr->next)
7693 len = strlen (curr->name);
7694 if (len > strlen (name))
7697 if (strncmp (curr->name, name, len) == 0)
7699 if (strncmp (".end", name + len, 4) == 0)
7701 *result = curr->vma + curr->size;
7705 /* Insert more pseudo-section names here, if you like. */
7713 undefined_reference (const char *reftype, const char *name)
7715 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7720 eval_symbol (bfd_vma *result,
7723 struct elf_final_link_info *flinfo,
7725 Elf_Internal_Sym *isymbuf,
7734 const char *sym = *symp;
7736 bfd_boolean symbol_is_section = FALSE;
7741 if (len < 1 || len > sizeof (symbuf))
7743 bfd_set_error (bfd_error_invalid_operation);
7756 *result = strtoul (sym, (char **) symp, 16);
7760 symbol_is_section = TRUE;
7763 symlen = strtol (sym, (char **) symp, 10);
7764 sym = *symp + 1; /* Skip the trailing ':'. */
7766 if (symend < sym || symlen + 1 > sizeof (symbuf))
7768 bfd_set_error (bfd_error_invalid_operation);
7772 memcpy (symbuf, sym, symlen);
7773 symbuf[symlen] = '\0';
7774 *symp = sym + symlen;
7776 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7777 the symbol as a section, or vice-versa. so we're pretty liberal in our
7778 interpretation here; section means "try section first", not "must be a
7779 section", and likewise with symbol. */
7781 if (symbol_is_section)
7783 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7784 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7785 isymbuf, locsymcount))
7787 undefined_reference ("section", symbuf);
7793 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7794 isymbuf, locsymcount)
7795 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7798 undefined_reference ("symbol", symbuf);
7805 /* All that remains are operators. */
7807 #define UNARY_OP(op) \
7808 if (strncmp (sym, #op, strlen (#op)) == 0) \
7810 sym += strlen (#op); \
7814 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7815 isymbuf, locsymcount, signed_p)) \
7818 *result = op ((bfd_signed_vma) a); \
7824 #define BINARY_OP(op) \
7825 if (strncmp (sym, #op, strlen (#op)) == 0) \
7827 sym += strlen (#op); \
7831 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7832 isymbuf, locsymcount, signed_p)) \
7835 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7836 isymbuf, locsymcount, signed_p)) \
7839 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7869 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7870 bfd_set_error (bfd_error_invalid_operation);
7876 put_value (bfd_vma size,
7877 unsigned long chunksz,
7882 location += (size - chunksz);
7884 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7892 bfd_put_8 (input_bfd, x, location);
7895 bfd_put_16 (input_bfd, x, location);
7898 bfd_put_32 (input_bfd, x, location);
7902 bfd_put_64 (input_bfd, x, location);
7912 get_value (bfd_vma size,
7913 unsigned long chunksz,
7920 /* Sanity checks. */
7921 BFD_ASSERT (chunksz <= sizeof (x)
7924 && (size % chunksz) == 0
7925 && input_bfd != NULL
7926 && location != NULL);
7928 if (chunksz == sizeof (x))
7930 BFD_ASSERT (size == chunksz);
7932 /* Make sure that we do not perform an undefined shift operation.
7933 We know that size == chunksz so there will only be one iteration
7934 of the loop below. */
7938 shift = 8 * chunksz;
7940 for (; size; size -= chunksz, location += chunksz)
7945 x = (x << shift) | bfd_get_8 (input_bfd, location);
7948 x = (x << shift) | bfd_get_16 (input_bfd, location);
7951 x = (x << shift) | bfd_get_32 (input_bfd, location);
7955 x = (x << shift) | bfd_get_64 (input_bfd, location);
7966 decode_complex_addend (unsigned long *start, /* in bits */
7967 unsigned long *oplen, /* in bits */
7968 unsigned long *len, /* in bits */
7969 unsigned long *wordsz, /* in bytes */
7970 unsigned long *chunksz, /* in bytes */
7971 unsigned long *lsb0_p,
7972 unsigned long *signed_p,
7973 unsigned long *trunc_p,
7974 unsigned long encoded)
7976 * start = encoded & 0x3F;
7977 * len = (encoded >> 6) & 0x3F;
7978 * oplen = (encoded >> 12) & 0x3F;
7979 * wordsz = (encoded >> 18) & 0xF;
7980 * chunksz = (encoded >> 22) & 0xF;
7981 * lsb0_p = (encoded >> 27) & 1;
7982 * signed_p = (encoded >> 28) & 1;
7983 * trunc_p = (encoded >> 29) & 1;
7986 bfd_reloc_status_type
7987 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7988 asection *input_section ATTRIBUTE_UNUSED,
7990 Elf_Internal_Rela *rel,
7993 bfd_vma shift, x, mask;
7994 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7995 bfd_reloc_status_type r;
7997 /* Perform this reloc, since it is complex.
7998 (this is not to say that it necessarily refers to a complex
7999 symbol; merely that it is a self-describing CGEN based reloc.
8000 i.e. the addend has the complete reloc information (bit start, end,
8001 word size, etc) encoded within it.). */
8003 decode_complex_addend (&start, &oplen, &len, &wordsz,
8004 &chunksz, &lsb0_p, &signed_p,
8005 &trunc_p, rel->r_addend);
8007 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8010 shift = (start + 1) - len;
8012 shift = (8 * wordsz) - (start + len);
8014 /* FIXME: octets_per_byte. */
8015 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8018 printf ("Doing complex reloc: "
8019 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8020 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8021 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8022 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8023 oplen, (unsigned long) x, (unsigned long) mask,
8024 (unsigned long) relocation);
8029 /* Now do an overflow check. */
8030 r = bfd_check_overflow ((signed_p
8031 ? complain_overflow_signed
8032 : complain_overflow_unsigned),
8033 len, 0, (8 * wordsz),
8037 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8040 printf (" relocation: %8.8lx\n"
8041 " shifted mask: %8.8lx\n"
8042 " shifted/masked reloc: %8.8lx\n"
8043 " result: %8.8lx\n",
8044 (unsigned long) relocation, (unsigned long) (mask << shift),
8045 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8047 /* FIXME: octets_per_byte. */
8048 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8052 /* When performing a relocatable link, the input relocations are
8053 preserved. But, if they reference global symbols, the indices
8054 referenced must be updated. Update all the relocations found in
8058 elf_link_adjust_relocs (bfd *abfd,
8059 struct bfd_elf_section_reloc_data *reldata)
8062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8064 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8065 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8066 bfd_vma r_type_mask;
8068 unsigned int count = reldata->count;
8069 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8071 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8073 swap_in = bed->s->swap_reloc_in;
8074 swap_out = bed->s->swap_reloc_out;
8076 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8078 swap_in = bed->s->swap_reloca_in;
8079 swap_out = bed->s->swap_reloca_out;
8084 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8087 if (bed->s->arch_size == 32)
8094 r_type_mask = 0xffffffff;
8098 erela = reldata->hdr->contents;
8099 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8101 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8104 if (*rel_hash == NULL)
8107 BFD_ASSERT ((*rel_hash)->indx >= 0);
8109 (*swap_in) (abfd, erela, irela);
8110 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8111 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8112 | (irela[j].r_info & r_type_mask));
8113 (*swap_out) (abfd, irela, erela);
8117 struct elf_link_sort_rela
8123 enum elf_reloc_type_class type;
8124 /* We use this as an array of size int_rels_per_ext_rel. */
8125 Elf_Internal_Rela rela[1];
8129 elf_link_sort_cmp1 (const void *A, const void *B)
8131 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8132 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8133 int relativea, relativeb;
8135 relativea = a->type == reloc_class_relative;
8136 relativeb = b->type == reloc_class_relative;
8138 if (relativea < relativeb)
8140 if (relativea > relativeb)
8142 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8144 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8146 if (a->rela->r_offset < b->rela->r_offset)
8148 if (a->rela->r_offset > b->rela->r_offset)
8154 elf_link_sort_cmp2 (const void *A, const void *B)
8156 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8157 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8160 if (a->u.offset < b->u.offset)
8162 if (a->u.offset > b->u.offset)
8164 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8165 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8170 if (a->rela->r_offset < b->rela->r_offset)
8172 if (a->rela->r_offset > b->rela->r_offset)
8178 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8180 asection *dynamic_relocs;
8183 bfd_size_type count, size;
8184 size_t i, ret, sort_elt, ext_size;
8185 bfd_byte *sort, *s_non_relative, *p;
8186 struct elf_link_sort_rela *sq;
8187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8188 int i2e = bed->s->int_rels_per_ext_rel;
8189 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8190 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8191 struct bfd_link_order *lo;
8193 bfd_boolean use_rela;
8195 /* Find a dynamic reloc section. */
8196 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8197 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8198 if (rela_dyn != NULL && rela_dyn->size > 0
8199 && rel_dyn != NULL && rel_dyn->size > 0)
8201 bfd_boolean use_rela_initialised = FALSE;
8203 /* This is just here to stop gcc from complaining.
8204 It's initialization checking code is not perfect. */
8207 /* Both sections are present. Examine the sizes
8208 of the indirect sections to help us choose. */
8209 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8210 if (lo->type == bfd_indirect_link_order)
8212 asection *o = lo->u.indirect.section;
8214 if ((o->size % bed->s->sizeof_rela) == 0)
8216 if ((o->size % bed->s->sizeof_rel) == 0)
8217 /* Section size is divisible by both rel and rela sizes.
8218 It is of no help to us. */
8222 /* Section size is only divisible by rela. */
8223 if (use_rela_initialised && (use_rela == FALSE))
8226 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8227 bfd_set_error (bfd_error_invalid_operation);
8233 use_rela_initialised = TRUE;
8237 else if ((o->size % bed->s->sizeof_rel) == 0)
8239 /* Section size is only divisible by rel. */
8240 if (use_rela_initialised && (use_rela == TRUE))
8243 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8244 bfd_set_error (bfd_error_invalid_operation);
8250 use_rela_initialised = TRUE;
8255 /* The section size is not divisible by either - something is wrong. */
8257 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8258 bfd_set_error (bfd_error_invalid_operation);
8263 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8264 if (lo->type == bfd_indirect_link_order)
8266 asection *o = lo->u.indirect.section;
8268 if ((o->size % bed->s->sizeof_rela) == 0)
8270 if ((o->size % bed->s->sizeof_rel) == 0)
8271 /* Section size is divisible by both rel and rela sizes.
8272 It is of no help to us. */
8276 /* Section size is only divisible by rela. */
8277 if (use_rela_initialised && (use_rela == FALSE))
8280 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8281 bfd_set_error (bfd_error_invalid_operation);
8287 use_rela_initialised = TRUE;
8291 else if ((o->size % bed->s->sizeof_rel) == 0)
8293 /* Section size is only divisible by rel. */
8294 if (use_rela_initialised && (use_rela == TRUE))
8297 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8298 bfd_set_error (bfd_error_invalid_operation);
8304 use_rela_initialised = TRUE;
8309 /* The section size is not divisible by either - something is wrong. */
8311 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8312 bfd_set_error (bfd_error_invalid_operation);
8317 if (! use_rela_initialised)
8321 else if (rela_dyn != NULL && rela_dyn->size > 0)
8323 else if (rel_dyn != NULL && rel_dyn->size > 0)
8330 dynamic_relocs = rela_dyn;
8331 ext_size = bed->s->sizeof_rela;
8332 swap_in = bed->s->swap_reloca_in;
8333 swap_out = bed->s->swap_reloca_out;
8337 dynamic_relocs = rel_dyn;
8338 ext_size = bed->s->sizeof_rel;
8339 swap_in = bed->s->swap_reloc_in;
8340 swap_out = bed->s->swap_reloc_out;
8344 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8345 if (lo->type == bfd_indirect_link_order)
8346 size += lo->u.indirect.section->size;
8348 if (size != dynamic_relocs->size)
8351 sort_elt = (sizeof (struct elf_link_sort_rela)
8352 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8354 count = dynamic_relocs->size / ext_size;
8357 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8361 (*info->callbacks->warning)
8362 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8366 if (bed->s->arch_size == 32)
8367 r_sym_mask = ~(bfd_vma) 0xff;
8369 r_sym_mask = ~(bfd_vma) 0xffffffff;
8371 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8372 if (lo->type == bfd_indirect_link_order)
8374 bfd_byte *erel, *erelend;
8375 asection *o = lo->u.indirect.section;
8377 if (o->contents == NULL && o->size != 0)
8379 /* This is a reloc section that is being handled as a normal
8380 section. See bfd_section_from_shdr. We can't combine
8381 relocs in this case. */
8386 erelend = o->contents + o->size;
8387 /* FIXME: octets_per_byte. */
8388 p = sort + o->output_offset / ext_size * sort_elt;
8390 while (erel < erelend)
8392 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8394 (*swap_in) (abfd, erel, s->rela);
8395 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8396 s->u.sym_mask = r_sym_mask;
8402 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8404 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8406 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8407 if (s->type != reloc_class_relative)
8413 sq = (struct elf_link_sort_rela *) s_non_relative;
8414 for (; i < count; i++, p += sort_elt)
8416 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8417 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8419 sp->u.offset = sq->rela->r_offset;
8422 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8424 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8425 if (lo->type == bfd_indirect_link_order)
8427 bfd_byte *erel, *erelend;
8428 asection *o = lo->u.indirect.section;
8431 erelend = o->contents + o->size;
8432 /* FIXME: octets_per_byte. */
8433 p = sort + o->output_offset / ext_size * sort_elt;
8434 while (erel < erelend)
8436 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8437 (*swap_out) (abfd, s->rela, erel);
8444 *psec = dynamic_relocs;
8448 /* Flush the output symbols to the file. */
8451 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8452 const struct elf_backend_data *bed)
8454 if (flinfo->symbuf_count > 0)
8456 Elf_Internal_Shdr *hdr;
8460 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8461 pos = hdr->sh_offset + hdr->sh_size;
8462 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8463 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8464 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8467 hdr->sh_size += amt;
8468 flinfo->symbuf_count = 0;
8474 /* Add a symbol to the output symbol table. */
8477 elf_link_output_sym (struct elf_final_link_info *flinfo,
8479 Elf_Internal_Sym *elfsym,
8480 asection *input_sec,
8481 struct elf_link_hash_entry *h)
8484 Elf_External_Sym_Shndx *destshndx;
8485 int (*output_symbol_hook)
8486 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8487 struct elf_link_hash_entry *);
8488 const struct elf_backend_data *bed;
8490 bed = get_elf_backend_data (flinfo->output_bfd);
8491 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8492 if (output_symbol_hook != NULL)
8494 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8499 if (name == NULL || *name == '\0')
8500 elfsym->st_name = 0;
8501 else if (input_sec->flags & SEC_EXCLUDE)
8502 elfsym->st_name = 0;
8505 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8507 if (elfsym->st_name == (unsigned long) -1)
8511 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8513 if (! elf_link_flush_output_syms (flinfo, bed))
8517 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8518 destshndx = flinfo->symshndxbuf;
8519 if (destshndx != NULL)
8521 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8525 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8526 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8528 if (destshndx == NULL)
8530 flinfo->symshndxbuf = destshndx;
8531 memset ((char *) destshndx + amt, 0, amt);
8532 flinfo->shndxbuf_size *= 2;
8534 destshndx += bfd_get_symcount (flinfo->output_bfd);
8537 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8538 flinfo->symbuf_count += 1;
8539 bfd_get_symcount (flinfo->output_bfd) += 1;
8544 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8547 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8549 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8550 && sym->st_shndx < SHN_LORESERVE)
8552 /* The gABI doesn't support dynamic symbols in output sections
8554 (*_bfd_error_handler)
8555 (_("%B: Too many sections: %d (>= %d)"),
8556 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8557 bfd_set_error (bfd_error_nonrepresentable_section);
8563 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8564 allowing an unsatisfied unversioned symbol in the DSO to match a
8565 versioned symbol that would normally require an explicit version.
