1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
49 #include "observable.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
62 #include <sys/types.h>
71 int (*deprecated_ui_load_progress_hook) (const char *section,
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
81 static void clear_symtab_users_cleanup (void *ignore);
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
87 /* Functions this file defines. */
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
92 static const struct sym_fns *find_sym_fns (bfd *);
94 static void overlay_invalidate_all (void);
96 static void simple_free_overlay_table (void);
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
101 static int simple_read_overlay_table (void);
103 static int simple_overlay_update_1 (struct obj_section *);
105 static void symfile_find_segment_sections (struct objfile *objfile);
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
111 struct registered_sym_fns
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
124 static std::vector<registered_sym_fns> symtab_fns;
126 /* Values for "set print symbol-loading". */
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
138 static const char *print_symbol_loading = print_symbol_loading_full;
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
150 int auto_solib_add = 1;
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
162 print_symbol_loading_p (int from_tty, int exec, int full)
164 if (!from_tty && !info_verbose)
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
178 /* True if we are reading a symbol table. */
180 int currently_reading_symtab = 0;
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (¤tly_reading_symtab,
190 currently_reading_symtab + 1);
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
205 asection **lowest = (asection **) obj;
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
226 const struct target_section *stp;
228 section_addr_info sap;
230 for (stp = start; stp != end; stp++)
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
245 /* Create a section_addr_info from section offsets in ABFD. */
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
250 struct bfd_section *sec;
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
262 /* Create a section_addr_info from section offsets in OBJFILE. */
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
275 int sectindex = sap[i].sectindex;
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 /* Initialize OBJFILE's sect_index_* members. */
285 init_objfile_sect_indices (struct objfile *objfile)
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
292 objfile->sect_index_text = sect->index;
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
296 objfile->sect_index_data = sect->index;
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
300 objfile->sect_index_bss = sect->index;
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
304 objfile->sect_index_rodata = sect->index;
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
312 symfile_find_segment_sections (objfile);
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
323 for (i = 0; i < objfile->num_sections; i++)
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 if (i == objfile->num_sections)
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
343 /* The arguments to place_section. */
345 struct place_section_arg
347 struct section_offsets *offsets;
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
355 place_section (bfd *abfd, asection *sect, void *obj)
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
380 int indx = cur_sec->index;
382 /* We don't need to compare against ourself. */
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
406 /* Otherwise, we appear to be OK. So far. */
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
422 const section_addr_info &addrs)
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
431 const struct other_sections *osp;
434 if (osp->sectindex == -1)
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
440 section_offsets->offsets[osp->sectindex] = osp->addr;
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
451 addr_section_name (const char *s)
453 if (strcmp (s, ".dynbss") == 0)
455 if (strcmp (s, ".sdynbss") == 0)
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
476 return a->sectindex < b->sectindex;
479 /* Provide sorted array of pointers to sections of ADDRS. */
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
490 std::sort (array.begin (), array.end (), addrs_section_compar);
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
546 const char *sect_name = addr_section_name (sect->name.c_str ());
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
564 /* Never use the same ABFD entry twice. */
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
579 for (i = 0; i < addrs->size (); i++)
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
588 if ((*addrs)[i].addr != 0)
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
594 (*addrs)[i].addr = lower_offset;
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string §_name = (*addrs)[i].name;
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
613 For the sections `.bss' and `.sbss' see addr_section_name. */
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
672 /* Pick non-overlapping offsets for sections the user did not
674 arg.offsets = objfile->section_offsets;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
719 /* Remember the bfd indexes for the .text, .data, .bss and
721 init_objfile_sect_indices (objfile);
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
735 struct symfile_segment_data *data;
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
773 vma = bfd_get_section_vma (abfd, sect);
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
779 data->segment_info[i] = 1;
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
820 /* Initialize entry point information for this objfile. */
823 init_entry_point_info (struct objfile *objfile)
825 struct entry_info *ei = &objfile->per_bfd->ei;
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
856 if (ei->entry_point_p)
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
867 current_top_target ());
869 /* Remove any ISA markers, so that this matches entries in the
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
877 struct bfd_section *sect = osect->the_bfd_section;
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
895 /* Process a symbol file, as either the main file or as a dynamically
898 This function does not set the OBJFILE's entry-point info.
900 OBJFILE is where the symbols are to be read from.
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
920 syms_from_objfile_1 (struct objfile *objfile,
921 section_addr_info *addrs,
922 symfile_add_flags add_flags)
924 section_addr_info local_addr;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
930 if (objfile->sf == NULL)
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
941 memset (objfile->section_offsets, 0, size);
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
952 no load address was specified. */
958 /* We will modify the main symbol table, make sure that all its users
959 will be cleaned up if an error occurs during symbol reading. */
960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
962 /* Since no error yet, throw away the old symbol table. */
964 if (symfile_objfile != NULL)
966 delete symfile_objfile;
967 gdb_assert (symfile_objfile == NULL);
970 /* Currently we keep symbols from the add-symbol-file command.
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
975 (*objfile->sf->sym_new_init) (objfile);
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
980 and assume that <addr> is where that got loaded.
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
984 if (addrs->size () > 0)
985 addr_info_make_relative (addrs, objfile->obfd);
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
989 initial symbol reading for this file. */
991 (*objfile->sf->sym_init) (objfile);
994 (*objfile->sf->sym_offsets) (objfile, *addrs);
996 read_symbols (objfile, add_flags);
998 /* Discard cleanups as symbol reading was successful. */
1000 objfile_holder.release ();
1001 discard_cleanups (old_chain);
1004 /* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1008 syms_from_objfile (struct objfile *objfile,
1009 section_addr_info *addrs,
1010 symfile_add_flags add_flags)
1012 syms_from_objfile_1 (objfile, addrs, add_flags);
1013 init_entry_point_info (objfile);
1016 /* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1021 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1023 /* If this is the main symbol file we have to clean up all users of the
1024 old main symbol file. Otherwise it is sufficient to fixup all the
1025 breakpoints that may have been redefined by this symbol file. */
1026 if (add_flags & SYMFILE_MAINLINE)
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1031 clear_symtab_users (add_flags);
1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1035 breakpoint_re_set ();
1038 /* We're done reading the symbol file; finish off complaints. */
1039 clear_complaints ();
1042 /* Process a symbol file, as either the main file or as a dynamically
1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1046 A new reference is acquired by this function.
1048 For NAME description see the objfile constructor.
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
1065 section_addr_info *addrs,
1066 objfile_flags flags, struct objfile *parent)
1068 struct objfile *objfile;
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1075 if (readnow_symbol_files)
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1092 if ((have_full_symbols () || have_partial_symbols ())
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1099 flags |= OBJF_MAINLINE;
1100 objfile = new struct objfile (abfd, name, flags);
1103 add_separate_debug_objfile (objfile, parent);
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1113 printf_filtered (_("Reading symbols from %s...\n"), name);
1115 syms_from_objfile (objfile, addrs, add_flags);
1117 /* We now have at least a partial symbol table. Check to see if the
1118 user requested that all symbols be read on initial access via either
1119 the gdb startup command line or on a per symbol file basis. Expand
1120 all partial symbol tables for this objfile if so. */
1122 if ((flags & OBJF_READNOW))
1125 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1128 objfile->sf->qf->expand_all_symtabs (objfile);
1131 /* Note that we only print a message if we have no symbols and have
1132 no separate debug file. If there is a separate debug file which
1133 does not have symbols, we'll have emitted this message for that
1134 file, and so printing it twice is just redundant. */
1135 if (should_print && !objfile_has_symbols (objfile)
1136 && objfile->separate_debug_objfile == nullptr)
1137 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1141 if (deprecated_post_add_symbol_hook)
1142 deprecated_post_add_symbol_hook ();
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1148 gdb_flush (gdb_stdout);
1150 if (objfile->sf == NULL)
1152 gdb::observers::new_objfile.notify (objfile);
1153 return objfile; /* No symbols. */
1156 finish_new_objfile (objfile, add_flags);
1158 gdb::observers::new_objfile.notify (objfile);
1160 bfd_cache_close_all ();
1164 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1165 see the objfile constructor. */
1168 symbol_file_add_separate (bfd *bfd, const char *name,
1169 symfile_add_flags symfile_flags,
1170 struct objfile *objfile)
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1177 symbol_file_add_with_addrs
1178 (bfd, name, symfile_flags, &sap,
1179 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1184 /* Process the symbol file ABFD, as either the main file or as a
1185 dynamically loaded file.
1186 See symbol_file_add_with_addrs's comments for details. */
1189 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1190 symfile_add_flags add_flags,
1191 section_addr_info *addrs,
1192 objfile_flags flags, struct objfile *parent)
1194 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1198 /* Process a symbol file, as either the main file or as a dynamically
1199 loaded file. See symbol_file_add_with_addrs's comments for details. */
1202 symbol_file_add (const char *name, symfile_add_flags add_flags,
1203 section_addr_info *addrs, objfile_flags flags)
1205 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1207 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1211 /* Call symbol_file_add() with default values and update whatever is
1212 affected by the loading of a new main().
1213 Used when the file is supplied in the gdb command line
1214 and by some targets with special loading requirements.
