1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
93 static const struct objfile_data *dwarf2_objfile_data_key;
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
102 struct dwarf2_section_info
107 /* True if we have tried to read this section. */
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
118 DEF_VEC_I (offset_type);
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 gdb_assert ((unsigned int) (value) <= 1); \
124 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
127 /* Ensure only legit values are used. */
128 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
131 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
132 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
135 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
136 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
139 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
142 /* A description of the mapped index. The file format is described in
143 a comment by the code that writes the index. */
146 /* Index data format version. */
149 /* The total length of the buffer. */
152 /* A pointer to the address table data. */
153 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
158 /* The symbol table, implemented as a hash table. */
159 const offset_type *symbol_table;
161 /* Size in slots, each slot is 2 offset_types. */
162 offset_type symbol_table_slots;
164 /* A pointer to the constant pool. */
165 const char *constant_pool;
168 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
169 DEF_VEC_P (dwarf2_per_cu_ptr);
171 /* Collection of data recorded per objfile.
172 This hangs off of dwarf2_objfile_data_key. */
174 struct dwarf2_per_objfile
176 struct dwarf2_section_info info;
177 struct dwarf2_section_info abbrev;
178 struct dwarf2_section_info line;
179 struct dwarf2_section_info loc;
180 struct dwarf2_section_info macinfo;
181 struct dwarf2_section_info macro;
182 struct dwarf2_section_info str;
183 struct dwarf2_section_info ranges;
184 struct dwarf2_section_info addr;
185 struct dwarf2_section_info frame;
186 struct dwarf2_section_info eh_frame;
187 struct dwarf2_section_info gdb_index;
189 VEC (dwarf2_section_info_def) *types;
192 struct objfile *objfile;
194 /* Table of all the compilation units. This is used to locate
195 the target compilation unit of a particular reference. */
196 struct dwarf2_per_cu_data **all_comp_units;
198 /* The number of compilation units in ALL_COMP_UNITS. */
201 /* The number of .debug_types-related CUs. */
204 /* The .debug_types-related CUs (TUs). */
205 struct signatured_type **all_type_units;
207 /* The number of entries in all_type_unit_groups. */
208 int n_type_unit_groups;
210 /* Table of type unit groups.
211 This exists to make it easy to iterate over all CUs and TU groups. */
212 struct type_unit_group **all_type_unit_groups;
214 /* Table of struct type_unit_group objects.
215 The hash key is the DW_AT_stmt_list value. */
216 htab_t type_unit_groups;
218 /* A table mapping .debug_types signatures to its signatured_type entry.
219 This is NULL if the .debug_types section hasn't been read in yet. */
220 htab_t signatured_types;
222 /* Type unit statistics, to see how well the scaling improvements
226 int nr_uniq_abbrev_tables;
228 int nr_symtab_sharers;
229 int nr_stmt_less_type_units;
232 /* A chain of compilation units that are currently read in, so that
233 they can be freed later. */
234 struct dwarf2_per_cu_data *read_in_chain;
236 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
237 This is NULL if the table hasn't been allocated yet. */
240 /* Non-zero if we've check for whether there is a DWP file. */
243 /* The DWP file if there is one, or NULL. */
244 struct dwp_file *dwp_file;
246 /* The shared '.dwz' file, if one exists. This is used when the
247 original data was compressed using 'dwz -m'. */
248 struct dwz_file *dwz_file;
250 /* A flag indicating wether this objfile has a section loaded at a
252 int has_section_at_zero;
254 /* True if we are using the mapped index,
255 or we are faking it for OBJF_READNOW's sake. */
256 unsigned char using_index;
258 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
259 struct mapped_index *index_table;
261 /* When using index_table, this keeps track of all quick_file_names entries.
262 TUs typically share line table entries with a CU, so we maintain a
263 separate table of all line table entries to support the sharing.
264 Note that while there can be way more TUs than CUs, we've already
265 sorted all the TUs into "type unit groups", grouped by their
266 DW_AT_stmt_list value. Therefore the only sharing done here is with a
267 CU and its associated TU group if there is one. */
268 htab_t quick_file_names_table;
270 /* Set during partial symbol reading, to prevent queueing of full
272 int reading_partial_symbols;
274 /* Table mapping type DIEs to their struct type *.
275 This is NULL if not allocated yet.
276 The mapping is done via (CU/TU signature + DIE offset) -> type. */
277 htab_t die_type_hash;
279 /* The CUs we recently read. */
280 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 static struct dwarf2_per_objfile *dwarf2_per_objfile;
285 /* Default names of the debugging sections. */
287 /* Note that if the debugging section has been compressed, it might
288 have a name like .zdebug_info. */
290 static const struct dwarf2_debug_sections dwarf2_elf_names =
292 { ".debug_info", ".zdebug_info" },
293 { ".debug_abbrev", ".zdebug_abbrev" },
294 { ".debug_line", ".zdebug_line" },
295 { ".debug_loc", ".zdebug_loc" },
296 { ".debug_macinfo", ".zdebug_macinfo" },
297 { ".debug_macro", ".zdebug_macro" },
298 { ".debug_str", ".zdebug_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_types", ".zdebug_types" },
301 { ".debug_addr", ".zdebug_addr" },
302 { ".debug_frame", ".zdebug_frame" },
303 { ".eh_frame", NULL },
304 { ".gdb_index", ".zgdb_index" },
308 /* List of DWO/DWP sections. */
310 static const struct dwop_section_names
312 struct dwarf2_section_names abbrev_dwo;
313 struct dwarf2_section_names info_dwo;
314 struct dwarf2_section_names line_dwo;
315 struct dwarf2_section_names loc_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
331 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
332 { ".debug_str.dwo", ".zdebug_str.dwo" },
333 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
334 { ".debug_types.dwo", ".zdebug_types.dwo" },
335 { ".debug_cu_index", ".zdebug_cu_index" },
336 { ".debug_tu_index", ".zdebug_tu_index" },
339 /* local data types */
341 /* The data in a compilation unit header, after target2host
342 translation, looks like this. */
343 struct comp_unit_head
347 unsigned char addr_size;
348 unsigned char signed_addr_p;
349 sect_offset abbrev_offset;
351 /* Size of file offsets; either 4 or 8. */
352 unsigned int offset_size;
354 /* Size of the length field; either 4 or 12. */
355 unsigned int initial_length_size;
357 /* Offset to the first byte of this compilation unit header in the
358 .debug_info section, for resolving relative reference dies. */
361 /* Offset to first die in this cu from the start of the cu.
362 This will be the first byte following the compilation unit header. */
363 cu_offset first_die_offset;
366 /* Type used for delaying computation of method physnames.
367 See comments for compute_delayed_physnames. */
368 struct delayed_method_info
370 /* The type to which the method is attached, i.e., its parent class. */
373 /* The index of the method in the type's function fieldlists. */
376 /* The index of the method in the fieldlist. */
379 /* The name of the DIE. */
382 /* The DIE associated with this method. */
383 struct die_info *die;
386 typedef struct delayed_method_info delayed_method_info;
387 DEF_VEC_O (delayed_method_info);
389 /* Internal state when decoding a particular compilation unit. */
392 /* The objfile containing this compilation unit. */
393 struct objfile *objfile;
395 /* The header of the compilation unit. */
396 struct comp_unit_head header;
398 /* Base address of this compilation unit. */
399 CORE_ADDR base_address;
401 /* Non-zero if base_address has been set. */
404 /* The language we are debugging. */
405 enum language language;
406 const struct language_defn *language_defn;
408 const char *producer;
410 /* The generic symbol table building routines have separate lists for
411 file scope symbols and all all other scopes (local scopes). So
412 we need to select the right one to pass to add_symbol_to_list().
413 We do it by keeping a pointer to the correct list in list_in_scope.
415 FIXME: The original dwarf code just treated the file scope as the
416 first local scope, and all other local scopes as nested local
417 scopes, and worked fine. Check to see if we really need to
418 distinguish these in buildsym.c. */
419 struct pending **list_in_scope;
421 /* The abbrev table for this CU.
422 Normally this points to the abbrev table in the objfile.
423 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
424 struct abbrev_table *abbrev_table;
426 /* Hash table holding all the loaded partial DIEs
427 with partial_die->offset.SECT_OFF as hash. */
430 /* Storage for things with the same lifetime as this read-in compilation
431 unit, including partial DIEs. */
432 struct obstack comp_unit_obstack;
434 /* When multiple dwarf2_cu structures are living in memory, this field
435 chains them all together, so that they can be released efficiently.
436 We will probably also want a generation counter so that most-recently-used
437 compilation units are cached... */
438 struct dwarf2_per_cu_data *read_in_chain;
440 /* Backchain to our per_cu entry if the tree has been built. */
441 struct dwarf2_per_cu_data *per_cu;
443 /* How many compilation units ago was this CU last referenced? */
446 /* A hash table of DIE cu_offset for following references with
447 die_info->offset.sect_off as hash. */
450 /* Full DIEs if read in. */
451 struct die_info *dies;
453 /* A set of pointers to dwarf2_per_cu_data objects for compilation
454 units referenced by this one. Only set during full symbol processing;
455 partial symbol tables do not have dependencies. */
458 /* Header data from the line table, during full symbol processing. */
459 struct line_header *line_header;
461 /* A list of methods which need to have physnames computed
462 after all type information has been read. */
463 VEC (delayed_method_info) *method_list;
465 /* To be copied to symtab->call_site_htab. */
466 htab_t call_site_htab;
468 /* Non-NULL if this CU came from a DWO file.
469 There is an invariant here that is important to remember:
470 Except for attributes copied from the top level DIE in the "main"
471 (or "stub") file in preparation for reading the DWO file
472 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
473 Either there isn't a DWO file (in which case this is NULL and the point
474 is moot), or there is and either we're not going to read it (in which
475 case this is NULL) or there is and we are reading it (in which case this
477 struct dwo_unit *dwo_unit;
479 /* The DW_AT_addr_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE. */
484 /* The DW_AT_ranges_base attribute if present, zero otherwise
485 (zero is a valid value though).
486 Note this value comes from the stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_ranges_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base;
496 /* Mark used when releasing cached dies. */
497 unsigned int mark : 1;
499 /* This CU references .debug_loc. See the symtab->locations_valid field.
500 This test is imperfect as there may exist optimized debug code not using
501 any location list and still facing inlining issues if handled as
502 unoptimized code. For a future better test see GCC PR other/32998. */
503 unsigned int has_loclist : 1;
505 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
506 if all the producer_is_* fields are valid. This information is cached
507 because profiling CU expansion showed excessive time spent in
508 producer_is_gxx_lt_4_6. */
509 unsigned int checked_producer : 1;
510 unsigned int producer_is_gxx_lt_4_6 : 1;
511 unsigned int producer_is_gcc_lt_4_3 : 1;
512 unsigned int producer_is_icc : 1;
514 /* When set, the file that we're processing is known to have
515 debugging info for C++ namespaces. GCC 3.3.x did not produce
516 this information, but later versions do. */
518 unsigned int processing_has_namespace_info : 1;
521 /* Persistent data held for a compilation unit, even when not
522 processing it. We put a pointer to this structure in the
523 read_symtab_private field of the psymtab. */
525 struct dwarf2_per_cu_data
527 /* The start offset and length of this compilation unit.
528 NOTE: Unlike comp_unit_head.length, this length includes
530 If the DIE refers to a DWO file, this is always of the original die,
535 /* Flag indicating this compilation unit will be read in before
536 any of the current compilation units are processed. */
537 unsigned int queued : 1;
539 /* This flag will be set when reading partial DIEs if we need to load
540 absolutely all DIEs for this compilation unit, instead of just the ones
541 we think are interesting. It gets set if we look for a DIE in the
542 hash table and don't find it. */
543 unsigned int load_all_dies : 1;
545 /* Non-zero if this CU is from .debug_types. */
546 unsigned int is_debug_types : 1;
548 /* Non-zero if this CU is from the .dwz file. */
549 unsigned int is_dwz : 1;
551 /* The section this CU/TU lives in.
552 If the DIE refers to a DWO file, this is always the original die,
554 struct dwarf2_section_info *section;
556 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
557 of the CU cache it gets reset to NULL again. */
558 struct dwarf2_cu *cu;
560 /* The corresponding objfile.
561 Normally we can get the objfile from dwarf2_per_objfile.
562 However we can enter this file with just a "per_cu" handle. */
563 struct objfile *objfile;
565 /* When using partial symbol tables, the 'psymtab' field is active.
566 Otherwise the 'quick' field is active. */
569 /* The partial symbol table associated with this compilation unit,
570 or NULL for unread partial units. */
571 struct partial_symtab *psymtab;
573 /* Data needed by the "quick" functions. */
574 struct dwarf2_per_cu_quick_data *quick;
577 /* The CUs we import using DW_TAG_imported_unit. This is filled in
578 while reading psymtabs, used to compute the psymtab dependencies,
579 and then cleared. Then it is filled in again while reading full
580 symbols, and only deleted when the objfile is destroyed.
582 This is also used to work around a difference between the way gold
583 generates .gdb_index version <=7 and the way gdb does. Arguably this
584 is a gold bug. For symbols coming from TUs, gold records in the index
585 the CU that includes the TU instead of the TU itself. This breaks
586 dw2_lookup_symbol: It assumes that if the index says symbol X lives
587 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
588 will find X. Alas TUs live in their own symtab, so after expanding CU Y
589 we need to look in TU Z to find X. Fortunately, this is akin to
590 DW_TAG_imported_unit, so we just use the same mechanism: For
591 .gdb_index version <=7 this also records the TUs that the CU referred
592 to. Concurrently with this change gdb was modified to emit version 8
593 indices so we only pay a price for gold generated indices. */
594 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
596 /* Type units are grouped by their DW_AT_stmt_list entry so that they
597 can share them. If this is a TU, this points to the containing
599 struct type_unit_group *type_unit_group;
602 /* Entry in the signatured_types hash table. */
604 struct signatured_type
606 /* The "per_cu" object of this type.
607 N.B.: This is the first member so that it's easy to convert pointers
609 struct dwarf2_per_cu_data per_cu;
611 /* The type's signature. */
614 /* Offset in the TU of the type's DIE, as read from the TU header.
615 If this TU is a DWO stub and the definition lives in a DWO file
616 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
617 cu_offset type_offset_in_tu;
619 /* Offset in the section of the type's DIE.
620 If the definition lives in a DWO file, this is the offset in the
621 .debug_types.dwo section.
622 The value is zero until the actual value is known.
623 Zero is otherwise not a valid section offset. */
624 sect_offset type_offset_in_section;
627 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
628 This includes type_unit_group and quick_file_names. */
630 struct stmt_list_hash
632 /* The DWO unit this table is from or NULL if there is none. */
633 struct dwo_unit *dwo_unit;
635 /* Offset in .debug_line or .debug_line.dwo. */
636 sect_offset line_offset;
639 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
640 an object of this type. */
642 struct type_unit_group
644 /* dwarf2read.c's main "handle" on the symtab.
645 To simplify things we create an artificial CU that "includes" all the
646 type units using this stmt_list so that the rest of the code still has
647 a "per_cu" handle on the symtab.
648 This PER_CU is recognized by having no section. */
649 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
650 struct dwarf2_per_cu_data per_cu;
654 /* The TUs that share this DW_AT_stmt_list entry.
655 This is added to while parsing type units to build partial symtabs,
656 and is deleted afterwards and not used again. */
657 VEC (dwarf2_per_cu_ptr) *tus;
659 /* When reading the line table in "quick" functions, we need a real TU.
660 Any will do, we know they all share the same DW_AT_stmt_list entry.
661 For simplicity's sake, we pick the first one. */
662 struct dwarf2_per_cu_data *first_tu;
665 /* The primary symtab.
666 Type units in a group needn't all be defined in the same source file,
667 so we create an essentially anonymous symtab as the primary symtab. */
668 struct symtab *primary_symtab;
670 /* The data used to construct the hash key. */
671 struct stmt_list_hash hash;
673 /* The number of symtabs from the line header.
674 The value here must match line_header.num_file_names. */
675 unsigned int num_symtabs;
677 /* The symbol tables for this TU (obtained from the files listed in
679 WARNING: The order of entries here must match the order of entries
680 in the line header. After the first TU using this type_unit_group, the
681 line header for the subsequent TUs is recreated from this. This is done
682 because we need to use the same symtabs for each TU using the same
683 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
684 there's no guarantee the line header doesn't have duplicate entries. */
685 struct symtab **symtabs;
688 /* These sections are what may appear in a DWO file. */
692 struct dwarf2_section_info abbrev;
693 struct dwarf2_section_info line;
694 struct dwarf2_section_info loc;
695 struct dwarf2_section_info macinfo;
696 struct dwarf2_section_info macro;
697 struct dwarf2_section_info str;
698 struct dwarf2_section_info str_offsets;
699 /* In the case of a virtual DWO file, these two are unused. */
700 struct dwarf2_section_info info;
701 VEC (dwarf2_section_info_def) *types;
704 /* CUs/TUs in DWP/DWO files. */
708 /* Backlink to the containing struct dwo_file. */
709 struct dwo_file *dwo_file;
711 /* The "id" that distinguishes this CU/TU.
712 .debug_info calls this "dwo_id", .debug_types calls this "signature".
713 Since signatures came first, we stick with it for consistency. */
716 /* The section this CU/TU lives in, in the DWO file. */
717 struct dwarf2_section_info *section;
719 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
723 /* For types, offset in the type's DIE of the type defined by this TU. */
724 cu_offset type_offset_in_tu;
727 /* Data for one DWO file.
728 This includes virtual DWO files that have been packaged into a
733 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
734 For virtual DWO files the name is constructed from the section offsets
735 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
736 from related CU+TUs. */
739 /* The bfd, when the file is open. Otherwise this is NULL.
740 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
743 /* Section info for this file. */
744 struct dwo_sections sections;
746 /* Table of CUs in the file.
747 Each element is a struct dwo_unit. */
750 /* Table of TUs in the file.
751 Each element is a struct dwo_unit. */
755 /* These sections are what may appear in a DWP file. */
759 struct dwarf2_section_info str;
760 struct dwarf2_section_info cu_index;
761 struct dwarf2_section_info tu_index;
762 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
763 by section number. We don't need to record them here. */
766 /* These sections are what may appear in a virtual DWO file. */
768 struct virtual_dwo_sections
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
781 /* Contents of DWP hash tables. */
783 struct dwp_hash_table
785 uint32_t nr_units, nr_slots;
786 const gdb_byte *hash_table, *unit_table, *section_pool;
789 /* Data for one DWP file. */
793 /* Name of the file. */
796 /* The bfd, when the file is open. Otherwise this is NULL. */
799 /* Section info for this file. */
800 struct dwp_sections sections;
802 /* Table of CUs in the file. */
803 const struct dwp_hash_table *cus;
805 /* Table of TUs in the file. */
806 const struct dwp_hash_table *tus;
808 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
811 /* Table to map ELF section numbers to their sections. */
812 unsigned int num_sections;
813 asection **elf_sections;
816 /* This represents a '.dwz' file. */
820 /* A dwz file can only contain a few sections. */
821 struct dwarf2_section_info abbrev;
822 struct dwarf2_section_info info;
823 struct dwarf2_section_info str;
824 struct dwarf2_section_info line;
825 struct dwarf2_section_info macro;
826 struct dwarf2_section_info gdb_index;
832 /* Struct used to pass misc. parameters to read_die_and_children, et
833 al. which are used for both .debug_info and .debug_types dies.
834 All parameters here are unchanging for the life of the call. This
835 struct exists to abstract away the constant parameters of die reading. */
837 struct die_reader_specs
839 /* die_section->asection->owner. */
842 /* The CU of the DIE we are parsing. */
843 struct dwarf2_cu *cu;
845 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
846 struct dwo_file *dwo_file;
848 /* The section the die comes from.
849 This is either .debug_info or .debug_types, or the .dwo variants. */
850 struct dwarf2_section_info *die_section;
852 /* die_section->buffer. */
855 /* The end of the buffer. */
856 const gdb_byte *buffer_end;
859 /* Type of function passed to init_cutu_and_read_dies, et.al. */
860 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
862 struct die_info *comp_unit_die,
866 /* The line number information for a compilation unit (found in the
867 .debug_line section) begins with a "statement program header",
868 which contains the following information. */
871 unsigned int total_length;
872 unsigned short version;
873 unsigned int header_length;
874 unsigned char minimum_instruction_length;
875 unsigned char maximum_ops_per_instruction;
876 unsigned char default_is_stmt;
878 unsigned char line_range;
879 unsigned char opcode_base;
881 /* standard_opcode_lengths[i] is the number of operands for the
882 standard opcode whose value is i. This means that
883 standard_opcode_lengths[0] is unused, and the last meaningful
884 element is standard_opcode_lengths[opcode_base - 1]. */
885 unsigned char *standard_opcode_lengths;
887 /* The include_directories table. NOTE! These strings are not
888 allocated with xmalloc; instead, they are pointers into
889 debug_line_buffer. If you try to free them, `free' will get
891 unsigned int num_include_dirs, include_dirs_size;
894 /* The file_names table. NOTE! These strings are not allocated
895 with xmalloc; instead, they are pointers into debug_line_buffer.
896 Don't try to free them directly. */
897 unsigned int num_file_names, file_names_size;
901 unsigned int dir_index;
902 unsigned int mod_time;
904 int included_p; /* Non-zero if referenced by the Line Number Program. */
905 struct symtab *symtab; /* The associated symbol table, if any. */
908 /* The start and end of the statement program following this
909 header. These point into dwarf2_per_objfile->line_buffer. */
910 gdb_byte *statement_program_start, *statement_program_end;
913 /* When we construct a partial symbol table entry we only
914 need this much information. */
915 struct partial_die_info
917 /* Offset of this DIE. */
920 /* DWARF-2 tag for this DIE. */
921 ENUM_BITFIELD(dwarf_tag) tag : 16;
923 /* Assorted flags describing the data found in this DIE. */
924 unsigned int has_children : 1;
925 unsigned int is_external : 1;
926 unsigned int is_declaration : 1;
927 unsigned int has_type : 1;
928 unsigned int has_specification : 1;
929 unsigned int has_pc_info : 1;
930 unsigned int may_be_inlined : 1;
932 /* Flag set if the SCOPE field of this structure has been
934 unsigned int scope_set : 1;
936 /* Flag set if the DIE has a byte_size attribute. */
937 unsigned int has_byte_size : 1;
939 /* Flag set if any of the DIE's children are template arguments. */
940 unsigned int has_template_arguments : 1;
942 /* Flag set if fixup_partial_die has been called on this die. */
943 unsigned int fixup_called : 1;
945 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
946 unsigned int is_dwz : 1;
948 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
949 unsigned int spec_is_dwz : 1;
951 /* The name of this DIE. Normally the value of DW_AT_name, but
952 sometimes a default name for unnamed DIEs. */
955 /* The linkage name, if present. */
956 const char *linkage_name;
958 /* The scope to prepend to our children. This is generally
959 allocated on the comp_unit_obstack, so will disappear
960 when this compilation unit leaves the cache. */
963 /* Some data associated with the partial DIE. The tag determines
964 which field is live. */
967 /* The location description associated with this DIE, if any. */
968 struct dwarf_block *locdesc;
969 /* The offset of an import, for DW_TAG_imported_unit. */
973 /* If HAS_PC_INFO, the PC range associated with this DIE. */
977 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
978 DW_AT_sibling, if any. */
979 /* NOTE: This member isn't strictly necessary, read_partial_die could
980 return DW_AT_sibling values to its caller load_partial_dies. */
983 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
984 DW_AT_specification (or DW_AT_abstract_origin or
986 sect_offset spec_offset;
988 /* Pointers to this DIE's parent, first child, and next sibling,
990 struct partial_die_info *die_parent, *die_child, *die_sibling;
993 /* This data structure holds the information of an abbrev. */
996 unsigned int number; /* number identifying abbrev */
997 enum dwarf_tag tag; /* dwarf tag */
998 unsigned short has_children; /* boolean */
999 unsigned short num_attrs; /* number of attributes */
1000 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1001 struct abbrev_info *next; /* next in chain */
1006 ENUM_BITFIELD(dwarf_attribute) name : 16;
1007 ENUM_BITFIELD(dwarf_form) form : 16;
1010 /* Size of abbrev_table.abbrev_hash_table. */
1011 #define ABBREV_HASH_SIZE 121
1013 /* Top level data structure to contain an abbreviation table. */
1017 /* Where the abbrev table came from.
1018 This is used as a sanity check when the table is used. */
1021 /* Storage for the abbrev table. */
1022 struct obstack abbrev_obstack;
1024 /* Hash table of abbrevs.
1025 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1026 It could be statically allocated, but the previous code didn't so we
1028 struct abbrev_info **abbrevs;
1031 /* Attributes have a name and a value. */
1034 ENUM_BITFIELD(dwarf_attribute) name : 16;
1035 ENUM_BITFIELD(dwarf_form) form : 15;
1037 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1038 field should be in u.str (existing only for DW_STRING) but it is kept
1039 here for better struct attribute alignment. */
1040 unsigned int string_is_canonical : 1;
1045 struct dwarf_block *blk;
1049 struct signatured_type *signatured_type;
1054 /* This data structure holds a complete die structure. */
1057 /* DWARF-2 tag for this DIE. */
1058 ENUM_BITFIELD(dwarf_tag) tag : 16;
1060 /* Number of attributes */
1061 unsigned char num_attrs;
1063 /* True if we're presently building the full type name for the
1064 type derived from this DIE. */
1065 unsigned char building_fullname : 1;
1068 unsigned int abbrev;
1070 /* Offset in .debug_info or .debug_types section. */
1073 /* The dies in a compilation unit form an n-ary tree. PARENT
1074 points to this die's parent; CHILD points to the first child of
1075 this node; and all the children of a given node are chained
1076 together via their SIBLING fields. */
1077 struct die_info *child; /* Its first child, if any. */
1078 struct die_info *sibling; /* Its next sibling, if any. */
1079 struct die_info *parent; /* Its parent, if any. */
1081 /* An array of attributes, with NUM_ATTRS elements. There may be
1082 zero, but it's not common and zero-sized arrays are not
1083 sufficiently portable C. */
1084 struct attribute attrs[1];
1087 /* Get at parts of an attribute structure. */
1089 #define DW_STRING(attr) ((attr)->u.str)
1090 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1091 #define DW_UNSND(attr) ((attr)->u.unsnd)
1092 #define DW_BLOCK(attr) ((attr)->u.blk)
1093 #define DW_SND(attr) ((attr)->u.snd)
1094 #define DW_ADDR(attr) ((attr)->u.addr)
1095 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1097 /* Blocks are a bunch of untyped bytes. */
1102 /* Valid only if SIZE is not zero. */
1106 #ifndef ATTR_ALLOC_CHUNK
1107 #define ATTR_ALLOC_CHUNK 4
1110 /* Allocate fields for structs, unions and enums in this size. */
1111 #ifndef DW_FIELD_ALLOC_CHUNK
1112 #define DW_FIELD_ALLOC_CHUNK 4
1115 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1116 but this would require a corresponding change in unpack_field_as_long
1118 static int bits_per_byte = 8;
1120 /* The routines that read and process dies for a C struct or C++ class
1121 pass lists of data member fields and lists of member function fields
1122 in an instance of a field_info structure, as defined below. */
1125 /* List of data member and baseclasses fields. */
1128 struct nextfield *next;
1133 *fields, *baseclasses;
1135 /* Number of fields (including baseclasses). */
1138 /* Number of baseclasses. */
1141 /* Set if the accesibility of one of the fields is not public. */
1142 int non_public_fields;
1144 /* Member function fields array, entries are allocated in the order they
1145 are encountered in the object file. */
1148 struct nextfnfield *next;
1149 struct fn_field fnfield;
1153 /* Member function fieldlist array, contains name of possibly overloaded
1154 member function, number of overloaded member functions and a pointer
1155 to the head of the member function field chain. */
1160 struct nextfnfield *head;
1164 /* Number of entries in the fnfieldlists array. */
1167 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1168 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1169 struct typedef_field_list
1171 struct typedef_field field;
1172 struct typedef_field_list *next;
1174 *typedef_field_list;
1175 unsigned typedef_field_list_count;
1178 /* One item on the queue of compilation units to read in full symbols
1180 struct dwarf2_queue_item
1182 struct dwarf2_per_cu_data *per_cu;
1183 enum language pretend_language;
1184 struct dwarf2_queue_item *next;
1187 /* The current queue. */
1188 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1190 /* Loaded secondary compilation units are kept in memory until they
1191 have not been referenced for the processing of this many
1192 compilation units. Set this to zero to disable caching. Cache
1193 sizes of up to at least twenty will improve startup time for
1194 typical inter-CU-reference binaries, at an obvious memory cost. */
1195 static int dwarf2_max_cache_age = 5;
1197 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1198 struct cmd_list_element *c, const char *value)
1200 fprintf_filtered (file, _("The upper bound on the age of cached "
1201 "dwarf2 compilation units is %s.\n"),
1206 /* Various complaints about symbol reading that don't abort the process. */
1209 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1211 complaint (&symfile_complaints,
1212 _("statement list doesn't fit in .debug_line section"));
1216 dwarf2_debug_line_missing_file_complaint (void)
1218 complaint (&symfile_complaints,
1219 _(".debug_line section has line data without a file"));
1223 dwarf2_debug_line_missing_end_sequence_complaint (void)
1225 complaint (&symfile_complaints,
1226 _(".debug_line section has line "
1227 "program sequence without an end"));
1231 dwarf2_complex_location_expr_complaint (void)
1233 complaint (&symfile_complaints, _("location expression too complex"));
1237 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1240 complaint (&symfile_complaints,
1241 _("const value length mismatch for '%s', got %d, expected %d"),
1246 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1248 complaint (&symfile_complaints,
1249 _("debug info runs off end of %s section"
1251 section->asection->name,
1252 bfd_get_filename (section->asection->owner));
1256 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1258 complaint (&symfile_complaints,
1259 _("macro debug info contains a "
1260 "malformed macro definition:\n`%s'"),
1265 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1267 complaint (&symfile_complaints,
1268 _("invalid attribute class or form for '%s' in '%s'"),
1272 /* local function prototypes */
1274 static void dwarf2_locate_sections (bfd *, asection *, void *);
1276 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1279 static void dwarf2_find_base_address (struct die_info *die,
1280 struct dwarf2_cu *cu);
1282 static struct partial_symtab *create_partial_symtab
1283 (struct dwarf2_per_cu_data *per_cu, const char *name);
1285 static void dwarf2_build_psymtabs_hard (struct objfile *);
1287 static void scan_partial_symbols (struct partial_die_info *,
1288 CORE_ADDR *, CORE_ADDR *,
1289 int, struct dwarf2_cu *);
1291 static void add_partial_symbol (struct partial_die_info *,
1292 struct dwarf2_cu *);
1294 static void add_partial_namespace (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1298 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1299 CORE_ADDR *highpc, int need_pc,
1300 struct dwarf2_cu *cu);
1302 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1303 struct dwarf2_cu *cu);
1305 static void add_partial_subprogram (struct partial_die_info *pdi,
1306 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1307 int need_pc, struct dwarf2_cu *cu);
1309 static void dwarf2_read_symtab (struct partial_symtab *,
1312 static void psymtab_to_symtab_1 (struct partial_symtab *);
1314 static struct abbrev_info *abbrev_table_lookup_abbrev
1315 (const struct abbrev_table *, unsigned int);
1317 static struct abbrev_table *abbrev_table_read_table
1318 (struct dwarf2_section_info *, sect_offset);
1320 static void abbrev_table_free (struct abbrev_table *);
1322 static void abbrev_table_free_cleanup (void *);
1324 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1325 struct dwarf2_section_info *);
1327 static void dwarf2_free_abbrev_table (void *);
1329 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1331 static struct partial_die_info *load_partial_dies
1332 (const struct die_reader_specs *, gdb_byte *, int);
1334 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1335 struct partial_die_info *,
1336 struct abbrev_info *,
1340 static struct partial_die_info *find_partial_die (sect_offset, int,
1341 struct dwarf2_cu *);
1343 static void fixup_partial_die (struct partial_die_info *,
1344 struct dwarf2_cu *);
1346 static gdb_byte *read_attribute (const struct die_reader_specs *,
1347 struct attribute *, struct attr_abbrev *,
1350 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1352 static int read_1_signed_byte (bfd *, const gdb_byte *);
1354 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1356 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1358 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1360 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1363 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1365 static LONGEST read_checked_initial_length_and_offset
1366 (bfd *, gdb_byte *, const struct comp_unit_head *,
1367 unsigned int *, unsigned int *);
1369 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1372 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1374 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1377 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1379 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1381 static char *read_indirect_string (bfd *, gdb_byte *,
1382 const struct comp_unit_head *,
1385 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1387 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1389 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1391 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1394 static char *read_str_index (const struct die_reader_specs *reader,
1395 struct dwarf2_cu *cu, ULONGEST str_index);
1397 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1399 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1400 struct dwarf2_cu *);
1402 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1405 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1406 struct dwarf2_cu *cu);
1408 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1410 static struct die_info *die_specification (struct die_info *die,
1411 struct dwarf2_cu **);
1413 static void free_line_header (struct line_header *lh);
1415 static void add_file_name (struct line_header *, char *, unsigned int,
1416 unsigned int, unsigned int);
1418 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1419 struct dwarf2_cu *cu);
1421 static void dwarf_decode_lines (struct line_header *, const char *,
1422 struct dwarf2_cu *, struct partial_symtab *,
1425 static void dwarf2_start_subfile (char *, const char *, const char *);
1427 static void dwarf2_start_symtab (struct dwarf2_cu *,
1428 const char *, const char *, CORE_ADDR);
1430 static struct symbol *new_symbol (struct die_info *, struct type *,
1431 struct dwarf2_cu *);
1433 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1434 struct dwarf2_cu *, struct symbol *);
1436 static void dwarf2_const_value (struct attribute *, struct symbol *,
1437 struct dwarf2_cu *);
1439 static void dwarf2_const_value_attr (struct attribute *attr,
1442 struct obstack *obstack,
1443 struct dwarf2_cu *cu, LONGEST *value,
1445 struct dwarf2_locexpr_baton **baton);
1447 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1449 static int need_gnat_info (struct dwarf2_cu *);
1451 static struct type *die_descriptive_type (struct die_info *,
1452 struct dwarf2_cu *);
1454 static void set_descriptive_type (struct type *, struct die_info *,
1455 struct dwarf2_cu *);
1457 static struct type *die_containing_type (struct die_info *,
1458 struct dwarf2_cu *);
1460 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1461 struct dwarf2_cu *);
1463 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1465 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1467 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1469 static char *typename_concat (struct obstack *obs, const char *prefix,
1470 const char *suffix, int physname,
1471 struct dwarf2_cu *cu);
1473 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1475 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1477 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1479 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1481 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1483 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1484 struct dwarf2_cu *, struct partial_symtab *);
1486 static int dwarf2_get_pc_bounds (struct die_info *,
1487 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1488 struct partial_symtab *);
1490 static void get_scope_pc_bounds (struct die_info *,
1491 CORE_ADDR *, CORE_ADDR *,
1492 struct dwarf2_cu *);
1494 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1495 CORE_ADDR, struct dwarf2_cu *);
1497 static void dwarf2_add_field (struct field_info *, struct die_info *,
1498 struct dwarf2_cu *);
1500 static void dwarf2_attach_fields_to_type (struct field_info *,
1501 struct type *, struct dwarf2_cu *);
1503 static void dwarf2_add_member_fn (struct field_info *,
1504 struct die_info *, struct type *,
1505 struct dwarf2_cu *);
1507 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1509 struct dwarf2_cu *);
1511 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1513 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1515 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1517 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1519 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1521 static struct type *read_module_type (struct die_info *die,
1522 struct dwarf2_cu *cu);
1524 static const char *namespace_name (struct die_info *die,
1525 int *is_anonymous, struct dwarf2_cu *);
1527 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1529 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1531 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1532 struct dwarf2_cu *);
1534 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1536 gdb_byte **new_info_ptr,
1537 struct die_info *parent);
1539 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1541 gdb_byte **new_info_ptr,
1542 struct die_info *parent);
1544 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1545 struct die_info **, gdb_byte *, int *, int);
1547 static gdb_byte *read_full_die (const struct die_reader_specs *,
1548 struct die_info **, gdb_byte *, int *);
1550 static void process_die (struct die_info *, struct dwarf2_cu *);
1552 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1555 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1557 static const char *dwarf2_full_name (const char *name,
1558 struct die_info *die,
1559 struct dwarf2_cu *cu);
1561 static const char *dwarf2_physname (const char *name, struct die_info *die,
1562 struct dwarf2_cu *cu);
1564 static struct die_info *dwarf2_extension (struct die_info *die,
1565 struct dwarf2_cu **);
1567 static const char *dwarf_tag_name (unsigned int);
1569 static const char *dwarf_attr_name (unsigned int);
1571 static const char *dwarf_form_name (unsigned int);
1573 static char *dwarf_bool_name (unsigned int);
1575 static const char *dwarf_type_encoding_name (unsigned int);
1577 static struct die_info *sibling_die (struct die_info *);
1579 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1581 static void dump_die_for_error (struct die_info *);
1583 static void dump_die_1 (struct ui_file *, int level, int max_level,
1586 /*static*/ void dump_die (struct die_info *, int max_level);
1588 static void store_in_ref_table (struct die_info *,
1589 struct dwarf2_cu *);
1591 static int is_ref_attr (struct attribute *);
1593 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1595 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1597 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1599 struct dwarf2_cu **);
1601 static struct die_info *follow_die_ref (struct die_info *,
1603 struct dwarf2_cu **);
1605 static struct die_info *follow_die_sig (struct die_info *,
1607 struct dwarf2_cu **);
1609 static struct signatured_type *lookup_signatured_type_at_offset
1610 (struct objfile *objfile,
1611 struct dwarf2_section_info *section, sect_offset offset);
1613 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1615 static void read_signatured_type (struct signatured_type *);
1617 static struct type_unit_group *get_type_unit_group
1618 (struct dwarf2_cu *, struct attribute *);
1620 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1622 /* memory allocation interface */
1624 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1626 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1628 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1631 static int attr_form_is_block (struct attribute *);
1633 static int attr_form_is_section_offset (struct attribute *);
1635 static int attr_form_is_constant (struct attribute *);
1637 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1638 struct dwarf2_loclist_baton *baton,
1639 struct attribute *attr);
1641 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1643 struct dwarf2_cu *cu,
1646 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1648 struct abbrev_info *abbrev);
1650 static void free_stack_comp_unit (void *);
1652 static hashval_t partial_die_hash (const void *item);
1654 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1656 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1657 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1659 static void init_one_comp_unit (struct dwarf2_cu *cu,
1660 struct dwarf2_per_cu_data *per_cu);
1662 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1663 struct die_info *comp_unit_die,
1664 enum language pretend_language);
1666 static void free_heap_comp_unit (void *);
1668 static void free_cached_comp_units (void *);
1670 static void age_cached_comp_units (void);
1672 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1674 static struct type *set_die_type (struct die_info *, struct type *,
1675 struct dwarf2_cu *);
1677 static void create_all_comp_units (struct objfile *);
1679 static int create_all_type_units (struct objfile *);
1681 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1684 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1687 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1690 static void dwarf2_add_dependence (struct dwarf2_cu *,
1691 struct dwarf2_per_cu_data *);
1693 static void dwarf2_mark (struct dwarf2_cu *);
1695 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1697 static struct type *get_die_type_at_offset (sect_offset,
1698 struct dwarf2_per_cu_data *per_cu);
1700 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1702 static void dwarf2_release_queue (void *dummy);
1704 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1705 enum language pretend_language);
1707 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1708 struct dwarf2_per_cu_data *per_cu,
1709 enum language pretend_language);
1711 static void process_queue (void);
1713 static void find_file_and_directory (struct die_info *die,
1714 struct dwarf2_cu *cu,
1715 const char **name, const char **comp_dir);
1717 static char *file_full_name (int file, struct line_header *lh,
1718 const char *comp_dir);
1720 static gdb_byte *read_and_check_comp_unit_head
1721 (struct comp_unit_head *header,
1722 struct dwarf2_section_info *section,
1723 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1724 int is_debug_types_section);
1726 static void init_cutu_and_read_dies
1727 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1728 int use_existing_cu, int keep,
1729 die_reader_func_ftype *die_reader_func, void *data);
1731 static void init_cutu_and_read_dies_simple
1732 (struct dwarf2_per_cu_data *this_cu,
1733 die_reader_func_ftype *die_reader_func, void *data);
1735 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1737 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1739 static struct dwo_unit *lookup_dwo_comp_unit
1740 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1742 static struct dwo_unit *lookup_dwo_type_unit
1743 (struct signatured_type *, const char *, const char *);
1745 static void free_dwo_file_cleanup (void *);
1747 static void process_cu_includes (void);
1749 static void check_producer (struct dwarf2_cu *cu);
1753 /* Convert VALUE between big- and little-endian. */
1755 byte_swap (offset_type value)
1759 result = (value & 0xff) << 24;
1760 result |= (value & 0xff00) << 8;
1761 result |= (value & 0xff0000) >> 8;
1762 result |= (value & 0xff000000) >> 24;
1766 #define MAYBE_SWAP(V) byte_swap (V)
1769 #define MAYBE_SWAP(V) (V)
1770 #endif /* WORDS_BIGENDIAN */
1772 /* The suffix for an index file. */
1773 #define INDEX_SUFFIX ".gdb-index"
1775 /* Try to locate the sections we need for DWARF 2 debugging
1776 information and return true if we have enough to do something.
1777 NAMES points to the dwarf2 section names, or is NULL if the standard
1778 ELF names are used. */
1781 dwarf2_has_info (struct objfile *objfile,
1782 const struct dwarf2_debug_sections *names)
1784 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1785 if (!dwarf2_per_objfile)
1787 /* Initialize per-objfile state. */
1788 struct dwarf2_per_objfile *data
1789 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1791 memset (data, 0, sizeof (*data));
1792 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1793 dwarf2_per_objfile = data;
1795 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1797 dwarf2_per_objfile->objfile = objfile;
1799 return (dwarf2_per_objfile->info.asection != NULL
1800 && dwarf2_per_objfile->abbrev.asection != NULL);
1803 /* When loading sections, we look either for uncompressed section or for
1804 compressed section names. */
1807 section_is_p (const char *section_name,
1808 const struct dwarf2_section_names *names)
1810 if (names->normal != NULL
1811 && strcmp (section_name, names->normal) == 0)
1813 if (names->compressed != NULL
1814 && strcmp (section_name, names->compressed) == 0)
1819 /* This function is mapped across the sections and remembers the
1820 offset and size of each of the debugging sections we are interested
1824 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1826 const struct dwarf2_debug_sections *names;
1827 flagword aflag = bfd_get_section_flags (abfd, sectp);
1830 names = &dwarf2_elf_names;
1832 names = (const struct dwarf2_debug_sections *) vnames;
1834 if ((aflag & SEC_HAS_CONTENTS) == 0)
1837 else if (section_is_p (sectp->name, &names->info))
1839 dwarf2_per_objfile->info.asection = sectp;
1840 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1842 else if (section_is_p (sectp->name, &names->abbrev))
1844 dwarf2_per_objfile->abbrev.asection = sectp;
1845 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1847 else if (section_is_p (sectp->name, &names->line))
1849 dwarf2_per_objfile->line.asection = sectp;
1850 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1852 else if (section_is_p (sectp->name, &names->loc))
1854 dwarf2_per_objfile->loc.asection = sectp;
1855 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1857 else if (section_is_p (sectp->name, &names->macinfo))
1859 dwarf2_per_objfile->macinfo.asection = sectp;
1860 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1862 else if (section_is_p (sectp->name, &names->macro))
1864 dwarf2_per_objfile->macro.asection = sectp;
1865 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1867 else if (section_is_p (sectp->name, &names->str))
1869 dwarf2_per_objfile->str.asection = sectp;
1870 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1872 else if (section_is_p (sectp->name, &names->addr))
1874 dwarf2_per_objfile->addr.asection = sectp;
1875 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1877 else if (section_is_p (sectp->name, &names->frame))
1879 dwarf2_per_objfile->frame.asection = sectp;
1880 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1882 else if (section_is_p (sectp->name, &names->eh_frame))
1884 dwarf2_per_objfile->eh_frame.asection = sectp;
1885 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1887 else if (section_is_p (sectp->name, &names->ranges))
1889 dwarf2_per_objfile->ranges.asection = sectp;
1890 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1892 else if (section_is_p (sectp->name, &names->types))
1894 struct dwarf2_section_info type_section;
1896 memset (&type_section, 0, sizeof (type_section));
1897 type_section.asection = sectp;
1898 type_section.size = bfd_get_section_size (sectp);
1900 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1903 else if (section_is_p (sectp->name, &names->gdb_index))
1905 dwarf2_per_objfile->gdb_index.asection = sectp;
1906 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1909 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1910 && bfd_section_vma (abfd, sectp) == 0)
1911 dwarf2_per_objfile->has_section_at_zero = 1;
1914 /* A helper function that decides whether a section is empty,
1918 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1920 return info->asection == NULL || info->size == 0;
1923 /* Read the contents of the section INFO.
1924 OBJFILE is the main object file, but not necessarily the file where
1925 the section comes from. E.g., for DWO files INFO->asection->owner
1926 is the bfd of the DWO file.
1927 If the section is compressed, uncompress it before returning. */
1930 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1932 asection *sectp = info->asection;
1934 gdb_byte *buf, *retbuf;
1935 unsigned char header[4];
1939 info->buffer = NULL;
1942 if (dwarf2_section_empty_p (info))
1945 abfd = sectp->owner;
1947 /* If the section has relocations, we must read it ourselves.
1948 Otherwise we attach it to the BFD. */
1949 if ((sectp->flags & SEC_RELOC) == 0)
1951 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1953 /* We have to cast away const here for historical reasons.
1954 Fixing dwarf2read to be const-correct would be quite nice. */
1955 info->buffer = (gdb_byte *) bytes;
1959 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1962 /* When debugging .o files, we may need to apply relocations; see
1963 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1964 We never compress sections in .o files, so we only need to
1965 try this when the section is not compressed. */
1966 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1969 info->buffer = retbuf;
1973 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1974 || bfd_bread (buf, info->size, abfd) != info->size)
1975 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1976 bfd_get_filename (abfd));
1979 /* A helper function that returns the size of a section in a safe way.
1980 If you are positive that the section has been read before using the
1981 size, then it is safe to refer to the dwarf2_section_info object's
1982 "size" field directly. In other cases, you must call this
1983 function, because for compressed sections the size field is not set
1984 correctly until the section has been read. */
1986 static bfd_size_type
1987 dwarf2_section_size (struct objfile *objfile,
1988 struct dwarf2_section_info *info)
1991 dwarf2_read_section (objfile, info);
1995 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1999 dwarf2_get_section_info (struct objfile *objfile,
2000 enum dwarf2_section_enum sect,
2001 asection **sectp, gdb_byte **bufp,
2002 bfd_size_type *sizep)
2004 struct dwarf2_per_objfile *data
2005 = objfile_data (objfile, dwarf2_objfile_data_key);
2006 struct dwarf2_section_info *info;
2008 /* We may see an objfile without any DWARF, in which case we just
2019 case DWARF2_DEBUG_FRAME:
2020 info = &data->frame;
2022 case DWARF2_EH_FRAME:
2023 info = &data->eh_frame;
2026 gdb_assert_not_reached ("unexpected section");
2029 dwarf2_read_section (objfile, info);
2031 *sectp = info->asection;
2032 *bufp = info->buffer;
2033 *sizep = info->size;
2036 /* A helper function to find the sections for a .dwz file. */
2039 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2041 struct dwz_file *dwz_file = arg;
2043 /* Note that we only support the standard ELF names, because .dwz
2044 is ELF-only (at the time of writing). */
2045 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2047 dwz_file->abbrev.asection = sectp;
2048 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2050 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2052 dwz_file->info.asection = sectp;
2053 dwz_file->info.size = bfd_get_section_size (sectp);
2055 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2057 dwz_file->str.asection = sectp;
2058 dwz_file->str.size = bfd_get_section_size (sectp);
2060 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2062 dwz_file->line.asection = sectp;
2063 dwz_file->line.size = bfd_get_section_size (sectp);
2065 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2067 dwz_file->macro.asection = sectp;
2068 dwz_file->macro.size = bfd_get_section_size (sectp);
2070 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2072 dwz_file->gdb_index.asection = sectp;
2073 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2077 /* Open the separate '.dwz' debug file, if needed. Error if the file
2080 static struct dwz_file *
2081 dwarf2_get_dwz_file (void)
2083 bfd *abfd, *dwz_bfd;
2086 struct cleanup *cleanup;
2087 const char *filename;
2088 struct dwz_file *result;
2090 if (dwarf2_per_objfile->dwz_file != NULL)
2091 return dwarf2_per_objfile->dwz_file;
2093 abfd = dwarf2_per_objfile->objfile->obfd;
2094 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2095 if (section == NULL)
2096 error (_("could not find '.gnu_debugaltlink' section"));
2097 if (!bfd_malloc_and_get_section (abfd, section, &data))
2098 error (_("could not read '.gnu_debugaltlink' section: %s"),
2099 bfd_errmsg (bfd_get_error ()));
2100 cleanup = make_cleanup (xfree, data);
2103 if (!IS_ABSOLUTE_PATH (filename))
2105 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2108 make_cleanup (xfree, abs);
2109 abs = ldirname (abs);
2110 make_cleanup (xfree, abs);
2112 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2113 make_cleanup (xfree, rel);
2117 /* The format is just a NUL-terminated file name, followed by the
2118 build-id. For now, though, we ignore the build-id. */
2119 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2120 if (dwz_bfd == NULL)
2121 error (_("could not read '%s': %s"), filename,
2122 bfd_errmsg (bfd_get_error ()));
2124 if (!bfd_check_format (dwz_bfd, bfd_object))
2126 gdb_bfd_unref (dwz_bfd);
2127 error (_("file '%s' was not usable: %s"), filename,
2128 bfd_errmsg (bfd_get_error ()));
2131 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2133 result->dwz_bfd = dwz_bfd;
2135 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2137 do_cleanups (cleanup);
2139 dwarf2_per_objfile->dwz_file = result;
2143 /* DWARF quick_symbols_functions support. */
2145 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2146 unique line tables, so we maintain a separate table of all .debug_line
2147 derived entries to support the sharing.
2148 All the quick functions need is the list of file names. We discard the
2149 line_header when we're done and don't need to record it here. */
2150 struct quick_file_names
2152 /* The data used to construct the hash key. */
2153 struct stmt_list_hash hash;
2155 /* The number of entries in file_names, real_names. */
2156 unsigned int num_file_names;
2158 /* The file names from the line table, after being run through
2160 const char **file_names;
2162 /* The file names from the line table after being run through
2163 gdb_realpath. These are computed lazily. */
2164 const char **real_names;
2167 /* When using the index (and thus not using psymtabs), each CU has an
2168 object of this type. This is used to hold information needed by
2169 the various "quick" methods. */
2170 struct dwarf2_per_cu_quick_data
2172 /* The file table. This can be NULL if there was no file table
2173 or it's currently not read in.
2174 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2175 struct quick_file_names *file_names;
2177 /* The corresponding symbol table. This is NULL if symbols for this
2178 CU have not yet been read. */
2179 struct symtab *symtab;
2181 /* A temporary mark bit used when iterating over all CUs in
2182 expand_symtabs_matching. */
2183 unsigned int mark : 1;
2185 /* True if we've tried to read the file table and found there isn't one.
2186 There will be no point in trying to read it again next time. */
2187 unsigned int no_file_data : 1;
2190 /* Utility hash function for a stmt_list_hash. */
2193 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2197 if (stmt_list_hash->dwo_unit != NULL)
2198 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2199 v += stmt_list_hash->line_offset.sect_off;
2203 /* Utility equality function for a stmt_list_hash. */
2206 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2207 const struct stmt_list_hash *rhs)
2209 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2211 if (lhs->dwo_unit != NULL
2212 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2215 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2218 /* Hash function for a quick_file_names. */
2221 hash_file_name_entry (const void *e)
2223 const struct quick_file_names *file_data = e;
2225 return hash_stmt_list_entry (&file_data->hash);
2228 /* Equality function for a quick_file_names. */
2231 eq_file_name_entry (const void *a, const void *b)
2233 const struct quick_file_names *ea = a;
2234 const struct quick_file_names *eb = b;
2236 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2239 /* Delete function for a quick_file_names. */
2242 delete_file_name_entry (void *e)
2244 struct quick_file_names *file_data = e;
2247 for (i = 0; i < file_data->num_file_names; ++i)
2249 xfree ((void*) file_data->file_names[i]);
2250 if (file_data->real_names)
2251 xfree ((void*) file_data->real_names[i]);
2254 /* The space for the struct itself lives on objfile_obstack,
2255 so we don't free it here. */
2258 /* Create a quick_file_names hash table. */
2261 create_quick_file_names_table (unsigned int nr_initial_entries)
2263 return htab_create_alloc (nr_initial_entries,
2264 hash_file_name_entry, eq_file_name_entry,
2265 delete_file_name_entry, xcalloc, xfree);
2268 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2269 have to be created afterwards. You should call age_cached_comp_units after
2270 processing PER_CU->CU. dw2_setup must have been already called. */
2273 load_cu (struct dwarf2_per_cu_data *per_cu)
2275 if (per_cu->is_debug_types)
2276 load_full_type_unit (per_cu);
2278 load_full_comp_unit (per_cu, language_minimal);
2280 gdb_assert (per_cu->cu != NULL);
2282 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2285 /* Read in the symbols for PER_CU. */
2288 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2290 struct cleanup *back_to;
2292 /* Skip type_unit_groups, reading the type units they contain
2293 is handled elsewhere. */
2294 if (IS_TYPE_UNIT_GROUP (per_cu))
2297 back_to = make_cleanup (dwarf2_release_queue, NULL);
2299 if (dwarf2_per_objfile->using_index
2300 ? per_cu->v.quick->symtab == NULL
2301 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2303 queue_comp_unit (per_cu, language_minimal);
2309 /* Age the cache, releasing compilation units that have not
2310 been used recently. */
2311 age_cached_comp_units ();
2313 do_cleanups (back_to);
2316 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2317 the objfile from which this CU came. Returns the resulting symbol
2320 static struct symtab *
2321 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2323 gdb_assert (dwarf2_per_objfile->using_index);
2324 if (!per_cu->v.quick->symtab)
2326 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2327 increment_reading_symtab ();
2328 dw2_do_instantiate_symtab (per_cu);
2329 process_cu_includes ();
2330 do_cleanups (back_to);
2332 return per_cu->v.quick->symtab;
2335 /* Return the CU given its index.
2337 This is intended for loops like:
2339 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2340 + dwarf2_per_objfile->n_type_units); ++i)
2342 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2348 static struct dwarf2_per_cu_data *
2349 dw2_get_cu (int index)
2351 if (index >= dwarf2_per_objfile->n_comp_units)
2353 index -= dwarf2_per_objfile->n_comp_units;
2354 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2355 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2358 return dwarf2_per_objfile->all_comp_units[index];
2361 /* Return the primary CU given its index.
2362 The difference between this function and dw2_get_cu is in the handling
2363 of type units (TUs). Here we return the type_unit_group object.
2365 This is intended for loops like:
2367 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2368 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2370 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2376 static struct dwarf2_per_cu_data *
2377 dw2_get_primary_cu (int index)
2379 if (index >= dwarf2_per_objfile->n_comp_units)
2381 index -= dwarf2_per_objfile->n_comp_units;
2382 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2383 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2386 return dwarf2_per_objfile->all_comp_units[index];
2389 /* A helper for create_cus_from_index that handles a given list of
2393 create_cus_from_index_list (struct objfile *objfile,
2394 const gdb_byte *cu_list, offset_type n_elements,
2395 struct dwarf2_section_info *section,
2401 for (i = 0; i < n_elements; i += 2)
2403 struct dwarf2_per_cu_data *the_cu;
2404 ULONGEST offset, length;
2406 gdb_static_assert (sizeof (ULONGEST) >= 8);
2407 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2408 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2411 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2412 struct dwarf2_per_cu_data);
2413 the_cu->offset.sect_off = offset;
2414 the_cu->length = length;
2415 the_cu->objfile = objfile;
2416 the_cu->section = section;
2417 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2418 struct dwarf2_per_cu_quick_data);
2419 the_cu->is_dwz = is_dwz;
2420 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2424 /* Read the CU list from the mapped index, and use it to create all
2425 the CU objects for this objfile. */
2428 create_cus_from_index (struct objfile *objfile,
2429 const gdb_byte *cu_list, offset_type cu_list_elements,
2430 const gdb_byte *dwz_list, offset_type dwz_elements)
2432 struct dwz_file *dwz;
2434 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2435 dwarf2_per_objfile->all_comp_units
2436 = obstack_alloc (&objfile->objfile_obstack,
2437 dwarf2_per_objfile->n_comp_units
2438 * sizeof (struct dwarf2_per_cu_data *));
2440 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2441 &dwarf2_per_objfile->info, 0, 0);
2443 if (dwz_elements == 0)
2446 dwz = dwarf2_get_dwz_file ();
2447 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2448 cu_list_elements / 2);
2451 /* Create the signatured type hash table from the index. */
2454 create_signatured_type_table_from_index (struct objfile *objfile,
2455 struct dwarf2_section_info *section,
2456 const gdb_byte *bytes,
2457 offset_type elements)
2460 htab_t sig_types_hash;
2462 dwarf2_per_objfile->n_type_units = elements / 3;
2463 dwarf2_per_objfile->all_type_units
2464 = obstack_alloc (&objfile->objfile_obstack,
2465 dwarf2_per_objfile->n_type_units
2466 * sizeof (struct signatured_type *));
2468 sig_types_hash = allocate_signatured_type_table (objfile);
2470 for (i = 0; i < elements; i += 3)
2472 struct signatured_type *sig_type;
2473 ULONGEST offset, type_offset_in_tu, signature;
2476 gdb_static_assert (sizeof (ULONGEST) >= 8);
2477 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2478 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2480 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2483 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2484 struct signatured_type);
2485 sig_type->signature = signature;
2486 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2487 sig_type->per_cu.is_debug_types = 1;
2488 sig_type->per_cu.section = section;
2489 sig_type->per_cu.offset.sect_off = offset;
2490 sig_type->per_cu.objfile = objfile;
2491 sig_type->per_cu.v.quick
2492 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2493 struct dwarf2_per_cu_quick_data);
2495 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2498 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2501 dwarf2_per_objfile->signatured_types = sig_types_hash;
2504 /* Read the address map data from the mapped index, and use it to
2505 populate the objfile's psymtabs_addrmap. */
2508 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2510 const gdb_byte *iter, *end;
2511 struct obstack temp_obstack;
2512 struct addrmap *mutable_map;
2513 struct cleanup *cleanup;
2516 obstack_init (&temp_obstack);
2517 cleanup = make_cleanup_obstack_free (&temp_obstack);
2518 mutable_map = addrmap_create_mutable (&temp_obstack);
2520 iter = index->address_table;
2521 end = iter + index->address_table_size;
2523 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2527 ULONGEST hi, lo, cu_index;
2528 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2530 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2532 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2535 if (cu_index < dwarf2_per_objfile->n_comp_units)
2537 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2538 dw2_get_cu (cu_index));
2542 complaint (&symfile_complaints,
2543 _(".gdb_index address table has invalid CU number %u"),
2544 (unsigned) cu_index);
2548 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2549 &objfile->objfile_obstack);
2550 do_cleanups (cleanup);
2553 /* The hash function for strings in the mapped index. This is the same as
2554 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2555 implementation. This is necessary because the hash function is tied to the
2556 format of the mapped index file. The hash values do not have to match with
2559 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2562 mapped_index_string_hash (int index_version, const void *p)
2564 const unsigned char *str = (const unsigned char *) p;
2568 while ((c = *str++) != 0)
2570 if (index_version >= 5)
2572 r = r * 67 + c - 113;
2578 /* Find a slot in the mapped index INDEX for the object named NAME.
2579 If NAME is found, set *VEC_OUT to point to the CU vector in the
2580 constant pool and return 1. If NAME cannot be found, return 0. */
2583 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2584 offset_type **vec_out)
2586 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2588 offset_type slot, step;
2589 int (*cmp) (const char *, const char *);
2591 if (current_language->la_language == language_cplus
2592 || current_language->la_language == language_java
2593 || current_language->la_language == language_fortran)
2595 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2597 const char *paren = strchr (name, '(');
2603 dup = xmalloc (paren - name + 1);
2604 memcpy (dup, name, paren - name);
2605 dup[paren - name] = 0;
2607 make_cleanup (xfree, dup);
2612 /* Index version 4 did not support case insensitive searches. But the
2613 indices for case insensitive languages are built in lowercase, therefore
2614 simulate our NAME being searched is also lowercased. */
2615 hash = mapped_index_string_hash ((index->version == 4
2616 && case_sensitivity == case_sensitive_off
2617 ? 5 : index->version),
2620 slot = hash & (index->symbol_table_slots - 1);
2621 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2622 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2626 /* Convert a slot number to an offset into the table. */
2627 offset_type i = 2 * slot;
2629 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2631 do_cleanups (back_to);
2635 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2636 if (!cmp (name, str))
2638 *vec_out = (offset_type *) (index->constant_pool
2639 + MAYBE_SWAP (index->symbol_table[i + 1]));
2640 do_cleanups (back_to);
2644 slot = (slot + step) & (index->symbol_table_slots - 1);
2648 /* A helper function that reads the .gdb_index from SECTION and fills
2649 in MAP. FILENAME is the name of the file containing the section;
2650 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2651 ok to use deprecated sections.