8566 We also handle the case that a DSO references a hidden symbol
8567 which may be satisfied by a versioned symbol in another DSO. */
8570 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8571 const struct elf_backend_data *bed,
8572 struct elf_link_hash_entry *h)
8575 struct elf_link_loaded_list *loaded;
8577 if (!is_elf_hash_table (info->hash))
8580 /* Check indirect symbol. */
8581 while (h->root.type == bfd_link_hash_indirect)
8582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8584 switch (h->root.type)
8590 case bfd_link_hash_undefined:
8591 case bfd_link_hash_undefweak:
8592 abfd = h->root.u.undef.abfd;
8593 if ((abfd->flags & DYNAMIC) == 0
8594 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8598 case bfd_link_hash_defined:
8599 case bfd_link_hash_defweak:
8600 abfd = h->root.u.def.section->owner;
8603 case bfd_link_hash_common:
8604 abfd = h->root.u.c.p->section->owner;
8607 BFD_ASSERT (abfd != NULL);
8609 for (loaded = elf_hash_table (info)->loaded;
8611 loaded = loaded->next)
8614 Elf_Internal_Shdr *hdr;
8615 bfd_size_type symcount;
8616 bfd_size_type extsymcount;
8617 bfd_size_type extsymoff;
8618 Elf_Internal_Shdr *versymhdr;
8619 Elf_Internal_Sym *isym;
8620 Elf_Internal_Sym *isymend;
8621 Elf_Internal_Sym *isymbuf;
8622 Elf_External_Versym *ever;
8623 Elf_External_Versym *extversym;
8625 input = loaded->abfd;
8627 /* We check each DSO for a possible hidden versioned definition. */
8629 || (input->flags & DYNAMIC) == 0
8630 || elf_dynversym (input) == 0)
8633 hdr = &elf_tdata (input)->dynsymtab_hdr;
8635 symcount = hdr->sh_size / bed->s->sizeof_sym;
8636 if (elf_bad_symtab (input))
8638 extsymcount = symcount;
8643 extsymcount = symcount - hdr->sh_info;
8644 extsymoff = hdr->sh_info;
8647 if (extsymcount == 0)
8650 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8652 if (isymbuf == NULL)
8655 /* Read in any version definitions. */
8656 versymhdr = &elf_tdata (input)->dynversym_hdr;
8657 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8658 if (extversym == NULL)
8661 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8662 || (bfd_bread (extversym, versymhdr->sh_size, input)
8663 != versymhdr->sh_size))
8671 ever = extversym + extsymoff;
8672 isymend = isymbuf + extsymcount;
8673 for (isym = isymbuf; isym < isymend; isym++, ever++)
8676 Elf_Internal_Versym iver;
8677 unsigned short version_index;
8679 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8680 || isym->st_shndx == SHN_UNDEF)
8683 name = bfd_elf_string_from_elf_section (input,
8686 if (strcmp (name, h->root.root.string) != 0)
8689 _bfd_elf_swap_versym_in (input, ever, &iver);
8691 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8693 && h->forced_local))
8695 /* If we have a non-hidden versioned sym, then it should
8696 have provided a definition for the undefined sym unless
8697 it is defined in a non-shared object and forced local.
8702 version_index = iver.vs_vers & VERSYM_VERSION;
8703 if (version_index == 1 || version_index == 2)
8705 /* This is the base or first version. We can use it. */
8719 /* Add an external symbol to the symbol table. This is called from
8720 the hash table traversal routine. When generating a shared object,
8721 we go through the symbol table twice. The first time we output
8722 anything that might have been forced to local scope in a version
8723 script. The second time we output the symbols that are still
8727 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8729 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8730 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8731 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8733 Elf_Internal_Sym sym;
8734 asection *input_sec;
8735 const struct elf_backend_data *bed;
8739 if (h->root.type == bfd_link_hash_warning)
8741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8742 if (h->root.type == bfd_link_hash_new)
8746 /* Decide whether to output this symbol in this pass. */
8747 if (eoinfo->localsyms)
8749 if (!h->forced_local)
8751 if (eoinfo->second_pass
8752 && !((h->root.type == bfd_link_hash_defined
8753 || h->root.type == bfd_link_hash_defweak)
8754 && h->root.u.def.section->output_section != NULL))
8759 if (h->forced_local)
8763 bed = get_elf_backend_data (flinfo->output_bfd);
8765 if (h->root.type == bfd_link_hash_undefined)
8767 /* If we have an undefined symbol reference here then it must have
8768 come from a shared library that is being linked in. (Undefined
8769 references in regular files have already been handled unless
8770 they are in unreferenced sections which are removed by garbage
8772 bfd_boolean ignore_undef = FALSE;
8774 /* Some symbols may be special in that the fact that they're
8775 undefined can be safely ignored - let backend determine that. */
8776 if (bed->elf_backend_ignore_undef_symbol)
8777 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8779 /* If we are reporting errors for this situation then do so now. */
8782 && (!h->ref_regular || flinfo->info->gc_sections)
8783 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8784 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8786 if (!(flinfo->info->callbacks->undefined_symbol
8787 (flinfo->info, h->root.root.string,
8788 h->ref_regular ? NULL : h->root.u.undef.abfd,
8790 (flinfo->info->unresolved_syms_in_shared_libs
8791 == RM_GENERATE_ERROR))))
8793 bfd_set_error (bfd_error_bad_value);
8794 eoinfo->failed = TRUE;
8800 /* We should also warn if a forced local symbol is referenced from
8801 shared libraries. */
8802 if (!flinfo->info->relocatable
8803 && flinfo->info->executable
8808 && h->ref_dynamic_nonweak
8809 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8813 struct elf_link_hash_entry *hi = h;
8815 /* Check indirect symbol. */
8816 while (hi->root.type == bfd_link_hash_indirect)
8817 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8819 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8820 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8821 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8822 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8824 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8825 def_bfd = flinfo->output_bfd;
8826 if (hi->root.u.def.section != bfd_abs_section_ptr)
8827 def_bfd = hi->root.u.def.section->owner;
8828 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8829 h->root.root.string);
8830 bfd_set_error (bfd_error_bad_value);
8831 eoinfo->failed = TRUE;
8835 /* We don't want to output symbols that have never been mentioned by
8836 a regular file, or that we have been told to strip. However, if
8837 h->indx is set to -2, the symbol is used by a reloc and we must
8841 else if ((h->def_dynamic
8843 || h->root.type == bfd_link_hash_new)
8847 else if (flinfo->info->strip == strip_all)
8849 else if (flinfo->info->strip == strip_some
8850 && bfd_hash_lookup (flinfo->info->keep_hash,
8851 h->root.root.string, FALSE, FALSE) == NULL)
8853 else if ((h->root.type == bfd_link_hash_defined
8854 || h->root.type == bfd_link_hash_defweak)
8855 && ((flinfo->info->strip_discarded
8856 && discarded_section (h->root.u.def.section))
8857 || (h->root.u.def.section->owner != NULL
8858 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8860 else if ((h->root.type == bfd_link_hash_undefined
8861 || h->root.type == bfd_link_hash_undefweak)
8862 && h->root.u.undef.abfd != NULL
8863 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8868 /* If we're stripping it, and it's not a dynamic symbol, there's
8869 nothing else to do unless it is a forced local symbol or a
8870 STT_GNU_IFUNC symbol. */
8873 && h->type != STT_GNU_IFUNC
8874 && !h->forced_local)
8878 sym.st_size = h->size;
8879 sym.st_other = h->other;
8880 if (h->forced_local)
8882 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8883 /* Turn off visibility on local symbol. */
8884 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8886 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8887 else if (h->unique_global && h->def_regular)
8888 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8889 else if (h->root.type == bfd_link_hash_undefweak
8890 || h->root.type == bfd_link_hash_defweak)
8891 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8893 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8894 sym.st_target_internal = h->target_internal;
8896 switch (h->root.type)
8899 case bfd_link_hash_new:
8900 case bfd_link_hash_warning:
8904 case bfd_link_hash_undefined:
8905 case bfd_link_hash_undefweak:
8906 input_sec = bfd_und_section_ptr;
8907 sym.st_shndx = SHN_UNDEF;
8910 case bfd_link_hash_defined:
8911 case bfd_link_hash_defweak:
8913 input_sec = h->root.u.def.section;
8914 if (input_sec->output_section != NULL)
8916 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8918 bfd_boolean second_pass_sym
8919 = (input_sec->owner == flinfo->output_bfd
8920 || input_sec->owner == NULL
8921 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8922 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8924 eoinfo->need_second_pass |= second_pass_sym;
8925 if (eoinfo->second_pass != second_pass_sym)
8930 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8931 input_sec->output_section);
8932 if (sym.st_shndx == SHN_BAD)
8934 (*_bfd_error_handler)
8935 (_("%B: could not find output section %A for input section %A"),
8936 flinfo->output_bfd, input_sec->output_section, input_sec);
8937 bfd_set_error (bfd_error_nonrepresentable_section);
8938 eoinfo->failed = TRUE;
8942 /* ELF symbols in relocatable files are section relative,
8943 but in nonrelocatable files they are virtual
8945 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8946 if (!flinfo->info->relocatable)
8948 sym.st_value += input_sec->output_section->vma;
8949 if (h->type == STT_TLS)
8951 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8952 if (tls_sec != NULL)
8953 sym.st_value -= tls_sec->vma;
8956 /* The TLS section may have been garbage collected. */
8957 BFD_ASSERT (flinfo->info->gc_sections
8958 && !input_sec->gc_mark);
8965 BFD_ASSERT (input_sec->owner == NULL
8966 || (input_sec->owner->flags & DYNAMIC) != 0);
8967 sym.st_shndx = SHN_UNDEF;
8968 input_sec = bfd_und_section_ptr;
8973 case bfd_link_hash_common:
8974 input_sec = h->root.u.c.p->section;
8975 sym.st_shndx = bed->common_section_index (input_sec);
8976 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8979 case bfd_link_hash_indirect:
8980 /* These symbols are created by symbol versioning. They point
8981 to the decorated version of the name. For example, if the
8982 symbol foo@@GNU_1.2 is the default, which should be used when
8983 foo is used with no version, then we add an indirect symbol
8984 foo which points to foo@@GNU_1.2. We ignore these symbols,
8985 since the indirected symbol is already in the hash table. */
8989 /* Give the processor backend a chance to tweak the symbol value,
8990 and also to finish up anything that needs to be done for this
8991 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8992 forced local syms when non-shared is due to a historical quirk.
8993 STT_GNU_IFUNC symbol must go through PLT. */
8994 if ((h->type == STT_GNU_IFUNC
8996 && !flinfo->info->relocatable)
8997 || ((h->dynindx != -1
8999 && ((flinfo->info->shared
9000 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9001 || h->root.type != bfd_link_hash_undefweak))
9002 || !h->forced_local)
9003 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9005 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9006 (flinfo->output_bfd, flinfo->info, h, &sym)))
9008 eoinfo->failed = TRUE;
9013 /* If we are marking the symbol as undefined, and there are no
9014 non-weak references to this symbol from a regular object, then
9015 mark the symbol as weak undefined; if there are non-weak
9016 references, mark the symbol as strong. We can't do this earlier,
9017 because it might not be marked as undefined until the
9018 finish_dynamic_symbol routine gets through with it. */
9019 if (sym.st_shndx == SHN_UNDEF
9021 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9022 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9025 unsigned int type = ELF_ST_TYPE (sym.st_info);
9027 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9028 if (type == STT_GNU_IFUNC)
9031 if (h->ref_regular_nonweak)
9032 bindtype = STB_GLOBAL;
9034 bindtype = STB_WEAK;
9035 sym.st_info = ELF_ST_INFO (bindtype, type);
9038 /* If this is a symbol defined in a dynamic library, don't use the
9039 symbol size from the dynamic library. Relinking an executable
9040 against a new library may introduce gratuitous changes in the
9041 executable's symbols if we keep the size. */
9042 if (sym.st_shndx == SHN_UNDEF
9047 /* If a non-weak symbol with non-default visibility is not defined
9048 locally, it is a fatal error. */
9049 if (!flinfo->info->relocatable
9050 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9051 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9052 && h->root.type == bfd_link_hash_undefined
9057 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9058 msg = _("%B: protected symbol `%s' isn't defined");
9059 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9060 msg = _("%B: internal symbol `%s' isn't defined");
9062 msg = _("%B: hidden symbol `%s' isn't defined");
9063 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9064 bfd_set_error (bfd_error_bad_value);
9065 eoinfo->failed = TRUE;
9069 /* If this symbol should be put in the .dynsym section, then put it
9070 there now. We already know the symbol index. We also fill in
9071 the entry in the .hash section. */
9072 if (flinfo->dynsym_sec != NULL
9074 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9078 /* Since there is no version information in the dynamic string,
9079 if there is no version info in symbol version section, we will
9080 have a run-time problem. */
9081 if (h->verinfo.verdef == NULL)
9083 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9085 if (p && p [1] != '\0')
9087 (*_bfd_error_handler)
9088 (_("%B: No symbol version section for versioned symbol `%s'"),
9089 flinfo->output_bfd, h->root.root.string);
9090 eoinfo->failed = TRUE;
9095 sym.st_name = h->dynstr_index;
9096 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9097 if (!check_dynsym (flinfo->output_bfd, &sym))
9099 eoinfo->failed = TRUE;
9102 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9104 if (flinfo->hash_sec != NULL)
9106 size_t hash_entry_size;
9107 bfd_byte *bucketpos;
9112 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9113 bucket = h->u.elf_hash_value % bucketcount;
9116 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9117 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9118 + (bucket + 2) * hash_entry_size);
9119 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9120 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9122 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9123 ((bfd_byte *) flinfo->hash_sec->contents
9124 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9127 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9129 Elf_Internal_Versym iversym;
9130 Elf_External_Versym *eversym;
9132 if (!h->def_regular)
9134 if (h->verinfo.verdef == NULL)
9135 iversym.vs_vers = 0;
9137 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9141 if (h->verinfo.vertree == NULL)
9142 iversym.vs_vers = 1;
9144 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9145 if (flinfo->info->create_default_symver)
9150 iversym.vs_vers |= VERSYM_HIDDEN;
9152 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9153 eversym += h->dynindx;
9154 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9158 /* If we're stripping it, then it was just a dynamic symbol, and
9159 there's nothing else to do. */
9160 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9163 indx = bfd_get_symcount (flinfo->output_bfd);
9164 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9167 eoinfo->failed = TRUE;
9172 else if (h->indx == -2)
9178 /* Return TRUE if special handling is done for relocs in SEC against
9179 symbols defined in discarded sections. */
9182 elf_section_ignore_discarded_relocs (asection *sec)
9184 const struct elf_backend_data *bed;
9186 switch (sec->sec_info_type)
9188 case SEC_INFO_TYPE_STABS:
9189 case SEC_INFO_TYPE_EH_FRAME:
9195 bed = get_elf_backend_data (sec->owner);
9196 if (bed->elf_backend_ignore_discarded_relocs != NULL
9197 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9203 /* Return a mask saying how ld should treat relocations in SEC against
9204 symbols defined in discarded sections. If this function returns
9205 COMPLAIN set, ld will issue a warning message. If this function
9206 returns PRETEND set, and the discarded section was link-once and the
9207 same size as the kept link-once section, ld will pretend that the
9208 symbol was actually defined in the kept section. Otherwise ld will
9209 zero the reloc (at least that is the intent, but some cooperation by
9210 the target dependent code is needed, particularly for REL targets). */
9213 _bfd_elf_default_action_discarded (asection *sec)
9215 if (sec->flags & SEC_DEBUGGING)
9218 if (strcmp (".eh_frame", sec->name) == 0)
9221 if (strcmp (".gcc_except_table", sec->name) == 0)
9224 return COMPLAIN | PRETEND;
9227 /* Find a match between a section and a member of a section group. */
9230 match_group_member (asection *sec, asection *group,
9231 struct bfd_link_info *info)
9233 asection *first = elf_next_in_group (group);
9234 asection *s = first;
9238 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9241 s = elf_next_in_group (s);
9249 /* Check if the kept section of a discarded section SEC can be used
9250 to replace it. Return the replacement if it is OK. Otherwise return
9254 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9258 kept = sec->kept_section;
9261 if ((kept->flags & SEC_GROUP) != 0)
9262 kept = match_group_member (sec, kept, info);
9264 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9265 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9267 sec->kept_section = kept;
9272 /* Link an input file into the linker output file. This function
9273 handles all the sections and relocations of the input file at once.