1215 The auxiliary function, symbol_file_add_main_1(), has the flags
1216 argument for the switches that can only be specified in the symbol_file
1220 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1222 symbol_file_add_main_1 (args, add_flags, 0, 0);
1226 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1227 objfile_flags flags, CORE_ADDR reloff)
1229 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1231 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1233 objfile_rebase (objfile, reloff);
1235 /* Getting new symbols may change our opinion about
1236 what is frameless. */
1237 reinit_frame_cache ();
1239 if ((add_flags & SYMFILE_NO_READ) == 0)
1240 set_initial_language ();
1244 symbol_file_clear (int from_tty)
1246 if ((have_full_symbols () || have_partial_symbols ())
1249 ? !query (_("Discard symbol table from `%s'? "),
1250 objfile_name (symfile_objfile))
1251 : !query (_("Discard symbol table? "))))
1252 error (_("Not confirmed."));
1254 /* solib descriptors may have handles to objfiles. Wipe them before their
1255 objfiles get stale by free_all_objfiles. */
1256 no_shared_libraries (NULL, from_tty);
1258 free_all_objfiles ();
1260 gdb_assert (symfile_objfile == NULL);
1262 printf_filtered (_("No symbol file now.\n"));
1265 /* See symfile.h. */
1267 int separate_debug_file_debug = 0;
1270 separate_debug_file_exists (const std::string &name, unsigned long crc,
1271 struct objfile *parent_objfile)
1273 unsigned long file_crc;
1275 struct stat parent_stat, abfd_stat;
1276 int verified_as_different;
1278 /* Find a separate debug info file as if symbols would be present in
1279 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1280 section can contain just the basename of PARENT_OBJFILE without any
1281 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1282 the separate debug infos with the same basename can exist. */
1284 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1287 if (separate_debug_file_debug)
1288 printf_filtered (_(" Trying %s\n"), name.c_str ());
1290 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Files accessed from gdbservers that do not
1300 support the vFile:fstat packet will also have st_ino set to zero.
1301 Do not indicate a duplicate library in either case. While there
1302 is no guarantee that a system that provides meaningful inode
1303 numbers will never set st_ino to zero, this is merely an
1304 optimization, so we do not need to worry about false negatives. */
1306 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1307 && abfd_stat.st_ino != 0
1308 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1310 if (abfd_stat.st_dev == parent_stat.st_dev
1311 && abfd_stat.st_ino == parent_stat.st_ino)
1313 verified_as_different = 1;
1316 verified_as_different = 0;
1318 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1323 if (crc != file_crc)
1325 unsigned long parent_crc;
1327 /* If the files could not be verified as different with
1328 bfd_stat then we need to calculate the parent's CRC
1329 to verify whether the files are different or not. */
1331 if (!verified_as_different)
1333 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1337 if (verified_as_different || parent_crc != file_crc)
1338 warning (_("the debug information found in \"%s\""
1339 " does not match \"%s\" (CRC mismatch).\n"),
1340 name.c_str (), objfile_name (parent_objfile));
1348 char *debug_file_directory = NULL;
1350 show_debug_file_directory (struct ui_file *file, int from_tty,
1351 struct cmd_list_element *c, const char *value)
1353 fprintf_filtered (file,
1354 _("The directory where separate debug "
1355 "symbols are searched for is \"%s\".\n"),
1359 #if ! defined (DEBUG_SUBDIRECTORY)
1360 #define DEBUG_SUBDIRECTORY ".debug"
1363 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1364 where the original file resides (may not be the same as
1365 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1366 looking for. CANON_DIR is the "realpath" form of DIR.
1367 DIR must contain a trailing '/'.
1368 Returns the path of the file with separate debug info, or an empty
1372 find_separate_debug_file (const char *dir,
1373 const char *canon_dir,
1374 const char *debuglink,
1375 unsigned long crc32, struct objfile *objfile)
1377 if (separate_debug_file_debug)
1378 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1379 "%s\n"), objfile_name (objfile));
1381 /* First try in the same directory as the original file. */
1382 std::string debugfile = dir;
1383 debugfile += debuglink;
1385 if (separate_debug_file_exists (debugfile, crc32, objfile))
1388 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1390 debugfile += DEBUG_SUBDIRECTORY;
1392 debugfile += debuglink;
1394 if (separate_debug_file_exists (debugfile, crc32, objfile))
1397 /* Then try in the global debugfile directories.
1399 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1400 cause "/..." lookups. */
1402 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1403 = dirnames_to_char_ptr_vec (debug_file_directory);
1405 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1407 debugfile = debugdir.get ();
1410 debugfile += debuglink;
1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1415 /* If the file is in the sysroot, try using its base path in the
1416 global debugfile directory. */
1417 if (canon_dir != NULL
1418 && filename_ncmp (canon_dir, gdb_sysroot,
1419 strlen (gdb_sysroot)) == 0
1420 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1422 debugfile = debugdir.get ();
1423 debugfile += (canon_dir + strlen (gdb_sysroot));
1425 debugfile += debuglink;
1427 if (separate_debug_file_exists (debugfile, crc32, objfile))
1432 return std::string ();
1435 /* Modify PATH to contain only "[/]directory/" part of PATH.
1436 If there were no directory separators in PATH, PATH will be empty
1437 string on return. */
1440 terminate_after_last_dir_separator (char *path)
1444 /* Strip off the final filename part, leaving the directory name,
1445 followed by a slash. The directory can be relative or absolute. */
1446 for (i = strlen(path) - 1; i >= 0; i--)
1447 if (IS_DIR_SEPARATOR (path[i]))
1450 /* If I is -1 then no directory is present there and DIR will be "". */
1454 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1455 Returns pathname, or an empty string. */
1458 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1460 unsigned long crc32;
1462 gdb::unique_xmalloc_ptr<char> debuglink
1463 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1465 if (debuglink == NULL)
1467 /* There's no separate debug info, hence there's no way we could
1468 load it => no warning. */
1469 return std::string ();
1472 std::string dir = objfile_name (objfile);
1473 terminate_after_last_dir_separator (&dir[0]);
1474 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1476 std::string debugfile
1477 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1478 debuglink.get (), crc32, objfile);
1480 if (debugfile.empty ())
1482 /* For PR gdb/9538, try again with realpath (if different from the
1487 if (lstat (objfile_name (objfile), &st_buf) == 0
1488 && S_ISLNK (st_buf.st_mode))
1490 gdb::unique_xmalloc_ptr<char> symlink_dir
1491 (lrealpath (objfile_name (objfile)));
1492 if (symlink_dir != NULL)
1494 terminate_after_last_dir_separator (symlink_dir.get ());
1495 if (dir != symlink_dir.get ())
1497 /* Different directory, so try using it. */
1498 debugfile = find_separate_debug_file (symlink_dir.get (),
1511 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1515 validate_readnow_readnever (objfile_flags flags)
1517 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1518 error (_("-readnow and -readnever cannot be used simultaneously"));
1521 /* This is the symbol-file command. Read the file, analyze its
1522 symbols, and add a struct symtab to a symtab list. The syntax of
1523 the command is rather bizarre:
1525 1. The function buildargv implements various quoting conventions
1526 which are undocumented and have little or nothing in common with
1527 the way things are quoted (or not quoted) elsewhere in GDB.
1529 2. Options are used, which are not generally used in GDB (perhaps
1530 "set mapped on", "set readnow on" would be better)
1532 3. The order of options matters, which is contrary to GNU
1533 conventions (because it is confusing and inconvenient). */
1536 symbol_file_command (const char *args, int from_tty)
1542 symbol_file_clear (from_tty);
1546 objfile_flags flags = OBJF_USERLOADED;
1547 symfile_add_flags add_flags = 0;
1549 bool stop_processing_options = false;
1550 CORE_ADDR offset = 0;
1555 add_flags |= SYMFILE_VERBOSE;
1557 gdb_argv built_argv (args);
1558 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1560 if (stop_processing_options || *arg != '-')
1565 error (_("Unrecognized argument \"%s\""), arg);
1567 else if (strcmp (arg, "-readnow") == 0)
1568 flags |= OBJF_READNOW;
1569 else if (strcmp (arg, "-readnever") == 0)
1570 flags |= OBJF_READNEVER;
1571 else if (strcmp (arg, "-o") == 0)
1573 arg = built_argv[++idx];
1575 error (_("Missing argument to -o"));
1577 offset = parse_and_eval_address (arg);
1579 else if (strcmp (arg, "--") == 0)
1580 stop_processing_options = true;
1582 error (_("Unrecognized argument \"%s\""), arg);
1586 error (_("no symbol file name was specified"));
1588 validate_readnow_readnever (flags);
1590 symbol_file_add_main_1 (name, add_flags, flags, offset);
1594 /* Set the initial language.
1596 FIXME: A better solution would be to record the language in the
1597 psymtab when reading partial symbols, and then use it (if known) to
1598 set the language. This would be a win for formats that encode the
1599 language in an easily discoverable place, such as DWARF. For
1600 stabs, we can jump through hoops looking for specially named
1601 symbols or try to intuit the language from the specific type of
1602 stabs we find, but we can't do that until later when we read in
1606 set_initial_language (void)
1608 enum language lang = main_language ();
1610 if (lang == language_unknown)
1612 char *name = main_name ();
1613 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1616 lang = SYMBOL_LANGUAGE (sym);
1619 if (lang == language_unknown)
1621 /* Make C the default language */
1625 set_language (lang);
1626 expected_language = current_language; /* Don't warn the user. */
1629 /* Open the file specified by NAME and hand it off to BFD for
1630 preliminary analysis. Return a newly initialized bfd *, which
1631 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1632 absolute). In case of trouble, error() is called. */
1635 symfile_bfd_open (const char *name)
1639 gdb::unique_xmalloc_ptr<char> absolute_name;
1640 if (!is_target_filename (name))
1642 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1644 /* Look down path for it, allocate 2nd new malloc'd copy. */
1645 desc = openp (getenv ("PATH"),
1646 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1647 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1648 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1651 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1653 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1654 desc = openp (getenv ("PATH"),
1655 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1656 exename, O_RDONLY | O_BINARY, &absolute_name);
1660 perror_with_name (expanded_name.get ());
1662 name = absolute_name.get ();
1665 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1666 if (sym_bfd == NULL)
1667 error (_("`%s': can't open to read symbols: %s."), name,
1668 bfd_errmsg (bfd_get_error ()));
1670 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1671 bfd_set_cacheable (sym_bfd.get (), 1);
1673 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1674 error (_("`%s': can't read symbols: %s."), name,
1675 bfd_errmsg (bfd_get_error ()));
1680 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1681 the section was not found. */
1684 get_section_index (struct objfile *objfile, const char *section_name)
1686 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1694 /* Link SF into the global symtab_fns list.