2653 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2654 out parameters that are filled in with information about the CU and
2655 TU lists in the section.
2657 Returns 1 if all went well, 0 otherwise. */
2660 read_index_from_section (struct objfile *objfile,
2661 const char *filename,
2663 struct dwarf2_section_info *section,
2664 struct mapped_index *map,
2665 const gdb_byte **cu_list,
2666 offset_type *cu_list_elements,
2667 const gdb_byte **types_list,
2668 offset_type *types_list_elements)
2671 offset_type version;
2672 offset_type *metadata;
2675 if (dwarf2_section_empty_p (section))
2678 /* Older elfutils strip versions could keep the section in the main
2679 executable while splitting it for the separate debug info file. */
2680 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2683 dwarf2_read_section (objfile, section);
2685 addr = section->buffer;
2686 /* Version check. */
2687 version = MAYBE_SWAP (*(offset_type *) addr);
2688 /* Versions earlier than 3 emitted every copy of a psymbol. This
2689 causes the index to behave very poorly for certain requests. Version 3
2690 contained incomplete addrmap. So, it seems better to just ignore such
2694 static int warning_printed = 0;
2695 if (!warning_printed)
2697 warning (_("Skipping obsolete .gdb_index section in %s."),
2699 warning_printed = 1;
2703 /* Index version 4 uses a different hash function than index version
2706 Versions earlier than 6 did not emit psymbols for inlined
2707 functions. Using these files will cause GDB not to be able to
2708 set breakpoints on inlined functions by name, so we ignore these
2709 indices unless the user has done
2710 "set use-deprecated-index-sections on". */
2711 if (version < 6 && !deprecated_ok)
2713 static int warning_printed = 0;
2714 if (!warning_printed)
2717 Skipping deprecated .gdb_index section in %s.\n\
2718 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2719 to use the section anyway."),
2721 warning_printed = 1;
2725 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2726 of the TU (for symbols coming from TUs). It's just a performance bug, and
2727 we can't distinguish gdb-generated indices from gold-generated ones, so
2728 nothing to do here. */
2730 /* Indexes with higher version than the one supported by GDB may be no
2731 longer backward compatible. */
2735 map->version = version;
2736 map->total_size = section->size;
2738 metadata = (offset_type *) (addr + sizeof (offset_type));
2741 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2742 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2746 *types_list = addr + MAYBE_SWAP (metadata[i]);
2747 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2748 - MAYBE_SWAP (metadata[i]))
2752 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2753 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2754 - MAYBE_SWAP (metadata[i]));
2757 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2758 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2759 - MAYBE_SWAP (metadata[i]))
2760 / (2 * sizeof (offset_type)));
2763 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2769 /* Read the index file. If everything went ok, initialize the "quick"
2770 elements of all the CUs and return 1. Otherwise, return 0. */
2773 dwarf2_read_index (struct objfile *objfile)
2775 struct mapped_index local_map, *map;
2776 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2777 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2779 if (!read_index_from_section (objfile, objfile->name,
2780 use_deprecated_index_sections,
2781 &dwarf2_per_objfile->gdb_index, &local_map,
2782 &cu_list, &cu_list_elements,
2783 &types_list, &types_list_elements))
2786 /* Don't use the index if it's empty. */
2787 if (local_map.symbol_table_slots == 0)
2790 /* If there is a .dwz file, read it so we can get its CU list as
2792 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2794 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2795 struct mapped_index dwz_map;
2796 const gdb_byte *dwz_types_ignore;
2797 offset_type dwz_types_elements_ignore;
2799 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2801 &dwz->gdb_index, &dwz_map,
2802 &dwz_list, &dwz_list_elements,
2804 &dwz_types_elements_ignore))
2806 warning (_("could not read '.gdb_index' section from %s; skipping"),
2807 bfd_get_filename (dwz->dwz_bfd));
2812 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2815 if (types_list_elements)
2817 struct dwarf2_section_info *section;
2819 /* We can only handle a single .debug_types when we have an
2821 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2824 section = VEC_index (dwarf2_section_info_def,
2825 dwarf2_per_objfile->types, 0);
2827 create_signatured_type_table_from_index (objfile, section, types_list,
2828 types_list_elements);
2831 create_addrmap_from_index (objfile, &local_map);
2833 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2836 dwarf2_per_objfile->index_table = map;
2837 dwarf2_per_objfile->using_index = 1;
2838 dwarf2_per_objfile->quick_file_names_table =
2839 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2844 /* A helper for the "quick" functions which sets the global
2845 dwarf2_per_objfile according to OBJFILE. */
2848 dw2_setup (struct objfile *objfile)
2850 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2851 gdb_assert (dwarf2_per_objfile);
2854 /* die_reader_func for dw2_get_file_names. */
2857 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2859 struct die_info *comp_unit_die,
2863 struct dwarf2_cu *cu = reader->cu;
2864 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2865 struct objfile *objfile = dwarf2_per_objfile->objfile;
2866 struct dwarf2_per_cu_data *lh_cu;
2867 struct line_header *lh;
2868 struct attribute *attr;
2870 const char *name, *comp_dir;
2872 struct quick_file_names *qfn;
2873 unsigned int line_offset;
2875 /* Our callers never want to match partial units -- instead they
2876 will match the enclosing full CU. */
2877 if (comp_unit_die->tag == DW_TAG_partial_unit)
2879 this_cu->v.quick->no_file_data = 1;
2883 /* If we're reading the line header for TUs, store it in the "per_cu"
2885 if (this_cu->is_debug_types)
2887 struct type_unit_group *tu_group = data;
2889 gdb_assert (tu_group != NULL);
2890 lh_cu = &tu_group->per_cu;
2899 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2902 struct quick_file_names find_entry;
2904 line_offset = DW_UNSND (attr);
2906 /* We may have already read in this line header (TU line header sharing).
2907 If we have we're done. */
2908 find_entry.hash.dwo_unit = cu->dwo_unit;
2909 find_entry.hash.line_offset.sect_off = line_offset;
2910 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2911 &find_entry, INSERT);
2914 lh_cu->v.quick->file_names = *slot;
2918 lh = dwarf_decode_line_header (line_offset, cu);
2922 lh_cu->v.quick->no_file_data = 1;
2926 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2927 qfn->hash.dwo_unit = cu->dwo_unit;
2928 qfn->hash.line_offset.sect_off = line_offset;
2929 gdb_assert (slot != NULL);
2932 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2934 qfn->num_file_names = lh->num_file_names;
2935 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2936 lh->num_file_names * sizeof (char *));
2937 for (i = 0; i < lh->num_file_names; ++i)
2938 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2939 qfn->real_names = NULL;
2941 free_line_header (lh);
2943 lh_cu->v.quick->file_names = qfn;
2946 /* A helper for the "quick" functions which attempts to read the line
2947 table for THIS_CU. */
2949 static struct quick_file_names *
2950 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2952 /* For TUs this should only be called on the parent group. */
2953 if (this_cu->is_debug_types)
2954 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2956 if (this_cu->v.quick->file_names != NULL)
2957 return this_cu->v.quick->file_names;
2958 /* If we know there is no line data, no point in looking again. */
2959 if (this_cu->v.quick->no_file_data)
2962 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2963 in the stub for CUs, there's is no need to lookup the DWO file.
2964 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2966 if (this_cu->is_debug_types)
2968 struct type_unit_group *tu_group = this_cu->type_unit_group;
2970 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2971 dw2_get_file_names_reader, tu_group);
2974 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2976 if (this_cu->v.quick->no_file_data)
2978 return this_cu->v.quick->file_names;
2981 /* A helper for the "quick" functions which computes and caches the
2982 real path for a given file name from the line table. */
2985 dw2_get_real_path (struct objfile *objfile,
2986 struct quick_file_names *qfn, int index)
2988 if (qfn->real_names == NULL)
2989 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2990 qfn->num_file_names, sizeof (char *));
2992 if (qfn->real_names[index] == NULL)
2993 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2995 return qfn->real_names[index];
2998 static struct symtab *
2999 dw2_find_last_source_symtab (struct objfile *objfile)
3003 dw2_setup (objfile);
3004 index = dwarf2_per_objfile->n_comp_units - 1;
3005 return dw2_instantiate_symtab (dw2_get_cu (index));
3008 /* Traversal function for dw2_forget_cached_source_info. */
3011 dw2_free_cached_file_names (void **slot, void *info)
3013 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3015 if (file_data->real_names)
3019 for (i = 0; i < file_data->num_file_names; ++i)
3021 xfree ((void*) file_data->real_names[i]);
3022 file_data->real_names[i] = NULL;
3030 dw2_forget_cached_source_info (struct objfile *objfile)
3032 dw2_setup (objfile);
3034 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3035 dw2_free_cached_file_names, NULL);
3038 /* Helper function for dw2_map_symtabs_matching_filename that expands
3039 the symtabs and calls the iterator. */
3042 dw2_map_expand_apply (struct objfile *objfile,
3043 struct dwarf2_per_cu_data *per_cu,
3044 const char *name, const char *real_path,
3045 int (*callback) (struct symtab *, void *),
3048 struct symtab *last_made = objfile->symtabs;
3050 /* Don't visit already-expanded CUs. */
3051 if (per_cu->v.quick->symtab)
3054 /* This may expand more than one symtab, and we want to iterate over
3056 dw2_instantiate_symtab (per_cu);
3058 return iterate_over_some_symtabs (name, real_path, callback, data,
3059 objfile->symtabs, last_made);
3062 /* Implementation of the map_symtabs_matching_filename method. */
3065 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3066 const char *real_path,
3067 int (*callback) (struct symtab *, void *),
3071 const char *name_basename = lbasename (name);
3073 dw2_setup (objfile);
3075 /* The rule is CUs specify all the files, including those used by
3076 any TU, so there's no need to scan TUs here. */
3078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3081 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3082 struct quick_file_names *file_data;
3084 /* We only need to look at symtabs not already expanded. */
3085 if (per_cu->v.quick->symtab)
3088 file_data = dw2_get_file_names (per_cu);
3089 if (file_data == NULL)
3092 for (j = 0; j < file_data->num_file_names; ++j)
3094 const char *this_name = file_data->file_names[j];
3095 const char *this_real_name;
3097 if (compare_filenames_for_search (this_name, name))
3099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3105 /* Before we invoke realpath, which can get expensive when many
3106 files are involved, do a quick comparison of the basenames. */
3107 if (! basenames_may_differ
3108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3111 this_real_name = dw2_get_real_path (objfile, file_data, j);
3112 if (compare_filenames_for_search (this_real_name, name))
3114 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3120 if (real_path != NULL)
3122 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3123 gdb_assert (IS_ABSOLUTE_PATH (name));
3124 if (this_real_name != NULL
3125 && FILENAME_CMP (real_path, this_real_name) == 0)
3127 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3139 /* Struct used to manage iterating over all CUs looking for a symbol. */
3141 struct dw2_symtab_iterator
3143 /* The internalized form of .gdb_index. */
3144 struct mapped_index *index;
3145 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3146 int want_specific_block;
3147 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3148 Unused if !WANT_SPECIFIC_BLOCK. */
3150 /* The kind of symbol we're looking for. */
3152 /* The list of CUs from the index entry of the symbol,
3153 or NULL if not found. */
3155 /* The next element in VEC to look at. */
3157 /* The number of elements in VEC, or zero if there is no match. */
3161 /* Initialize the index symtab iterator ITER.
3162 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3163 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3166 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3167 struct mapped_index *index,
3168 int want_specific_block,
3173 iter->index = index;
3174 iter->want_specific_block = want_specific_block;
3175 iter->block_index = block_index;
3176 iter->domain = domain;
3179 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3180 iter->length = MAYBE_SWAP (*iter->vec);
3188 /* Return the next matching CU or NULL if there are no more. */
3190 static struct dwarf2_per_cu_data *
3191 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3193 for ( ; iter->next < iter->length; ++iter->next)
3195 offset_type cu_index_and_attrs =
3196 MAYBE_SWAP (iter->vec[iter->next + 1]);
3197 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3198 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3199 int want_static = iter->block_index != GLOBAL_BLOCK;
3200 /* This value is only valid for index versions >= 7. */
3201 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3202 gdb_index_symbol_kind symbol_kind =
3203 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3204 /* Only check the symbol attributes if they're present.
3205 Indices prior to version 7 don't record them,
3206 and indices >= 7 may elide them for certain symbols
3207 (gold does this). */
3209 (iter->index->version >= 7
3210 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3212 /* Skip if already read in. */
3213 if (per_cu->v.quick->symtab)
3217 && iter->want_specific_block
3218 && want_static != is_static)
3221 /* Only check the symbol's kind if it has one. */
3224 switch (iter->domain)
3227 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3228 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3229 /* Some types are also in VAR_DOMAIN. */
3230 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3234 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3238 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3253 static struct symtab *
3254 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3255 const char *name, domain_enum domain)
3257 struct symtab *stab_best = NULL;
3258 struct mapped_index *index;
3260 dw2_setup (objfile);
3262 index = dwarf2_per_objfile->index_table;
3264 /* index is NULL if OBJF_READNOW. */
3267 struct dw2_symtab_iterator iter;
3268 struct dwarf2_per_cu_data *per_cu;
3270 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3272 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3274 struct symbol *sym = NULL;
3275 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3277 /* Some caution must be observed with overloaded functions
3278 and methods, since the index will not contain any overload
3279 information (but NAME might contain it). */
3282 struct blockvector *bv = BLOCKVECTOR (stab);
3283 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3285 sym = lookup_block_symbol (block, name, domain);
3288 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3290 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3296 /* Keep looking through other CUs. */
3304 dw2_print_stats (struct objfile *objfile)
3306 int i, total, count;
3308 dw2_setup (objfile);
3309 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3311 for (i = 0; i < total; ++i)
3313 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3315 if (!per_cu->v.quick->symtab)
3318 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3319 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3323 dw2_dump (struct objfile *objfile)
3325 /* Nothing worth printing. */
3329 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3330 struct section_offsets *delta)
3332 /* There's nothing to relocate here. */
3336 dw2_expand_symtabs_for_function (struct objfile *objfile,
3337 const char *func_name)
3339 struct mapped_index *index;
3341 dw2_setup (objfile);
3343 index = dwarf2_per_objfile->index_table;
3345 /* index is NULL if OBJF_READNOW. */
3348 struct dw2_symtab_iterator iter;
3349 struct dwarf2_per_cu_data *per_cu;
3351 /* Note: It doesn't matter what we pass for block_index here. */
3352 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3355 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3356 dw2_instantiate_symtab (per_cu);
3361 dw2_expand_all_symtabs (struct objfile *objfile)
3365 dw2_setup (objfile);
3367 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3368 + dwarf2_per_objfile->n_type_units); ++i)
3370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3372 dw2_instantiate_symtab (per_cu);
3377 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3378 const char *fullname)
3382 dw2_setup (objfile);
3384 /* We don't need to consider type units here.
3385 This is only called for examining code, e.g. expand_line_sal.
3386 There can be an order of magnitude (or more) more type units
3387 than comp units, and we avoid them if we can. */
3389 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3393 struct quick_file_names *file_data;
3395 /* We only need to look at symtabs not already expanded. */
3396 if (per_cu->v.quick->symtab)
3399 file_data = dw2_get_file_names (per_cu);
3400 if (file_data == NULL)
3403 for (j = 0; j < file_data->num_file_names; ++j)
3405 const char *this_fullname = file_data->file_names[j];
3407 if (filename_cmp (this_fullname, fullname) == 0)
3409 dw2_instantiate_symtab (per_cu);
3416 /* A helper function for dw2_find_symbol_file that finds the primary
3417 file name for a given CU. This is a die_reader_func. */
3420 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3422 struct die_info *comp_unit_die,
3426 const char **result_ptr = data;
3427 struct dwarf2_cu *cu = reader->cu;
3428 struct attribute *attr;
3430 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3434 *result_ptr = DW_STRING (attr);
3438 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3440 struct dwarf2_per_cu_data *per_cu;
3442 const char *filename;
3444 dw2_setup (objfile);
3446 /* index_table is NULL if OBJF_READNOW. */
3447 if (!dwarf2_per_objfile->index_table)
3451 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3453 struct blockvector *bv = BLOCKVECTOR (s);
3454 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3455 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3459 /* Only file extension of returned filename is recognized. */
3460 return SYMBOL_SYMTAB (sym)->filename;
3466 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3470 /* Note that this just looks at the very first one named NAME -- but
3471 actually we are looking for a function. find_main_filename
3472 should be rewritten so that it doesn't require a custom hook. It
3473 could just use the ordinary symbol tables. */
3474 /* vec[0] is the length, which must always be >0. */
3475 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3477 if (per_cu->v.quick->symtab != NULL)
3479 /* Only file extension of returned filename is recognized. */
3480 return per_cu->v.quick->symtab->filename;
3483 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3484 dw2_get_primary_filename_reader, &filename);
3486 /* Only file extension of returned filename is recognized. */
3491 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3492 struct objfile *objfile, int global,
3493 int (*callback) (struct block *,
3494 struct symbol *, void *),
3495 void *data, symbol_compare_ftype *match,
3496 symbol_compare_ftype *ordered_compare)
3498 /* Currently unimplemented; used for Ada. The function can be called if the
3499 current language is Ada for a non-Ada objfile using GNU index. As Ada
3500 does not look for non-Ada symbols this function should just return. */
3504 dw2_expand_symtabs_matching
3505 (struct objfile *objfile,
3506 int (*file_matcher) (const char *, void *, int basenames),
3507 int (*name_matcher) (const char *, void *),
3508 enum search_domain kind,
3513 struct mapped_index *index;
3515 dw2_setup (objfile);
3517 /* index_table is NULL if OBJF_READNOW. */
3518 if (!dwarf2_per_objfile->index_table)
3520 index = dwarf2_per_objfile->index_table;
3522 if (file_matcher != NULL)
3524 struct cleanup *cleanup;
3525 htab_t visited_found, visited_not_found;
3527 visited_found = htab_create_alloc (10,
3528 htab_hash_pointer, htab_eq_pointer,
3529 NULL, xcalloc, xfree);
3530 cleanup = make_cleanup_htab_delete (visited_found);
3531 visited_not_found = htab_create_alloc (10,
3532 htab_hash_pointer, htab_eq_pointer,
3533 NULL, xcalloc, xfree);
3534 make_cleanup_htab_delete (visited_not_found);
3536 /* The rule is CUs specify all the files, including those used by
3537 any TU, so there's no need to scan TUs here. */
3539 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3542 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3543 struct quick_file_names *file_data;
3546 per_cu->v.quick->mark = 0;
3548 /* We only need to look at symtabs not already expanded. */
3549 if (per_cu->v.quick->symtab)
3552 file_data = dw2_get_file_names (per_cu);
3553 if (file_data == NULL)
3556 if (htab_find (visited_not_found, file_data) != NULL)
3558 else if (htab_find (visited_found, file_data) != NULL)
3560 per_cu->v.quick->mark = 1;
3564 for (j = 0; j < file_data->num_file_names; ++j)
3566 const char *this_real_name;
3568 if (file_matcher (file_data->file_names[j], data, 0))
3570 per_cu->v.quick->mark = 1;
3574 /* Before we invoke realpath, which can get expensive when many
3575 files are involved, do a quick comparison of the basenames. */
3576 if (!basenames_may_differ
3577 && !file_matcher (lbasename (file_data->file_names[j]),
3581 this_real_name = dw2_get_real_path (objfile, file_data, j);
3582 if (file_matcher (this_real_name, data, 0))
3584 per_cu->v.quick->mark = 1;
3589 slot = htab_find_slot (per_cu->v.quick->mark
3591 : visited_not_found,
3596 do_cleanups (cleanup);
3599 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3601 offset_type idx = 2 * iter;
3603 offset_type *vec, vec_len, vec_idx;
3605 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3608 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3610 if (! (*name_matcher) (name, data))
3613 /* The name was matched, now expand corresponding CUs that were
3615 vec = (offset_type *) (index->constant_pool
3616 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3617 vec_len = MAYBE_SWAP (vec[0]);
3618 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3620 struct dwarf2_per_cu_data *per_cu;
3621 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3622 gdb_index_symbol_kind symbol_kind =
3623 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3624 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3626 /* Don't crash on bad data. */
3627 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3628 + dwarf2_per_objfile->n_type_units))
3631 /* Only check the symbol's kind if it has one.
3632 Indices prior to version 7 don't record it. */
3633 if (index->version >= 7)
3637 case VARIABLES_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3641 case FUNCTIONS_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3646 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3654 per_cu = dw2_get_cu (cu_index);
3655 if (file_matcher == NULL || per_cu->v.quick->mark)
3656 dw2_instantiate_symtab (per_cu);
3661 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3664 static struct symtab *
3665 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3669 if (BLOCKVECTOR (symtab) != NULL
3670 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3673 if (symtab->includes == NULL)
3676 for (i = 0; symtab->includes[i]; ++i)
3678 struct symtab *s = symtab->includes[i];
3680 s = recursively_find_pc_sect_symtab (s, pc);
3688 static struct symtab *
3689 dw2_find_pc_sect_symtab (struct objfile *objfile,
3690 struct minimal_symbol *msymbol,
3692 struct obj_section *section,
3695 struct dwarf2_per_cu_data *data;
3696 struct symtab *result;
3698 dw2_setup (objfile);
3700 if (!objfile->psymtabs_addrmap)
3703 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3707 if (warn_if_readin && data->v.quick->symtab)
3708 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3709 paddress (get_objfile_arch (objfile), pc));
3711 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3712 gdb_assert (result != NULL);
3717 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3718 void *data, int need_fullname)
3721 struct cleanup *cleanup;
3722 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3723 NULL, xcalloc, xfree);
3725 cleanup = make_cleanup_htab_delete (visited);
3726 dw2_setup (objfile);
3728 /* The rule is CUs specify all the files, including those used by
3729 any TU, so there's no need to scan TUs here.
3730 We can ignore file names coming from already-expanded CUs. */
3732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3734 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3736 if (per_cu->v.quick->symtab)
3738 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3741 *slot = per_cu->v.quick->file_names;
3745 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3748 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3749 struct quick_file_names *file_data;
3752 /* We only need to look at symtabs not already expanded. */
3753 if (per_cu->v.quick->symtab)
3756 file_data = dw2_get_file_names (per_cu);
3757 if (file_data == NULL)
3760 slot = htab_find_slot (visited, file_data, INSERT);
3763 /* Already visited. */
3768 for (j = 0; j < file_data->num_file_names; ++j)
3770 const char *this_real_name;
3773 this_real_name = dw2_get_real_path (objfile, file_data, j);
3775 this_real_name = NULL;
3776 (*fun) (file_data->file_names[j], this_real_name, data);
3780 do_cleanups (cleanup);
3784 dw2_has_symbols (struct objfile *objfile)
3789 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3792 dw2_find_last_source_symtab,
3793 dw2_forget_cached_source_info,
3794 dw2_map_symtabs_matching_filename,
3799 dw2_expand_symtabs_for_function,
3800 dw2_expand_all_symtabs,
3801 dw2_expand_symtabs_with_fullname,
3802 dw2_find_symbol_file,
3803 dw2_map_matching_symbols,
3804 dw2_expand_symtabs_matching,
3805 dw2_find_pc_sect_symtab,
3806 dw2_map_symbol_filenames
3809 /* Initialize for reading DWARF for this objfile. Return 0 if this
3810 file will use psymtabs, or 1 if using the GNU index. */
3813 dwarf2_initialize_objfile (struct objfile *objfile)
3815 /* If we're about to read full symbols, don't bother with the
3816 indices. In this case we also don't care if some other debug
3817 format is making psymtabs, because they are all about to be
3819 if ((objfile->flags & OBJF_READNOW))
3823 dwarf2_per_objfile->using_index = 1;
3824 create_all_comp_units (objfile);
3825 create_all_type_units (objfile);
3826 dwarf2_per_objfile->quick_file_names_table =
3827 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3829 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3830 + dwarf2_per_objfile->n_type_units); ++i)
3832 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3834 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3835 struct dwarf2_per_cu_quick_data);
3838 /* Return 1 so that gdb sees the "quick" functions. However,
3839 these functions will be no-ops because we will have expanded
3844 if (dwarf2_read_index (objfile))
3852 /* Build a partial symbol table. */
3855 dwarf2_build_psymtabs (struct objfile *objfile)
3857 volatile struct gdb_exception except;
3859 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3861 init_psymbol_list (objfile, 1024);
3864 TRY_CATCH (except, RETURN_MASK_ERROR)
3866 /* This isn't really ideal: all the data we allocate on the
3867 objfile's obstack is still uselessly kept around. However,
3868 freeing it seems unsafe. */
3869 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3871 dwarf2_build_psymtabs_hard (objfile);
3872 discard_cleanups (cleanups);
3874 if (except.reason < 0)
3875 exception_print (gdb_stderr, except);
3878 /* Return the total length of the CU described by HEADER. */
3881 get_cu_length (const struct comp_unit_head *header)
3883 return header->initial_length_size + header->length;
3886 /* Return TRUE if OFFSET is within CU_HEADER. */
3889 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3891 sect_offset bottom = { cu_header->offset.sect_off };
3892 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3894 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3897 /* Find the base address of the compilation unit for range lists and
3898 location lists. It will normally be specified by DW_AT_low_pc.
3899 In DWARF-3 draft 4, the base address could be overridden by
3900 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3901 compilation units with discontinuous ranges. */
3904 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3906 struct attribute *attr;
3909 cu->base_address = 0;
3911 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3914 cu->base_address = DW_ADDR (attr);
3919 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3922 cu->base_address = DW_ADDR (attr);
3928 /* Read in the comp unit header information from the debug_info at info_ptr.
3929 NOTE: This leaves members offset, first_die_offset to be filled in
3933 read_comp_unit_head (struct comp_unit_head *cu_header,
3934 gdb_byte *info_ptr, bfd *abfd)
3937 unsigned int bytes_read;
3939 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3940 cu_header->initial_length_size = bytes_read;
3941 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3942 info_ptr += bytes_read;
3943 cu_header->version = read_2_bytes (abfd, info_ptr);
3945 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3947 info_ptr += bytes_read;
3948 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3950 signed_addr = bfd_get_sign_extend_vma (abfd);
3951 if (signed_addr < 0)
3952 internal_error (__FILE__, __LINE__,
3953 _("read_comp_unit_head: dwarf from non elf file"));
3954 cu_header->signed_addr_p = signed_addr;
3959 /* Helper function that returns the proper abbrev section for
3962 static struct dwarf2_section_info *
3963 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3965 struct dwarf2_section_info *abbrev;
3967 if (this_cu->is_dwz)
3968 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3970 abbrev = &dwarf2_per_objfile->abbrev;
3975 /* Subroutine of read_and_check_comp_unit_head and
3976 read_and_check_type_unit_head to simplify them.
3977 Perform various error checking on the header. */
3980 error_check_comp_unit_head (struct comp_unit_head *header,
3981 struct dwarf2_section_info *section,
3982 struct dwarf2_section_info *abbrev_section)
3984 bfd *abfd = section->asection->owner;
3985 const char *filename = bfd_get_filename (abfd);
3987 if (header->version != 2 && header->version != 3 && header->version != 4)
3988 error (_("Dwarf Error: wrong version in compilation unit header "
3989 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3992 if (header->abbrev_offset.sect_off
3993 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3994 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3995 "(offset 0x%lx + 6) [in module %s]"),
3996 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3999 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4000 avoid potential 32-bit overflow. */
4001 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4003 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4004 "(offset 0x%lx + 0) [in module %s]"),
4005 (long) header->length, (long) header->offset.sect_off,
4009 /* Read in a CU/TU header and perform some basic error checking.
4010 The contents of the header are stored in HEADER.
4011 The result is a pointer to the start of the first DIE. */
4014 read_and_check_comp_unit_head (struct comp_unit_head *header,
4015 struct dwarf2_section_info *section,
4016 struct dwarf2_section_info *abbrev_section,
4018 int is_debug_types_section)
4020 gdb_byte *beg_of_comp_unit = info_ptr;
4021 bfd *abfd = section->asection->owner;
4023 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4025 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4027 /* If we're reading a type unit, skip over the signature and
4028 type_offset fields. */
4029 if (is_debug_types_section)
4030 info_ptr += 8 /*signature*/ + header->offset_size;
4032 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4034 error_check_comp_unit_head (header, section, abbrev_section);
4039 /* Read in the types comp unit header information from .debug_types entry at
4040 types_ptr. The result is a pointer to one past the end of the header. */
4043 read_and_check_type_unit_head (struct comp_unit_head *header,
4044 struct dwarf2_section_info *section,
4045 struct dwarf2_section_info *abbrev_section,
4047 ULONGEST *signature,
4048 cu_offset *type_offset_in_tu)
4050 gdb_byte *beg_of_comp_unit = info_ptr;
4051 bfd *abfd = section->asection->owner;
4053 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4055 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4057 /* If we're reading a type unit, skip over the signature and
4058 type_offset fields. */
4059 if (signature != NULL)
4060 *signature = read_8_bytes (abfd, info_ptr);
4062 if (type_offset_in_tu != NULL)
4063 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4064 header->offset_size);
4065 info_ptr += header->offset_size;
4067 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4069 error_check_comp_unit_head (header, section, abbrev_section);
4074 /* Fetch the abbreviation table offset from a comp or type unit header. */
4077 read_abbrev_offset (struct dwarf2_section_info *section,
4080 bfd *abfd = section->asection->owner;
4082 unsigned int length, initial_length_size, offset_size;
4083 sect_offset abbrev_offset;
4085 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4086 info_ptr = section->buffer + offset.sect_off;
4087 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4088 offset_size = initial_length_size == 4 ? 4 : 8;
4089 info_ptr += initial_length_size + 2 /*version*/;
4090 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4091 return abbrev_offset;
4094 /* Allocate a new partial symtab for file named NAME and mark this new
4095 partial symtab as being an include of PST. */
4098 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4099 struct objfile *objfile)
4101 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4103 if (!IS_ABSOLUTE_PATH (subpst->filename))
4105 /* It shares objfile->objfile_obstack. */
4106 subpst->dirname = pst->dirname;
4109 subpst->section_offsets = pst->section_offsets;
4110 subpst->textlow = 0;
4111 subpst->texthigh = 0;
4113 subpst->dependencies = (struct partial_symtab **)
4114 obstack_alloc (&objfile->objfile_obstack,
4115 sizeof (struct partial_symtab *));
4116 subpst->dependencies[0] = pst;
4117 subpst->number_of_dependencies = 1;
4119 subpst->globals_offset = 0;
4120 subpst->n_global_syms = 0;
4121 subpst->statics_offset = 0;
4122 subpst->n_static_syms = 0;
4123 subpst->symtab = NULL;
4124 subpst->read_symtab = pst->read_symtab;
4127 /* No private part is necessary for include psymtabs. This property
4128 can be used to differentiate between such include psymtabs and
4129 the regular ones. */
4130 subpst->read_symtab_private = NULL;
4133 /* Read the Line Number Program data and extract the list of files
4134 included by the source file represented by PST. Build an include
4135 partial symtab for each of these included files. */
4138 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4139 struct die_info *die,
4140 struct partial_symtab *pst)
4142 struct line_header *lh = NULL;
4143 struct attribute *attr;
4145 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4147 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4149 return; /* No linetable, so no includes. */
4151 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4152 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4154 free_line_header (lh);
4158 hash_signatured_type (const void *item)
4160 const struct signatured_type *sig_type = item;
4162 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4163 return sig_type->signature;
4167 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4169 const struct signatured_type *lhs = item_lhs;
4170 const struct signatured_type *rhs = item_rhs;
4172 return lhs->signature == rhs->signature;
4175 /* Allocate a hash table for signatured types. */
4178 allocate_signatured_type_table (struct objfile *objfile)
4180 return htab_create_alloc_ex (41,
4181 hash_signatured_type,
4184 &objfile->objfile_obstack,
4185 hashtab_obstack_allocate,
4186 dummy_obstack_deallocate);
4189 /* A helper function to add a signatured type CU to a table. */
4192 add_signatured_type_cu_to_table (void **slot, void *datum)
4194 struct signatured_type *sigt = *slot;
4195 struct signatured_type ***datap = datum;
4203 /* Create the hash table of all entries in the .debug_types
4204 (or .debug_types.dwo) section(s).
4205 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4206 otherwise it is NULL.
4208 The result is a pointer to the hash table or NULL if there are no types.
4210 Note: This function processes DWO files only, not DWP files. */
4213 create_debug_types_hash_table (struct dwo_file *dwo_file,
4214 VEC (dwarf2_section_info_def) *types)
4216 struct objfile *objfile = dwarf2_per_objfile->objfile;
4217 htab_t types_htab = NULL;
4219 struct dwarf2_section_info *section;
4220 struct dwarf2_section_info *abbrev_section;
4222 if (VEC_empty (dwarf2_section_info_def, types))
4225 abbrev_section = (dwo_file != NULL
4226 ? &dwo_file->sections.abbrev
4227 : &dwarf2_per_objfile->abbrev);
4229 if (dwarf2_read_debug)
4230 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4231 dwo_file ? ".dwo" : "",
4232 bfd_get_filename (abbrev_section->asection->owner));
4235 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4239 gdb_byte *info_ptr, *end_ptr;
4240 struct dwarf2_section_info *abbrev_section;
4242 dwarf2_read_section (objfile, section);
4243 info_ptr = section->buffer;
4245 if (info_ptr == NULL)
4248 /* We can't set abfd until now because the section may be empty or
4249 not present, in which case section->asection will be NULL. */
4250 abfd = section->asection->owner;
4253 abbrev_section = &dwo_file->sections.abbrev;
4255 abbrev_section = &dwarf2_per_objfile->abbrev;
4257 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4258 because we don't need to read any dies: the signature is in the
4261 end_ptr = info_ptr + section->size;
4262 while (info_ptr < end_ptr)
4265 cu_offset type_offset_in_tu;
4267 struct signatured_type *sig_type;
4268 struct dwo_unit *dwo_tu;
4270 gdb_byte *ptr = info_ptr;
4271 struct comp_unit_head header;
4272 unsigned int length;
4274 offset.sect_off = ptr - section->buffer;
4276 /* We need to read the type's signature in order to build the hash
4277 table, but we don't need anything else just yet. */
4279 ptr = read_and_check_type_unit_head (&header, section,
4280 abbrev_section, ptr,
4281 &signature, &type_offset_in_tu);
4283 length = get_cu_length (&header);
4285 /* Skip dummy type units. */
4286 if (ptr >= info_ptr + length
4287 || peek_abbrev_code (abfd, ptr) == 0)
4293 if (types_htab == NULL)
4296 types_htab = allocate_dwo_unit_table (objfile);
4298 types_htab = allocate_signatured_type_table (objfile);
4304 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4306 dwo_tu->dwo_file = dwo_file;
4307 dwo_tu->signature = signature;
4308 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4309 dwo_tu->section = section;
4310 dwo_tu->offset = offset;
4311 dwo_tu->length = length;
4315 /* N.B.: type_offset is not usable if this type uses a DWO file.
4316 The real type_offset is in the DWO file. */
4318 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4319 struct signatured_type);
4320 sig_type->signature = signature;
4321 sig_type->type_offset_in_tu = type_offset_in_tu;
4322 sig_type->per_cu.objfile = objfile;
4323 sig_type->per_cu.is_debug_types = 1;
4324 sig_type->per_cu.section = section;
4325 sig_type->per_cu.offset = offset;
4326 sig_type->per_cu.length = length;
4329 slot = htab_find_slot (types_htab,
4330 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4332 gdb_assert (slot != NULL);
4335 sect_offset dup_offset;
4339 const struct dwo_unit *dup_tu = *slot;
4341 dup_offset = dup_tu->offset;
4345 const struct signatured_type *dup_tu = *slot;
4347 dup_offset = dup_tu->per_cu.offset;
4350 complaint (&symfile_complaints,
4351 _("debug type entry at offset 0x%x is duplicate to"
4352 " the entry at offset 0x%x, signature 0x%s"),
4353 offset.sect_off, dup_offset.sect_off,
4354 phex (signature, sizeof (signature)));
4356 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4358 if (dwarf2_read_debug)
4359 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4361 phex (signature, sizeof (signature)));
4370 /* Create the hash table of all entries in the .debug_types section,
4371 and initialize all_type_units.
4372 The result is zero if there is an error (e.g. missing .debug_types section),
4373 otherwise non-zero. */
4376 create_all_type_units (struct objfile *objfile)
4379 struct signatured_type **iter;
4381 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4382 if (types_htab == NULL)
4384 dwarf2_per_objfile->signatured_types = NULL;
4388 dwarf2_per_objfile->signatured_types = types_htab;
4390 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4391 dwarf2_per_objfile->all_type_units
4392 = obstack_alloc (&objfile->objfile_obstack,
4393 dwarf2_per_objfile->n_type_units
4394 * sizeof (struct signatured_type *));
4395 iter = &dwarf2_per_objfile->all_type_units[0];
4396 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4397 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4398 == dwarf2_per_objfile->n_type_units);
4403 /* Lookup a signature based type for DW_FORM_ref_sig8.
4404 Returns NULL if signature SIG is not present in the table.
4405 It is up to the caller to complain about this. */
4407 static struct signatured_type *
4408 lookup_signatured_type (ULONGEST sig)
4410 struct signatured_type find_entry, *entry;
4412 if (dwarf2_per_objfile->signatured_types == NULL)
4414 find_entry.signature = sig;
4415 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4419 /* Low level DIE reading support. */
4421 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4424 init_cu_die_reader (struct die_reader_specs *reader,
4425 struct dwarf2_cu *cu,
4426 struct dwarf2_section_info *section,
4427 struct dwo_file *dwo_file)
4429 gdb_assert (section->readin && section->buffer != NULL);
4430 reader->abfd = section->asection->owner;
4432 reader->dwo_file = dwo_file;
4433 reader->die_section = section;
4434 reader->buffer = section->buffer;
4435 reader->buffer_end = section->buffer + section->size;
4438 /* Subroutine of init_cutu_and_read_dies to simplify it.
4439 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4440 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4443 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4444 from it to the DIE in the DWO. If NULL we are skipping the stub.
4445 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4446 are filled in with the info of the DIE from the DWO file.
4447 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4448 provided an abbrev table to use.
4449 The result is non-zero if a valid (non-dummy) DIE was found. */
4452 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4453 struct dwo_unit *dwo_unit,
4454 int abbrev_table_provided,
4455 struct die_info *stub_comp_unit_die,
4456 struct die_reader_specs *result_reader,
4457 gdb_byte **result_info_ptr,
4458 struct die_info **result_comp_unit_die,
4459 int *result_has_children)
4461 struct objfile *objfile = dwarf2_per_objfile->objfile;
4462 struct dwarf2_cu *cu = this_cu->cu;
4463 struct dwarf2_section_info *section;
4465 gdb_byte *begin_info_ptr, *info_ptr;
4466 const char *comp_dir_string;
4467 ULONGEST signature; /* Or dwo_id. */
4468 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4469 int i,num_extra_attrs;
4470 struct dwarf2_section_info *dwo_abbrev_section;
4471 struct attribute *attr;
4472 struct die_info *comp_unit_die;
4474 /* These attributes aren't processed until later:
4475 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4476 However, the attribute is found in the stub which we won't have later.
4477 In order to not impose this complication on the rest of the code,
4478 we read them here and copy them to the DWO CU/TU die. */
4486 if (stub_comp_unit_die != NULL)
4488 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4490 if (! this_cu->is_debug_types)
4491 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4492 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4493 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4494 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4495 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4497 /* There should be a DW_AT_addr_base attribute here (if needed).
4498 We need the value before we can process DW_FORM_GNU_addr_index. */
4500 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4502 cu->addr_base = DW_UNSND (attr);
4504 /* There should be a DW_AT_ranges_base attribute here (if needed).
4505 We need the value before we can process DW_AT_ranges. */
4506 cu->ranges_base = 0;
4507 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4509 cu->ranges_base = DW_UNSND (attr);
4512 /* Set up for reading the DWO CU/TU. */
4513 cu->dwo_unit = dwo_unit;
4514 section = dwo_unit->section;
4515 dwarf2_read_section (objfile, section);
4516 abfd = section->asection->owner;
4517 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4518 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4519 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4521 if (this_cu->is_debug_types)
4523 ULONGEST header_signature;
4524 cu_offset type_offset_in_tu;
4525 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4527 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4531 &type_offset_in_tu);
4532 gdb_assert (sig_type->signature == header_signature);
4533 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4534 /* For DWOs coming from DWP files, we don't know the CU length
4535 nor the type's offset in the TU until now. */
4536 dwo_unit->length = get_cu_length (&cu->header);
4537 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4539 /* Establish the type offset that can be used to lookup the type.
4540 For DWO files, we don't know it until now. */
4541 sig_type->type_offset_in_section.sect_off =
4542 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4546 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4549 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4550 /* For DWOs coming from DWP files, we don't know the CU length
4552 dwo_unit->length = get_cu_length (&cu->header);
4555 /* Replace the CU's original abbrev table with the DWO's. */
4556 if (abbrev_table_provided)
4558 /* Don't free the provided abbrev table, the caller of
4559 init_cutu_and_read_dies owns it. */
4560 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4561 make_cleanup (dwarf2_free_abbrev_table, cu);
4565 dwarf2_free_abbrev_table (cu);
4566 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4569 /* Read in the die, but leave space to copy over the attributes
4570 from the stub. This has the benefit of simplifying the rest of
4571 the code - all the work to maintain the illusion of a single
4572 DW_TAG_{compile,type}_unit DIE is done here. */
4573 num_extra_attrs = ((stmt_list != NULL)
4577 + (comp_dir != NULL));
4578 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4579 result_has_children, num_extra_attrs);
4581 /* Copy over the attributes from the stub to the DIE we just read in. */
4582 comp_unit_die = *result_comp_unit_die;
4583 i = comp_unit_die->num_attrs;
4584 if (stmt_list != NULL)
4585 comp_unit_die->attrs[i++] = *stmt_list;
4587 comp_unit_die->attrs[i++] = *low_pc;
4588 if (high_pc != NULL)
4589 comp_unit_die->attrs[i++] = *high_pc;
4591 comp_unit_die->attrs[i++] = *ranges;
4592 if (comp_dir != NULL)
4593 comp_unit_die->attrs[i++] = *comp_dir;
4594 comp_unit_die->num_attrs += num_extra_attrs;
4596 /* Skip dummy compilation units. */
4597 if (info_ptr >= begin_info_ptr + dwo_unit->length
4598 || peek_abbrev_code (abfd, info_ptr) == 0)
4601 *result_info_ptr = info_ptr;
4605 /* Subroutine of init_cutu_and_read_dies to simplify it.
4606 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4607 If the specified DWO unit cannot be found an error is thrown. */
4609 static struct dwo_unit *
4610 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4611 struct die_info *comp_unit_die)
4613 struct dwarf2_cu *cu = this_cu->cu;
4614 struct attribute *attr;
4616 struct dwo_unit *dwo_unit;
4617 const char *comp_dir, *dwo_name;
4619 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4620 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4621 gdb_assert (attr != NULL);
4622 dwo_name = DW_STRING (attr);
4624 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4626 comp_dir = DW_STRING (attr);
4628 if (this_cu->is_debug_types)
4630 struct signatured_type *sig_type;
4632 /* Since this_cu is the first member of struct signatured_type,
4633 we can go from a pointer to one to a pointer to the other. */
4634 sig_type = (struct signatured_type *) this_cu;
4635 signature = sig_type->signature;
4636 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4640 struct attribute *attr;
4642 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4644 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4646 dwo_name, this_cu->objfile->name);
4647 signature = DW_UNSND (attr);
4648 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4652 if (dwo_unit == NULL)
4654 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4655 " with ID %s [in module %s]"),
4656 this_cu->offset.sect_off,
4657 phex (signature, sizeof (signature)),
4658 this_cu->objfile->name);
4664 /* Initialize a CU (or TU) and read its DIEs.
4665 If the CU defers to a DWO file, read the DWO file as well.
4667 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4668 Otherwise the table specified in the comp unit header is read in and used.
4669 This is an optimization for when we already have the abbrev table.
4671 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4672 Otherwise, a new CU is allocated with xmalloc.
4674 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4675 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4677 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4678 linker) then DIE_READER_FUNC will not get called. */
4681 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4682 struct abbrev_table *abbrev_table,
4683 int use_existing_cu, int keep,
4684 die_reader_func_ftype *die_reader_func,
4687 struct objfile *objfile = dwarf2_per_objfile->objfile;
4688 struct dwarf2_section_info *section = this_cu->section;
4689 bfd *abfd = section->asection->owner;
4690 struct dwarf2_cu *cu;
4691 gdb_byte *begin_info_ptr, *info_ptr;
4692 struct die_reader_specs reader;
4693 struct die_info *comp_unit_die;
4695 struct attribute *attr;
4696 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4697 struct signatured_type *sig_type = NULL;
4698 struct dwarf2_section_info *abbrev_section;
4699 /* Non-zero if CU currently points to a DWO file and we need to
4700 reread it. When this happens we need to reread the skeleton die
4701 before we can reread the DWO file. */
4702 int rereading_dwo_cu = 0;
4704 if (dwarf2_die_debug)
4705 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4706 this_cu->is_debug_types ? "type" : "comp",
4707 this_cu->offset.sect_off);
4709 if (use_existing_cu)
4712 cleanups = make_cleanup (null_cleanup, NULL);
4714 /* This is cheap if the section is already read in. */
4715 dwarf2_read_section (objfile, section);
4717 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4719 abbrev_section = get_abbrev_section_for_cu (this_cu);
4721 if (use_existing_cu && this_cu->cu != NULL)
4725 /* If this CU is from a DWO file we need to start over, we need to
4726 refetch the attributes from the skeleton CU.
4727 This could be optimized by retrieving those attributes from when we
4728 were here the first time: the previous comp_unit_die was stored in
4729 comp_unit_obstack. But there's no data yet that we need this
4731 if (cu->dwo_unit != NULL)
4732 rereading_dwo_cu = 1;
4736 /* If !use_existing_cu, this_cu->cu must be NULL. */
4737 gdb_assert (this_cu->cu == NULL);
4739 cu = xmalloc (sizeof (*cu));
4740 init_one_comp_unit (cu, this_cu);
4742 /* If an error occurs while loading, release our storage. */
4743 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4746 /* Get the header. */
4747 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4749 /* We already have the header, there's no need to read it in again. */
4750 info_ptr += cu->header.first_die_offset.cu_off;
4754 if (this_cu->is_debug_types)
4757 cu_offset type_offset_in_tu;
4759 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4760 abbrev_section, info_ptr,
4762 &type_offset_in_tu);
4764 /* Since per_cu is the first member of struct signatured_type,
4765 we can go from a pointer to one to a pointer to the other. */
4766 sig_type = (struct signatured_type *) this_cu;
4767 gdb_assert (sig_type->signature == signature);
4768 gdb_assert (sig_type->type_offset_in_tu.cu_off
4769 == type_offset_in_tu.cu_off);
4770 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4772 /* LENGTH has not been set yet for type units if we're
4773 using .gdb_index. */
4774 this_cu->length = get_cu_length (&cu->header);
4776 /* Establish the type offset that can be used to lookup the type. */
4777 sig_type->type_offset_in_section.sect_off =
4778 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4782 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4786 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4787 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4791 /* Skip dummy compilation units. */
4792 if (info_ptr >= begin_info_ptr + this_cu->length
4793 || peek_abbrev_code (abfd, info_ptr) == 0)
4795 do_cleanups (cleanups);
4799 /* If we don't have them yet, read the abbrevs for this compilation unit.
4800 And if we need to read them now, make sure they're freed when we're
4801 done. Note that it's important that if the CU had an abbrev table
4802 on entry we don't free it when we're done: Somewhere up the call stack
4803 it may be in use. */
4804 if (abbrev_table != NULL)
4806 gdb_assert (cu->abbrev_table == NULL);
4807 gdb_assert (cu->header.abbrev_offset.sect_off
4808 == abbrev_table->offset.sect_off);
4809 cu->abbrev_table = abbrev_table;
4811 else if (cu->abbrev_table == NULL)
4813 dwarf2_read_abbrevs (cu, abbrev_section);
4814 make_cleanup (dwarf2_free_abbrev_table, cu);
4816 else if (rereading_dwo_cu)
4818 dwarf2_free_abbrev_table (cu);
4819 dwarf2_read_abbrevs (cu, abbrev_section);
4822 /* Read the top level CU/TU die. */
4823 init_cu_die_reader (&reader, cu, section, NULL);
4824 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4826 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
4828 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
4829 DWO CU, that this test will fail (the attribute will not be present). */
4830 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4833 struct dwo_unit *dwo_unit;
4834 struct die_info *dwo_comp_unit_die;
4837 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4838 " has children (offset 0x%x) [in module %s]"),
4839 this_cu->offset.sect_off, bfd_get_filename (abfd));
4840 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
4841 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
4842 abbrev_table != NULL,
4845 &dwo_comp_unit_die, &has_children) == 0)
4848 do_cleanups (cleanups);
4851 comp_unit_die = dwo_comp_unit_die;
4854 /* All of the above is setup for this call. Yikes. */
4855 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4857 /* Done, clean up. */
4858 if (free_cu_cleanup != NULL)
4862 /* We've successfully allocated this compilation unit. Let our
4863 caller clean it up when finished with it. */
4864 discard_cleanups (free_cu_cleanup);
4866 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4867 So we have to manually free the abbrev table. */
4868 dwarf2_free_abbrev_table (cu);
4870 /* Link this CU into read_in_chain. */
4871 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4872 dwarf2_per_objfile->read_in_chain = this_cu;
4875 do_cleanups (free_cu_cleanup);
4878 do_cleanups (cleanups);
4881 /* Read CU/TU THIS_CU in section SECTION,
4882 but do not follow DW_AT_GNU_dwo_name if present.
4883 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4884 to have already done the lookup to find the DWO/DWP file).
4886 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4887 THIS_CU->is_debug_types, but nothing else.
4889 We fill in THIS_CU->length.
4891 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4892 linker) then DIE_READER_FUNC will not get called.
4894 THIS_CU->cu is always freed when done.
4895 This is done in order to not leave THIS_CU->cu in a state where we have
4896 to care whether it refers to the "main" CU or the DWO CU. */
4899 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4900 struct dwarf2_section_info *abbrev_section,
4901 struct dwo_file *dwo_file,
4902 die_reader_func_ftype *die_reader_func,
4905 struct objfile *objfile = dwarf2_per_objfile->objfile;
4906 struct dwarf2_section_info *section = this_cu->section;
4907 bfd *abfd = section->asection->owner;
4908 struct dwarf2_cu cu;
4909 gdb_byte *begin_info_ptr, *info_ptr;
4910 struct die_reader_specs reader;
4911 struct cleanup *cleanups;
4912 struct die_info *comp_unit_die;
4915 if (dwarf2_die_debug)
4916 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4917 this_cu->is_debug_types ? "type" : "comp",
4918 this_cu->offset.sect_off);
4920 gdb_assert (this_cu->cu == NULL);
4922 /* This is cheap if the section is already read in. */
4923 dwarf2_read_section (objfile, section);
4925 init_one_comp_unit (&cu, this_cu);
4927 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4929 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4930 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4931 abbrev_section, info_ptr,
4932 this_cu->is_debug_types);
4934 this_cu->length = get_cu_length (&cu.header);
4936 /* Skip dummy compilation units. */
4937 if (info_ptr >= begin_info_ptr + this_cu->length
4938 || peek_abbrev_code (abfd, info_ptr) == 0)
4940 do_cleanups (cleanups);
4944 dwarf2_read_abbrevs (&cu, abbrev_section);
4945 make_cleanup (dwarf2_free_abbrev_table, &cu);
4947 init_cu_die_reader (&reader, &cu, section, dwo_file);
4948 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4950 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4952 do_cleanups (cleanups);
4955 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4956 does not lookup the specified DWO file.
4957 This cannot be used to read DWO files.
4959 THIS_CU->cu is always freed when done.
4960 This is done in order to not leave THIS_CU->cu in a state where we have
4961 to care whether it refers to the "main" CU or the DWO CU.
4962 We can revisit this if the data shows there's a performance issue. */
4965 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4966 die_reader_func_ftype *die_reader_func,
4969 init_cutu_and_read_dies_no_follow (this_cu,
4970 get_abbrev_section_for_cu (this_cu),
4972 die_reader_func, data);
4975 /* Type Unit Groups.
4977 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4978 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4979 so that all types coming from the same compilation (.o file) are grouped
4980 together. A future step could be to put the types in the same symtab as
4981 the CU the types ultimately came from. */
4984 hash_type_unit_group (const void *item)
4986 const struct type_unit_group *tu_group = item;
4988 return hash_stmt_list_entry (&tu_group->hash);
4992 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4994 const struct type_unit_group *lhs = item_lhs;
4995 const struct type_unit_group *rhs = item_rhs;
4997 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5000 /* Allocate a hash table for type unit groups. */
5003 allocate_type_unit_groups_table (void)
5005 return htab_create_alloc_ex (3,
5006 hash_type_unit_group,
5009 &dwarf2_per_objfile->objfile->objfile_obstack,
5010 hashtab_obstack_allocate,
5011 dummy_obstack_deallocate);
5014 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5015 partial symtabs. We combine several TUs per psymtab to not let the size
5016 of any one psymtab grow too big. */
5017 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5018 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5020 /* Helper routine for get_type_unit_group.
5021 Create the type_unit_group object used to hold one or more TUs. */
5023 static struct type_unit_group *
5024 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5026 struct objfile *objfile = dwarf2_per_objfile->objfile;
5027 struct dwarf2_per_cu_data *per_cu;
5028 struct type_unit_group *tu_group;
5030 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5031 struct type_unit_group);
5032 per_cu = &tu_group->per_cu;
5033 per_cu->objfile = objfile;
5034 per_cu->is_debug_types = 1;
5035 per_cu->type_unit_group = tu_group;
5037 if (dwarf2_per_objfile->using_index)
5039 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5040 struct dwarf2_per_cu_quick_data);
5041 tu_group->t.first_tu = cu->per_cu;
5045 unsigned int line_offset = line_offset_struct.sect_off;
5046 struct partial_symtab *pst;
5049 /* Give the symtab a useful name for debug purposes. */
5050 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5051 name = xstrprintf ("<type_units_%d>",
5052 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5054 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5056 pst = create_partial_symtab (per_cu, name);
5062 tu_group->hash.dwo_unit = cu->dwo_unit;
5063 tu_group->hash.line_offset = line_offset_struct;
5068 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5069 STMT_LIST is a DW_AT_stmt_list attribute. */
5071 static struct type_unit_group *
5072 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5074 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5075 struct type_unit_group *tu_group;
5077 unsigned int line_offset;
5078 struct type_unit_group type_unit_group_for_lookup;
5080 if (dwarf2_per_objfile->type_unit_groups == NULL)
5082 dwarf2_per_objfile->type_unit_groups =
5083 allocate_type_unit_groups_table ();
5086 /* Do we need to create a new group, or can we use an existing one? */
5090 line_offset = DW_UNSND (stmt_list);
5091 ++tu_stats->nr_symtab_sharers;
5095 /* Ugh, no stmt_list. Rare, but we have to handle it.
5096 We can do various things here like create one group per TU or
5097 spread them over multiple groups to split up the expansion work.
5098 To avoid worst case scenarios (too many groups or too large groups)
5099 we, umm, group them in bunches. */
5100 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5101 | (tu_stats->nr_stmt_less_type_units
5102 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5103 ++tu_stats->nr_stmt_less_type_units;
5106 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5107 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5108 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5109 &type_unit_group_for_lookup, INSERT);
5113 gdb_assert (tu_group != NULL);
5117 sect_offset line_offset_struct;
5119 line_offset_struct.sect_off = line_offset;
5120 tu_group = create_type_unit_group (cu, line_offset_struct);
5122 ++tu_stats->nr_symtabs;
5128 /* Struct used to sort TUs by their abbreviation table offset. */
5130 struct tu_abbrev_offset
5132 struct signatured_type *sig_type;
5133 sect_offset abbrev_offset;
5136 /* Helper routine for build_type_unit_groups, passed to qsort. */
5139 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5141 const struct tu_abbrev_offset * const *a = ap;
5142 const struct tu_abbrev_offset * const *b = bp;
5143 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5144 unsigned int boff = (*b)->abbrev_offset.sect_off;
5146 return (aoff > boff) - (aoff < boff);
5149 /* A helper function to add a type_unit_group to a table. */
5152 add_type_unit_group_to_table (void **slot, void *datum)
5154 struct type_unit_group *tu_group = *slot;
5155 struct type_unit_group ***datap = datum;
5163 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5164 each one passing FUNC,DATA.
5166 The efficiency is because we sort TUs by the abbrev table they use and
5167 only read each abbrev table once. In one program there are 200K TUs
5168 sharing 8K abbrev tables.
5170 The main purpose of this function is to support building the
5171 dwarf2_per_objfile->type_unit_groups table.
5172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5173 can collapse the search space by grouping them by stmt_list.
5174 The savings can be significant, in the same program from above the 200K TUs
5175 share 8K stmt_list tables.
5177 FUNC is expected to call get_type_unit_group, which will create the
5178 struct type_unit_group if necessary and add it to
5179 dwarf2_per_objfile->type_unit_groups. */
5182 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5184 struct objfile *objfile = dwarf2_per_objfile->objfile;
5185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5186 struct cleanup *cleanups;
5187 struct abbrev_table *abbrev_table;
5188 sect_offset abbrev_offset;
5189 struct tu_abbrev_offset *sorted_by_abbrev;
5190 struct type_unit_group **iter;
5193 /* It's up to the caller to not call us multiple times. */
5194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5196 if (dwarf2_per_objfile->n_type_units == 0)
5199 /* TUs typically share abbrev tables, and there can be way more TUs than
5200 abbrev tables. Sort by abbrev table to reduce the number of times we
5201 read each abbrev table in.
5202 Alternatives are to punt or to maintain a cache of abbrev tables.
5203 This is simpler and efficient enough for now.
5205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5206 symtab to use). Typically TUs with the same abbrev offset have the same
5207 stmt_list value too so in practice this should work well.
5209 The basic algorithm here is:
5211 sort TUs by abbrev table
5212 for each TU with same abbrev table:
5213 read abbrev table if first user
5214 read TU top level DIE
5215 [IWBN if DWO skeletons had DW_AT_stmt_list]
5218 if (dwarf2_read_debug)
5219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5221 /* Sort in a separate table to maintain the order of all_type_units
5222 for .gdb_index: TU indices directly index all_type_units. */
5223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5224 dwarf2_per_objfile->n_type_units);
5225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5229 sorted_by_abbrev[i].sig_type = sig_type;
5230 sorted_by_abbrev[i].abbrev_offset =
5231 read_abbrev_offset (sig_type->per_cu.section,
5232 sig_type->per_cu.offset);
5234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5238 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5239 called any number of times, so we don't reset tu_stats here. */
5241 abbrev_offset.sect_off = ~(unsigned) 0;
5242 abbrev_table = NULL;
5243 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5245 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5247 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5249 /* Switch to the next abbrev table if necessary. */
5250 if (abbrev_table == NULL
5251 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5253 if (abbrev_table != NULL)
5255 abbrev_table_free (abbrev_table);
5256 /* Reset to NULL in case abbrev_table_read_table throws
5257 an error: abbrev_table_free_cleanup will get called. */
5258 abbrev_table = NULL;
5260 abbrev_offset = tu->abbrev_offset;
5262 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5264 ++tu_stats->nr_uniq_abbrev_tables;
5267 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5271 /* Create a vector of pointers to primary type units to make it easy to
5272 iterate over them and CUs. See dw2_get_primary_cu. */
5273 dwarf2_per_objfile->n_type_unit_groups =
5274 htab_elements (dwarf2_per_objfile->type_unit_groups);
5275 dwarf2_per_objfile->all_type_unit_groups =
5276 obstack_alloc (&objfile->objfile_obstack,
5277 dwarf2_per_objfile->n_type_unit_groups
5278 * sizeof (struct type_unit_group *));
5279 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5280 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5281 add_type_unit_group_to_table, &iter);
5282 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5283 == dwarf2_per_objfile->n_type_unit_groups);
5285 do_cleanups (cleanups);
5287 if (dwarf2_read_debug)
5289 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5290 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5291 dwarf2_per_objfile->n_type_units);
5292 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5293 tu_stats->nr_uniq_abbrev_tables);
5294 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5295 tu_stats->nr_symtabs);
5296 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5297 tu_stats->nr_symtab_sharers);
5298 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5299 tu_stats->nr_stmt_less_type_units);
5303 /* Partial symbol tables. */
5305 /* Create a psymtab named NAME and assign it to PER_CU.
5307 The caller must fill in the following details:
5308 dirname, textlow, texthigh. */
5310 static struct partial_symtab *
5311 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5313 struct objfile *objfile = per_cu->objfile;
5314 struct partial_symtab *pst;
5316 pst = start_psymtab_common (objfile, objfile->section_offsets,
5318 objfile->global_psymbols.next,
5319 objfile->static_psymbols.next);
5321 pst->psymtabs_addrmap_supported = 1;
5323 /* This is the glue that links PST into GDB's symbol API. */
5324 pst->read_symtab_private = per_cu;
5325 pst->read_symtab = dwarf2_read_symtab;
5326 per_cu->v.psymtab = pst;
5331 /* die_reader_func for process_psymtab_comp_unit. */
5334 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5336 struct die_info *comp_unit_die,
5340 struct dwarf2_cu *cu = reader->cu;
5341 struct objfile *objfile = cu->objfile;
5342 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5343 struct attribute *attr;
5345 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5346 struct partial_symtab *pst;
5348 const char *filename;
5349 int *want_partial_unit_ptr = data;
5351 if (comp_unit_die->tag == DW_TAG_partial_unit
5352 && (want_partial_unit_ptr == NULL
5353 || !*want_partial_unit_ptr))
5356 gdb_assert (! per_cu->is_debug_types);
5358 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5360 cu->list_in_scope = &file_symbols;
5362 /* Allocate a new partial symbol table structure. */
5363 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5364 if (attr == NULL || !DW_STRING (attr))
5367 filename = DW_STRING (attr);
5369 pst = create_partial_symtab (per_cu, filename);
5371 /* This must be done before calling dwarf2_build_include_psymtabs. */
5372 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5374 pst->dirname = DW_STRING (attr);
5376 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5378 dwarf2_find_base_address (comp_unit_die, cu);
5380 /* Possibly set the default values of LOWPC and HIGHPC from
5382 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5383 &best_highpc, cu, pst);
5384 if (has_pc_info == 1 && best_lowpc < best_highpc)
5385 /* Store the contiguous range if it is not empty; it can be empty for
5386 CUs with no code. */
5387 addrmap_set_empty (objfile->psymtabs_addrmap,
5388 best_lowpc + baseaddr,
5389 best_highpc + baseaddr - 1, pst);
5391 /* Check if comp unit has_children.