9274 This is so that we only have to read the local symbols once, and
9275 don't have to keep them in memory. */
9278 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9280 int (*relocate_section)
9281 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9282 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9284 Elf_Internal_Shdr *symtab_hdr;
9287 Elf_Internal_Sym *isymbuf;
9288 Elf_Internal_Sym *isym;
9289 Elf_Internal_Sym *isymend;
9291 asection **ppsection;
9293 const struct elf_backend_data *bed;
9294 struct elf_link_hash_entry **sym_hashes;
9295 bfd_size_type address_size;
9296 bfd_vma r_type_mask;
9298 bfd_boolean have_file_sym = FALSE;
9300 output_bfd = flinfo->output_bfd;
9301 bed = get_elf_backend_data (output_bfd);
9302 relocate_section = bed->elf_backend_relocate_section;
9304 /* If this is a dynamic object, we don't want to do anything here:
9305 we don't want the local symbols, and we don't want the section
9307 if ((input_bfd->flags & DYNAMIC) != 0)
9310 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9311 if (elf_bad_symtab (input_bfd))
9313 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9318 locsymcount = symtab_hdr->sh_info;
9319 extsymoff = symtab_hdr->sh_info;
9322 /* Read the local symbols. */
9323 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9324 if (isymbuf == NULL && locsymcount != 0)
9326 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9327 flinfo->internal_syms,
9328 flinfo->external_syms,
9329 flinfo->locsym_shndx);
9330 if (isymbuf == NULL)
9334 /* Find local symbol sections and adjust values of symbols in
9335 SEC_MERGE sections. Write out those local symbols we know are
9336 going into the output file. */
9337 isymend = isymbuf + locsymcount;
9338 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9340 isym++, pindex++, ppsection++)
9344 Elf_Internal_Sym osym;
9350 if (elf_bad_symtab (input_bfd))
9352 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9359 if (isym->st_shndx == SHN_UNDEF)
9360 isec = bfd_und_section_ptr;
9361 else if (isym->st_shndx == SHN_ABS)
9362 isec = bfd_abs_section_ptr;
9363 else if (isym->st_shndx == SHN_COMMON)
9364 isec = bfd_com_section_ptr;
9367 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9370 /* Don't attempt to output symbols with st_shnx in the
9371 reserved range other than SHN_ABS and SHN_COMMON. */
9375 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9376 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9378 _bfd_merged_section_offset (output_bfd, &isec,
9379 elf_section_data (isec)->sec_info,
9385 /* Don't output the first, undefined, symbol. */
9386 if (ppsection == flinfo->sections)
9389 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9391 /* We never output section symbols. Instead, we use the
9392 section symbol of the corresponding section in the output
9397 /* If we are stripping all symbols, we don't want to output this
9399 if (flinfo->info->strip == strip_all)
9402 /* If we are discarding all local symbols, we don't want to
9403 output this one. If we are generating a relocatable output
9404 file, then some of the local symbols may be required by
9405 relocs; we output them below as we discover that they are
9407 if (flinfo->info->discard == discard_all)
9410 /* If this symbol is defined in a section which we are
9411 discarding, we don't need to keep it. */
9412 if (isym->st_shndx != SHN_UNDEF
9413 && isym->st_shndx < SHN_LORESERVE
9414 && bfd_section_removed_from_list (output_bfd,
9415 isec->output_section))
9418 /* Get the name of the symbol. */
9419 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9424 /* See if we are discarding symbols with this name. */
9425 if ((flinfo->info->strip == strip_some
9426 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9428 || (((flinfo->info->discard == discard_sec_merge
9429 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9430 || flinfo->info->discard == discard_l)
9431 && bfd_is_local_label_name (input_bfd, name)))
9434 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9436 have_file_sym = TRUE;
9437 flinfo->filesym_count += 1;
9441 /* In the absence of debug info, bfd_find_nearest_line uses
9442 FILE symbols to determine the source file for local
9443 function symbols. Provide a FILE symbol here if input
9444 files lack such, so that their symbols won't be
9445 associated with a previous input file. It's not the
9446 source file, but the best we can do. */
9447 have_file_sym = TRUE;
9448 flinfo->filesym_count += 1;
9449 memset (&osym, 0, sizeof (osym));
9450 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9451 osym.st_shndx = SHN_ABS;
9452 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9453 bfd_abs_section_ptr, NULL))
9459 /* Adjust the section index for the output file. */
9460 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9461 isec->output_section);
9462 if (osym.st_shndx == SHN_BAD)
9465 /* ELF symbols in relocatable files are section relative, but
9466 in executable files they are virtual addresses. Note that
9467 this code assumes that all ELF sections have an associated
9468 BFD section with a reasonable value for output_offset; below
9469 we assume that they also have a reasonable value for
9470 output_section. Any special sections must be set up to meet
9471 these requirements. */
9472 osym.st_value += isec->output_offset;
9473 if (!flinfo->info->relocatable)
9475 osym.st_value += isec->output_section->vma;
9476 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9478 /* STT_TLS symbols are relative to PT_TLS segment base. */
9479 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9480 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9484 indx = bfd_get_symcount (output_bfd);
9485 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9492 if (bed->s->arch_size == 32)
9500 r_type_mask = 0xffffffff;
9505 /* Relocate the contents of each section. */
9506 sym_hashes = elf_sym_hashes (input_bfd);
9507 for (o = input_bfd->sections; o != NULL; o = o->next)
9511 if (! o->linker_mark)
9513 /* This section was omitted from the link. */
9517 if (flinfo->info->relocatable
9518 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9520 /* Deal with the group signature symbol. */
9521 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9522 unsigned long symndx = sec_data->this_hdr.sh_info;
9523 asection *osec = o->output_section;
9525 if (symndx >= locsymcount
9526 || (elf_bad_symtab (input_bfd)
9527 && flinfo->sections[symndx] == NULL))
9529 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9530 while (h->root.type == bfd_link_hash_indirect
9531 || h->root.type == bfd_link_hash_warning)
9532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9533 /* Arrange for symbol to be output. */
9535 elf_section_data (osec)->this_hdr.sh_info = -2;
9537 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9539 /* We'll use the output section target_index. */
9540 asection *sec = flinfo->sections[symndx]->output_section;
9541 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9545 if (flinfo->indices[symndx] == -1)
9547 /* Otherwise output the local symbol now. */
9548 Elf_Internal_Sym sym = isymbuf[symndx];
9549 asection *sec = flinfo->sections[symndx]->output_section;
9554 name = bfd_elf_string_from_elf_section (input_bfd,
9555 symtab_hdr->sh_link,
9560 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9562 if (sym.st_shndx == SHN_BAD)
9565 sym.st_value += o->output_offset;
9567 indx = bfd_get_symcount (output_bfd);
9568 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9572 flinfo->indices[symndx] = indx;
9576 elf_section_data (osec)->this_hdr.sh_info
9577 = flinfo->indices[symndx];
9581 if ((o->flags & SEC_HAS_CONTENTS) == 0
9582 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9585 if ((o->flags & SEC_LINKER_CREATED) != 0)
9587 /* Section was created by _bfd_elf_link_create_dynamic_sections
9592 /* Get the contents of the section. They have been cached by a
9593 relaxation routine. Note that o is a section in an input
9594 file, so the contents field will not have been set by any of
9595 the routines which work on output files. */
9596 if (elf_section_data (o)->this_hdr.contents != NULL)
9597 contents = elf_section_data (o)->this_hdr.contents;
9600 contents = flinfo->contents;
9601 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9605 if ((o->flags & SEC_RELOC) != 0)
9607 Elf_Internal_Rela *internal_relocs;
9608 Elf_Internal_Rela *rel, *relend;
9609 int action_discarded;
9612 /* Get the swapped relocs. */
9614 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9615 flinfo->internal_relocs, FALSE);
9616 if (internal_relocs == NULL
9617 && o->reloc_count > 0)
9620 /* We need to reverse-copy input .ctors/.dtors sections if
9621 they are placed in .init_array/.finit_array for output. */
9622 if (o->size > address_size
9623 && ((strncmp (o->name, ".ctors", 6) == 0
9624 && strcmp (o->output_section->name,
9625 ".init_array") == 0)
9626 || (strncmp (o->name, ".dtors", 6) == 0
9627 && strcmp (o->output_section->name,
9628 ".fini_array") == 0))
9629 && (o->name[6] == 0 || o->name[6] == '.'))
9631 if (o->size != o->reloc_count * address_size)
9633 (*_bfd_error_handler)
9634 (_("error: %B: size of section %A is not "
9635 "multiple of address size"),
9637 bfd_set_error (bfd_error_on_input);
9640 o->flags |= SEC_ELF_REVERSE_COPY;
9643 action_discarded = -1;
9644 if (!elf_section_ignore_discarded_relocs (o))
9645 action_discarded = (*bed->action_discarded) (o);
9647 /* Run through the relocs evaluating complex reloc symbols and
9648 looking for relocs against symbols from discarded sections
9649 or section symbols from removed link-once sections.
9650 Complain about relocs against discarded sections. Zero
9651 relocs against removed link-once sections. */
9653 rel = internal_relocs;
9654 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9655 for ( ; rel < relend; rel++)
9657 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9658 unsigned int s_type;
9659 asection **ps, *sec;
9660 struct elf_link_hash_entry *h = NULL;
9661 const char *sym_name;
9663 if (r_symndx == STN_UNDEF)
9666 if (r_symndx >= locsymcount
9667 || (elf_bad_symtab (input_bfd)
9668 && flinfo->sections[r_symndx] == NULL))
9670 h = sym_hashes[r_symndx - extsymoff];
9672 /* Badly formatted input files can contain relocs that
9673 reference non-existant symbols. Check here so that
9674 we do not seg fault. */
9679 sprintf_vma (buffer, rel->r_info);
9680 (*_bfd_error_handler)
9681 (_("error: %B contains a reloc (0x%s) for section %A "
9682 "that references a non-existent global symbol"),
9683 input_bfd, o, buffer);
9684 bfd_set_error (bfd_error_bad_value);
9688 while (h->root.type == bfd_link_hash_indirect
9689 || h->root.type == bfd_link_hash_warning)
9690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9695 if (h->root.type == bfd_link_hash_defined
9696 || h->root.type == bfd_link_hash_defweak)
9697 ps = &h->root.u.def.section;
9699 sym_name = h->root.root.string;
9703 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9705 s_type = ELF_ST_TYPE (sym->st_info);
9706 ps = &flinfo->sections[r_symndx];
9707 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9711 if ((s_type == STT_RELC || s_type == STT_SRELC)
9712 && !flinfo->info->relocatable)
9715 bfd_vma dot = (rel->r_offset
9716 + o->output_offset + o->output_section->vma);
9718 printf ("Encountered a complex symbol!");
9719 printf (" (input_bfd %s, section %s, reloc %ld\n",
9720 input_bfd->filename, o->name,
9721 (long) (rel - internal_relocs));
9722 printf (" symbol: idx %8.8lx, name %s\n",
9723 r_symndx, sym_name);
9724 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9725 (unsigned long) rel->r_info,
9726 (unsigned long) rel->r_offset);
9728 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9729 isymbuf, locsymcount, s_type == STT_SRELC))
9732 /* Symbol evaluated OK. Update to absolute value. */
9733 set_symbol_value (input_bfd, isymbuf, locsymcount,
9738 if (action_discarded != -1 && ps != NULL)
9740 /* Complain if the definition comes from a
9741 discarded section. */
9742 if ((sec = *ps) != NULL && discarded_section (sec))
9744 BFD_ASSERT (r_symndx != STN_UNDEF);
9745 if (action_discarded & COMPLAIN)
9746 (*flinfo->info->callbacks->einfo)
9747 (_("%X`%s' referenced in section `%A' of %B: "
9748 "defined in discarded section `%A' of %B\n"),
9749 sym_name, o, input_bfd, sec, sec->owner);
9751 /* Try to do the best we can to support buggy old
9752 versions of gcc. Pretend that the symbol is
9753 really defined in the kept linkonce section.
9754 FIXME: This is quite broken. Modifying the
9755 symbol here means we will be changing all later
9756 uses of the symbol, not just in this section. */
9757 if (action_discarded & PRETEND)
9761 kept = _bfd_elf_check_kept_section (sec,
9773 /* Relocate the section by invoking a back end routine.