1695 FLAVOUR is the file format that SF handles.
1696 Called on startup by the _initialize routine in each object file format
1697 reader, to register information about each format the reader is prepared
1701 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1703 symtab_fns.emplace_back (flavour, sf);
1706 /* Initialize OBJFILE to read symbols from its associated BFD. It
1707 either returns or calls error(). The result is an initialized
1708 struct sym_fns in the objfile structure, that contains cached
1709 information about the symbol file. */
1711 static const struct sym_fns *
1712 find_sym_fns (bfd *abfd)
1714 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1716 if (our_flavour == bfd_target_srec_flavour
1717 || our_flavour == bfd_target_ihex_flavour
1718 || our_flavour == bfd_target_tekhex_flavour)
1719 return NULL; /* No symbols. */
1721 for (const registered_sym_fns &rsf : symtab_fns)
1722 if (our_flavour == rsf.sym_flavour)
1725 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1726 bfd_get_target (abfd));
1730 /* This function runs the load command of our current target. */
1733 load_command (const char *arg, int from_tty)
1737 /* The user might be reloading because the binary has changed. Take
1738 this opportunity to check. */
1739 reopen_exec_file ();
1745 const char *parg, *prev;
1747 arg = get_exec_file (1);
1749 /* We may need to quote this string so buildargv can pull it
1752 while ((parg = strpbrk (parg, "\\\"'\t ")))
1754 temp.append (prev, parg - prev);
1756 temp.push_back ('\\');
1758 /* If we have not copied anything yet, then we didn't see a
1759 character to quote, and we can just leave ARG unchanged. */
1763 arg = temp.c_str ();
1767 target_load (arg, from_tty);
1769 /* After re-loading the executable, we don't really know which
1770 overlays are mapped any more. */
1771 overlay_cache_invalid = 1;
1774 /* This version of "load" should be usable for any target. Currently
1775 it is just used for remote targets, not inftarg.c or core files,
1776 on the theory that only in that case is it useful.
1778 Avoiding xmodem and the like seems like a win (a) because we don't have
1779 to worry about finding it, and (b) On VMS, fork() is very slow and so
1780 we don't want to run a subprocess. On the other hand, I'm not sure how
1781 performance compares. */
1783 static int validate_download = 0;
1785 /* Callback service function for generic_load (bfd_map_over_sections). */
1788 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1790 bfd_size_type *sum = (bfd_size_type *) data;
1792 *sum += bfd_get_section_size (asec);
1795 /* Opaque data for load_progress. */
1796 struct load_progress_data
1798 /* Cumulative data. */
1799 unsigned long write_count = 0;
1800 unsigned long data_count = 0;
1801 bfd_size_type total_size = 0;
1804 /* Opaque data for load_progress for a single section. */
1805 struct load_progress_section_data
1807 load_progress_section_data (load_progress_data *cumulative_,
1808 const char *section_name_, ULONGEST section_size_,
1809 CORE_ADDR lma_, gdb_byte *buffer_)
1810 : cumulative (cumulative_), section_name (section_name_),
1811 section_size (section_size_), lma (lma_), buffer (buffer_)
1814 struct load_progress_data *cumulative;
1816 /* Per-section data. */
1817 const char *section_name;
1818 ULONGEST section_sent = 0;
1819 ULONGEST section_size;
1824 /* Opaque data for load_section_callback. */
1825 struct load_section_data
1827 load_section_data (load_progress_data *progress_data_)
1828 : progress_data (progress_data_)
1831 ~load_section_data ()
1833 for (auto &&request : requests)
1835 xfree (request.data);
1836 delete ((load_progress_section_data *) request.baton);
1840 CORE_ADDR load_offset = 0;
1841 struct load_progress_data *progress_data;
1842 std::vector<struct memory_write_request> requests;
1845 /* Target write callback routine for progress reporting. */
1848 load_progress (ULONGEST bytes, void *untyped_arg)
1850 struct load_progress_section_data *args
1851 = (struct load_progress_section_data *) untyped_arg;
1852 struct load_progress_data *totals;
1855 /* Writing padding data. No easy way to get at the cumulative
1856 stats, so just ignore this. */
1859 totals = args->cumulative;
1861 if (bytes == 0 && args->section_sent == 0)
1863 /* The write is just starting. Let the user know we've started
1865 current_uiout->message ("Loading section %s, size %s lma %s\n",
1867 hex_string (args->section_size),
1868 paddress (target_gdbarch (), args->lma));
1872 if (validate_download)
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb::byte_vector check (bytes);
1883 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1884 error (_("Download verify read failed at %s"),
1885 paddress (target_gdbarch (), args->lma));
1886 if (memcmp (args->buffer, check.data (), bytes) != 0)
1887 error (_("Download verify compare failed at %s"),
1888 paddress (target_gdbarch (), args->lma));
1890 totals->data_count += bytes;
1892 args->buffer += bytes;
1893 totals->write_count += 1;
1894 args->section_sent += bytes;
1895 if (check_quit_flag ()
1896 || (deprecated_ui_load_progress_hook != NULL
1897 && deprecated_ui_load_progress_hook (args->section_name,
1898 args->section_sent)))
1899 error (_("Canceled the download"));
1901 if (deprecated_show_load_progress != NULL)
1902 deprecated_show_load_progress (args->section_name,
1906 totals->total_size);
1909 /* Callback service function for generic_load (bfd_map_over_sections). */
1912 load_section_callback (bfd *abfd, asection *asec, void *data)
1914 struct load_section_data *args = (struct load_section_data *) data;
1915 bfd_size_type size = bfd_get_section_size (asec);
1916 const char *sect_name = bfd_get_section_name (abfd, asec);
1918 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1924 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1925 ULONGEST end = begin + size;
1926 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1927 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1929 load_progress_section_data *section_data
1930 = new load_progress_section_data (args->progress_data, sect_name, size,
1933 args->requests.emplace_back (begin, end, buffer, section_data);
1936 static void print_transfer_performance (struct ui_file *stream,
1937 unsigned long data_count,
1938 unsigned long write_count,
1939 std::chrono::steady_clock::duration d);
1942 generic_load (const char *args, int from_tty)
1944 struct load_progress_data total_progress;
1945 struct load_section_data cbdata (&total_progress);
1946 struct ui_out *uiout = current_uiout;
1949 error_no_arg (_("file to load"));
1951 gdb_argv argv (args);
1953 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1955 if (argv[1] != NULL)
1959 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1961 /* If the last word was not a valid number then
1962 treat it as a file name with spaces in. */
1963 if (argv[1] == endptr)
1964 error (_("Invalid download offset:%s."), argv[1]);
1966 if (argv[2] != NULL)
1967 error (_("Too many parameters."));
1970 /* Open the file for loading. */
1971 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1972 if (loadfile_bfd == NULL)
1973 perror_with_name (filename.get ());
1975 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1977 error (_("\"%s\" is not an object file: %s"), filename.get (),
1978 bfd_errmsg (bfd_get_error ()));
1981 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1982 (void *) &total_progress.total_size);
1984 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1986 using namespace std::chrono;
1988 steady_clock::time_point start_time = steady_clock::now ();
1990 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1991 load_progress) != 0)
1992 error (_("Load failed"));
1994 steady_clock::time_point end_time = steady_clock::now ();
1996 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
1997 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
1998 uiout->text ("Start address ");
1999 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2000 uiout->text (", load size ");
2001 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2003 regcache_write_pc (get_current_regcache (), entry);
2005 /* Reset breakpoints, now that we have changed the load image. For
2006 instance, breakpoints may have been set (or reset, by
2007 post_create_inferior) while connected to the target but before we
2008 loaded the program. In that case, the prologue analyzer could
2009 have read instructions from the target to find the right
2010 breakpoint locations. Loading has changed the contents of that
2013 breakpoint_re_set ();
2015 print_transfer_performance (gdb_stdout, total_progress.data_count,
2016 total_progress.write_count,
2017 end_time - start_time);
2020 /* Report on STREAM the performance of a memory transfer operation,
2021 such as 'load'. DATA_COUNT is the number of bytes transferred.
2022 WRITE_COUNT is the number of separate write operations, or 0, if
2023 that information is not available. TIME is how long the operation
2027 print_transfer_performance (struct ui_file *stream,
2028 unsigned long data_count,
2029 unsigned long write_count,
2030 std::chrono::steady_clock::duration time)
2032 using namespace std::chrono;
2033 struct ui_out *uiout = current_uiout;
2035 milliseconds ms = duration_cast<milliseconds> (time);
2037 uiout->text ("Transfer rate: ");
2038 if (ms.count () > 0)
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2042 if (uiout->is_mi_like_p ())
2044 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2045 uiout->text (" bits/sec");
2047 else if (rate < 1024)
2049 uiout->field_fmt ("transfer-rate", "%lu", rate);
2050 uiout->text (" bytes/sec");
2054 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2055 uiout->text (" KB/sec");
2060 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2061 uiout->text (" bits in <1 sec");
2063 if (write_count > 0)
2066 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2067 uiout->text (" bytes/write");
2069 uiout->text (".\n");
2072 /* Add an OFFSET to the start address of each section in OBJF, except
2073 sections that were specified in ADDRS. */
2076 set_objfile_default_section_offset (struct objfile *objf,
2077 const section_addr_info &addrs,
2080 /* Add OFFSET to all sections by default. */
2081 std::vector<struct section_offsets> offsets (objf->num_sections,
2084 /* Create sorted lists of all sections in ADDRS as well as all
2085 sections in OBJF. */
2087 std::vector<const struct other_sections *> addrs_sorted
2088 = addrs_section_sort (addrs);
2090 section_addr_info objf_addrs
2091 = build_section_addr_info_from_objfile (objf);
2092 std::vector<const struct other_sections *> objf_addrs_sorted
2093 = addrs_section_sort (objf_addrs);
2095 /* Walk the BFD section list, and if a matching section is found in
2096 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2099 Note that both lists may contain multiple sections with the same
2100 name, and then the sections from ADDRS are matched in BFD order
2101 (thanks to sectindex). */
2103 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2104 = addrs_sorted.begin ();
2105 for (const other_sections *objf_sect : objf_addrs_sorted)
2107 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2110 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2112 const struct other_sections *sect = *addrs_sorted_iter;
2113 const char *sect_name = addr_section_name (sect->name.c_str ());
2114 cmp = strcmp (sect_name, objf_name);
2116 ++addrs_sorted_iter;
2120 offsets[objf_sect->sectindex].offsets[0] = 0;
2123 /* Apply the new section offsets. */
2124 objfile_relocate (objf, offsets.data ());
2127 /* This function allows the addition of incrementally linked object files.