5392 If so, read the rest of the partial symbols from this comp unit.
5393 If not, there's no more debug_info for this comp unit. */
5396 struct partial_die_info *first_die;
5397 CORE_ADDR lowpc, highpc;
5399 lowpc = ((CORE_ADDR) -1);
5400 highpc = ((CORE_ADDR) 0);
5402 first_die = load_partial_dies (reader, info_ptr, 1);
5404 scan_partial_symbols (first_die, &lowpc, &highpc,
5407 /* If we didn't find a lowpc, set it to highpc to avoid
5408 complaints from `maint check'. */
5409 if (lowpc == ((CORE_ADDR) -1))
5412 /* If the compilation unit didn't have an explicit address range,
5413 then use the information extracted from its child dies. */
5417 best_highpc = highpc;
5420 pst->textlow = best_lowpc + baseaddr;
5421 pst->texthigh = best_highpc + baseaddr;
5423 pst->n_global_syms = objfile->global_psymbols.next -
5424 (objfile->global_psymbols.list + pst->globals_offset);
5425 pst->n_static_syms = objfile->static_psymbols.next -
5426 (objfile->static_psymbols.list + pst->statics_offset);
5427 sort_pst_symbols (objfile, pst);
5429 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5432 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5433 struct dwarf2_per_cu_data *iter;
5435 /* Fill in 'dependencies' here; we fill in 'users' in a
5437 pst->number_of_dependencies = len;
5438 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5439 len * sizeof (struct symtab *));
5441 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5444 pst->dependencies[i] = iter->v.psymtab;
5446 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5449 /* Get the list of files included in the current compilation unit,
5450 and build a psymtab for each of them. */
5451 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5453 if (dwarf2_read_debug)
5455 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5457 fprintf_unfiltered (gdb_stdlog,
5458 "Psymtab for %s unit @0x%x: %s - %s"
5459 ", %d global, %d static syms\n",
5460 per_cu->is_debug_types ? "type" : "comp",
5461 per_cu->offset.sect_off,
5462 paddress (gdbarch, pst->textlow),
5463 paddress (gdbarch, pst->texthigh),
5464 pst->n_global_syms, pst->n_static_syms);
5468 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5469 Process compilation unit THIS_CU for a psymtab. */
5472 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5473 int want_partial_unit)
5475 /* If this compilation unit was already read in, free the
5476 cached copy in order to read it in again. This is
5477 necessary because we skipped some symbols when we first
5478 read in the compilation unit (see load_partial_dies).
5479 This problem could be avoided, but the benefit is unclear. */
5480 if (this_cu->cu != NULL)
5481 free_one_cached_comp_unit (this_cu);
5483 gdb_assert (! this_cu->is_debug_types);
5484 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5485 process_psymtab_comp_unit_reader,
5486 &want_partial_unit);
5488 /* Age out any secondary CUs. */
5489 age_cached_comp_units ();
5492 /* Reader function for build_type_psymtabs. */
5495 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5497 struct die_info *type_unit_die,
5501 struct objfile *objfile = dwarf2_per_objfile->objfile;
5502 struct dwarf2_cu *cu = reader->cu;
5503 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5504 struct type_unit_group *tu_group;
5505 struct attribute *attr;
5506 struct partial_die_info *first_die;
5507 CORE_ADDR lowpc, highpc;
5508 struct partial_symtab *pst;
5510 gdb_assert (data == NULL);
5515 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5516 tu_group = get_type_unit_group (cu, attr);
5518 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5520 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5521 cu->list_in_scope = &file_symbols;
5522 pst = create_partial_symtab (per_cu, "");
5525 first_die = load_partial_dies (reader, info_ptr, 1);
5527 lowpc = (CORE_ADDR) -1;
5528 highpc = (CORE_ADDR) 0;
5529 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5531 pst->n_global_syms = objfile->global_psymbols.next -
5532 (objfile->global_psymbols.list + pst->globals_offset);
5533 pst->n_static_syms = objfile->static_psymbols.next -
5534 (objfile->static_psymbols.list + pst->statics_offset);
5535 sort_pst_symbols (objfile, pst);
5538 /* Traversal function for build_type_psymtabs. */
5541 build_type_psymtab_dependencies (void **slot, void *info)
5543 struct objfile *objfile = dwarf2_per_objfile->objfile;
5544 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5545 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5546 struct partial_symtab *pst = per_cu->v.psymtab;
5547 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5548 struct dwarf2_per_cu_data *iter;
5551 gdb_assert (len > 0);
5553 pst->number_of_dependencies = len;
5554 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5555 len * sizeof (struct psymtab *));
5557 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5560 pst->dependencies[i] = iter->v.psymtab;
5561 iter->type_unit_group = tu_group;
5564 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5569 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5570 Build partial symbol tables for the .debug_types comp-units. */
5573 build_type_psymtabs (struct objfile *objfile)
5575 if (! create_all_type_units (objfile))
5578 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5580 /* Now that all TUs have been processed we can fill in the dependencies. */
5581 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5582 build_type_psymtab_dependencies, NULL);
5585 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5588 psymtabs_addrmap_cleanup (void *o)
5590 struct objfile *objfile = o;
5592 objfile->psymtabs_addrmap = NULL;
5595 /* Compute the 'user' field for each psymtab in OBJFILE. */
5598 set_partial_user (struct objfile *objfile)
5602 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5604 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5605 struct partial_symtab *pst = per_cu->v.psymtab;
5611 for (j = 0; j < pst->number_of_dependencies; ++j)
5613 /* Set the 'user' field only if it is not already set. */
5614 if (pst->dependencies[j]->user == NULL)
5615 pst->dependencies[j]->user = pst;
5620 /* Build the partial symbol table by doing a quick pass through the
5621 .debug_info and .debug_abbrev sections. */
5624 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5626 struct cleanup *back_to, *addrmap_cleanup;
5627 struct obstack temp_obstack;
5630 if (dwarf2_read_debug)
5632 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5636 dwarf2_per_objfile->reading_partial_symbols = 1;
5638 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5640 /* Any cached compilation units will be linked by the per-objfile
5641 read_in_chain. Make sure to free them when we're done. */
5642 back_to = make_cleanup (free_cached_comp_units, NULL);
5644 build_type_psymtabs (objfile);
5646 create_all_comp_units (objfile);
5648 /* Create a temporary address map on a temporary obstack. We later
5649 copy this to the final obstack. */
5650 obstack_init (&temp_obstack);
5651 make_cleanup_obstack_free (&temp_obstack);
5652 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5653 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5655 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5657 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5659 process_psymtab_comp_unit (per_cu, 0);
5662 set_partial_user (objfile);
5664 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5665 &objfile->objfile_obstack);
5666 discard_cleanups (addrmap_cleanup);
5668 do_cleanups (back_to);
5670 if (dwarf2_read_debug)
5671 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5675 /* die_reader_func for load_partial_comp_unit. */
5678 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5680 struct die_info *comp_unit_die,
5684 struct dwarf2_cu *cu = reader->cu;
5686 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5688 /* Check if comp unit has_children.
5689 If so, read the rest of the partial symbols from this comp unit.
5690 If not, there's no more debug_info for this comp unit. */
5692 load_partial_dies (reader, info_ptr, 0);
5695 /* Load the partial DIEs for a secondary CU into memory.
5696 This is also used when rereading a primary CU with load_all_dies. */
5699 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5701 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5702 load_partial_comp_unit_reader, NULL);
5706 read_comp_units_from_section (struct objfile *objfile,
5707 struct dwarf2_section_info *section,
5708 unsigned int is_dwz,
5711 struct dwarf2_per_cu_data ***all_comp_units)
5714 bfd *abfd = section->asection->owner;
5716 dwarf2_read_section (objfile, section);
5718 info_ptr = section->buffer;
5720 while (info_ptr < section->buffer + section->size)
5722 unsigned int length, initial_length_size;
5723 struct dwarf2_per_cu_data *this_cu;
5726 offset.sect_off = info_ptr - section->buffer;
5728 /* Read just enough information to find out where the next
5729 compilation unit is. */
5730 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5732 /* Save the compilation unit for later lookup. */
5733 this_cu = obstack_alloc (&objfile->objfile_obstack,
5734 sizeof (struct dwarf2_per_cu_data));
5735 memset (this_cu, 0, sizeof (*this_cu));
5736 this_cu->offset = offset;
5737 this_cu->length = length + initial_length_size;
5738 this_cu->is_dwz = is_dwz;
5739 this_cu->objfile = objfile;
5740 this_cu->section = section;
5742 if (*n_comp_units == *n_allocated)
5745 *all_comp_units = xrealloc (*all_comp_units,
5747 * sizeof (struct dwarf2_per_cu_data *));
5749 (*all_comp_units)[*n_comp_units] = this_cu;
5752 info_ptr = info_ptr + this_cu->length;
5756 /* Create a list of all compilation units in OBJFILE.
5757 This is only done for -readnow and building partial symtabs. */
5760 create_all_comp_units (struct objfile *objfile)
5764 struct dwarf2_per_cu_data **all_comp_units;
5768 all_comp_units = xmalloc (n_allocated
5769 * sizeof (struct dwarf2_per_cu_data *));
5771 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5772 &n_allocated, &n_comp_units, &all_comp_units);
5774 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5776 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5778 read_comp_units_from_section (objfile, &dwz->info, 1,
5779 &n_allocated, &n_comp_units,
5783 dwarf2_per_objfile->all_comp_units
5784 = obstack_alloc (&objfile->objfile_obstack,
5785 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5786 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5787 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5788 xfree (all_comp_units);
5789 dwarf2_per_objfile->n_comp_units = n_comp_units;
5792 /* Process all loaded DIEs for compilation unit CU, starting at
5793 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5794 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5795 DW_AT_ranges). If NEED_PC is set, then this function will set
5796 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5797 and record the covered ranges in the addrmap. */
5800 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5801 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5803 struct partial_die_info *pdi;
5805 /* Now, march along the PDI's, descending into ones which have
5806 interesting children but skipping the children of the other ones,
5807 until we reach the end of the compilation unit. */
5813 fixup_partial_die (pdi, cu);
5815 /* Anonymous namespaces or modules have no name but have interesting
5816 children, so we need to look at them. Ditto for anonymous
5819 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5820 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5821 || pdi->tag == DW_TAG_imported_unit)
5825 case DW_TAG_subprogram:
5826 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5828 case DW_TAG_constant:
5829 case DW_TAG_variable:
5830 case DW_TAG_typedef:
5831 case DW_TAG_union_type:
5832 if (!pdi->is_declaration)
5834 add_partial_symbol (pdi, cu);
5837 case DW_TAG_class_type:
5838 case DW_TAG_interface_type:
5839 case DW_TAG_structure_type:
5840 if (!pdi->is_declaration)
5842 add_partial_symbol (pdi, cu);
5845 case DW_TAG_enumeration_type:
5846 if (!pdi->is_declaration)
5847 add_partial_enumeration (pdi, cu);
5849 case DW_TAG_base_type:
5850 case DW_TAG_subrange_type:
5851 /* File scope base type definitions are added to the partial
5853 add_partial_symbol (pdi, cu);
5855 case DW_TAG_namespace:
5856 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5859 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5861 case DW_TAG_imported_unit:
5863 struct dwarf2_per_cu_data *per_cu;
5865 /* For now we don't handle imported units in type units. */
5866 if (cu->per_cu->is_debug_types)
5868 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5869 " supported in type units [in module %s]"),
5873 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5877 /* Go read the partial unit, if needed. */
5878 if (per_cu->v.psymtab == NULL)
5879 process_psymtab_comp_unit (per_cu, 1);
5881 VEC_safe_push (dwarf2_per_cu_ptr,
5882 cu->per_cu->imported_symtabs, per_cu);
5890 /* If the die has a sibling, skip to the sibling. */
5892 pdi = pdi->die_sibling;
5896 /* Functions used to compute the fully scoped name of a partial DIE.
5898 Normally, this is simple. For C++, the parent DIE's fully scoped
5899 name is concatenated with "::" and the partial DIE's name. For
5900 Java, the same thing occurs except that "." is used instead of "::".
5901 Enumerators are an exception; they use the scope of their parent
5902 enumeration type, i.e. the name of the enumeration type is not
5903 prepended to the enumerator.
5905 There are two complexities. One is DW_AT_specification; in this
5906 case "parent" means the parent of the target of the specification,
5907 instead of the direct parent of the DIE. The other is compilers
5908 which do not emit DW_TAG_namespace; in this case we try to guess
5909 the fully qualified name of structure types from their members'
5910 linkage names. This must be done using the DIE's children rather
5911 than the children of any DW_AT_specification target. We only need
5912 to do this for structures at the top level, i.e. if the target of
5913 any DW_AT_specification (if any; otherwise the DIE itself) does not
5916 /* Compute the scope prefix associated with PDI's parent, in
5917 compilation unit CU. The result will be allocated on CU's
5918 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5919 field. NULL is returned if no prefix is necessary. */
5921 partial_die_parent_scope (struct partial_die_info *pdi,
5922 struct dwarf2_cu *cu)
5924 const char *grandparent_scope;
5925 struct partial_die_info *parent, *real_pdi;
5927 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5928 then this means the parent of the specification DIE. */
5931 while (real_pdi->has_specification)
5932 real_pdi = find_partial_die (real_pdi->spec_offset,
5933 real_pdi->spec_is_dwz, cu);
5935 parent = real_pdi->die_parent;
5939 if (parent->scope_set)
5940 return parent->scope;
5942 fixup_partial_die (parent, cu);
5944 grandparent_scope = partial_die_parent_scope (parent, cu);
5946 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5947 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5948 Work around this problem here. */
5949 if (cu->language == language_cplus
5950 && parent->tag == DW_TAG_namespace
5951 && strcmp (parent->name, "::") == 0
5952 && grandparent_scope == NULL)
5954 parent->scope = NULL;
5955 parent->scope_set = 1;
5959 if (pdi->tag == DW_TAG_enumerator)
5960 /* Enumerators should not get the name of the enumeration as a prefix. */
5961 parent->scope = grandparent_scope;
5962 else if (parent->tag == DW_TAG_namespace
5963 || parent->tag == DW_TAG_module
5964 || parent->tag == DW_TAG_structure_type
5965 || parent->tag == DW_TAG_class_type
5966 || parent->tag == DW_TAG_interface_type
5967 || parent->tag == DW_TAG_union_type
5968 || parent->tag == DW_TAG_enumeration_type)
5970 if (grandparent_scope == NULL)
5971 parent->scope = parent->name;
5973 parent->scope = typename_concat (&cu->comp_unit_obstack,
5975 parent->name, 0, cu);
5979 /* FIXME drow/2004-04-01: What should we be doing with
5980 function-local names? For partial symbols, we should probably be
5982 complaint (&symfile_complaints,
5983 _("unhandled containing DIE tag %d for DIE at %d"),
5984 parent->tag, pdi->offset.sect_off);
5985 parent->scope = grandparent_scope;
5988 parent->scope_set = 1;
5989 return parent->scope;
5992 /* Return the fully scoped name associated with PDI, from compilation unit
5993 CU. The result will be allocated with malloc. */
5996 partial_die_full_name (struct partial_die_info *pdi,
5997 struct dwarf2_cu *cu)
5999 const char *parent_scope;
6001 /* If this is a template instantiation, we can not work out the
6002 template arguments from partial DIEs. So, unfortunately, we have
6003 to go through the full DIEs. At least any work we do building
6004 types here will be reused if full symbols are loaded later. */
6005 if (pdi->has_template_arguments)
6007 fixup_partial_die (pdi, cu);
6009 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6011 struct die_info *die;
6012 struct attribute attr;
6013 struct dwarf2_cu *ref_cu = cu;
6015 /* DW_FORM_ref_addr is using section offset. */
6017 attr.form = DW_FORM_ref_addr;
6018 attr.u.unsnd = pdi->offset.sect_off;
6019 die = follow_die_ref (NULL, &attr, &ref_cu);
6021 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6025 parent_scope = partial_die_parent_scope (pdi, cu);
6026 if (parent_scope == NULL)
6029 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6033 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6035 struct objfile *objfile = cu->objfile;
6037 const char *actual_name = NULL;
6039 char *built_actual_name;
6041 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6043 built_actual_name = partial_die_full_name (pdi, cu);
6044 if (built_actual_name != NULL)
6045 actual_name = built_actual_name;
6047 if (actual_name == NULL)
6048 actual_name = pdi->name;
6052 case DW_TAG_subprogram:
6053 if (pdi->is_external || cu->language == language_ada)
6055 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6056 of the global scope. But in Ada, we want to be able to access
6057 nested procedures globally. So all Ada subprograms are stored
6058 in the global scope. */
6059 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6060 mst_text, objfile); */
6061 add_psymbol_to_list (actual_name, strlen (actual_name),
6062 built_actual_name != NULL,
6063 VAR_DOMAIN, LOC_BLOCK,
6064 &objfile->global_psymbols,
6065 0, pdi->lowpc + baseaddr,
6066 cu->language, objfile);
6070 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6071 mst_file_text, objfile); */
6072 add_psymbol_to_list (actual_name, strlen (actual_name),
6073 built_actual_name != NULL,
6074 VAR_DOMAIN, LOC_BLOCK,
6075 &objfile->static_psymbols,
6076 0, pdi->lowpc + baseaddr,
6077 cu->language, objfile);
6080 case DW_TAG_constant:
6082 struct psymbol_allocation_list *list;
6084 if (pdi->is_external)
6085 list = &objfile->global_psymbols;
6087 list = &objfile->static_psymbols;
6088 add_psymbol_to_list (actual_name, strlen (actual_name),
6089 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6090 list, 0, 0, cu->language, objfile);
6093 case DW_TAG_variable:
6095 addr = decode_locdesc (pdi->d.locdesc, cu);
6099 && !dwarf2_per_objfile->has_section_at_zero)
6101 /* A global or static variable may also have been stripped
6102 out by the linker if unused, in which case its address
6103 will be nullified; do not add such variables into partial
6104 symbol table then. */
6106 else if (pdi->is_external)
6109 Don't enter into the minimal symbol tables as there is
6110 a minimal symbol table entry from the ELF symbols already.
6111 Enter into partial symbol table if it has a location
6112 descriptor or a type.
6113 If the location descriptor is missing, new_symbol will create
6114 a LOC_UNRESOLVED symbol, the address of the variable will then
6115 be determined from the minimal symbol table whenever the variable
6117 The address for the partial symbol table entry is not
6118 used by GDB, but it comes in handy for debugging partial symbol
6121 if (pdi->d.locdesc || pdi->has_type)
6122 add_psymbol_to_list (actual_name, strlen (actual_name),
6123 built_actual_name != NULL,
6124 VAR_DOMAIN, LOC_STATIC,
6125 &objfile->global_psymbols,
6127 cu->language, objfile);
6131 /* Static Variable. Skip symbols without location descriptors. */
6132 if (pdi->d.locdesc == NULL)
6134 xfree (built_actual_name);
6137 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6138 mst_file_data, objfile); */
6139 add_psymbol_to_list (actual_name, strlen (actual_name),
6140 built_actual_name != NULL,
6141 VAR_DOMAIN, LOC_STATIC,
6142 &objfile->static_psymbols,
6144 cu->language, objfile);
6147 case DW_TAG_typedef:
6148 case DW_TAG_base_type:
6149 case DW_TAG_subrange_type:
6150 add_psymbol_to_list (actual_name, strlen (actual_name),
6151 built_actual_name != NULL,
6152 VAR_DOMAIN, LOC_TYPEDEF,
6153 &objfile->static_psymbols,
6154 0, (CORE_ADDR) 0, cu->language, objfile);
6156 case DW_TAG_namespace:
6157 add_psymbol_to_list (actual_name, strlen (actual_name),
6158 built_actual_name != NULL,
6159 VAR_DOMAIN, LOC_TYPEDEF,
6160 &objfile->global_psymbols,
6161 0, (CORE_ADDR) 0, cu->language, objfile);
6163 case DW_TAG_class_type:
6164 case DW_TAG_interface_type:
6165 case DW_TAG_structure_type:
6166 case DW_TAG_union_type:
6167 case DW_TAG_enumeration_type:
6168 /* Skip external references. The DWARF standard says in the section
6169 about "Structure, Union, and Class Type Entries": "An incomplete
6170 structure, union or class type is represented by a structure,
6171 union or class entry that does not have a byte size attribute
6172 and that has a DW_AT_declaration attribute." */
6173 if (!pdi->has_byte_size && pdi->is_declaration)
6175 xfree (built_actual_name);
6179 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6180 static vs. global. */
6181 add_psymbol_to_list (actual_name, strlen (actual_name),
6182 built_actual_name != NULL,
6183 STRUCT_DOMAIN, LOC_TYPEDEF,
6184 (cu->language == language_cplus
6185 || cu->language == language_java)
6186 ? &objfile->global_psymbols
6187 : &objfile->static_psymbols,
6188 0, (CORE_ADDR) 0, cu->language, objfile);
6191 case DW_TAG_enumerator:
6192 add_psymbol_to_list (actual_name, strlen (actual_name),
6193 built_actual_name != NULL,
6194 VAR_DOMAIN, LOC_CONST,
6195 (cu->language == language_cplus
6196 || cu->language == language_java)
6197 ? &objfile->global_psymbols
6198 : &objfile->static_psymbols,
6199 0, (CORE_ADDR) 0, cu->language, objfile);
6205 xfree (built_actual_name);
6208 /* Read a partial die corresponding to a namespace; also, add a symbol
6209 corresponding to that namespace to the symbol table. NAMESPACE is
6210 the name of the enclosing namespace. */
6213 add_partial_namespace (struct partial_die_info *pdi,
6214 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6215 int need_pc, struct dwarf2_cu *cu)
6217 /* Add a symbol for the namespace. */
6219 add_partial_symbol (pdi, cu);
6221 /* Now scan partial symbols in that namespace. */
6223 if (pdi->has_children)
6224 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6227 /* Read a partial die corresponding to a Fortran module. */
6230 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6231 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6233 /* Now scan partial symbols in that module. */
6235 if (pdi->has_children)
6236 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6239 /* Read a partial die corresponding to a subprogram and create a partial
6240 symbol for that subprogram. When the CU language allows it, this
6241 routine also defines a partial symbol for each nested subprogram
6242 that this subprogram contains.
6244 DIE my also be a lexical block, in which case we simply search
6245 recursively for suprograms defined inside that lexical block.
6246 Again, this is only performed when the CU language allows this
6247 type of definitions. */
6250 add_partial_subprogram (struct partial_die_info *pdi,
6251 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6252 int need_pc, struct dwarf2_cu *cu)
6254 if (pdi->tag == DW_TAG_subprogram)
6256 if (pdi->has_pc_info)
6258 if (pdi->lowpc < *lowpc)
6259 *lowpc = pdi->lowpc;
6260 if (pdi->highpc > *highpc)
6261 *highpc = pdi->highpc;
6265 struct objfile *objfile = cu->objfile;
6267 baseaddr = ANOFFSET (objfile->section_offsets,
6268 SECT_OFF_TEXT (objfile));
6269 addrmap_set_empty (objfile->psymtabs_addrmap,
6270 pdi->lowpc + baseaddr,
6271 pdi->highpc - 1 + baseaddr,
6272 cu->per_cu->v.psymtab);
6276 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6278 if (!pdi->is_declaration)
6279 /* Ignore subprogram DIEs that do not have a name, they are
6280 illegal. Do not emit a complaint at this point, we will
6281 do so when we convert this psymtab into a symtab. */
6283 add_partial_symbol (pdi, cu);
6287 if (! pdi->has_children)
6290 if (cu->language == language_ada)
6292 pdi = pdi->die_child;
6295 fixup_partial_die (pdi, cu);
6296 if (pdi->tag == DW_TAG_subprogram
6297 || pdi->tag == DW_TAG_lexical_block)
6298 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6299 pdi = pdi->die_sibling;
6304 /* Read a partial die corresponding to an enumeration type. */
6307 add_partial_enumeration (struct partial_die_info *enum_pdi,
6308 struct dwarf2_cu *cu)
6310 struct partial_die_info *pdi;
6312 if (enum_pdi->name != NULL)
6313 add_partial_symbol (enum_pdi, cu);
6315 pdi = enum_pdi->die_child;
6318 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6319 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6321 add_partial_symbol (pdi, cu);
6322 pdi = pdi->die_sibling;
6326 /* Return the initial uleb128 in the die at INFO_PTR. */
6329 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6331 unsigned int bytes_read;
6333 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6336 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6337 Return the corresponding abbrev, or NULL if the number is zero (indicating
6338 an empty DIE). In either case *BYTES_READ will be set to the length of
6339 the initial number. */
6341 static struct abbrev_info *
6342 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6343 struct dwarf2_cu *cu)
6345 bfd *abfd = cu->objfile->obfd;
6346 unsigned int abbrev_number;
6347 struct abbrev_info *abbrev;
6349 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6351 if (abbrev_number == 0)
6354 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6357 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6358 abbrev_number, bfd_get_filename (abfd));
6364 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6365 Returns a pointer to the end of a series of DIEs, terminated by an empty
6366 DIE. Any children of the skipped DIEs will also be skipped. */
6369 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6371 struct dwarf2_cu *cu = reader->cu;
6372 struct abbrev_info *abbrev;
6373 unsigned int bytes_read;
6377 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6379 return info_ptr + bytes_read;
6381 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6385 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6386 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6387 abbrev corresponding to that skipped uleb128 should be passed in
6388 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6392 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6393 struct abbrev_info *abbrev)
6395 unsigned int bytes_read;
6396 struct attribute attr;
6397 bfd *abfd = reader->abfd;
6398 struct dwarf2_cu *cu = reader->cu;
6399 gdb_byte *buffer = reader->buffer;
6400 const gdb_byte *buffer_end = reader->buffer_end;
6401 gdb_byte *start_info_ptr = info_ptr;
6402 unsigned int form, i;
6404 for (i = 0; i < abbrev->num_attrs; i++)
6406 /* The only abbrev we care about is DW_AT_sibling. */
6407 if (abbrev->attrs[i].name == DW_AT_sibling)
6409 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6410 if (attr.form == DW_FORM_ref_addr)
6411 complaint (&symfile_complaints,
6412 _("ignoring absolute DW_AT_sibling"));
6414 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6417 /* If it isn't DW_AT_sibling, skip this attribute. */
6418 form = abbrev->attrs[i].form;
6422 case DW_FORM_ref_addr:
6423 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6424 and later it is offset sized. */
6425 if (cu->header.version == 2)
6426 info_ptr += cu->header.addr_size;
6428 info_ptr += cu->header.offset_size;
6430 case DW_FORM_GNU_ref_alt:
6431 info_ptr += cu->header.offset_size;
6434 info_ptr += cu->header.addr_size;
6441 case DW_FORM_flag_present:
6453 case DW_FORM_ref_sig8:
6456 case DW_FORM_string:
6457 read_direct_string (abfd, info_ptr, &bytes_read);
6458 info_ptr += bytes_read;
6460 case DW_FORM_sec_offset:
6462 case DW_FORM_GNU_strp_alt:
6463 info_ptr += cu->header.offset_size;
6465 case DW_FORM_exprloc:
6467 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6468 info_ptr += bytes_read;
6470 case DW_FORM_block1:
6471 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6473 case DW_FORM_block2:
6474 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6476 case DW_FORM_block4:
6477 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6481 case DW_FORM_ref_udata:
6482 case DW_FORM_GNU_addr_index:
6483 case DW_FORM_GNU_str_index:
6484 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6486 case DW_FORM_indirect:
6487 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6488 info_ptr += bytes_read;
6489 /* We need to continue parsing from here, so just go back to
6491 goto skip_attribute;
6494 error (_("Dwarf Error: Cannot handle %s "
6495 "in DWARF reader [in module %s]"),
6496 dwarf_form_name (form),
6497 bfd_get_filename (abfd));
6501 if (abbrev->has_children)
6502 return skip_children (reader, info_ptr);
6507 /* Locate ORIG_PDI's sibling.
6508 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6511 locate_pdi_sibling (const struct die_reader_specs *reader,
6512 struct partial_die_info *orig_pdi,
6515 /* Do we know the sibling already? */
6517 if (orig_pdi->sibling)
6518 return orig_pdi->sibling;
6520 /* Are there any children to deal with? */
6522 if (!orig_pdi->has_children)
6525 /* Skip the children the long way. */
6527 return skip_children (reader, info_ptr);
6530 /* Expand this partial symbol table into a full symbol table. SELF is
6534 dwarf2_read_symtab (struct partial_symtab *self,
6535 struct objfile *objfile)
6539 warning (_("bug: psymtab for %s is already read in."),
6546 printf_filtered (_("Reading in symbols for %s..."),
6548 gdb_flush (gdb_stdout);
6551 /* Restore our global data. */
6552 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6554 /* If this psymtab is constructed from a debug-only objfile, the
6555 has_section_at_zero flag will not necessarily be correct. We
6556 can get the correct value for this flag by looking at the data
6557 associated with the (presumably stripped) associated objfile. */
6558 if (objfile->separate_debug_objfile_backlink)
6560 struct dwarf2_per_objfile *dpo_backlink
6561 = objfile_data (objfile->separate_debug_objfile_backlink,
6562 dwarf2_objfile_data_key);
6564 dwarf2_per_objfile->has_section_at_zero
6565 = dpo_backlink->has_section_at_zero;
6568 dwarf2_per_objfile->reading_partial_symbols = 0;
6570 psymtab_to_symtab_1 (self);
6572 /* Finish up the debug error message. */
6574 printf_filtered (_("done.\n"));
6577 process_cu_includes ();
6580 /* Reading in full CUs. */
6582 /* Add PER_CU to the queue. */
6585 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6586 enum language pretend_language)
6588 struct dwarf2_queue_item *item;
6591 item = xmalloc (sizeof (*item));
6592 item->per_cu = per_cu;
6593 item->pretend_language = pretend_language;
6596 if (dwarf2_queue == NULL)
6597 dwarf2_queue = item;
6599 dwarf2_queue_tail->next = item;
6601 dwarf2_queue_tail = item;
6604 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6605 unit and add it to our queue.
6606 The result is non-zero if PER_CU was queued, otherwise the result is zero
6607 meaning either PER_CU is already queued or it is already loaded. */
6610 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6611 struct dwarf2_per_cu_data *per_cu,
6612 enum language pretend_language)
6614 /* We may arrive here during partial symbol reading, if we need full
6615 DIEs to process an unusual case (e.g. template arguments). Do
6616 not queue PER_CU, just tell our caller to load its DIEs. */
6617 if (dwarf2_per_objfile->reading_partial_symbols)
6619 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6624 /* Mark the dependence relation so that we don't flush PER_CU
6626 dwarf2_add_dependence (this_cu, per_cu);
6628 /* If it's already on the queue, we have nothing to do. */
6632 /* If the compilation unit is already loaded, just mark it as
6634 if (per_cu->cu != NULL)
6636 per_cu->cu->last_used = 0;
6640 /* Add it to the queue. */
6641 queue_comp_unit (per_cu, pretend_language);
6646 /* Process the queue. */
6649 process_queue (void)
6651 struct dwarf2_queue_item *item, *next_item;
6653 if (dwarf2_read_debug)
6655 fprintf_unfiltered (gdb_stdlog,
6656 "Expanding one or more symtabs of objfile %s ...\n",
6657 dwarf2_per_objfile->objfile->name);
6660 /* The queue starts out with one item, but following a DIE reference
6661 may load a new CU, adding it to the end of the queue. */
6662 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6664 if (dwarf2_per_objfile->using_index
6665 ? !item->per_cu->v.quick->symtab
6666 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6668 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6670 if (dwarf2_read_debug)
6672 fprintf_unfiltered (gdb_stdlog,
6673 "Expanding symtab of %s at offset 0x%x\n",
6674 per_cu->is_debug_types ? "TU" : "CU",
6675 per_cu->offset.sect_off);
6678 if (per_cu->is_debug_types)
6679 process_full_type_unit (per_cu, item->pretend_language);
6681 process_full_comp_unit (per_cu, item->pretend_language);
6683 if (dwarf2_read_debug)
6685 fprintf_unfiltered (gdb_stdlog,
6686 "Done expanding %s at offset 0x%x\n",
6687 per_cu->is_debug_types ? "TU" : "CU",
6688 per_cu->offset.sect_off);
6692 item->per_cu->queued = 0;
6693 next_item = item->next;
6697 dwarf2_queue_tail = NULL;
6699 if (dwarf2_read_debug)
6701 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6702 dwarf2_per_objfile->objfile->name);
6706 /* Free all allocated queue entries. This function only releases anything if
6707 an error was thrown; if the queue was processed then it would have been
6708 freed as we went along. */
6711 dwarf2_release_queue (void *dummy)
6713 struct dwarf2_queue_item *item, *last;
6715 item = dwarf2_queue;
6718 /* Anything still marked queued is likely to be in an
6719 inconsistent state, so discard it. */
6720 if (item->per_cu->queued)
6722 if (item->per_cu->cu != NULL)
6723 free_one_cached_comp_unit (item->per_cu);
6724 item->per_cu->queued = 0;
6732 dwarf2_queue = dwarf2_queue_tail = NULL;
6735 /* Read in full symbols for PST, and anything it depends on. */
6738 psymtab_to_symtab_1 (struct partial_symtab *pst)
6740 struct dwarf2_per_cu_data *per_cu;
6746 for (i = 0; i < pst->number_of_dependencies; i++)
6747 if (!pst->dependencies[i]->readin
6748 && pst->dependencies[i]->user == NULL)
6750 /* Inform about additional files that need to be read in. */
6753 /* FIXME: i18n: Need to make this a single string. */
6754 fputs_filtered (" ", gdb_stdout);
6756 fputs_filtered ("and ", gdb_stdout);
6758 printf_filtered ("%s...", pst->dependencies[i]->filename);
6759 wrap_here (""); /* Flush output. */
6760 gdb_flush (gdb_stdout);
6762 psymtab_to_symtab_1 (pst->dependencies[i]);
6765 per_cu = pst->read_symtab_private;
6769 /* It's an include file, no symbols to read for it.
6770 Everything is in the parent symtab. */
6775 dw2_do_instantiate_symtab (per_cu);
6778 /* Trivial hash function for die_info: the hash value of a DIE
6779 is its offset in .debug_info for this objfile. */
6782 die_hash (const void *item)
6784 const struct die_info *die = item;
6786 return die->offset.sect_off;
6789 /* Trivial comparison function for die_info structures: two DIEs
6790 are equal if they have the same offset. */
6793 die_eq (const void *item_lhs, const void *item_rhs)
6795 const struct die_info *die_lhs = item_lhs;
6796 const struct die_info *die_rhs = item_rhs;
6798 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6801 /* die_reader_func for load_full_comp_unit.
6802 This is identical to read_signatured_type_reader,
6803 but is kept separate for now. */
6806 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6808 struct die_info *comp_unit_die,
6812 struct dwarf2_cu *cu = reader->cu;
6813 enum language *language_ptr = data;
6815 gdb_assert (cu->die_hash == NULL);
6817 htab_create_alloc_ex (cu->header.length / 12,
6821 &cu->comp_unit_obstack,
6822 hashtab_obstack_allocate,
6823 dummy_obstack_deallocate);
6826 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6827 &info_ptr, comp_unit_die);
6828 cu->dies = comp_unit_die;
6829 /* comp_unit_die is not stored in die_hash, no need. */
6831 /* We try not to read any attributes in this function, because not
6832 all CUs needed for references have been loaded yet, and symbol
6833 table processing isn't initialized. But we have to set the CU language,
6834 or we won't be able to build types correctly.
6835 Similarly, if we do not read the producer, we can not apply
6836 producer-specific interpretation. */
6837 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6840 /* Load the DIEs associated with PER_CU into memory. */
6843 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6844 enum language pretend_language)
6846 gdb_assert (! this_cu->is_debug_types);
6848 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6849 load_full_comp_unit_reader, &pretend_language);
6852 /* Add a DIE to the delayed physname list. */
6855 add_to_method_list (struct type *type, int fnfield_index, int index,
6856 const char *name, struct die_info *die,
6857 struct dwarf2_cu *cu)
6859 struct delayed_method_info mi;
6861 mi.fnfield_index = fnfield_index;
6865 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6868 /* A cleanup for freeing the delayed method list. */
6871 free_delayed_list (void *ptr)
6873 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6874 if (cu->method_list != NULL)
6876 VEC_free (delayed_method_info, cu->method_list);
6877 cu->method_list = NULL;
6881 /* Compute the physnames of any methods on the CU's method list.
6883 The computation of method physnames is delayed in order to avoid the
6884 (bad) condition that one of the method's formal parameters is of an as yet
6888 compute_delayed_physnames (struct dwarf2_cu *cu)
6891 struct delayed_method_info *mi;
6892 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6894 const char *physname;
6895 struct fn_fieldlist *fn_flp
6896 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6897 physname = dwarf2_physname (mi->name, mi->die, cu);
6898 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6902 /* Go objects should be embedded in a DW_TAG_module DIE,
6903 and it's not clear if/how imported objects will appear.
6904 To keep Go support simple until that's worked out,
6905 go back through what we've read and create something usable.
6906 We could do this while processing each DIE, and feels kinda cleaner,
6907 but that way is more invasive.
6908 This is to, for example, allow the user to type "p var" or "b main"
6909 without having to specify the package name, and allow lookups
6910 of module.object to work in contexts that use the expression
6914 fixup_go_packaging (struct dwarf2_cu *cu)
6916 char *package_name = NULL;
6917 struct pending *list;
6920 for (list = global_symbols; list != NULL; list = list->next)
6922 for (i = 0; i < list->nsyms; ++i)
6924 struct symbol *sym = list->symbol[i];
6926 if (SYMBOL_LANGUAGE (sym) == language_go
6927 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6929 char *this_package_name = go_symbol_package_name (sym);
6931 if (this_package_name == NULL)
6933 if (package_name == NULL)
6934 package_name = this_package_name;
6937 if (strcmp (package_name, this_package_name) != 0)
6938 complaint (&symfile_complaints,
6939 _("Symtab %s has objects from two different Go packages: %s and %s"),
6940 (SYMBOL_SYMTAB (sym)
6941 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6942 : cu->objfile->name),
6943 this_package_name, package_name);
6944 xfree (this_package_name);
6950 if (package_name != NULL)
6952 struct objfile *objfile = cu->objfile;
6953 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6955 strlen (package_name));
6956 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6957 saved_package_name, objfile);
6960 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6962 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6963 SYMBOL_SET_LANGUAGE (sym, language_go);
6964 SYMBOL_SET_NAMES (sym, saved_package_name,
6965 strlen (saved_package_name), 0, objfile);
6966 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6967 e.g., "main" finds the "main" module and not C's main(). */
6968 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6969 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6970 SYMBOL_TYPE (sym) = type;
6972 add_symbol_to_list (sym, &global_symbols);
6974 xfree (package_name);
6978 /* Return the symtab for PER_CU. This works properly regardless of
6979 whether we're using the index or psymtabs. */
6981 static struct symtab *
6982 get_symtab (struct dwarf2_per_cu_data *per_cu)
6984 return (dwarf2_per_objfile->using_index
6985 ? per_cu->v.quick->symtab
6986 : per_cu->v.psymtab->symtab);
6989 /* A helper function for computing the list of all symbol tables
6990 included by PER_CU. */
6993 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6994 htab_t all_children,
6995 struct dwarf2_per_cu_data *per_cu)
6999 struct dwarf2_per_cu_data *iter;
7001 slot = htab_find_slot (all_children, per_cu, INSERT);
7004 /* This inclusion and its children have been processed. */
7009 /* Only add a CU if it has a symbol table. */
7010 if (get_symtab (per_cu) != NULL)
7011 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7014 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7016 recursively_compute_inclusions (result, all_children, iter);
7019 /* Compute the symtab 'includes' fields for the symtab related to
7023 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7025 gdb_assert (! per_cu->is_debug_types);
7027 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7030 struct dwarf2_per_cu_data *iter;
7031 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7032 htab_t all_children;
7033 struct symtab *symtab = get_symtab (per_cu);
7035 /* If we don't have a symtab, we can just skip this case. */
7039 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7040 NULL, xcalloc, xfree);
7043 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7046 recursively_compute_inclusions (&result_children, all_children, iter);
7048 /* Now we have a transitive closure of all the included CUs, and
7049 for .gdb_index version 7 the included TUs, so we can convert it
7050 to a list of symtabs. */
7051 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7053 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7054 (len + 1) * sizeof (struct symtab *));
7056 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7058 symtab->includes[ix] = get_symtab (iter);
7059 symtab->includes[len] = NULL;
7061 VEC_free (dwarf2_per_cu_ptr, result_children);
7062 htab_delete (all_children);
7066 /* Compute the 'includes' field for the symtabs of all the CUs we just
7070 process_cu_includes (void)
7073 struct dwarf2_per_cu_data *iter;
7076 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7080 if (! iter->is_debug_types)
7081 compute_symtab_includes (iter);
7084 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7087 /* Generate full symbol information for PER_CU, whose DIEs have
7088 already been loaded into memory. */
7091 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7092 enum language pretend_language)
7094 struct dwarf2_cu *cu = per_cu->cu;
7095 struct objfile *objfile = per_cu->objfile;
7096 CORE_ADDR lowpc, highpc;
7097 struct symtab *symtab;
7098 struct cleanup *back_to, *delayed_list_cleanup;
7100 struct block *static_block;
7102 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7105 back_to = make_cleanup (really_free_pendings, NULL);
7106 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7108 cu->list_in_scope = &file_symbols;
7110 cu->language = pretend_language;
7111 cu->language_defn = language_def (cu->language);
7113 /* Do line number decoding in read_file_scope () */
7114 process_die (cu->dies, cu);
7116 /* For now fudge the Go package. */
7117 if (cu->language == language_go)
7118 fixup_go_packaging (cu);
7120 /* Now that we have processed all the DIEs in the CU, all the types
7121 should be complete, and it should now be safe to compute all of the
7123 compute_delayed_physnames (cu);
7124 do_cleanups (delayed_list_cleanup);
7126 /* Some compilers don't define a DW_AT_high_pc attribute for the
7127 compilation unit. If the DW_AT_high_pc is missing, synthesize
7128 it, by scanning the DIE's below the compilation unit. */
7129 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7132 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7133 per_cu->imported_symtabs != NULL);
7135 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7136 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7137 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7138 addrmap to help ensure it has an accurate map of pc values belonging to
7140 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7142 symtab = end_symtab_from_static_block (static_block, objfile,
7143 SECT_OFF_TEXT (objfile), 0);
7147 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7149 /* Set symtab language to language from DW_AT_language. If the
7150 compilation is from a C file generated by language preprocessors, do
7151 not set the language if it was already deduced by start_subfile. */
7152 if (!(cu->language == language_c && symtab->language != language_c))
7153 symtab->language = cu->language;
7155 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7156 produce DW_AT_location with location lists but it can be possibly
7157 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7158 there were bugs in prologue debug info, fixed later in GCC-4.5
7159 by "unwind info for epilogues" patch (which is not directly related).
7161 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7162 needed, it would be wrong due to missing DW_AT_producer there.
7164 Still one can confuse GDB by using non-standard GCC compilation
7165 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7167 if (cu->has_loclist && gcc_4_minor >= 5)
7168 symtab->locations_valid = 1;
7170 if (gcc_4_minor >= 5)
7171 symtab->epilogue_unwind_valid = 1;
7173 symtab->call_site_htab = cu->call_site_htab;
7176 if (dwarf2_per_objfile->using_index)
7177 per_cu->v.quick->symtab = symtab;
7180 struct partial_symtab *pst = per_cu->v.psymtab;
7181 pst->symtab = symtab;
7185 /* Push it for inclusion processing later. */
7186 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7188 do_cleanups (back_to);
7191 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7192 already been loaded into memory. */
7195 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7196 enum language pretend_language)
7198 struct dwarf2_cu *cu = per_cu->cu;
7199 struct objfile *objfile = per_cu->objfile;
7200 struct symtab *symtab;
7201 struct cleanup *back_to, *delayed_list_cleanup;
7204 back_to = make_cleanup (really_free_pendings, NULL);
7205 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7207 cu->list_in_scope = &file_symbols;
7209 cu->language = pretend_language;
7210 cu->language_defn = language_def (cu->language);
7212 /* The symbol tables are set up in read_type_unit_scope. */
7213 process_die (cu->dies, cu);
7215 /* For now fudge the Go package. */
7216 if (cu->language == language_go)
7217 fixup_go_packaging (cu);
7219 /* Now that we have processed all the DIEs in the CU, all the types
7220 should be complete, and it should now be safe to compute all of the
7222 compute_delayed_physnames (cu);
7223 do_cleanups (delayed_list_cleanup);
7225 /* TUs share symbol tables.
7226 If this is the first TU to use this symtab, complete the construction
7227 of it with end_expandable_symtab. Otherwise, complete the addition of
7228 this TU's symbols to the existing symtab. */
7229 if (per_cu->type_unit_group->primary_symtab == NULL)
7231 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7232 per_cu->type_unit_group->primary_symtab = symtab;
7236 /* Set symtab language to language from DW_AT_language. If the
7237 compilation is from a C file generated by language preprocessors,
7238 do not set the language if it was already deduced by
7240 if (!(cu->language == language_c && symtab->language != language_c))
7241 symtab->language = cu->language;
7246 augment_type_symtab (objfile,
7247 per_cu->type_unit_group->primary_symtab);
7248 symtab = per_cu->type_unit_group->primary_symtab;
7251 if (dwarf2_per_objfile->using_index)
7252 per_cu->v.quick->symtab = symtab;
7255 struct partial_symtab *pst = per_cu->v.psymtab;
7256 pst->symtab = symtab;
7260 do_cleanups (back_to);
7263 /* Process an imported unit DIE. */
7266 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7268 struct attribute *attr;
7270 /* For now we don't handle imported units in type units. */
7271 if (cu->per_cu->is_debug_types)
7273 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7274 " supported in type units [in module %s]"),
7278 attr = dwarf2_attr (die, DW_AT_import, cu);
7281 struct dwarf2_per_cu_data *per_cu;
7282 struct symtab *imported_symtab;
7286 offset = dwarf2_get_ref_die_offset (attr);
7287 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7288 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7290 /* Queue the unit, if needed. */
7291 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7292 load_full_comp_unit (per_cu, cu->language);
7294 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7299 /* Process a die and its children. */
7302 process_die (struct die_info *die, struct dwarf2_cu *cu)
7306 case DW_TAG_padding:
7308 case DW_TAG_compile_unit:
7309 case DW_TAG_partial_unit:
7310 read_file_scope (die, cu);
7312 case DW_TAG_type_unit:
7313 read_type_unit_scope (die, cu);
7315 case DW_TAG_subprogram:
7316 case DW_TAG_inlined_subroutine:
7317 read_func_scope (die, cu);
7319 case DW_TAG_lexical_block:
7320 case DW_TAG_try_block:
7321 case DW_TAG_catch_block:
7322 read_lexical_block_scope (die, cu);
7324 case DW_TAG_GNU_call_site:
7325 read_call_site_scope (die, cu);
7327 case DW_TAG_class_type:
7328 case DW_TAG_interface_type:
7329 case DW_TAG_structure_type:
7330 case DW_TAG_union_type:
7331 process_structure_scope (die, cu);
7333 case DW_TAG_enumeration_type:
7334 process_enumeration_scope (die, cu);
7337 /* These dies have a type, but processing them does not create
7338 a symbol or recurse to process the children. Therefore we can
7339 read them on-demand through read_type_die. */
7340 case DW_TAG_subroutine_type:
7341 case DW_TAG_set_type:
7342 case DW_TAG_array_type:
7343 case DW_TAG_pointer_type:
7344 case DW_TAG_ptr_to_member_type:
7345 case DW_TAG_reference_type:
7346 case DW_TAG_string_type:
7349 case DW_TAG_base_type:
7350 case DW_TAG_subrange_type:
7351 case DW_TAG_typedef:
7352 /* Add a typedef symbol for the type definition, if it has a
7354 new_symbol (die, read_type_die (die, cu), cu);
7356 case DW_TAG_common_block:
7357 read_common_block (die, cu);
7359 case DW_TAG_common_inclusion:
7361 case DW_TAG_namespace:
7362 cu->processing_has_namespace_info = 1;
7363 read_namespace (die, cu);
7366 cu->processing_has_namespace_info = 1;
7367 read_module (die, cu);
7369 case DW_TAG_imported_declaration:
7370 case DW_TAG_imported_module:
7371 cu->processing_has_namespace_info = 1;
7372 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7373 || cu->language != language_fortran))
7374 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7375 dwarf_tag_name (die->tag));
7376 read_import_statement (die, cu);
7379 case DW_TAG_imported_unit:
7380 process_imported_unit_die (die, cu);
7384 new_symbol (die, NULL, cu);
7389 /* DWARF name computation. */
7391 /* A helper function for dwarf2_compute_name which determines whether DIE
7392 needs to have the name of the scope prepended to the name listed in the
7396 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7398 struct attribute *attr;
7402 case DW_TAG_namespace:
7403 case DW_TAG_typedef:
7404 case DW_TAG_class_type:
7405 case DW_TAG_interface_type:
7406 case DW_TAG_structure_type:
7407 case DW_TAG_union_type:
7408 case DW_TAG_enumeration_type:
7409 case DW_TAG_enumerator:
7410 case DW_TAG_subprogram:
7414 case DW_TAG_variable:
7415 case DW_TAG_constant:
7416 /* We only need to prefix "globally" visible variables. These include
7417 any variable marked with DW_AT_external or any variable that
7418 lives in a namespace. [Variables in anonymous namespaces
7419 require prefixing, but they are not DW_AT_external.] */
7421 if (dwarf2_attr (die, DW_AT_specification, cu))
7423 struct dwarf2_cu *spec_cu = cu;
7425 return die_needs_namespace (die_specification (die, &spec_cu),
7429 attr = dwarf2_attr (die, DW_AT_external, cu);
7430 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7431 && die->parent->tag != DW_TAG_module)
7433 /* A variable in a lexical block of some kind does not need a
7434 namespace, even though in C++ such variables may be external
7435 and have a mangled name. */
7436 if (die->parent->tag == DW_TAG_lexical_block
7437 || die->parent->tag == DW_TAG_try_block
7438 || die->parent->tag == DW_TAG_catch_block
7439 || die->parent->tag == DW_TAG_subprogram)
7448 /* Retrieve the last character from a mem_file. */
7451 do_ui_file_peek_last (void *object, const char *buffer, long length)
7453 char *last_char_p = (char *) object;
7456 *last_char_p = buffer[length - 1];
7459 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7460 compute the physname for the object, which include a method's:
7461 - formal parameters (C++/Java),
7462 - receiver type (Go),
7463 - return type (Java).
7465 The term "physname" is a bit confusing.
7466 For C++, for example, it is the demangled name.
7467 For Go, for example, it's the mangled name.
7469 For Ada, return the DIE's linkage name rather than the fully qualified
7470 name. PHYSNAME is ignored..
7472 The result is allocated on the objfile_obstack and canonicalized. */
7475 dwarf2_compute_name (const char *name,
7476 struct die_info *die, struct dwarf2_cu *cu,
7479 struct objfile *objfile = cu->objfile;
7482 name = dwarf2_name (die, cu);
7484 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7485 compute it by typename_concat inside GDB. */
7486 if (cu->language == language_ada
7487 || (cu->language == language_fortran && physname))
7489 /* For Ada unit, we prefer the linkage name over the name, as
7490 the former contains the exported name, which the user expects
7491 to be able to reference. Ideally, we want the user to be able
7492 to reference this entity using either natural or linkage name,
7493 but we haven't started looking at this enhancement yet. */
7494 struct attribute *attr;
7496 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7498 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7499 if (attr && DW_STRING (attr))
7500 return DW_STRING (attr);
7503 /* These are the only languages we know how to qualify names in. */
7505 && (cu->language == language_cplus || cu->language == language_java
7506 || cu->language == language_fortran))
7508 if (die_needs_namespace (die, cu))
7512 struct ui_file *buf;
7514 prefix = determine_prefix (die, cu);
7515 buf = mem_fileopen ();
7516 if (*prefix != '\0')
7518 char *prefixed_name = typename_concat (NULL, prefix, name,
7521 fputs_unfiltered (prefixed_name, buf);
7522 xfree (prefixed_name);
7525 fputs_unfiltered (name, buf);
7527 /* Template parameters may be specified in the DIE's DW_AT_name, or
7528 as children with DW_TAG_template_type_param or
7529 DW_TAG_value_type_param. If the latter, add them to the name
7530 here. If the name already has template parameters, then
7531 skip this step; some versions of GCC emit both, and
7532 it is more efficient to use the pre-computed name.
7534 Something to keep in mind about this process: it is very
7535 unlikely, or in some cases downright impossible, to produce
7536 something that will match the mangled name of a function.
7537 If the definition of the function has the same debug info,
7538 we should be able to match up with it anyway. But fallbacks
7539 using the minimal symbol, for instance to find a method
7540 implemented in a stripped copy of libstdc++, will not work.
7541 If we do not have debug info for the definition, we will have to
7542 match them up some other way.
7544 When we do name matching there is a related problem with function
7545 templates; two instantiated function templates are allowed to
7546 differ only by their return types, which we do not add here. */
7548 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7550 struct attribute *attr;
7551 struct die_info *child;
7554 die->building_fullname = 1;
7556 for (child = die->child; child != NULL; child = child->sibling)
7561 struct dwarf2_locexpr_baton *baton;
7564 if (child->tag != DW_TAG_template_type_param
7565 && child->tag != DW_TAG_template_value_param)
7570 fputs_unfiltered ("<", buf);
7574 fputs_unfiltered (", ", buf);
7576 attr = dwarf2_attr (child, DW_AT_type, cu);
7579 complaint (&symfile_complaints,
7580 _("template parameter missing DW_AT_type"));
7581 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7584 type = die_type (child, cu);
7586 if (child->tag == DW_TAG_template_type_param)
7588 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7592 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7595 complaint (&symfile_complaints,
7596 _("template parameter missing "
7597 "DW_AT_const_value"));
7598 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7602 dwarf2_const_value_attr (attr, type, name,
7603 &cu->comp_unit_obstack, cu,
7604 &value, &bytes, &baton);
7606 if (TYPE_NOSIGN (type))
7607 /* GDB prints characters as NUMBER 'CHAR'. If that's
7608 changed, this can use value_print instead. */
7609 c_printchar (value, type, buf);
7612 struct value_print_options opts;
7615 v = dwarf2_evaluate_loc_desc (type, NULL,
7619 else if (bytes != NULL)
7621 v = allocate_value (type);
7622 memcpy (value_contents_writeable (v), bytes,
7623 TYPE_LENGTH (type));
7626 v = value_from_longest (type, value);
7628 /* Specify decimal so that we do not depend on
7630 get_formatted_print_options (&opts, 'd');
7632 value_print (v, buf, &opts);
7638 die->building_fullname = 0;
7642 /* Close the argument list, with a space if necessary
7643 (nested templates). */
7644 char last_char = '\0';
7645 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7646 if (last_char == '>')
7647 fputs_unfiltered (" >", buf);
7649 fputs_unfiltered (">", buf);
7653 /* For Java and C++ methods, append formal parameter type
7654 information, if PHYSNAME. */
7656 if (physname && die->tag == DW_TAG_subprogram
7657 && (cu->language == language_cplus
7658 || cu->language == language_java))
7660 struct type *type = read_type_die (die, cu);
7662 c_type_print_args (type, buf, 1, cu->language,
7663 &type_print_raw_options);
7665 if (cu->language == language_java)
7667 /* For java, we must append the return type to method
7669 if (die->tag == DW_TAG_subprogram)
7670 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7671 0, 0, &type_print_raw_options);
7673 else if (cu->language == language_cplus)
7675 /* Assume that an artificial first parameter is
7676 "this", but do not crash if it is not. RealView
7677 marks unnamed (and thus unused) parameters as
7678 artificial; there is no way to differentiate
7680 if (TYPE_NFIELDS (type) > 0
7681 && TYPE_FIELD_ARTIFICIAL (type, 0)
7682 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7683 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7685 fputs_unfiltered (" const", buf);
7689 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7691 ui_file_delete (buf);
7693 if (cu->language == language_cplus)
7696 = dwarf2_canonicalize_name (name, cu,
7697 &objfile->objfile_obstack);
7708 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7709 If scope qualifiers are appropriate they will be added. The result
7710 will be allocated on the objfile_obstack, or NULL if the DIE does
7711 not have a name. NAME may either be from a previous call to
7712 dwarf2_name or NULL.
7714 The output string will be canonicalized (if C++/Java). */
7717 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7719 return dwarf2_compute_name (name, die, cu, 0);
7722 /* Construct a physname for the given DIE in CU. NAME may either be
7723 from a previous call to dwarf2_name or NULL. The result will be
7724 allocated on the objfile_objstack or NULL if the DIE does not have a
7727 The output string will be canonicalized (if C++/Java). */
7730 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7732 struct objfile *objfile = cu->objfile;
7733 struct attribute *attr;
7734 const char *retval, *mangled = NULL, *canon = NULL;
7735 struct cleanup *back_to;
7738 /* In this case dwarf2_compute_name is just a shortcut not building anything
7740 if (!die_needs_namespace (die, cu))
7741 return dwarf2_compute_name (name, die, cu, 1);
7743 back_to = make_cleanup (null_cleanup, NULL);
7745 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7747 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7749 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7751 if (attr && DW_STRING (attr))
7755 mangled = DW_STRING (attr);
7757 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7758 type. It is easier for GDB users to search for such functions as
7759 `name(params)' than `long name(params)'. In such case the minimal
7760 symbol names do not match the full symbol names but for template
7761 functions there is never a need to look up their definition from their
7762 declaration so the only disadvantage remains the minimal symbol
7763 variant `long name(params)' does not have the proper inferior type.
7766 if (cu->language == language_go)
7768 /* This is a lie, but we already lie to the caller new_symbol_full.
7769 new_symbol_full assumes we return the mangled name.
7770 This just undoes that lie until things are cleaned up. */
7775 demangled = cplus_demangle (mangled,
7776 (DMGL_PARAMS | DMGL_ANSI
7777 | (cu->language == language_java
7778 ? DMGL_JAVA | DMGL_RET_POSTFIX
7783 make_cleanup (xfree, demangled);
7793 if (canon == NULL || check_physname)
7795 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7797 if (canon != NULL && strcmp (physname, canon) != 0)
7799 /* It may not mean a bug in GDB. The compiler could also
7800 compute DW_AT_linkage_name incorrectly. But in such case
7801 GDB would need to be bug-to-bug compatible. */
7803 complaint (&symfile_complaints,
7804 _("Computed physname <%s> does not match demangled <%s> "
7805 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7806 physname, canon, mangled, die->offset.sect_off, objfile->name);
7808 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7809 is available here - over computed PHYSNAME. It is safer
7810 against both buggy GDB and buggy compilers. */
7824 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7826 do_cleanups (back_to);
7830 /* Read the import statement specified by the given die and record it. */
7833 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7835 struct objfile *objfile = cu->objfile;
7836 struct attribute *import_attr;
7837 struct die_info *imported_die, *child_die;
7838 struct dwarf2_cu *imported_cu;
7839 const char *imported_name;
7840 const char *imported_name_prefix;
7841 const char *canonical_name;
7842 const char *import_alias;
7843 const char *imported_declaration = NULL;
7844 const char *import_prefix;
7845 VEC (const_char_ptr) *excludes = NULL;
7846 struct cleanup *cleanups;
7848 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7849 if (import_attr == NULL)
7851 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7852 dwarf_tag_name (die->tag));
7857 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7858 imported_name = dwarf2_name (imported_die, imported_cu);
7859 if (imported_name == NULL)
7861 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7863 The import in the following code:
7877 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7878 <52> DW_AT_decl_file : 1
7879 <53> DW_AT_decl_line : 6
7880 <54> DW_AT_import : <0x75>
7881 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7883 <5b> DW_AT_decl_file : 1
7884 <5c> DW_AT_decl_line : 2
7885 <5d> DW_AT_type : <0x6e>
7887 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7888 <76> DW_AT_byte_size : 4
7889 <77> DW_AT_encoding : 5 (signed)
7891 imports the wrong die ( 0x75 instead of 0x58 ).