9775 The back end routine is responsible for adjusting the
9776 section contents as necessary, and (if using Rela relocs
9777 and generating a relocatable output file) adjusting the
9778 reloc addend as necessary.
9780 The back end routine does not have to worry about setting
9781 the reloc address or the reloc symbol index.
9783 The back end routine is given a pointer to the swapped in
9784 internal symbols, and can access the hash table entries
9785 for the external symbols via elf_sym_hashes (input_bfd).
9787 When generating relocatable output, the back end routine
9788 must handle STB_LOCAL/STT_SECTION symbols specially. The
9789 output symbol is going to be a section symbol
9790 corresponding to the output section, which will require
9791 the addend to be adjusted. */
9793 ret = (*relocate_section) (output_bfd, flinfo->info,
9794 input_bfd, o, contents,
9802 || flinfo->info->relocatable
9803 || flinfo->info->emitrelocations)
9805 Elf_Internal_Rela *irela;
9806 Elf_Internal_Rela *irelaend, *irelamid;
9807 bfd_vma last_offset;
9808 struct elf_link_hash_entry **rel_hash;
9809 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9810 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9811 unsigned int next_erel;
9812 bfd_boolean rela_normal;
9813 struct bfd_elf_section_data *esdi, *esdo;
9815 esdi = elf_section_data (o);
9816 esdo = elf_section_data (o->output_section);
9817 rela_normal = FALSE;
9819 /* Adjust the reloc addresses and symbol indices. */
9821 irela = internal_relocs;
9822 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9823 rel_hash = esdo->rel.hashes + esdo->rel.count;
9824 /* We start processing the REL relocs, if any. When we reach
9825 IRELAMID in the loop, we switch to the RELA relocs. */
9827 if (esdi->rel.hdr != NULL)
9828 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9829 * bed->s->int_rels_per_ext_rel);
9830 rel_hash_list = rel_hash;
9831 rela_hash_list = NULL;
9832 last_offset = o->output_offset;
9833 if (!flinfo->info->relocatable)
9834 last_offset += o->output_section->vma;
9835 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9837 unsigned long r_symndx;
9839 Elf_Internal_Sym sym;
9841 if (next_erel == bed->s->int_rels_per_ext_rel)
9847 if (irela == irelamid)
9849 rel_hash = esdo->rela.hashes + esdo->rela.count;
9850 rela_hash_list = rel_hash;
9851 rela_normal = bed->rela_normal;
9854 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9857 if (irela->r_offset >= (bfd_vma) -2)
9859 /* This is a reloc for a deleted entry or somesuch.
9860 Turn it into an R_*_NONE reloc, at the same
9861 offset as the last reloc. elf_eh_frame.c and
9862 bfd_elf_discard_info rely on reloc offsets
9864 irela->r_offset = last_offset;
9866 irela->r_addend = 0;
9870 irela->r_offset += o->output_offset;
9872 /* Relocs in an executable have to be virtual addresses. */
9873 if (!flinfo->info->relocatable)
9874 irela->r_offset += o->output_section->vma;
9876 last_offset = irela->r_offset;
9878 r_symndx = irela->r_info >> r_sym_shift;
9879 if (r_symndx == STN_UNDEF)
9882 if (r_symndx >= locsymcount
9883 || (elf_bad_symtab (input_bfd)
9884 && flinfo->sections[r_symndx] == NULL))
9886 struct elf_link_hash_entry *rh;
9889 /* This is a reloc against a global symbol. We
9890 have not yet output all the local symbols, so
9891 we do not know the symbol index of any global
9892 symbol. We set the rel_hash entry for this
9893 reloc to point to the global hash table entry
9894 for this symbol. The symbol index is then
9895 set at the end of bfd_elf_final_link. */
9896 indx = r_symndx - extsymoff;
9897 rh = elf_sym_hashes (input_bfd)[indx];
9898 while (rh->root.type == bfd_link_hash_indirect
9899 || rh->root.type == bfd_link_hash_warning)
9900 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9902 /* Setting the index to -2 tells
9903 elf_link_output_extsym that this symbol is
9905 BFD_ASSERT (rh->indx < 0);
9913 /* This is a reloc against a local symbol. */
9916 sym = isymbuf[r_symndx];
9917 sec = flinfo->sections[r_symndx];
9918 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9920 /* I suppose the backend ought to fill in the
9921 section of any STT_SECTION symbol against a
9922 processor specific section. */
9923 r_symndx = STN_UNDEF;
9924 if (bfd_is_abs_section (sec))
9926 else if (sec == NULL || sec->owner == NULL)
9928 bfd_set_error (bfd_error_bad_value);
9933 asection *osec = sec->output_section;
9935 /* If we have discarded a section, the output
9936 section will be the absolute section. In
9937 case of discarded SEC_MERGE sections, use
9938 the kept section. relocate_section should
9939 have already handled discarded linkonce
9941 if (bfd_is_abs_section (osec)
9942 && sec->kept_section != NULL
9943 && sec->kept_section->output_section != NULL)
9945 osec = sec->kept_section->output_section;
9946 irela->r_addend -= osec->vma;
9949 if (!bfd_is_abs_section (osec))
9951 r_symndx = osec->target_index;
9952 if (r_symndx == STN_UNDEF)
9954 irela->r_addend += osec->vma;
9955 osec = _bfd_nearby_section (output_bfd, osec,
9957 irela->r_addend -= osec->vma;
9958 r_symndx = osec->target_index;
9963 /* Adjust the addend according to where the
9964 section winds up in the output section. */
9966 irela->r_addend += sec->output_offset;
9970 if (flinfo->indices[r_symndx] == -1)
9972 unsigned long shlink;
9977 if (flinfo->info->strip == strip_all)
9979 /* You can't do ld -r -s. */
9980 bfd_set_error (bfd_error_invalid_operation);
9984 /* This symbol was skipped earlier, but
9985 since it is needed by a reloc, we
9986 must output it now. */
9987 shlink = symtab_hdr->sh_link;
9988 name = (bfd_elf_string_from_elf_section
9989 (input_bfd, shlink, sym.st_name));
9993 osec = sec->output_section;
9995 _bfd_elf_section_from_bfd_section (output_bfd,
9997 if (sym.st_shndx == SHN_BAD)
10000 sym.st_value += sec->output_offset;
10001 if (!flinfo->info->relocatable)
10003 sym.st_value += osec->vma;
10004 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10006 /* STT_TLS symbols are relative to PT_TLS
10008 BFD_ASSERT (elf_hash_table (flinfo->info)
10009 ->tls_sec != NULL);
10010 sym.st_value -= (elf_hash_table (flinfo->info)
10015 indx = bfd_get_symcount (output_bfd);
10016 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10021 flinfo->indices[r_symndx] = indx;
10026 r_symndx = flinfo->indices[r_symndx];
10029 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10030 | (irela->r_info & r_type_mask));
10033 /* Swap out the relocs. */
10034 input_rel_hdr = esdi->rel.hdr;
10035 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10037 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10042 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10043 * bed->s->int_rels_per_ext_rel);
10044 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10047 input_rela_hdr = esdi->rela.hdr;
10048 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10050 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10059 /* Write out the modified section contents. */
10060 if (bed->elf_backend_write_section
10061 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10064 /* Section written out. */
10066 else switch (o->sec_info_type)
10068 case SEC_INFO_TYPE_STABS:
10069 if (! (_bfd_write_section_stabs
10071 &elf_hash_table (flinfo->info)->stab_info,
10072 o, &elf_section_data (o)->sec_info, contents)))
10075 case SEC_INFO_TYPE_MERGE:
10076 if (! _bfd_write_merged_section (output_bfd, o,
10077 elf_section_data (o)->sec_info))
10080 case SEC_INFO_TYPE_EH_FRAME:
10082 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10089 /* FIXME: octets_per_byte. */
10090 if (! (o->flags & SEC_EXCLUDE))
10092 file_ptr offset = (file_ptr) o->output_offset;
10093 bfd_size_type todo = o->size;
10094 if ((o->flags & SEC_ELF_REVERSE_COPY))
10096 /* Reverse-copy input section to output. */
10099 todo -= address_size;
10100 if (! bfd_set_section_contents (output_bfd,
10108 offset += address_size;
10112 else if (! bfd_set_section_contents (output_bfd,
10126 /* Generate a reloc when linking an ELF file. This is a reloc
10127 requested by the linker, and does not come from any input file. This
10128 is used to build constructor and destructor tables when linking
10132 elf_reloc_link_order (bfd *output_bfd,
10133 struct bfd_link_info *info,
10134 asection *output_section,
10135 struct bfd_link_order *link_order)
10137 reloc_howto_type *howto;
10141 struct bfd_elf_section_reloc_data *reldata;
10142 struct elf_link_hash_entry **rel_hash_ptr;
10143 Elf_Internal_Shdr *rel_hdr;
10144 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10145 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10148 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10150 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10153 bfd_set_error (bfd_error_bad_value);
10157 addend = link_order->u.reloc.p->addend;
10160 reldata = &esdo->rel;
10161 else if (esdo->rela.hdr)
10162 reldata = &esdo->rela;
10169 /* Figure out the symbol index. */
10170 rel_hash_ptr = reldata->hashes + reldata->count;
10171 if (link_order->type == bfd_section_reloc_link_order)
10173 indx = link_order->u.reloc.p->u.section->target_index;
10174 BFD_ASSERT (indx != 0);
10175 *rel_hash_ptr = NULL;
10179 struct elf_link_hash_entry *h;
10181 /* Treat a reloc against a defined symbol as though it were
10182 actually against the section. */
10183 h = ((struct elf_link_hash_entry *)
10184 bfd_wrapped_link_hash_lookup (output_bfd, info,
10185 link_order->u.reloc.p->u.name,
10186 FALSE, FALSE, TRUE));
10188 && (h->root.type == bfd_link_hash_defined
10189 || h->root.type == bfd_link_hash_defweak))
10193 section = h->root.u.def.section;
10194 indx = section->output_section->target_index;
10195 *rel_hash_ptr = NULL;
10196 /* It seems that we ought to add the symbol value to the
10197 addend here, but in practice it has already been added
10198 because it was passed to constructor_callback. */
10199 addend += section->output_section->vma + section->output_offset;
10201 else if (h != NULL)
10203 /* Setting the index to -2 tells elf_link_output_extsym that
10204 this symbol is used by a reloc. */
10211 if (! ((*info->callbacks->unattached_reloc)
10212 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10218 /* If this is an inplace reloc, we must write the addend into the
10220 if (howto->partial_inplace && addend != 0)
10222 bfd_size_type size;
10223 bfd_reloc_status_type rstat;
10226 const char *sym_name;
10228 size = (bfd_size_type) bfd_get_reloc_size (howto);
10229 buf = (bfd_byte *) bfd_zmalloc (size);
10232 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10239 case bfd_reloc_outofrange:
10242 case bfd_reloc_overflow:
10243 if (link_order->type == bfd_section_reloc_link_order)
10244 sym_name = bfd_section_name (output_bfd,
10245 link_order->u.reloc.p->u.section);
10247 sym_name = link_order->u.reloc.p->u.name;
10248 if (! ((*info->callbacks->reloc_overflow)
10249 (info, NULL, sym_name, howto->name, addend, NULL,
10250 NULL, (bfd_vma) 0)))
10257 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10258 link_order->offset, size);
10264 /* The address of a reloc is relative to the section in a
10265 relocatable file, and is a virtual address in an executable
10267 offset = link_order->offset;
10268 if (! info->relocatable)
10269 offset += output_section->vma;
10271 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10273 irel[i].r_offset = offset;
10274 irel[i].r_info = 0;
10275 irel[i].r_addend = 0;
10277 if (bed->s->arch_size == 32)
10278 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10280 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10282 rel_hdr = reldata->hdr;
10283 erel = rel_hdr->contents;
10284 if (rel_hdr->sh_type == SHT_REL)
10286 erel += reldata->count * bed->s->sizeof_rel;
10287 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10291 irel[0].r_addend = addend;
10292 erel += reldata->count * bed->s->sizeof_rela;
10293 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10302 /* Get the output vma of the section pointed to by the sh_link field. */
10305 elf_get_linked_section_vma (struct bfd_link_order *p)
10307 Elf_Internal_Shdr **elf_shdrp;
10311 s = p->u.indirect.section;
10312 elf_shdrp = elf_elfsections (s->owner);
10313 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10314 elfsec = elf_shdrp[elfsec]->sh_link;
10316 The Intel C compiler generates SHT_IA_64_UNWIND with
10317 SHF_LINK_ORDER. But it doesn't set the sh_link or
10318 sh_info fields. Hence we could get the situation
10319 where elfsec is 0. */
10322 const struct elf_backend_data *bed
10323 = get_elf_backend_data (s->owner);
10324 if (bed->link_order_error_handler)
10325 bed->link_order_error_handler
10326 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10331 s = elf_shdrp[elfsec]->bfd_section;
10332 return s->output_section->vma + s->output_offset;
10337 /* Compare two sections based on the locations of the sections they are
10338 linked to. Used by elf_fixup_link_order. */
10341 compare_link_order (const void * a, const void * b)
10346 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10347 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10350 return apos > bpos;
10354 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10355 order as their linked sections. Returns false if this could not be done
10356 because an output section includes both ordered and unordered
10357 sections. Ideally we'd do this in the linker proper. */
10360 elf_fixup_link_order (bfd *abfd, asection *o)
10362 int seen_linkorder;
10365 struct bfd_link_order *p;
10367 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10369 struct bfd_link_order **sections;
10370 asection *s, *other_sec, *linkorder_sec;
10374 linkorder_sec = NULL;
10376 seen_linkorder = 0;
10377 for (p = o->map_head.link_order; p != NULL; p = p->next)
10379 if (p->type == bfd_indirect_link_order)
10381 s = p->u.indirect.section;
10383 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10384 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10385 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10386 && elfsec < elf_numsections (sub)
10387 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10388 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10402 if (seen_other && seen_linkorder)
10404 if (other_sec && linkorder_sec)
10405 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10407 linkorder_sec->owner, other_sec,
10410 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10412 bfd_set_error (bfd_error_bad_value);
10417 if (!seen_linkorder)
10420 sections = (struct bfd_link_order **)
10421 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10422 if (sections == NULL)
10424 seen_linkorder = 0;
10426 for (p = o->map_head.link_order; p != NULL; p = p->next)
10428 sections[seen_linkorder++] = p;
10430 /* Sort the input sections in the order of their linked section. */