2128 It does not modify any state in the target, only in the debugger. */
2129 /* Note: ezannoni 2000-04-13 This function/command used to have a
2130 special case syntax for the rombug target (Rombug is the boot
2131 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2132 rombug case, the user doesn't need to supply a text address,
2133 instead a call to target_link() (in target.c) would supply the
2134 value to use. We are now discontinuing this type of ad hoc syntax. */
2137 add_symbol_file_command (const char *args, int from_tty)
2139 struct gdbarch *gdbarch = get_current_arch ();
2140 gdb::unique_xmalloc_ptr<char> filename;
2143 struct objfile *objf;
2144 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2145 symfile_add_flags add_flags = 0;
2148 add_flags |= SYMFILE_VERBOSE;
2156 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2157 bool stop_processing_options = false;
2158 CORE_ADDR offset = 0;
2163 error (_("add-symbol-file takes a file name and an address"));
2165 bool seen_addr = false;
2166 bool seen_offset = false;
2167 gdb_argv argv (args);
2169 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2171 if (stop_processing_options || *arg != '-')
2173 if (filename == NULL)
2175 /* First non-option argument is always the filename. */
2176 filename.reset (tilde_expand (arg));
2178 else if (!seen_addr)
2180 /* The second non-option argument is always the text
2181 address at which to load the program. */
2182 sect_opts[0].value = arg;
2186 error (_("Unrecognized argument \"%s\""), arg);
2188 else if (strcmp (arg, "-readnow") == 0)
2189 flags |= OBJF_READNOW;
2190 else if (strcmp (arg, "-readnever") == 0)
2191 flags |= OBJF_READNEVER;
2192 else if (strcmp (arg, "-s") == 0)
2194 if (argv[argcnt + 1] == NULL)
2195 error (_("Missing section name after \"-s\""));
2196 else if (argv[argcnt + 2] == NULL)
2197 error (_("Missing section address after \"-s\""));
2199 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2201 sect_opts.push_back (sect);
2204 else if (strcmp (arg, "-o") == 0)
2206 arg = argv[++argcnt];
2208 error (_("Missing argument to -o"));
2210 offset = parse_and_eval_address (arg);
2213 else if (strcmp (arg, "--") == 0)
2214 stop_processing_options = true;
2216 error (_("Unrecognized argument \"%s\""), arg);
2219 if (filename == NULL)
2220 error (_("You must provide a filename to be loaded."));
2222 validate_readnow_readnever (flags);
2224 /* Print the prompt for the query below. And save the arguments into
2225 a sect_addr_info structure to be passed around to other
2226 functions. We have to split this up into separate print
2227 statements because hex_string returns a local static
2230 printf_unfiltered (_("add symbol table from file \"%s\""),
2232 section_addr_info section_addrs;
2233 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2236 for (; it != sect_opts.end (); ++it)
2239 const char *val = it->value;
2240 const char *sec = it->name;
2242 if (section_addrs.empty ())
2243 printf_unfiltered (_(" at\n"));
2244 addr = parse_and_eval_address (val);
2246 /* Here we store the section offsets in the order they were
2247 entered on the command line. Every array element is
2248 assigned an ascending section index to preserve the above
2249 order over an unstable sorting algorithm. This dummy
2250 index is not used for any other purpose.
2252 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2253 printf_filtered ("\t%s_addr = %s\n", sec,
2254 paddress (gdbarch, addr));
2256 /* The object's sections are initialized when a
2257 call is made to build_objfile_section_table (objfile).
2258 This happens in reread_symbols.
2259 At this point, we don't know what file type this is,
2260 so we can't determine what section names are valid. */
2263 printf_unfiltered (_("%s offset by %s\n"),
2264 (section_addrs.empty ()
2265 ? _(" with all sections")
2266 : _("with other sections")),
2267 paddress (gdbarch, offset));
2268 else if (section_addrs.empty ())
2269 printf_unfiltered ("\n");
2271 if (from_tty && (!query ("%s", "")))
2272 error (_("Not confirmed."));
2274 objf = symbol_file_add (filename.get (), add_flags, §ion_addrs,
2278 set_objfile_default_section_offset (objf, section_addrs, offset);
2280 add_target_sections_of_objfile (objf);
2282 /* Getting new symbols may change our opinion about what is
2284 reinit_frame_cache ();
2288 /* This function removes a symbol file that was added via add-symbol-file. */
2291 remove_symbol_file_command (const char *args, int from_tty)
2293 struct objfile *objf = NULL;
2294 struct program_space *pspace = current_program_space;
2299 error (_("remove-symbol-file: no symbol file provided"));
2301 gdb_argv argv (args);
2303 if (strcmp (argv[0], "-a") == 0)
2305 /* Interpret the next argument as an address. */
2308 if (argv[1] == NULL)
2309 error (_("Missing address argument"));
2311 if (argv[2] != NULL)
2312 error (_("Junk after %s"), argv[1]);
2314 addr = parse_and_eval_address (argv[1]);
2318 if ((objf->flags & OBJF_USERLOADED) != 0
2319 && (objf->flags & OBJF_SHARED) != 0
2320 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2324 else if (argv[0] != NULL)
2326 /* Interpret the current argument as a file name. */
2328 if (argv[1] != NULL)
2329 error (_("Junk after %s"), argv[0]);
2331 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2335 if ((objf->flags & OBJF_USERLOADED) != 0
2336 && (objf->flags & OBJF_SHARED) != 0
2337 && objf->pspace == pspace
2338 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2344 error (_("No symbol file found"));
2347 && !query (_("Remove symbol table from file \"%s\"? "),
2348 objfile_name (objf)))
2349 error (_("Not confirmed."));
2352 clear_symtab_users (0);
2355 /* Re-read symbols if a symbol-file has changed. */
2358 reread_symbols (void)
2360 struct objfile *objfile;
2362 struct stat new_statbuf;
2364 std::vector<struct objfile *> new_objfiles;
2366 /* With the addition of shared libraries, this should be modified,
2367 the load time should be saved in the partial symbol tables, since
2368 different tables may come from different source files. FIXME.
2369 This routine should then walk down each partial symbol table
2370 and see if the symbol table that it originates from has been changed. */
2372 for (objfile = object_files; objfile; objfile = objfile->next)
2374 if (objfile->obfd == NULL)
2377 /* Separate debug objfiles are handled in the main objfile. */
2378 if (objfile->separate_debug_objfile_backlink)
2381 /* If this object is from an archive (what you usually create with
2382 `ar', often called a `static library' on most systems, though
2383 a `shared library' on AIX is also an archive), then you should
2384 stat on the archive name, not member name. */
2385 if (objfile->obfd->my_archive)
2386 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2388 res = stat (objfile_name (objfile), &new_statbuf);
2391 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2392 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2393 objfile_name (objfile));
2396 new_modtime = new_statbuf.st_mtime;
2397 if (new_modtime != objfile->mtime)
2399 struct cleanup *old_cleanups;
2400 struct section_offsets *offsets;
2403 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2404 objfile_name (objfile));
2406 /* There are various functions like symbol_file_add,
2407 symfile_bfd_open, syms_from_objfile, etc., which might
2408 appear to do what we want. But they have various other
2409 effects which we *don't* want. So we just do stuff
2410 ourselves. We don't worry about mapped files (for one thing,
2411 any mapped file will be out of date). */
2413 /* If we get an error, blow away this objfile (not sure if
2414 that is the correct response for things like shared
2416 std::unique_ptr<struct objfile> objfile_holder (objfile);
2418 /* We need to do this whenever any symbols go away. */
2419 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2421 if (exec_bfd != NULL
2422 && filename_cmp (bfd_get_filename (objfile->obfd),
2423 bfd_get_filename (exec_bfd)) == 0)
2425 /* Reload EXEC_BFD without asking anything. */
2427 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2430 /* Keep the calls order approx. the same as in free_objfile. */
2432 /* Free the separate debug objfiles. It will be
2433 automatically recreated by sym_read. */
2434 free_objfile_separate_debug (objfile);
2436 /* Remove any references to this objfile in the global
2438 preserve_values (objfile);
2440 /* Nuke all the state that we will re-read. Much of the following
2441 code which sets things to NULL really is necessary to tell
2442 other parts of GDB that there is nothing currently there.