7892 This case will be ignored until the gcc bug is fixed. */
7896 /* Figure out the local name after import. */
7897 import_alias = dwarf2_name (die, cu);
7899 /* Figure out where the statement is being imported to. */
7900 import_prefix = determine_prefix (die, cu);
7902 /* Figure out what the scope of the imported die is and prepend it
7903 to the name of the imported die. */
7904 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7906 if (imported_die->tag != DW_TAG_namespace
7907 && imported_die->tag != DW_TAG_module)
7909 imported_declaration = imported_name;
7910 canonical_name = imported_name_prefix;
7912 else if (strlen (imported_name_prefix) > 0)
7913 canonical_name = obconcat (&objfile->objfile_obstack,
7914 imported_name_prefix, "::", imported_name,
7917 canonical_name = imported_name;
7919 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7921 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7922 for (child_die = die->child; child_die && child_die->tag;
7923 child_die = sibling_die (child_die))
7925 /* DWARF-4: A Fortran use statement with a “rename list” may be
7926 represented by an imported module entry with an import attribute
7927 referring to the module and owned entries corresponding to those
7928 entities that are renamed as part of being imported. */
7930 if (child_die->tag != DW_TAG_imported_declaration)
7932 complaint (&symfile_complaints,
7933 _("child DW_TAG_imported_declaration expected "
7934 "- DIE at 0x%x [in module %s]"),
7935 child_die->offset.sect_off, objfile->name);
7939 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7940 if (import_attr == NULL)
7942 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7943 dwarf_tag_name (child_die->tag));
7948 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7950 imported_name = dwarf2_name (imported_die, imported_cu);
7951 if (imported_name == NULL)
7953 complaint (&symfile_complaints,
7954 _("child DW_TAG_imported_declaration has unknown "
7955 "imported name - DIE at 0x%x [in module %s]"),
7956 child_die->offset.sect_off, objfile->name);
7960 VEC_safe_push (const_char_ptr, excludes, imported_name);
7962 process_die (child_die, cu);
7965 cp_add_using_directive (import_prefix,
7968 imported_declaration,
7971 &objfile->objfile_obstack);
7973 do_cleanups (cleanups);
7976 /* Cleanup function for handle_DW_AT_stmt_list. */
7979 free_cu_line_header (void *arg)
7981 struct dwarf2_cu *cu = arg;
7983 free_line_header (cu->line_header);
7984 cu->line_header = NULL;
7987 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7988 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7989 this, it was first present in GCC release 4.3.0. */
7992 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7994 if (!cu->checked_producer)
7995 check_producer (cu);
7997 return cu->producer_is_gcc_lt_4_3;
8001 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8002 const char **name, const char **comp_dir)
8004 struct attribute *attr;
8009 /* Find the filename. Do not use dwarf2_name here, since the filename
8010 is not a source language identifier. */
8011 attr = dwarf2_attr (die, DW_AT_name, cu);
8014 *name = DW_STRING (attr);
8017 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8019 *comp_dir = DW_STRING (attr);
8020 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8021 && IS_ABSOLUTE_PATH (*name))
8023 char *d = ldirname (*name);
8027 make_cleanup (xfree, d);
8029 if (*comp_dir != NULL)
8031 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8032 directory, get rid of it. */
8033 char *cp = strchr (*comp_dir, ':');
8035 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8040 *name = "<unknown>";
8043 /* Handle DW_AT_stmt_list for a compilation unit.
8044 DIE is the DW_TAG_compile_unit die for CU.
8045 COMP_DIR is the compilation directory.
8046 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8049 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8050 const char *comp_dir)
8052 struct attribute *attr;
8054 gdb_assert (! cu->per_cu->is_debug_types);
8056 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8059 unsigned int line_offset = DW_UNSND (attr);
8060 struct line_header *line_header
8061 = dwarf_decode_line_header (line_offset, cu);
8065 cu->line_header = line_header;
8066 make_cleanup (free_cu_line_header, cu);
8067 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8072 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8075 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8077 struct objfile *objfile = dwarf2_per_objfile->objfile;
8078 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8079 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8080 CORE_ADDR highpc = ((CORE_ADDR) 0);
8081 struct attribute *attr;
8082 const char *name = NULL;
8083 const char *comp_dir = NULL;
8084 struct die_info *child_die;
8085 bfd *abfd = objfile->obfd;
8088 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8090 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8092 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8093 from finish_block. */
8094 if (lowpc == ((CORE_ADDR) -1))
8099 find_file_and_directory (die, cu, &name, &comp_dir);
8101 prepare_one_comp_unit (cu, die, cu->language);
8103 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8104 standardised yet. As a workaround for the language detection we fall
8105 back to the DW_AT_producer string. */
8106 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8107 cu->language = language_opencl;
8109 /* Similar hack for Go. */
8110 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8111 set_cu_language (DW_LANG_Go, cu);
8113 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8115 /* Decode line number information if present. We do this before
8116 processing child DIEs, so that the line header table is available
8117 for DW_AT_decl_file. */
8118 handle_DW_AT_stmt_list (die, cu, comp_dir);
8120 /* Process all dies in compilation unit. */
8121 if (die->child != NULL)
8123 child_die = die->child;
8124 while (child_die && child_die->tag)
8126 process_die (child_die, cu);
8127 child_die = sibling_die (child_die);
8131 /* Decode macro information, if present. Dwarf 2 macro information
8132 refers to information in the line number info statement program
8133 header, so we can only read it if we've read the header
8135 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8136 if (attr && cu->line_header)
8138 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8139 complaint (&symfile_complaints,
8140 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8142 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8146 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8147 if (attr && cu->line_header)
8149 unsigned int macro_offset = DW_UNSND (attr);
8151 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8155 do_cleanups (back_to);
8158 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8159 Create the set of symtabs used by this TU, or if this TU is sharing
8160 symtabs with another TU and the symtabs have already been created
8161 then restore those symtabs in the line header.
8162 We don't need the pc/line-number mapping for type units. */
8165 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8167 struct objfile *objfile = dwarf2_per_objfile->objfile;
8168 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8169 struct type_unit_group *tu_group;
8171 struct line_header *lh;
8172 struct attribute *attr;
8173 unsigned int i, line_offset;
8175 gdb_assert (per_cu->is_debug_types);
8177 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8179 /* If we're using .gdb_index (includes -readnow) then
8180 per_cu->s.type_unit_group may not have been set up yet. */
8181 if (per_cu->type_unit_group == NULL)
8182 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8183 tu_group = per_cu->type_unit_group;
8185 /* If we've already processed this stmt_list there's no real need to
8186 do it again, we could fake it and just recreate the part we need
8187 (file name,index -> symtab mapping). If data shows this optimization
8188 is useful we can do it then. */
8189 first_time = tu_group->primary_symtab == NULL;
8191 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8196 line_offset = DW_UNSND (attr);
8197 lh = dwarf_decode_line_header (line_offset, cu);
8202 dwarf2_start_symtab (cu, "", NULL, 0);
8205 gdb_assert (tu_group->symtabs == NULL);
8208 /* Note: The primary symtab will get allocated at the end. */
8212 cu->line_header = lh;
8213 make_cleanup (free_cu_line_header, cu);
8217 dwarf2_start_symtab (cu, "", NULL, 0);
8219 tu_group->num_symtabs = lh->num_file_names;
8220 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8222 for (i = 0; i < lh->num_file_names; ++i)
8225 struct file_entry *fe = &lh->file_names[i];
8228 dir = lh->include_dirs[fe->dir_index - 1];
8229 dwarf2_start_subfile (fe->name, dir, NULL);
8231 /* Note: We don't have to watch for the main subfile here, type units
8232 don't have DW_AT_name. */
8234 if (current_subfile->symtab == NULL)
8236 /* NOTE: start_subfile will recognize when it's been passed
8237 a file it has already seen. So we can't assume there's a
8238 simple mapping from lh->file_names to subfiles,
8239 lh->file_names may contain dups. */
8240 current_subfile->symtab = allocate_symtab (current_subfile->name,
8244 fe->symtab = current_subfile->symtab;
8245 tu_group->symtabs[i] = fe->symtab;
8252 for (i = 0; i < lh->num_file_names; ++i)
8254 struct file_entry *fe = &lh->file_names[i];
8256 fe->symtab = tu_group->symtabs[i];
8260 /* The main symtab is allocated last. Type units don't have DW_AT_name
8261 so they don't have a "real" (so to speak) symtab anyway.
8262 There is later code that will assign the main symtab to all symbols
8263 that don't have one. We need to handle the case of a symbol with a
8264 missing symtab (DW_AT_decl_file) anyway. */
8267 /* Process DW_TAG_type_unit.
8268 For TUs we want to skip the first top level sibling if it's not the
8269 actual type being defined by this TU. In this case the first top
8270 level sibling is there to provide context only. */
8273 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8275 struct die_info *child_die;
8277 prepare_one_comp_unit (cu, die, language_minimal);
8279 /* Initialize (or reinitialize) the machinery for building symtabs.
8280 We do this before processing child DIEs, so that the line header table
8281 is available for DW_AT_decl_file. */
8282 setup_type_unit_groups (die, cu);
8284 if (die->child != NULL)
8286 child_die = die->child;
8287 while (child_die && child_die->tag)
8289 process_die (child_die, cu);
8290 child_die = sibling_die (child_die);
8297 http://gcc.gnu.org/wiki/DebugFission
8298 http://gcc.gnu.org/wiki/DebugFissionDWP
8300 To simplify handling of both DWO files ("object" files with the DWARF info)
8301 and DWP files (a file with the DWOs packaged up into one file), we treat
8302 DWP files as having a collection of virtual DWO files. */
8305 hash_dwo_file (const void *item)
8307 const struct dwo_file *dwo_file = item;
8309 return htab_hash_string (dwo_file->name);
8313 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8315 const struct dwo_file *lhs = item_lhs;
8316 const struct dwo_file *rhs = item_rhs;
8318 return strcmp (lhs->name, rhs->name) == 0;
8321 /* Allocate a hash table for DWO files. */
8324 allocate_dwo_file_hash_table (void)
8326 struct objfile *objfile = dwarf2_per_objfile->objfile;
8328 return htab_create_alloc_ex (41,
8332 &objfile->objfile_obstack,
8333 hashtab_obstack_allocate,
8334 dummy_obstack_deallocate);
8337 /* Lookup DWO file DWO_NAME. */
8340 lookup_dwo_file_slot (const char *dwo_name)
8342 struct dwo_file find_entry;
8345 if (dwarf2_per_objfile->dwo_files == NULL)
8346 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8348 memset (&find_entry, 0, sizeof (find_entry));
8349 find_entry.name = dwo_name;
8350 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8356 hash_dwo_unit (const void *item)
8358 const struct dwo_unit *dwo_unit = item;
8360 /* This drops the top 32 bits of the id, but is ok for a hash. */
8361 return dwo_unit->signature;
8365 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8367 const struct dwo_unit *lhs = item_lhs;
8368 const struct dwo_unit *rhs = item_rhs;
8370 /* The signature is assumed to be unique within the DWO file.
8371 So while object file CU dwo_id's always have the value zero,
8372 that's OK, assuming each object file DWO file has only one CU,
8373 and that's the rule for now. */
8374 return lhs->signature == rhs->signature;
8377 /* Allocate a hash table for DWO CUs,TUs.
8378 There is one of these tables for each of CUs,TUs for each DWO file. */
8381 allocate_dwo_unit_table (struct objfile *objfile)
8383 /* Start out with a pretty small number.
8384 Generally DWO files contain only one CU and maybe some TUs. */
8385 return htab_create_alloc_ex (3,
8389 &objfile->objfile_obstack,
8390 hashtab_obstack_allocate,
8391 dummy_obstack_deallocate);
8394 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8396 struct create_dwo_info_table_data
8398 struct dwo_file *dwo_file;
8402 /* die_reader_func for create_dwo_debug_info_hash_table. */
8405 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8407 struct die_info *comp_unit_die,
8411 struct dwarf2_cu *cu = reader->cu;
8412 struct objfile *objfile = dwarf2_per_objfile->objfile;
8413 sect_offset offset = cu->per_cu->offset;
8414 struct dwarf2_section_info *section = cu->per_cu->section;
8415 struct create_dwo_info_table_data *data = datap;
8416 struct dwo_file *dwo_file = data->dwo_file;
8417 htab_t cu_htab = data->cu_htab;
8419 struct attribute *attr;
8420 struct dwo_unit *dwo_unit;
8422 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8425 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8426 " its dwo_id [in module %s]"),
8427 offset.sect_off, dwo_file->name);
8431 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8432 dwo_unit->dwo_file = dwo_file;
8433 dwo_unit->signature = DW_UNSND (attr);
8434 dwo_unit->section = section;
8435 dwo_unit->offset = offset;
8436 dwo_unit->length = cu->per_cu->length;
8438 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8439 gdb_assert (slot != NULL);
8442 const struct dwo_unit *dup_dwo_unit = *slot;
8444 complaint (&symfile_complaints,
8445 _("debug entry at offset 0x%x is duplicate to the entry at"
8446 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8447 offset.sect_off, dup_dwo_unit->offset.sect_off,
8448 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8454 if (dwarf2_read_debug)
8455 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8457 phex (dwo_unit->signature,
8458 sizeof (dwo_unit->signature)));
8461 /* Create a hash table to map DWO IDs to their CU entry in
8462 .debug_info.dwo in DWO_FILE.
8463 Note: This function processes DWO files only, not DWP files.
8464 Note: A DWO file generally contains one CU, but we don't assume this. */
8467 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8469 struct objfile *objfile = dwarf2_per_objfile->objfile;
8470 struct dwarf2_section_info *section = &dwo_file->sections.info;
8473 gdb_byte *info_ptr, *end_ptr;
8474 struct create_dwo_info_table_data create_dwo_info_table_data;
8476 dwarf2_read_section (objfile, section);
8477 info_ptr = section->buffer;
8479 if (info_ptr == NULL)
8482 /* We can't set abfd until now because the section may be empty or
8483 not present, in which case section->asection will be NULL. */
8484 abfd = section->asection->owner;
8486 if (dwarf2_read_debug)
8487 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8488 bfd_get_filename (abfd));
8490 cu_htab = allocate_dwo_unit_table (objfile);
8492 create_dwo_info_table_data.dwo_file = dwo_file;
8493 create_dwo_info_table_data.cu_htab = cu_htab;
8495 end_ptr = info_ptr + section->size;
8496 while (info_ptr < end_ptr)
8498 struct dwarf2_per_cu_data per_cu;
8500 memset (&per_cu, 0, sizeof (per_cu));
8501 per_cu.objfile = objfile;
8502 per_cu.is_debug_types = 0;
8503 per_cu.offset.sect_off = info_ptr - section->buffer;
8504 per_cu.section = section;
8506 init_cutu_and_read_dies_no_follow (&per_cu,
8507 &dwo_file->sections.abbrev,
8509 create_dwo_debug_info_hash_table_reader,
8510 &create_dwo_info_table_data);
8512 info_ptr += per_cu.length;
8518 /* DWP file .debug_{cu,tu}_index section format:
8519 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8521 Both index sections have the same format, and serve to map a 64-bit
8522 signature to a set of section numbers. Each section begins with a header,
8523 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8524 indexes, and a pool of 32-bit section numbers. The index sections will be
8525 aligned at 8-byte boundaries in the file.
8527 The index section header contains two unsigned 32-bit values (using the
8528 byte order of the application binary):
8530 N, the number of compilation units or type units in the index
8531 M, the number of slots in the hash table
8533 (We assume that N and M will not exceed 2^32 - 1.)
8535 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8537 The hash table begins at offset 8 in the section, and consists of an array
8538 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8539 order of the application binary). Unused slots in the hash table are 0.
8540 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8542 The parallel table begins immediately after the hash table
8543 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8544 array of 32-bit indexes (using the byte order of the application binary),
8545 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8546 table contains a 32-bit index into the pool of section numbers. For unused
8547 hash table slots, the corresponding entry in the parallel table will be 0.
8549 Given a 64-bit compilation unit signature or a type signature S, an entry
8550 in the hash table is located as follows:
8552 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8553 the low-order k bits all set to 1.
8555 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8557 3) If the hash table entry at index H matches the signature, use that
8558 entry. If the hash table entry at index H is unused (all zeroes),
8559 terminate the search: the signature is not present in the table.
8561 4) Let H = (H + H') modulo M. Repeat at Step 3.
8563 Because M > N and H' and M are relatively prime, the search is guaranteed
8564 to stop at an unused slot or find the match.
8566 The pool of section numbers begins immediately following the hash table
8567 (at offset 8 + 12 * M from the beginning of the section). The pool of
8568 section numbers consists of an array of 32-bit words (using the byte order
8569 of the application binary). Each item in the array is indexed starting
8570 from 0. The hash table entry provides the index of the first section
8571 number in the set. Additional section numbers in the set follow, and the
8572 set is terminated by a 0 entry (section number 0 is not used in ELF).
8574 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8575 section must be the first entry in the set, and the .debug_abbrev.dwo must
8576 be the second entry. Other members of the set may follow in any order. */
8578 /* Create a hash table to map DWO IDs to their CU/TU entry in
8579 .debug_{info,types}.dwo in DWP_FILE.
8580 Returns NULL if there isn't one.
8581 Note: This function processes DWP files only, not DWO files. */
8583 static struct dwp_hash_table *
8584 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8586 struct objfile *objfile = dwarf2_per_objfile->objfile;
8587 bfd *dbfd = dwp_file->dbfd;
8588 char *index_ptr, *index_end;
8589 struct dwarf2_section_info *index;
8590 uint32_t version, nr_units, nr_slots;
8591 struct dwp_hash_table *htab;
8594 index = &dwp_file->sections.tu_index;
8596 index = &dwp_file->sections.cu_index;
8598 if (dwarf2_section_empty_p (index))
8600 dwarf2_read_section (objfile, index);
8602 index_ptr = index->buffer;
8603 index_end = index_ptr + index->size;
8605 version = read_4_bytes (dbfd, index_ptr);
8606 index_ptr += 8; /* Skip the unused word. */
8607 nr_units = read_4_bytes (dbfd, index_ptr);
8609 nr_slots = read_4_bytes (dbfd, index_ptr);
8614 error (_("Dwarf Error: unsupported DWP file version (%u)"
8616 version, dwp_file->name);
8618 if (nr_slots != (nr_slots & -nr_slots))
8620 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8621 " is not power of 2 [in module %s]"),
8622 nr_slots, dwp_file->name);
8625 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8626 htab->nr_units = nr_units;
8627 htab->nr_slots = nr_slots;
8628 htab->hash_table = index_ptr;
8629 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8630 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8635 /* Update SECTIONS with the data from SECTP.
8637 This function is like the other "locate" section routines that are
8638 passed to bfd_map_over_sections, but in this context the sections to
8639 read comes from the DWP hash table, not the full ELF section table.
8641 The result is non-zero for success, or zero if an error was found. */
8644 locate_virtual_dwo_sections (asection *sectp,
8645 struct virtual_dwo_sections *sections)
8647 const struct dwop_section_names *names = &dwop_section_names;
8649 if (section_is_p (sectp->name, &names->abbrev_dwo))
8651 /* There can be only one. */
8652 if (sections->abbrev.asection != NULL)
8654 sections->abbrev.asection = sectp;
8655 sections->abbrev.size = bfd_get_section_size (sectp);
8657 else if (section_is_p (sectp->name, &names->info_dwo)
8658 || section_is_p (sectp->name, &names->types_dwo))
8660 /* There can be only one. */
8661 if (sections->info_or_types.asection != NULL)
8663 sections->info_or_types.asection = sectp;
8664 sections->info_or_types.size = bfd_get_section_size (sectp);
8666 else if (section_is_p (sectp->name, &names->line_dwo))
8668 /* There can be only one. */
8669 if (sections->line.asection != NULL)
8671 sections->line.asection = sectp;
8672 sections->line.size = bfd_get_section_size (sectp);
8674 else if (section_is_p (sectp->name, &names->loc_dwo))
8676 /* There can be only one. */
8677 if (sections->loc.asection != NULL)
8679 sections->loc.asection = sectp;
8680 sections->loc.size = bfd_get_section_size (sectp);
8682 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8684 /* There can be only one. */
8685 if (sections->macinfo.asection != NULL)
8687 sections->macinfo.asection = sectp;
8688 sections->macinfo.size = bfd_get_section_size (sectp);
8690 else if (section_is_p (sectp->name, &names->macro_dwo))
8692 /* There can be only one. */
8693 if (sections->macro.asection != NULL)
8695 sections->macro.asection = sectp;
8696 sections->macro.size = bfd_get_section_size (sectp);
8698 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8700 /* There can be only one. */
8701 if (sections->str_offsets.asection != NULL)
8703 sections->str_offsets.asection = sectp;
8704 sections->str_offsets.size = bfd_get_section_size (sectp);
8708 /* No other kind of section is valid. */
8715 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8716 HTAB is the hash table from the DWP file.
8717 SECTION_INDEX is the index of the DWO in HTAB. */
8719 static struct dwo_unit *
8720 create_dwo_in_dwp (struct dwp_file *dwp_file,
8721 const struct dwp_hash_table *htab,
8722 uint32_t section_index,
8723 ULONGEST signature, int is_debug_types)
8725 struct objfile *objfile = dwarf2_per_objfile->objfile;
8726 bfd *dbfd = dwp_file->dbfd;
8727 const char *kind = is_debug_types ? "TU" : "CU";
8728 struct dwo_file *dwo_file;
8729 struct dwo_unit *dwo_unit;
8730 struct virtual_dwo_sections sections;
8731 void **dwo_file_slot;
8732 char *virtual_dwo_name;
8733 struct dwarf2_section_info *cutu;
8734 struct cleanup *cleanups;
8737 if (dwarf2_read_debug)
8739 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8741 section_index, phex (signature, sizeof (signature)),
8745 /* Fetch the sections of this DWO.
8746 Put a limit on the number of sections we look for so that bad data
8747 doesn't cause us to loop forever. */
8749 #define MAX_NR_DWO_SECTIONS \
8750 (1 /* .debug_info or .debug_types */ \
8751 + 1 /* .debug_abbrev */ \
8752 + 1 /* .debug_line */ \
8753 + 1 /* .debug_loc */ \
8754 + 1 /* .debug_str_offsets */ \
8755 + 1 /* .debug_macro */ \
8756 + 1 /* .debug_macinfo */ \
8757 + 1 /* trailing zero */)
8759 memset (§ions, 0, sizeof (sections));
8760 cleanups = make_cleanup (null_cleanup, 0);
8762 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8765 uint32_t section_nr =
8768 + (section_index + i) * sizeof (uint32_t));
8770 if (section_nr == 0)
8772 if (section_nr >= dwp_file->num_sections)
8774 error (_("Dwarf Error: bad DWP hash table, section number too large"
8779 sectp = dwp_file->elf_sections[section_nr];
8780 if (! locate_virtual_dwo_sections (sectp, §ions))
8782 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8789 || sections.info_or_types.asection == NULL
8790 || sections.abbrev.asection == NULL)
8792 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8796 if (i == MAX_NR_DWO_SECTIONS)
8798 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8803 /* It's easier for the rest of the code if we fake a struct dwo_file and
8804 have dwo_unit "live" in that. At least for now.
8806 The DWP file can be made up of a random collection of CUs and TUs.
8807 However, for each CU + set of TUs that came from the same original DWO
8808 file, we want to combine them back into a virtual DWO file to save space
8809 (fewer struct dwo_file objects to allocated). Remember that for really
8810 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8813 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8814 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8815 sections.line.asection ? sections.line.asection->id : 0,
8816 sections.loc.asection ? sections.loc.asection->id : 0,
8817 (sections.str_offsets.asection
8818 ? sections.str_offsets.asection->id
8820 make_cleanup (xfree, virtual_dwo_name);
8821 /* Can we use an existing virtual DWO file? */
8822 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8823 /* Create one if necessary. */
8824 if (*dwo_file_slot == NULL)
8826 if (dwarf2_read_debug)
8828 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8831 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8832 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8834 strlen (virtual_dwo_name));
8835 dwo_file->sections.abbrev = sections.abbrev;
8836 dwo_file->sections.line = sections.line;
8837 dwo_file->sections.loc = sections.loc;
8838 dwo_file->sections.macinfo = sections.macinfo;
8839 dwo_file->sections.macro = sections.macro;
8840 dwo_file->sections.str_offsets = sections.str_offsets;
8841 /* The "str" section is global to the entire DWP file. */
8842 dwo_file->sections.str = dwp_file->sections.str;
8843 /* The info or types section is assigned later to dwo_unit,
8844 there's no need to record it in dwo_file.
8845 Also, we can't simply record type sections in dwo_file because
8846 we record a pointer into the vector in dwo_unit. As we collect more
8847 types we'll grow the vector and eventually have to reallocate space
8848 for it, invalidating all the pointers into the current copy. */
8849 *dwo_file_slot = dwo_file;
8853 if (dwarf2_read_debug)
8855 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8858 dwo_file = *dwo_file_slot;
8860 do_cleanups (cleanups);
8862 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8863 dwo_unit->dwo_file = dwo_file;
8864 dwo_unit->signature = signature;
8865 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8866 sizeof (struct dwarf2_section_info));
8867 *dwo_unit->section = sections.info_or_types;
8868 /* offset, length, type_offset_in_tu are set later. */
8873 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8875 static struct dwo_unit *
8876 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8877 const struct dwp_hash_table *htab,
8878 ULONGEST signature, int is_debug_types)
8880 bfd *dbfd = dwp_file->dbfd;
8881 uint32_t mask = htab->nr_slots - 1;
8882 uint32_t hash = signature & mask;
8883 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8886 struct dwo_unit find_dwo_cu, *dwo_cu;
8888 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8889 find_dwo_cu.signature = signature;
8890 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8895 /* Use a for loop so that we don't loop forever on bad debug info. */
8896 for (i = 0; i < htab->nr_slots; ++i)
8898 ULONGEST signature_in_table;
8900 signature_in_table =
8901 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8902 if (signature_in_table == signature)
8904 uint32_t section_index =
8905 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8907 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8908 signature, is_debug_types);
8911 if (signature_in_table == 0)
8913 hash = (hash + hash2) & mask;
8916 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8921 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
8922 Open the file specified by FILE_NAME and hand it off to BFD for
8923 preliminary analysis. Return a newly initialized bfd *, which
8924 includes a canonicalized copy of FILE_NAME.
8925 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8926 In case of trouble, return NULL.
8927 NOTE: This function is derived from symfile_bfd_open. */
8930 try_open_dwop_file (const char *file_name, int is_dwp)
8934 char *absolute_name;
8936 flags = OPF_TRY_CWD_FIRST;
8938 flags |= OPF_SEARCH_IN_PATH;
8939 desc = openp (debug_file_directory, flags, file_name,
8940 O_RDONLY | O_BINARY, &absolute_name);
8944 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8947 xfree (absolute_name);
8950 xfree (absolute_name);
8951 bfd_set_cacheable (sym_bfd, 1);
8953 if (!bfd_check_format (sym_bfd, bfd_object))
8955 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8962 /* Try to open DWO file FILE_NAME.
8963 COMP_DIR is the DW_AT_comp_dir attribute.
8964 The result is the bfd handle of the file.
8965 If there is a problem finding or opening the file, return NULL.
8966 Upon success, the canonicalized path of the file is stored in the bfd,
8967 same as symfile_bfd_open. */
8970 open_dwo_file (const char *file_name, const char *comp_dir)
8974 if (IS_ABSOLUTE_PATH (file_name))
8975 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
8977 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8979 if (comp_dir != NULL)
8981 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8983 /* NOTE: If comp_dir is a relative path, this will also try the
8984 search path, which seems useful. */
8985 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
8986 xfree (path_to_try);
8991 /* That didn't work, try debug-file-directory, which, despite its name,
8992 is a list of paths. */
8994 if (*debug_file_directory == '\0')
8997 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9000 /* This function is mapped across the sections and remembers the offset and
9001 size of each of the DWO debugging sections we are interested in. */
9004 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9006 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9007 const struct dwop_section_names *names = &dwop_section_names;
9009 if (section_is_p (sectp->name, &names->abbrev_dwo))
9011 dwo_sections->abbrev.asection = sectp;
9012 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9014 else if (section_is_p (sectp->name, &names->info_dwo))
9016 dwo_sections->info.asection = sectp;
9017 dwo_sections->info.size = bfd_get_section_size (sectp);
9019 else if (section_is_p (sectp->name, &names->line_dwo))
9021 dwo_sections->line.asection = sectp;
9022 dwo_sections->line.size = bfd_get_section_size (sectp);
9024 else if (section_is_p (sectp->name, &names->loc_dwo))
9026 dwo_sections->loc.asection = sectp;
9027 dwo_sections->loc.size = bfd_get_section_size (sectp);
9029 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9031 dwo_sections->macinfo.asection = sectp;
9032 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9034 else if (section_is_p (sectp->name, &names->macro_dwo))
9036 dwo_sections->macro.asection = sectp;
9037 dwo_sections->macro.size = bfd_get_section_size (sectp);
9039 else if (section_is_p (sectp->name, &names->str_dwo))
9041 dwo_sections->str.asection = sectp;
9042 dwo_sections->str.size = bfd_get_section_size (sectp);
9044 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9046 dwo_sections->str_offsets.asection = sectp;
9047 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9049 else if (section_is_p (sectp->name, &names->types_dwo))
9051 struct dwarf2_section_info type_section;
9053 memset (&type_section, 0, sizeof (type_section));
9054 type_section.asection = sectp;
9055 type_section.size = bfd_get_section_size (sectp);
9056 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9061 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9063 The result is NULL if DWO_NAME can't be found. */
9065 static struct dwo_file *
9066 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
9068 struct objfile *objfile = dwarf2_per_objfile->objfile;
9069 struct dwo_file *dwo_file;
9071 struct cleanup *cleanups;
9073 dbfd = open_dwo_file (dwo_name, comp_dir);
9076 if (dwarf2_read_debug)
9077 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9080 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9081 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
9082 dwo_name, strlen (dwo_name));
9083 dwo_file->dbfd = dbfd;
9085 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9087 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9089 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
9091 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9092 dwo_file->sections.types);
9094 discard_cleanups (cleanups);
9096 if (dwarf2_read_debug)
9097 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9102 /* This function is mapped across the sections and remembers the offset and
9103 size of each of the DWP debugging sections we are interested in. */
9106 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9108 struct dwp_file *dwp_file = dwp_file_ptr;
9109 const struct dwop_section_names *names = &dwop_section_names;
9110 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9112 /* Record the ELF section number for later lookup: this is what the
9113 .debug_cu_index,.debug_tu_index tables use. */
9114 gdb_assert (elf_section_nr < dwp_file->num_sections);
9115 dwp_file->elf_sections[elf_section_nr] = sectp;
9117 /* Look for specific sections that we need. */
9118 if (section_is_p (sectp->name, &names->str_dwo))
9120 dwp_file->sections.str.asection = sectp;
9121 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9123 else if (section_is_p (sectp->name, &names->cu_index))
9125 dwp_file->sections.cu_index.asection = sectp;
9126 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9128 else if (section_is_p (sectp->name, &names->tu_index))
9130 dwp_file->sections.tu_index.asection = sectp;
9131 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9135 /* Hash function for dwp_file loaded CUs/TUs. */
9138 hash_dwp_loaded_cutus (const void *item)
9140 const struct dwo_unit *dwo_unit = item;
9142 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9143 return dwo_unit->signature;
9146 /* Equality function for dwp_file loaded CUs/TUs. */
9149 eq_dwp_loaded_cutus (const void *a, const void *b)
9151 const struct dwo_unit *dua = a;
9152 const struct dwo_unit *dub = b;
9154 return dua->signature == dub->signature;
9157 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9160 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9162 return htab_create_alloc_ex (3,
9163 hash_dwp_loaded_cutus,
9164 eq_dwp_loaded_cutus,
9166 &objfile->objfile_obstack,
9167 hashtab_obstack_allocate,
9168 dummy_obstack_deallocate);
9171 /* Try to open DWP file FILE_NAME.
9172 The result is the bfd handle of the file.
9173 If there is a problem finding or opening the file, return NULL.
9174 Upon success, the canonicalized path of the file is stored in the bfd,
9175 same as symfile_bfd_open. */
9178 open_dwp_file (const char *file_name)
9180 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9183 /* Initialize the use of the DWP file for the current objfile.
9184 By convention the name of the DWP file is ${objfile}.dwp.
9185 The result is NULL if it can't be found. */
9187 static struct dwp_file *
9188 open_and_init_dwp_file (void)
9190 struct objfile *objfile = dwarf2_per_objfile->objfile;
9191 struct dwp_file *dwp_file;
9194 struct cleanup *cleanups;
9196 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9197 cleanups = make_cleanup (xfree, dwp_name);
9199 dbfd = open_dwp_file (dwp_name);
9202 if (dwarf2_read_debug)
9203 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9204 do_cleanups (cleanups);
9207 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9208 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9209 dwp_name, strlen (dwp_name));
9210 dwp_file->dbfd = dbfd;
9211 do_cleanups (cleanups);
9213 /* +1: section 0 is unused */
9214 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9215 dwp_file->elf_sections =
9216 OBSTACK_CALLOC (&objfile->objfile_obstack,
9217 dwp_file->num_sections, asection *);
9219 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9221 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9223 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9225 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9227 if (dwarf2_read_debug)
9229 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9230 fprintf_unfiltered (gdb_stdlog,
9231 " %u CUs, %u TUs\n",
9232 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9233 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9239 /* Wrapper around open_and_init_dwp_file, only open it once. */
9241 static struct dwp_file *
9244 if (! dwarf2_per_objfile->dwp_checked)
9246 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9247 dwarf2_per_objfile->dwp_checked = 1;
9249 return dwarf2_per_objfile->dwp_file;
9252 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9253 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9254 or in the DWP file for the objfile, referenced by THIS_UNIT.
9255 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9256 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9258 This is called, for example, when wanting to read a variable with a
9259 complex location. Therefore we don't want to do file i/o for every call.
9260 Therefore we don't want to look for a DWO file on every call.
9261 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9262 then we check if we've already seen DWO_NAME, and only THEN do we check
9265 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9266 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9268 static struct dwo_unit *
9269 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9270 const char *dwo_name, const char *comp_dir,
9271 ULONGEST signature, int is_debug_types)
9273 struct objfile *objfile = dwarf2_per_objfile->objfile;
9274 const char *kind = is_debug_types ? "TU" : "CU";
9275 void **dwo_file_slot;
9276 struct dwo_file *dwo_file;
9277 struct dwp_file *dwp_file;
9279 /* Have we already read SIGNATURE from a DWP file? */
9281 dwp_file = get_dwp_file ();
9282 if (dwp_file != NULL)
9284 const struct dwp_hash_table *dwp_htab =
9285 is_debug_types ? dwp_file->tus : dwp_file->cus;
9287 if (dwp_htab != NULL)
9289 struct dwo_unit *dwo_cutu =
9290 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9292 if (dwo_cutu != NULL)
9294 if (dwarf2_read_debug)
9296 fprintf_unfiltered (gdb_stdlog,
9297 "Virtual DWO %s %s found: @%s\n",
9298 kind, hex_string (signature),
9299 host_address_to_string (dwo_cutu));
9306 /* Have we already seen DWO_NAME? */
9308 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9309 if (*dwo_file_slot == NULL)
9311 /* Read in the file and build a table of the DWOs it contains. */
9312 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9314 /* NOTE: This will be NULL if unable to open the file. */
9315 dwo_file = *dwo_file_slot;
9317 if (dwo_file != NULL)
9319 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9323 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9325 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9326 find_dwo_cutu.signature = signature;
9327 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9329 if (dwo_cutu != NULL)
9331 if (dwarf2_read_debug)
9333 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9334 kind, dwo_name, hex_string (signature),
9335 host_address_to_string (dwo_cutu));
9342 /* We didn't find it. This could mean a dwo_id mismatch, or
9343 someone deleted the DWO/DWP file, or the search path isn't set up
9344 correctly to find the file. */
9346 if (dwarf2_read_debug)
9348 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9349 kind, dwo_name, hex_string (signature));
9352 complaint (&symfile_complaints,
9353 _("Could not find DWO %s referenced by CU at offset 0x%x"
9355 kind, this_unit->offset.sect_off, objfile->name);
9359 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9360 See lookup_dwo_cutu_unit for details. */
9362 static struct dwo_unit *
9363 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9364 const char *dwo_name, const char *comp_dir,
9367 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9370 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9371 See lookup_dwo_cutu_unit for details. */
9373 static struct dwo_unit *
9374 lookup_dwo_type_unit (struct signatured_type *this_tu,
9375 const char *dwo_name, const char *comp_dir)
9377 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9380 /* Free all resources associated with DWO_FILE.
9381 Close the DWO file and munmap the sections.
9382 All memory should be on the objfile obstack. */
9385 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9388 struct dwarf2_section_info *section;
9390 /* Note: dbfd is NULL for virtual DWO files. */
9391 gdb_bfd_unref (dwo_file->dbfd);
9393 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9396 /* Wrapper for free_dwo_file for use in cleanups. */
9399 free_dwo_file_cleanup (void *arg)
9401 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9402 struct objfile *objfile = dwarf2_per_objfile->objfile;
9404 free_dwo_file (dwo_file, objfile);
9407 /* Traversal function for free_dwo_files. */
9410 free_dwo_file_from_slot (void **slot, void *info)
9412 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9413 struct objfile *objfile = (struct objfile *) info;
9415 free_dwo_file (dwo_file, objfile);
9420 /* Free all resources associated with DWO_FILES. */
9423 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9425 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9428 /* Read in various DIEs. */
9430 /* qsort helper for inherit_abstract_dies. */
9433 unsigned_int_compar (const void *ap, const void *bp)
9435 unsigned int a = *(unsigned int *) ap;
9436 unsigned int b = *(unsigned int *) bp;
9438 return (a > b) - (b > a);
9441 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9442 Inherit only the children of the DW_AT_abstract_origin DIE not being
9443 already referenced by DW_AT_abstract_origin from the children of the
9447 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9449 struct die_info *child_die;
9450 unsigned die_children_count;
9451 /* CU offsets which were referenced by children of the current DIE. */
9452 sect_offset *offsets;
9453 sect_offset *offsets_end, *offsetp;
9454 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9455 struct die_info *origin_die;
9456 /* Iterator of the ORIGIN_DIE children. */
9457 struct die_info *origin_child_die;
9458 struct cleanup *cleanups;
9459 struct attribute *attr;
9460 struct dwarf2_cu *origin_cu;
9461 struct pending **origin_previous_list_in_scope;
9463 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9467 /* Note that following die references may follow to a die in a
9471 origin_die = follow_die_ref (die, attr, &origin_cu);
9473 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9475 origin_previous_list_in_scope = origin_cu->list_in_scope;
9476 origin_cu->list_in_scope = cu->list_in_scope;
9478 if (die->tag != origin_die->tag
9479 && !(die->tag == DW_TAG_inlined_subroutine
9480 && origin_die->tag == DW_TAG_subprogram))
9481 complaint (&symfile_complaints,
9482 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9483 die->offset.sect_off, origin_die->offset.sect_off);
9485 child_die = die->child;
9486 die_children_count = 0;
9487 while (child_die && child_die->tag)
9489 child_die = sibling_die (child_die);
9490 die_children_count++;
9492 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9493 cleanups = make_cleanup (xfree, offsets);
9495 offsets_end = offsets;
9496 child_die = die->child;
9497 while (child_die && child_die->tag)
9499 /* For each CHILD_DIE, find the corresponding child of
9500 ORIGIN_DIE. If there is more than one layer of
9501 DW_AT_abstract_origin, follow them all; there shouldn't be,
9502 but GCC versions at least through 4.4 generate this (GCC PR
9504 struct die_info *child_origin_die = child_die;
9505 struct dwarf2_cu *child_origin_cu = cu;
9509 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9513 child_origin_die = follow_die_ref (child_origin_die, attr,
9517 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9518 counterpart may exist. */
9519 if (child_origin_die != child_die)
9521 if (child_die->tag != child_origin_die->tag
9522 && !(child_die->tag == DW_TAG_inlined_subroutine
9523 && child_origin_die->tag == DW_TAG_subprogram))
9524 complaint (&symfile_complaints,
9525 _("Child DIE 0x%x and its abstract origin 0x%x have "
9526 "different tags"), child_die->offset.sect_off,
9527 child_origin_die->offset.sect_off);
9528 if (child_origin_die->parent != origin_die)
9529 complaint (&symfile_complaints,
9530 _("Child DIE 0x%x and its abstract origin 0x%x have "
9531 "different parents"), child_die->offset.sect_off,
9532 child_origin_die->offset.sect_off);
9534 *offsets_end++ = child_origin_die->offset;
9536 child_die = sibling_die (child_die);
9538 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9539 unsigned_int_compar);
9540 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9541 if (offsetp[-1].sect_off == offsetp->sect_off)
9542 complaint (&symfile_complaints,
9543 _("Multiple children of DIE 0x%x refer "
9544 "to DIE 0x%x as their abstract origin"),
9545 die->offset.sect_off, offsetp->sect_off);
9548 origin_child_die = origin_die->child;
9549 while (origin_child_die && origin_child_die->tag)
9551 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9552 while (offsetp < offsets_end
9553 && offsetp->sect_off < origin_child_die->offset.sect_off)
9555 if (offsetp >= offsets_end
9556 || offsetp->sect_off > origin_child_die->offset.sect_off)
9558 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9559 process_die (origin_child_die, origin_cu);
9561 origin_child_die = sibling_die (origin_child_die);
9563 origin_cu->list_in_scope = origin_previous_list_in_scope;
9565 do_cleanups (cleanups);
9569 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9571 struct objfile *objfile = cu->objfile;
9572 struct context_stack *new;
9575 struct die_info *child_die;
9576 struct attribute *attr, *call_line, *call_file;
9579 struct block *block;
9580 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9581 VEC (symbolp) *template_args = NULL;
9582 struct template_symbol *templ_func = NULL;
9586 /* If we do not have call site information, we can't show the
9587 caller of this inlined function. That's too confusing, so
9588 only use the scope for local variables. */
9589 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9590 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9591 if (call_line == NULL || call_file == NULL)
9593 read_lexical_block_scope (die, cu);
9598 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9600 name = dwarf2_name (die, cu);
9602 /* Ignore functions with missing or empty names. These are actually
9603 illegal according to the DWARF standard. */
9606 complaint (&symfile_complaints,
9607 _("missing name for subprogram DIE at %d"),
9608 die->offset.sect_off);
9612 /* Ignore functions with missing or invalid low and high pc attributes. */
9613 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9615 attr = dwarf2_attr (die, DW_AT_external, cu);
9616 if (!attr || !DW_UNSND (attr))
9617 complaint (&symfile_complaints,
9618 _("cannot get low and high bounds "
9619 "for subprogram DIE at %d"),
9620 die->offset.sect_off);
9627 /* If we have any template arguments, then we must allocate a
9628 different sort of symbol. */
9629 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9631 if (child_die->tag == DW_TAG_template_type_param
9632 || child_die->tag == DW_TAG_template_value_param)
9634 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9635 struct template_symbol);
9636 templ_func->base.is_cplus_template_function = 1;
9641 new = push_context (0, lowpc);
9642 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9643 (struct symbol *) templ_func);
9645 /* If there is a location expression for DW_AT_frame_base, record
9647 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9649 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9651 cu->list_in_scope = &local_symbols;
9653 if (die->child != NULL)
9655 child_die = die->child;
9656 while (child_die && child_die->tag)
9658 if (child_die->tag == DW_TAG_template_type_param
9659 || child_die->tag == DW_TAG_template_value_param)
9661 struct symbol *arg = new_symbol (child_die, NULL, cu);
9664 VEC_safe_push (symbolp, template_args, arg);
9667 process_die (child_die, cu);
9668 child_die = sibling_die (child_die);
9672 inherit_abstract_dies (die, cu);
9674 /* If we have a DW_AT_specification, we might need to import using
9675 directives from the context of the specification DIE. See the
9676 comment in determine_prefix. */
9677 if (cu->language == language_cplus
9678 && dwarf2_attr (die, DW_AT_specification, cu))
9680 struct dwarf2_cu *spec_cu = cu;
9681 struct die_info *spec_die = die_specification (die, &spec_cu);
9685 child_die = spec_die->child;
9686 while (child_die && child_die->tag)
9688 if (child_die->tag == DW_TAG_imported_module)
9689 process_die (child_die, spec_cu);
9690 child_die = sibling_die (child_die);
9693 /* In some cases, GCC generates specification DIEs that
9694 themselves contain DW_AT_specification attributes. */
9695 spec_die = die_specification (spec_die, &spec_cu);
9699 new = pop_context ();
9700 /* Make a block for the local symbols within. */
9701 block = finish_block (new->name, &local_symbols, new->old_blocks,
9702 lowpc, highpc, objfile);
9704 /* For C++, set the block's scope. */
9705 if ((cu->language == language_cplus || cu->language == language_fortran)
9706 && cu->processing_has_namespace_info)
9707 block_set_scope (block, determine_prefix (die, cu),
9708 &objfile->objfile_obstack);
9710 /* If we have address ranges, record them. */
9711 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9713 /* Attach template arguments to function. */
9714 if (! VEC_empty (symbolp, template_args))
9716 gdb_assert (templ_func != NULL);
9718 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9719 templ_func->template_arguments
9720 = obstack_alloc (&objfile->objfile_obstack,
9721 (templ_func->n_template_arguments
9722 * sizeof (struct symbol *)));
9723 memcpy (templ_func->template_arguments,
9724 VEC_address (symbolp, template_args),
9725 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9726 VEC_free (symbolp, template_args);
9729 /* In C++, we can have functions nested inside functions (e.g., when
9730 a function declares a class that has methods). This means that
9731 when we finish processing a function scope, we may need to go
9732 back to building a containing block's symbol lists. */
9733 local_symbols = new->locals;
9734 using_directives = new->using_directives;
9736 /* If we've finished processing a top-level function, subsequent
9737 symbols go in the file symbol list. */
9738 if (outermost_context_p ())
9739 cu->list_in_scope = &file_symbols;
9742 /* Process all the DIES contained within a lexical block scope. Start
9743 a new scope, process the dies, and then close the scope. */
9746 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9748 struct objfile *objfile = cu->objfile;
9749 struct context_stack *new;
9750 CORE_ADDR lowpc, highpc;
9751 struct die_info *child_die;
9754 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9756 /* Ignore blocks with missing or invalid low and high pc attributes. */
9757 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9758 as multiple lexical blocks? Handling children in a sane way would
9759 be nasty. Might be easier to properly extend generic blocks to
9761 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9766 push_context (0, lowpc);
9767 if (die->child != NULL)
9769 child_die = die->child;
9770 while (child_die && child_die->tag)
9772 process_die (child_die, cu);
9773 child_die = sibling_die (child_die);
9776 new = pop_context ();
9778 if (local_symbols != NULL || using_directives != NULL)
9781 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9784 /* Note that recording ranges after traversing children, as we
9785 do here, means that recording a parent's ranges entails
9786 walking across all its children's ranges as they appear in
9787 the address map, which is quadratic behavior.
9789 It would be nicer to record the parent's ranges before
9790 traversing its children, simply overriding whatever you find
9791 there. But since we don't even decide whether to create a
9792 block until after we've traversed its children, that's hard
9794 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9796 local_symbols = new->locals;
9797 using_directives = new->using_directives;
9800 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9803 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9805 struct objfile *objfile = cu->objfile;
9806 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9807 CORE_ADDR pc, baseaddr;
9808 struct attribute *attr;
9809 struct call_site *call_site, call_site_local;
9812 struct die_info *child_die;
9814 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9816 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9819 complaint (&symfile_complaints,
9820 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9821 "DIE 0x%x [in module %s]"),
9822 die->offset.sect_off, objfile->name);
9825 pc = DW_ADDR (attr) + baseaddr;
9827 if (cu->call_site_htab == NULL)
9828 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9829 NULL, &objfile->objfile_obstack,
9830 hashtab_obstack_allocate, NULL);
9831 call_site_local.pc = pc;
9832 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9835 complaint (&symfile_complaints,
9836 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9837 "DIE 0x%x [in module %s]"),
9838 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9842 /* Count parameters at the caller. */
9845 for (child_die = die->child; child_die && child_die->tag;
9846 child_die = sibling_die (child_die))
9848 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9850 complaint (&symfile_complaints,
9851 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9852 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9853 child_die->tag, child_die->offset.sect_off, objfile->name);
9860 call_site = obstack_alloc (&objfile->objfile_obstack,
9861 (sizeof (*call_site)
9862 + (sizeof (*call_site->parameter)
9865 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9868 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9870 struct die_info *func_die;
9872 /* Skip also over DW_TAG_inlined_subroutine. */
9873 for (func_die = die->parent;
9874 func_die && func_die->tag != DW_TAG_subprogram
9875 && func_die->tag != DW_TAG_subroutine_type;
9876 func_die = func_die->parent);
9878 /* DW_AT_GNU_all_call_sites is a superset
9879 of DW_AT_GNU_all_tail_call_sites. */
9881 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9882 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9884 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9885 not complete. But keep CALL_SITE for look ups via call_site_htab,
9886 both the initial caller containing the real return address PC and
9887 the final callee containing the current PC of a chain of tail
9888 calls do not need to have the tail call list complete. But any
9889 function candidate for a virtual tail call frame searched via
9890 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9891 determined unambiguously. */
9895 struct type *func_type = NULL;
9898 func_type = get_die_type (func_die, cu);
9899 if (func_type != NULL)
9901 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9903 /* Enlist this call site to the function. */
9904 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9905 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9908 complaint (&symfile_complaints,
9909 _("Cannot find function owning DW_TAG_GNU_call_site "
9910 "DIE 0x%x [in module %s]"),
9911 die->offset.sect_off, objfile->name);
9915 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9917 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9918 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9919 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9920 /* Keep NULL DWARF_BLOCK. */;
9921 else if (attr_form_is_block (attr))
9923 struct dwarf2_locexpr_baton *dlbaton;
9925 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9926 dlbaton->data = DW_BLOCK (attr)->data;
9927 dlbaton->size = DW_BLOCK (attr)->size;
9928 dlbaton->per_cu = cu->per_cu;
9930 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9932 else if (is_ref_attr (attr))
9934 struct dwarf2_cu *target_cu = cu;
9935 struct die_info *target_die;
9937 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9938 gdb_assert (target_cu->objfile == objfile);
9939 if (die_is_declaration (target_die, target_cu))
9941 const char *target_physname = NULL;
9942 struct attribute *target_attr;
9944 /* Prefer the mangled name; otherwise compute the demangled one. */
9945 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9946 if (target_attr == NULL)
9947 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9949 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9950 target_physname = DW_STRING (target_attr);
9952 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9953 if (target_physname == NULL)
9954 complaint (&symfile_complaints,
9955 _("DW_AT_GNU_call_site_target target DIE has invalid "
9956 "physname, for referencing DIE 0x%x [in module %s]"),
9957 die->offset.sect_off, objfile->name);
9959 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9965 /* DW_AT_entry_pc should be preferred. */
9966 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9967 complaint (&symfile_complaints,
9968 _("DW_AT_GNU_call_site_target target DIE has invalid "
9969 "low pc, for referencing DIE 0x%x [in module %s]"),
9970 die->offset.sect_off, objfile->name);
9972 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9976 complaint (&symfile_complaints,
9977 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9978 "block nor reference, for DIE 0x%x [in module %s]"),
9979 die->offset.sect_off, objfile->name);
9981 call_site->per_cu = cu->per_cu;
9983 for (child_die = die->child;
9984 child_die && child_die->tag;
9985 child_die = sibling_die (child_die))
9987 struct call_site_parameter *parameter;
9988 struct attribute *loc, *origin;
9990 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9992 /* Already printed the complaint above. */
9996 gdb_assert (call_site->parameter_count < nparams);
9997 parameter = &call_site->parameter[call_site->parameter_count];
9999 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10000 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10001 register is contained in DW_AT_GNU_call_site_value. */
10003 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10004 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10005 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10007 sect_offset offset;
10009 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10010 offset = dwarf2_get_ref_die_offset (origin);
10011 if (!offset_in_cu_p (&cu->header, offset))
10013 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10014 binding can be done only inside one CU. Such referenced DIE
10015 therefore cannot be even moved to DW_TAG_partial_unit. */
10016 complaint (&symfile_complaints,
10017 _("DW_AT_abstract_origin offset is not in CU for "
10018 "DW_TAG_GNU_call_site child DIE 0x%x "
10020 child_die->offset.sect_off, objfile->name);
10023 parameter->u.param_offset.cu_off = (offset.sect_off
10024 - cu->header.offset.sect_off);
10026 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10028 complaint (&symfile_complaints,
10029 _("No DW_FORM_block* DW_AT_location for "
10030 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10031 child_die->offset.sect_off, objfile->name);
10036 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10037 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10038 if (parameter->u.dwarf_reg != -1)
10039 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10040 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10041 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10042 ¶meter->u.fb_offset))
10043 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10046 complaint (&symfile_complaints,
10047 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10048 "for DW_FORM_block* DW_AT_location is supported for "
10049 "DW_TAG_GNU_call_site child DIE 0x%x "
10051 child_die->offset.sect_off, objfile->name);
10056 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10057 if (!attr_form_is_block (attr))
10059 complaint (&symfile_complaints,
10060 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10061 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10062 child_die->offset.sect_off, objfile->name);
10065 parameter->value = DW_BLOCK (attr)->data;
10066 parameter->value_size = DW_BLOCK (attr)->size;
10068 /* Parameters are not pre-cleared by memset above. */
10069 parameter->data_value = NULL;
10070 parameter->data_value_size = 0;
10071 call_site->parameter_count++;
10073 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10076 if (!attr_form_is_block (attr))
10077 complaint (&symfile_complaints,
10078 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10079 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10080 child_die->offset.sect_off, objfile->name);
10083 parameter->data_value = DW_BLOCK (attr)->data;
10084 parameter->data_value_size = DW_BLOCK (attr)->size;
10090 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10091 Return 1 if the attributes are present and valid, otherwise, return 0.
10092 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10095 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10096 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10097 struct partial_symtab *ranges_pst)
10099 struct objfile *objfile = cu->objfile;
10100 struct comp_unit_head *cu_header = &cu->header;
10101 bfd *obfd = objfile->obfd;
10102 unsigned int addr_size = cu_header->addr_size;
10103 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10104 /* Base address selection entry. */
10107 unsigned int dummy;
10112 CORE_ADDR high = 0;
10113 CORE_ADDR baseaddr;
10115 found_base = cu->base_known;
10116 base = cu->base_address;
10118 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10119 if (offset >= dwarf2_per_objfile->ranges.size)
10121 complaint (&symfile_complaints,
10122 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10126 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10128 /* Read in the largest possible address. */
10129 marker = read_address (obfd, buffer, cu, &dummy);
10130 if ((marker & mask) == mask)
10132 /* If we found the largest possible address, then
10133 read the base address. */
10134 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10135 buffer += 2 * addr_size;
10136 offset += 2 * addr_size;
10142 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10146 CORE_ADDR range_beginning, range_end;
10148 range_beginning = read_address (obfd, buffer, cu, &dummy);
10149 buffer += addr_size;
10150 range_end = read_address (obfd, buffer, cu, &dummy);
10151 buffer += addr_size;
10152 offset += 2 * addr_size;
10154 /* An end of list marker is a pair of zero addresses. */
10155 if (range_beginning == 0 && range_end == 0)
10156 /* Found the end of list entry. */
10159 /* Each base address selection entry is a pair of 2 values.
10160 The first is the largest possible address, the second is
10161 the base address. Check for a base address here. */
10162 if ((range_beginning & mask) == mask)
10164 /* If we found the largest possible address, then
10165 read the base address. */
10166 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10173 /* We have no valid base address for the ranges
10175 complaint (&symfile_complaints,
10176 _("Invalid .debug_ranges data (no base address)"));
10180 if (range_beginning > range_end)
10182 /* Inverted range entries are invalid. */
10183 complaint (&symfile_complaints,
10184 _("Invalid .debug_ranges data (inverted range)"));
10188 /* Empty range entries have no effect. */
10189 if (range_beginning == range_end)
10192 range_beginning += base;
10195 /* A not-uncommon case of bad debug info.
10196 Don't pollute the addrmap with bad data. */
10197 if (range_beginning + baseaddr == 0
10198 && !dwarf2_per_objfile->has_section_at_zero)
10200 complaint (&symfile_complaints,
10201 _(".debug_ranges entry has start address of zero"
10202 " [in module %s]"), objfile->name);
10206 if (ranges_pst != NULL)
10207 addrmap_set_empty (objfile->psymtabs_addrmap,
10208 range_beginning + baseaddr,
10209 range_end - 1 + baseaddr,
10212 /* FIXME: This is recording everything as a low-high
10213 segment of consecutive addresses. We should have a
10214 data structure for discontiguous block ranges
10218 low = range_beginning;
10224 if (range_beginning < low)
10225 low = range_beginning;
10226 if (range_end > high)
10232 /* If the first entry is an end-of-list marker, the range
10233 describes an empty scope, i.e. no instructions. */
10239 *high_return = high;
10243 /* Get low and high pc attributes from a die. Return 1 if the attributes
10244 are present and valid, otherwise, return 0. Return -1 if the range is
10245 discontinuous, i.e. derived from DW_AT_ranges information. */
10248 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10249 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10250 struct partial_symtab *pst)
10252 struct attribute *attr;
10253 struct attribute *attr_high;
10255 CORE_ADDR high = 0;
10258 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10261 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10264 low = DW_ADDR (attr);
10265 if (attr_high->form == DW_FORM_addr
10266 || attr_high->form == DW_FORM_GNU_addr_index)
10267 high = DW_ADDR (attr_high);
10269 high = low + DW_UNSND (attr_high);
10272 /* Found high w/o low attribute. */
10275 /* Found consecutive range of addresses. */
10280 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10283 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10284 We take advantage of the fact that DW_AT_ranges does not appear
10285 in DW_TAG_compile_unit of DWO files. */
10286 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10287 unsigned int ranges_offset = (DW_UNSND (attr)
10288 + (need_ranges_base
10292 /* Value of the DW_AT_ranges attribute is the offset in the
10293 .debug_ranges section. */
10294 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10296 /* Found discontinuous range of addresses. */
10301 /* read_partial_die has also the strict LOW < HIGH requirement. */
10305 /* When using the GNU linker, .gnu.linkonce. sections are used to
10306 eliminate duplicate copies of functions and vtables and such.
10307 The linker will arbitrarily choose one and discard the others.
10308 The AT_*_pc values for such functions refer to local labels in
10309 these sections. If the section from that file was discarded, the
10310 labels are not in the output, so the relocs get a value of 0.
10311 If this is a discarded function, mark the pc bounds as invalid,
10312 so that GDB will ignore it. */
10313 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10322 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10323 its low and high PC addresses. Do nothing if these addresses could not
10324 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10325 and HIGHPC to the high address if greater than HIGHPC. */
10328 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10329 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10330 struct dwarf2_cu *cu)
10332 CORE_ADDR low, high;
10333 struct die_info *child = die->child;
10335 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10337 *lowpc = min (*lowpc, low);
10338 *highpc = max (*highpc, high);
10341 /* If the language does not allow nested subprograms (either inside
10342 subprograms or lexical blocks), we're done. */
10343 if (cu->language != language_ada)
10346 /* Check all the children of the given DIE. If it contains nested
10347 subprograms, then check their pc bounds. Likewise, we need to
10348 check lexical blocks as well, as they may also contain subprogram
10350 while (child && child->tag)
10352 if (child->tag == DW_TAG_subprogram
10353 || child->tag == DW_TAG_lexical_block)
10354 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10355 child = sibling_die (child);
10359 /* Get the low and high pc's represented by the scope DIE, and store
10360 them in *LOWPC and *HIGHPC. If the correct values can't be
10361 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10364 get_scope_pc_bounds (struct die_info *die,
10365 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10366 struct dwarf2_cu *cu)
10368 CORE_ADDR best_low = (CORE_ADDR) -1;
10369 CORE_ADDR best_high = (CORE_ADDR) 0;
10370 CORE_ADDR current_low, current_high;
10372 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
10374 best_low = current_low;
10375 best_high = current_high;
10379 struct die_info *child = die->child;
10381 while (child && child->tag)
10383 switch (child->tag) {
10384 case DW_TAG_subprogram:
10385 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10387 case DW_TAG_namespace:
10388 case DW_TAG_module:
10389 /* FIXME: carlton/2004-01-16: Should we do this for
10390 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10391 that current GCC's always emit the DIEs corresponding
10392 to definitions of methods of classes as children of a
10393 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10394 the DIEs giving the declarations, which could be
10395 anywhere). But I don't see any reason why the
10396 standards says that they have to be there. */
10397 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
10399 if (current_low != ((CORE_ADDR) -1))
10401 best_low = min (best_low, current_low);
10402 best_high = max (best_high, current_high);
10410 child = sibling_die (child);
10415 *highpc = best_high;
10418 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10422 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10423 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10425 struct objfile *objfile = cu->objfile;
10426 struct attribute *attr;
10427 struct attribute *attr_high;
10429 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10432 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10435 CORE_ADDR low = DW_ADDR (attr);
10437 if (attr_high->form == DW_FORM_addr
10438 || attr_high->form == DW_FORM_GNU_addr_index)
10439 high = DW_ADDR (attr_high);
10441 high = low + DW_UNSND (attr_high);
10443 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10447 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10450 bfd *obfd = objfile->obfd;
10451 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10452 We take advantage of the fact that DW_AT_ranges does not appear
10453 in DW_TAG_compile_unit of DWO files. */
10454 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10456 /* The value of the DW_AT_ranges attribute is the offset of the
10457 address range list in the .debug_ranges section. */
10458 unsigned long offset = (DW_UNSND (attr)
10459 + (need_ranges_base ? cu->ranges_base : 0));
10460 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10462 /* For some target architectures, but not others, the
10463 read_address function sign-extends the addresses it returns.
10464 To recognize base address selection entries, we need a
10466 unsigned int addr_size = cu->header.addr_size;
10467 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10469 /* The base address, to which the next pair is relative. Note
10470 that this 'base' is a DWARF concept: most entries in a range
10471 list are relative, to reduce the number of relocs against the
10472 debugging information. This is separate from this function's
10473 'baseaddr' argument, which GDB uses to relocate debugging
10474 information from a shared library based on the address at
10475 which the library was loaded. */
10476 CORE_ADDR base = cu->base_address;
10477 int base_known = cu->base_known;
10479 gdb_assert (dwarf2_per_objfile->ranges.readin);
10480 if (offset >= dwarf2_per_objfile->ranges.size)
10482 complaint (&symfile_complaints,
10483 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10490 unsigned int bytes_read;
10491 CORE_ADDR start, end;
10493 start = read_address (obfd, buffer, cu, &bytes_read);
10494 buffer += bytes_read;
10495 end = read_address (obfd, buffer, cu, &bytes_read);
10496 buffer += bytes_read;
10498 /* Did we find the end of the range list? */
10499 if (start == 0 && end == 0)
10502 /* Did we find a base address selection entry? */
10503 else if ((start & base_select_mask) == base_select_mask)
10509 /* We found an ordinary address range. */
10514 complaint (&symfile_complaints,
10515 _("Invalid .debug_ranges data "
10516 "(no base address)"));
10522 /* Inverted range entries are invalid. */
10523 complaint (&symfile_complaints,
10524 _("Invalid .debug_ranges data "
10525 "(inverted range)"));
10529 /* Empty range entries have no effect. */
10533 start += base + baseaddr;
10534 end += base + baseaddr;
10536 /* A not-uncommon case of bad debug info.