10431 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10432 compare_link_order);
10434 /* Change the offsets of the sections. */
10436 for (n = 0; n < seen_linkorder; n++)
10438 s = sections[n]->u.indirect.section;
10439 offset &= ~(bfd_vma) 0 << s->alignment_power;
10440 s->output_offset = offset;
10441 sections[n]->offset = offset;
10442 /* FIXME: octets_per_byte. */
10443 offset += sections[n]->size;
10451 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10455 if (flinfo->symstrtab != NULL)
10456 _bfd_stringtab_free (flinfo->symstrtab);
10457 if (flinfo->contents != NULL)
10458 free (flinfo->contents);
10459 if (flinfo->external_relocs != NULL)
10460 free (flinfo->external_relocs);
10461 if (flinfo->internal_relocs != NULL)
10462 free (flinfo->internal_relocs);
10463 if (flinfo->external_syms != NULL)
10464 free (flinfo->external_syms);
10465 if (flinfo->locsym_shndx != NULL)
10466 free (flinfo->locsym_shndx);
10467 if (flinfo->internal_syms != NULL)
10468 free (flinfo->internal_syms);
10469 if (flinfo->indices != NULL)
10470 free (flinfo->indices);
10471 if (flinfo->sections != NULL)
10472 free (flinfo->sections);
10473 if (flinfo->symbuf != NULL)
10474 free (flinfo->symbuf);
10475 if (flinfo->symshndxbuf != NULL)
10476 free (flinfo->symshndxbuf);
10477 for (o = obfd->sections; o != NULL; o = o->next)
10479 struct bfd_elf_section_data *esdo = elf_section_data (o);
10480 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10481 free (esdo->rel.hashes);
10482 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10483 free (esdo->rela.hashes);
10487 /* Do the final step of an ELF link. */
10490 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10492 bfd_boolean dynamic;
10493 bfd_boolean emit_relocs;
10495 struct elf_final_link_info flinfo;
10497 struct bfd_link_order *p;
10499 bfd_size_type max_contents_size;
10500 bfd_size_type max_external_reloc_size;
10501 bfd_size_type max_internal_reloc_count;
10502 bfd_size_type max_sym_count;
10503 bfd_size_type max_sym_shndx_count;
10505 Elf_Internal_Sym elfsym;
10507 Elf_Internal_Shdr *symtab_hdr;
10508 Elf_Internal_Shdr *symtab_shndx_hdr;
10509 Elf_Internal_Shdr *symstrtab_hdr;
10510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10511 struct elf_outext_info eoinfo;
10512 bfd_boolean merged;
10513 size_t relativecount = 0;
10514 asection *reldyn = 0;
10516 asection *attr_section = NULL;
10517 bfd_vma attr_size = 0;
10518 const char *std_attrs_section;
10520 if (! is_elf_hash_table (info->hash))
10524 abfd->flags |= DYNAMIC;
10526 dynamic = elf_hash_table (info)->dynamic_sections_created;
10527 dynobj = elf_hash_table (info)->dynobj;
10529 emit_relocs = (info->relocatable
10530 || info->emitrelocations);
10532 flinfo.info = info;
10533 flinfo.output_bfd = abfd;
10534 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10535 if (flinfo.symstrtab == NULL)
10540 flinfo.dynsym_sec = NULL;
10541 flinfo.hash_sec = NULL;
10542 flinfo.symver_sec = NULL;
10546 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10547 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10548 /* Note that dynsym_sec can be NULL (on VMS). */
10549 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10550 /* Note that it is OK if symver_sec is NULL. */
10553 flinfo.contents = NULL;
10554 flinfo.external_relocs = NULL;
10555 flinfo.internal_relocs = NULL;
10556 flinfo.external_syms = NULL;
10557 flinfo.locsym_shndx = NULL;
10558 flinfo.internal_syms = NULL;
10559 flinfo.indices = NULL;
10560 flinfo.sections = NULL;
10561 flinfo.symbuf = NULL;
10562 flinfo.symshndxbuf = NULL;
10563 flinfo.symbuf_count = 0;
10564 flinfo.shndxbuf_size = 0;
10565 flinfo.filesym_count = 0;
10567 /* The object attributes have been merged. Remove the input
10568 sections from the link, and set the contents of the output
10570 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10571 for (o = abfd->sections; o != NULL; o = o->next)
10573 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10574 || strcmp (o->name, ".gnu.attributes") == 0)
10576 for (p = o->map_head.link_order; p != NULL; p = p->next)
10578 asection *input_section;
10580 if (p->type != bfd_indirect_link_order)
10582 input_section = p->u.indirect.section;
10583 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10584 elf_link_input_bfd ignores this section. */
10585 input_section->flags &= ~SEC_HAS_CONTENTS;
10588 attr_size = bfd_elf_obj_attr_size (abfd);
10591 bfd_set_section_size (abfd, o, attr_size);
10593 /* Skip this section later on. */
10594 o->map_head.link_order = NULL;
10597 o->flags |= SEC_EXCLUDE;
10601 /* Count up the number of relocations we will output for each output
10602 section, so that we know the sizes of the reloc sections. We
10603 also figure out some maximum sizes. */
10604 max_contents_size = 0;
10605 max_external_reloc_size = 0;
10606 max_internal_reloc_count = 0;
10608 max_sym_shndx_count = 0;
10610 for (o = abfd->sections; o != NULL; o = o->next)
10612 struct bfd_elf_section_data *esdo = elf_section_data (o);
10613 o->reloc_count = 0;
10615 for (p = o->map_head.link_order; p != NULL; p = p->next)
10617 unsigned int reloc_count = 0;
10618 struct bfd_elf_section_data *esdi = NULL;
10620 if (p->type == bfd_section_reloc_link_order
10621 || p->type == bfd_symbol_reloc_link_order)
10623 else if (p->type == bfd_indirect_link_order)
10627 sec = p->u.indirect.section;
10628 esdi = elf_section_data (sec);
10630 /* Mark all sections which are to be included in the
10631 link. This will normally be every section. We need
10632 to do this so that we can identify any sections which
10633 the linker has decided to not include. */
10634 sec->linker_mark = TRUE;
10636 if (sec->flags & SEC_MERGE)
10639 if (esdo->this_hdr.sh_type == SHT_REL
10640 || esdo->this_hdr.sh_type == SHT_RELA)
10641 /* Some backends use reloc_count in relocation sections
10642 to count particular types of relocs. Of course,
10643 reloc sections themselves can't have relocations. */
10645 else if (info->relocatable || info->emitrelocations)
10646 reloc_count = sec->reloc_count;
10647 else if (bed->elf_backend_count_relocs)
10648 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10650 if (sec->rawsize > max_contents_size)
10651 max_contents_size = sec->rawsize;
10652 if (sec->size > max_contents_size)
10653 max_contents_size = sec->size;
10655 /* We are interested in just local symbols, not all
10657 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10658 && (sec->owner->flags & DYNAMIC) == 0)
10662 if (elf_bad_symtab (sec->owner))
10663 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10664 / bed->s->sizeof_sym);
10666 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10668 if (sym_count > max_sym_count)
10669 max_sym_count = sym_count;
10671 if (sym_count > max_sym_shndx_count
10672 && elf_symtab_shndx (sec->owner) != 0)
10673 max_sym_shndx_count = sym_count;
10675 if ((sec->flags & SEC_RELOC) != 0)
10677 size_t ext_size = 0;
10679 if (esdi->rel.hdr != NULL)
10680 ext_size = esdi->rel.hdr->sh_size;
10681 if (esdi->rela.hdr != NULL)
10682 ext_size += esdi->rela.hdr->sh_size;
10684 if (ext_size > max_external_reloc_size)
10685 max_external_reloc_size = ext_size;
10686 if (sec->reloc_count > max_internal_reloc_count)
10687 max_internal_reloc_count = sec->reloc_count;
10692 if (reloc_count == 0)
10695 o->reloc_count += reloc_count;
10697 if (p->type == bfd_indirect_link_order
10698 && (info->relocatable || info->emitrelocations))
10701 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10702 if (esdi->rela.hdr)
10703 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10708 esdo->rela.count += reloc_count;
10710 esdo->rel.count += reloc_count;
10714 if (o->reloc_count > 0)
10715 o->flags |= SEC_RELOC;
10718 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10719 set it (this is probably a bug) and if it is set
10720 assign_section_numbers will create a reloc section. */
10721 o->flags &=~ SEC_RELOC;
10724 /* If the SEC_ALLOC flag is not set, force the section VMA to
10725 zero. This is done in elf_fake_sections as well, but forcing
10726 the VMA to 0 here will ensure that relocs against these
10727 sections are handled correctly. */
10728 if ((o->flags & SEC_ALLOC) == 0
10729 && ! o->user_set_vma)
10733 if (! info->relocatable && merged)
10734 elf_link_hash_traverse (elf_hash_table (info),
10735 _bfd_elf_link_sec_merge_syms, abfd);
10737 /* Figure out the file positions for everything but the symbol table
10738 and the relocs. We set symcount to force assign_section_numbers
10739 to create a symbol table. */
10740 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10741 BFD_ASSERT (! abfd->output_has_begun);
10742 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10745 /* Set sizes, and assign file positions for reloc sections. */
10746 for (o = abfd->sections; o != NULL; o = o->next)
10748 struct bfd_elf_section_data *esdo = elf_section_data (o);
10749 if ((o->flags & SEC_RELOC) != 0)
10752 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10756 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10760 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10761 to count upwards while actually outputting the relocations. */
10762 esdo->rel.count = 0;
10763 esdo->rela.count = 0;
10766 _bfd_elf_assign_file_positions_for_relocs (abfd);
10768 /* We have now assigned file positions for all the sections except
10769 .symtab and .strtab. We start the .symtab section at the current
10770 file position, and write directly to it. We build the .strtab
10771 section in memory. */
10772 bfd_get_symcount (abfd) = 0;
10773 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10774 /* sh_name is set in prep_headers. */
10775 symtab_hdr->sh_type = SHT_SYMTAB;
10776 /* sh_flags, sh_addr and sh_size all start off zero. */
10777 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10778 /* sh_link is set in assign_section_numbers. */
10779 /* sh_info is set below. */
10780 /* sh_offset is set just below. */
10781 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10783 off = elf_next_file_pos (abfd);
10784 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10786 /* Note that at this point elf_next_file_pos (abfd) is
10787 incorrect. We do not yet know the size of the .symtab section.
10788 We correct next_file_pos below, after we do know the size. */
10790 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10791 continuously seeking to the right position in the file. */
10792 if (! info->keep_memory || max_sym_count < 20)
10793 flinfo.symbuf_size = 20;
10795 flinfo.symbuf_size = max_sym_count;
10796 amt = flinfo.symbuf_size;
10797 amt *= bed->s->sizeof_sym;
10798 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10799 if (flinfo.symbuf == NULL)
10801 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10803 /* Wild guess at number of output symbols. realloc'd as needed. */
10804 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10805 flinfo.shndxbuf_size = amt;
10806 amt *= sizeof (Elf_External_Sym_Shndx);
10807 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10808 if (flinfo.symshndxbuf == NULL)
10812 /* Start writing out the symbol table. The first symbol is always a
10814 if (info->strip != strip_all
10817 elfsym.st_value = 0;
10818 elfsym.st_size = 0;
10819 elfsym.st_info = 0;
10820 elfsym.st_other = 0;
10821 elfsym.st_shndx = SHN_UNDEF;
10822 elfsym.st_target_internal = 0;
10823 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10828 /* Output a symbol for each section. We output these even if we are
10829 discarding local symbols, since they are used for relocs. These
10830 symbols have no names. We store the index of each one in the
10831 index field of the section, so that we can find it again when
10832 outputting relocs. */
10833 if (info->strip != strip_all
10836 elfsym.st_size = 0;
10837 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10838 elfsym.st_other = 0;
10839 elfsym.st_value = 0;
10840 elfsym.st_target_internal = 0;
10841 for (i = 1; i < elf_numsections (abfd); i++)
10843 o = bfd_section_from_elf_index (abfd, i);
10846 o->target_index = bfd_get_symcount (abfd);
10847 elfsym.st_shndx = i;
10848 if (!info->relocatable)
10849 elfsym.st_value = o->vma;
10850 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10856 /* Allocate some memory to hold information read in from the input
10858 if (max_contents_size != 0)
10860 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10861 if (flinfo.contents == NULL)
10865 if (max_external_reloc_size != 0)
10867 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10868 if (flinfo.external_relocs == NULL)
10872 if (max_internal_reloc_count != 0)
10874 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10875 amt *= sizeof (Elf_Internal_Rela);
10876 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10877 if (flinfo.internal_relocs == NULL)
10881 if (max_sym_count != 0)
10883 amt = max_sym_count * bed->s->sizeof_sym;
10884 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10885 if (flinfo.external_syms == NULL)
10888 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10889 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10890 if (flinfo.internal_syms == NULL)
10893 amt = max_sym_count * sizeof (long);
10894 flinfo.indices = (long int *) bfd_malloc (amt);
10895 if (flinfo.indices == NULL)
10898 amt = max_sym_count * sizeof (asection *);
10899 flinfo.sections = (asection **) bfd_malloc (amt);
10900 if (flinfo.sections == NULL)
10904 if (max_sym_shndx_count != 0)
10906 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10907 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10908 if (flinfo.locsym_shndx == NULL)
10912 if (elf_hash_table (info)->tls_sec)
10914 bfd_vma base, end = 0;
10917 for (sec = elf_hash_table (info)->tls_sec;
10918 sec && (sec->flags & SEC_THREAD_LOCAL);
10921 bfd_size_type size = sec->size;
10924 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10926 struct bfd_link_order *ord = sec->map_tail.link_order;
10929 size = ord->offset + ord->size;
10931 end = sec->vma + size;
10933 base = elf_hash_table (info)->tls_sec->vma;
10934 /* Only align end of TLS section if static TLS doesn't have special
10935 alignment requirements. */
10936 if (bed->static_tls_alignment == 1)
10937 end = align_power (end,
10938 elf_hash_table (info)->tls_sec->alignment_power);
10939 elf_hash_table (info)->tls_size = end - base;
10942 /* Reorder SHF_LINK_ORDER sections. */
10943 for (o = abfd->sections; o != NULL; o = o->next)
10945 if (!elf_fixup_link_order (abfd, o))
10949 /* Since ELF permits relocations to be against local symbols, we
10950 must have the local symbols available when we do the relocations.
10951 Since we would rather only read the local symbols once, and we
10952 would rather not keep them in memory, we handle all the
10953 relocations for a single input file at the same time.