2444 Try to keep the freeing order compatible with free_objfile. */
2446 if (objfile->sf != NULL)
2448 (*objfile->sf->sym_finish) (objfile);
2451 clear_objfile_data (objfile);
2453 /* Clean up any state BFD has sitting around. */
2455 gdb_bfd_ref_ptr obfd (objfile->obfd);
2456 char *obfd_filename;
2458 obfd_filename = bfd_get_filename (objfile->obfd);
2459 /* Open the new BFD before freeing the old one, so that
2460 the filename remains live. */
2461 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2462 objfile->obfd = temp.release ();
2463 if (objfile->obfd == NULL)
2464 error (_("Can't open %s to read symbols."), obfd_filename);
2467 std::string original_name = objfile->original_name;
2469 /* bfd_openr sets cacheable to true, which is what we want. */
2470 if (!bfd_check_format (objfile->obfd, bfd_object))
2471 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2472 bfd_errmsg (bfd_get_error ()));
2474 /* Save the offsets, we will nuke them with the rest of the
2476 num_offsets = objfile->num_sections;
2477 offsets = ((struct section_offsets *)
2478 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2479 memcpy (offsets, objfile->section_offsets,
2480 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2482 /* FIXME: Do we have to free a whole linked list, or is this
2484 objfile->global_psymbols.clear ();
2485 objfile->static_psymbols.clear ();
2487 /* Free the obstacks for non-reusable objfiles. */
2488 psymbol_bcache_free (objfile->psymbol_cache);
2489 objfile->psymbol_cache = psymbol_bcache_init ();
2491 /* NB: after this call to obstack_free, objfiles_changed
2492 will need to be called (see discussion below). */
2493 obstack_free (&objfile->objfile_obstack, 0);
2494 objfile->sections = NULL;
2495 objfile->compunit_symtabs = NULL;
2496 objfile->psymtabs = NULL;
2497 objfile->psymtabs_addrmap = NULL;
2498 objfile->free_psymtabs = NULL;
2499 objfile->template_symbols = NULL;
2501 /* obstack_init also initializes the obstack so it is
2502 empty. We could use obstack_specify_allocation but
2503 gdb_obstack.h specifies the alloc/dealloc functions. */
2504 obstack_init (&objfile->objfile_obstack);
2506 /* set_objfile_per_bfd potentially allocates the per-bfd
2507 data on the objfile's obstack (if sharing data across
2508 multiple users is not possible), so it's important to
2509 do it *after* the obstack has been initialized. */
2510 set_objfile_per_bfd (objfile);
2512 objfile->original_name
2513 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2514 original_name.c_str (),
2515 original_name.size ());
2517 /* Reset the sym_fns pointer. The ELF reader can change it
2518 based on whether .gdb_index is present, and we need it to
2519 start over. PR symtab/15885 */
2520 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2522 build_objfile_section_table (objfile);
2523 terminate_minimal_symbol_table (objfile);
2525 /* We use the same section offsets as from last time. I'm not
2526 sure whether that is always correct for shared libraries. */
2527 objfile->section_offsets = (struct section_offsets *)
2528 obstack_alloc (&objfile->objfile_obstack,
2529 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2530 memcpy (objfile->section_offsets, offsets,
2531 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2532 objfile->num_sections = num_offsets;
2534 /* What the hell is sym_new_init for, anyway? The concept of
2535 distinguishing between the main file and additional files
2536 in this way seems rather dubious. */
2537 if (objfile == symfile_objfile)
2539 (*objfile->sf->sym_new_init) (objfile);
2542 (*objfile->sf->sym_init) (objfile);
2543 clear_complaints ();
2545 objfile->flags &= ~OBJF_PSYMTABS_READ;
2547 /* We are about to read new symbols and potentially also
2548 DWARF information. Some targets may want to pass addresses
2549 read from DWARF DIE's through an adjustment function before
2550 saving them, like MIPS, which may call into
2551 "find_pc_section". When called, that function will make
2552 use of per-objfile program space data.
2554 Since we discarded our section information above, we have
2555 dangling pointers in the per-objfile program space data
2556 structure. Force GDB to update the section mapping
2557 information by letting it know the objfile has changed,
2558 making the dangling pointers point to correct data
2561 objfiles_changed ();
2563 read_symbols (objfile, 0);
2565 if (!objfile_has_symbols (objfile))
2568 printf_filtered (_("(no debugging symbols found)\n"));
2572 /* We're done reading the symbol file; finish off complaints. */
2573 clear_complaints ();
2575 /* Getting new symbols may change our opinion about what is
2578 reinit_frame_cache ();
2580 /* Discard cleanups as symbol reading was successful. */
2581 objfile_holder.release ();
2582 discard_cleanups (old_cleanups);
2584 /* If the mtime has changed between the time we set new_modtime
2585 and now, we *want* this to be out of date, so don't call stat
2587 objfile->mtime = new_modtime;
2588 init_entry_point_info (objfile);
2590 new_objfiles.push_back (objfile);
2594 if (!new_objfiles.empty ())
2596 clear_symtab_users (0);
2598 /* clear_objfile_data for each objfile was called before freeing it and
2599 gdb::observers::new_objfile.notify (NULL) has been called by
2600 clear_symtab_users above. Notify the new files now. */
2601 for (auto iter : new_objfiles)
2602 gdb::observers::new_objfile.notify (iter);
2604 /* At least one objfile has changed, so we can consider that
2605 the executable we're debugging has changed too. */
2606 gdb::observers::executable_changed.notify ();
2611 struct filename_language
2613 filename_language (const std::string &ext_, enum language lang_)
2614 : ext (ext_), lang (lang_)
2621 static std::vector<filename_language> filename_language_table;
2623 /* See symfile.h. */
2626 add_filename_language (const char *ext, enum language lang)
2628 filename_language_table.emplace_back (ext, lang);
2631 static char *ext_args;
2633 show_ext_args (struct ui_file *file, int from_tty,
2634 struct cmd_list_element *c, const char *value)
2636 fprintf_filtered (file,
2637 _("Mapping between filename extension "
2638 "and source language is \"%s\".\n"),
2643 set_ext_lang_command (const char *args,
2644 int from_tty, struct cmd_list_element *e)
2646 char *cp = ext_args;
2649 /* First arg is filename extension, starting with '.' */
2651 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2653 /* Find end of first arg. */
2654 while (*cp && !isspace (*cp))
2658 error (_("'%s': two arguments required -- "
2659 "filename extension and language"),
2662 /* Null-terminate first arg. */
2665 /* Find beginning of second arg, which should be a source language. */
2666 cp = skip_spaces (cp);
2669 error (_("'%s': two arguments required -- "
2670 "filename extension and language"),
2673 /* Lookup the language from among those we know. */
2674 lang = language_enum (cp);
2676 auto it = filename_language_table.begin ();
2677 /* Now lookup the filename extension: do we already know it? */
2678 for (; it != filename_language_table.end (); it++)
2680 if (it->ext == ext_args)
2684 if (it == filename_language_table.end ())
2686 /* New file extension. */
2687 add_filename_language (ext_args, lang);
2691 /* Redefining a previously known filename extension. */
2694 /* query ("Really make files of type %s '%s'?", */
2695 /* ext_args, language_str (lang)); */
2702 info_ext_lang_command (const char *args, int from_tty)
2704 printf_filtered (_("Filename extensions and the languages they represent:"));
2705 printf_filtered ("\n\n");
2706 for (const filename_language &entry : filename_language_table)
2707 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2708 language_str (entry.lang));
2712 deduce_language_from_filename (const char *filename)
2716 if (filename != NULL)
2717 if ((cp = strrchr (filename, '.')) != NULL)
2719 for (const filename_language &entry : filename_language_table)
2720 if (entry.ext == cp)
2724 return language_unknown;
2727 /* Allocate and initialize a new symbol table.
2728 CUST is from the result of allocate_compunit_symtab. */
2731 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2733 struct objfile *objfile = cust->objfile;
2734 struct symtab *symtab
2735 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2738 = (const char *) bcache (filename, strlen (filename) + 1,
2739 objfile->per_bfd->filename_cache);
2740 symtab->fullname = NULL;
2741 symtab->language = deduce_language_from_filename (filename);
2743 /* This can be very verbose with lots of headers.
2744 Only print at higher debug levels. */
2745 if (symtab_create_debug >= 2)
2747 /* Be a bit clever with debugging messages, and don't print objfile
2748 every time, only when it changes. */
2749 static char *last_objfile_name = NULL;
2751 if (last_objfile_name == NULL
2752 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2754 xfree (last_objfile_name);
2755 last_objfile_name = xstrdup (objfile_name (objfile));
2756 fprintf_filtered (gdb_stdlog,
2757 "Creating one or more symtabs for objfile %s ...\n",
2760 fprintf_filtered (gdb_stdlog,
2761 "Created symtab %s for module %s.\n",
2762 host_address_to_string (symtab), filename);
2765 /* Add it to CUST's list of symtabs. */
2766 if (cust->filetabs == NULL)
2768 cust->filetabs = symtab;
2769 cust->last_filetab = symtab;
2773 cust->last_filetab->next = symtab;
2774 cust->last_filetab = symtab;
2777 /* Backlink to the containing compunit symtab. */
2778 symtab->compunit_symtab = cust;
2783 /* Allocate and initialize a new compunit.
2784 NAME is the name of the main source file, if there is one, or some
2785 descriptive text if there are no source files. */
2787 struct compunit_symtab *
2788 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2790 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2791 struct compunit_symtab);
2792 const char *saved_name;
2794 cu->objfile = objfile;
2796 /* The name we record here is only for display/debugging purposes.
2797 Just save the basename to avoid path issues (too long for display,
2798 relative vs absolute, etc.). */
2799 saved_name = lbasename (name);
2801 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2802 strlen (saved_name));
2804 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2806 if (symtab_create_debug)
2808 fprintf_filtered (gdb_stdlog,
2809 "Created compunit symtab %s for %s.\n",
2810 host_address_to_string (cu),
2817 /* Hook CU to the objfile it comes from. */
2820 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2822 cu->next = cu->objfile->compunit_symtabs;
2823 cu->objfile->compunit_symtabs = cu;
2827 /* Reset all data structures in gdb which may contain references to
2828 symbol table data. */
2831 clear_symtab_users (symfile_add_flags add_flags)
2833 /* Someday, we should do better than this, by only blowing away
2834 the things that really need to be blown. */
2836 /* Clear the "current" symtab first, because it is no longer valid.
2837 breakpoint_re_set may try to access the current symtab. */
2838 clear_current_source_symtab_and_line ();
2841 clear_last_displayed_sal ();
2842 clear_pc_function_cache ();
2843 gdb::observers::new_objfile.notify (NULL);
2845 /* Clear globals which might have pointed into a removed objfile.
2846 FIXME: It's not clear which of these are supposed to persist
2847 between expressions and which ought to be reset each time. */
2848 expression_context_block = NULL;
2849 innermost_block.reset ();
2851 /* Varobj may refer to old symbols, perform a cleanup. */
2852 varobj_invalidate ();
2854 /* Now that the various caches have been cleared, we can re_set
2855 our breakpoints without risking it using stale data. */
2856 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2857 breakpoint_re_set ();
2861 clear_symtab_users_cleanup (void *ignore)
2863 clear_symtab_users (0);
2867 The following code implements an abstraction for debugging overlay sections.
2869 The target model is as follows:
2870 1) The gnu linker will permit multiple sections to be mapped into the
2871 same VMA, each with its own unique LMA (or load address).