10537 Don't pollute the addrmap with bad data. */
10538 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10540 complaint (&symfile_complaints,
10541 _(".debug_ranges entry has start address of zero"
10542 " [in module %s]"), objfile->name);
10546 record_block_range (block, start, end - 1);
10552 /* Check whether the producer field indicates either of GCC < 4.6, or the
10553 Intel C/C++ compiler, and cache the result in CU. */
10556 check_producer (struct dwarf2_cu *cu)
10559 int major, minor, release;
10561 if (cu->producer == NULL)
10563 /* For unknown compilers expect their behavior is DWARF version
10566 GCC started to support .debug_types sections by -gdwarf-4 since
10567 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10568 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10569 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10570 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10572 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10574 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10576 cs = &cu->producer[strlen ("GNU ")];
10577 while (*cs && !isdigit (*cs))
10579 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10581 /* Not recognized as GCC. */
10585 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10586 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10589 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10590 cu->producer_is_icc = 1;
10593 /* For other non-GCC compilers, expect their behavior is DWARF version
10597 cu->checked_producer = 1;
10600 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10601 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10602 during 4.6.0 experimental. */
10605 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10607 if (!cu->checked_producer)
10608 check_producer (cu);
10610 return cu->producer_is_gxx_lt_4_6;
10613 /* Return the default accessibility type if it is not overriden by
10614 DW_AT_accessibility. */
10616 static enum dwarf_access_attribute
10617 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10619 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10621 /* The default DWARF 2 accessibility for members is public, the default
10622 accessibility for inheritance is private. */
10624 if (die->tag != DW_TAG_inheritance)
10625 return DW_ACCESS_public;
10627 return DW_ACCESS_private;
10631 /* DWARF 3+ defines the default accessibility a different way. The same
10632 rules apply now for DW_TAG_inheritance as for the members and it only
10633 depends on the container kind. */
10635 if (die->parent->tag == DW_TAG_class_type)
10636 return DW_ACCESS_private;
10638 return DW_ACCESS_public;
10642 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10643 offset. If the attribute was not found return 0, otherwise return
10644 1. If it was found but could not properly be handled, set *OFFSET
10648 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10651 struct attribute *attr;
10653 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10658 /* Note that we do not check for a section offset first here.
10659 This is because DW_AT_data_member_location is new in DWARF 4,
10660 so if we see it, we can assume that a constant form is really
10661 a constant and not a section offset. */
10662 if (attr_form_is_constant (attr))
10663 *offset = dwarf2_get_attr_constant_value (attr, 0);
10664 else if (attr_form_is_section_offset (attr))
10665 dwarf2_complex_location_expr_complaint ();
10666 else if (attr_form_is_block (attr))
10667 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10669 dwarf2_complex_location_expr_complaint ();
10677 /* Add an aggregate field to the field list. */
10680 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10681 struct dwarf2_cu *cu)
10683 struct objfile *objfile = cu->objfile;
10684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10685 struct nextfield *new_field;
10686 struct attribute *attr;
10688 const char *fieldname = "";
10690 /* Allocate a new field list entry and link it in. */
10691 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10692 make_cleanup (xfree, new_field);
10693 memset (new_field, 0, sizeof (struct nextfield));
10695 if (die->tag == DW_TAG_inheritance)
10697 new_field->next = fip->baseclasses;
10698 fip->baseclasses = new_field;
10702 new_field->next = fip->fields;
10703 fip->fields = new_field;
10707 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10709 new_field->accessibility = DW_UNSND (attr);
10711 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10712 if (new_field->accessibility != DW_ACCESS_public)
10713 fip->non_public_fields = 1;
10715 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10717 new_field->virtuality = DW_UNSND (attr);
10719 new_field->virtuality = DW_VIRTUALITY_none;
10721 fp = &new_field->field;
10723 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10727 /* Data member other than a C++ static data member. */
10729 /* Get type of field. */
10730 fp->type = die_type (die, cu);
10732 SET_FIELD_BITPOS (*fp, 0);
10734 /* Get bit size of field (zero if none). */
10735 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10738 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10742 FIELD_BITSIZE (*fp) = 0;
10745 /* Get bit offset of field. */
10746 if (handle_data_member_location (die, cu, &offset))
10747 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10748 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10751 if (gdbarch_bits_big_endian (gdbarch))
10753 /* For big endian bits, the DW_AT_bit_offset gives the
10754 additional bit offset from the MSB of the containing
10755 anonymous object to the MSB of the field. We don't
10756 have to do anything special since we don't need to
10757 know the size of the anonymous object. */
10758 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10762 /* For little endian bits, compute the bit offset to the
10763 MSB of the anonymous object, subtract off the number of
10764 bits from the MSB of the field to the MSB of the
10765 object, and then subtract off the number of bits of
10766 the field itself. The result is the bit offset of
10767 the LSB of the field. */
10768 int anonymous_size;
10769 int bit_offset = DW_UNSND (attr);
10771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10774 /* The size of the anonymous object containing
10775 the bit field is explicit, so use the
10776 indicated size (in bytes). */
10777 anonymous_size = DW_UNSND (attr);
10781 /* The size of the anonymous object containing
10782 the bit field must be inferred from the type
10783 attribute of the data member containing the
10785 anonymous_size = TYPE_LENGTH (fp->type);
10787 SET_FIELD_BITPOS (*fp,
10788 (FIELD_BITPOS (*fp)
10789 + anonymous_size * bits_per_byte
10790 - bit_offset - FIELD_BITSIZE (*fp)));
10794 /* Get name of field. */
10795 fieldname = dwarf2_name (die, cu);
10796 if (fieldname == NULL)
10799 /* The name is already allocated along with this objfile, so we don't
10800 need to duplicate it for the type. */
10801 fp->name = fieldname;
10803 /* Change accessibility for artificial fields (e.g. virtual table
10804 pointer or virtual base class pointer) to private. */
10805 if (dwarf2_attr (die, DW_AT_artificial, cu))
10807 FIELD_ARTIFICIAL (*fp) = 1;
10808 new_field->accessibility = DW_ACCESS_private;
10809 fip->non_public_fields = 1;
10812 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10814 /* C++ static member. */
10816 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10817 is a declaration, but all versions of G++ as of this writing
10818 (so through at least 3.2.1) incorrectly generate
10819 DW_TAG_variable tags. */
10821 const char *physname;
10823 /* Get name of field. */
10824 fieldname = dwarf2_name (die, cu);
10825 if (fieldname == NULL)
10828 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10830 /* Only create a symbol if this is an external value.
10831 new_symbol checks this and puts the value in the global symbol
10832 table, which we want. If it is not external, new_symbol
10833 will try to put the value in cu->list_in_scope which is wrong. */
10834 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10836 /* A static const member, not much different than an enum as far as
10837 we're concerned, except that we can support more types. */
10838 new_symbol (die, NULL, cu);
10841 /* Get physical name. */
10842 physname = dwarf2_physname (fieldname, die, cu);
10844 /* The name is already allocated along with this objfile, so we don't
10845 need to duplicate it for the type. */
10846 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10847 FIELD_TYPE (*fp) = die_type (die, cu);
10848 FIELD_NAME (*fp) = fieldname;
10850 else if (die->tag == DW_TAG_inheritance)
10854 /* C++ base class field. */
10855 if (handle_data_member_location (die, cu, &offset))
10856 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10857 FIELD_BITSIZE (*fp) = 0;
10858 FIELD_TYPE (*fp) = die_type (die, cu);
10859 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10860 fip->nbaseclasses++;
10864 /* Add a typedef defined in the scope of the FIP's class. */
10867 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10868 struct dwarf2_cu *cu)
10870 struct objfile *objfile = cu->objfile;
10871 struct typedef_field_list *new_field;
10872 struct attribute *attr;
10873 struct typedef_field *fp;
10874 char *fieldname = "";
10876 /* Allocate a new field list entry and link it in. */
10877 new_field = xzalloc (sizeof (*new_field));
10878 make_cleanup (xfree, new_field);
10880 gdb_assert (die->tag == DW_TAG_typedef);
10882 fp = &new_field->field;
10884 /* Get name of field. */
10885 fp->name = dwarf2_name (die, cu);
10886 if (fp->name == NULL)
10889 fp->type = read_type_die (die, cu);
10891 new_field->next = fip->typedef_field_list;
10892 fip->typedef_field_list = new_field;
10893 fip->typedef_field_list_count++;
10896 /* Create the vector of fields, and attach it to the type. */
10899 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10900 struct dwarf2_cu *cu)
10902 int nfields = fip->nfields;
10904 /* Record the field count, allocate space for the array of fields,
10905 and create blank accessibility bitfields if necessary. */
10906 TYPE_NFIELDS (type) = nfields;
10907 TYPE_FIELDS (type) = (struct field *)
10908 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10909 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10911 if (fip->non_public_fields && cu->language != language_ada)
10913 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10915 TYPE_FIELD_PRIVATE_BITS (type) =
10916 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10917 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10919 TYPE_FIELD_PROTECTED_BITS (type) =
10920 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10921 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10923 TYPE_FIELD_IGNORE_BITS (type) =
10924 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10925 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10928 /* If the type has baseclasses, allocate and clear a bit vector for
10929 TYPE_FIELD_VIRTUAL_BITS. */
10930 if (fip->nbaseclasses && cu->language != language_ada)
10932 int num_bytes = B_BYTES (fip->nbaseclasses);
10933 unsigned char *pointer;
10935 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10936 pointer = TYPE_ALLOC (type, num_bytes);
10937 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10938 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10939 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10942 /* Copy the saved-up fields into the field vector. Start from the head of
10943 the list, adding to the tail of the field array, so that they end up in
10944 the same order in the array in which they were added to the list. */
10945 while (nfields-- > 0)
10947 struct nextfield *fieldp;
10951 fieldp = fip->fields;
10952 fip->fields = fieldp->next;
10956 fieldp = fip->baseclasses;
10957 fip->baseclasses = fieldp->next;
10960 TYPE_FIELD (type, nfields) = fieldp->field;
10961 switch (fieldp->accessibility)
10963 case DW_ACCESS_private:
10964 if (cu->language != language_ada)
10965 SET_TYPE_FIELD_PRIVATE (type, nfields);
10968 case DW_ACCESS_protected:
10969 if (cu->language != language_ada)
10970 SET_TYPE_FIELD_PROTECTED (type, nfields);
10973 case DW_ACCESS_public:
10977 /* Unknown accessibility. Complain and treat it as public. */
10979 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10980 fieldp->accessibility);
10984 if (nfields < fip->nbaseclasses)
10986 switch (fieldp->virtuality)
10988 case DW_VIRTUALITY_virtual:
10989 case DW_VIRTUALITY_pure_virtual:
10990 if (cu->language == language_ada)
10991 error (_("unexpected virtuality in component of Ada type"));
10992 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10999 /* Return true if this member function is a constructor, false
11003 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11005 const char *fieldname;
11006 const char *typename;
11009 if (die->parent == NULL)
11012 if (die->parent->tag != DW_TAG_structure_type
11013 && die->parent->tag != DW_TAG_union_type
11014 && die->parent->tag != DW_TAG_class_type)
11017 fieldname = dwarf2_name (die, cu);
11018 typename = dwarf2_name (die->parent, cu);
11019 if (fieldname == NULL || typename == NULL)
11022 len = strlen (fieldname);
11023 return (strncmp (fieldname, typename, len) == 0
11024 && (typename[len] == '\0' || typename[len] == '<'));
11027 /* Add a member function to the proper fieldlist. */
11030 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11031 struct type *type, struct dwarf2_cu *cu)
11033 struct objfile *objfile = cu->objfile;
11034 struct attribute *attr;
11035 struct fnfieldlist *flp;
11037 struct fn_field *fnp;
11038 const char *fieldname;
11039 struct nextfnfield *new_fnfield;
11040 struct type *this_type;
11041 enum dwarf_access_attribute accessibility;
11043 if (cu->language == language_ada)
11044 error (_("unexpected member function in Ada type"));
11046 /* Get name of member function. */
11047 fieldname = dwarf2_name (die, cu);
11048 if (fieldname == NULL)
11051 /* Look up member function name in fieldlist. */
11052 for (i = 0; i < fip->nfnfields; i++)
11054 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11058 /* Create new list element if necessary. */
11059 if (i < fip->nfnfields)
11060 flp = &fip->fnfieldlists[i];
11063 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11065 fip->fnfieldlists = (struct fnfieldlist *)
11066 xrealloc (fip->fnfieldlists,
11067 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11068 * sizeof (struct fnfieldlist));
11069 if (fip->nfnfields == 0)
11070 make_cleanup (free_current_contents, &fip->fnfieldlists);
11072 flp = &fip->fnfieldlists[fip->nfnfields];
11073 flp->name = fieldname;
11076 i = fip->nfnfields++;
11079 /* Create a new member function field and chain it to the field list
11081 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11082 make_cleanup (xfree, new_fnfield);
11083 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11084 new_fnfield->next = flp->head;
11085 flp->head = new_fnfield;
11088 /* Fill in the member function field info. */
11089 fnp = &new_fnfield->fnfield;
11091 /* Delay processing of the physname until later. */
11092 if (cu->language == language_cplus || cu->language == language_java)
11094 add_to_method_list (type, i, flp->length - 1, fieldname,
11099 const char *physname = dwarf2_physname (fieldname, die, cu);
11100 fnp->physname = physname ? physname : "";
11103 fnp->type = alloc_type (objfile);
11104 this_type = read_type_die (die, cu);
11105 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11107 int nparams = TYPE_NFIELDS (this_type);
11109 /* TYPE is the domain of this method, and THIS_TYPE is the type
11110 of the method itself (TYPE_CODE_METHOD). */
11111 smash_to_method_type (fnp->type, type,
11112 TYPE_TARGET_TYPE (this_type),
11113 TYPE_FIELDS (this_type),
11114 TYPE_NFIELDS (this_type),
11115 TYPE_VARARGS (this_type));
11117 /* Handle static member functions.
11118 Dwarf2 has no clean way to discern C++ static and non-static
11119 member functions. G++ helps GDB by marking the first
11120 parameter for non-static member functions (which is the this
11121 pointer) as artificial. We obtain this information from
11122 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11123 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11124 fnp->voffset = VOFFSET_STATIC;
11127 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11128 dwarf2_full_name (fieldname, die, cu));
11130 /* Get fcontext from DW_AT_containing_type if present. */
11131 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11132 fnp->fcontext = die_containing_type (die, cu);
11134 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11135 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11137 /* Get accessibility. */
11138 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11140 accessibility = DW_UNSND (attr);
11142 accessibility = dwarf2_default_access_attribute (die, cu);
11143 switch (accessibility)
11145 case DW_ACCESS_private:
11146 fnp->is_private = 1;
11148 case DW_ACCESS_protected:
11149 fnp->is_protected = 1;
11153 /* Check for artificial methods. */
11154 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11155 if (attr && DW_UNSND (attr) != 0)
11156 fnp->is_artificial = 1;
11158 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11160 /* Get index in virtual function table if it is a virtual member
11161 function. For older versions of GCC, this is an offset in the
11162 appropriate virtual table, as specified by DW_AT_containing_type.
11163 For everyone else, it is an expression to be evaluated relative
11164 to the object address. */
11166 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11169 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11171 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11173 /* Old-style GCC. */
11174 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11176 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11177 || (DW_BLOCK (attr)->size > 1
11178 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11179 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11181 struct dwarf_block blk;
11184 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11186 blk.size = DW_BLOCK (attr)->size - offset;
11187 blk.data = DW_BLOCK (attr)->data + offset;
11188 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11189 if ((fnp->voffset % cu->header.addr_size) != 0)
11190 dwarf2_complex_location_expr_complaint ();
11192 fnp->voffset /= cu->header.addr_size;
11196 dwarf2_complex_location_expr_complaint ();
11198 if (!fnp->fcontext)
11199 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11201 else if (attr_form_is_section_offset (attr))
11203 dwarf2_complex_location_expr_complaint ();
11207 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11213 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11214 if (attr && DW_UNSND (attr))
11216 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11217 complaint (&symfile_complaints,
11218 _("Member function \"%s\" (offset %d) is virtual "
11219 "but the vtable offset is not specified"),
11220 fieldname, die->offset.sect_off);
11221 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11222 TYPE_CPLUS_DYNAMIC (type) = 1;
11227 /* Create the vector of member function fields, and attach it to the type. */
11230 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11231 struct dwarf2_cu *cu)
11233 struct fnfieldlist *flp;
11236 if (cu->language == language_ada)
11237 error (_("unexpected member functions in Ada type"));
11239 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11240 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11241 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11243 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11245 struct nextfnfield *nfp = flp->head;
11246 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11249 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11250 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11251 fn_flp->fn_fields = (struct fn_field *)
11252 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11253 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11254 fn_flp->fn_fields[k] = nfp->fnfield;
11257 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11260 /* Returns non-zero if NAME is the name of a vtable member in CU's
11261 language, zero otherwise. */
11263 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11265 static const char vptr[] = "_vptr";
11266 static const char vtable[] = "vtable";
11268 /* Look for the C++ and Java forms of the vtable. */
11269 if ((cu->language == language_java
11270 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11271 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11272 && is_cplus_marker (name[sizeof (vptr) - 1])))
11278 /* GCC outputs unnamed structures that are really pointers to member
11279 functions, with the ABI-specified layout. If TYPE describes
11280 such a structure, smash it into a member function type.
11282 GCC shouldn't do this; it should just output pointer to member DIEs.
11283 This is GCC PR debug/28767. */
11286 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11288 struct type *pfn_type, *domain_type, *new_type;
11290 /* Check for a structure with no name and two children. */
11291 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11294 /* Check for __pfn and __delta members. */
11295 if (TYPE_FIELD_NAME (type, 0) == NULL
11296 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11297 || TYPE_FIELD_NAME (type, 1) == NULL
11298 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11301 /* Find the type of the method. */
11302 pfn_type = TYPE_FIELD_TYPE (type, 0);
11303 if (pfn_type == NULL
11304 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11305 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11308 /* Look for the "this" argument. */
11309 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11310 if (TYPE_NFIELDS (pfn_type) == 0
11311 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11312 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11315 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11316 new_type = alloc_type (objfile);
11317 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11318 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11319 TYPE_VARARGS (pfn_type));
11320 smash_to_methodptr_type (type, new_type);
11323 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11327 producer_is_icc (struct dwarf2_cu *cu)
11329 if (!cu->checked_producer)
11330 check_producer (cu);
11332 return cu->producer_is_icc;
11335 /* Called when we find the DIE that starts a structure or union scope
11336 (definition) to create a type for the structure or union. Fill in
11337 the type's name and general properties; the members will not be
11338 processed until process_structure_type.
11340 NOTE: we need to call these functions regardless of whether or not the
11341 DIE has a DW_AT_name attribute, since it might be an anonymous
11342 structure or union. This gets the type entered into our set of
11343 user defined types.
11345 However, if the structure is incomplete (an opaque struct/union)
11346 then suppress creating a symbol table entry for it since gdb only
11347 wants to find the one with the complete definition. Note that if
11348 it is complete, we just call new_symbol, which does it's own
11349 checking about whether the struct/union is anonymous or not (and
11350 suppresses creating a symbol table entry itself). */
11352 static struct type *
11353 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11355 struct objfile *objfile = cu->objfile;
11357 struct attribute *attr;
11360 /* If the definition of this type lives in .debug_types, read that type.
11361 Don't follow DW_AT_specification though, that will take us back up
11362 the chain and we want to go down. */
11363 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11366 struct dwarf2_cu *type_cu = cu;
11367 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11369 /* We could just recurse on read_structure_type, but we need to call
11370 get_die_type to ensure only one type for this DIE is created.
11371 This is important, for example, because for c++ classes we need
11372 TYPE_NAME set which is only done by new_symbol. Blech. */
11373 type = read_type_die (type_die, type_cu);
11375 /* TYPE_CU may not be the same as CU.
11376 Ensure TYPE is recorded in CU's type_hash table. */
11377 return set_die_type (die, type, cu);
11380 type = alloc_type (objfile);
11381 INIT_CPLUS_SPECIFIC (type);
11383 name = dwarf2_name (die, cu);
11386 if (cu->language == language_cplus
11387 || cu->language == language_java)
11389 const char *full_name = dwarf2_full_name (name, die, cu);
11391 /* dwarf2_full_name might have already finished building the DIE's
11392 type. If so, there is no need to continue. */
11393 if (get_die_type (die, cu) != NULL)
11394 return get_die_type (die, cu);
11396 TYPE_TAG_NAME (type) = full_name;
11397 if (die->tag == DW_TAG_structure_type
11398 || die->tag == DW_TAG_class_type)
11399 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11403 /* The name is already allocated along with this objfile, so
11404 we don't need to duplicate it for the type. */
11405 TYPE_TAG_NAME (type) = name;
11406 if (die->tag == DW_TAG_class_type)
11407 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11411 if (die->tag == DW_TAG_structure_type)
11413 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11415 else if (die->tag == DW_TAG_union_type)
11417 TYPE_CODE (type) = TYPE_CODE_UNION;
11421 TYPE_CODE (type) = TYPE_CODE_CLASS;
11424 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11425 TYPE_DECLARED_CLASS (type) = 1;
11427 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11430 TYPE_LENGTH (type) = DW_UNSND (attr);
11434 TYPE_LENGTH (type) = 0;
11437 if (producer_is_icc (cu))
11439 /* ICC does not output the required DW_AT_declaration
11440 on incomplete types, but gives them a size of zero. */
11443 TYPE_STUB_SUPPORTED (type) = 1;
11445 if (die_is_declaration (die, cu))
11446 TYPE_STUB (type) = 1;
11447 else if (attr == NULL && die->child == NULL
11448 && producer_is_realview (cu->producer))
11449 /* RealView does not output the required DW_AT_declaration
11450 on incomplete types. */
11451 TYPE_STUB (type) = 1;
11453 /* We need to add the type field to the die immediately so we don't
11454 infinitely recurse when dealing with pointers to the structure
11455 type within the structure itself. */
11456 set_die_type (die, type, cu);
11458 /* set_die_type should be already done. */
11459 set_descriptive_type (type, die, cu);
11464 /* Finish creating a structure or union type, including filling in
11465 its members and creating a symbol for it. */
11468 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11470 struct objfile *objfile = cu->objfile;
11471 struct die_info *child_die = die->child;
11474 type = get_die_type (die, cu);
11476 type = read_structure_type (die, cu);
11478 if (die->child != NULL && ! die_is_declaration (die, cu))
11480 struct field_info fi;
11481 struct die_info *child_die;
11482 VEC (symbolp) *template_args = NULL;
11483 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11485 memset (&fi, 0, sizeof (struct field_info));
11487 child_die = die->child;
11489 while (child_die && child_die->tag)
11491 if (child_die->tag == DW_TAG_member
11492 || child_die->tag == DW_TAG_variable)
11494 /* NOTE: carlton/2002-11-05: A C++ static data member
11495 should be a DW_TAG_member that is a declaration, but
11496 all versions of G++ as of this writing (so through at
11497 least 3.2.1) incorrectly generate DW_TAG_variable
11498 tags for them instead. */
11499 dwarf2_add_field (&fi, child_die, cu);
11501 else if (child_die->tag == DW_TAG_subprogram)
11503 /* C++ member function. */
11504 dwarf2_add_member_fn (&fi, child_die, type, cu);
11506 else if (child_die->tag == DW_TAG_inheritance)
11508 /* C++ base class field. */
11509 dwarf2_add_field (&fi, child_die, cu);
11511 else if (child_die->tag == DW_TAG_typedef)
11512 dwarf2_add_typedef (&fi, child_die, cu);
11513 else if (child_die->tag == DW_TAG_template_type_param
11514 || child_die->tag == DW_TAG_template_value_param)
11516 struct symbol *arg = new_symbol (child_die, NULL, cu);
11519 VEC_safe_push (symbolp, template_args, arg);
11522 child_die = sibling_die (child_die);
11525 /* Attach template arguments to type. */
11526 if (! VEC_empty (symbolp, template_args))
11528 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11529 TYPE_N_TEMPLATE_ARGUMENTS (type)
11530 = VEC_length (symbolp, template_args);
11531 TYPE_TEMPLATE_ARGUMENTS (type)
11532 = obstack_alloc (&objfile->objfile_obstack,
11533 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11534 * sizeof (struct symbol *)));
11535 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11536 VEC_address (symbolp, template_args),
11537 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11538 * sizeof (struct symbol *)));
11539 VEC_free (symbolp, template_args);
11542 /* Attach fields and member functions to the type. */
11544 dwarf2_attach_fields_to_type (&fi, type, cu);
11547 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11549 /* Get the type which refers to the base class (possibly this
11550 class itself) which contains the vtable pointer for the current
11551 class from the DW_AT_containing_type attribute. This use of
11552 DW_AT_containing_type is a GNU extension. */
11554 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11556 struct type *t = die_containing_type (die, cu);
11558 TYPE_VPTR_BASETYPE (type) = t;
11563 /* Our own class provides vtbl ptr. */
11564 for (i = TYPE_NFIELDS (t) - 1;
11565 i >= TYPE_N_BASECLASSES (t);
11568 const char *fieldname = TYPE_FIELD_NAME (t, i);
11570 if (is_vtable_name (fieldname, cu))
11572 TYPE_VPTR_FIELDNO (type) = i;
11577 /* Complain if virtual function table field not found. */
11578 if (i < TYPE_N_BASECLASSES (t))
11579 complaint (&symfile_complaints,
11580 _("virtual function table pointer "
11581 "not found when defining class '%s'"),
11582 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11587 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11590 else if (cu->producer
11591 && strncmp (cu->producer,
11592 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11594 /* The IBM XLC compiler does not provide direct indication
11595 of the containing type, but the vtable pointer is
11596 always named __vfp. */
11600 for (i = TYPE_NFIELDS (type) - 1;
11601 i >= TYPE_N_BASECLASSES (type);
11604 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11606 TYPE_VPTR_FIELDNO (type) = i;
11607 TYPE_VPTR_BASETYPE (type) = type;
11614 /* Copy fi.typedef_field_list linked list elements content into the
11615 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11616 if (fi.typedef_field_list)
11618 int i = fi.typedef_field_list_count;
11620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11621 TYPE_TYPEDEF_FIELD_ARRAY (type)
11622 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11623 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11625 /* Reverse the list order to keep the debug info elements order. */
11628 struct typedef_field *dest, *src;
11630 dest = &TYPE_TYPEDEF_FIELD (type, i);
11631 src = &fi.typedef_field_list->field;
11632 fi.typedef_field_list = fi.typedef_field_list->next;
11637 do_cleanups (back_to);
11639 if (HAVE_CPLUS_STRUCT (type))
11640 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11643 quirk_gcc_member_function_pointer (type, objfile);
11645 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11646 snapshots) has been known to create a die giving a declaration
11647 for a class that has, as a child, a die giving a definition for a
11648 nested class. So we have to process our children even if the
11649 current die is a declaration. Normally, of course, a declaration
11650 won't have any children at all. */
11652 while (child_die != NULL && child_die->tag)
11654 if (child_die->tag == DW_TAG_member
11655 || child_die->tag == DW_TAG_variable
11656 || child_die->tag == DW_TAG_inheritance
11657 || child_die->tag == DW_TAG_template_value_param
11658 || child_die->tag == DW_TAG_template_type_param)
11663 process_die (child_die, cu);
11665 child_die = sibling_die (child_die);
11668 /* Do not consider external references. According to the DWARF standard,
11669 these DIEs are identified by the fact that they have no byte_size
11670 attribute, and a declaration attribute. */
11671 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11672 || !die_is_declaration (die, cu))
11673 new_symbol (die, type, cu);
11676 /* Given a DW_AT_enumeration_type die, set its type. We do not
11677 complete the type's fields yet, or create any symbols. */
11679 static struct type *
11680 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11682 struct objfile *objfile = cu->objfile;
11684 struct attribute *attr;
11687 /* If the definition of this type lives in .debug_types, read that type.
11688 Don't follow DW_AT_specification though, that will take us back up
11689 the chain and we want to go down. */
11690 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11693 struct dwarf2_cu *type_cu = cu;
11694 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11696 type = read_type_die (type_die, type_cu);
11698 /* TYPE_CU may not be the same as CU.
11699 Ensure TYPE is recorded in CU's type_hash table. */
11700 return set_die_type (die, type, cu);
11703 type = alloc_type (objfile);
11705 TYPE_CODE (type) = TYPE_CODE_ENUM;
11706 name = dwarf2_full_name (NULL, die, cu);
11708 TYPE_TAG_NAME (type) = name;
11710 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11713 TYPE_LENGTH (type) = DW_UNSND (attr);
11717 TYPE_LENGTH (type) = 0;
11720 /* The enumeration DIE can be incomplete. In Ada, any type can be
11721 declared as private in the package spec, and then defined only
11722 inside the package body. Such types are known as Taft Amendment
11723 Types. When another package uses such a type, an incomplete DIE
11724 may be generated by the compiler. */
11725 if (die_is_declaration (die, cu))
11726 TYPE_STUB (type) = 1;
11728 return set_die_type (die, type, cu);
11731 /* Given a pointer to a die which begins an enumeration, process all
11732 the dies that define the members of the enumeration, and create the
11733 symbol for the enumeration type.
11735 NOTE: We reverse the order of the element list. */
11738 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11740 struct type *this_type;
11742 this_type = get_die_type (die, cu);
11743 if (this_type == NULL)
11744 this_type = read_enumeration_type (die, cu);
11746 if (die->child != NULL)
11748 struct die_info *child_die;
11749 struct symbol *sym;
11750 struct field *fields = NULL;
11751 int num_fields = 0;
11752 int unsigned_enum = 1;
11757 child_die = die->child;
11758 while (child_die && child_die->tag)
11760 if (child_die->tag != DW_TAG_enumerator)
11762 process_die (child_die, cu);
11766 name = dwarf2_name (child_die, cu);
11769 sym = new_symbol (child_die, this_type, cu);
11770 if (SYMBOL_VALUE (sym) < 0)
11775 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11778 mask |= SYMBOL_VALUE (sym);
11780 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11782 fields = (struct field *)
11784 (num_fields + DW_FIELD_ALLOC_CHUNK)
11785 * sizeof (struct field));
11788 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11789 FIELD_TYPE (fields[num_fields]) = NULL;
11790 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11791 FIELD_BITSIZE (fields[num_fields]) = 0;
11797 child_die = sibling_die (child_die);
11802 TYPE_NFIELDS (this_type) = num_fields;
11803 TYPE_FIELDS (this_type) = (struct field *)
11804 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11805 memcpy (TYPE_FIELDS (this_type), fields,
11806 sizeof (struct field) * num_fields);
11810 TYPE_UNSIGNED (this_type) = 1;
11812 TYPE_FLAG_ENUM (this_type) = 1;
11815 /* If we are reading an enum from a .debug_types unit, and the enum
11816 is a declaration, and the enum is not the signatured type in the
11817 unit, then we do not want to add a symbol for it. Adding a
11818 symbol would in some cases obscure the true definition of the
11819 enum, giving users an incomplete type when the definition is
11820 actually available. Note that we do not want to do this for all
11821 enums which are just declarations, because C++0x allows forward
11822 enum declarations. */
11823 if (cu->per_cu->is_debug_types
11824 && die_is_declaration (die, cu))
11826 struct signatured_type *sig_type;
11829 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11830 cu->per_cu->section,
11831 cu->per_cu->offset);
11832 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11833 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11837 new_symbol (die, this_type, cu);
11840 /* Extract all information from a DW_TAG_array_type DIE and put it in
11841 the DIE's type field. For now, this only handles one dimensional
11844 static struct type *
11845 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11847 struct objfile *objfile = cu->objfile;
11848 struct die_info *child_die;
11850 struct type *element_type, *range_type, *index_type;
11851 struct type **range_types = NULL;
11852 struct attribute *attr;
11854 struct cleanup *back_to;
11857 element_type = die_type (die, cu);
11859 /* The die_type call above may have already set the type for this DIE. */
11860 type = get_die_type (die, cu);
11864 /* Irix 6.2 native cc creates array types without children for
11865 arrays with unspecified length. */
11866 if (die->child == NULL)
11868 index_type = objfile_type (objfile)->builtin_int;
11869 range_type = create_range_type (NULL, index_type, 0, -1);
11870 type = create_array_type (NULL, element_type, range_type);
11871 return set_die_type (die, type, cu);
11874 back_to = make_cleanup (null_cleanup, NULL);
11875 child_die = die->child;
11876 while (child_die && child_die->tag)
11878 if (child_die->tag == DW_TAG_subrange_type)
11880 struct type *child_type = read_type_die (child_die, cu);
11882 if (child_type != NULL)
11884 /* The range type was succesfully read. Save it for the
11885 array type creation. */
11886 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11888 range_types = (struct type **)
11889 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11890 * sizeof (struct type *));
11892 make_cleanup (free_current_contents, &range_types);
11894 range_types[ndim++] = child_type;
11897 child_die = sibling_die (child_die);
11900 /* Dwarf2 dimensions are output from left to right, create the
11901 necessary array types in backwards order. */
11903 type = element_type;
11905 if (read_array_order (die, cu) == DW_ORD_col_major)
11910 type = create_array_type (NULL, type, range_types[i++]);
11915 type = create_array_type (NULL, type, range_types[ndim]);
11918 /* Understand Dwarf2 support for vector types (like they occur on
11919 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11920 array type. This is not part of the Dwarf2/3 standard yet, but a
11921 custom vendor extension. The main difference between a regular
11922 array and the vector variant is that vectors are passed by value
11924 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11926 make_vector_type (type);
11928 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11929 implementation may choose to implement triple vectors using this
11931 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11934 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11935 TYPE_LENGTH (type) = DW_UNSND (attr);
11937 complaint (&symfile_complaints,
11938 _("DW_AT_byte_size for array type smaller "
11939 "than the total size of elements"));
11942 name = dwarf2_name (die, cu);
11944 TYPE_NAME (type) = name;
11946 /* Install the type in the die. */
11947 set_die_type (die, type, cu);
11949 /* set_die_type should be already done. */
11950 set_descriptive_type (type, die, cu);
11952 do_cleanups (back_to);
11957 static enum dwarf_array_dim_ordering
11958 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11960 struct attribute *attr;
11962 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11964 if (attr) return DW_SND (attr);
11966 /* GNU F77 is a special case, as at 08/2004 array type info is the
11967 opposite order to the dwarf2 specification, but data is still
11968 laid out as per normal fortran.
11970 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11971 version checking. */
11973 if (cu->language == language_fortran
11974 && cu->producer && strstr (cu->producer, "GNU F77"))
11976 return DW_ORD_row_major;
11979 switch (cu->language_defn->la_array_ordering)
11981 case array_column_major:
11982 return DW_ORD_col_major;
11983 case array_row_major:
11985 return DW_ORD_row_major;
11989 /* Extract all information from a DW_TAG_set_type DIE and put it in
11990 the DIE's type field. */
11992 static struct type *
11993 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11995 struct type *domain_type, *set_type;
11996 struct attribute *attr;
11998 domain_type = die_type (die, cu);
12000 /* The die_type call above may have already set the type for this DIE. */
12001 set_type = get_die_type (die, cu);
12005 set_type = create_set_type (NULL, domain_type);
12007 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12009 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12011 return set_die_type (die, set_type, cu);
12014 /* A helper for read_common_block that creates a locexpr baton.
12015 SYM is the symbol which we are marking as computed.
12016 COMMON_DIE is the DIE for the common block.
12017 COMMON_LOC is the location expression attribute for the common
12019 MEMBER_LOC is the location expression attribute for the particular
12020 member of the common block that we are processing.
12021 CU is the CU from which the above come. */
12024 mark_common_block_symbol_computed (struct symbol *sym,
12025 struct die_info *common_die,
12026 struct attribute *common_loc,
12027 struct attribute *member_loc,
12028 struct dwarf2_cu *cu)
12030 struct objfile *objfile = dwarf2_per_objfile->objfile;
12031 struct dwarf2_locexpr_baton *baton;
12033 unsigned int cu_off;
12034 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12035 LONGEST offset = 0;
12037 gdb_assert (common_loc && member_loc);
12038 gdb_assert (attr_form_is_block (common_loc));
12039 gdb_assert (attr_form_is_block (member_loc)
12040 || attr_form_is_constant (member_loc));
12042 baton = obstack_alloc (&objfile->objfile_obstack,
12043 sizeof (struct dwarf2_locexpr_baton));
12044 baton->per_cu = cu->per_cu;
12045 gdb_assert (baton->per_cu);
12047 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12049 if (attr_form_is_constant (member_loc))
12051 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12052 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12055 baton->size += DW_BLOCK (member_loc)->size;
12057 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12060 *ptr++ = DW_OP_call4;
12061 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12062 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12065 if (attr_form_is_constant (member_loc))
12067 *ptr++ = DW_OP_addr;
12068 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12069 ptr += cu->header.addr_size;
12073 /* We have to copy the data here, because DW_OP_call4 will only
12074 use a DW_AT_location attribute. */
12075 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12076 ptr += DW_BLOCK (member_loc)->size;
12079 *ptr++ = DW_OP_plus;
12080 gdb_assert (ptr - baton->data == baton->size);
12082 SYMBOL_LOCATION_BATON (sym) = baton;
12083 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12086 /* Create appropriate locally-scoped variables for all the
12087 DW_TAG_common_block entries. Also create a struct common_block
12088 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12089 is used to sepate the common blocks name namespace from regular
12093 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12095 struct attribute *attr;
12097 attr = dwarf2_attr (die, DW_AT_location, cu);
12100 /* Support the .debug_loc offsets. */
12101 if (attr_form_is_block (attr))
12105 else if (attr_form_is_section_offset (attr))
12107 dwarf2_complex_location_expr_complaint ();
12112 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12113 "common block member");
12118 if (die->child != NULL)
12120 struct objfile *objfile = cu->objfile;
12121 struct die_info *child_die;
12122 size_t n_entries = 0, size;
12123 struct common_block *common_block;
12124 struct symbol *sym;
12126 for (child_die = die->child;
12127 child_die && child_die->tag;
12128 child_die = sibling_die (child_die))
12131 size = (sizeof (struct common_block)
12132 + (n_entries - 1) * sizeof (struct symbol *));
12133 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12134 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12135 common_block->n_entries = 0;
12137 for (child_die = die->child;
12138 child_die && child_die->tag;
12139 child_die = sibling_die (child_die))
12141 /* Create the symbol in the DW_TAG_common_block block in the current
12143 sym = new_symbol (child_die, NULL, cu);
12146 struct attribute *member_loc;
12148 common_block->contents[common_block->n_entries++] = sym;
12150 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12154 /* GDB has handled this for a long time, but it is
12155 not specified by DWARF. It seems to have been
12156 emitted by gfortran at least as recently as:
12157 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12158 complaint (&symfile_complaints,
12159 _("Variable in common block has "
12160 "DW_AT_data_member_location "
12161 "- DIE at 0x%x [in module %s]"),
12162 child_die->offset.sect_off, cu->objfile->name);
12164 if (attr_form_is_section_offset (member_loc))
12165 dwarf2_complex_location_expr_complaint ();
12166 else if (attr_form_is_constant (member_loc)
12167 || attr_form_is_block (member_loc))
12170 mark_common_block_symbol_computed (sym, die, attr,
12174 dwarf2_complex_location_expr_complaint ();
12179 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12180 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12184 /* Create a type for a C++ namespace. */
12186 static struct type *
12187 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12189 struct objfile *objfile = cu->objfile;
12190 const char *previous_prefix, *name;
12194 /* For extensions, reuse the type of the original namespace. */
12195 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12197 struct die_info *ext_die;
12198 struct dwarf2_cu *ext_cu = cu;
12200 ext_die = dwarf2_extension (die, &ext_cu);
12201 type = read_type_die (ext_die, ext_cu);
12203 /* EXT_CU may not be the same as CU.
12204 Ensure TYPE is recorded in CU's type_hash table. */
12205 return set_die_type (die, type, cu);
12208 name = namespace_name (die, &is_anonymous, cu);
12210 /* Now build the name of the current namespace. */
12212 previous_prefix = determine_prefix (die, cu);
12213 if (previous_prefix[0] != '\0')
12214 name = typename_concat (&objfile->objfile_obstack,
12215 previous_prefix, name, 0, cu);
12217 /* Create the type. */
12218 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12220 TYPE_NAME (type) = name;
12221 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12223 return set_die_type (die, type, cu);
12226 /* Read a C++ namespace. */
12229 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12231 struct objfile *objfile = cu->objfile;
12234 /* Add a symbol associated to this if we haven't seen the namespace
12235 before. Also, add a using directive if it's an anonymous
12238 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12242 type = read_type_die (die, cu);
12243 new_symbol (die, type, cu);
12245 namespace_name (die, &is_anonymous, cu);
12248 const char *previous_prefix = determine_prefix (die, cu);
12250 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12251 NULL, NULL, 0, &objfile->objfile_obstack);
12255 if (die->child != NULL)
12257 struct die_info *child_die = die->child;
12259 while (child_die && child_die->tag)
12261 process_die (child_die, cu);
12262 child_die = sibling_die (child_die);
12267 /* Read a Fortran module as type. This DIE can be only a declaration used for
12268 imported module. Still we need that type as local Fortran "use ... only"
12269 declaration imports depend on the created type in determine_prefix. */
12271 static struct type *
12272 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12274 struct objfile *objfile = cu->objfile;
12275 const char *module_name;
12278 module_name = dwarf2_name (die, cu);
12280 complaint (&symfile_complaints,
12281 _("DW_TAG_module has no name, offset 0x%x"),
12282 die->offset.sect_off);
12283 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12285 /* determine_prefix uses TYPE_TAG_NAME. */
12286 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12288 return set_die_type (die, type, cu);
12291 /* Read a Fortran module. */
12294 read_module (struct die_info *die, struct dwarf2_cu *cu)
12296 struct die_info *child_die = die->child;
12298 while (child_die && child_die->tag)
12300 process_die (child_die, cu);
12301 child_die = sibling_die (child_die);
12305 /* Return the name of the namespace represented by DIE. Set
12306 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12309 static const char *
12310 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12312 struct die_info *current_die;
12313 const char *name = NULL;
12315 /* Loop through the extensions until we find a name. */
12317 for (current_die = die;
12318 current_die != NULL;
12319 current_die = dwarf2_extension (die, &cu))
12321 name = dwarf2_name (current_die, cu);
12326 /* Is it an anonymous namespace? */
12328 *is_anonymous = (name == NULL);
12330 name = CP_ANONYMOUS_NAMESPACE_STR;
12335 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12336 the user defined type vector. */
12338 static struct type *
12339 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12341 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12342 struct comp_unit_head *cu_header = &cu->header;
12344 struct attribute *attr_byte_size;
12345 struct attribute *attr_address_class;
12346 int byte_size, addr_class;
12347 struct type *target_type;
12349 target_type = die_type (die, cu);
12351 /* The die_type call above may have already set the type for this DIE. */
12352 type = get_die_type (die, cu);
12356 type = lookup_pointer_type (target_type);
12358 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12359 if (attr_byte_size)
12360 byte_size = DW_UNSND (attr_byte_size);
12362 byte_size = cu_header->addr_size;
12364 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12365 if (attr_address_class)
12366 addr_class = DW_UNSND (attr_address_class);
12368 addr_class = DW_ADDR_none;
12370 /* If the pointer size or address class is different than the
12371 default, create a type variant marked as such and set the
12372 length accordingly. */
12373 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12375 if (gdbarch_address_class_type_flags_p (gdbarch))
12379 type_flags = gdbarch_address_class_type_flags
12380 (gdbarch, byte_size, addr_class);
12381 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12383 type = make_type_with_address_space (type, type_flags);
12385 else if (TYPE_LENGTH (type) != byte_size)
12387 complaint (&symfile_complaints,
12388 _("invalid pointer size %d"), byte_size);
12392 /* Should we also complain about unhandled address classes? */
12396 TYPE_LENGTH (type) = byte_size;
12397 return set_die_type (die, type, cu);
12400 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12401 the user defined type vector. */
12403 static struct type *
12404 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12407 struct type *to_type;
12408 struct type *domain;
12410 to_type = die_type (die, cu);
12411 domain = die_containing_type (die, cu);
12413 /* The calls above may have already set the type for this DIE. */
12414 type = get_die_type (die, cu);
12418 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12419 type = lookup_methodptr_type (to_type);
12420 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12422 struct type *new_type = alloc_type (cu->objfile);
12424 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12425 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12426 TYPE_VARARGS (to_type));
12427 type = lookup_methodptr_type (new_type);
12430 type = lookup_memberptr_type (to_type, domain);
12432 return set_die_type (die, type, cu);
12435 /* Extract all information from a DW_TAG_reference_type DIE and add to
12436 the user defined type vector. */
12438 static struct type *
12439 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12441 struct comp_unit_head *cu_header = &cu->header;
12442 struct type *type, *target_type;
12443 struct attribute *attr;
12445 target_type = die_type (die, cu);
12447 /* The die_type call above may have already set the type for this DIE. */
12448 type = get_die_type (die, cu);
12452 type = lookup_reference_type (target_type);
12453 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12456 TYPE_LENGTH (type) = DW_UNSND (attr);
12460 TYPE_LENGTH (type) = cu_header->addr_size;
12462 return set_die_type (die, type, cu);
12465 static struct type *
12466 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12468 struct type *base_type, *cv_type;
12470 base_type = die_type (die, cu);
12472 /* The die_type call above may have already set the type for this DIE. */
12473 cv_type = get_die_type (die, cu);
12477 /* In case the const qualifier is applied to an array type, the element type
12478 is so qualified, not the array type (section 6.7.3 of C99). */
12479 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12481 struct type *el_type, *inner_array;
12483 base_type = copy_type (base_type);
12484 inner_array = base_type;
12486 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12488 TYPE_TARGET_TYPE (inner_array) =
12489 copy_type (TYPE_TARGET_TYPE (inner_array));
12490 inner_array = TYPE_TARGET_TYPE (inner_array);
12493 el_type = TYPE_TARGET_TYPE (inner_array);
12494 TYPE_TARGET_TYPE (inner_array) =
12495 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12497 return set_die_type (die, base_type, cu);
12500 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12501 return set_die_type (die, cv_type, cu);
12504 static struct type *
12505 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12507 struct type *base_type, *cv_type;
12509 base_type = die_type (die, cu);
12511 /* The die_type call above may have already set the type for this DIE. */
12512 cv_type = get_die_type (die, cu);
12516 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12517 return set_die_type (die, cv_type, cu);
12520 /* Handle DW_TAG_restrict_type. */
12522 static struct type *
12523 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12525 struct type *base_type, *cv_type;
12527 base_type = die_type (die, cu);
12529 /* The die_type call above may have already set the type for this DIE. */
12530 cv_type = get_die_type (die, cu);
12534 cv_type = make_restrict_type (base_type);
12535 return set_die_type (die, cv_type, cu);
12538 /* Extract all information from a DW_TAG_string_type DIE and add to
12539 the user defined type vector. It isn't really a user defined type,
12540 but it behaves like one, with other DIE's using an AT_user_def_type
12541 attribute to reference it. */
12543 static struct type *
12544 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12546 struct objfile *objfile = cu->objfile;
12547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12548 struct type *type, *range_type, *index_type, *char_type;
12549 struct attribute *attr;
12550 unsigned int length;
12552 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12555 length = DW_UNSND (attr);
12559 /* Check for the DW_AT_byte_size attribute. */
12560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12563 length = DW_UNSND (attr);
12571 index_type = objfile_type (objfile)->builtin_int;
12572 range_type = create_range_type (NULL, index_type, 1, length);
12573 char_type = language_string_char_type (cu->language_defn, gdbarch);
12574 type = create_string_type (NULL, char_type, range_type);
12576 return set_die_type (die, type, cu);
12579 /* Handle DIES due to C code like:
12583 int (*funcp)(int a, long l);
12587 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12589 static struct type *
12590 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12592 struct objfile *objfile = cu->objfile;
12593 struct type *type; /* Type that this function returns. */
12594 struct type *ftype; /* Function that returns above type. */
12595 struct attribute *attr;
12597 type = die_type (die, cu);
12599 /* The die_type call above may have already set the type for this DIE. */
12600 ftype = get_die_type (die, cu);
12604 ftype = lookup_function_type (type);
12606 /* All functions in C++, Pascal and Java have prototypes. */
12607 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12608 if ((attr && (DW_UNSND (attr) != 0))
12609 || cu->language == language_cplus
12610 || cu->language == language_java
12611 || cu->language == language_pascal)
12612 TYPE_PROTOTYPED (ftype) = 1;
12613 else if (producer_is_realview (cu->producer))
12614 /* RealView does not emit DW_AT_prototyped. We can not
12615 distinguish prototyped and unprototyped functions; default to
12616 prototyped, since that is more common in modern code (and
12617 RealView warns about unprototyped functions). */
12618 TYPE_PROTOTYPED (ftype) = 1;
12620 /* Store the calling convention in the type if it's available in
12621 the subroutine die. Otherwise set the calling convention to
12622 the default value DW_CC_normal. */
12623 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12625 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12626 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12627 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12629 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12631 /* We need to add the subroutine type to the die immediately so
12632 we don't infinitely recurse when dealing with parameters
12633 declared as the same subroutine type. */
12634 set_die_type (die, ftype, cu);
12636 if (die->child != NULL)
12638 struct type *void_type = objfile_type (objfile)->builtin_void;
12639 struct die_info *child_die;
12640 int nparams, iparams;
12642 /* Count the number of parameters.
12643 FIXME: GDB currently ignores vararg functions, but knows about
12644 vararg member functions. */
12646 child_die = die->child;
12647 while (child_die && child_die->tag)
12649 if (child_die->tag == DW_TAG_formal_parameter)
12651 else if (child_die->tag == DW_TAG_unspecified_parameters)
12652 TYPE_VARARGS (ftype) = 1;
12653 child_die = sibling_die (child_die);
12656 /* Allocate storage for parameters and fill them in. */
12657 TYPE_NFIELDS (ftype) = nparams;
12658 TYPE_FIELDS (ftype) = (struct field *)
12659 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12661 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12662 even if we error out during the parameters reading below. */
12663 for (iparams = 0; iparams < nparams; iparams++)
12664 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12667 child_die = die->child;
12668 while (child_die && child_die->tag)
12670 if (child_die->tag == DW_TAG_formal_parameter)
12672 struct type *arg_type;
12674 /* DWARF version 2 has no clean way to discern C++
12675 static and non-static member functions. G++ helps
12676 GDB by marking the first parameter for non-static
12677 member functions (which is the this pointer) as
12678 artificial. We pass this information to
12679 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12681 DWARF version 3 added DW_AT_object_pointer, which GCC
12682 4.5 does not yet generate. */
12683 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12685 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12688 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12690 /* GCC/43521: In java, the formal parameter
12691 "this" is sometimes not marked with DW_AT_artificial. */
12692 if (cu->language == language_java)
12694 const char *name = dwarf2_name (child_die, cu);
12696 if (name && !strcmp (name, "this"))
12697 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12700 arg_type = die_type (child_die, cu);
12702 /* RealView does not mark THIS as const, which the testsuite
12703 expects. GCC marks THIS as const in method definitions,
12704 but not in the class specifications (GCC PR 43053). */
12705 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12706 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12709 struct dwarf2_cu *arg_cu = cu;
12710 const char *name = dwarf2_name (child_die, cu);
12712 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12715 /* If the compiler emits this, use it. */
12716 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12719 else if (name && strcmp (name, "this") == 0)
12720 /* Function definitions will have the argument names. */
12722 else if (name == NULL && iparams == 0)
12723 /* Declarations may not have the names, so like
12724 elsewhere in GDB, assume an artificial first
12725 argument is "this". */
12729 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12733 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12736 child_die = sibling_die (child_die);
12743 static struct type *
12744 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12746 struct objfile *objfile = cu->objfile;
12747 const char *name = NULL;
12748 struct type *this_type, *target_type;
12750 name = dwarf2_full_name (NULL, die, cu);
12751 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12752 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12753 TYPE_NAME (this_type) = name;
12754 set_die_type (die, this_type, cu);
12755 target_type = die_type (die, cu);
12756 if (target_type != this_type)
12757 TYPE_TARGET_TYPE (this_type) = target_type;
12760 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12761 spec and cause infinite loops in GDB. */
12762 complaint (&symfile_complaints,
12763 _("Self-referential DW_TAG_typedef "
12764 "- DIE at 0x%x [in module %s]"),
12765 die->offset.sect_off, objfile->name);
12766 TYPE_TARGET_TYPE (this_type) = NULL;
12771 /* Find a representation of a given base type and install
12772 it in the TYPE field of the die. */
12774 static struct type *
12775 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12777 struct objfile *objfile = cu->objfile;
12779 struct attribute *attr;
12780 int encoding = 0, size = 0;
12782 enum type_code code = TYPE_CODE_INT;
12783 int type_flags = 0;
12784 struct type *target_type = NULL;
12786 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12789 encoding = DW_UNSND (attr);
12791 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12794 size = DW_UNSND (attr);
12796 name = dwarf2_name (die, cu);
12799 complaint (&symfile_complaints,
12800 _("DW_AT_name missing from DW_TAG_base_type"));
12805 case DW_ATE_address:
12806 /* Turn DW_ATE_address into a void * pointer. */
12807 code = TYPE_CODE_PTR;
12808 type_flags |= TYPE_FLAG_UNSIGNED;
12809 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12811 case DW_ATE_boolean:
12812 code = TYPE_CODE_BOOL;
12813 type_flags |= TYPE_FLAG_UNSIGNED;
12815 case DW_ATE_complex_float:
12816 code = TYPE_CODE_COMPLEX;
12817 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12819 case DW_ATE_decimal_float:
12820 code = TYPE_CODE_DECFLOAT;
12823 code = TYPE_CODE_FLT;
12825 case DW_ATE_signed:
12827 case DW_ATE_unsigned:
12828 type_flags |= TYPE_FLAG_UNSIGNED;
12829 if (cu->language == language_fortran
12831 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12832 code = TYPE_CODE_CHAR;
12834 case DW_ATE_signed_char:
12835 if (cu->language == language_ada || cu->language == language_m2
12836 || cu->language == language_pascal
12837 || cu->language == language_fortran)
12838 code = TYPE_CODE_CHAR;
12840 case DW_ATE_unsigned_char:
12841 if (cu->language == language_ada || cu->language == language_m2
12842 || cu->language == language_pascal
12843 || cu->language == language_fortran)
12844 code = TYPE_CODE_CHAR;
12845 type_flags |= TYPE_FLAG_UNSIGNED;
12848 /* We just treat this as an integer and then recognize the
12849 type by name elsewhere. */
12853 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12854 dwarf_type_encoding_name (encoding));
12858 type = init_type (code, size, type_flags, NULL, objfile);
12859 TYPE_NAME (type) = name;
12860 TYPE_TARGET_TYPE (type) = target_type;
12862 if (name && strcmp (name, "char") == 0)
12863 TYPE_NOSIGN (type) = 1;
12865 return set_die_type (die, type, cu);
12868 /* Read the given DW_AT_subrange DIE. */
12870 static struct type *
12871 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12873 struct type *base_type, *orig_base_type;
12874 struct type *range_type;
12875 struct attribute *attr;
12877 int low_default_is_valid;
12879 LONGEST negative_mask;
12881 orig_base_type = die_type (die, cu);
12882 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12883 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12884 creating the range type, but we use the result of check_typedef
12885 when examining properties of the type. */
12886 base_type = check_typedef (orig_base_type);
12888 /* The die_type call above may have already set the type for this DIE. */
12889 range_type = get_die_type (die, cu);
12893 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12894 omitting DW_AT_lower_bound. */
12895 switch (cu->language)
12898 case language_cplus:
12900 low_default_is_valid = 1;
12902 case language_fortran:
12904 low_default_is_valid = 1;
12907 case language_java:
12908 case language_objc:
12910 low_default_is_valid = (cu->header.version >= 4);
12914 case language_pascal:
12916 low_default_is_valid = (cu->header.version >= 4);
12920 low_default_is_valid = 0;
12924 /* FIXME: For variable sized arrays either of these could be
12925 a variable rather than a constant value. We'll allow it,
12926 but we don't know how to handle it. */
12927 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12929 low = dwarf2_get_attr_constant_value (attr, low);
12930 else if (!low_default_is_valid)
12931 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12932 "- DIE at 0x%x [in module %s]"),
12933 die->offset.sect_off, cu->objfile->name);
12935 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12938 if (attr_form_is_block (attr) || is_ref_attr (attr))
12940 /* GCC encodes arrays with unspecified or dynamic length
12941 with a DW_FORM_block1 attribute or a reference attribute.
12942 FIXME: GDB does not yet know how to handle dynamic
12943 arrays properly, treat them as arrays with unspecified
12946 FIXME: jimb/2003-09-22: GDB does not really know
12947 how to handle arrays of unspecified length
12948 either; we just represent them as zero-length
12949 arrays. Choose an appropriate upper bound given
12950 the lower bound we've computed above. */
12954 high = dwarf2_get_attr_constant_value (attr, 1);
12958 attr = dwarf2_attr (die, DW_AT_count, cu);
12961 int count = dwarf2_get_attr_constant_value (attr, 1);
12962 high = low + count - 1;
12966 /* Unspecified array length. */
12971 /* Dwarf-2 specifications explicitly allows to create subrange types
12972 without specifying a base type.
12973 In that case, the base type must be set to the type of
12974 the lower bound, upper bound or count, in that order, if any of these
12975 three attributes references an object that has a type.
12976 If no base type is found, the Dwarf-2 specifications say that
12977 a signed integer type of size equal to the size of an address should
12979 For the following C code: `extern char gdb_int [];'
12980 GCC produces an empty range DIE.
12981 FIXME: muller/2010-05-28: Possible references to object for low bound,
12982 high bound or count are not yet handled by this code. */
12983 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12985 struct objfile *objfile = cu->objfile;
12986 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12987 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12988 struct type *int_type = objfile_type (objfile)->builtin_int;
12990 /* Test "int", "long int", and "long long int" objfile types,
12991 and select the first one having a size above or equal to the
12992 architecture address size. */
12993 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12994 base_type = int_type;
12997 int_type = objfile_type (objfile)->builtin_long;
12998 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12999 base_type = int_type;
13002 int_type = objfile_type (objfile)->builtin_long_long;
13003 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13004 base_type = int_type;
13010 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13011 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13012 low |= negative_mask;
13013 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13014 high |= negative_mask;
13016 range_type = create_range_type (NULL, orig_base_type, low, high);
13018 /* Mark arrays with dynamic length at least as an array of unspecified
13019 length. GDB could check the boundary but before it gets implemented at
13020 least allow accessing the array elements. */
13021 if (attr && attr_form_is_block (attr))
13022 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13024 /* Ada expects an empty array on no boundary attributes. */
13025 if (attr == NULL && cu->language != language_ada)
13026 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13028 name = dwarf2_name (die, cu);
13030 TYPE_NAME (range_type) = name;
13032 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13034 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13036 set_die_type (die, range_type, cu);
13038 /* set_die_type should be already done. */
13039 set_descriptive_type (range_type, die, cu);
13044 static struct type *
13045 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13049 /* For now, we only support the C meaning of an unspecified type: void. */
13051 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13052 TYPE_NAME (type) = dwarf2_name (die, cu);
13054 return set_die_type (die, type, cu);
13057 /* Read a single die and all its descendents. Set the die's sibling
13058 field to NULL; set other fields in the die correctly, and set all
13059 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13060 location of the info_ptr after reading all of those dies. PARENT
13061 is the parent of the die in question. */
13063 static struct die_info *
13064 read_die_and_children (const struct die_reader_specs *reader,
13065 gdb_byte *info_ptr,
13066 gdb_byte **new_info_ptr,
13067 struct die_info *parent)
13069 struct die_info *die;
13073 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
13076 *new_info_ptr = cur_ptr;
13079 store_in_ref_table (die, reader->cu);
13082 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
13086 *new_info_ptr = cur_ptr;
13089 die->sibling = NULL;
13090 die->parent = parent;
13094 /* Read a die, all of its descendents, and all of its siblings; set
13095 all of the fields of all of the dies correctly. Arguments are as
13096 in read_die_and_children. */
13098 static struct die_info *
13099 read_die_and_siblings (const struct die_reader_specs *reader,
13100 gdb_byte *info_ptr,
13101 gdb_byte **new_info_ptr,
13102 struct die_info *parent)
13104 struct die_info *first_die, *last_sibling;
13107 cur_ptr = info_ptr;
13108 first_die = last_sibling = NULL;
13112 struct die_info *die
13113 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13117 *new_info_ptr = cur_ptr;
13124 last_sibling->sibling = die;
13126 last_sibling = die;
13130 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13132 The caller is responsible for filling in the extra attributes
13133 and updating (*DIEP)->num_attrs.
13134 Set DIEP to point to a newly allocated die with its information,
13135 except for its child, sibling, and parent fields.
13136 Set HAS_CHILDREN to tell whether the die has children or not. */
13139 read_full_die_1 (const struct die_reader_specs *reader,
13140 struct die_info **diep, gdb_byte *info_ptr,
13141 int *has_children, int num_extra_attrs)
13143 unsigned int abbrev_number, bytes_read, i;
13144 sect_offset offset;
13145 struct abbrev_info *abbrev;
13146 struct die_info *die;
13147 struct dwarf2_cu *cu = reader->cu;
13148 bfd *abfd = reader->abfd;
13150 offset.sect_off = info_ptr - reader->buffer;
13151 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13152 info_ptr += bytes_read;
13153 if (!abbrev_number)
13160 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13162 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13164 bfd_get_filename (abfd));
13166 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13167 die->offset = offset;
13168 die->tag = abbrev->tag;
13169 die->abbrev = abbrev_number;
13171 /* Make the result usable.