10955 Unfortunately, there is no way to know the total number of local
10956 symbols until we have seen all of them, and the local symbol
10957 indices precede the global symbol indices. This means that when
10958 we are generating relocatable output, and we see a reloc against
10959 a global symbol, we can not know the symbol index until we have
10960 finished examining all the local symbols to see which ones we are
10961 going to output. To deal with this, we keep the relocations in
10962 memory, and don't output them until the end of the link. This is
10963 an unfortunate waste of memory, but I don't see a good way around
10964 it. Fortunately, it only happens when performing a relocatable
10965 link, which is not the common case. FIXME: If keep_memory is set
10966 we could write the relocs out and then read them again; I don't
10967 know how bad the memory loss will be. */
10969 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10970 sub->output_has_begun = FALSE;
10971 for (o = abfd->sections; o != NULL; o = o->next)
10973 for (p = o->map_head.link_order; p != NULL; p = p->next)
10975 if (p->type == bfd_indirect_link_order
10976 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10977 == bfd_target_elf_flavour)
10978 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10980 if (! sub->output_has_begun)
10982 if (! elf_link_input_bfd (&flinfo, sub))
10984 sub->output_has_begun = TRUE;
10987 else if (p->type == bfd_section_reloc_link_order
10988 || p->type == bfd_symbol_reloc_link_order)
10990 if (! elf_reloc_link_order (abfd, info, o, p))
10995 if (! _bfd_default_link_order (abfd, info, o, p))
10997 if (p->type == bfd_indirect_link_order
10998 && (bfd_get_flavour (sub)
10999 == bfd_target_elf_flavour)
11000 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11001 != bed->s->elfclass))
11003 const char *iclass, *oclass;
11005 if (bed->s->elfclass == ELFCLASS64)
11007 iclass = "ELFCLASS32";
11008 oclass = "ELFCLASS64";
11012 iclass = "ELFCLASS64";
11013 oclass = "ELFCLASS32";
11016 bfd_set_error (bfd_error_wrong_format);
11017 (*_bfd_error_handler)
11018 (_("%B: file class %s incompatible with %s"),
11019 sub, iclass, oclass);
11028 /* Free symbol buffer if needed. */
11029 if (!info->reduce_memory_overheads)
11031 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11032 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11033 && elf_tdata (sub)->symbuf)
11035 free (elf_tdata (sub)->symbuf);
11036 elf_tdata (sub)->symbuf = NULL;
11040 /* Output a FILE symbol so that following locals are not associated
11041 with the wrong input file. */
11042 memset (&elfsym, 0, sizeof (elfsym));
11043 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11044 elfsym.st_shndx = SHN_ABS;
11046 if (flinfo.filesym_count > 1
11047 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11048 bfd_und_section_ptr, NULL))
11051 /* Output any global symbols that got converted to local in a
11052 version script or due to symbol visibility. We do this in a
11053 separate step since ELF requires all local symbols to appear
11054 prior to any global symbols. FIXME: We should only do this if
11055 some global symbols were, in fact, converted to become local.
11056 FIXME: Will this work correctly with the Irix 5 linker? */
11057 eoinfo.failed = FALSE;
11058 eoinfo.flinfo = &flinfo;
11059 eoinfo.localsyms = TRUE;
11060 eoinfo.need_second_pass = FALSE;
11061 eoinfo.second_pass = FALSE;
11062 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11066 if (flinfo.filesym_count == 1
11067 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11068 bfd_und_section_ptr, NULL))
11071 if (eoinfo.need_second_pass)
11073 eoinfo.second_pass = TRUE;
11074 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11079 /* If backend needs to output some local symbols not present in the hash
11080 table, do it now. */
11081 if (bed->elf_backend_output_arch_local_syms)
11083 typedef int (*out_sym_func)
11084 (void *, const char *, Elf_Internal_Sym *, asection *,
11085 struct elf_link_hash_entry *);
11087 if (! ((*bed->elf_backend_output_arch_local_syms)
11088 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11092 /* That wrote out all the local symbols. Finish up the symbol table
11093 with the global symbols. Even if we want to strip everything we
11094 can, we still need to deal with those global symbols that got
11095 converted to local in a version script. */
11097 /* The sh_info field records the index of the first non local symbol. */
11098 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11101 && flinfo.dynsym_sec != NULL
11102 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11104 Elf_Internal_Sym sym;
11105 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11106 long last_local = 0;
11108 /* Write out the section symbols for the output sections. */
11109 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11115 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11117 sym.st_target_internal = 0;
11119 for (s = abfd->sections; s != NULL; s = s->next)
11125 dynindx = elf_section_data (s)->dynindx;
11128 indx = elf_section_data (s)->this_idx;
11129 BFD_ASSERT (indx > 0);
11130 sym.st_shndx = indx;
11131 if (! check_dynsym (abfd, &sym))
11133 sym.st_value = s->vma;
11134 dest = dynsym + dynindx * bed->s->sizeof_sym;
11135 if (last_local < dynindx)
11136 last_local = dynindx;
11137 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11141 /* Write out the local dynsyms. */
11142 if (elf_hash_table (info)->dynlocal)
11144 struct elf_link_local_dynamic_entry *e;
11145 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11150 /* Copy the internal symbol and turn off visibility.
11151 Note that we saved a word of storage and overwrote
11152 the original st_name with the dynstr_index. */
11154 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11156 s = bfd_section_from_elf_index (e->input_bfd,
11161 elf_section_data (s->output_section)->this_idx;
11162 if (! check_dynsym (abfd, &sym))
11164 sym.st_value = (s->output_section->vma
11166 + e->isym.st_value);
11169 if (last_local < e->dynindx)
11170 last_local = e->dynindx;
11172 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11173 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11177 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11181 /* We get the global symbols from the hash table. */
11182 eoinfo.failed = FALSE;
11183 eoinfo.localsyms = FALSE;
11184 eoinfo.flinfo = &flinfo;
11185 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11189 /* If backend needs to output some symbols not present in the hash
11190 table, do it now. */
11191 if (bed->elf_backend_output_arch_syms)
11193 typedef int (*out_sym_func)
11194 (void *, const char *, Elf_Internal_Sym *, asection *,
11195 struct elf_link_hash_entry *);
11197 if (! ((*bed->elf_backend_output_arch_syms)
11198 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11202 /* Flush all symbols to the file. */
11203 if (! elf_link_flush_output_syms (&flinfo, bed))
11206 /* Now we know the size of the symtab section. */
11207 off += symtab_hdr->sh_size;
11209 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11210 if (symtab_shndx_hdr->sh_name != 0)
11212 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11213 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11214 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11215 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11216 symtab_shndx_hdr->sh_size = amt;
11218 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11221 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11222 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11227 /* Finish up and write out the symbol string table (.strtab)
11229 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11230 /* sh_name was set in prep_headers. */
11231 symstrtab_hdr->sh_type = SHT_STRTAB;
11232 symstrtab_hdr->sh_flags = 0;
11233 symstrtab_hdr->sh_addr = 0;
11234 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11235 symstrtab_hdr->sh_entsize = 0;
11236 symstrtab_hdr->sh_link = 0;
11237 symstrtab_hdr->sh_info = 0;
11238 /* sh_offset is set just below. */
11239 symstrtab_hdr->sh_addralign = 1;
11241 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11242 elf_next_file_pos (abfd) = off;
11244 if (bfd_get_symcount (abfd) > 0)
11246 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11247 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11251 /* Adjust the relocs to have the correct symbol indices. */
11252 for (o = abfd->sections; o != NULL; o = o->next)
11254 struct bfd_elf_section_data *esdo = elf_section_data (o);
11255 if ((o->flags & SEC_RELOC) == 0)
11258 if (esdo->rel.hdr != NULL)
11259 elf_link_adjust_relocs (abfd, &esdo->rel);
11260 if (esdo->rela.hdr != NULL)
11261 elf_link_adjust_relocs (abfd, &esdo->rela);
11263 /* Set the reloc_count field to 0 to prevent write_relocs from
11264 trying to swap the relocs out itself. */
11265 o->reloc_count = 0;
11268 if (dynamic && info->combreloc && dynobj != NULL)
11269 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11271 /* If we are linking against a dynamic object, or generating a
11272 shared library, finish up the dynamic linking information. */
11275 bfd_byte *dyncon, *dynconend;
11277 /* Fix up .dynamic entries. */
11278 o = bfd_get_linker_section (dynobj, ".dynamic");
11279 BFD_ASSERT (o != NULL);
11281 dyncon = o->contents;
11282 dynconend = o->contents + o->size;
11283 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11285 Elf_Internal_Dyn dyn;
11289 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11296 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11298 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11300 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11301 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11304 dyn.d_un.d_val = relativecount;
11311 name = info->init_function;
11314 name = info->fini_function;
11317 struct elf_link_hash_entry *h;
11319 h = elf_link_hash_lookup (elf_hash_table (info), name,
11320 FALSE, FALSE, TRUE);
11322 && (h->root.type == bfd_link_hash_defined
11323 || h->root.type == bfd_link_hash_defweak))
11325 dyn.d_un.d_ptr = h->root.u.def.value;
11326 o = h->root.u.def.section;
11327 if (o->output_section != NULL)
11328 dyn.d_un.d_ptr += (o->output_section->vma
11329 + o->output_offset);
11332 /* The symbol is imported from another shared
11333 library and does not apply to this one. */
11334 dyn.d_un.d_ptr = 0;
11341 case DT_PREINIT_ARRAYSZ:
11342 name = ".preinit_array";
11344 case DT_INIT_ARRAYSZ:
11345 name = ".init_array";
11347 case DT_FINI_ARRAYSZ:
11348 name = ".fini_array";
11350 o = bfd_get_section_by_name (abfd, name);
11353 (*_bfd_error_handler)
11354 (_("%B: could not find output section %s"), abfd, name);
11358 (*_bfd_error_handler)
11359 (_("warning: %s section has zero size"), name);
11360 dyn.d_un.d_val = o->size;
11363 case DT_PREINIT_ARRAY:
11364 name = ".preinit_array";
11366 case DT_INIT_ARRAY:
11367 name = ".init_array";
11369 case DT_FINI_ARRAY:
11370 name = ".fini_array";
11377 name = ".gnu.hash";
11386 name = ".gnu.version_d";
11389 name = ".gnu.version_r";
11392 name = ".gnu.version";
11394 o = bfd_get_section_by_name (abfd, name);
11397 (*_bfd_error_handler)
11398 (_("%B: could not find output section %s"), abfd, name);
11401 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11403 (*_bfd_error_handler)
11404 (_("warning: section '%s' is being made into a note"), name);
11405 bfd_set_error (bfd_error_nonrepresentable_section);
11408 dyn.d_un.d_ptr = o->vma;
11415 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11419 dyn.d_un.d_val = 0;
11420 dyn.d_un.d_ptr = 0;
11421 for (i = 1; i < elf_numsections (abfd); i++)
11423 Elf_Internal_Shdr *hdr;
11425 hdr = elf_elfsections (abfd)[i];
11426 if (hdr->sh_type == type
11427 && (hdr->sh_flags & SHF_ALLOC) != 0)
11429 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11430 dyn.d_un.d_val += hdr->sh_size;
11433 if (dyn.d_un.d_ptr == 0
11434 || hdr->sh_addr < dyn.d_un.d_ptr)
11435 dyn.d_un.d_ptr = hdr->sh_addr;
11441 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11445 /* If we have created any dynamic sections, then output them. */
11446 if (dynobj != NULL)
11448 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11451 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11452 if (((info->warn_shared_textrel && info->shared)
11453 || info->error_textrel)
11454 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11456 bfd_byte *dyncon, *dynconend;
11458 dyncon = o->contents;
11459 dynconend = o->contents + o->size;
11460 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11462 Elf_Internal_Dyn dyn;
11464 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11466 if (dyn.d_tag == DT_TEXTREL)
11468 if (info->error_textrel)
11469 info->callbacks->einfo
11470 (_("%P%X: read-only segment has dynamic relocations.\n"));
11472 info->callbacks->einfo
11473 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11479 for (o = dynobj->sections; o != NULL; o = o->next)
11481 if ((o->flags & SEC_HAS_CONTENTS) == 0
11483 || o->output_section == bfd_abs_section_ptr)
11485 if ((o->flags & SEC_LINKER_CREATED) == 0)
11487 /* At this point, we are only interested in sections
11488 created by _bfd_elf_link_create_dynamic_sections. */
11491 if (elf_hash_table (info)->stab_info.stabstr == o)
11493 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11495 if (strcmp (o->name, ".dynstr") != 0)
11497 /* FIXME: octets_per_byte. */
11498 if (! bfd_set_section_contents (abfd, o->output_section,
11500 (file_ptr) o->output_offset,
11506 /* The contents of the .dynstr section are actually in a
11508 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11509 if (bfd_seek (abfd, off, SEEK_SET) != 0
11510 || ! _bfd_elf_strtab_emit (abfd,
11511 elf_hash_table (info)->dynstr))
11517 if (info->relocatable)
11519 bfd_boolean failed = FALSE;
11521 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11526 /* If we have optimized stabs strings, output them. */
11527 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11529 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11533 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11536 elf_final_link_free (abfd, &flinfo);
11538 elf_linker (abfd) = TRUE;
11542 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11543 if (contents == NULL)
11544 return FALSE; /* Bail out and fail. */
11545 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11546 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11553 elf_final_link_free (abfd, &flinfo);
11557 /* Initialize COOKIE for input bfd ABFD. */
11560 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11561 struct bfd_link_info *info, bfd *abfd)
11563 Elf_Internal_Shdr *symtab_hdr;
11564 const struct elf_backend_data *bed;
11566 bed = get_elf_backend_data (abfd);
11567 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11569 cookie->abfd = abfd;
11570 cookie->sym_hashes = elf_sym_hashes (abfd);
11571 cookie->bad_symtab = elf_bad_symtab (abfd);
11572 if (cookie->bad_symtab)
11574 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11575 cookie->extsymoff = 0;
11579 cookie->locsymcount = symtab_hdr->sh_info;
11580 cookie->extsymoff = symtab_hdr->sh_info;
11583 if (bed->s->arch_size == 32)
11584 cookie->r_sym_shift = 8;
11586 cookie->r_sym_shift = 32;
11588 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11589 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11591 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11592 cookie->locsymcount, 0,
11594 if (cookie->locsyms == NULL)
11596 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11599 if (info->keep_memory)
11600 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11605 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11608 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11610 Elf_Internal_Shdr *symtab_hdr;
11612 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11613 if (cookie->locsyms != NULL
11614 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11615 free (cookie->locsyms);
11618 /* Initialize the relocation information in COOKIE for input section SEC
11619 of input bfd ABFD. */
11622 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11623 struct bfd_link_info *info, bfd *abfd,
11626 const struct elf_backend_data *bed;
11628 if (sec->reloc_count == 0)
11630 cookie->rels = NULL;
11631 cookie->relend = NULL;
11635 bed = get_elf_backend_data (abfd);
11637 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11638 info->keep_memory);
11639 if (cookie->rels == NULL)
11641 cookie->rel = cookie->rels;
11642 cookie->relend = (cookie->rels
11643 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11645 cookie->rel = cookie->rels;
11649 /* Free the memory allocated by init_reloc_cookie_rels,
11653 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11656 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11657 free (cookie->rels);
11660 /* Initialize the whole of COOKIE for input section SEC. */
11663 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11664 struct bfd_link_info *info,
11667 if (!init_reloc_cookie (cookie, info, sec->owner))
11669 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11674 fini_reloc_cookie (cookie, sec->owner);
11679 /* Free the memory allocated by init_reloc_cookie_for_section,
11683 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11686 fini_reloc_cookie_rels (cookie, sec);
11687 fini_reloc_cookie (cookie, sec->owner);