2872 2) It is assumed that some runtime mechanism exists for mapping the
2873 sections, one by one, from the load address into the VMA address.
2874 3) This code provides a mechanism for gdb to keep track of which
2875 sections should be considered to be mapped from the VMA to the LMA.
2876 This information is used for symbol lookup, and memory read/write.
2877 For instance, if a section has been mapped then its contents
2878 should be read from the VMA, otherwise from the LMA.
2880 Two levels of debugger support for overlays are available. One is
2881 "manual", in which the debugger relies on the user to tell it which
2882 overlays are currently mapped. This level of support is
2883 implemented entirely in the core debugger, and the information about
2884 whether a section is mapped is kept in the objfile->obj_section table.
2886 The second level of support is "automatic", and is only available if
2887 the target-specific code provides functionality to read the target's
2888 overlay mapping table, and translate its contents for the debugger
2889 (by updating the mapped state information in the obj_section tables).
2891 The interface is as follows:
2893 overlay map <name> -- tell gdb to consider this section mapped
2894 overlay unmap <name> -- tell gdb to consider this section unmapped
2895 overlay list -- list the sections that GDB thinks are mapped
2896 overlay read-target -- get the target's state of what's mapped
2897 overlay off/manual/auto -- set overlay debugging state
2898 Functional interface:
2899 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2900 section, return that section.
2901 find_pc_overlay(pc): find any overlay section that contains
2902 the pc, either in its VMA or its LMA
2903 section_is_mapped(sect): true if overlay is marked as mapped
2904 section_is_overlay(sect): true if section's VMA != LMA
2905 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2906 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2907 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2908 overlay_mapped_address(...): map an address from section's LMA to VMA
2909 overlay_unmapped_address(...): map an address from section's VMA to LMA
2910 symbol_overlayed_address(...): Return a "current" address for symbol:
2911 either in VMA or LMA depending on whether
2912 the symbol's section is currently mapped. */
2914 /* Overlay debugging state: */
2916 enum overlay_debugging_state overlay_debugging = ovly_off;
2917 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2919 /* Function: section_is_overlay (SECTION)
2920 Returns true if SECTION has VMA not equal to LMA, ie.
2921 SECTION is loaded at an address different from where it will "run". */
2924 section_is_overlay (struct obj_section *section)
2926 if (overlay_debugging && section)
2928 asection *bfd_section = section->the_bfd_section;
2930 if (bfd_section_lma (abfd, bfd_section) != 0
2931 && bfd_section_lma (abfd, bfd_section)
2932 != bfd_section_vma (abfd, bfd_section))
2939 /* Function: overlay_invalidate_all (void)
2940 Invalidate the mapped state of all overlay sections (mark it as stale). */
2943 overlay_invalidate_all (void)
2945 struct objfile *objfile;
2946 struct obj_section *sect;
2948 ALL_OBJSECTIONS (objfile, sect)
2949 if (section_is_overlay (sect))
2950 sect->ovly_mapped = -1;
2953 /* Function: section_is_mapped (SECTION)
2954 Returns true if section is an overlay, and is currently mapped.
2956 Access to the ovly_mapped flag is restricted to this function, so
2957 that we can do automatic update. If the global flag
2958 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2959 overlay_invalidate_all. If the mapped state of the particular
2960 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2963 section_is_mapped (struct obj_section *osect)
2965 struct gdbarch *gdbarch;
2967 if (osect == 0 || !section_is_overlay (osect))
2970 switch (overlay_debugging)
2974 return 0; /* overlay debugging off */
2975 case ovly_auto: /* overlay debugging automatic */
2976 /* Unles there is a gdbarch_overlay_update function,
2977 there's really nothing useful to do here (can't really go auto). */
2978 gdbarch = get_objfile_arch (osect->objfile);
2979 if (gdbarch_overlay_update_p (gdbarch))
2981 if (overlay_cache_invalid)
2983 overlay_invalidate_all ();
2984 overlay_cache_invalid = 0;
2986 if (osect->ovly_mapped == -1)
2987 gdbarch_overlay_update (gdbarch, osect);
2990 case ovly_on: /* overlay debugging manual */
2991 return osect->ovly_mapped == 1;
2995 /* Function: pc_in_unmapped_range
2996 If PC falls into the lma range of SECTION, return true, else false. */
2999 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3001 if (section_is_overlay (section))
3003 bfd *abfd = section->objfile->obfd;
3004 asection *bfd_section = section->the_bfd_section;
3006 /* We assume the LMA is relocated by the same offset as the VMA. */
3007 bfd_vma size = bfd_get_section_size (bfd_section);
3008 CORE_ADDR offset = obj_section_offset (section);
3010 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3011 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3018 /* Function: pc_in_mapped_range
3019 If PC falls into the vma range of SECTION, return true, else false. */
3022 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3024 if (section_is_overlay (section))
3026 if (obj_section_addr (section) <= pc
3027 && pc < obj_section_endaddr (section))
3034 /* Return true if the mapped ranges of sections A and B overlap, false
3038 sections_overlap (struct obj_section *a, struct obj_section *b)
3040 CORE_ADDR a_start = obj_section_addr (a);
3041 CORE_ADDR a_end = obj_section_endaddr (a);
3042 CORE_ADDR b_start = obj_section_addr (b);
3043 CORE_ADDR b_end = obj_section_endaddr (b);
3045 return (a_start < b_end && b_start < a_end);
3048 /* Function: overlay_unmapped_address (PC, SECTION)
3049 Returns the address corresponding to PC in the unmapped (load) range.
3050 May be the same as PC. */
3053 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3055 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3057 asection *bfd_section = section->the_bfd_section;
3059 return pc + bfd_section_lma (abfd, bfd_section)
3060 - bfd_section_vma (abfd, bfd_section);
3066 /* Function: overlay_mapped_address (PC, SECTION)
3067 Returns the address corresponding to PC in the mapped (runtime) range.
3068 May be the same as PC. */
3071 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3073 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3075 asection *bfd_section = section->the_bfd_section;
3077 return pc + bfd_section_vma (abfd, bfd_section)
3078 - bfd_section_lma (abfd, bfd_section);
3084 /* Function: symbol_overlayed_address
3085 Return one of two addresses (relative to the VMA or to the LMA),
3086 depending on whether the section is mapped or not. */
3089 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3091 if (overlay_debugging)
3093 /* If the symbol has no section, just return its regular address. */
3096 /* If the symbol's section is not an overlay, just return its
3098 if (!section_is_overlay (section))
3100 /* If the symbol's section is mapped, just return its address. */
3101 if (section_is_mapped (section))
3104 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3105 * then return its LOADED address rather than its vma address!!
3107 return overlay_unmapped_address (address, section);
3112 /* Function: find_pc_overlay (PC)
3113 Return the best-match overlay section for PC:
3114 If PC matches a mapped overlay section's VMA, return that section.
3115 Else if PC matches an unmapped section's VMA, return that section.
3116 Else if PC matches an unmapped section's LMA, return that section. */
3118 struct obj_section *
3119 find_pc_overlay (CORE_ADDR pc)
3121 struct objfile *objfile;
3122 struct obj_section *osect, *best_match = NULL;
3124 if (overlay_debugging)
3126 ALL_OBJSECTIONS (objfile, osect)
3127 if (section_is_overlay (osect))
3129 if (pc_in_mapped_range (pc, osect))
3131 if (section_is_mapped (osect))
3136 else if (pc_in_unmapped_range (pc, osect))
3143 /* Function: find_pc_mapped_section (PC)
3144 If PC falls into the VMA address range of an overlay section that is
3145 currently marked as MAPPED, return that section. Else return NULL. */
3147 struct obj_section *
3148 find_pc_mapped_section (CORE_ADDR pc)
3150 struct objfile *objfile;
3151 struct obj_section *osect;
3153 if (overlay_debugging)
3155 ALL_OBJSECTIONS (objfile, osect)
3156 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3163 /* Function: list_overlays_command
3164 Print a list of mapped sections and their PC ranges. */
3167 list_overlays_command (const char *args, int from_tty)
3170 struct objfile *objfile;
3171 struct obj_section *osect;
3173 if (overlay_debugging)
3175 ALL_OBJSECTIONS (objfile, osect)
3176 if (section_is_mapped (osect))
3178 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3183 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3184 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3185 size = bfd_get_section_size (osect->the_bfd_section);
3186 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3188 printf_filtered ("Section %s, loaded at ", name);
3189 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3190 puts_filtered (" - ");
3191 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3192 printf_filtered (", mapped at ");
3193 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3194 puts_filtered (" - ");
3195 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3196 puts_filtered ("\n");
3202 printf_filtered (_("No sections are mapped.\n"));
3205 /* Function: map_overlay_command
3206 Mark the named section as mapped (ie. residing at its VMA address). */
3209 map_overlay_command (const char *args, int from_tty)
3211 struct objfile *objfile, *objfile2;
3212 struct obj_section *sec, *sec2;
3214 if (!overlay_debugging)
3215 error (_("Overlay debugging not enabled. Use "
3216 "either the 'overlay auto' or\n"
3217 "the 'overlay manual' command."));
3219 if (args == 0 || *args == 0)
3220 error (_("Argument required: name of an overlay section"));
3222 /* First, find a section matching the user supplied argument. */
3223 ALL_OBJSECTIONS (objfile, sec)
3224 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3226 /* Now, check to see if the section is an overlay. */
3227 if (!section_is_overlay (sec))
3228 continue; /* not an overlay section */
3230 /* Mark the overlay as "mapped". */
3231 sec->ovly_mapped = 1;
3233 /* Next, make a pass and unmap any sections that are
3234 overlapped by this new section: */
3235 ALL_OBJSECTIONS (objfile2, sec2)
3236 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3239 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3240 bfd_section_name (objfile->obfd,
3241 sec2->the_bfd_section));
3242 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3246 error (_("No overlay section called %s"), args);
3249 /* Function: unmap_overlay_command
3250 Mark the overlay section as unmapped
3251 (ie. resident in its LMA address range, rather than the VMA range). */
3254 unmap_overlay_command (const char *args, int from_tty)
3256 struct objfile *objfile;
3257 struct obj_section *sec = NULL;
3259 if (!overlay_debugging)
3260 error (_("Overlay debugging not enabled. "
3261 "Use either the 'overlay auto' or\n"
3262 "the 'overlay manual' command."));
3264 if (args == 0 || *args == 0)
3265 error (_("Argument required: name of an overlay section"));
3267 /* First, find a section matching the user supplied argument. */
3268 ALL_OBJSECTIONS (objfile, sec)
3269 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3271 if (!sec->ovly_mapped)
3272 error (_("Section %s is not mapped"), args);
3273 sec->ovly_mapped = 0;
3276 error (_("No overlay section called %s"), args);
3279 /* Function: overlay_auto_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3284 overlay_auto_command (const char *args, int from_tty)
3286 overlay_debugging = ovly_auto;
3287 enable_overlay_breakpoints ();
3289 printf_unfiltered (_("Automatic overlay debugging enabled."));