13172 The caller needs to update num_attrs after adding the extra
13174 die->num_attrs = abbrev->num_attrs;
13176 for (i = 0; i < abbrev->num_attrs; ++i)
13177 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13181 *has_children = abbrev->has_children;
13185 /* Read a die and all its attributes.
13186 Set DIEP to point to a newly allocated die with its information,
13187 except for its child, sibling, and parent fields.
13188 Set HAS_CHILDREN to tell whether the die has children or not. */
13191 read_full_die (const struct die_reader_specs *reader,
13192 struct die_info **diep, gdb_byte *info_ptr,
13195 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13198 /* Abbreviation tables.
13200 In DWARF version 2, the description of the debugging information is
13201 stored in a separate .debug_abbrev section. Before we read any
13202 dies from a section we read in all abbreviations and install them
13203 in a hash table. */
13205 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13207 static struct abbrev_info *
13208 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13210 struct abbrev_info *abbrev;
13212 abbrev = (struct abbrev_info *)
13213 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13214 memset (abbrev, 0, sizeof (struct abbrev_info));
13218 /* Add an abbreviation to the table. */
13221 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13222 unsigned int abbrev_number,
13223 struct abbrev_info *abbrev)
13225 unsigned int hash_number;
13227 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13228 abbrev->next = abbrev_table->abbrevs[hash_number];
13229 abbrev_table->abbrevs[hash_number] = abbrev;
13232 /* Look up an abbrev in the table.
13233 Returns NULL if the abbrev is not found. */
13235 static struct abbrev_info *
13236 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13237 unsigned int abbrev_number)
13239 unsigned int hash_number;
13240 struct abbrev_info *abbrev;
13242 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13243 abbrev = abbrev_table->abbrevs[hash_number];
13247 if (abbrev->number == abbrev_number)
13249 abbrev = abbrev->next;
13254 /* Read in an abbrev table. */
13256 static struct abbrev_table *
13257 abbrev_table_read_table (struct dwarf2_section_info *section,
13258 sect_offset offset)
13260 struct objfile *objfile = dwarf2_per_objfile->objfile;
13261 bfd *abfd = section->asection->owner;
13262 struct abbrev_table *abbrev_table;
13263 gdb_byte *abbrev_ptr;
13264 struct abbrev_info *cur_abbrev;
13265 unsigned int abbrev_number, bytes_read, abbrev_name;
13266 unsigned int abbrev_form;
13267 struct attr_abbrev *cur_attrs;
13268 unsigned int allocated_attrs;
13270 abbrev_table = XMALLOC (struct abbrev_table);
13271 abbrev_table->offset = offset;
13272 obstack_init (&abbrev_table->abbrev_obstack);
13273 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13275 * sizeof (struct abbrev_info *)));
13276 memset (abbrev_table->abbrevs, 0,
13277 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13279 dwarf2_read_section (objfile, section);
13280 abbrev_ptr = section->buffer + offset.sect_off;
13281 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13282 abbrev_ptr += bytes_read;
13284 allocated_attrs = ATTR_ALLOC_CHUNK;
13285 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13287 /* Loop until we reach an abbrev number of 0. */
13288 while (abbrev_number)
13290 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13292 /* read in abbrev header */
13293 cur_abbrev->number = abbrev_number;
13294 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13295 abbrev_ptr += bytes_read;
13296 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13299 /* now read in declarations */
13300 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13301 abbrev_ptr += bytes_read;
13302 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13303 abbrev_ptr += bytes_read;
13304 while (abbrev_name)
13306 if (cur_abbrev->num_attrs == allocated_attrs)
13308 allocated_attrs += ATTR_ALLOC_CHUNK;
13310 = xrealloc (cur_attrs, (allocated_attrs
13311 * sizeof (struct attr_abbrev)));
13314 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13315 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13316 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13317 abbrev_ptr += bytes_read;
13318 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13319 abbrev_ptr += bytes_read;
13322 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13323 (cur_abbrev->num_attrs
13324 * sizeof (struct attr_abbrev)));
13325 memcpy (cur_abbrev->attrs, cur_attrs,
13326 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13328 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13330 /* Get next abbreviation.
13331 Under Irix6 the abbreviations for a compilation unit are not
13332 always properly terminated with an abbrev number of 0.
13333 Exit loop if we encounter an abbreviation which we have
13334 already read (which means we are about to read the abbreviations
13335 for the next compile unit) or if the end of the abbreviation
13336 table is reached. */
13337 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13339 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13340 abbrev_ptr += bytes_read;
13341 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13346 return abbrev_table;
13349 /* Free the resources held by ABBREV_TABLE. */
13352 abbrev_table_free (struct abbrev_table *abbrev_table)
13354 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13355 xfree (abbrev_table);
13358 /* Same as abbrev_table_free but as a cleanup.
13359 We pass in a pointer to the pointer to the table so that we can
13360 set the pointer to NULL when we're done. It also simplifies
13361 build_type_unit_groups. */
13364 abbrev_table_free_cleanup (void *table_ptr)
13366 struct abbrev_table **abbrev_table_ptr = table_ptr;
13368 if (*abbrev_table_ptr != NULL)
13369 abbrev_table_free (*abbrev_table_ptr);
13370 *abbrev_table_ptr = NULL;
13373 /* Read the abbrev table for CU from ABBREV_SECTION. */
13376 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13377 struct dwarf2_section_info *abbrev_section)
13380 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13383 /* Release the memory used by the abbrev table for a compilation unit. */
13386 dwarf2_free_abbrev_table (void *ptr_to_cu)
13388 struct dwarf2_cu *cu = ptr_to_cu;
13390 abbrev_table_free (cu->abbrev_table);
13391 /* Set this to NULL so that we SEGV if we try to read it later,
13392 and also because free_comp_unit verifies this is NULL. */
13393 cu->abbrev_table = NULL;
13396 /* Returns nonzero if TAG represents a type that we might generate a partial
13400 is_type_tag_for_partial (int tag)
13405 /* Some types that would be reasonable to generate partial symbols for,
13406 that we don't at present. */
13407 case DW_TAG_array_type:
13408 case DW_TAG_file_type:
13409 case DW_TAG_ptr_to_member_type:
13410 case DW_TAG_set_type:
13411 case DW_TAG_string_type:
13412 case DW_TAG_subroutine_type:
13414 case DW_TAG_base_type:
13415 case DW_TAG_class_type:
13416 case DW_TAG_interface_type:
13417 case DW_TAG_enumeration_type:
13418 case DW_TAG_structure_type:
13419 case DW_TAG_subrange_type:
13420 case DW_TAG_typedef:
13421 case DW_TAG_union_type:
13428 /* Load all DIEs that are interesting for partial symbols into memory. */
13430 static struct partial_die_info *
13431 load_partial_dies (const struct die_reader_specs *reader,
13432 gdb_byte *info_ptr, int building_psymtab)
13434 struct dwarf2_cu *cu = reader->cu;
13435 struct objfile *objfile = cu->objfile;
13436 struct partial_die_info *part_die;
13437 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13438 struct abbrev_info *abbrev;
13439 unsigned int bytes_read;
13440 unsigned int load_all = 0;
13441 int nesting_level = 1;
13446 gdb_assert (cu->per_cu != NULL);
13447 if (cu->per_cu->load_all_dies)
13451 = htab_create_alloc_ex (cu->header.length / 12,
13455 &cu->comp_unit_obstack,
13456 hashtab_obstack_allocate,
13457 dummy_obstack_deallocate);
13459 part_die = obstack_alloc (&cu->comp_unit_obstack,
13460 sizeof (struct partial_die_info));
13464 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13466 /* A NULL abbrev means the end of a series of children. */
13467 if (abbrev == NULL)
13469 if (--nesting_level == 0)
13471 /* PART_DIE was probably the last thing allocated on the
13472 comp_unit_obstack, so we could call obstack_free
13473 here. We don't do that because the waste is small,
13474 and will be cleaned up when we're done with this
13475 compilation unit. This way, we're also more robust
13476 against other users of the comp_unit_obstack. */
13479 info_ptr += bytes_read;
13480 last_die = parent_die;
13481 parent_die = parent_die->die_parent;
13485 /* Check for template arguments. We never save these; if
13486 they're seen, we just mark the parent, and go on our way. */
13487 if (parent_die != NULL
13488 && cu->language == language_cplus
13489 && (abbrev->tag == DW_TAG_template_type_param
13490 || abbrev->tag == DW_TAG_template_value_param))
13492 parent_die->has_template_arguments = 1;
13496 /* We don't need a partial DIE for the template argument. */
13497 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13502 /* We only recurse into c++ subprograms looking for template arguments.
13503 Skip their other children. */
13505 && cu->language == language_cplus
13506 && parent_die != NULL
13507 && parent_die->tag == DW_TAG_subprogram)
13509 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13513 /* Check whether this DIE is interesting enough to save. Normally
13514 we would not be interested in members here, but there may be
13515 later variables referencing them via DW_AT_specification (for
13516 static members). */
13518 && !is_type_tag_for_partial (abbrev->tag)
13519 && abbrev->tag != DW_TAG_constant
13520 && abbrev->tag != DW_TAG_enumerator
13521 && abbrev->tag != DW_TAG_subprogram
13522 && abbrev->tag != DW_TAG_lexical_block
13523 && abbrev->tag != DW_TAG_variable
13524 && abbrev->tag != DW_TAG_namespace
13525 && abbrev->tag != DW_TAG_module
13526 && abbrev->tag != DW_TAG_member
13527 && abbrev->tag != DW_TAG_imported_unit)
13529 /* Otherwise we skip to the next sibling, if any. */
13530 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13534 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13537 /* This two-pass algorithm for processing partial symbols has a
13538 high cost in cache pressure. Thus, handle some simple cases
13539 here which cover the majority of C partial symbols. DIEs
13540 which neither have specification tags in them, nor could have
13541 specification tags elsewhere pointing at them, can simply be
13542 processed and discarded.
13544 This segment is also optional; scan_partial_symbols and
13545 add_partial_symbol will handle these DIEs if we chain
13546 them in normally. When compilers which do not emit large
13547 quantities of duplicate debug information are more common,
13548 this code can probably be removed. */
13550 /* Any complete simple types at the top level (pretty much all
13551 of them, for a language without namespaces), can be processed
13553 if (parent_die == NULL
13554 && part_die->has_specification == 0
13555 && part_die->is_declaration == 0
13556 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13557 || part_die->tag == DW_TAG_base_type
13558 || part_die->tag == DW_TAG_subrange_type))
13560 if (building_psymtab && part_die->name != NULL)
13561 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13562 VAR_DOMAIN, LOC_TYPEDEF,
13563 &objfile->static_psymbols,
13564 0, (CORE_ADDR) 0, cu->language, objfile);
13565 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13569 /* The exception for DW_TAG_typedef with has_children above is
13570 a workaround of GCC PR debug/47510. In the case of this complaint
13571 type_name_no_tag_or_error will error on such types later.
13573 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13574 it could not find the child DIEs referenced later, this is checked
13575 above. In correct DWARF DW_TAG_typedef should have no children. */
13577 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13578 complaint (&symfile_complaints,
13579 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13580 "- DIE at 0x%x [in module %s]"),
13581 part_die->offset.sect_off, objfile->name);
13583 /* If we're at the second level, and we're an enumerator, and
13584 our parent has no specification (meaning possibly lives in a
13585 namespace elsewhere), then we can add the partial symbol now
13586 instead of queueing it. */
13587 if (part_die->tag == DW_TAG_enumerator
13588 && parent_die != NULL
13589 && parent_die->die_parent == NULL
13590 && parent_die->tag == DW_TAG_enumeration_type
13591 && parent_die->has_specification == 0)
13593 if (part_die->name == NULL)
13594 complaint (&symfile_complaints,
13595 _("malformed enumerator DIE ignored"));
13596 else if (building_psymtab)
13597 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13598 VAR_DOMAIN, LOC_CONST,
13599 (cu->language == language_cplus
13600 || cu->language == language_java)
13601 ? &objfile->global_psymbols
13602 : &objfile->static_psymbols,
13603 0, (CORE_ADDR) 0, cu->language, objfile);
13605 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13609 /* We'll save this DIE so link it in. */
13610 part_die->die_parent = parent_die;
13611 part_die->die_sibling = NULL;
13612 part_die->die_child = NULL;
13614 if (last_die && last_die == parent_die)
13615 last_die->die_child = part_die;
13617 last_die->die_sibling = part_die;
13619 last_die = part_die;
13621 if (first_die == NULL)
13622 first_die = part_die;
13624 /* Maybe add the DIE to the hash table. Not all DIEs that we
13625 find interesting need to be in the hash table, because we
13626 also have the parent/sibling/child chains; only those that we
13627 might refer to by offset later during partial symbol reading.
13629 For now this means things that might have be the target of a
13630 DW_AT_specification, DW_AT_abstract_origin, or
13631 DW_AT_extension. DW_AT_extension will refer only to
13632 namespaces; DW_AT_abstract_origin refers to functions (and
13633 many things under the function DIE, but we do not recurse
13634 into function DIEs during partial symbol reading) and
13635 possibly variables as well; DW_AT_specification refers to
13636 declarations. Declarations ought to have the DW_AT_declaration
13637 flag. It happens that GCC forgets to put it in sometimes, but
13638 only for functions, not for types.
13640 Adding more things than necessary to the hash table is harmless
13641 except for the performance cost. Adding too few will result in
13642 wasted time in find_partial_die, when we reread the compilation
13643 unit with load_all_dies set. */
13646 || abbrev->tag == DW_TAG_constant
13647 || abbrev->tag == DW_TAG_subprogram
13648 || abbrev->tag == DW_TAG_variable
13649 || abbrev->tag == DW_TAG_namespace
13650 || part_die->is_declaration)
13654 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13655 part_die->offset.sect_off, INSERT);
13659 part_die = obstack_alloc (&cu->comp_unit_obstack,
13660 sizeof (struct partial_die_info));
13662 /* For some DIEs we want to follow their children (if any). For C
13663 we have no reason to follow the children of structures; for other
13664 languages we have to, so that we can get at method physnames
13665 to infer fully qualified class names, for DW_AT_specification,
13666 and for C++ template arguments. For C++, we also look one level
13667 inside functions to find template arguments (if the name of the
13668 function does not already contain the template arguments).
13670 For Ada, we need to scan the children of subprograms and lexical
13671 blocks as well because Ada allows the definition of nested
13672 entities that could be interesting for the debugger, such as
13673 nested subprograms for instance. */
13674 if (last_die->has_children
13676 || last_die->tag == DW_TAG_namespace
13677 || last_die->tag == DW_TAG_module
13678 || last_die->tag == DW_TAG_enumeration_type
13679 || (cu->language == language_cplus
13680 && last_die->tag == DW_TAG_subprogram
13681 && (last_die->name == NULL
13682 || strchr (last_die->name, '<') == NULL))
13683 || (cu->language != language_c
13684 && (last_die->tag == DW_TAG_class_type
13685 || last_die->tag == DW_TAG_interface_type
13686 || last_die->tag == DW_TAG_structure_type
13687 || last_die->tag == DW_TAG_union_type))
13688 || (cu->language == language_ada
13689 && (last_die->tag == DW_TAG_subprogram
13690 || last_die->tag == DW_TAG_lexical_block))))
13693 parent_die = last_die;
13697 /* Otherwise we skip to the next sibling, if any. */
13698 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13700 /* Back to the top, do it again. */
13704 /* Read a minimal amount of information into the minimal die structure. */
13707 read_partial_die (const struct die_reader_specs *reader,
13708 struct partial_die_info *part_die,
13709 struct abbrev_info *abbrev, unsigned int abbrev_len,
13710 gdb_byte *info_ptr)
13712 struct dwarf2_cu *cu = reader->cu;
13713 struct objfile *objfile = cu->objfile;
13714 gdb_byte *buffer = reader->buffer;
13716 struct attribute attr;
13717 int has_low_pc_attr = 0;
13718 int has_high_pc_attr = 0;
13719 int high_pc_relative = 0;
13721 memset (part_die, 0, sizeof (struct partial_die_info));
13723 part_die->offset.sect_off = info_ptr - buffer;
13725 info_ptr += abbrev_len;
13727 if (abbrev == NULL)
13730 part_die->tag = abbrev->tag;
13731 part_die->has_children = abbrev->has_children;
13733 for (i = 0; i < abbrev->num_attrs; ++i)
13735 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13737 /* Store the data if it is of an attribute we want to keep in a
13738 partial symbol table. */
13742 switch (part_die->tag)
13744 case DW_TAG_compile_unit:
13745 case DW_TAG_partial_unit:
13746 case DW_TAG_type_unit:
13747 /* Compilation units have a DW_AT_name that is a filename, not
13748 a source language identifier. */
13749 case DW_TAG_enumeration_type:
13750 case DW_TAG_enumerator:
13751 /* These tags always have simple identifiers already; no need
13752 to canonicalize them. */
13753 part_die->name = DW_STRING (&attr);
13757 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13758 &objfile->objfile_obstack);
13762 case DW_AT_linkage_name:
13763 case DW_AT_MIPS_linkage_name:
13764 /* Note that both forms of linkage name might appear. We
13765 assume they will be the same, and we only store the last
13767 if (cu->language == language_ada)
13768 part_die->name = DW_STRING (&attr);
13769 part_die->linkage_name = DW_STRING (&attr);
13772 has_low_pc_attr = 1;
13773 part_die->lowpc = DW_ADDR (&attr);
13775 case DW_AT_high_pc:
13776 has_high_pc_attr = 1;
13777 if (attr.form == DW_FORM_addr
13778 || attr.form == DW_FORM_GNU_addr_index)
13779 part_die->highpc = DW_ADDR (&attr);
13782 high_pc_relative = 1;
13783 part_die->highpc = DW_UNSND (&attr);
13786 case DW_AT_location:
13787 /* Support the .debug_loc offsets. */
13788 if (attr_form_is_block (&attr))
13790 part_die->d.locdesc = DW_BLOCK (&attr);
13792 else if (attr_form_is_section_offset (&attr))
13794 dwarf2_complex_location_expr_complaint ();
13798 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13799 "partial symbol information");
13802 case DW_AT_external:
13803 part_die->is_external = DW_UNSND (&attr);
13805 case DW_AT_declaration:
13806 part_die->is_declaration = DW_UNSND (&attr);
13809 part_die->has_type = 1;
13811 case DW_AT_abstract_origin:
13812 case DW_AT_specification:
13813 case DW_AT_extension:
13814 part_die->has_specification = 1;
13815 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13816 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13817 || cu->per_cu->is_dwz);
13819 case DW_AT_sibling:
13820 /* Ignore absolute siblings, they might point outside of
13821 the current compile unit. */
13822 if (attr.form == DW_FORM_ref_addr)
13823 complaint (&symfile_complaints,
13824 _("ignoring absolute DW_AT_sibling"));
13826 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13828 case DW_AT_byte_size:
13829 part_die->has_byte_size = 1;
13831 case DW_AT_calling_convention:
13832 /* DWARF doesn't provide a way to identify a program's source-level
13833 entry point. DW_AT_calling_convention attributes are only meant
13834 to describe functions' calling conventions.
13836 However, because it's a necessary piece of information in
13837 Fortran, and because DW_CC_program is the only piece of debugging
13838 information whose definition refers to a 'main program' at all,
13839 several compilers have begun marking Fortran main programs with
13840 DW_CC_program --- even when those functions use the standard
13841 calling conventions.
13843 So until DWARF specifies a way to provide this information and
13844 compilers pick up the new representation, we'll support this
13846 if (DW_UNSND (&attr) == DW_CC_program
13847 && cu->language == language_fortran)
13849 set_main_name (part_die->name);
13851 /* As this DIE has a static linkage the name would be difficult
13852 to look up later. */
13853 language_of_main = language_fortran;
13857 if (DW_UNSND (&attr) == DW_INL_inlined
13858 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13859 part_die->may_be_inlined = 1;
13863 if (part_die->tag == DW_TAG_imported_unit)
13865 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13866 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13867 || cu->per_cu->is_dwz);
13876 if (high_pc_relative)
13877 part_die->highpc += part_die->lowpc;
13879 if (has_low_pc_attr && has_high_pc_attr)
13881 /* When using the GNU linker, .gnu.linkonce. sections are used to
13882 eliminate duplicate copies of functions and vtables and such.
13883 The linker will arbitrarily choose one and discard the others.
13884 The AT_*_pc values for such functions refer to local labels in
13885 these sections. If the section from that file was discarded, the
13886 labels are not in the output, so the relocs get a value of 0.
13887 If this is a discarded function, mark the pc bounds as invalid,
13888 so that GDB will ignore it. */
13889 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13893 complaint (&symfile_complaints,
13894 _("DW_AT_low_pc %s is zero "
13895 "for DIE at 0x%x [in module %s]"),
13896 paddress (gdbarch, part_die->lowpc),
13897 part_die->offset.sect_off, objfile->name);
13899 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13900 else if (part_die->lowpc >= part_die->highpc)
13902 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13904 complaint (&symfile_complaints,
13905 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13906 "for DIE at 0x%x [in module %s]"),
13907 paddress (gdbarch, part_die->lowpc),
13908 paddress (gdbarch, part_die->highpc),
13909 part_die->offset.sect_off, objfile->name);
13912 part_die->has_pc_info = 1;
13918 /* Find a cached partial DIE at OFFSET in CU. */
13920 static struct partial_die_info *
13921 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13923 struct partial_die_info *lookup_die = NULL;
13924 struct partial_die_info part_die;
13926 part_die.offset = offset;
13927 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13933 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13934 except in the case of .debug_types DIEs which do not reference
13935 outside their CU (they do however referencing other types via
13936 DW_FORM_ref_sig8). */
13938 static struct partial_die_info *
13939 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13941 struct objfile *objfile = cu->objfile;
13942 struct dwarf2_per_cu_data *per_cu = NULL;
13943 struct partial_die_info *pd = NULL;
13945 if (offset_in_dwz == cu->per_cu->is_dwz
13946 && offset_in_cu_p (&cu->header, offset))
13948 pd = find_partial_die_in_comp_unit (offset, cu);
13951 /* We missed recording what we needed.
13952 Load all dies and try again. */
13953 per_cu = cu->per_cu;
13957 /* TUs don't reference other CUs/TUs (except via type signatures). */
13958 if (cu->per_cu->is_debug_types)
13960 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13961 " external reference to offset 0x%lx [in module %s].\n"),
13962 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13963 bfd_get_filename (objfile->obfd));
13965 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13968 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13969 load_partial_comp_unit (per_cu);
13971 per_cu->cu->last_used = 0;
13972 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13975 /* If we didn't find it, and not all dies have been loaded,
13976 load them all and try again. */
13978 if (pd == NULL && per_cu->load_all_dies == 0)
13980 per_cu->load_all_dies = 1;
13982 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13983 THIS_CU->cu may already be in use. So we can't just free it and
13984 replace its DIEs with the ones we read in. Instead, we leave those
13985 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13986 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13988 load_partial_comp_unit (per_cu);
13990 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13994 internal_error (__FILE__, __LINE__,
13995 _("could not find partial DIE 0x%x "
13996 "in cache [from module %s]\n"),
13997 offset.sect_off, bfd_get_filename (objfile->obfd));
14001 /* See if we can figure out if the class lives in a namespace. We do
14002 this by looking for a member function; its demangled name will
14003 contain namespace info, if there is any. */
14006 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14007 struct dwarf2_cu *cu)
14009 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14010 what template types look like, because the demangler
14011 frequently doesn't give the same name as the debug info. We
14012 could fix this by only using the demangled name to get the
14013 prefix (but see comment in read_structure_type). */
14015 struct partial_die_info *real_pdi;
14016 struct partial_die_info *child_pdi;
14018 /* If this DIE (this DIE's specification, if any) has a parent, then
14019 we should not do this. We'll prepend the parent's fully qualified
14020 name when we create the partial symbol. */
14022 real_pdi = struct_pdi;
14023 while (real_pdi->has_specification)
14024 real_pdi = find_partial_die (real_pdi->spec_offset,
14025 real_pdi->spec_is_dwz, cu);
14027 if (real_pdi->die_parent != NULL)
14030 for (child_pdi = struct_pdi->die_child;
14032 child_pdi = child_pdi->die_sibling)
14034 if (child_pdi->tag == DW_TAG_subprogram
14035 && child_pdi->linkage_name != NULL)
14037 char *actual_class_name
14038 = language_class_name_from_physname (cu->language_defn,
14039 child_pdi->linkage_name);
14040 if (actual_class_name != NULL)
14043 = obstack_copy0 (&cu->objfile->objfile_obstack,
14045 strlen (actual_class_name));
14046 xfree (actual_class_name);
14053 /* Adjust PART_DIE before generating a symbol for it. This function
14054 may set the is_external flag or change the DIE's name. */
14057 fixup_partial_die (struct partial_die_info *part_die,
14058 struct dwarf2_cu *cu)
14060 /* Once we've fixed up a die, there's no point in doing so again.
14061 This also avoids a memory leak if we were to call
14062 guess_partial_die_structure_name multiple times. */
14063 if (part_die->fixup_called)
14066 /* If we found a reference attribute and the DIE has no name, try
14067 to find a name in the referred to DIE. */
14069 if (part_die->name == NULL && part_die->has_specification)
14071 struct partial_die_info *spec_die;
14073 spec_die = find_partial_die (part_die->spec_offset,
14074 part_die->spec_is_dwz, cu);
14076 fixup_partial_die (spec_die, cu);
14078 if (spec_die->name)
14080 part_die->name = spec_die->name;
14082 /* Copy DW_AT_external attribute if it is set. */
14083 if (spec_die->is_external)
14084 part_die->is_external = spec_die->is_external;
14088 /* Set default names for some unnamed DIEs. */
14090 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14091 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14093 /* If there is no parent die to provide a namespace, and there are
14094 children, see if we can determine the namespace from their linkage
14096 if (cu->language == language_cplus
14097 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14098 && part_die->die_parent == NULL
14099 && part_die->has_children
14100 && (part_die->tag == DW_TAG_class_type
14101 || part_die->tag == DW_TAG_structure_type
14102 || part_die->tag == DW_TAG_union_type))
14103 guess_partial_die_structure_name (part_die, cu);
14105 /* GCC might emit a nameless struct or union that has a linkage
14106 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14107 if (part_die->name == NULL
14108 && (part_die->tag == DW_TAG_class_type
14109 || part_die->tag == DW_TAG_interface_type
14110 || part_die->tag == DW_TAG_structure_type
14111 || part_die->tag == DW_TAG_union_type)
14112 && part_die->linkage_name != NULL)
14116 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
14121 /* Strip any leading namespaces/classes, keep only the base name.
14122 DW_AT_name for named DIEs does not contain the prefixes. */
14123 base = strrchr (demangled, ':');
14124 if (base && base > demangled && base[-1] == ':')
14129 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14130 base, strlen (base));
14135 part_die->fixup_called = 1;
14138 /* Read an attribute value described by an attribute form. */
14141 read_attribute_value (const struct die_reader_specs *reader,
14142 struct attribute *attr, unsigned form,
14143 gdb_byte *info_ptr)
14145 struct dwarf2_cu *cu = reader->cu;
14146 bfd *abfd = reader->abfd;
14147 struct comp_unit_head *cu_header = &cu->header;
14148 unsigned int bytes_read;
14149 struct dwarf_block *blk;
14154 case DW_FORM_ref_addr:
14155 if (cu->header.version == 2)
14156 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14158 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14159 &cu->header, &bytes_read);
14160 info_ptr += bytes_read;
14162 case DW_FORM_GNU_ref_alt:
14163 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14164 info_ptr += bytes_read;
14167 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14168 info_ptr += bytes_read;
14170 case DW_FORM_block2:
14171 blk = dwarf_alloc_block (cu);
14172 blk->size = read_2_bytes (abfd, info_ptr);
14174 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14175 info_ptr += blk->size;
14176 DW_BLOCK (attr) = blk;
14178 case DW_FORM_block4:
14179 blk = dwarf_alloc_block (cu);
14180 blk->size = read_4_bytes (abfd, info_ptr);
14182 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14183 info_ptr += blk->size;
14184 DW_BLOCK (attr) = blk;
14186 case DW_FORM_data2:
14187 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14190 case DW_FORM_data4:
14191 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14194 case DW_FORM_data8:
14195 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14198 case DW_FORM_sec_offset:
14199 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14200 info_ptr += bytes_read;
14202 case DW_FORM_string:
14203 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14204 DW_STRING_IS_CANONICAL (attr) = 0;
14205 info_ptr += bytes_read;
14208 if (!cu->per_cu->is_dwz)
14210 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14212 DW_STRING_IS_CANONICAL (attr) = 0;
14213 info_ptr += bytes_read;
14217 case DW_FORM_GNU_strp_alt:
14219 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14220 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14223 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14224 DW_STRING_IS_CANONICAL (attr) = 0;
14225 info_ptr += bytes_read;
14228 case DW_FORM_exprloc:
14229 case DW_FORM_block:
14230 blk = dwarf_alloc_block (cu);
14231 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14232 info_ptr += bytes_read;
14233 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14234 info_ptr += blk->size;
14235 DW_BLOCK (attr) = blk;
14237 case DW_FORM_block1:
14238 blk = dwarf_alloc_block (cu);
14239 blk->size = read_1_byte (abfd, info_ptr);
14241 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14242 info_ptr += blk->size;
14243 DW_BLOCK (attr) = blk;
14245 case DW_FORM_data1:
14246 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14250 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14253 case DW_FORM_flag_present:
14254 DW_UNSND (attr) = 1;
14256 case DW_FORM_sdata:
14257 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14258 info_ptr += bytes_read;
14260 case DW_FORM_udata:
14261 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14262 info_ptr += bytes_read;
14265 DW_UNSND (attr) = (cu->header.offset.sect_off
14266 + read_1_byte (abfd, info_ptr));
14270 DW_UNSND (attr) = (cu->header.offset.sect_off
14271 + read_2_bytes (abfd, info_ptr));
14275 DW_UNSND (attr) = (cu->header.offset.sect_off
14276 + read_4_bytes (abfd, info_ptr));
14280 DW_UNSND (attr) = (cu->header.offset.sect_off
14281 + read_8_bytes (abfd, info_ptr));
14284 case DW_FORM_ref_sig8:
14285 /* Convert the signature to something we can record in DW_UNSND
14287 NOTE: This is NULL if the type wasn't found. */
14288 DW_SIGNATURED_TYPE (attr) =
14289 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14292 case DW_FORM_ref_udata:
14293 DW_UNSND (attr) = (cu->header.offset.sect_off
14294 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14295 info_ptr += bytes_read;
14297 case DW_FORM_indirect:
14298 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14299 info_ptr += bytes_read;
14300 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14302 case DW_FORM_GNU_addr_index:
14303 if (reader->dwo_file == NULL)
14305 /* For now flag a hard error.
14306 Later we can turn this into a complaint. */
14307 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14308 dwarf_form_name (form),
14309 bfd_get_filename (abfd));
14311 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14312 info_ptr += bytes_read;
14314 case DW_FORM_GNU_str_index:
14315 if (reader->dwo_file == NULL)
14317 /* For now flag a hard error.
14318 Later we can turn this into a complaint if warranted. */
14319 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14320 dwarf_form_name (form),
14321 bfd_get_filename (abfd));
14324 ULONGEST str_index =
14325 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14327 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14328 DW_STRING_IS_CANONICAL (attr) = 0;
14329 info_ptr += bytes_read;
14333 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14334 dwarf_form_name (form),
14335 bfd_get_filename (abfd));
14339 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14340 attr->form = DW_FORM_GNU_ref_alt;
14342 /* We have seen instances where the compiler tried to emit a byte
14343 size attribute of -1 which ended up being encoded as an unsigned
14344 0xffffffff. Although 0xffffffff is technically a valid size value,
14345 an object of this size seems pretty unlikely so we can relatively
14346 safely treat these cases as if the size attribute was invalid and
14347 treat them as zero by default. */
14348 if (attr->name == DW_AT_byte_size
14349 && form == DW_FORM_data4
14350 && DW_UNSND (attr) >= 0xffffffff)
14353 (&symfile_complaints,
14354 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14355 hex_string (DW_UNSND (attr)));
14356 DW_UNSND (attr) = 0;
14362 /* Read an attribute described by an abbreviated attribute. */
14365 read_attribute (const struct die_reader_specs *reader,
14366 struct attribute *attr, struct attr_abbrev *abbrev,
14367 gdb_byte *info_ptr)
14369 attr->name = abbrev->name;
14370 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14373 /* Read dwarf information from a buffer. */
14375 static unsigned int
14376 read_1_byte (bfd *abfd, const gdb_byte *buf)
14378 return bfd_get_8 (abfd, buf);
14382 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14384 return bfd_get_signed_8 (abfd, buf);
14387 static unsigned int
14388 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14390 return bfd_get_16 (abfd, buf);
14394 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14396 return bfd_get_signed_16 (abfd, buf);
14399 static unsigned int
14400 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14402 return bfd_get_32 (abfd, buf);
14406 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14408 return bfd_get_signed_32 (abfd, buf);
14412 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14414 return bfd_get_64 (abfd, buf);
14418 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14419 unsigned int *bytes_read)
14421 struct comp_unit_head *cu_header = &cu->header;
14422 CORE_ADDR retval = 0;
14424 if (cu_header->signed_addr_p)
14426 switch (cu_header->addr_size)
14429 retval = bfd_get_signed_16 (abfd, buf);
14432 retval = bfd_get_signed_32 (abfd, buf);
14435 retval = bfd_get_signed_64 (abfd, buf);
14438 internal_error (__FILE__, __LINE__,
14439 _("read_address: bad switch, signed [in module %s]"),
14440 bfd_get_filename (abfd));
14445 switch (cu_header->addr_size)
14448 retval = bfd_get_16 (abfd, buf);
14451 retval = bfd_get_32 (abfd, buf);
14454 retval = bfd_get_64 (abfd, buf);
14457 internal_error (__FILE__, __LINE__,
14458 _("read_address: bad switch, "
14459 "unsigned [in module %s]"),
14460 bfd_get_filename (abfd));
14464 *bytes_read = cu_header->addr_size;
14468 /* Read the initial length from a section. The (draft) DWARF 3
14469 specification allows the initial length to take up either 4 bytes
14470 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14471 bytes describe the length and all offsets will be 8 bytes in length
14474 An older, non-standard 64-bit format is also handled by this
14475 function. The older format in question stores the initial length
14476 as an 8-byte quantity without an escape value. Lengths greater
14477 than 2^32 aren't very common which means that the initial 4 bytes
14478 is almost always zero. Since a length value of zero doesn't make
14479 sense for the 32-bit format, this initial zero can be considered to
14480 be an escape value which indicates the presence of the older 64-bit
14481 format. As written, the code can't detect (old format) lengths
14482 greater than 4GB. If it becomes necessary to handle lengths
14483 somewhat larger than 4GB, we could allow other small values (such
14484 as the non-sensical values of 1, 2, and 3) to also be used as
14485 escape values indicating the presence of the old format.
14487 The value returned via bytes_read should be used to increment the
14488 relevant pointer after calling read_initial_length().
14490 [ Note: read_initial_length() and read_offset() are based on the
14491 document entitled "DWARF Debugging Information Format", revision
14492 3, draft 8, dated November 19, 2001. This document was obtained
14495 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14497 This document is only a draft and is subject to change. (So beware.)
14499 Details regarding the older, non-standard 64-bit format were
14500 determined empirically by examining 64-bit ELF files produced by
14501 the SGI toolchain on an IRIX 6.5 machine.
14503 - Kevin, July 16, 2002
14507 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14509 LONGEST length = bfd_get_32 (abfd, buf);
14511 if (length == 0xffffffff)
14513 length = bfd_get_64 (abfd, buf + 4);
14516 else if (length == 0)
14518 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14519 length = bfd_get_64 (abfd, buf);
14530 /* Cover function for read_initial_length.
14531 Returns the length of the object at BUF, and stores the size of the
14532 initial length in *BYTES_READ and stores the size that offsets will be in
14534 If the initial length size is not equivalent to that specified in
14535 CU_HEADER then issue a complaint.
14536 This is useful when reading non-comp-unit headers. */
14539 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14540 const struct comp_unit_head *cu_header,
14541 unsigned int *bytes_read,
14542 unsigned int *offset_size)
14544 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14546 gdb_assert (cu_header->initial_length_size == 4
14547 || cu_header->initial_length_size == 8
14548 || cu_header->initial_length_size == 12);
14550 if (cu_header->initial_length_size != *bytes_read)
14551 complaint (&symfile_complaints,
14552 _("intermixed 32-bit and 64-bit DWARF sections"));
14554 *offset_size = (*bytes_read == 4) ? 4 : 8;
14558 /* Read an offset from the data stream. The size of the offset is
14559 given by cu_header->offset_size. */
14562 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14563 unsigned int *bytes_read)
14565 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14567 *bytes_read = cu_header->offset_size;
14571 /* Read an offset from the data stream. */
14574 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14576 LONGEST retval = 0;
14578 switch (offset_size)
14581 retval = bfd_get_32 (abfd, buf);
14584 retval = bfd_get_64 (abfd, buf);
14587 internal_error (__FILE__, __LINE__,
14588 _("read_offset_1: bad switch [in module %s]"),
14589 bfd_get_filename (abfd));
14596 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14598 /* If the size of a host char is 8 bits, we can return a pointer
14599 to the buffer, otherwise we have to copy the data to a buffer
14600 allocated on the temporary obstack. */
14601 gdb_assert (HOST_CHAR_BIT == 8);
14606 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14608 /* If the size of a host char is 8 bits, we can return a pointer
14609 to the string, otherwise we have to copy the string to a buffer
14610 allocated on the temporary obstack. */
14611 gdb_assert (HOST_CHAR_BIT == 8);
14614 *bytes_read_ptr = 1;
14617 *bytes_read_ptr = strlen ((char *) buf) + 1;
14618 return (char *) buf;
14622 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14624 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14625 if (dwarf2_per_objfile->str.buffer == NULL)
14626 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14627 bfd_get_filename (abfd));
14628 if (str_offset >= dwarf2_per_objfile->str.size)
14629 error (_("DW_FORM_strp pointing outside of "
14630 ".debug_str section [in module %s]"),
14631 bfd_get_filename (abfd));
14632 gdb_assert (HOST_CHAR_BIT == 8);
14633 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14635 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14638 /* Read a string at offset STR_OFFSET in the .debug_str section from
14639 the .dwz file DWZ. Throw an error if the offset is too large. If
14640 the string consists of a single NUL byte, return NULL; otherwise
14641 return a pointer to the string. */
14644 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14646 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14648 if (dwz->str.buffer == NULL)
14649 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14650 "section [in module %s]"),
14651 bfd_get_filename (dwz->dwz_bfd));
14652 if (str_offset >= dwz->str.size)
14653 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14654 ".debug_str section [in module %s]"),
14655 bfd_get_filename (dwz->dwz_bfd));
14656 gdb_assert (HOST_CHAR_BIT == 8);
14657 if (dwz->str.buffer[str_offset] == '\0')
14659 return (char *) (dwz->str.buffer + str_offset);
14663 read_indirect_string (bfd *abfd, gdb_byte *buf,
14664 const struct comp_unit_head *cu_header,
14665 unsigned int *bytes_read_ptr)
14667 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14669 return read_indirect_string_at_offset (abfd, str_offset);
14673 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14676 unsigned int num_read;
14678 unsigned char byte;
14686 byte = bfd_get_8 (abfd, buf);
14689 result |= ((ULONGEST) (byte & 127) << shift);
14690 if ((byte & 128) == 0)
14696 *bytes_read_ptr = num_read;
14701 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14704 int i, shift, num_read;
14705 unsigned char byte;
14713 byte = bfd_get_8 (abfd, buf);
14716 result |= ((LONGEST) (byte & 127) << shift);
14718 if ((byte & 128) == 0)
14723 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14724 result |= -(((LONGEST) 1) << shift);
14725 *bytes_read_ptr = num_read;
14729 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14730 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14731 ADDR_SIZE is the size of addresses from the CU header. */
14734 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14736 struct objfile *objfile = dwarf2_per_objfile->objfile;
14737 bfd *abfd = objfile->obfd;
14738 const gdb_byte *info_ptr;
14740 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14741 if (dwarf2_per_objfile->addr.buffer == NULL)
14742 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14744 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14745 error (_("DW_FORM_addr_index pointing outside of "
14746 ".debug_addr section [in module %s]"),
14748 info_ptr = (dwarf2_per_objfile->addr.buffer
14749 + addr_base + addr_index * addr_size);
14750 if (addr_size == 4)
14751 return bfd_get_32 (abfd, info_ptr);
14753 return bfd_get_64 (abfd, info_ptr);
14756 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14759 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14761 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14764 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14767 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14768 unsigned int *bytes_read)
14770 bfd *abfd = cu->objfile->obfd;
14771 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14773 return read_addr_index (cu, addr_index);
14776 /* Data structure to pass results from dwarf2_read_addr_index_reader
14777 back to dwarf2_read_addr_index. */
14779 struct dwarf2_read_addr_index_data
14781 ULONGEST addr_base;
14785 /* die_reader_func for dwarf2_read_addr_index. */
14788 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14789 gdb_byte *info_ptr,
14790 struct die_info *comp_unit_die,
14794 struct dwarf2_cu *cu = reader->cu;
14795 struct dwarf2_read_addr_index_data *aidata =
14796 (struct dwarf2_read_addr_index_data *) data;
14798 aidata->addr_base = cu->addr_base;
14799 aidata->addr_size = cu->header.addr_size;
14802 /* Given an index in .debug_addr, fetch the value.
14803 NOTE: This can be called during dwarf expression evaluation,
14804 long after the debug information has been read, and thus per_cu->cu
14805 may no longer exist. */
14808 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14809 unsigned int addr_index)
14811 struct objfile *objfile = per_cu->objfile;
14812 struct dwarf2_cu *cu = per_cu->cu;
14813 ULONGEST addr_base;
14816 /* This is intended to be called from outside this file. */
14817 dw2_setup (objfile);
14819 /* We need addr_base and addr_size.
14820 If we don't have PER_CU->cu, we have to get it.
14821 Nasty, but the alternative is storing the needed info in PER_CU,
14822 which at this point doesn't seem justified: it's not clear how frequently
14823 it would get used and it would increase the size of every PER_CU.
14824 Entry points like dwarf2_per_cu_addr_size do a similar thing
14825 so we're not in uncharted territory here.
14826 Alas we need to be a bit more complicated as addr_base is contained
14829 We don't need to read the entire CU(/TU).
14830 We just need the header and top level die.
14832 IWBN to use the aging mechanism to let us lazily later discard the CU.
14833 For now we skip this optimization. */
14837 addr_base = cu->addr_base;
14838 addr_size = cu->header.addr_size;
14842 struct dwarf2_read_addr_index_data aidata;
14844 /* Note: We can't use init_cutu_and_read_dies_simple here,
14845 we need addr_base. */
14846 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14847 dwarf2_read_addr_index_reader, &aidata);
14848 addr_base = aidata.addr_base;
14849 addr_size = aidata.addr_size;
14852 return read_addr_index_1 (addr_index, addr_base, addr_size);
14855 /* Given a DW_AT_str_index, fetch the string. */
14858 read_str_index (const struct die_reader_specs *reader,
14859 struct dwarf2_cu *cu, ULONGEST str_index)
14861 struct objfile *objfile = dwarf2_per_objfile->objfile;
14862 const char *dwo_name = objfile->name;
14863 bfd *abfd = objfile->obfd;
14864 struct dwo_sections *sections = &reader->dwo_file->sections;
14865 gdb_byte *info_ptr;
14866 ULONGEST str_offset;
14868 dwarf2_read_section (objfile, §ions->str);
14869 dwarf2_read_section (objfile, §ions->str_offsets);
14870 if (sections->str.buffer == NULL)
14871 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14872 " in CU at offset 0x%lx [in module %s]"),
14873 (long) cu->header.offset.sect_off, dwo_name);
14874 if (sections->str_offsets.buffer == NULL)
14875 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14876 " in CU at offset 0x%lx [in module %s]"),
14877 (long) cu->header.offset.sect_off, dwo_name);
14878 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14879 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14880 " section in CU at offset 0x%lx [in module %s]"),
14881 (long) cu->header.offset.sect_off, dwo_name);
14882 info_ptr = (sections->str_offsets.buffer
14883 + str_index * cu->header.offset_size);
14884 if (cu->header.offset_size == 4)
14885 str_offset = bfd_get_32 (abfd, info_ptr);
14887 str_offset = bfd_get_64 (abfd, info_ptr);
14888 if (str_offset >= sections->str.size)
14889 error (_("Offset from DW_FORM_str_index pointing outside of"
14890 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14891 (long) cu->header.offset.sect_off, dwo_name);
14892 return (char *) (sections->str.buffer + str_offset);
14895 /* Return the length of an LEB128 number in BUF. */
14898 leb128_size (const gdb_byte *buf)
14900 const gdb_byte *begin = buf;
14906 if ((byte & 128) == 0)
14907 return buf - begin;
14912 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14919 cu->language = language_c;
14921 case DW_LANG_C_plus_plus:
14922 cu->language = language_cplus;
14925 cu->language = language_d;
14927 case DW_LANG_Fortran77:
14928 case DW_LANG_Fortran90:
14929 case DW_LANG_Fortran95:
14930 cu->language = language_fortran;
14933 cu->language = language_go;
14935 case DW_LANG_Mips_Assembler:
14936 cu->language = language_asm;
14939 cu->language = language_java;
14941 case DW_LANG_Ada83:
14942 case DW_LANG_Ada95:
14943 cu->language = language_ada;
14945 case DW_LANG_Modula2:
14946 cu->language = language_m2;
14948 case DW_LANG_Pascal83:
14949 cu->language = language_pascal;
14952 cu->language = language_objc;
14954 case DW_LANG_Cobol74:
14955 case DW_LANG_Cobol85:
14957 cu->language = language_minimal;
14960 cu->language_defn = language_def (cu->language);
14963 /* Return the named attribute or NULL if not there. */
14965 static struct attribute *
14966 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14971 struct attribute *spec = NULL;
14973 for (i = 0; i < die->num_attrs; ++i)
14975 if (die->attrs[i].name == name)
14976 return &die->attrs[i];
14977 if (die->attrs[i].name == DW_AT_specification
14978 || die->attrs[i].name == DW_AT_abstract_origin)
14979 spec = &die->attrs[i];
14985 die = follow_die_ref (die, spec, &cu);
14991 /* Return the named attribute or NULL if not there,
14992 but do not follow DW_AT_specification, etc.
14993 This is for use in contexts where we're reading .debug_types dies.
14994 Following DW_AT_specification, DW_AT_abstract_origin will take us
14995 back up the chain, and we want to go down. */
14997 static struct attribute *
14998 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15002 for (i = 0; i < die->num_attrs; ++i)
15003 if (die->attrs[i].name == name)
15004 return &die->attrs[i];
15009 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15010 and holds a non-zero value. This function should only be used for
15011 DW_FORM_flag or DW_FORM_flag_present attributes. */
15014 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15016 struct attribute *attr = dwarf2_attr (die, name, cu);
15018 return (attr && DW_UNSND (attr));
15022 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15024 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15025 which value is non-zero. However, we have to be careful with
15026 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15027 (via dwarf2_flag_true_p) follows this attribute. So we may
15028 end up accidently finding a declaration attribute that belongs
15029 to a different DIE referenced by the specification attribute,
15030 even though the given DIE does not have a declaration attribute. */
15031 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15032 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15035 /* Return the die giving the specification for DIE, if there is
15036 one. *SPEC_CU is the CU containing DIE on input, and the CU
15037 containing the return value on output. If there is no
15038 specification, but there is an abstract origin, that is
15041 static struct die_info *
15042 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15044 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15047 if (spec_attr == NULL)
15048 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15050 if (spec_attr == NULL)
15053 return follow_die_ref (die, spec_attr, spec_cu);
15056 /* Free the line_header structure *LH, and any arrays and strings it
15058 NOTE: This is also used as a "cleanup" function. */
15061 free_line_header (struct line_header *lh)
15063 if (lh->standard_opcode_lengths)
15064 xfree (lh->standard_opcode_lengths);
15066 /* Remember that all the lh->file_names[i].name pointers are
15067 pointers into debug_line_buffer, and don't need to be freed. */
15068 if (lh->file_names)
15069 xfree (lh->file_names);
15071 /* Similarly for the include directory names. */
15072 if (lh->include_dirs)
15073 xfree (lh->include_dirs);
15078 /* Add an entry to LH's include directory table. */
15081 add_include_dir (struct line_header *lh, char *include_dir)
15083 /* Grow the array if necessary. */
15084 if (lh->include_dirs_size == 0)
15086 lh->include_dirs_size = 1; /* for testing */
15087 lh->include_dirs = xmalloc (lh->include_dirs_size
15088 * sizeof (*lh->include_dirs));
15090 else if (lh->num_include_dirs >= lh->include_dirs_size)
15092 lh->include_dirs_size *= 2;
15093 lh->include_dirs = xrealloc (lh->include_dirs,
15094 (lh->include_dirs_size
15095 * sizeof (*lh->include_dirs)));
15098 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15101 /* Add an entry to LH's file name table. */
15104 add_file_name (struct line_header *lh,
15106 unsigned int dir_index,
15107 unsigned int mod_time,
15108 unsigned int length)
15110 struct file_entry *fe;
15112 /* Grow the array if necessary. */
15113 if (lh->file_names_size == 0)
15115 lh->file_names_size = 1; /* for testing */
15116 lh->file_names = xmalloc (lh->file_names_size
15117 * sizeof (*lh->file_names));
15119 else if (lh->num_file_names >= lh->file_names_size)
15121 lh->file_names_size *= 2;
15122 lh->file_names = xrealloc (lh->file_names,
15123 (lh->file_names_size
15124 * sizeof (*lh->file_names)));
15127 fe = &lh->file_names[lh->num_file_names++];
15129 fe->dir_index = dir_index;
15130 fe->mod_time = mod_time;
15131 fe->length = length;
15132 fe->included_p = 0;
15136 /* A convenience function to find the proper .debug_line section for a
15139 static struct dwarf2_section_info *
15140 get_debug_line_section (struct dwarf2_cu *cu)
15142 struct dwarf2_section_info *section;
15144 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15146 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15147 section = &cu->dwo_unit->dwo_file->sections.line;
15148 else if (cu->per_cu->is_dwz)
15150 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15152 section = &dwz->line;
15155 section = &dwarf2_per_objfile->line;
15160 /* Read the statement program header starting at OFFSET in
15161 .debug_line, or .debug_line.dwo. Return a pointer
15162 to a struct line_header, allocated using xmalloc.
15164 NOTE: the strings in the include directory and file name tables of
15165 the returned object point into the dwarf line section buffer,
15166 and must not be freed. */
15168 static struct line_header *
15169 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15171 struct cleanup *back_to;
15172 struct line_header *lh;
15173 gdb_byte *line_ptr;
15174 unsigned int bytes_read, offset_size;
15176 char *cur_dir, *cur_file;
15177 struct dwarf2_section_info *section;
15180 section = get_debug_line_section (cu);
15181 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15182 if (section->buffer == NULL)
15184 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15185 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15187 complaint (&symfile_complaints, _("missing .debug_line section"));
15191 /* We can't do this until we know the section is non-empty.
15192 Only then do we know we have such a section. */
15193 abfd = section->asection->owner;
15195 /* Make sure that at least there's room for the total_length field.
15196 That could be 12 bytes long, but we're just going to fudge that. */
15197 if (offset + 4 >= section->size)
15199 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15203 lh = xmalloc (sizeof (*lh));
15204 memset (lh, 0, sizeof (*lh));
15205 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15208 line_ptr = section->buffer + offset;
15210 /* Read in the header. */
15212 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15213 &bytes_read, &offset_size);
15214 line_ptr += bytes_read;
15215 if (line_ptr + lh->total_length > (section->buffer + section->size))
15217 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15220 lh->statement_program_end = line_ptr + lh->total_length;
15221 lh->version = read_2_bytes (abfd, line_ptr);
15223 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15224 line_ptr += offset_size;
15225 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15227 if (lh->version >= 4)
15229 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15233 lh->maximum_ops_per_instruction = 1;
15235 if (lh->maximum_ops_per_instruction == 0)
15237 lh->maximum_ops_per_instruction = 1;
15238 complaint (&symfile_complaints,
15239 _("invalid maximum_ops_per_instruction "
15240 "in `.debug_line' section"));
15243 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15245 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15247 lh->line_range = read_1_byte (abfd, line_ptr);
15249 lh->opcode_base = read_1_byte (abfd, line_ptr);
15251 lh->standard_opcode_lengths
15252 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15254 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15255 for (i = 1; i < lh->opcode_base; ++i)
15257 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15261 /* Read directory table. */
15262 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15264 line_ptr += bytes_read;
15265 add_include_dir (lh, cur_dir);
15267 line_ptr += bytes_read;
15269 /* Read file name table. */
15270 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15272 unsigned int dir_index, mod_time, length;
15274 line_ptr += bytes_read;
15275 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15276 line_ptr += bytes_read;
15277 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15278 line_ptr += bytes_read;
15279 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15280 line_ptr += bytes_read;
15282 add_file_name (lh, cur_file, dir_index, mod_time, length);
15284 line_ptr += bytes_read;
15285 lh->statement_program_start = line_ptr;
15287 if (line_ptr > (section->buffer + section->size))
15288 complaint (&symfile_complaints,
15289 _("line number info header doesn't "
15290 "fit in `.debug_line' section"));
15292 discard_cleanups (back_to);
15296 /* Subroutine of dwarf_decode_lines to simplify it.
15297 Return the file name of the psymtab for included file FILE_INDEX
15298 in line header LH of PST.
15299 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15300 If space for the result is malloc'd, it will be freed by a cleanup.
15301 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15303 The function creates dangling cleanup registration. */
15306 psymtab_include_file_name (const struct line_header *lh, int file_index,
15307 const struct partial_symtab *pst,
15308 const char *comp_dir)
15310 const struct file_entry fe = lh->file_names [file_index];
15311 char *include_name = fe.name;
15312 char *include_name_to_compare = include_name;
15313 char *dir_name = NULL;
15314 const char *pst_filename;
15315 char *copied_name = NULL;
15319 dir_name = lh->include_dirs[fe.dir_index - 1];
15321 if (!IS_ABSOLUTE_PATH (include_name)
15322 && (dir_name != NULL || comp_dir != NULL))
15324 /* Avoid creating a duplicate psymtab for PST.
15325 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15326 Before we do the comparison, however, we need to account
15327 for DIR_NAME and COMP_DIR.
15328 First prepend dir_name (if non-NULL). If we still don't
15329 have an absolute path prepend comp_dir (if non-NULL).
15330 However, the directory we record in the include-file's
15331 psymtab does not contain COMP_DIR (to match the
15332 corresponding symtab(s)).
15337 bash$ gcc -g ./hello.c
15338 include_name = "hello.c"
15340 DW_AT_comp_dir = comp_dir = "/tmp"
15341 DW_AT_name = "./hello.c" */
15343 if (dir_name != NULL)
15345 include_name = concat (dir_name, SLASH_STRING,
15346 include_name, (char *)NULL);
15347 include_name_to_compare = include_name;
15348 make_cleanup (xfree, include_name);
15350 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15352 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15353 include_name, (char *)NULL);
15357 pst_filename = pst->filename;
15358 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15360 copied_name = concat (pst->dirname, SLASH_STRING,
15361 pst_filename, (char *)NULL);
15362 pst_filename = copied_name;
15365 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15367 if (include_name_to_compare != include_name)
15368 xfree (include_name_to_compare);
15369 if (copied_name != NULL)
15370 xfree (copied_name);
15374 return include_name;
15377 /* Ignore this record_line request. */
15380 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15385 /* Subroutine of dwarf_decode_lines to simplify it.
15386 Process the line number information in LH. */
15389 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15390 struct dwarf2_cu *cu, struct partial_symtab *pst)
15392 gdb_byte *line_ptr, *extended_end;
15393 gdb_byte *line_end;
15394 unsigned int bytes_read, extended_len;
15395 unsigned char op_code, extended_op, adj_opcode;
15396 CORE_ADDR baseaddr;
15397 struct objfile *objfile = cu->objfile;
15398 bfd *abfd = objfile->obfd;
15399 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15400 const int decode_for_pst_p = (pst != NULL);
15401 struct subfile *last_subfile = NULL;
15402 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15405 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15407 line_ptr = lh->statement_program_start;
15408 line_end = lh->statement_program_end;
15410 /* Read the statement sequences until there's nothing left. */
15411 while (line_ptr < line_end)
15413 /* state machine registers */
15414 CORE_ADDR address = 0;
15415 unsigned int file = 1;
15416 unsigned int line = 1;
15417 unsigned int column = 0;
15418 int is_stmt = lh->default_is_stmt;
15419 int basic_block = 0;
15420 int end_sequence = 0;
15422 unsigned char op_index = 0;
15424 if (!decode_for_pst_p && lh->num_file_names >= file)
15426 /* Start a subfile for the current file of the state machine. */
15427 /* lh->include_dirs and lh->file_names are 0-based, but the
15428 directory and file name numbers in the statement program
15430 struct file_entry *fe = &lh->file_names[file - 1];
15434 dir = lh->include_dirs[fe->dir_index - 1];
15436 dwarf2_start_subfile (fe->name, dir, comp_dir);
15439 /* Decode the table. */
15440 while (!end_sequence)
15442 op_code = read_1_byte (abfd, line_ptr);
15444 if (line_ptr > line_end)
15446 dwarf2_debug_line_missing_end_sequence_complaint ();
15450 if (op_code >= lh->opcode_base)
15452 /* Special operand. */
15453 adj_opcode = op_code - lh->opcode_base;
15454 address += (((op_index + (adj_opcode / lh->line_range))
15455 / lh->maximum_ops_per_instruction)
15456 * lh->minimum_instruction_length);
15457 op_index = ((op_index + (adj_opcode / lh->line_range))
15458 % lh->maximum_ops_per_instruction);
15459 line += lh->line_base + (adj_opcode % lh->line_range);
15460 if (lh->num_file_names < file || file == 0)
15461 dwarf2_debug_line_missing_file_complaint ();
15462 /* For now we ignore lines not starting on an
15463 instruction boundary. */
15464 else if (op_index == 0)
15466 lh->file_names[file - 1].included_p = 1;
15467 if (!decode_for_pst_p && is_stmt)
15469 if (last_subfile != current_subfile)
15471 addr = gdbarch_addr_bits_remove (gdbarch, address);
15473 (*p_record_line) (last_subfile, 0, addr);
15474 last_subfile = current_subfile;
15476 /* Append row to matrix using current values. */
15477 addr = gdbarch_addr_bits_remove (gdbarch, address);
15478 (*p_record_line) (current_subfile, line, addr);
15483 else switch (op_code)
15485 case DW_LNS_extended_op:
15486 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15488 line_ptr += bytes_read;
15489 extended_end = line_ptr + extended_len;
15490 extended_op = read_1_byte (abfd, line_ptr);
15492 switch (extended_op)
15494 case DW_LNE_end_sequence:
15495 p_record_line = record_line;
15498 case DW_LNE_set_address:
15499 address = read_address (abfd, line_ptr, cu, &bytes_read);
15501 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15503 /* This line table is for a function which has been
15504 GCd by the linker. Ignore it. PR gdb/12528 */
15507 = line_ptr - get_debug_line_section (cu)->buffer;
15509 complaint (&symfile_complaints,
15510 _(".debug_line address at offset 0x%lx is 0 "
15512 line_offset, objfile->name);
15513 p_record_line = noop_record_line;
15517 line_ptr += bytes_read;
15518 address += baseaddr;
15520 case DW_LNE_define_file:
15523 unsigned int dir_index, mod_time, length;
15525 cur_file = read_direct_string (abfd, line_ptr,
15527 line_ptr += bytes_read;
15529 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15530 line_ptr += bytes_read;
15532 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15533 line_ptr += bytes_read;
15535 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15536 line_ptr += bytes_read;
15537 add_file_name (lh, cur_file, dir_index, mod_time, length);
15540 case DW_LNE_set_discriminator:
15541 /* The discriminator is not interesting to the debugger;
15543 line_ptr = extended_end;
15546 complaint (&symfile_complaints,
15547 _("mangled .debug_line section"));
15550 /* Make sure that we parsed the extended op correctly. If e.g.