11690 /* Garbage collect unused sections. */
11692 /* Default gc_mark_hook. */
11695 _bfd_elf_gc_mark_hook (asection *sec,
11696 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11697 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11698 struct elf_link_hash_entry *h,
11699 Elf_Internal_Sym *sym)
11701 const char *sec_name;
11705 switch (h->root.type)
11707 case bfd_link_hash_defined:
11708 case bfd_link_hash_defweak:
11709 return h->root.u.def.section;
11711 case bfd_link_hash_common:
11712 return h->root.u.c.p->section;
11714 case bfd_link_hash_undefined:
11715 case bfd_link_hash_undefweak:
11716 /* To work around a glibc bug, keep all XXX input sections
11717 when there is an as yet undefined reference to __start_XXX
11718 or __stop_XXX symbols. The linker will later define such
11719 symbols for orphan input sections that have a name
11720 representable as a C identifier. */
11721 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11722 sec_name = h->root.root.string + 8;
11723 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11724 sec_name = h->root.root.string + 7;
11728 if (sec_name && *sec_name != '\0')
11732 for (i = info->input_bfds; i; i = i->link_next)
11734 sec = bfd_get_section_by_name (i, sec_name);
11736 sec->flags |= SEC_KEEP;
11746 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11751 /* COOKIE->rel describes a relocation against section SEC, which is
11752 a section we've decided to keep. Return the section that contains
11753 the relocation symbol, or NULL if no section contains it. */
11756 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11757 elf_gc_mark_hook_fn gc_mark_hook,
11758 struct elf_reloc_cookie *cookie)
11760 unsigned long r_symndx;
11761 struct elf_link_hash_entry *h;
11763 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11764 if (r_symndx == STN_UNDEF)
11767 if (r_symndx >= cookie->locsymcount
11768 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11770 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11771 while (h->root.type == bfd_link_hash_indirect
11772 || h->root.type == bfd_link_hash_warning)
11773 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11775 /* If this symbol is weak and there is a non-weak definition, we
11776 keep the non-weak definition because many backends put
11777 dynamic reloc info on the non-weak definition for code
11778 handling copy relocs. */
11779 if (h->u.weakdef != NULL)
11780 h->u.weakdef->mark = 1;
11781 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11784 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11785 &cookie->locsyms[r_symndx]);
11788 /* COOKIE->rel describes a relocation against section SEC, which is
11789 a section we've decided to keep. Mark the section that contains
11790 the relocation symbol. */
11793 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11795 elf_gc_mark_hook_fn gc_mark_hook,
11796 struct elf_reloc_cookie *cookie)
11800 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11801 if (rsec && !rsec->gc_mark)
11803 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11804 || (rsec->owner->flags & DYNAMIC) != 0)
11806 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11812 /* The mark phase of garbage collection. For a given section, mark
11813 it and any sections in this section's group, and all the sections
11814 which define symbols to which it refers. */
11817 _bfd_elf_gc_mark (struct bfd_link_info *info,
11819 elf_gc_mark_hook_fn gc_mark_hook)
11822 asection *group_sec, *eh_frame;
11826 /* Mark all the sections in the group. */
11827 group_sec = elf_section_data (sec)->next_in_group;
11828 if (group_sec && !group_sec->gc_mark)
11829 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11832 /* Look through the section relocs. */
11834 eh_frame = elf_eh_frame_section (sec->owner);
11835 if ((sec->flags & SEC_RELOC) != 0
11836 && sec->reloc_count > 0
11837 && sec != eh_frame)
11839 struct elf_reloc_cookie cookie;
11841 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11845 for (; cookie.rel < cookie.relend; cookie.rel++)
11846 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11851 fini_reloc_cookie_for_section (&cookie, sec);
11855 if (ret && eh_frame && elf_fde_list (sec))
11857 struct elf_reloc_cookie cookie;
11859 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11863 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11864 gc_mark_hook, &cookie))
11866 fini_reloc_cookie_for_section (&cookie, eh_frame);
11873 /* Keep debug and special sections. */
11876 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11877 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11881 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11884 bfd_boolean some_kept;
11886 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11889 /* Ensure all linker created sections are kept, and see whether
11890 any other section is already marked. */
11892 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11894 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11896 else if (isec->gc_mark)
11900 /* If no section in this file will be kept, then we can
11901 toss out debug sections. */
11905 /* Keep debug and special sections like .comment when they are
11906 not part of a group, or when we have single-member groups. */
11907 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11908 if ((elf_next_in_group (isec) == NULL
11909 || elf_next_in_group (isec) == isec)
11910 && ((isec->flags & SEC_DEBUGGING) != 0
11911 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11917 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11919 struct elf_gc_sweep_symbol_info
11921 struct bfd_link_info *info;
11922 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11927 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11930 && (((h->root.type == bfd_link_hash_defined
11931 || h->root.type == bfd_link_hash_defweak)
11932 && !(h->def_regular
11933 && h->root.u.def.section->gc_mark))
11934 || h->root.type == bfd_link_hash_undefined
11935 || h->root.type == bfd_link_hash_undefweak))
11937 struct elf_gc_sweep_symbol_info *inf;
11939 inf = (struct elf_gc_sweep_symbol_info *) data;
11940 (*inf->hide_symbol) (inf->info, h, TRUE);
11941 h->def_regular = 0;
11942 h->ref_regular = 0;
11943 h->ref_regular_nonweak = 0;
11949 /* The sweep phase of garbage collection. Remove all garbage sections. */
11951 typedef bfd_boolean (*gc_sweep_hook_fn)
11952 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11955 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11958 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11959 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11960 unsigned long section_sym_count;
11961 struct elf_gc_sweep_symbol_info sweep_info;
11963 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11967 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11970 for (o = sub->sections; o != NULL; o = o->next)
11972 /* When any section in a section group is kept, we keep all
11973 sections in the section group. If the first member of
11974 the section group is excluded, we will also exclude the
11976 if (o->flags & SEC_GROUP)
11978 asection *first = elf_next_in_group (o);
11979 o->gc_mark = first->gc_mark;
11985 /* Skip sweeping sections already excluded. */
11986 if (o->flags & SEC_EXCLUDE)
11989 /* Since this is early in the link process, it is simple
11990 to remove a section from the output. */
11991 o->flags |= SEC_EXCLUDE;
11993 if (info->print_gc_sections && o->size != 0)
11994 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11996 /* But we also have to update some of the relocation
11997 info we collected before. */
11999 && (o->flags & SEC_RELOC) != 0
12000 && o->reloc_count > 0
12001 && !bfd_is_abs_section (o->output_section))
12003 Elf_Internal_Rela *internal_relocs;
12007 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12008 info->keep_memory);
12009 if (internal_relocs == NULL)
12012 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12014 if (elf_section_data (o)->relocs != internal_relocs)
12015 free (internal_relocs);
12023 /* Remove the symbols that were in the swept sections from the dynamic
12024 symbol table. GCFIXME: Anyone know how to get them out of the
12025 static symbol table as well? */
12026 sweep_info.info = info;
12027 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12028 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12031 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12035 /* Propagate collected vtable information. This is called through
12036 elf_link_hash_traverse. */
12039 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12041 /* Those that are not vtables. */
12042 if (h->vtable == NULL || h->vtable->parent == NULL)
12045 /* Those vtables that do not have parents, we cannot merge. */
12046 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12049 /* If we've already been done, exit. */
12050 if (h->vtable->used && h->vtable->used[-1])
12053 /* Make sure the parent's table is up to date. */
12054 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12056 if (h->vtable->used == NULL)
12058 /* None of this table's entries were referenced. Re-use the
12060 h->vtable->used = h->vtable->parent->vtable->used;
12061 h->vtable->size = h->vtable->parent->vtable->size;
12066 bfd_boolean *cu, *pu;
12068 /* Or the parent's entries into ours. */
12069 cu = h->vtable->used;
12071 pu = h->vtable->parent->vtable->used;
12074 const struct elf_backend_data *bed;
12075 unsigned int log_file_align;
12077 bed = get_elf_backend_data (h->root.u.def.section->owner);
12078 log_file_align = bed->s->log_file_align;
12079 n = h->vtable->parent->vtable->size >> log_file_align;
12094 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12097 bfd_vma hstart, hend;
12098 Elf_Internal_Rela *relstart, *relend, *rel;
12099 const struct elf_backend_data *bed;
12100 unsigned int log_file_align;
12102 /* Take care of both those symbols that do not describe vtables as
12103 well as those that are not loaded. */
12104 if (h->vtable == NULL || h->vtable->parent == NULL)
12107 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12108 || h->root.type == bfd_link_hash_defweak);
12110 sec = h->root.u.def.section;
12111 hstart = h->root.u.def.value;
12112 hend = hstart + h->size;
12114 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12116 return *(bfd_boolean *) okp = FALSE;
12117 bed = get_elf_backend_data (sec->owner);
12118 log_file_align = bed->s->log_file_align;
12120 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12122 for (rel = relstart; rel < relend; ++rel)
12123 if (rel->r_offset >= hstart && rel->r_offset < hend)
12125 /* If the entry is in use, do nothing. */
12126 if (h->vtable->used
12127 && (rel->r_offset - hstart) < h->vtable->size)
12129 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12130 if (h->vtable->used[entry])
12133 /* Otherwise, kill it. */
12134 rel->r_offset = rel->r_info = rel->r_addend = 0;
12140 /* Mark sections containing dynamically referenced symbols. When
12141 building shared libraries, we must assume that any visible symbol is
12145 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12147 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12149 if ((h->root.type == bfd_link_hash_defined
12150 || h->root.type == bfd_link_hash_defweak)
12152 || ((!info->executable || info->export_dynamic)
12154 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12155 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12156 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12157 || !bfd_hide_sym_by_version (info->version_info,
12158 h->root.root.string)))))
12159 h->root.u.def.section->flags |= SEC_KEEP;
12164 /* Keep all sections containing symbols undefined on the command-line,
12165 and the section containing the entry symbol. */
12168 _bfd_elf_gc_keep (struct bfd_link_info *info)
12170 struct bfd_sym_chain *sym;
12172 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12174 struct elf_link_hash_entry *h;
12176 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12177 FALSE, FALSE, FALSE);
12180 && (h->root.type == bfd_link_hash_defined
12181 || h->root.type == bfd_link_hash_defweak)
12182 && !bfd_is_abs_section (h->root.u.def.section))
12183 h->root.u.def.section->flags |= SEC_KEEP;
12187 /* Do mark and sweep of unused sections. */
12190 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12192 bfd_boolean ok = TRUE;
12194 elf_gc_mark_hook_fn gc_mark_hook;
12195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12197 if (!bed->can_gc_sections
12198 || !is_elf_hash_table (info->hash))
12200 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12204 bed->gc_keep (info);
12206 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12207 at the .eh_frame section if we can mark the FDEs individually. */
12208 _bfd_elf_begin_eh_frame_parsing (info);
12209 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12212 struct elf_reloc_cookie cookie;
12214 sec = bfd_get_section_by_name (sub, ".eh_frame");
12215 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12217 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12218 if (elf_section_data (sec)->sec_info
12219 && (sec->flags & SEC_LINKER_CREATED) == 0)
12220 elf_eh_frame_section (sub) = sec;
12221 fini_reloc_cookie_for_section (&cookie, sec);
12222 sec = bfd_get_next_section_by_name (sec);
12225 _bfd_elf_end_eh_frame_parsing (info);
12227 /* Apply transitive closure to the vtable entry usage info. */
12228 elf_link_hash_traverse (elf_hash_table (info),
12229 elf_gc_propagate_vtable_entries_used,
12234 /* Kill the vtable relocations that were not used. */
12235 elf_link_hash_traverse (elf_hash_table (info),
12236 elf_gc_smash_unused_vtentry_relocs,
12241 /* Mark dynamically referenced symbols. */
12242 if (elf_hash_table (info)->dynamic_sections_created)
12243 elf_link_hash_traverse (elf_hash_table (info),
12244 bed->gc_mark_dynamic_ref,
12247 /* Grovel through relocs to find out who stays ... */
12248 gc_mark_hook = bed->gc_mark_hook;
12249 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12253 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12256 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12257 Also treat note sections as a root, if the section is not part
12259 for (o = sub->sections; o != NULL; o = o->next)
12261 && (o->flags & SEC_EXCLUDE) == 0
12262 && ((o->flags & SEC_KEEP) != 0
12263 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12264 && elf_next_in_group (o) == NULL )))
12266 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12271 /* Allow the backend to mark additional target specific sections. */
12272 bed->gc_mark_extra_sections (info, gc_mark_hook);
12274 /* ... and mark SEC_EXCLUDE for those that go. */
12275 return elf_gc_sweep (abfd, info);
12278 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12281 bfd_elf_gc_record_vtinherit (bfd *abfd,
12283 struct elf_link_hash_entry *h,
12286 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12287 struct elf_link_hash_entry **search, *child;
12288 bfd_size_type extsymcount;
12289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12291 /* The sh_info field of the symtab header tells us where the
12292 external symbols start. We don't care about the local symbols at
12294 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12295 if (!elf_bad_symtab (abfd))
12296 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12298 sym_hashes = elf_sym_hashes (abfd);
12299 sym_hashes_end = sym_hashes + extsymcount;
12301 /* Hunt down the child symbol, which is in this section at the same
12302 offset as the relocation. */
12303 for (search = sym_hashes; search != sym_hashes_end; ++search)
12305 if ((child = *search) != NULL
12306 && (child->root.type == bfd_link_hash_defined
12307 || child->root.type == bfd_link_hash_defweak)
12308 && child->root.u.def.section == sec
12309 && child->root.u.def.value == offset)
12313 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12314 abfd, sec, (unsigned long) offset);
12315 bfd_set_error (bfd_error_invalid_operation);
12319 if (!child->vtable)
12321 child->vtable = (struct elf_link_virtual_table_entry *)
12322 bfd_zalloc (abfd, sizeof (*child->vtable));
12323 if (!child->vtable)
12328 /* This *should* only be the absolute section. It could potentially
12329 be that someone has defined a non-global vtable though, which
12330 would be bad. It isn't worth paging in the local symbols to be
12331 sure though; that case should simply be handled by the assembler. */
12333 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12336 child->vtable->parent = h;
12341 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12344 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12345 asection *sec ATTRIBUTE_UNUSED,
12346 struct elf_link_hash_entry *h,
12349 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12350 unsigned int log_file_align = bed->s->log_file_align;
12354 h->vtable = (struct elf_link_virtual_table_entry *)
12355 bfd_zalloc (abfd, sizeof (*h->vtable));
12360 if (addend >= h->vtable->size)
12362 size_t size, bytes, file_align;
12363 bfd_boolean *ptr = h->vtable->used;
12365 /* While the symbol is undefined, we have to be prepared to handle
12367 file_align = 1 << log_file_align;
12368 if (h->root.type == bfd_link_hash_undefined)
12369 size = addend + file_align;
12373 if (addend >= size)
12375 /* Oops! We've got a reference past the defined end of
12376 the table. This is probably a bug -- shall we warn? */
12377 size = addend + file_align;
12380 size = (size + file_align - 1) & -file_align;