3292 /* Function: overlay_manual_command
3293 A utility command to turn on overlay debugging.
3294 Possibly this should be done via a set/show command. */
3297 overlay_manual_command (const char *args, int from_tty)
3299 overlay_debugging = ovly_on;
3300 disable_overlay_breakpoints ();
3302 printf_unfiltered (_("Overlay debugging enabled."));
3305 /* Function: overlay_off_command
3306 A utility command to turn on overlay debugging.
3307 Possibly this should be done via a set/show command. */
3310 overlay_off_command (const char *args, int from_tty)
3312 overlay_debugging = ovly_off;
3313 disable_overlay_breakpoints ();
3315 printf_unfiltered (_("Overlay debugging disabled."));
3319 overlay_load_command (const char *args, int from_tty)
3321 struct gdbarch *gdbarch = get_current_arch ();
3323 if (gdbarch_overlay_update_p (gdbarch))
3324 gdbarch_overlay_update (gdbarch, NULL);
3326 error (_("This target does not know how to read its overlay state."));
3329 /* Function: overlay_command
3330 A place-holder for a mis-typed command. */
3332 /* Command list chain containing all defined "overlay" subcommands. */
3333 static struct cmd_list_element *overlaylist;
3336 overlay_command (const char *args, int from_tty)
3339 ("\"overlay\" must be followed by the name of an overlay command.\n");
3340 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3343 /* Target Overlays for the "Simplest" overlay manager:
3345 This is GDB's default target overlay layer. It works with the
3346 minimal overlay manager supplied as an example by Cygnus. The
3347 entry point is via a function pointer "gdbarch_overlay_update",
3348 so targets that use a different runtime overlay manager can
3349 substitute their own overlay_update function and take over the
3352 The overlay_update function pokes around in the target's data structures
3353 to see what overlays are mapped, and updates GDB's overlay mapping with
3356 In this simple implementation, the target data structures are as follows:
3357 unsigned _novlys; /# number of overlay sections #/
3358 unsigned _ovly_table[_novlys][4] = {
3359 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3360 {..., ..., ..., ...},
3362 unsigned _novly_regions; /# number of overlay regions #/
3363 unsigned _ovly_region_table[_novly_regions][3] = {
3364 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3367 These functions will attempt to update GDB's mappedness state in the
3368 symbol section table, based on the target's mappedness state.
3370 To do this, we keep a cached copy of the target's _ovly_table, and
3371 attempt to detect when the cached copy is invalidated. The main
3372 entry point is "simple_overlay_update(SECT), which looks up SECT in
3373 the cached table and re-reads only the entry for that section from
3374 the target (whenever possible). */
3376 /* Cached, dynamically allocated copies of the target data structures: */
3377 static unsigned (*cache_ovly_table)[4] = 0;
3378 static unsigned cache_novlys = 0;
3379 static CORE_ADDR cache_ovly_table_base = 0;
3382 VMA, OSIZE, LMA, MAPPED
3385 /* Throw away the cached copy of _ovly_table. */
3388 simple_free_overlay_table (void)
3390 if (cache_ovly_table)
3391 xfree (cache_ovly_table);
3393 cache_ovly_table = NULL;
3394 cache_ovly_table_base = 0;
3397 /* Read an array of ints of size SIZE from the target into a local buffer.
3398 Convert to host order. int LEN is number of ints. */
3401 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3402 int len, int size, enum bfd_endian byte_order)
3404 /* FIXME (alloca): Not safe if array is very large. */
3405 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3408 read_memory (memaddr, buf, len * size);
3409 for (i = 0; i < len; i++)
3410 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3413 /* Find and grab a copy of the target _ovly_table
3414 (and _novlys, which is needed for the table's size). */
3417 simple_read_overlay_table (void)
3419 struct bound_minimal_symbol novlys_msym;
3420 struct bound_minimal_symbol ovly_table_msym;
3421 struct gdbarch *gdbarch;
3423 enum bfd_endian byte_order;
3425 simple_free_overlay_table ();
3426 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3427 if (! novlys_msym.minsym)
3429 error (_("Error reading inferior's overlay table: "
3430 "couldn't find `_novlys' variable\n"
3431 "in inferior. Use `overlay manual' mode."));
3435 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3436 if (! ovly_table_msym.minsym)
3438 error (_("Error reading inferior's overlay table: couldn't find "
3439 "`_ovly_table' array\n"
3440 "in inferior. Use `overlay manual' mode."));
3444 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3445 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3446 byte_order = gdbarch_byte_order (gdbarch);
3448 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3451 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3452 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3453 read_target_long_array (cache_ovly_table_base,
3454 (unsigned int *) cache_ovly_table,
3455 cache_novlys * 4, word_size, byte_order);
3457 return 1; /* SUCCESS */
3460 /* Function: simple_overlay_update_1
3461 A helper function for simple_overlay_update. Assuming a cached copy
3462 of _ovly_table exists, look through it to find an entry whose vma,
3463 lma and size match those of OSECT. Re-read the entry and make sure
3464 it still matches OSECT (else the table may no longer be valid).
3465 Set OSECT's mapped state to match the entry. Return: 1 for
3466 success, 0 for failure. */
3469 simple_overlay_update_1 (struct obj_section *osect)
3472 asection *bsect = osect->the_bfd_section;
3473 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3474 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3477 for (i = 0; i < cache_novlys; i++)
3478 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3479 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3481 read_target_long_array (cache_ovly_table_base + i * word_size,
3482 (unsigned int *) cache_ovly_table[i],
3483 4, word_size, byte_order);
3484 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3485 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3487 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3490 else /* Warning! Warning! Target's ovly table has changed! */
3496 /* Function: simple_overlay_update
3497 If OSECT is NULL, then update all sections' mapped state
3498 (after re-reading the entire target _ovly_table).
3499 If OSECT is non-NULL, then try to find a matching entry in the
3500 cached ovly_table and update only OSECT's mapped state.
3501 If a cached entry can't be found or the cache isn't valid, then
3502 re-read the entire cache, and go ahead and update all sections. */
3505 simple_overlay_update (struct obj_section *osect)
3507 struct objfile *objfile;
3509 /* Were we given an osect to look up? NULL means do all of them. */
3511 /* Have we got a cached copy of the target's overlay table? */
3512 if (cache_ovly_table != NULL)
3514 /* Does its cached location match what's currently in the
3516 struct bound_minimal_symbol minsym
3517 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3519 if (minsym.minsym == NULL)
3520 error (_("Error reading inferior's overlay table: couldn't "
3521 "find `_ovly_table' array\n"
3522 "in inferior. Use `overlay manual' mode."));
3524 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3525 /* Then go ahead and try to look up this single section in
3527 if (simple_overlay_update_1 (osect))
3528 /* Found it! We're done. */
3532 /* Cached table no good: need to read the entire table anew.
3533 Or else we want all the sections, in which case it's actually
3534 more efficient to read the whole table in one block anyway. */
3536 if (! simple_read_overlay_table ())
3539 /* Now may as well update all sections, even if only one was requested. */
3540 ALL_OBJSECTIONS (objfile, osect)
3541 if (section_is_overlay (osect))
3544 asection *bsect = osect->the_bfd_section;
3546 for (i = 0; i < cache_novlys; i++)
3547 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3548 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3549 { /* obj_section matches i'th entry in ovly_table. */
3550 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3551 break; /* finished with inner for loop: break out. */
3556 /* Set the output sections and output offsets for section SECTP in
3557 ABFD. The relocation code in BFD will read these offsets, so we
3558 need to be sure they're initialized. We map each section to itself,
3559 with no offset; this means that SECTP->vma will be honored. */
3562 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3564 sectp->output_section = sectp;
3565 sectp->output_offset = 0;
3568 /* Default implementation for sym_relocate. */
3571 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3574 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3576 bfd *abfd = sectp->owner;
3578 /* We're only interested in sections with relocation
3580 if ((sectp->flags & SEC_RELOC) == 0)
3583 /* We will handle section offsets properly elsewhere, so relocate as if
3584 all sections begin at 0. */
3585 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3587 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3590 /* Relocate the contents of a debug section SECTP in ABFD. The
3591 contents are stored in BUF if it is non-NULL, or returned in a
3592 malloc'd buffer otherwise.
3594 For some platforms and debug info formats, shared libraries contain
3595 relocations against the debug sections (particularly for DWARF-2;
3596 one affected platform is PowerPC GNU/Linux, although it depends on
3597 the version of the linker in use). Also, ELF object files naturally
3598 have unresolved relocations for their debug sections. We need to apply
3599 the relocations in order to get the locations of symbols correct.
3600 Another example that may require relocation processing, is the
3601 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3605 symfile_relocate_debug_section (struct objfile *objfile,
3606 asection *sectp, bfd_byte *buf)
3608 gdb_assert (objfile->sf->sym_relocate);
3610 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3613 struct symfile_segment_data *
3614 get_symfile_segment_data (bfd *abfd)
3616 const struct sym_fns *sf = find_sym_fns (abfd);
3621 return sf->sym_segments (abfd);
3625 free_symfile_segment_data (struct symfile_segment_data *data)
3627 xfree (data->segment_bases);
3628 xfree (data->segment_sizes);
3629 xfree (data->segment_info);
3634 - DATA, containing segment addresses from the object file ABFD, and
3635 the mapping from ABFD's sections onto the segments that own them,
3637 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3638 segment addresses reported by the target,
3639 store the appropriate offsets for each section in OFFSETS.