15551 we expected a different address size than the producer used,
15552 we may have read the wrong number of bytes. */
15553 if (line_ptr != extended_end)
15555 complaint (&symfile_complaints,
15556 _("mangled .debug_line section"));
15561 if (lh->num_file_names < file || file == 0)
15562 dwarf2_debug_line_missing_file_complaint ();
15565 lh->file_names[file - 1].included_p = 1;
15566 if (!decode_for_pst_p && is_stmt)
15568 if (last_subfile != current_subfile)
15570 addr = gdbarch_addr_bits_remove (gdbarch, address);
15572 (*p_record_line) (last_subfile, 0, addr);
15573 last_subfile = current_subfile;
15575 addr = gdbarch_addr_bits_remove (gdbarch, address);
15576 (*p_record_line) (current_subfile, line, addr);
15581 case DW_LNS_advance_pc:
15584 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15586 address += (((op_index + adjust)
15587 / lh->maximum_ops_per_instruction)
15588 * lh->minimum_instruction_length);
15589 op_index = ((op_index + adjust)
15590 % lh->maximum_ops_per_instruction);
15591 line_ptr += bytes_read;
15594 case DW_LNS_advance_line:
15595 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15596 line_ptr += bytes_read;
15598 case DW_LNS_set_file:
15600 /* The arrays lh->include_dirs and lh->file_names are
15601 0-based, but the directory and file name numbers in
15602 the statement program are 1-based. */
15603 struct file_entry *fe;
15606 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15607 line_ptr += bytes_read;
15608 if (lh->num_file_names < file || file == 0)
15609 dwarf2_debug_line_missing_file_complaint ();
15612 fe = &lh->file_names[file - 1];
15614 dir = lh->include_dirs[fe->dir_index - 1];
15615 if (!decode_for_pst_p)
15617 last_subfile = current_subfile;
15618 dwarf2_start_subfile (fe->name, dir, comp_dir);
15623 case DW_LNS_set_column:
15624 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15625 line_ptr += bytes_read;
15627 case DW_LNS_negate_stmt:
15628 is_stmt = (!is_stmt);
15630 case DW_LNS_set_basic_block:
15633 /* Add to the address register of the state machine the
15634 address increment value corresponding to special opcode
15635 255. I.e., this value is scaled by the minimum
15636 instruction length since special opcode 255 would have
15637 scaled the increment. */
15638 case DW_LNS_const_add_pc:
15640 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15642 address += (((op_index + adjust)
15643 / lh->maximum_ops_per_instruction)
15644 * lh->minimum_instruction_length);
15645 op_index = ((op_index + adjust)
15646 % lh->maximum_ops_per_instruction);
15649 case DW_LNS_fixed_advance_pc:
15650 address += read_2_bytes (abfd, line_ptr);
15656 /* Unknown standard opcode, ignore it. */
15659 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15661 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15662 line_ptr += bytes_read;
15667 if (lh->num_file_names < file || file == 0)
15668 dwarf2_debug_line_missing_file_complaint ();
15671 lh->file_names[file - 1].included_p = 1;
15672 if (!decode_for_pst_p)
15674 addr = gdbarch_addr_bits_remove (gdbarch, address);
15675 (*p_record_line) (current_subfile, 0, addr);
15681 /* Decode the Line Number Program (LNP) for the given line_header
15682 structure and CU. The actual information extracted and the type
15683 of structures created from the LNP depends on the value of PST.
15685 1. If PST is NULL, then this procedure uses the data from the program
15686 to create all necessary symbol tables, and their linetables.
15688 2. If PST is not NULL, this procedure reads the program to determine
15689 the list of files included by the unit represented by PST, and
15690 builds all the associated partial symbol tables.
15692 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15693 It is used for relative paths in the line table.
15694 NOTE: When processing partial symtabs (pst != NULL),
15695 comp_dir == pst->dirname.
15697 NOTE: It is important that psymtabs have the same file name (via strcmp)
15698 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15699 symtab we don't use it in the name of the psymtabs we create.
15700 E.g. expand_line_sal requires this when finding psymtabs to expand.
15701 A good testcase for this is mb-inline.exp. */
15704 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15705 struct dwarf2_cu *cu, struct partial_symtab *pst,
15706 int want_line_info)
15708 struct objfile *objfile = cu->objfile;
15709 const int decode_for_pst_p = (pst != NULL);
15710 struct subfile *first_subfile = current_subfile;
15712 if (want_line_info)
15713 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15715 if (decode_for_pst_p)
15719 /* Now that we're done scanning the Line Header Program, we can
15720 create the psymtab of each included file. */
15721 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15722 if (lh->file_names[file_index].included_p == 1)
15724 char *include_name =
15725 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15726 if (include_name != NULL)
15727 dwarf2_create_include_psymtab (include_name, pst, objfile);
15732 /* Make sure a symtab is created for every file, even files
15733 which contain only variables (i.e. no code with associated
15737 for (i = 0; i < lh->num_file_names; i++)
15740 struct file_entry *fe;
15742 fe = &lh->file_names[i];
15744 dir = lh->include_dirs[fe->dir_index - 1];
15745 dwarf2_start_subfile (fe->name, dir, comp_dir);
15747 /* Skip the main file; we don't need it, and it must be
15748 allocated last, so that it will show up before the
15749 non-primary symtabs in the objfile's symtab list. */
15750 if (current_subfile == first_subfile)
15753 if (current_subfile->symtab == NULL)
15754 current_subfile->symtab = allocate_symtab (current_subfile->name,
15756 fe->symtab = current_subfile->symtab;
15761 /* Start a subfile for DWARF. FILENAME is the name of the file and
15762 DIRNAME the name of the source directory which contains FILENAME
15763 or NULL if not known. COMP_DIR is the compilation directory for the
15764 linetable's compilation unit or NULL if not known.
15765 This routine tries to keep line numbers from identical absolute and
15766 relative file names in a common subfile.
15768 Using the `list' example from the GDB testsuite, which resides in
15769 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15770 of /srcdir/list0.c yields the following debugging information for list0.c:
15772 DW_AT_name: /srcdir/list0.c
15773 DW_AT_comp_dir: /compdir
15774 files.files[0].name: list0.h
15775 files.files[0].dir: /srcdir
15776 files.files[1].name: list0.c
15777 files.files[1].dir: /srcdir
15779 The line number information for list0.c has to end up in a single
15780 subfile, so that `break /srcdir/list0.c:1' works as expected.
15781 start_subfile will ensure that this happens provided that we pass the
15782 concatenation of files.files[1].dir and files.files[1].name as the
15786 dwarf2_start_subfile (char *filename, const char *dirname,
15787 const char *comp_dir)
15791 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15792 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15793 second argument to start_subfile. To be consistent, we do the
15794 same here. In order not to lose the line information directory,
15795 we concatenate it to the filename when it makes sense.
15796 Note that the Dwarf3 standard says (speaking of filenames in line
15797 information): ``The directory index is ignored for file names
15798 that represent full path names''. Thus ignoring dirname in the
15799 `else' branch below isn't an issue. */
15801 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15802 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15804 fullname = filename;
15806 start_subfile (fullname, comp_dir);
15808 if (fullname != filename)
15812 /* Start a symtab for DWARF.
15813 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15816 dwarf2_start_symtab (struct dwarf2_cu *cu,
15817 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15819 start_symtab (name, comp_dir, low_pc);
15820 record_debugformat ("DWARF 2");
15821 record_producer (cu->producer);
15823 /* We assume that we're processing GCC output. */
15824 processing_gcc_compilation = 2;
15826 cu->processing_has_namespace_info = 0;
15830 var_decode_location (struct attribute *attr, struct symbol *sym,
15831 struct dwarf2_cu *cu)
15833 struct objfile *objfile = cu->objfile;
15834 struct comp_unit_head *cu_header = &cu->header;
15836 /* NOTE drow/2003-01-30: There used to be a comment and some special
15837 code here to turn a symbol with DW_AT_external and a
15838 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15839 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15840 with some versions of binutils) where shared libraries could have
15841 relocations against symbols in their debug information - the
15842 minimal symbol would have the right address, but the debug info
15843 would not. It's no longer necessary, because we will explicitly
15844 apply relocations when we read in the debug information now. */
15846 /* A DW_AT_location attribute with no contents indicates that a
15847 variable has been optimized away. */
15848 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15850 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15854 /* Handle one degenerate form of location expression specially, to
15855 preserve GDB's previous behavior when section offsets are
15856 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15857 then mark this symbol as LOC_STATIC. */
15859 if (attr_form_is_block (attr)
15860 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15861 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15862 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15863 && (DW_BLOCK (attr)->size
15864 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15866 unsigned int dummy;
15868 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15869 SYMBOL_VALUE_ADDRESS (sym) =
15870 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15872 SYMBOL_VALUE_ADDRESS (sym) =
15873 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15874 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15875 fixup_symbol_section (sym, objfile);
15876 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15877 SYMBOL_SECTION (sym));
15881 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15882 expression evaluator, and use LOC_COMPUTED only when necessary
15883 (i.e. when the value of a register or memory location is
15884 referenced, or a thread-local block, etc.). Then again, it might
15885 not be worthwhile. I'm assuming that it isn't unless performance
15886 or memory numbers show me otherwise. */
15888 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15890 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15891 cu->has_loclist = 1;
15894 /* Given a pointer to a DWARF information entry, figure out if we need
15895 to make a symbol table entry for it, and if so, create a new entry
15896 and return a pointer to it.
15897 If TYPE is NULL, determine symbol type from the die, otherwise
15898 used the passed type.
15899 If SPACE is not NULL, use it to hold the new symbol. If it is
15900 NULL, allocate a new symbol on the objfile's obstack. */
15902 static struct symbol *
15903 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15904 struct symbol *space)
15906 struct objfile *objfile = cu->objfile;
15907 struct symbol *sym = NULL;
15909 struct attribute *attr = NULL;
15910 struct attribute *attr2 = NULL;
15911 CORE_ADDR baseaddr;
15912 struct pending **list_to_add = NULL;
15914 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15918 name = dwarf2_name (die, cu);
15921 const char *linkagename;
15922 int suppress_add = 0;
15927 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15928 OBJSTAT (objfile, n_syms++);
15930 /* Cache this symbol's name and the name's demangled form (if any). */
15931 SYMBOL_SET_LANGUAGE (sym, cu->language);
15932 linkagename = dwarf2_physname (name, die, cu);
15933 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15935 /* Fortran does not have mangling standard and the mangling does differ
15936 between gfortran, iFort etc. */
15937 if (cu->language == language_fortran
15938 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15939 symbol_set_demangled_name (&(sym->ginfo),
15940 dwarf2_full_name (name, die, cu),
15943 /* Default assumptions.
15944 Use the passed type or decode it from the die. */
15945 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15946 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15948 SYMBOL_TYPE (sym) = type;
15950 SYMBOL_TYPE (sym) = die_type (die, cu);
15951 attr = dwarf2_attr (die,
15952 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15956 SYMBOL_LINE (sym) = DW_UNSND (attr);
15959 attr = dwarf2_attr (die,
15960 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15964 int file_index = DW_UNSND (attr);
15966 if (cu->line_header == NULL
15967 || file_index > cu->line_header->num_file_names)
15968 complaint (&symfile_complaints,
15969 _("file index out of range"));
15970 else if (file_index > 0)
15972 struct file_entry *fe;
15974 fe = &cu->line_header->file_names[file_index - 1];
15975 SYMBOL_SYMTAB (sym) = fe->symtab;
15982 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15985 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15987 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15988 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15989 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
15990 add_symbol_to_list (sym, cu->list_in_scope);
15992 case DW_TAG_subprogram:
15993 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15995 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
15996 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15997 if ((attr2 && (DW_UNSND (attr2) != 0))
15998 || cu->language == language_ada)
16000 /* Subprograms marked external are stored as a global symbol.
16001 Ada subprograms, whether marked external or not, are always
16002 stored as a global symbol, because we want to be able to
16003 access them globally. For instance, we want to be able
16004 to break on a nested subprogram without having to
16005 specify the context. */
16006 list_to_add = &global_symbols;
16010 list_to_add = cu->list_in_scope;
16013 case DW_TAG_inlined_subroutine:
16014 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16016 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16017 SYMBOL_INLINED (sym) = 1;
16018 list_to_add = cu->list_in_scope;
16020 case DW_TAG_template_value_param:
16022 /* Fall through. */
16023 case DW_TAG_constant:
16024 case DW_TAG_variable:
16025 case DW_TAG_member:
16026 /* Compilation with minimal debug info may result in
16027 variables with missing type entries. Change the
16028 misleading `void' type to something sensible. */
16029 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16031 = objfile_type (objfile)->nodebug_data_symbol;
16033 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16034 /* In the case of DW_TAG_member, we should only be called for
16035 static const members. */
16036 if (die->tag == DW_TAG_member)
16038 /* dwarf2_add_field uses die_is_declaration,
16039 so we do the same. */
16040 gdb_assert (die_is_declaration (die, cu));
16045 dwarf2_const_value (attr, sym, cu);
16046 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16049 if (attr2 && (DW_UNSND (attr2) != 0))
16050 list_to_add = &global_symbols;
16052 list_to_add = cu->list_in_scope;
16056 attr = dwarf2_attr (die, DW_AT_location, cu);
16059 var_decode_location (attr, sym, cu);
16060 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16062 /* Fortran explicitly imports any global symbols to the local
16063 scope by DW_TAG_common_block. */
16064 if (cu->language == language_fortran && die->parent
16065 && die->parent->tag == DW_TAG_common_block)
16068 if (SYMBOL_CLASS (sym) == LOC_STATIC
16069 && SYMBOL_VALUE_ADDRESS (sym) == 0
16070 && !dwarf2_per_objfile->has_section_at_zero)
16072 /* When a static variable is eliminated by the linker,
16073 the corresponding debug information is not stripped
16074 out, but the variable address is set to null;
16075 do not add such variables into symbol table. */
16077 else if (attr2 && (DW_UNSND (attr2) != 0))
16079 /* Workaround gfortran PR debug/40040 - it uses
16080 DW_AT_location for variables in -fPIC libraries which may
16081 get overriden by other libraries/executable and get
16082 a different address. Resolve it by the minimal symbol
16083 which may come from inferior's executable using copy
16084 relocation. Make this workaround only for gfortran as for
16085 other compilers GDB cannot guess the minimal symbol
16086 Fortran mangling kind. */
16087 if (cu->language == language_fortran && die->parent
16088 && die->parent->tag == DW_TAG_module
16090 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16091 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16093 /* A variable with DW_AT_external is never static,
16094 but it may be block-scoped. */
16095 list_to_add = (cu->list_in_scope == &file_symbols
16096 ? &global_symbols : cu->list_in_scope);
16099 list_to_add = cu->list_in_scope;
16103 /* We do not know the address of this symbol.
16104 If it is an external symbol and we have type information
16105 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16106 The address of the variable will then be determined from
16107 the minimal symbol table whenever the variable is
16109 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16111 /* Fortran explicitly imports any global symbols to the local
16112 scope by DW_TAG_common_block. */
16113 if (cu->language == language_fortran && die->parent
16114 && die->parent->tag == DW_TAG_common_block)
16116 /* SYMBOL_CLASS doesn't matter here because
16117 read_common_block is going to reset it. */
16119 list_to_add = cu->list_in_scope;
16121 else if (attr2 && (DW_UNSND (attr2) != 0)
16122 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16124 /* A variable with DW_AT_external is never static, but it
16125 may be block-scoped. */
16126 list_to_add = (cu->list_in_scope == &file_symbols
16127 ? &global_symbols : cu->list_in_scope);
16129 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16131 else if (!die_is_declaration (die, cu))
16133 /* Use the default LOC_OPTIMIZED_OUT class. */
16134 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16136 list_to_add = cu->list_in_scope;
16140 case DW_TAG_formal_parameter:
16141 /* If we are inside a function, mark this as an argument. If
16142 not, we might be looking at an argument to an inlined function
16143 when we do not have enough information to show inlined frames;
16144 pretend it's a local variable in that case so that the user can
16146 if (context_stack_depth > 0
16147 && context_stack[context_stack_depth - 1].name != NULL)
16148 SYMBOL_IS_ARGUMENT (sym) = 1;
16149 attr = dwarf2_attr (die, DW_AT_location, cu);
16152 var_decode_location (attr, sym, cu);
16154 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16157 dwarf2_const_value (attr, sym, cu);
16160 list_to_add = cu->list_in_scope;
16162 case DW_TAG_unspecified_parameters:
16163 /* From varargs functions; gdb doesn't seem to have any
16164 interest in this information, so just ignore it for now.
16167 case DW_TAG_template_type_param:
16169 /* Fall through. */
16170 case DW_TAG_class_type:
16171 case DW_TAG_interface_type:
16172 case DW_TAG_structure_type:
16173 case DW_TAG_union_type:
16174 case DW_TAG_set_type:
16175 case DW_TAG_enumeration_type:
16176 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16177 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16180 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16181 really ever be static objects: otherwise, if you try
16182 to, say, break of a class's method and you're in a file
16183 which doesn't mention that class, it won't work unless
16184 the check for all static symbols in lookup_symbol_aux
16185 saves you. See the OtherFileClass tests in
16186 gdb.c++/namespace.exp. */
16190 list_to_add = (cu->list_in_scope == &file_symbols
16191 && (cu->language == language_cplus
16192 || cu->language == language_java)
16193 ? &global_symbols : cu->list_in_scope);
16195 /* The semantics of C++ state that "struct foo {
16196 ... }" also defines a typedef for "foo". A Java
16197 class declaration also defines a typedef for the
16199 if (cu->language == language_cplus
16200 || cu->language == language_java
16201 || cu->language == language_ada)
16203 /* The symbol's name is already allocated along
16204 with this objfile, so we don't need to
16205 duplicate it for the type. */
16206 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16207 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16212 case DW_TAG_typedef:
16213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16214 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16215 list_to_add = cu->list_in_scope;
16217 case DW_TAG_base_type:
16218 case DW_TAG_subrange_type:
16219 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16220 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16221 list_to_add = cu->list_in_scope;
16223 case DW_TAG_enumerator:
16224 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16227 dwarf2_const_value (attr, sym, cu);
16230 /* NOTE: carlton/2003-11-10: See comment above in the
16231 DW_TAG_class_type, etc. block. */
16233 list_to_add = (cu->list_in_scope == &file_symbols
16234 && (cu->language == language_cplus
16235 || cu->language == language_java)
16236 ? &global_symbols : cu->list_in_scope);
16239 case DW_TAG_namespace:
16240 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16241 list_to_add = &global_symbols;
16243 case DW_TAG_common_block:
16244 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16245 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16246 add_symbol_to_list (sym, cu->list_in_scope);
16249 /* Not a tag we recognize. Hopefully we aren't processing
16250 trash data, but since we must specifically ignore things
16251 we don't recognize, there is nothing else we should do at
16253 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16254 dwarf_tag_name (die->tag));
16260 sym->hash_next = objfile->template_symbols;
16261 objfile->template_symbols = sym;
16262 list_to_add = NULL;
16265 if (list_to_add != NULL)
16266 add_symbol_to_list (sym, list_to_add);
16268 /* For the benefit of old versions of GCC, check for anonymous
16269 namespaces based on the demangled name. */
16270 if (!cu->processing_has_namespace_info
16271 && cu->language == language_cplus)
16272 cp_scan_for_anonymous_namespaces (sym, objfile);
16277 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16279 static struct symbol *
16280 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16282 return new_symbol_full (die, type, cu, NULL);
16285 /* Given an attr with a DW_FORM_dataN value in host byte order,
16286 zero-extend it as appropriate for the symbol's type. The DWARF
16287 standard (v4) is not entirely clear about the meaning of using
16288 DW_FORM_dataN for a constant with a signed type, where the type is
16289 wider than the data. The conclusion of a discussion on the DWARF
16290 list was that this is unspecified. We choose to always zero-extend
16291 because that is the interpretation long in use by GCC. */
16294 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16295 const char *name, struct obstack *obstack,
16296 struct dwarf2_cu *cu, LONGEST *value, int bits)
16298 struct objfile *objfile = cu->objfile;
16299 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16300 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16301 LONGEST l = DW_UNSND (attr);
16303 if (bits < sizeof (*value) * 8)
16305 l &= ((LONGEST) 1 << bits) - 1;
16308 else if (bits == sizeof (*value) * 8)
16312 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16313 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16320 /* Read a constant value from an attribute. Either set *VALUE, or if
16321 the value does not fit in *VALUE, set *BYTES - either already
16322 allocated on the objfile obstack, or newly allocated on OBSTACK,
16323 or, set *BATON, if we translated the constant to a location
16327 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16328 const char *name, struct obstack *obstack,
16329 struct dwarf2_cu *cu,
16330 LONGEST *value, gdb_byte **bytes,
16331 struct dwarf2_locexpr_baton **baton)
16333 struct objfile *objfile = cu->objfile;
16334 struct comp_unit_head *cu_header = &cu->header;
16335 struct dwarf_block *blk;
16336 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16337 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16343 switch (attr->form)
16346 case DW_FORM_GNU_addr_index:
16350 if (TYPE_LENGTH (type) != cu_header->addr_size)
16351 dwarf2_const_value_length_mismatch_complaint (name,
16352 cu_header->addr_size,
16353 TYPE_LENGTH (type));
16354 /* Symbols of this form are reasonably rare, so we just
16355 piggyback on the existing location code rather than writing
16356 a new implementation of symbol_computed_ops. */
16357 *baton = obstack_alloc (&objfile->objfile_obstack,
16358 sizeof (struct dwarf2_locexpr_baton));
16359 (*baton)->per_cu = cu->per_cu;
16360 gdb_assert ((*baton)->per_cu);
16362 (*baton)->size = 2 + cu_header->addr_size;
16363 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16364 (*baton)->data = data;
16366 data[0] = DW_OP_addr;
16367 store_unsigned_integer (&data[1], cu_header->addr_size,
16368 byte_order, DW_ADDR (attr));
16369 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16372 case DW_FORM_string:
16374 case DW_FORM_GNU_str_index:
16375 case DW_FORM_GNU_strp_alt:
16376 /* DW_STRING is already allocated on the objfile obstack, point
16378 *bytes = (gdb_byte *) DW_STRING (attr);
16380 case DW_FORM_block1:
16381 case DW_FORM_block2:
16382 case DW_FORM_block4:
16383 case DW_FORM_block:
16384 case DW_FORM_exprloc:
16385 blk = DW_BLOCK (attr);
16386 if (TYPE_LENGTH (type) != blk->size)
16387 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16388 TYPE_LENGTH (type));
16389 *bytes = blk->data;
16392 /* The DW_AT_const_value attributes are supposed to carry the
16393 symbol's value "represented as it would be on the target
16394 architecture." By the time we get here, it's already been
16395 converted to host endianness, so we just need to sign- or
16396 zero-extend it as appropriate. */
16397 case DW_FORM_data1:
16398 *bytes = dwarf2_const_value_data (attr, type, name,
16399 obstack, cu, value, 8);
16401 case DW_FORM_data2:
16402 *bytes = dwarf2_const_value_data (attr, type, name,
16403 obstack, cu, value, 16);
16405 case DW_FORM_data4:
16406 *bytes = dwarf2_const_value_data (attr, type, name,
16407 obstack, cu, value, 32);
16409 case DW_FORM_data8:
16410 *bytes = dwarf2_const_value_data (attr, type, name,
16411 obstack, cu, value, 64);
16414 case DW_FORM_sdata:
16415 *value = DW_SND (attr);
16418 case DW_FORM_udata:
16419 *value = DW_UNSND (attr);
16423 complaint (&symfile_complaints,
16424 _("unsupported const value attribute form: '%s'"),
16425 dwarf_form_name (attr->form));
16432 /* Copy constant value from an attribute to a symbol. */
16435 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16436 struct dwarf2_cu *cu)
16438 struct objfile *objfile = cu->objfile;
16439 struct comp_unit_head *cu_header = &cu->header;
16442 struct dwarf2_locexpr_baton *baton;
16444 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16445 SYMBOL_PRINT_NAME (sym),
16446 &objfile->objfile_obstack, cu,
16447 &value, &bytes, &baton);
16451 SYMBOL_LOCATION_BATON (sym) = baton;
16452 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16454 else if (bytes != NULL)
16456 SYMBOL_VALUE_BYTES (sym) = bytes;
16457 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16461 SYMBOL_VALUE (sym) = value;
16462 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16466 /* Return the type of the die in question using its DW_AT_type attribute. */
16468 static struct type *
16469 die_type (struct die_info *die, struct dwarf2_cu *cu)
16471 struct attribute *type_attr;
16473 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16476 /* A missing DW_AT_type represents a void type. */
16477 return objfile_type (cu->objfile)->builtin_void;
16480 return lookup_die_type (die, type_attr, cu);
16483 /* True iff CU's producer generates GNAT Ada auxiliary information
16484 that allows to find parallel types through that information instead
16485 of having to do expensive parallel lookups by type name. */
16488 need_gnat_info (struct dwarf2_cu *cu)
16490 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16491 of GNAT produces this auxiliary information, without any indication
16492 that it is produced. Part of enhancing the FSF version of GNAT
16493 to produce that information will be to put in place an indicator
16494 that we can use in order to determine whether the descriptive type
16495 info is available or not. One suggestion that has been made is
16496 to use a new attribute, attached to the CU die. For now, assume
16497 that the descriptive type info is not available. */
16501 /* Return the auxiliary type of the die in question using its
16502 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16503 attribute is not present. */
16505 static struct type *
16506 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16508 struct attribute *type_attr;
16510 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16514 return lookup_die_type (die, type_attr, cu);
16517 /* If DIE has a descriptive_type attribute, then set the TYPE's
16518 descriptive type accordingly. */
16521 set_descriptive_type (struct type *type, struct die_info *die,
16522 struct dwarf2_cu *cu)
16524 struct type *descriptive_type = die_descriptive_type (die, cu);
16526 if (descriptive_type)
16528 ALLOCATE_GNAT_AUX_TYPE (type);
16529 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16533 /* Return the containing type of the die in question using its
16534 DW_AT_containing_type attribute. */
16536 static struct type *
16537 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16539 struct attribute *type_attr;
16541 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16543 error (_("Dwarf Error: Problem turning containing type into gdb type "
16544 "[in module %s]"), cu->objfile->name);
16546 return lookup_die_type (die, type_attr, cu);
16549 /* Look up the type of DIE in CU using its type attribute ATTR.
16550 If there is no type substitute an error marker. */
16552 static struct type *
16553 lookup_die_type (struct die_info *die, struct attribute *attr,
16554 struct dwarf2_cu *cu)
16556 struct objfile *objfile = cu->objfile;
16557 struct type *this_type;
16559 /* First see if we have it cached. */
16561 if (attr->form == DW_FORM_GNU_ref_alt)
16563 struct dwarf2_per_cu_data *per_cu;
16564 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16566 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16567 this_type = get_die_type_at_offset (offset, per_cu);
16569 else if (is_ref_attr (attr))
16571 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16573 this_type = get_die_type_at_offset (offset, cu->per_cu);
16575 else if (attr->form == DW_FORM_ref_sig8)
16577 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16579 /* sig_type will be NULL if the signatured type is missing from
16581 if (sig_type == NULL)
16582 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16583 "at 0x%x [in module %s]"),
16584 die->offset.sect_off, objfile->name);
16586 gdb_assert (sig_type->per_cu.is_debug_types);
16587 /* If we haven't filled in type_offset_in_section yet, then we
16588 haven't read the type in yet. */
16590 if (sig_type->type_offset_in_section.sect_off != 0)
16593 get_die_type_at_offset (sig_type->type_offset_in_section,
16594 &sig_type->per_cu);
16599 dump_die_for_error (die);
16600 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16601 dwarf_attr_name (attr->name), objfile->name);
16604 /* If not cached we need to read it in. */
16606 if (this_type == NULL)
16608 struct die_info *type_die;
16609 struct dwarf2_cu *type_cu = cu;
16611 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16612 /* If we found the type now, it's probably because the type came
16613 from an inter-CU reference and the type's CU got expanded before
16615 this_type = get_die_type (type_die, type_cu);
16616 if (this_type == NULL)
16617 this_type = read_type_die_1 (type_die, type_cu);
16620 /* If we still don't have a type use an error marker. */
16622 if (this_type == NULL)
16624 char *message, *saved;
16626 /* read_type_die already issued a complaint. */
16627 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16629 cu->header.offset.sect_off,
16630 die->offset.sect_off);
16631 saved = obstack_copy0 (&objfile->objfile_obstack,
16632 message, strlen (message));
16635 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16641 /* Return the type in DIE, CU.
16642 Returns NULL for invalid types.
16644 This first does a lookup in the appropriate type_hash table,
16645 and only reads the die in if necessary.
16647 NOTE: This can be called when reading in partial or full symbols. */
16649 static struct type *
16650 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16652 struct type *this_type;
16654 this_type = get_die_type (die, cu);
16658 return read_type_die_1 (die, cu);
16661 /* Read the type in DIE, CU.
16662 Returns NULL for invalid types. */
16664 static struct type *
16665 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16667 struct type *this_type = NULL;
16671 case DW_TAG_class_type:
16672 case DW_TAG_interface_type:
16673 case DW_TAG_structure_type:
16674 case DW_TAG_union_type:
16675 this_type = read_structure_type (die, cu);
16677 case DW_TAG_enumeration_type:
16678 this_type = read_enumeration_type (die, cu);
16680 case DW_TAG_subprogram:
16681 case DW_TAG_subroutine_type:
16682 case DW_TAG_inlined_subroutine:
16683 this_type = read_subroutine_type (die, cu);
16685 case DW_TAG_array_type:
16686 this_type = read_array_type (die, cu);
16688 case DW_TAG_set_type:
16689 this_type = read_set_type (die, cu);
16691 case DW_TAG_pointer_type:
16692 this_type = read_tag_pointer_type (die, cu);
16694 case DW_TAG_ptr_to_member_type:
16695 this_type = read_tag_ptr_to_member_type (die, cu);
16697 case DW_TAG_reference_type:
16698 this_type = read_tag_reference_type (die, cu);
16700 case DW_TAG_const_type:
16701 this_type = read_tag_const_type (die, cu);
16703 case DW_TAG_volatile_type:
16704 this_type = read_tag_volatile_type (die, cu);
16706 case DW_TAG_restrict_type:
16707 this_type = read_tag_restrict_type (die, cu);
16709 case DW_TAG_string_type:
16710 this_type = read_tag_string_type (die, cu);
16712 case DW_TAG_typedef:
16713 this_type = read_typedef (die, cu);
16715 case DW_TAG_subrange_type:
16716 this_type = read_subrange_type (die, cu);
16718 case DW_TAG_base_type:
16719 this_type = read_base_type (die, cu);
16721 case DW_TAG_unspecified_type:
16722 this_type = read_unspecified_type (die, cu);
16724 case DW_TAG_namespace:
16725 this_type = read_namespace_type (die, cu);
16727 case DW_TAG_module:
16728 this_type = read_module_type (die, cu);
16731 complaint (&symfile_complaints,
16732 _("unexpected tag in read_type_die: '%s'"),
16733 dwarf_tag_name (die->tag));
16740 /* See if we can figure out if the class lives in a namespace. We do
16741 this by looking for a member function; its demangled name will
16742 contain namespace info, if there is any.
16743 Return the computed name or NULL.
16744 Space for the result is allocated on the objfile's obstack.
16745 This is the full-die version of guess_partial_die_structure_name.
16746 In this case we know DIE has no useful parent. */
16749 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16751 struct die_info *spec_die;
16752 struct dwarf2_cu *spec_cu;
16753 struct die_info *child;
16756 spec_die = die_specification (die, &spec_cu);
16757 if (spec_die != NULL)
16763 for (child = die->child;
16765 child = child->sibling)
16767 if (child->tag == DW_TAG_subprogram)
16769 struct attribute *attr;
16771 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16773 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16777 = language_class_name_from_physname (cu->language_defn,
16781 if (actual_name != NULL)
16783 const char *die_name = dwarf2_name (die, cu);
16785 if (die_name != NULL
16786 && strcmp (die_name, actual_name) != 0)
16788 /* Strip off the class name from the full name.
16789 We want the prefix. */
16790 int die_name_len = strlen (die_name);
16791 int actual_name_len = strlen (actual_name);
16793 /* Test for '::' as a sanity check. */
16794 if (actual_name_len > die_name_len + 2
16795 && actual_name[actual_name_len
16796 - die_name_len - 1] == ':')
16798 obstack_copy0 (&cu->objfile->objfile_obstack,
16800 actual_name_len - die_name_len - 2);
16803 xfree (actual_name);
16812 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16813 prefix part in such case. See
16814 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16817 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16819 struct attribute *attr;
16822 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16823 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16826 attr = dwarf2_attr (die, DW_AT_name, cu);
16827 if (attr != NULL && DW_STRING (attr) != NULL)
16830 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16832 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16833 if (attr == NULL || DW_STRING (attr) == NULL)
16836 /* dwarf2_name had to be already called. */
16837 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16839 /* Strip the base name, keep any leading namespaces/classes. */
16840 base = strrchr (DW_STRING (attr), ':');
16841 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16844 return obstack_copy0 (&cu->objfile->objfile_obstack,
16845 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16848 /* Return the name of the namespace/class that DIE is defined within,
16849 or "" if we can't tell. The caller should not xfree the result.
16851 For example, if we're within the method foo() in the following
16861 then determine_prefix on foo's die will return "N::C". */
16863 static const char *
16864 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16866 struct die_info *parent, *spec_die;
16867 struct dwarf2_cu *spec_cu;
16868 struct type *parent_type;
16871 if (cu->language != language_cplus && cu->language != language_java
16872 && cu->language != language_fortran)
16875 retval = anonymous_struct_prefix (die, cu);
16879 /* We have to be careful in the presence of DW_AT_specification.
16880 For example, with GCC 3.4, given the code
16884 // Definition of N::foo.
16888 then we'll have a tree of DIEs like this:
16890 1: DW_TAG_compile_unit
16891 2: DW_TAG_namespace // N
16892 3: DW_TAG_subprogram // declaration of N::foo
16893 4: DW_TAG_subprogram // definition of N::foo
16894 DW_AT_specification // refers to die #3
16896 Thus, when processing die #4, we have to pretend that we're in
16897 the context of its DW_AT_specification, namely the contex of die
16900 spec_die = die_specification (die, &spec_cu);
16901 if (spec_die == NULL)
16902 parent = die->parent;
16905 parent = spec_die->parent;
16909 if (parent == NULL)
16911 else if (parent->building_fullname)
16914 const char *parent_name;
16916 /* It has been seen on RealView 2.2 built binaries,
16917 DW_TAG_template_type_param types actually _defined_ as
16918 children of the parent class:
16921 template class <class Enum> Class{};
16922 Class<enum E> class_e;
16924 1: DW_TAG_class_type (Class)
16925 2: DW_TAG_enumeration_type (E)
16926 3: DW_TAG_enumerator (enum1:0)
16927 3: DW_TAG_enumerator (enum2:1)
16929 2: DW_TAG_template_type_param
16930 DW_AT_type DW_FORM_ref_udata (E)
16932 Besides being broken debug info, it can put GDB into an
16933 infinite loop. Consider:
16935 When we're building the full name for Class<E>, we'll start
16936 at Class, and go look over its template type parameters,
16937 finding E. We'll then try to build the full name of E, and
16938 reach here. We're now trying to build the full name of E,
16939 and look over the parent DIE for containing scope. In the
16940 broken case, if we followed the parent DIE of E, we'd again
16941 find Class, and once again go look at its template type
16942 arguments, etc., etc. Simply don't consider such parent die
16943 as source-level parent of this die (it can't be, the language
16944 doesn't allow it), and break the loop here. */
16945 name = dwarf2_name (die, cu);
16946 parent_name = dwarf2_name (parent, cu);
16947 complaint (&symfile_complaints,
16948 _("template param type '%s' defined within parent '%s'"),
16949 name ? name : "<unknown>",
16950 parent_name ? parent_name : "<unknown>");
16954 switch (parent->tag)
16956 case DW_TAG_namespace:
16957 parent_type = read_type_die (parent, cu);
16958 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16959 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16960 Work around this problem here. */
16961 if (cu->language == language_cplus
16962 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16964 /* We give a name to even anonymous namespaces. */
16965 return TYPE_TAG_NAME (parent_type);
16966 case DW_TAG_class_type:
16967 case DW_TAG_interface_type:
16968 case DW_TAG_structure_type:
16969 case DW_TAG_union_type:
16970 case DW_TAG_module:
16971 parent_type = read_type_die (parent, cu);
16972 if (TYPE_TAG_NAME (parent_type) != NULL)
16973 return TYPE_TAG_NAME (parent_type);
16975 /* An anonymous structure is only allowed non-static data
16976 members; no typedefs, no member functions, et cetera.
16977 So it does not need a prefix. */
16979 case DW_TAG_compile_unit:
16980 case DW_TAG_partial_unit:
16981 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16982 if (cu->language == language_cplus
16983 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16984 && die->child != NULL
16985 && (die->tag == DW_TAG_class_type
16986 || die->tag == DW_TAG_structure_type
16987 || die->tag == DW_TAG_union_type))
16989 char *name = guess_full_die_structure_name (die, cu);
16995 return determine_prefix (parent, cu);
16999 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17000 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17001 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17002 an obconcat, otherwise allocate storage for the result. The CU argument is
17003 used to determine the language and hence, the appropriate separator. */
17005 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17008 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17009 int physname, struct dwarf2_cu *cu)
17011 const char *lead = "";
17014 if (suffix == NULL || suffix[0] == '\0'
17015 || prefix == NULL || prefix[0] == '\0')
17017 else if (cu->language == language_java)
17019 else if (cu->language == language_fortran && physname)
17021 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17022 DW_AT_MIPS_linkage_name is preferred and used instead. */
17030 if (prefix == NULL)
17032 if (suffix == NULL)
17038 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17040 strcpy (retval, lead);
17041 strcat (retval, prefix);
17042 strcat (retval, sep);
17043 strcat (retval, suffix);
17048 /* We have an obstack. */
17049 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17053 /* Return sibling of die, NULL if no sibling. */
17055 static struct die_info *
17056 sibling_die (struct die_info *die)
17058 return die->sibling;
17061 /* Get name of a die, return NULL if not found. */
17063 static const char *
17064 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17065 struct obstack *obstack)
17067 if (name && cu->language == language_cplus)
17069 char *canon_name = cp_canonicalize_string (name);
17071 if (canon_name != NULL)
17073 if (strcmp (canon_name, name) != 0)
17074 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17075 xfree (canon_name);
17082 /* Get name of a die, return NULL if not found. */
17084 static const char *
17085 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17087 struct attribute *attr;
17089 attr = dwarf2_attr (die, DW_AT_name, cu);
17090 if ((!attr || !DW_STRING (attr))
17091 && die->tag != DW_TAG_class_type
17092 && die->tag != DW_TAG_interface_type
17093 && die->tag != DW_TAG_structure_type
17094 && die->tag != DW_TAG_union_type)
17099 case DW_TAG_compile_unit:
17100 case DW_TAG_partial_unit:
17101 /* Compilation units have a DW_AT_name that is a filename, not
17102 a source language identifier. */
17103 case DW_TAG_enumeration_type:
17104 case DW_TAG_enumerator:
17105 /* These tags always have simple identifiers already; no need
17106 to canonicalize them. */
17107 return DW_STRING (attr);
17109 case DW_TAG_subprogram:
17110 /* Java constructors will all be named "<init>", so return
17111 the class name when we see this special case. */
17112 if (cu->language == language_java
17113 && DW_STRING (attr) != NULL
17114 && strcmp (DW_STRING (attr), "<init>") == 0)
17116 struct dwarf2_cu *spec_cu = cu;
17117 struct die_info *spec_die;
17119 /* GCJ will output '<init>' for Java constructor names.
17120 For this special case, return the name of the parent class. */
17122 /* GCJ may output suprogram DIEs with AT_specification set.
17123 If so, use the name of the specified DIE. */
17124 spec_die = die_specification (die, &spec_cu);
17125 if (spec_die != NULL)
17126 return dwarf2_name (spec_die, spec_cu);
17131 if (die->tag == DW_TAG_class_type)
17132 return dwarf2_name (die, cu);
17134 while (die->tag != DW_TAG_compile_unit
17135 && die->tag != DW_TAG_partial_unit);
17139 case DW_TAG_class_type:
17140 case DW_TAG_interface_type:
17141 case DW_TAG_structure_type:
17142 case DW_TAG_union_type:
17143 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17144 structures or unions. These were of the form "._%d" in GCC 4.1,
17145 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17146 and GCC 4.4. We work around this problem by ignoring these. */
17147 if (attr && DW_STRING (attr)
17148 && (strncmp (DW_STRING (attr), "._", 2) == 0
17149 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17152 /* GCC might emit a nameless typedef that has a linkage name. See
17153 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17154 if (!attr || DW_STRING (attr) == NULL)
17156 char *demangled = NULL;
17158 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17160 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17162 if (attr == NULL || DW_STRING (attr) == NULL)
17165 /* Avoid demangling DW_STRING (attr) the second time on a second
17166 call for the same DIE. */
17167 if (!DW_STRING_IS_CANONICAL (attr))
17168 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17174 /* FIXME: we already did this for the partial symbol... */
17175 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17176 demangled, strlen (demangled));
17177 DW_STRING_IS_CANONICAL (attr) = 1;
17180 /* Strip any leading namespaces/classes, keep only the base name.
17181 DW_AT_name for named DIEs does not contain the prefixes. */
17182 base = strrchr (DW_STRING (attr), ':');
17183 if (base && base > DW_STRING (attr) && base[-1] == ':')
17186 return DW_STRING (attr);
17195 if (!DW_STRING_IS_CANONICAL (attr))
17198 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17199 &cu->objfile->objfile_obstack);
17200 DW_STRING_IS_CANONICAL (attr) = 1;
17202 return DW_STRING (attr);
17205 /* Return the die that this die in an extension of, or NULL if there
17206 is none. *EXT_CU is the CU containing DIE on input, and the CU
17207 containing the return value on output. */
17209 static struct die_info *
17210 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17212 struct attribute *attr;
17214 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17218 return follow_die_ref (die, attr, ext_cu);
17221 /* Convert a DIE tag into its string name. */
17223 static const char *
17224 dwarf_tag_name (unsigned tag)
17226 const char *name = get_DW_TAG_name (tag);
17229 return "DW_TAG_<unknown>";
17234 /* Convert a DWARF attribute code into its string name. */
17236 static const char *
17237 dwarf_attr_name (unsigned attr)
17241 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17242 if (attr == DW_AT_MIPS_fde)
17243 return "DW_AT_MIPS_fde";
17245 if (attr == DW_AT_HP_block_index)
17246 return "DW_AT_HP_block_index";
17249 name = get_DW_AT_name (attr);
17252 return "DW_AT_<unknown>";
17257 /* Convert a DWARF value form code into its string name. */
17259 static const char *
17260 dwarf_form_name (unsigned form)
17262 const char *name = get_DW_FORM_name (form);
17265 return "DW_FORM_<unknown>";
17271 dwarf_bool_name (unsigned mybool)
17279 /* Convert a DWARF type code into its string name. */
17281 static const char *
17282 dwarf_type_encoding_name (unsigned enc)
17284 const char *name = get_DW_ATE_name (enc);
17287 return "DW_ATE_<unknown>";
17293 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17297 print_spaces (indent, f);
17298 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17299 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17301 if (die->parent != NULL)
17303 print_spaces (indent, f);
17304 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17305 die->parent->offset.sect_off);
17308 print_spaces (indent, f);
17309 fprintf_unfiltered (f, " has children: %s\n",
17310 dwarf_bool_name (die->child != NULL));
17312 print_spaces (indent, f);
17313 fprintf_unfiltered (f, " attributes:\n");
17315 for (i = 0; i < die->num_attrs; ++i)
17317 print_spaces (indent, f);
17318 fprintf_unfiltered (f, " %s (%s) ",
17319 dwarf_attr_name (die->attrs[i].name),
17320 dwarf_form_name (die->attrs[i].form));
17322 switch (die->attrs[i].form)
17325 case DW_FORM_GNU_addr_index:
17326 fprintf_unfiltered (f, "address: ");
17327 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17329 case DW_FORM_block2:
17330 case DW_FORM_block4:
17331 case DW_FORM_block:
17332 case DW_FORM_block1:
17333 fprintf_unfiltered (f, "block: size %s",
17334 pulongest (DW_BLOCK (&die->attrs[i])->size));
17336 case DW_FORM_exprloc:
17337 fprintf_unfiltered (f, "expression: size %s",
17338 pulongest (DW_BLOCK (&die->attrs[i])->size));
17340 case DW_FORM_ref_addr:
17341 fprintf_unfiltered (f, "ref address: ");
17342 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17344 case DW_FORM_GNU_ref_alt:
17345 fprintf_unfiltered (f, "alt ref address: ");
17346 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17352 case DW_FORM_ref_udata:
17353 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17354 (long) (DW_UNSND (&die->attrs[i])));
17356 case DW_FORM_data1:
17357 case DW_FORM_data2:
17358 case DW_FORM_data4:
17359 case DW_FORM_data8:
17360 case DW_FORM_udata:
17361 case DW_FORM_sdata:
17362 fprintf_unfiltered (f, "constant: %s",
17363 pulongest (DW_UNSND (&die->attrs[i])));
17365 case DW_FORM_sec_offset:
17366 fprintf_unfiltered (f, "section offset: %s",
17367 pulongest (DW_UNSND (&die->attrs[i])));
17369 case DW_FORM_ref_sig8:
17370 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17372 struct signatured_type *sig_type =
17373 DW_SIGNATURED_TYPE (&die->attrs[i]);
17375 fprintf_unfiltered (f, "signatured type: 0x%s, offset 0x%x",
17376 hex_string (sig_type->signature),
17377 sig_type->per_cu.offset.sect_off);
17380 fprintf_unfiltered (f, "signatured type, unknown");
17382 case DW_FORM_string:
17384 case DW_FORM_GNU_str_index:
17385 case DW_FORM_GNU_strp_alt:
17386 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17387 DW_STRING (&die->attrs[i])
17388 ? DW_STRING (&die->attrs[i]) : "",
17389 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17392 if (DW_UNSND (&die->attrs[i]))
17393 fprintf_unfiltered (f, "flag: TRUE");
17395 fprintf_unfiltered (f, "flag: FALSE");
17397 case DW_FORM_flag_present:
17398 fprintf_unfiltered (f, "flag: TRUE");
17400 case DW_FORM_indirect:
17401 /* The reader will have reduced the indirect form to
17402 the "base form" so this form should not occur. */
17403 fprintf_unfiltered (f,
17404 "unexpected attribute form: DW_FORM_indirect");
17407 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17408 die->attrs[i].form);
17411 fprintf_unfiltered (f, "\n");
17416 dump_die_for_error (struct die_info *die)
17418 dump_die_shallow (gdb_stderr, 0, die);
17422 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17424 int indent = level * 4;
17426 gdb_assert (die != NULL);
17428 if (level >= max_level)
17431 dump_die_shallow (f, indent, die);
17433 if (die->child != NULL)
17435 print_spaces (indent, f);
17436 fprintf_unfiltered (f, " Children:");
17437 if (level + 1 < max_level)
17439 fprintf_unfiltered (f, "\n");
17440 dump_die_1 (f, level + 1, max_level, die->child);
17444 fprintf_unfiltered (f,
17445 " [not printed, max nesting level reached]\n");
17449 if (die->sibling != NULL && level > 0)
17451 dump_die_1 (f, level, max_level, die->sibling);
17455 /* This is called from the pdie macro in gdbinit.in.
17456 It's not static so gcc will keep a copy callable from gdb. */
17459 dump_die (struct die_info *die, int max_level)
17461 dump_die_1 (gdb_stdlog, 0, max_level, die);
17465 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17469 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17475 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17476 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17479 is_ref_attr (struct attribute *attr)
17481 switch (attr->form)
17483 case DW_FORM_ref_addr:
17488 case DW_FORM_ref_udata:
17489 case DW_FORM_GNU_ref_alt:
17496 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17500 dwarf2_get_ref_die_offset (struct attribute *attr)
17502 sect_offset retval = { DW_UNSND (attr) };
17504 if (is_ref_attr (attr))
17507 retval.sect_off = 0;
17508 complaint (&symfile_complaints,
17509 _("unsupported die ref attribute form: '%s'"),
17510 dwarf_form_name (attr->form));
17514 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17515 * the value held by the attribute is not constant. */
17518 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17520 if (attr->form == DW_FORM_sdata)
17521 return DW_SND (attr);
17522 else if (attr->form == DW_FORM_udata
17523 || attr->form == DW_FORM_data1
17524 || attr->form == DW_FORM_data2
17525 || attr->form == DW_FORM_data4
17526 || attr->form == DW_FORM_data8)
17527 return DW_UNSND (attr);
17530 complaint (&symfile_complaints,
17531 _("Attribute value is not a constant (%s)"),
17532 dwarf_form_name (attr->form));
17533 return default_value;
17537 /* Follow reference or signature attribute ATTR of SRC_DIE.
17538 On entry *REF_CU is the CU of SRC_DIE.
17539 On exit *REF_CU is the CU of the result. */
17541 static struct die_info *
17542 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17543 struct dwarf2_cu **ref_cu)
17545 struct die_info *die;
17547 if (is_ref_attr (attr))
17548 die = follow_die_ref (src_die, attr, ref_cu);
17549 else if (attr->form == DW_FORM_ref_sig8)
17550 die = follow_die_sig (src_die, attr, ref_cu);
17553 dump_die_for_error (src_die);
17554 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17555 (*ref_cu)->objfile->name);
17561 /* Follow reference OFFSET.
17562 On entry *REF_CU is the CU of the source die referencing OFFSET.
17563 On exit *REF_CU is the CU of the result.
17564 Returns NULL if OFFSET is invalid. */
17566 static struct die_info *
17567 follow_die_offset (sect_offset offset, int offset_in_dwz,
17568 struct dwarf2_cu **ref_cu)
17570 struct die_info temp_die;
17571 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17573 gdb_assert (cu->per_cu != NULL);
17577 if (cu->per_cu->is_debug_types)
17579 /* .debug_types CUs cannot reference anything outside their CU.
17580 If they need to, they have to reference a signatured type via
17581 DW_FORM_ref_sig8. */
17582 if (! offset_in_cu_p (&cu->header, offset))
17585 else if (offset_in_dwz != cu->per_cu->is_dwz
17586 || ! offset_in_cu_p (&cu->header, offset))
17588 struct dwarf2_per_cu_data *per_cu;
17590 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17593 /* If necessary, add it to the queue and load its DIEs. */
17594 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17595 load_full_comp_unit (per_cu, cu->language);
17597 target_cu = per_cu->cu;
17599 else if (cu->dies == NULL)
17601 /* We're loading full DIEs during partial symbol reading. */
17602 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17603 load_full_comp_unit (cu->per_cu, language_minimal);
17606 *ref_cu = target_cu;
17607 temp_die.offset = offset;
17608 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17611 /* Follow reference attribute ATTR of SRC_DIE.
17612 On entry *REF_CU is the CU of SRC_DIE.
17613 On exit *REF_CU is the CU of the result. */
17615 static struct die_info *
17616 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17617 struct dwarf2_cu **ref_cu)
17619 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17620 struct dwarf2_cu *cu = *ref_cu;
17621 struct die_info *die;
17623 die = follow_die_offset (offset,
17624 (attr->form == DW_FORM_GNU_ref_alt
17625 || cu->per_cu->is_dwz),
17628 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17629 "at 0x%x [in module %s]"),
17630 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17635 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17636 Returned value is intended for DW_OP_call*. Returned
17637 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17639 struct dwarf2_locexpr_baton
17640 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17641 struct dwarf2_per_cu_data *per_cu,
17642 CORE_ADDR (*get_frame_pc) (void *baton),
17645 struct dwarf2_cu *cu;
17646 struct die_info *die;
17647 struct attribute *attr;
17648 struct dwarf2_locexpr_baton retval;
17650 dw2_setup (per_cu->objfile);
17652 if (per_cu->cu == NULL)
17656 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17658 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17659 offset.sect_off, per_cu->objfile->name);
17661 attr = dwarf2_attr (die, DW_AT_location, cu);
17664 /* DWARF: "If there is no such attribute, then there is no effect.".
17665 DATA is ignored if SIZE is 0. */
17667 retval.data = NULL;
17670 else if (attr_form_is_section_offset (attr))
17672 struct dwarf2_loclist_baton loclist_baton;
17673 CORE_ADDR pc = (*get_frame_pc) (baton);
17676 fill_in_loclist_baton (cu, &loclist_baton, attr);
17678 retval.data = dwarf2_find_location_expression (&loclist_baton,
17680 retval.size = size;
17684 if (!attr_form_is_block (attr))
17685 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17686 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17687 offset.sect_off, per_cu->objfile->name);
17689 retval.data = DW_BLOCK (attr)->data;
17690 retval.size = DW_BLOCK (attr)->size;
17692 retval.per_cu = cu->per_cu;
17694 age_cached_comp_units ();
17699 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17702 struct dwarf2_locexpr_baton
17703 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17704 struct dwarf2_per_cu_data *per_cu,
17705 CORE_ADDR (*get_frame_pc) (void *baton),
17708 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17710 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17713 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17717 dwarf2_get_die_type (cu_offset die_offset,
17718 struct dwarf2_per_cu_data *per_cu)
17720 sect_offset die_offset_sect;
17722 dw2_setup (per_cu->objfile);
17724 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17725 return get_die_type_at_offset (die_offset_sect, per_cu);
17728 /* Follow the signature attribute ATTR in SRC_DIE.
17729 On entry *REF_CU is the CU of SRC_DIE.
17730 On exit *REF_CU is the CU of the result. */
17732 static struct die_info *
17733 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17734 struct dwarf2_cu **ref_cu)
17736 struct objfile *objfile = (*ref_cu)->objfile;
17737 struct die_info temp_die;
17738 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17739 struct dwarf2_cu *sig_cu;
17740 struct die_info *die;
17742 /* sig_type will be NULL if the signatured type is missing from
17744 if (sig_type == NULL)
17745 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17746 "at 0x%x [in module %s]"),
17747 src_die->offset.sect_off, objfile->name);
17749 /* If necessary, add it to the queue and load its DIEs. */
17751 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17752 read_signatured_type (sig_type);
17754 gdb_assert (sig_type->per_cu.cu != NULL);
17756 sig_cu = sig_type->per_cu.cu;
17757 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17758 temp_die.offset = sig_type->type_offset_in_section;
17759 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17760 temp_die.offset.sect_off);
17763 /* For .gdb_index version 7 keep track of included TUs.
17764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17765 if (dwarf2_per_objfile->index_table != NULL
17766 && dwarf2_per_objfile->index_table->version <= 7)
17768 VEC_safe_push (dwarf2_per_cu_ptr,
17769 (*ref_cu)->per_cu->imported_symtabs,
17777 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17778 "from DIE at 0x%x [in module %s]"),
17779 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17782 /* Given an offset of a signatured type, return its signatured_type. */
17784 static struct signatured_type *
17785 lookup_signatured_type_at_offset (struct objfile *objfile,
17786 struct dwarf2_section_info *section,
17787 sect_offset offset)
17789 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17790 unsigned int length, initial_length_size;
17791 unsigned int sig_offset;
17792 struct signatured_type find_entry, *sig_type;
17794 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17795 sig_offset = (initial_length_size
17797 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17798 + 1 /*address_size*/);
17799 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17800 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17802 /* This is only used to lookup previously recorded types.
17803 If we didn't find it, it's our bug. */
17804 gdb_assert (sig_type != NULL);
17805 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17810 /* Load the DIEs associated with type unit PER_CU into memory. */
17813 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17815 struct signatured_type *sig_type;
17817 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17818 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17820 /* We have the per_cu, but we need the signatured_type.
17821 Fortunately this is an easy translation. */
17822 gdb_assert (per_cu->is_debug_types);
17823 sig_type = (struct signatured_type *) per_cu;
17825 gdb_assert (per_cu->cu == NULL);
17827 read_signatured_type (sig_type);
17829 gdb_assert (per_cu->cu != NULL);
17832 /* die_reader_func for read_signatured_type.
17833 This is identical to load_full_comp_unit_reader,
17834 but is kept separate for now. */
17837 read_signatured_type_reader (const struct die_reader_specs *reader,
17838 gdb_byte *info_ptr,
17839 struct die_info *comp_unit_die,
17843 struct dwarf2_cu *cu = reader->cu;
17845 gdb_assert (cu->die_hash == NULL);
17847 htab_create_alloc_ex (cu->header.length / 12,
17851 &cu->comp_unit_obstack,
17852 hashtab_obstack_allocate,
17853 dummy_obstack_deallocate);
17856 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17857 &info_ptr, comp_unit_die);
17858 cu->dies = comp_unit_die;
17859 /* comp_unit_die is not stored in die_hash, no need. */
17861 /* We try not to read any attributes in this function, because not
17862 all CUs needed for references have been loaded yet, and symbol
17863 table processing isn't initialized. But we have to set the CU language,
17864 or we won't be able to build types correctly.
17865 Similarly, if we do not read the producer, we can not apply
17866 producer-specific interpretation. */
17867 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17870 /* Read in a signatured type and build its CU and DIEs.
17871 If the type is a stub for the real type in a DWO file,
17872 read in the real type from the DWO file as well. */
17875 read_signatured_type (struct signatured_type *sig_type)
17877 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17879 gdb_assert (per_cu->is_debug_types);
17880 gdb_assert (per_cu->cu == NULL);
17882 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17883 read_signatured_type_reader, NULL);
17886 /* Decode simple location descriptions.
17887 Given a pointer to a dwarf block that defines a location, compute
17888 the location and return the value.
17890 NOTE drow/2003-11-18: This function is called in two situations
17891 now: for the address of static or global variables (partial symbols
17892 only) and for offsets into structures which are expected to be
17893 (more or less) constant. The partial symbol case should go away,
17894 and only the constant case should remain. That will let this
17895 function complain more accurately. A few special modes are allowed
17896 without complaint for global variables (for instance, global
17897 register values and thread-local values).
17899 A location description containing no operations indicates that the
17900 object is optimized out. The return value is 0 for that case.
17901 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17902 callers will only want a very basic result and this can become a
17905 Note that stack[0] is unused except as a default error return. */
17908 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17910 struct objfile *objfile = cu->objfile;
17912 size_t size = blk->size;
17913 gdb_byte *data = blk->data;
17914 CORE_ADDR stack[64];
17916 unsigned int bytes_read, unsnd;
17922 stack[++stacki] = 0;
17961 stack[++stacki] = op - DW_OP_lit0;
17996 stack[++stacki] = op - DW_OP_reg0;
17998 dwarf2_complex_location_expr_complaint ();
18002 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18004 stack[++stacki] = unsnd;
18006 dwarf2_complex_location_expr_complaint ();
18010 stack[++stacki] = read_address (objfile->obfd, &data[i],
18015 case DW_OP_const1u:
18016 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18020 case DW_OP_const1s:
18021 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18025 case DW_OP_const2u:
18026 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18030 case DW_OP_const2s:
18031 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18035 case DW_OP_const4u:
18036 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18040 case DW_OP_const4s:
18041 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18045 case DW_OP_const8u:
18046 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18051 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18057 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18062 stack[stacki + 1] = stack[stacki];
18067 stack[stacki - 1] += stack[stacki];
18071 case DW_OP_plus_uconst:
18072 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18078 stack[stacki - 1] -= stack[stacki];
18083 /* If we're not the last op, then we definitely can't encode
18084 this using GDB's address_class enum. This is valid for partial
18085 global symbols, although the variable's address will be bogus
18088 dwarf2_complex_location_expr_complaint ();
18091 case DW_OP_GNU_push_tls_address:
18092 /* The top of the stack has the offset from the beginning
18093 of the thread control block at which the variable is located. */
18094 /* Nothing should follow this operator, so the top of stack would
18096 /* This is valid for partial global symbols, but the variable's
18097 address will be bogus in the psymtab. Make it always at least
18098 non-zero to not look as a variable garbage collected by linker
18099 which have DW_OP_addr 0. */
18101 dwarf2_complex_location_expr_complaint ();
18105 case DW_OP_GNU_uninit:
18108 case DW_OP_GNU_addr_index:
18109 case DW_OP_GNU_const_index:
18110 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18117 const char *name = get_DW_OP_name (op);
18120 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18123 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18127 return (stack[stacki]);
18130 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18131 outside of the allocated space. Also enforce minimum>0. */
18132 if (stacki >= ARRAY_SIZE (stack) - 1)
18134 complaint (&symfile_complaints,
18135 _("location description stack overflow"));
18141 complaint (&symfile_complaints,
18142 _("location description stack underflow"));
18146 return (stack[stacki]);
18149 /* memory allocation interface */
18151 static struct dwarf_block *
18152 dwarf_alloc_block (struct dwarf2_cu *cu)
18154 struct dwarf_block *blk;
18156 blk = (struct dwarf_block *)
18157 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18161 static struct die_info *
18162 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18164 struct die_info *die;
18165 size_t size = sizeof (struct die_info);
18168 size += (num_attrs - 1) * sizeof (struct attribute);
18170 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18171 memset (die, 0, sizeof (struct die_info));
18176 /* Macro support. */
18178 /* Return file name relative to the compilation directory of file number I in
18179 *LH's file name table. The result is allocated using xmalloc; the caller is
18180 responsible for freeing it. */
18183 file_file_name (int file, struct line_header *lh)
18185 /* Is the file number a valid index into the line header's file name
18186 table? Remember that file numbers start with one, not zero. */
18187 if (1 <= file && file <= lh->num_file_names)
18189 struct file_entry *fe = &lh->file_names[file - 1];
18191 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18192 return xstrdup (fe->name);
18193 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18198 /* The compiler produced a bogus file number. We can at least
18199 record the macro definitions made in the file, even if we
18200 won't be able to find the file by name. */
18201 char fake_name[80];
18203 xsnprintf (fake_name, sizeof (fake_name),
18204 "<bad macro file number %d>", file);
18206 complaint (&symfile_complaints,
18207 _("bad file number in macro information (%d)"),
18210 return xstrdup (fake_name);
18214 /* Return the full name of file number I in *LH's file name table.
18215 Use COMP_DIR as the name of the current directory of the
18216 compilation. The result is allocated using xmalloc; the caller is
18217 responsible for freeing it. */
18219 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18221 /* Is the file number a valid index into the line header's file name
18222 table? Remember that file numbers start with one, not zero. */
18223 if (1 <= file && file <= lh->num_file_names)
18225 char *relative = file_file_name (file, lh);
18227 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18229 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18232 return file_file_name (file, lh);
18236 static struct macro_source_file *
18237 macro_start_file (int file, int line,
18238 struct macro_source_file *current_file,
18239 const char *comp_dir,
18240 struct line_header *lh, struct objfile *objfile)
18242 /* File name relative to the compilation directory of this source file. */
18243 char *file_name = file_file_name (file, lh);
18245 /* We don't create a macro table for this compilation unit
18246 at all until we actually get a filename. */
18247 if (! pending_macros)
18248 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18249 objfile->per_bfd->macro_cache,
18252 if (! current_file)
18254 /* If we have no current file, then this must be the start_file
18255 directive for the compilation unit's main source file. */
18256 current_file = macro_set_main (pending_macros, file_name);
18257 macro_define_special (pending_macros);
18260 current_file = macro_include (current_file, line, file_name);
18264 return current_file;
18268 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18269 followed by a null byte. */
18271 copy_string (const char *buf, int len)
18273 char *s = xmalloc (len + 1);
18275 memcpy (s, buf, len);
18281 static const char *
18282 consume_improper_spaces (const char *p, const char *body)
18286 complaint (&symfile_complaints,
18287 _("macro definition contains spaces "
18288 "in formal argument list:\n`%s'"),
18300 parse_macro_definition (struct macro_source_file *file, int line,
18305 /* The body string takes one of two forms. For object-like macro
18306 definitions, it should be:
18308 <macro name> " " <definition>
18310 For function-like macro definitions, it should be:
18312 <macro name> "() " <definition>
18314 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18316 Spaces may appear only where explicitly indicated, and in the
18319 The Dwarf 2 spec says that an object-like macro's name is always
18320 followed by a space, but versions of GCC around March 2002 omit
18321 the space when the macro's definition is the empty string.