12382 /* Allocate one extra entry for use as a "done" flag for the
12383 consolidation pass. */
12384 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12388 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12394 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12395 * sizeof (bfd_boolean));
12396 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12400 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12405 /* And arrange for that done flag to be at index -1. */
12406 h->vtable->used = ptr + 1;
12407 h->vtable->size = size;
12410 h->vtable->used[addend >> log_file_align] = TRUE;
12415 /* Map an ELF section header flag to its corresponding string. */
12419 flagword flag_value;
12420 } elf_flags_to_name_table;
12422 static elf_flags_to_name_table elf_flags_to_names [] =
12424 { "SHF_WRITE", SHF_WRITE },
12425 { "SHF_ALLOC", SHF_ALLOC },
12426 { "SHF_EXECINSTR", SHF_EXECINSTR },
12427 { "SHF_MERGE", SHF_MERGE },
12428 { "SHF_STRINGS", SHF_STRINGS },
12429 { "SHF_INFO_LINK", SHF_INFO_LINK},
12430 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12431 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12432 { "SHF_GROUP", SHF_GROUP },
12433 { "SHF_TLS", SHF_TLS },
12434 { "SHF_MASKOS", SHF_MASKOS },
12435 { "SHF_EXCLUDE", SHF_EXCLUDE },
12438 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12440 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12441 struct flag_info *flaginfo,
12444 const bfd_vma sh_flags = elf_section_flags (section);
12446 if (!flaginfo->flags_initialized)
12448 bfd *obfd = info->output_bfd;
12449 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12450 struct flag_info_list *tf = flaginfo->flag_list;
12452 int without_hex = 0;
12454 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12457 flagword (*lookup) (char *);
12459 lookup = bed->elf_backend_lookup_section_flags_hook;
12460 if (lookup != NULL)
12462 flagword hexval = (*lookup) ((char *) tf->name);
12466 if (tf->with == with_flags)
12467 with_hex |= hexval;
12468 else if (tf->with == without_flags)
12469 without_hex |= hexval;
12474 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12476 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12478 if (tf->with == with_flags)
12479 with_hex |= elf_flags_to_names[i].flag_value;
12480 else if (tf->with == without_flags)
12481 without_hex |= elf_flags_to_names[i].flag_value;
12488 info->callbacks->einfo
12489 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12493 flaginfo->flags_initialized = TRUE;
12494 flaginfo->only_with_flags |= with_hex;
12495 flaginfo->not_with_flags |= without_hex;
12498 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12501 if ((flaginfo->not_with_flags & sh_flags) != 0)
12507 struct alloc_got_off_arg {
12509 struct bfd_link_info *info;
12512 /* We need a special top-level link routine to convert got reference counts
12513 to real got offsets. */
12516 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12518 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12519 bfd *obfd = gofarg->info->output_bfd;
12520 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12522 if (h->got.refcount > 0)
12524 h->got.offset = gofarg->gotoff;
12525 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12528 h->got.offset = (bfd_vma) -1;
12533 /* And an accompanying bit to work out final got entry offsets once
12534 we're done. Should be called from final_link. */
12537 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12538 struct bfd_link_info *info)
12541 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12543 struct alloc_got_off_arg gofarg;
12545 BFD_ASSERT (abfd == info->output_bfd);
12547 if (! is_elf_hash_table (info->hash))
12550 /* The GOT offset is relative to the .got section, but the GOT header is
12551 put into the .got.plt section, if the backend uses it. */
12552 if (bed->want_got_plt)
12555 gotoff = bed->got_header_size;
12557 /* Do the local .got entries first. */
12558 for (i = info->input_bfds; i; i = i->link_next)
12560 bfd_signed_vma *local_got;
12561 bfd_size_type j, locsymcount;
12562 Elf_Internal_Shdr *symtab_hdr;
12564 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12567 local_got = elf_local_got_refcounts (i);
12571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12572 if (elf_bad_symtab (i))
12573 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12575 locsymcount = symtab_hdr->sh_info;
12577 for (j = 0; j < locsymcount; ++j)
12579 if (local_got[j] > 0)
12581 local_got[j] = gotoff;
12582 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12585 local_got[j] = (bfd_vma) -1;
12589 /* Then the global .got entries. .plt refcounts are handled by
12590 adjust_dynamic_symbol */
12591 gofarg.gotoff = gotoff;
12592 gofarg.info = info;
12593 elf_link_hash_traverse (elf_hash_table (info),
12594 elf_gc_allocate_got_offsets,
12599 /* Many folk need no more in the way of final link than this, once
12600 got entry reference counting is enabled. */
12603 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12605 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12608 /* Invoke the regular ELF backend linker to do all the work. */
12609 return bfd_elf_final_link (abfd, info);
12613 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12615 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12617 if (rcookie->bad_symtab)
12618 rcookie->rel = rcookie->rels;
12620 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12622 unsigned long r_symndx;
12624 if (! rcookie->bad_symtab)
12625 if (rcookie->rel->r_offset > offset)
12627 if (rcookie->rel->r_offset != offset)
12630 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12631 if (r_symndx == STN_UNDEF)
12634 if (r_symndx >= rcookie->locsymcount
12635 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12637 struct elf_link_hash_entry *h;
12639 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12641 while (h->root.type == bfd_link_hash_indirect
12642 || h->root.type == bfd_link_hash_warning)
12643 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12645 if ((h->root.type == bfd_link_hash_defined
12646 || h->root.type == bfd_link_hash_defweak)
12647 && discarded_section (h->root.u.def.section))
12654 /* It's not a relocation against a global symbol,
12655 but it could be a relocation against a local
12656 symbol for a discarded section. */
12658 Elf_Internal_Sym *isym;
12660 /* Need to: get the symbol; get the section. */
12661 isym = &rcookie->locsyms[r_symndx];
12662 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12663 if (isec != NULL && discarded_section (isec))
12671 /* Discard unneeded references to discarded sections.
12672 Returns TRUE if any section's size was changed. */
12673 /* This function assumes that the relocations are in sorted order,
12674 which is true for all known assemblers. */
12677 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12679 struct elf_reloc_cookie cookie;
12680 asection *stab, *eh;
12681 const struct elf_backend_data *bed;
12683 bfd_boolean ret = FALSE;
12685 if (info->traditional_format
12686 || !is_elf_hash_table (info->hash))
12689 _bfd_elf_begin_eh_frame_parsing (info);
12690 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12692 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12695 bed = get_elf_backend_data (abfd);
12698 if (!info->relocatable)
12700 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12703 || bfd_is_abs_section (eh->output_section)))
12704 eh = bfd_get_next_section_by_name (eh);
12707 stab = bfd_get_section_by_name (abfd, ".stab");
12709 && (stab->size == 0
12710 || bfd_is_abs_section (stab->output_section)
12711 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12716 && bed->elf_backend_discard_info == NULL)
12719 if (!init_reloc_cookie (&cookie, info, abfd))
12723 && stab->reloc_count > 0
12724 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12726 if (_bfd_discard_section_stabs (abfd, stab,
12727 elf_section_data (stab)->sec_info,
12728 bfd_elf_reloc_symbol_deleted_p,
12731 fini_reloc_cookie_rels (&cookie, stab);
12735 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12737 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12738 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12739 bfd_elf_reloc_symbol_deleted_p,
12742 fini_reloc_cookie_rels (&cookie, eh);
12743 eh = bfd_get_next_section_by_name (eh);
12746 if (bed->elf_backend_discard_info != NULL
12747 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12750 fini_reloc_cookie (&cookie, abfd);
12752 _bfd_elf_end_eh_frame_parsing (info);
12754 if (info->eh_frame_hdr
12755 && !info->relocatable
12756 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12763 _bfd_elf_section_already_linked (bfd *abfd,
12765 struct bfd_link_info *info)
12768 const char *name, *key;
12769 struct bfd_section_already_linked *l;
12770 struct bfd_section_already_linked_hash_entry *already_linked_list;
12772 if (sec->output_section == bfd_abs_section_ptr)
12775 flags = sec->flags;
12777 /* Return if it isn't a linkonce section. A comdat group section
12778 also has SEC_LINK_ONCE set. */
12779 if ((flags & SEC_LINK_ONCE) == 0)
12782 /* Don't put group member sections on our list of already linked
12783 sections. They are handled as a group via their group section. */
12784 if (elf_sec_group (sec) != NULL)
12787 /* For a SHT_GROUP section, use the group signature as the key. */
12789 if ((flags & SEC_GROUP) != 0
12790 && elf_next_in_group (sec) != NULL
12791 && elf_group_name (elf_next_in_group (sec)) != NULL)
12792 key = elf_group_name (elf_next_in_group (sec));
12795 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12796 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12797 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12800 /* Must be a user linkonce section that doesn't follow gcc's
12801 naming convention. In this case we won't be matching
12802 single member groups. */
12806 already_linked_list = bfd_section_already_linked_table_lookup (key);
12808 for (l = already_linked_list->entry; l != NULL; l = l->next)
12810 /* We may have 2 different types of sections on the list: group
12811 sections with a signature of <key> (<key> is some string),
12812 and linkonce sections named .gnu.linkonce.<type>.<key>.
12813 Match like sections. LTO plugin sections are an exception.
12814 They are always named .gnu.linkonce.t.<key> and match either
12815 type of section. */
12816 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12817 && ((flags & SEC_GROUP) != 0
12818 || strcmp (name, l->sec->name) == 0))
12819 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12821 /* The section has already been linked. See if we should
12822 issue a warning. */
12823 if (!_bfd_handle_already_linked (sec, l, info))
12826 if (flags & SEC_GROUP)
12828 asection *first = elf_next_in_group (sec);
12829 asection *s = first;
12833 s->output_section = bfd_abs_section_ptr;
12834 /* Record which group discards it. */
12835 s->kept_section = l->sec;
12836 s = elf_next_in_group (s);
12837 /* These lists are circular. */
12847 /* A single member comdat group section may be discarded by a
12848 linkonce section and vice versa. */
12849 if ((flags & SEC_GROUP) != 0)
12851 asection *first = elf_next_in_group (sec);
12853 if (first != NULL && elf_next_in_group (first) == first)
12854 /* Check this single member group against linkonce sections. */
12855 for (l = already_linked_list->entry; l != NULL; l = l->next)
12856 if ((l->sec->flags & SEC_GROUP) == 0
12857 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12859 first->output_section = bfd_abs_section_ptr;
12860 first->kept_section = l->sec;
12861 sec->output_section = bfd_abs_section_ptr;
12866 /* Check this linkonce section against single member groups. */
12867 for (l = already_linked_list->entry; l != NULL; l = l->next)
12868 if (l->sec->flags & SEC_GROUP)
12870 asection *first = elf_next_in_group (l->sec);
12873 && elf_next_in_group (first) == first
12874 && bfd_elf_match_symbols_in_sections (first, sec, info))
12876 sec->output_section = bfd_abs_section_ptr;
12877 sec->kept_section = first;
12882 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12883 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12884 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12885 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12886 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12887 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12888 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12889 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12890 The reverse order cannot happen as there is never a bfd with only the
12891 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12892 matter as here were are looking only for cross-bfd sections. */
12894 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12895 for (l = already_linked_list->entry; l != NULL; l = l->next)
12896 if ((l->sec->flags & SEC_GROUP) == 0
12897 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12899 if (abfd != l->sec->owner)
12900 sec->output_section = bfd_abs_section_ptr;
12904 /* This is the first section with this name. Record it. */
12905 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12906 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12907 return sec->output_section == bfd_abs_section_ptr;
12911 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12913 return sym->st_shndx == SHN_COMMON;
12917 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12923 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12925 return bfd_com_section_ptr;
12929 _bfd_elf_default_got_elt_size (bfd *abfd,
12930 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12931 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12932 bfd *ibfd ATTRIBUTE_UNUSED,
12933 unsigned long symndx ATTRIBUTE_UNUSED)
12935 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12936 return bed->s->arch_size / 8;
12939 /* Routines to support the creation of dynamic relocs. */
12941 /* Returns the name of the dynamic reloc section associated with SEC. */
12943 static const char *
12944 get_dynamic_reloc_section_name (bfd * abfd,
12946 bfd_boolean is_rela)
12949 const char *old_name = bfd_get_section_name (NULL, sec);
12950 const char *prefix = is_rela ? ".rela" : ".rel";
12952 if (old_name == NULL)
12955 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12956 sprintf (name, "%s%s", prefix, old_name);
12961 /* Returns the dynamic reloc section associated with SEC.
12962 If necessary compute the name of the dynamic reloc section based
12963 on SEC's name (looked up in ABFD's string table) and the setting
12967 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12969 bfd_boolean is_rela)
12971 asection * reloc_sec = elf_section_data (sec)->sreloc;
12973 if (reloc_sec == NULL)
12975 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12979 reloc_sec = bfd_get_linker_section (abfd, name);
12981 if (reloc_sec != NULL)
12982 elf_section_data (sec)->sreloc = reloc_sec;
12989 /* Returns the dynamic reloc section associated with SEC. If the
12990 section does not exist it is created and attached to the DYNOBJ
12991 bfd and stored in the SRELOC field of SEC's elf_section_data
12994 ALIGNMENT is the alignment for the newly created section and
12995 IS_RELA defines whether the name should be .rela.<SEC's name>
12996 or .rel.<SEC's name>. The section name is looked up in the
12997 string table associated with ABFD. */
13000 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13002 unsigned int alignment,
13004 bfd_boolean is_rela)
13006 asection * reloc_sec = elf_section_data (sec)->sreloc;
13008 if (reloc_sec == NULL)
13010 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13015 reloc_sec = bfd_get_linker_section (dynobj, name);
13017 if (reloc_sec == NULL)
13019 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13020 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13021 if ((sec->flags & SEC_ALLOC) != 0)
13022 flags |= SEC_ALLOC | SEC_LOAD;
13024 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13025 if (reloc_sec != NULL)
13027 /* _bfd_elf_get_sec_type_attr chooses a section type by
13028 name. Override as it may be wrong, eg. for a user
13029 section named "auto" we'll get ".relauto" which is
13030 seen to be a .rela section. */
13031 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13032 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13037 elf_section_data (sec)->sreloc = reloc_sec;
13043 /* Copy the ELF symbol type associated with a linker hash entry. */
13045 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13046 struct bfd_link_hash_entry * hdest,
13047 struct bfd_link_hash_entry * hsrc)
13049 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13050 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13052 ehdest->type = ehsrc->type;
13053 ehdest->target_internal = ehsrc->target_internal;
13056 /* Append a RELA relocation REL to section S in BFD. */
13059 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13062 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13063 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13064 bed->s->swap_reloca_out (abfd, rel, loc);
13067 /* Append a REL relocation REL to section S in BFD. */
13070 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13072 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13073 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13074 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13075 bed->s->swap_reloc_out (abfd, rel, loc);