3641 If there are fewer entries in SEGMENT_BASES than there are segments
3642 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3644 If there are more entries, then ignore the extra. The target may
3645 not be able to distinguish between an empty data segment and a
3646 missing data segment; a missing text segment is less plausible. */
3649 symfile_map_offsets_to_segments (bfd *abfd,
3650 const struct symfile_segment_data *data,
3651 struct section_offsets *offsets,
3652 int num_segment_bases,
3653 const CORE_ADDR *segment_bases)
3658 /* It doesn't make sense to call this function unless you have some
3659 segment base addresses. */
3660 gdb_assert (num_segment_bases > 0);
3662 /* If we do not have segment mappings for the object file, we
3663 can not relocate it by segments. */
3664 gdb_assert (data != NULL);
3665 gdb_assert (data->num_segments > 0);
3667 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3669 int which = data->segment_info[i];
3671 gdb_assert (0 <= which && which <= data->num_segments);
3673 /* Don't bother computing offsets for sections that aren't
3674 loaded as part of any segment. */
3678 /* Use the last SEGMENT_BASES entry as the address of any extra
3679 segments mentioned in DATA->segment_info. */
3680 if (which > num_segment_bases)
3681 which = num_segment_bases;
3683 offsets->offsets[i] = (segment_bases[which - 1]
3684 - data->segment_bases[which - 1]);
3691 symfile_find_segment_sections (struct objfile *objfile)
3693 bfd *abfd = objfile->obfd;
3696 struct symfile_segment_data *data;
3698 data = get_symfile_segment_data (objfile->obfd);
3702 if (data->num_segments != 1 && data->num_segments != 2)
3704 free_symfile_segment_data (data);
3708 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3710 int which = data->segment_info[i];
3714 if (objfile->sect_index_text == -1)
3715 objfile->sect_index_text = sect->index;
3717 if (objfile->sect_index_rodata == -1)
3718 objfile->sect_index_rodata = sect->index;
3720 else if (which == 2)
3722 if (objfile->sect_index_data == -1)
3723 objfile->sect_index_data = sect->index;
3725 if (objfile->sect_index_bss == -1)
3726 objfile->sect_index_bss = sect->index;
3730 free_symfile_segment_data (data);
3733 /* Listen for free_objfile events. */
3736 symfile_free_objfile (struct objfile *objfile)
3738 /* Remove the target sections owned by this objfile. */
3739 if (objfile != NULL)
3740 remove_target_sections ((void *) objfile);
3743 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3744 Expand all symtabs that match the specified criteria.
3745 See quick_symbol_functions.expand_symtabs_matching for details. */
3748 expand_symtabs_matching
3749 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3750 const lookup_name_info &lookup_name,
3751 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3752 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3753 enum search_domain kind)
3755 struct objfile *objfile;
3757 ALL_OBJFILES (objfile)
3760 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3763 expansion_notify, kind);
3767 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3768 Map function FUN over every file.
3769 See quick_symbol_functions.map_symbol_filenames for details. */
3772 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3775 struct objfile *objfile;
3777 ALL_OBJFILES (objfile)
3780 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3787 namespace selftests {
3788 namespace filename_language {
3790 static void test_filename_language ()
3792 /* This test messes up the filename_language_table global. */
3793 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3795 /* Test deducing an unknown extension. */
3796 language lang = deduce_language_from_filename ("myfile.blah");
3797 SELF_CHECK (lang == language_unknown);
3799 /* Test deducing a known extension. */
3800 lang = deduce_language_from_filename ("myfile.c");
3801 SELF_CHECK (lang == language_c);
3803 /* Test adding a new extension using the internal API. */
3804 add_filename_language (".blah", language_pascal);
3805 lang = deduce_language_from_filename ("myfile.blah");
3806 SELF_CHECK (lang == language_pascal);
3810 test_set_ext_lang_command ()
3812 /* This test messes up the filename_language_table global. */
3813 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3815 /* Confirm that the .hello extension is not known. */
3816 language lang = deduce_language_from_filename ("cake.hello");
3817 SELF_CHECK (lang == language_unknown);
3819 /* Test adding a new extension using the CLI command. */
3820 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3821 ext_args = args_holder.get ();
3822 set_ext_lang_command (NULL, 1, NULL);
3824 lang = deduce_language_from_filename ("cake.hello");
3825 SELF_CHECK (lang == language_rust);
3827 /* Test overriding an existing extension using the CLI command. */
3828 int size_before = filename_language_table.size ();
3829 args_holder.reset (xstrdup (".hello pascal"));
3830 ext_args = args_holder.get ();
3831 set_ext_lang_command (NULL, 1, NULL);
3832 int size_after = filename_language_table.size ();
3834 lang = deduce_language_from_filename ("cake.hello");
3835 SELF_CHECK (lang == language_pascal);
3836 SELF_CHECK (size_before == size_after);
3839 } /* namespace filename_language */
3840 } /* namespace selftests */
3842 #endif /* GDB_SELF_TEST */
3845 _initialize_symfile (void)
3847 struct cmd_list_element *c;
3849 gdb::observers::free_objfile.attach (symfile_free_objfile);
3851 #define READNOW_READNEVER_HELP \
3852 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3853 immediately. This makes the command slower, but may make future operations\n\
3855 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3856 symbolic debug information."
3858 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3859 Load symbol table from executable file FILE.\n\
3860 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3861 OFF is an optional offset which is added to each section address.\n\
3862 The `file' command can also load symbol tables, as well as setting the file\n\
3863 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3864 set_cmd_completer (c, filename_completer);
3866 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3867 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3868 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3869 [-s SECT-NAME SECT-ADDR]...\n\
3870 ADDR is the starting address of the file's text.\n\
3871 Each '-s' argument provides a section name and address, and\n\
3872 should be specified if the data and bss segments are not contiguous\n\
3873 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3874 OFF is an optional offset which is added to the default load addresses\n\
3875 of all sections for which no other address was specified.\n"
3876 READNOW_READNEVER_HELP),
3878 set_cmd_completer (c, filename_completer);
3880 c = add_cmd ("remove-symbol-file", class_files,
3881 remove_symbol_file_command, _("\
3882 Remove a symbol file added via the add-symbol-file command.\n\
3883 Usage: remove-symbol-file FILENAME\n\
3884 remove-symbol-file -a ADDRESS\n\
3885 The file to remove can be identified by its filename or by an address\n\
3886 that lies within the boundaries of this symbol file in memory."),
3889 c = add_cmd ("load", class_files, load_command, _("\
3890 Dynamically load FILE into the running program, and record its symbols\n\
3891 for access from GDB.\n\
3892 Usage: load [FILE] [OFFSET]\n\
3893 An optional load OFFSET may also be given as a literal address.\n\
3894 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3895 on its own."), &cmdlist);
3896 set_cmd_completer (c, filename_completer);
3898 add_prefix_cmd ("overlay", class_support, overlay_command,
3899 _("Commands for debugging overlays."), &overlaylist,
3900 "overlay ", 0, &cmdlist);
3902 add_com_alias ("ovly", "overlay", class_alias, 1);
3903 add_com_alias ("ov", "overlay", class_alias, 1);
3905 add_cmd ("map-overlay", class_support, map_overlay_command,
3906 _("Assert that an overlay section is mapped."), &overlaylist);
3908 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3909 _("Assert that an overlay section is unmapped."), &overlaylist);
3911 add_cmd ("list-overlays", class_support, list_overlays_command,
3912 _("List mappings of overlay sections."), &overlaylist);
3914 add_cmd ("manual", class_support, overlay_manual_command,
3915 _("Enable overlay debugging."), &overlaylist);
3916 add_cmd ("off", class_support, overlay_off_command,
3917 _("Disable overlay debugging."), &overlaylist);
3918 add_cmd ("auto", class_support, overlay_auto_command,
3919 _("Enable automatic overlay debugging."), &overlaylist);
3920 add_cmd ("load-target", class_support, overlay_load_command,
3921 _("Read the overlay mapping state from the target."), &overlaylist);
3923 /* Filename extension to source language lookup table: */
3924 add_setshow_string_noescape_cmd ("extension-language", class_files,
3926 Set mapping between filename extension and source language."), _("\
3927 Show mapping between filename extension and source language."), _("\
3928 Usage: set extension-language .foo bar"),
3929 set_ext_lang_command,
3931 &setlist, &showlist);
3933 add_info ("extensions", info_ext_lang_command,
3934 _("All filename extensions associated with a source language."));
3936 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3937 &debug_file_directory, _("\
3938 Set the directories where separate debug symbols are searched for."), _("\
3939 Show the directories where separate debug symbols are searched for."), _("\
3940 Separate debug symbols are first searched for in the same\n\
3941 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3942 and lastly at the path of the directory of the binary with\n\
3943 each global debug-file-directory component prepended."),
3945 show_debug_file_directory,
3946 &setlist, &showlist);
3948 add_setshow_enum_cmd ("symbol-loading", no_class,
3949 print_symbol_loading_enums, &print_symbol_loading,
3951 Set printing of symbol loading messages."), _("\
3952 Show printing of symbol loading messages."), _("\
3953 off == turn all messages off\n\
3954 brief == print messages for the executable,\n\
3955 and brief messages for shared libraries\n\
3956 full == print messages for the executable,\n\
3957 and messages for each shared library."),
3960 &setprintlist, &showprintlist);
3962 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3963 &separate_debug_file_debug, _("\
3964 Set printing of separate debug info file search debug."), _("\
3965 Show printing of separate debug info file search debug."), _("\
3966 When on, GDB prints the searched locations while looking for separate debug \
3967 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3970 selftests::register_test
3971 ("filename_language", selftests::filename_language::test_filename_language);
3972 selftests::register_test
3973 ("set_ext_lang_command",
3974 selftests::filename_language::test_set_ext_lang_command);