18323 The Dwarf 2 spec says that there should be no spaces between the
18324 formal arguments in a function-like macro's formal argument list,
18325 but versions of GCC around March 2002 include spaces after the
18329 /* Find the extent of the macro name. The macro name is terminated
18330 by either a space or null character (for an object-like macro) or
18331 an opening paren (for a function-like macro). */
18332 for (p = body; *p; p++)
18333 if (*p == ' ' || *p == '(')
18336 if (*p == ' ' || *p == '\0')
18338 /* It's an object-like macro. */
18339 int name_len = p - body;
18340 char *name = copy_string (body, name_len);
18341 const char *replacement;
18344 replacement = body + name_len + 1;
18347 dwarf2_macro_malformed_definition_complaint (body);
18348 replacement = body + name_len;
18351 macro_define_object (file, line, name, replacement);
18355 else if (*p == '(')
18357 /* It's a function-like macro. */
18358 char *name = copy_string (body, p - body);
18361 char **argv = xmalloc (argv_size * sizeof (*argv));
18365 p = consume_improper_spaces (p, body);
18367 /* Parse the formal argument list. */
18368 while (*p && *p != ')')
18370 /* Find the extent of the current argument name. */
18371 const char *arg_start = p;
18373 while (*p && *p != ',' && *p != ')' && *p != ' ')
18376 if (! *p || p == arg_start)
18377 dwarf2_macro_malformed_definition_complaint (body);
18380 /* Make sure argv has room for the new argument. */
18381 if (argc >= argv_size)
18384 argv = xrealloc (argv, argv_size * sizeof (*argv));
18387 argv[argc++] = copy_string (arg_start, p - arg_start);
18390 p = consume_improper_spaces (p, body);
18392 /* Consume the comma, if present. */
18397 p = consume_improper_spaces (p, body);
18406 /* Perfectly formed definition, no complaints. */
18407 macro_define_function (file, line, name,
18408 argc, (const char **) argv,
18410 else if (*p == '\0')
18412 /* Complain, but do define it. */
18413 dwarf2_macro_malformed_definition_complaint (body);
18414 macro_define_function (file, line, name,
18415 argc, (const char **) argv,
18419 /* Just complain. */
18420 dwarf2_macro_malformed_definition_complaint (body);
18423 /* Just complain. */
18424 dwarf2_macro_malformed_definition_complaint (body);
18430 for (i = 0; i < argc; i++)
18436 dwarf2_macro_malformed_definition_complaint (body);
18439 /* Skip some bytes from BYTES according to the form given in FORM.
18440 Returns the new pointer. */
18443 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18444 enum dwarf_form form,
18445 unsigned int offset_size,
18446 struct dwarf2_section_info *section)
18448 unsigned int bytes_read;
18452 case DW_FORM_data1:
18457 case DW_FORM_data2:
18461 case DW_FORM_data4:
18465 case DW_FORM_data8:
18469 case DW_FORM_string:
18470 read_direct_string (abfd, bytes, &bytes_read);
18471 bytes += bytes_read;
18474 case DW_FORM_sec_offset:
18476 case DW_FORM_GNU_strp_alt:
18477 bytes += offset_size;
18480 case DW_FORM_block:
18481 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18482 bytes += bytes_read;
18485 case DW_FORM_block1:
18486 bytes += 1 + read_1_byte (abfd, bytes);
18488 case DW_FORM_block2:
18489 bytes += 2 + read_2_bytes (abfd, bytes);
18491 case DW_FORM_block4:
18492 bytes += 4 + read_4_bytes (abfd, bytes);
18495 case DW_FORM_sdata:
18496 case DW_FORM_udata:
18497 case DW_FORM_GNU_addr_index:
18498 case DW_FORM_GNU_str_index:
18499 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18502 dwarf2_section_buffer_overflow_complaint (section);
18510 complaint (&symfile_complaints,
18511 _("invalid form 0x%x in `%s'"),
18513 section->asection->name);
18521 /* A helper for dwarf_decode_macros that handles skipping an unknown
18522 opcode. Returns an updated pointer to the macro data buffer; or,
18523 on error, issues a complaint and returns NULL. */
18526 skip_unknown_opcode (unsigned int opcode,
18527 gdb_byte **opcode_definitions,
18528 gdb_byte *mac_ptr, gdb_byte *mac_end,
18530 unsigned int offset_size,
18531 struct dwarf2_section_info *section)
18533 unsigned int bytes_read, i;
18537 if (opcode_definitions[opcode] == NULL)
18539 complaint (&symfile_complaints,
18540 _("unrecognized DW_MACFINO opcode 0x%x"),
18545 defn = opcode_definitions[opcode];
18546 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18547 defn += bytes_read;
18549 for (i = 0; i < arg; ++i)
18551 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18553 if (mac_ptr == NULL)
18555 /* skip_form_bytes already issued the complaint. */
18563 /* A helper function which parses the header of a macro section.
18564 If the macro section is the extended (for now called "GNU") type,
18565 then this updates *OFFSET_SIZE. Returns a pointer to just after
18566 the header, or issues a complaint and returns NULL on error. */
18569 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18572 unsigned int *offset_size,
18573 int section_is_gnu)
18575 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18577 if (section_is_gnu)
18579 unsigned int version, flags;
18581 version = read_2_bytes (abfd, mac_ptr);
18584 complaint (&symfile_complaints,
18585 _("unrecognized version `%d' in .debug_macro section"),
18591 flags = read_1_byte (abfd, mac_ptr);
18593 *offset_size = (flags & 1) ? 8 : 4;
18595 if ((flags & 2) != 0)
18596 /* We don't need the line table offset. */
18597 mac_ptr += *offset_size;
18599 /* Vendor opcode descriptions. */
18600 if ((flags & 4) != 0)
18602 unsigned int i, count;
18604 count = read_1_byte (abfd, mac_ptr);
18606 for (i = 0; i < count; ++i)
18608 unsigned int opcode, bytes_read;
18611 opcode = read_1_byte (abfd, mac_ptr);
18613 opcode_definitions[opcode] = mac_ptr;
18614 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18615 mac_ptr += bytes_read;
18624 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18625 including DW_MACRO_GNU_transparent_include. */
18628 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18629 struct macro_source_file *current_file,
18630 struct line_header *lh, const char *comp_dir,
18631 struct dwarf2_section_info *section,
18632 int section_is_gnu, int section_is_dwz,
18633 unsigned int offset_size,
18634 struct objfile *objfile,
18635 htab_t include_hash)
18637 enum dwarf_macro_record_type macinfo_type;
18638 int at_commandline;
18639 gdb_byte *opcode_definitions[256];
18641 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18642 &offset_size, section_is_gnu);
18643 if (mac_ptr == NULL)
18645 /* We already issued a complaint. */
18649 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18650 GDB is still reading the definitions from command line. First
18651 DW_MACINFO_start_file will need to be ignored as it was already executed
18652 to create CURRENT_FILE for the main source holding also the command line
18653 definitions. On first met DW_MACINFO_start_file this flag is reset to
18654 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18656 at_commandline = 1;
18660 /* Do we at least have room for a macinfo type byte? */
18661 if (mac_ptr >= mac_end)
18663 dwarf2_section_buffer_overflow_complaint (section);
18667 macinfo_type = read_1_byte (abfd, mac_ptr);
18670 /* Note that we rely on the fact that the corresponding GNU and
18671 DWARF constants are the same. */
18672 switch (macinfo_type)
18674 /* A zero macinfo type indicates the end of the macro
18679 case DW_MACRO_GNU_define:
18680 case DW_MACRO_GNU_undef:
18681 case DW_MACRO_GNU_define_indirect:
18682 case DW_MACRO_GNU_undef_indirect:
18683 case DW_MACRO_GNU_define_indirect_alt:
18684 case DW_MACRO_GNU_undef_indirect_alt:
18686 unsigned int bytes_read;
18691 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18692 mac_ptr += bytes_read;
18694 if (macinfo_type == DW_MACRO_GNU_define
18695 || macinfo_type == DW_MACRO_GNU_undef)
18697 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18698 mac_ptr += bytes_read;
18702 LONGEST str_offset;
18704 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18705 mac_ptr += offset_size;
18707 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18708 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18711 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18713 body = read_indirect_string_from_dwz (dwz, str_offset);
18716 body = read_indirect_string_at_offset (abfd, str_offset);
18719 is_define = (macinfo_type == DW_MACRO_GNU_define
18720 || macinfo_type == DW_MACRO_GNU_define_indirect
18721 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18722 if (! current_file)
18724 /* DWARF violation as no main source is present. */
18725 complaint (&symfile_complaints,
18726 _("debug info with no main source gives macro %s "
18728 is_define ? _("definition") : _("undefinition"),
18732 if ((line == 0 && !at_commandline)
18733 || (line != 0 && at_commandline))
18734 complaint (&symfile_complaints,
18735 _("debug info gives %s macro %s with %s line %d: %s"),
18736 at_commandline ? _("command-line") : _("in-file"),
18737 is_define ? _("definition") : _("undefinition"),
18738 line == 0 ? _("zero") : _("non-zero"), line, body);
18741 parse_macro_definition (current_file, line, body);
18744 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18745 || macinfo_type == DW_MACRO_GNU_undef_indirect
18746 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18747 macro_undef (current_file, line, body);
18752 case DW_MACRO_GNU_start_file:
18754 unsigned int bytes_read;
18757 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18758 mac_ptr += bytes_read;
18759 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18760 mac_ptr += bytes_read;
18762 if ((line == 0 && !at_commandline)
18763 || (line != 0 && at_commandline))
18764 complaint (&symfile_complaints,
18765 _("debug info gives source %d included "
18766 "from %s at %s line %d"),
18767 file, at_commandline ? _("command-line") : _("file"),
18768 line == 0 ? _("zero") : _("non-zero"), line);
18770 if (at_commandline)
18772 /* This DW_MACRO_GNU_start_file was executed in the
18774 at_commandline = 0;
18777 current_file = macro_start_file (file, line,
18778 current_file, comp_dir,
18783 case DW_MACRO_GNU_end_file:
18784 if (! current_file)
18785 complaint (&symfile_complaints,
18786 _("macro debug info has an unmatched "
18787 "`close_file' directive"));
18790 current_file = current_file->included_by;
18791 if (! current_file)
18793 enum dwarf_macro_record_type next_type;
18795 /* GCC circa March 2002 doesn't produce the zero
18796 type byte marking the end of the compilation
18797 unit. Complain if it's not there, but exit no
18800 /* Do we at least have room for a macinfo type byte? */
18801 if (mac_ptr >= mac_end)
18803 dwarf2_section_buffer_overflow_complaint (section);
18807 /* We don't increment mac_ptr here, so this is just
18809 next_type = read_1_byte (abfd, mac_ptr);
18810 if (next_type != 0)
18811 complaint (&symfile_complaints,
18812 _("no terminating 0-type entry for "
18813 "macros in `.debug_macinfo' section"));
18820 case DW_MACRO_GNU_transparent_include:
18821 case DW_MACRO_GNU_transparent_include_alt:
18825 bfd *include_bfd = abfd;
18826 struct dwarf2_section_info *include_section = section;
18827 struct dwarf2_section_info alt_section;
18828 gdb_byte *include_mac_end = mac_end;
18829 int is_dwz = section_is_dwz;
18830 gdb_byte *new_mac_ptr;
18832 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18833 mac_ptr += offset_size;
18835 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18837 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18839 dwarf2_read_section (dwarf2_per_objfile->objfile,
18842 include_bfd = dwz->macro.asection->owner;
18843 include_section = &dwz->macro;
18844 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18848 new_mac_ptr = include_section->buffer + offset;
18849 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18853 /* This has actually happened; see
18854 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18855 complaint (&symfile_complaints,
18856 _("recursive DW_MACRO_GNU_transparent_include in "
18857 ".debug_macro section"));
18861 *slot = new_mac_ptr;
18863 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18864 include_mac_end, current_file,
18866 section, section_is_gnu, is_dwz,
18867 offset_size, objfile, include_hash);
18869 htab_remove_elt (include_hash, new_mac_ptr);
18874 case DW_MACINFO_vendor_ext:
18875 if (!section_is_gnu)
18877 unsigned int bytes_read;
18880 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18881 mac_ptr += bytes_read;
18882 read_direct_string (abfd, mac_ptr, &bytes_read);
18883 mac_ptr += bytes_read;
18885 /* We don't recognize any vendor extensions. */
18891 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18892 mac_ptr, mac_end, abfd, offset_size,
18894 if (mac_ptr == NULL)
18898 } while (macinfo_type != 0);
18902 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18903 const char *comp_dir, int section_is_gnu)
18905 struct objfile *objfile = dwarf2_per_objfile->objfile;
18906 struct line_header *lh = cu->line_header;
18908 gdb_byte *mac_ptr, *mac_end;
18909 struct macro_source_file *current_file = 0;
18910 enum dwarf_macro_record_type macinfo_type;
18911 unsigned int offset_size = cu->header.offset_size;
18912 gdb_byte *opcode_definitions[256];
18913 struct cleanup *cleanup;
18914 htab_t include_hash;
18916 struct dwarf2_section_info *section;
18917 const char *section_name;
18919 if (cu->dwo_unit != NULL)
18921 if (section_is_gnu)
18923 section = &cu->dwo_unit->dwo_file->sections.macro;
18924 section_name = ".debug_macro.dwo";
18928 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18929 section_name = ".debug_macinfo.dwo";
18934 if (section_is_gnu)
18936 section = &dwarf2_per_objfile->macro;
18937 section_name = ".debug_macro";
18941 section = &dwarf2_per_objfile->macinfo;
18942 section_name = ".debug_macinfo";
18946 dwarf2_read_section (objfile, section);
18947 if (section->buffer == NULL)
18949 complaint (&symfile_complaints, _("missing %s section"), section_name);
18952 abfd = section->asection->owner;
18954 /* First pass: Find the name of the base filename.
18955 This filename is needed in order to process all macros whose definition
18956 (or undefinition) comes from the command line. These macros are defined
18957 before the first DW_MACINFO_start_file entry, and yet still need to be
18958 associated to the base file.
18960 To determine the base file name, we scan the macro definitions until we
18961 reach the first DW_MACINFO_start_file entry. We then initialize
18962 CURRENT_FILE accordingly so that any macro definition found before the
18963 first DW_MACINFO_start_file can still be associated to the base file. */
18965 mac_ptr = section->buffer + offset;
18966 mac_end = section->buffer + section->size;
18968 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18969 &offset_size, section_is_gnu);
18970 if (mac_ptr == NULL)
18972 /* We already issued a complaint. */
18978 /* Do we at least have room for a macinfo type byte? */
18979 if (mac_ptr >= mac_end)
18981 /* Complaint is printed during the second pass as GDB will probably
18982 stop the first pass earlier upon finding
18983 DW_MACINFO_start_file. */
18987 macinfo_type = read_1_byte (abfd, mac_ptr);
18990 /* Note that we rely on the fact that the corresponding GNU and
18991 DWARF constants are the same. */
18992 switch (macinfo_type)
18994 /* A zero macinfo type indicates the end of the macro
18999 case DW_MACRO_GNU_define:
19000 case DW_MACRO_GNU_undef:
19001 /* Only skip the data by MAC_PTR. */
19003 unsigned int bytes_read;
19005 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19006 mac_ptr += bytes_read;
19007 read_direct_string (abfd, mac_ptr, &bytes_read);
19008 mac_ptr += bytes_read;
19012 case DW_MACRO_GNU_start_file:
19014 unsigned int bytes_read;
19017 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19018 mac_ptr += bytes_read;
19019 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19020 mac_ptr += bytes_read;
19022 current_file = macro_start_file (file, line, current_file,
19023 comp_dir, lh, objfile);
19027 case DW_MACRO_GNU_end_file:
19028 /* No data to skip by MAC_PTR. */
19031 case DW_MACRO_GNU_define_indirect:
19032 case DW_MACRO_GNU_undef_indirect:
19033 case DW_MACRO_GNU_define_indirect_alt:
19034 case DW_MACRO_GNU_undef_indirect_alt:
19036 unsigned int bytes_read;
19038 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19039 mac_ptr += bytes_read;
19040 mac_ptr += offset_size;
19044 case DW_MACRO_GNU_transparent_include:
19045 case DW_MACRO_GNU_transparent_include_alt:
19046 /* Note that, according to the spec, a transparent include
19047 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19048 skip this opcode. */
19049 mac_ptr += offset_size;
19052 case DW_MACINFO_vendor_ext:
19053 /* Only skip the data by MAC_PTR. */
19054 if (!section_is_gnu)
19056 unsigned int bytes_read;
19058 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19059 mac_ptr += bytes_read;
19060 read_direct_string (abfd, mac_ptr, &bytes_read);
19061 mac_ptr += bytes_read;
19066 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19067 mac_ptr, mac_end, abfd, offset_size,
19069 if (mac_ptr == NULL)
19073 } while (macinfo_type != 0 && current_file == NULL);
19075 /* Second pass: Process all entries.
19077 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19078 command-line macro definitions/undefinitions. This flag is unset when we
19079 reach the first DW_MACINFO_start_file entry. */
19081 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19082 NULL, xcalloc, xfree);
19083 cleanup = make_cleanup_htab_delete (include_hash);
19084 mac_ptr = section->buffer + offset;
19085 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19087 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19088 current_file, lh, comp_dir, section,
19090 offset_size, objfile, include_hash);
19091 do_cleanups (cleanup);
19094 /* Check if the attribute's form is a DW_FORM_block*
19095 if so return true else false. */
19098 attr_form_is_block (struct attribute *attr)
19100 return (attr == NULL ? 0 :
19101 attr->form == DW_FORM_block1
19102 || attr->form == DW_FORM_block2
19103 || attr->form == DW_FORM_block4
19104 || attr->form == DW_FORM_block
19105 || attr->form == DW_FORM_exprloc);
19108 /* Return non-zero if ATTR's value is a section offset --- classes
19109 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19110 You may use DW_UNSND (attr) to retrieve such offsets.
19112 Section 7.5.4, "Attribute Encodings", explains that no attribute
19113 may have a value that belongs to more than one of these classes; it
19114 would be ambiguous if we did, because we use the same forms for all
19118 attr_form_is_section_offset (struct attribute *attr)
19120 return (attr->form == DW_FORM_data4
19121 || attr->form == DW_FORM_data8
19122 || attr->form == DW_FORM_sec_offset);
19125 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19126 zero otherwise. When this function returns true, you can apply
19127 dwarf2_get_attr_constant_value to it.
19129 However, note that for some attributes you must check
19130 attr_form_is_section_offset before using this test. DW_FORM_data4
19131 and DW_FORM_data8 are members of both the constant class, and of
19132 the classes that contain offsets into other debug sections
19133 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19134 that, if an attribute's can be either a constant or one of the
19135 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19136 taken as section offsets, not constants. */
19139 attr_form_is_constant (struct attribute *attr)
19141 switch (attr->form)
19143 case DW_FORM_sdata:
19144 case DW_FORM_udata:
19145 case DW_FORM_data1:
19146 case DW_FORM_data2:
19147 case DW_FORM_data4:
19148 case DW_FORM_data8:
19155 /* Return the .debug_loc section to use for CU.
19156 For DWO files use .debug_loc.dwo. */
19158 static struct dwarf2_section_info *
19159 cu_debug_loc_section (struct dwarf2_cu *cu)
19162 return &cu->dwo_unit->dwo_file->sections.loc;
19163 return &dwarf2_per_objfile->loc;
19166 /* A helper function that fills in a dwarf2_loclist_baton. */
19169 fill_in_loclist_baton (struct dwarf2_cu *cu,
19170 struct dwarf2_loclist_baton *baton,
19171 struct attribute *attr)
19173 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19175 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19177 baton->per_cu = cu->per_cu;
19178 gdb_assert (baton->per_cu);
19179 /* We don't know how long the location list is, but make sure we
19180 don't run off the edge of the section. */
19181 baton->size = section->size - DW_UNSND (attr);
19182 baton->data = section->buffer + DW_UNSND (attr);
19183 baton->base_address = cu->base_address;
19184 baton->from_dwo = cu->dwo_unit != NULL;
19188 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19189 struct dwarf2_cu *cu, int is_block)
19191 struct objfile *objfile = dwarf2_per_objfile->objfile;
19192 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19194 if (attr_form_is_section_offset (attr)
19195 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19196 the section. If so, fall through to the complaint in the
19198 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19200 struct dwarf2_loclist_baton *baton;
19202 baton = obstack_alloc (&objfile->objfile_obstack,
19203 sizeof (struct dwarf2_loclist_baton));
19205 fill_in_loclist_baton (cu, baton, attr);
19207 if (cu->base_known == 0)
19208 complaint (&symfile_complaints,
19209 _("Location list used without "
19210 "specifying the CU base address."));
19212 SYMBOL_ACLASS_INDEX (sym) = (is_block
19213 ? dwarf2_loclist_block_index
19214 : dwarf2_loclist_index);
19215 SYMBOL_LOCATION_BATON (sym) = baton;
19219 struct dwarf2_locexpr_baton *baton;
19221 baton = obstack_alloc (&objfile->objfile_obstack,
19222 sizeof (struct dwarf2_locexpr_baton));
19223 baton->per_cu = cu->per_cu;
19224 gdb_assert (baton->per_cu);
19226 if (attr_form_is_block (attr))
19228 /* Note that we're just copying the block's data pointer
19229 here, not the actual data. We're still pointing into the
19230 info_buffer for SYM's objfile; right now we never release
19231 that buffer, but when we do clean up properly this may
19233 baton->size = DW_BLOCK (attr)->size;
19234 baton->data = DW_BLOCK (attr)->data;
19238 dwarf2_invalid_attrib_class_complaint ("location description",
19239 SYMBOL_NATURAL_NAME (sym));
19243 SYMBOL_ACLASS_INDEX (sym) = (is_block
19244 ? dwarf2_locexpr_block_index
19245 : dwarf2_locexpr_index);
19246 SYMBOL_LOCATION_BATON (sym) = baton;
19250 /* Return the OBJFILE associated with the compilation unit CU. If CU
19251 came from a separate debuginfo file, then the master objfile is
19255 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19257 struct objfile *objfile = per_cu->objfile;
19259 /* Return the master objfile, so that we can report and look up the
19260 correct file containing this variable. */
19261 if (objfile->separate_debug_objfile_backlink)
19262 objfile = objfile->separate_debug_objfile_backlink;
19267 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19268 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19269 CU_HEADERP first. */
19271 static const struct comp_unit_head *
19272 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19273 struct dwarf2_per_cu_data *per_cu)
19275 gdb_byte *info_ptr;
19278 return &per_cu->cu->header;
19280 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19282 memset (cu_headerp, 0, sizeof (*cu_headerp));
19283 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19288 /* Return the address size given in the compilation unit header for CU. */
19291 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19293 struct comp_unit_head cu_header_local;
19294 const struct comp_unit_head *cu_headerp;
19296 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19298 return cu_headerp->addr_size;
19301 /* Return the offset size given in the compilation unit header for CU. */
19304 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19306 struct comp_unit_head cu_header_local;
19307 const struct comp_unit_head *cu_headerp;
19309 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19311 return cu_headerp->offset_size;
19314 /* See its dwarf2loc.h declaration. */
19317 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19319 struct comp_unit_head cu_header_local;
19320 const struct comp_unit_head *cu_headerp;
19322 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19324 if (cu_headerp->version == 2)
19325 return cu_headerp->addr_size;
19327 return cu_headerp->offset_size;
19330 /* Return the text offset of the CU. The returned offset comes from
19331 this CU's objfile. If this objfile came from a separate debuginfo
19332 file, then the offset may be different from the corresponding
19333 offset in the parent objfile. */
19336 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19338 struct objfile *objfile = per_cu->objfile;
19340 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19343 /* Locate the .debug_info compilation unit from CU's objfile which contains
19344 the DIE at OFFSET. Raises an error on failure. */
19346 static struct dwarf2_per_cu_data *
19347 dwarf2_find_containing_comp_unit (sect_offset offset,
19348 unsigned int offset_in_dwz,
19349 struct objfile *objfile)
19351 struct dwarf2_per_cu_data *this_cu;
19353 const sect_offset *cu_off;
19356 high = dwarf2_per_objfile->n_comp_units - 1;
19359 struct dwarf2_per_cu_data *mid_cu;
19360 int mid = low + (high - low) / 2;
19362 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19363 cu_off = &mid_cu->offset;
19364 if (mid_cu->is_dwz > offset_in_dwz
19365 || (mid_cu->is_dwz == offset_in_dwz
19366 && cu_off->sect_off >= offset.sect_off))
19371 gdb_assert (low == high);
19372 this_cu = dwarf2_per_objfile->all_comp_units[low];
19373 cu_off = &this_cu->offset;
19374 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19376 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19377 error (_("Dwarf Error: could not find partial DIE containing "
19378 "offset 0x%lx [in module %s]"),
19379 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19381 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19382 <= offset.sect_off);
19383 return dwarf2_per_objfile->all_comp_units[low-1];
19387 this_cu = dwarf2_per_objfile->all_comp_units[low];
19388 if (low == dwarf2_per_objfile->n_comp_units - 1
19389 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19390 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19391 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19396 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19399 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19401 memset (cu, 0, sizeof (*cu));
19403 cu->per_cu = per_cu;
19404 cu->objfile = per_cu->objfile;
19405 obstack_init (&cu->comp_unit_obstack);
19408 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19411 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19412 enum language pretend_language)
19414 struct attribute *attr;
19416 /* Set the language we're debugging. */
19417 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19419 set_cu_language (DW_UNSND (attr), cu);
19422 cu->language = pretend_language;
19423 cu->language_defn = language_def (cu->language);
19426 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19428 cu->producer = DW_STRING (attr);
19431 /* Release one cached compilation unit, CU. We unlink it from the tree
19432 of compilation units, but we don't remove it from the read_in_chain;
19433 the caller is responsible for that.
19434 NOTE: DATA is a void * because this function is also used as a
19435 cleanup routine. */
19438 free_heap_comp_unit (void *data)
19440 struct dwarf2_cu *cu = data;
19442 gdb_assert (cu->per_cu != NULL);
19443 cu->per_cu->cu = NULL;
19446 obstack_free (&cu->comp_unit_obstack, NULL);
19451 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19452 when we're finished with it. We can't free the pointer itself, but be
19453 sure to unlink it from the cache. Also release any associated storage. */
19456 free_stack_comp_unit (void *data)
19458 struct dwarf2_cu *cu = data;
19460 gdb_assert (cu->per_cu != NULL);
19461 cu->per_cu->cu = NULL;
19464 obstack_free (&cu->comp_unit_obstack, NULL);
19465 cu->partial_dies = NULL;
19468 /* Free all cached compilation units. */
19471 free_cached_comp_units (void *data)
19473 struct dwarf2_per_cu_data *per_cu, **last_chain;
19475 per_cu = dwarf2_per_objfile->read_in_chain;
19476 last_chain = &dwarf2_per_objfile->read_in_chain;
19477 while (per_cu != NULL)
19479 struct dwarf2_per_cu_data *next_cu;
19481 next_cu = per_cu->cu->read_in_chain;
19483 free_heap_comp_unit (per_cu->cu);
19484 *last_chain = next_cu;
19490 /* Increase the age counter on each cached compilation unit, and free
19491 any that are too old. */
19494 age_cached_comp_units (void)
19496 struct dwarf2_per_cu_data *per_cu, **last_chain;
19498 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19499 per_cu = dwarf2_per_objfile->read_in_chain;
19500 while (per_cu != NULL)
19502 per_cu->cu->last_used ++;
19503 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19504 dwarf2_mark (per_cu->cu);
19505 per_cu = per_cu->cu->read_in_chain;
19508 per_cu = dwarf2_per_objfile->read_in_chain;
19509 last_chain = &dwarf2_per_objfile->read_in_chain;
19510 while (per_cu != NULL)
19512 struct dwarf2_per_cu_data *next_cu;
19514 next_cu = per_cu->cu->read_in_chain;
19516 if (!per_cu->cu->mark)
19518 free_heap_comp_unit (per_cu->cu);
19519 *last_chain = next_cu;
19522 last_chain = &per_cu->cu->read_in_chain;
19528 /* Remove a single compilation unit from the cache. */
19531 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19533 struct dwarf2_per_cu_data *per_cu, **last_chain;
19535 per_cu = dwarf2_per_objfile->read_in_chain;
19536 last_chain = &dwarf2_per_objfile->read_in_chain;
19537 while (per_cu != NULL)
19539 struct dwarf2_per_cu_data *next_cu;
19541 next_cu = per_cu->cu->read_in_chain;
19543 if (per_cu == target_per_cu)
19545 free_heap_comp_unit (per_cu->cu);
19547 *last_chain = next_cu;
19551 last_chain = &per_cu->cu->read_in_chain;
19557 /* Release all extra memory associated with OBJFILE. */
19560 dwarf2_free_objfile (struct objfile *objfile)
19562 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19564 if (dwarf2_per_objfile == NULL)
19567 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19568 free_cached_comp_units (NULL);
19570 if (dwarf2_per_objfile->quick_file_names_table)
19571 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19573 /* Everything else should be on the objfile obstack. */
19576 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19577 We store these in a hash table separate from the DIEs, and preserve them
19578 when the DIEs are flushed out of cache.
19580 The CU "per_cu" pointer is needed because offset alone is not enough to
19581 uniquely identify the type. A file may have multiple .debug_types sections,
19582 or the type may come from a DWO file. Furthermore, while it's more logical
19583 to use per_cu->section+offset, with Fission the section with the data is in
19584 the DWO file but we don't know that section at the point we need it.
19585 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19586 because we can enter the lookup routine, get_die_type_at_offset, from
19587 outside this file, and thus won't necessarily have PER_CU->cu.
19588 Fortunately, PER_CU is stable for the life of the objfile. */
19590 struct dwarf2_per_cu_offset_and_type
19592 const struct dwarf2_per_cu_data *per_cu;
19593 sect_offset offset;
19597 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19600 per_cu_offset_and_type_hash (const void *item)
19602 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19604 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19607 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19610 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19612 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19613 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19615 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19616 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19619 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19620 table if necessary. For convenience, return TYPE.
19622 The DIEs reading must have careful ordering to:
19623 * Not cause infite loops trying to read in DIEs as a prerequisite for
19624 reading current DIE.
19625 * Not trying to dereference contents of still incompletely read in types
19626 while reading in other DIEs.
19627 * Enable referencing still incompletely read in types just by a pointer to
19628 the type without accessing its fields.
19630 Therefore caller should follow these rules:
19631 * Try to fetch any prerequisite types we may need to build this DIE type
19632 before building the type and calling set_die_type.
19633 * After building type call set_die_type for current DIE as soon as
19634 possible before fetching more types to complete the current type.
19635 * Make the type as complete as possible before fetching more types. */
19637 static struct type *
19638 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19640 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19641 struct objfile *objfile = cu->objfile;
19643 /* For Ada types, make sure that the gnat-specific data is always
19644 initialized (if not already set). There are a few types where
19645 we should not be doing so, because the type-specific area is
19646 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19647 where the type-specific area is used to store the floatformat).
19648 But this is not a problem, because the gnat-specific information
19649 is actually not needed for these types. */
19650 if (need_gnat_info (cu)
19651 && TYPE_CODE (type) != TYPE_CODE_FUNC
19652 && TYPE_CODE (type) != TYPE_CODE_FLT
19653 && !HAVE_GNAT_AUX_INFO (type))
19654 INIT_GNAT_SPECIFIC (type);
19656 if (dwarf2_per_objfile->die_type_hash == NULL)
19658 dwarf2_per_objfile->die_type_hash =
19659 htab_create_alloc_ex (127,
19660 per_cu_offset_and_type_hash,
19661 per_cu_offset_and_type_eq,
19663 &objfile->objfile_obstack,
19664 hashtab_obstack_allocate,
19665 dummy_obstack_deallocate);
19668 ofs.per_cu = cu->per_cu;
19669 ofs.offset = die->offset;
19671 slot = (struct dwarf2_per_cu_offset_and_type **)
19672 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19674 complaint (&symfile_complaints,
19675 _("A problem internal to GDB: DIE 0x%x has type already set"),
19676 die->offset.sect_off);
19677 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19682 /* Look up the type for the die at OFFSET in the appropriate type_hash
19683 table, or return NULL if the die does not have a saved type. */
19685 static struct type *
19686 get_die_type_at_offset (sect_offset offset,
19687 struct dwarf2_per_cu_data *per_cu)
19689 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19691 if (dwarf2_per_objfile->die_type_hash == NULL)
19694 ofs.per_cu = per_cu;
19695 ofs.offset = offset;
19696 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19703 /* Look up the type for DIE in the appropriate type_hash table,
19704 or return NULL if DIE does not have a saved type. */
19706 static struct type *
19707 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19709 return get_die_type_at_offset (die->offset, cu->per_cu);
19712 /* Add a dependence relationship from CU to REF_PER_CU. */
19715 dwarf2_add_dependence (struct dwarf2_cu *cu,
19716 struct dwarf2_per_cu_data *ref_per_cu)
19720 if (cu->dependencies == NULL)
19722 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19723 NULL, &cu->comp_unit_obstack,
19724 hashtab_obstack_allocate,
19725 dummy_obstack_deallocate);
19727 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19729 *slot = ref_per_cu;
19732 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19733 Set the mark field in every compilation unit in the
19734 cache that we must keep because we are keeping CU. */
19737 dwarf2_mark_helper (void **slot, void *data)
19739 struct dwarf2_per_cu_data *per_cu;
19741 per_cu = (struct dwarf2_per_cu_data *) *slot;
19743 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19744 reading of the chain. As such dependencies remain valid it is not much
19745 useful to track and undo them during QUIT cleanups. */
19746 if (per_cu->cu == NULL)
19749 if (per_cu->cu->mark)
19751 per_cu->cu->mark = 1;
19753 if (per_cu->cu->dependencies != NULL)
19754 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19759 /* Set the mark field in CU and in every other compilation unit in the
19760 cache that we must keep because we are keeping CU. */
19763 dwarf2_mark (struct dwarf2_cu *cu)
19768 if (cu->dependencies != NULL)
19769 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19773 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19777 per_cu->cu->mark = 0;
19778 per_cu = per_cu->cu->read_in_chain;
19782 /* Trivial hash function for partial_die_info: the hash value of a DIE
19783 is its offset in .debug_info for this objfile. */
19786 partial_die_hash (const void *item)
19788 const struct partial_die_info *part_die = item;
19790 return part_die->offset.sect_off;
19793 /* Trivial comparison function for partial_die_info structures: two DIEs
19794 are equal if they have the same offset. */
19797 partial_die_eq (const void *item_lhs, const void *item_rhs)
19799 const struct partial_die_info *part_die_lhs = item_lhs;
19800 const struct partial_die_info *part_die_rhs = item_rhs;
19802 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19805 static struct cmd_list_element *set_dwarf2_cmdlist;
19806 static struct cmd_list_element *show_dwarf2_cmdlist;
19809 set_dwarf2_cmd (char *args, int from_tty)
19811 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19815 show_dwarf2_cmd (char *args, int from_tty)
19817 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19820 /* Free data associated with OBJFILE, if necessary. */
19823 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19825 struct dwarf2_per_objfile *data = d;
19828 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19829 VEC_free (dwarf2_per_cu_ptr,
19830 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19832 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19833 VEC_free (dwarf2_per_cu_ptr,
19834 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19836 VEC_free (dwarf2_section_info_def, data->types);
19838 if (data->dwo_files)
19839 free_dwo_files (data->dwo_files, objfile);
19840 if (data->dwp_file)
19841 gdb_bfd_unref (data->dwp_file->dbfd);
19843 if (data->dwz_file && data->dwz_file->dwz_bfd)
19844 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19848 /* The "save gdb-index" command. */
19850 /* The contents of the hash table we create when building the string
19852 struct strtab_entry
19854 offset_type offset;
19858 /* Hash function for a strtab_entry.
19860 Function is used only during write_hash_table so no index format backward
19861 compatibility is needed. */
19864 hash_strtab_entry (const void *e)
19866 const struct strtab_entry *entry = e;
19867 return mapped_index_string_hash (INT_MAX, entry->str);
19870 /* Equality function for a strtab_entry. */
19873 eq_strtab_entry (const void *a, const void *b)
19875 const struct strtab_entry *ea = a;
19876 const struct strtab_entry *eb = b;
19877 return !strcmp (ea->str, eb->str);
19880 /* Create a strtab_entry hash table. */
19883 create_strtab (void)
19885 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19886 xfree, xcalloc, xfree);
19889 /* Add a string to the constant pool. Return the string's offset in
19893 add_string (htab_t table, struct obstack *cpool, const char *str)
19896 struct strtab_entry entry;
19897 struct strtab_entry *result;
19900 slot = htab_find_slot (table, &entry, INSERT);
19905 result = XNEW (struct strtab_entry);
19906 result->offset = obstack_object_size (cpool);
19908 obstack_grow_str0 (cpool, str);
19911 return result->offset;
19914 /* An entry in the symbol table. */
19915 struct symtab_index_entry
19917 /* The name of the symbol. */
19919 /* The offset of the name in the constant pool. */
19920 offset_type index_offset;
19921 /* A sorted vector of the indices of all the CUs that hold an object
19923 VEC (offset_type) *cu_indices;
19926 /* The symbol table. This is a power-of-2-sized hash table. */
19927 struct mapped_symtab
19929 offset_type n_elements;
19931 struct symtab_index_entry **data;
19934 /* Hash function for a symtab_index_entry. */
19937 hash_symtab_entry (const void *e)
19939 const struct symtab_index_entry *entry = e;
19940 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19941 sizeof (offset_type) * VEC_length (offset_type,
19942 entry->cu_indices),
19946 /* Equality function for a symtab_index_entry. */
19949 eq_symtab_entry (const void *a, const void *b)
19951 const struct symtab_index_entry *ea = a;
19952 const struct symtab_index_entry *eb = b;
19953 int len = VEC_length (offset_type, ea->cu_indices);
19954 if (len != VEC_length (offset_type, eb->cu_indices))
19956 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19957 VEC_address (offset_type, eb->cu_indices),
19958 sizeof (offset_type) * len);
19961 /* Destroy a symtab_index_entry. */
19964 delete_symtab_entry (void *p)
19966 struct symtab_index_entry *entry = p;
19967 VEC_free (offset_type, entry->cu_indices);
19971 /* Create a hash table holding symtab_index_entry objects. */
19974 create_symbol_hash_table (void)
19976 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19977 delete_symtab_entry, xcalloc, xfree);
19980 /* Create a new mapped symtab object. */
19982 static struct mapped_symtab *
19983 create_mapped_symtab (void)
19985 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19986 symtab->n_elements = 0;
19987 symtab->size = 1024;
19988 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19992 /* Destroy a mapped_symtab. */
19995 cleanup_mapped_symtab (void *p)
19997 struct mapped_symtab *symtab = p;
19998 /* The contents of the array are freed when the other hash table is
20000 xfree (symtab->data);
20004 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20007 Function is used only during write_hash_table so no index format backward
20008 compatibility is needed. */
20010 static struct symtab_index_entry **
20011 find_slot (struct mapped_symtab *symtab, const char *name)
20013 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20015 index = hash & (symtab->size - 1);
20016 step = ((hash * 17) & (symtab->size - 1)) | 1;
20020 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20021 return &symtab->data[index];
20022 index = (index + step) & (symtab->size - 1);
20026 /* Expand SYMTAB's hash table. */
20029 hash_expand (struct mapped_symtab *symtab)
20031 offset_type old_size = symtab->size;
20033 struct symtab_index_entry **old_entries = symtab->data;
20036 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20038 for (i = 0; i < old_size; ++i)
20040 if (old_entries[i])
20042 struct symtab_index_entry **slot = find_slot (symtab,
20043 old_entries[i]->name);
20044 *slot = old_entries[i];
20048 xfree (old_entries);
20051 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20052 CU_INDEX is the index of the CU in which the symbol appears.
20053 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20056 add_index_entry (struct mapped_symtab *symtab, const char *name,
20057 int is_static, gdb_index_symbol_kind kind,
20058 offset_type cu_index)
20060 struct symtab_index_entry **slot;
20061 offset_type cu_index_and_attrs;
20063 ++symtab->n_elements;
20064 if (4 * symtab->n_elements / 3 >= symtab->size)
20065 hash_expand (symtab);
20067 slot = find_slot (symtab, name);
20070 *slot = XNEW (struct symtab_index_entry);
20071 (*slot)->name = name;
20072 /* index_offset is set later. */
20073 (*slot)->cu_indices = NULL;
20076 cu_index_and_attrs = 0;
20077 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20078 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20079 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20081 /* We don't want to record an index value twice as we want to avoid the
20083 We process all global symbols and then all static symbols
20084 (which would allow us to avoid the duplication by only having to check
20085 the last entry pushed), but a symbol could have multiple kinds in one CU.
20086 To keep things simple we don't worry about the duplication here and
20087 sort and uniqufy the list after we've processed all symbols. */
20088 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20091 /* qsort helper routine for uniquify_cu_indices. */
20094 offset_type_compare (const void *ap, const void *bp)
20096 offset_type a = *(offset_type *) ap;
20097 offset_type b = *(offset_type *) bp;
20099 return (a > b) - (b > a);
20102 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20105 uniquify_cu_indices (struct mapped_symtab *symtab)
20109 for (i = 0; i < symtab->size; ++i)
20111 struct symtab_index_entry *entry = symtab->data[i];
20114 && entry->cu_indices != NULL)
20116 unsigned int next_to_insert, next_to_check;
20117 offset_type last_value;
20119 qsort (VEC_address (offset_type, entry->cu_indices),
20120 VEC_length (offset_type, entry->cu_indices),
20121 sizeof (offset_type), offset_type_compare);
20123 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20124 next_to_insert = 1;
20125 for (next_to_check = 1;
20126 next_to_check < VEC_length (offset_type, entry->cu_indices);
20129 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20132 last_value = VEC_index (offset_type, entry->cu_indices,
20134 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20139 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20144 /* Add a vector of indices to the constant pool. */
20147 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20148 struct symtab_index_entry *entry)
20152 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20155 offset_type len = VEC_length (offset_type, entry->cu_indices);
20156 offset_type val = MAYBE_SWAP (len);
20161 entry->index_offset = obstack_object_size (cpool);
20163 obstack_grow (cpool, &val, sizeof (val));
20165 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20168 val = MAYBE_SWAP (iter);
20169 obstack_grow (cpool, &val, sizeof (val));
20174 struct symtab_index_entry *old_entry = *slot;
20175 entry->index_offset = old_entry->index_offset;
20178 return entry->index_offset;
20181 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20182 constant pool entries going into the obstack CPOOL. */
20185 write_hash_table (struct mapped_symtab *symtab,
20186 struct obstack *output, struct obstack *cpool)
20189 htab_t symbol_hash_table;
20192 symbol_hash_table = create_symbol_hash_table ();
20193 str_table = create_strtab ();
20195 /* We add all the index vectors to the constant pool first, to
20196 ensure alignment is ok. */
20197 for (i = 0; i < symtab->size; ++i)
20199 if (symtab->data[i])
20200 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20203 /* Now write out the hash table. */
20204 for (i = 0; i < symtab->size; ++i)
20206 offset_type str_off, vec_off;
20208 if (symtab->data[i])
20210 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20211 vec_off = symtab->data[i]->index_offset;
20215 /* While 0 is a valid constant pool index, it is not valid
20216 to have 0 for both offsets. */
20221 str_off = MAYBE_SWAP (str_off);
20222 vec_off = MAYBE_SWAP (vec_off);
20224 obstack_grow (output, &str_off, sizeof (str_off));
20225 obstack_grow (output, &vec_off, sizeof (vec_off));
20228 htab_delete (str_table);
20229 htab_delete (symbol_hash_table);
20232 /* Struct to map psymtab to CU index in the index file. */
20233 struct psymtab_cu_index_map
20235 struct partial_symtab *psymtab;
20236 unsigned int cu_index;
20240 hash_psymtab_cu_index (const void *item)
20242 const struct psymtab_cu_index_map *map = item;
20244 return htab_hash_pointer (map->psymtab);
20248 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20250 const struct psymtab_cu_index_map *lhs = item_lhs;
20251 const struct psymtab_cu_index_map *rhs = item_rhs;
20253 return lhs->psymtab == rhs->psymtab;
20256 /* Helper struct for building the address table. */
20257 struct addrmap_index_data
20259 struct objfile *objfile;
20260 struct obstack *addr_obstack;
20261 htab_t cu_index_htab;
20263 /* Non-zero if the previous_* fields are valid.
20264 We can't write an entry until we see the next entry (since it is only then
20265 that we know the end of the entry). */
20266 int previous_valid;
20267 /* Index of the CU in the table of all CUs in the index file. */
20268 unsigned int previous_cu_index;
20269 /* Start address of the CU. */
20270 CORE_ADDR previous_cu_start;
20273 /* Write an address entry to OBSTACK. */
20276 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20277 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20279 offset_type cu_index_to_write;
20281 CORE_ADDR baseaddr;
20283 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20285 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20286 obstack_grow (obstack, addr, 8);
20287 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20288 obstack_grow (obstack, addr, 8);
20289 cu_index_to_write = MAYBE_SWAP (cu_index);
20290 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20293 /* Worker function for traversing an addrmap to build the address table. */
20296 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20298 struct addrmap_index_data *data = datap;
20299 struct partial_symtab *pst = obj;
20301 if (data->previous_valid)
20302 add_address_entry (data->objfile, data->addr_obstack,
20303 data->previous_cu_start, start_addr,
20304 data->previous_cu_index);
20306 data->previous_cu_start = start_addr;
20309 struct psymtab_cu_index_map find_map, *map;
20310 find_map.psymtab = pst;
20311 map = htab_find (data->cu_index_htab, &find_map);
20312 gdb_assert (map != NULL);
20313 data->previous_cu_index = map->cu_index;
20314 data->previous_valid = 1;
20317 data->previous_valid = 0;
20322 /* Write OBJFILE's address map to OBSTACK.
20323 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20324 in the index file. */
20327 write_address_map (struct objfile *objfile, struct obstack *obstack,
20328 htab_t cu_index_htab)
20330 struct addrmap_index_data addrmap_index_data;
20332 /* When writing the address table, we have to cope with the fact that
20333 the addrmap iterator only provides the start of a region; we have to
20334 wait until the next invocation to get the start of the next region. */
20336 addrmap_index_data.objfile = objfile;
20337 addrmap_index_data.addr_obstack = obstack;
20338 addrmap_index_data.cu_index_htab = cu_index_htab;
20339 addrmap_index_data.previous_valid = 0;
20341 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20342 &addrmap_index_data);
20344 /* It's highly unlikely the last entry (end address = 0xff...ff)
20345 is valid, but we should still handle it.
20346 The end address is recorded as the start of the next region, but that
20347 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20349 if (addrmap_index_data.previous_valid)
20350 add_address_entry (objfile, obstack,
20351 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20352 addrmap_index_data.previous_cu_index);
20355 /* Return the symbol kind of PSYM. */
20357 static gdb_index_symbol_kind
20358 symbol_kind (struct partial_symbol *psym)
20360 domain_enum domain = PSYMBOL_DOMAIN (psym);
20361 enum address_class aclass = PSYMBOL_CLASS (psym);
20369 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20371 return GDB_INDEX_SYMBOL_KIND_TYPE;
20373 case LOC_CONST_BYTES:
20374 case LOC_OPTIMIZED_OUT:
20376 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20378 /* Note: It's currently impossible to recognize psyms as enum values
20379 short of reading the type info. For now punt. */
20380 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20382 /* There are other LOC_FOO values that one might want to classify
20383 as variables, but dwarf2read.c doesn't currently use them. */
20384 return GDB_INDEX_SYMBOL_KIND_OTHER;
20386 case STRUCT_DOMAIN:
20387 return GDB_INDEX_SYMBOL_KIND_TYPE;
20389 return GDB_INDEX_SYMBOL_KIND_OTHER;
20393 /* Add a list of partial symbols to SYMTAB. */
20396 write_psymbols (struct mapped_symtab *symtab,
20398 struct partial_symbol **psymp,
20400 offset_type cu_index,
20403 for (; count-- > 0; ++psymp)
20405 struct partial_symbol *psym = *psymp;
20408 if (SYMBOL_LANGUAGE (psym) == language_ada)
20409 error (_("Ada is not currently supported by the index"));
20411 /* Only add a given psymbol once. */
20412 slot = htab_find_slot (psyms_seen, psym, INSERT);
20415 gdb_index_symbol_kind kind = symbol_kind (psym);
20418 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20419 is_static, kind, cu_index);
20424 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20425 exception if there is an error. */
20428 write_obstack (FILE *file, struct obstack *obstack)
20430 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20432 != obstack_object_size (obstack))
20433 error (_("couldn't data write to file"));
20436 /* Unlink a file if the argument is not NULL. */
20439 unlink_if_set (void *p)
20441 char **filename = p;
20443 unlink (*filename);
20446 /* A helper struct used when iterating over debug_types. */
20447 struct signatured_type_index_data
20449 struct objfile *objfile;
20450 struct mapped_symtab *symtab;
20451 struct obstack *types_list;
20456 /* A helper function that writes a single signatured_type to an
20460 write_one_signatured_type (void **slot, void *d)
20462 struct signatured_type_index_data *info = d;
20463 struct signatured_type *entry = (struct signatured_type *) *slot;
20464 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20465 struct partial_symtab *psymtab = per_cu->v.psymtab;
20468 write_psymbols (info->symtab,
20470 info->objfile->global_psymbols.list
20471 + psymtab->globals_offset,
20472 psymtab->n_global_syms, info->cu_index,
20474 write_psymbols (info->symtab,
20476 info->objfile->static_psymbols.list
20477 + psymtab->statics_offset,
20478 psymtab->n_static_syms, info->cu_index,
20481 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20482 entry->per_cu.offset.sect_off);
20483 obstack_grow (info->types_list, val, 8);
20484 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20485 entry->type_offset_in_tu.cu_off);
20486 obstack_grow (info->types_list, val, 8);
20487 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20488 obstack_grow (info->types_list, val, 8);
20495 /* Recurse into all "included" dependencies and write their symbols as
20496 if they appeared in this psymtab. */
20499 recursively_write_psymbols (struct objfile *objfile,
20500 struct partial_symtab *psymtab,
20501 struct mapped_symtab *symtab,
20503 offset_type cu_index)
20507 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20508 if (psymtab->dependencies[i]->user != NULL)
20509 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20510 symtab, psyms_seen, cu_index);
20512 write_psymbols (symtab,
20514 objfile->global_psymbols.list + psymtab->globals_offset,
20515 psymtab->n_global_syms, cu_index,
20517 write_psymbols (symtab,
20519 objfile->static_psymbols.list + psymtab->statics_offset,
20520 psymtab->n_static_syms, cu_index,
20524 /* Create an index file for OBJFILE in the directory DIR. */
20527 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20529 struct cleanup *cleanup;
20530 char *filename, *cleanup_filename;
20531 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20532 struct obstack cu_list, types_cu_list;
20535 struct mapped_symtab *symtab;
20536 offset_type val, size_of_contents, total_len;
20539 htab_t cu_index_htab;
20540 struct psymtab_cu_index_map *psymtab_cu_index_map;
20542 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20545 if (dwarf2_per_objfile->using_index)
20546 error (_("Cannot use an index to create the index"));
20548 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20549 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20551 if (stat (objfile->name, &st) < 0)
20552 perror_with_name (objfile->name);
20554 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20555 INDEX_SUFFIX, (char *) NULL);
20556 cleanup = make_cleanup (xfree, filename);
20558 out_file = fopen (filename, "wb");
20560 error (_("Can't open `%s' for writing"), filename);
20562 cleanup_filename = filename;
20563 make_cleanup (unlink_if_set, &cleanup_filename);
20565 symtab = create_mapped_symtab ();
20566 make_cleanup (cleanup_mapped_symtab, symtab);
20568 obstack_init (&addr_obstack);
20569 make_cleanup_obstack_free (&addr_obstack);
20571 obstack_init (&cu_list);
20572 make_cleanup_obstack_free (&cu_list);
20574 obstack_init (&types_cu_list);
20575 make_cleanup_obstack_free (&types_cu_list);
20577 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20578 NULL, xcalloc, xfree);
20579 make_cleanup_htab_delete (psyms_seen);
20581 /* While we're scanning CU's create a table that maps a psymtab pointer
20582 (which is what addrmap records) to its index (which is what is recorded
20583 in the index file). This will later be needed to write the address
20585 cu_index_htab = htab_create_alloc (100,
20586 hash_psymtab_cu_index,
20587 eq_psymtab_cu_index,
20588 NULL, xcalloc, xfree);
20589 make_cleanup_htab_delete (cu_index_htab);
20590 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20591 xmalloc (sizeof (struct psymtab_cu_index_map)
20592 * dwarf2_per_objfile->n_comp_units);
20593 make_cleanup (xfree, psymtab_cu_index_map);
20595 /* The CU list is already sorted, so we don't need to do additional
20596 work here. Also, the debug_types entries do not appear in
20597 all_comp_units, but only in their own hash table. */
20598 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20600 struct dwarf2_per_cu_data *per_cu
20601 = dwarf2_per_objfile->all_comp_units[i];
20602 struct partial_symtab *psymtab = per_cu->v.psymtab;
20604 struct psymtab_cu_index_map *map;
20607 if (psymtab->user == NULL)
20608 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20610 map = &psymtab_cu_index_map[i];
20611 map->psymtab = psymtab;
20613 slot = htab_find_slot (cu_index_htab, map, INSERT);
20614 gdb_assert (slot != NULL);
20615 gdb_assert (*slot == NULL);
20618 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20619 per_cu->offset.sect_off);
20620 obstack_grow (&cu_list, val, 8);
20621 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20622 obstack_grow (&cu_list, val, 8);
20625 /* Dump the address map. */
20626 write_address_map (objfile, &addr_obstack, cu_index_htab);
20628 /* Write out the .debug_type entries, if any. */
20629 if (dwarf2_per_objfile->signatured_types)
20631 struct signatured_type_index_data sig_data;
20633 sig_data.objfile = objfile;
20634 sig_data.symtab = symtab;
20635 sig_data.types_list = &types_cu_list;
20636 sig_data.psyms_seen = psyms_seen;
20637 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20638 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20639 write_one_signatured_type, &sig_data);
20642 /* Now that we've processed all symbols we can shrink their cu_indices
20644 uniquify_cu_indices (symtab);
20646 obstack_init (&constant_pool);
20647 make_cleanup_obstack_free (&constant_pool);
20648 obstack_init (&symtab_obstack);
20649 make_cleanup_obstack_free (&symtab_obstack);
20650 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20652 obstack_init (&contents);
20653 make_cleanup_obstack_free (&contents);
20654 size_of_contents = 6 * sizeof (offset_type);
20655 total_len = size_of_contents;
20657 /* The version number. */
20658 val = MAYBE_SWAP (8);
20659 obstack_grow (&contents, &val, sizeof (val));
20661 /* The offset of the CU list from the start of the file. */
20662 val = MAYBE_SWAP (total_len);
20663 obstack_grow (&contents, &val, sizeof (val));
20664 total_len += obstack_object_size (&cu_list);
20666 /* The offset of the types CU list from the start of the file. */
20667 val = MAYBE_SWAP (total_len);
20668 obstack_grow (&contents, &val, sizeof (val));
20669 total_len += obstack_object_size (&types_cu_list);
20671 /* The offset of the address table from the start of the file. */
20672 val = MAYBE_SWAP (total_len);
20673 obstack_grow (&contents, &val, sizeof (val));
20674 total_len += obstack_object_size (&addr_obstack);
20676 /* The offset of the symbol table from the start of the file. */
20677 val = MAYBE_SWAP (total_len);
20678 obstack_grow (&contents, &val, sizeof (val));
20679 total_len += obstack_object_size (&symtab_obstack);
20681 /* The offset of the constant pool from the start of the file. */
20682 val = MAYBE_SWAP (total_len);
20683 obstack_grow (&contents, &val, sizeof (val));
20684 total_len += obstack_object_size (&constant_pool);
20686 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20688 write_obstack (out_file, &contents);
20689 write_obstack (out_file, &cu_list);
20690 write_obstack (out_file, &types_cu_list);
20691 write_obstack (out_file, &addr_obstack);
20692 write_obstack (out_file, &symtab_obstack);
20693 write_obstack (out_file, &constant_pool);
20697 /* We want to keep the file, so we set cleanup_filename to NULL
20698 here. See unlink_if_set. */
20699 cleanup_filename = NULL;
20701 do_cleanups (cleanup);
20704 /* Implementation of the `save gdb-index' command.
20706 Note that the file format used by this command is documented in the
20707 GDB manual. Any changes here must be documented there. */
20710 save_gdb_index_command (char *arg, int from_tty)
20712 struct objfile *objfile;
20715 error (_("usage: save gdb-index DIRECTORY"));
20717 ALL_OBJFILES (objfile)
20721 /* If the objfile does not correspond to an actual file, skip it. */
20722 if (stat (objfile->name, &st) < 0)
20725 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20726 if (dwarf2_per_objfile)
20728 volatile struct gdb_exception except;
20730 TRY_CATCH (except, RETURN_MASK_ERROR)
20732 write_psymtabs_to_index (objfile, arg);
20734 if (except.reason < 0)
20735 exception_fprintf (gdb_stderr, except,
20736 _("Error while writing index for `%s': "),
20744 int dwarf2_always_disassemble;
20747 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20748 struct cmd_list_element *c, const char *value)
20750 fprintf_filtered (file,
20751 _("Whether to always disassemble "
20752 "DWARF expressions is %s.\n"),
20757 show_check_physname (struct ui_file *file, int from_tty,
20758 struct cmd_list_element *c, const char *value)
20760 fprintf_filtered (file,
20761 _("Whether to check \"physname\" is %s.\n"),
20765 void _initialize_dwarf2_read (void);
20768 _initialize_dwarf2_read (void)
20770 struct cmd_list_element *c;
20772 dwarf2_objfile_data_key
20773 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20775 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20776 Set DWARF 2 specific variables.\n\
20777 Configure DWARF 2 variables such as the cache size"),
20778 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20779 0/*allow-unknown*/, &maintenance_set_cmdlist);
20781 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20782 Show DWARF 2 specific variables\n\
20783 Show DWARF 2 variables such as the cache size"),
20784 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20785 0/*allow-unknown*/, &maintenance_show_cmdlist);
20787 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20788 &dwarf2_max_cache_age, _("\
20789 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20790 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20791 A higher limit means that cached compilation units will be stored\n\
20792 in memory longer, and more total memory will be used. Zero disables\n\
20793 caching, which can slow down startup."),
20795 show_dwarf2_max_cache_age,
20796 &set_dwarf2_cmdlist,
20797 &show_dwarf2_cmdlist);
20799 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20800 &dwarf2_always_disassemble, _("\
20801 Set whether `info address' always disassembles DWARF expressions."), _("\
20802 Show whether `info address' always disassembles DWARF expressions."), _("\
20803 When enabled, DWARF expressions are always printed in an assembly-like\n\
20804 syntax. When disabled, expressions will be printed in a more\n\
20805 conversational style, when possible."),
20807 show_dwarf2_always_disassemble,
20808 &set_dwarf2_cmdlist,
20809 &show_dwarf2_cmdlist);
20811 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20812 Set debugging of the dwarf2 reader."), _("\
20813 Show debugging of the dwarf2 reader."), _("\
20814 When enabled, debugging messages are printed during dwarf2 reading\n\
20815 and symtab expansion."),
20818 &setdebuglist, &showdebuglist);
20820 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20821 Set debugging of the dwarf2 DIE reader."), _("\
20822 Show debugging of the dwarf2 DIE reader."), _("\
20823 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20824 The value is the maximum depth to print."),
20827 &setdebuglist, &showdebuglist);
20829 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20830 Set cross-checking of \"physname\" code against demangler."), _("\
20831 Show cross-checking of \"physname\" code against demangler."), _("\
20832 When enabled, GDB's internal \"physname\" code is checked against\n\
20834 NULL, show_check_physname,
20835 &setdebuglist, &showdebuglist);
20837 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20838 no_class, &use_deprecated_index_sections, _("\
20839 Set whether to use deprecated gdb_index sections."), _("\
20840 Show whether to use deprecated gdb_index sections."), _("\
20841 When enabled, deprecated .gdb_index sections are used anyway.\n\
20842 Normally they are ignored either because of a missing feature or\n\
20843 performance issue.\n\
20844 Warning: This option must be enabled before gdb reads the file."),
20847 &setlist, &showlist);
20849 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20851 Save a gdb-index file.\n\
20852 Usage: save gdb-index DIRECTORY"),
20854 set_cmd_completer (c, filename_completer);
20856 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
20857 &dwarf2_locexpr_funcs);
20858 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
20859 &dwarf2_loclist_funcs);
20861 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
20862 &dwarf2_block_frame_base_locexpr_funcs);
20863 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
20864 &dwarf2_block_frame_base_loclist_funcs);