1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "inferior.h" /* for inferior_ptid */
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
39 #include "exceptions.h"
40 #include "gdbthread.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
47 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
48 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
50 /* Status of some values cached in the frame_info object. */
52 enum cached_copy_status
54 /* Value is unknown. */
57 /* We have a value. */
60 /* Value was not saved. */
63 /* Value is unavailable. */
67 /* We keep a cache of stack frames, each of which is a "struct
68 frame_info". The innermost one gets allocated (in
69 wait_for_inferior) each time the inferior stops; current_frame
70 points to it. Additional frames get allocated (in get_prev_frame)
71 as needed, and are chained through the next and prev fields. Any
72 time that the frame cache becomes invalid (most notably when we
73 execute something, but also if we change how we interpret the
74 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
75 which reads new symbols)), we should call reinit_frame_cache. */
79 /* Level of this frame. The inner-most (youngest) frame is at level
80 0. As you move towards the outer-most (oldest) frame, the level
81 increases. This is a cached value. It could just as easily be
82 computed by counting back from the selected frame to the inner
84 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
85 reserved to indicate a bogus frame - one that has been created
86 just to keep GDB happy (GDB always needs a frame). For the
87 moment leave this as speculation. */
90 /* The frame's program space. */
91 struct program_space *pspace;
93 /* The frame's address space. */
94 struct address_space *aspace;
96 /* The frame's low-level unwinder and corresponding cache. The
97 low-level unwinder is responsible for unwinding register values
98 for the previous frame. The low-level unwind methods are
99 selected based on the presence, or otherwise, of register unwind
100 information such as CFI. */
101 void *prologue_cache;
102 const struct frame_unwind *unwind;
104 /* Cached copy of the previous frame's architecture. */
108 struct gdbarch *arch;
111 /* Cached copy of the previous frame's resume address. */
113 enum cached_copy_status status;
117 /* Cached copy of the previous frame's function address. */
124 /* This frame's ID. */
128 struct frame_id value;
131 /* The frame's high-level base methods, and corresponding cache.
132 The high level base methods are selected based on the frame's
134 const struct frame_base *base;
137 /* Pointers to the next (down, inner, younger) and previous (up,
138 outer, older) frame_info's in the frame cache. */
139 struct frame_info *next; /* down, inner, younger */
141 struct frame_info *prev; /* up, outer, older */
143 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
144 could. Only valid when PREV_P is set. */
145 enum unwind_stop_reason stop_reason;
147 /* A frame specific string describing the STOP_REASON in more detail.
148 Only valid when PREV_P is set, but even then may still be NULL. */
149 const char *stop_string;
152 /* A frame stash used to speed up frame lookups. Create a hash table
153 to stash frames previously accessed from the frame cache for
154 quicker subsequent retrieval. The hash table is emptied whenever
155 the frame cache is invalidated. */
157 static htab_t frame_stash;
159 /* Internal function to calculate a hash from the frame_id addresses,
160 using as many valid addresses as possible. Frames below level 0
161 are not stored in the hash table. */
164 frame_addr_hash (const void *ap)
166 const struct frame_info *frame = ap;
167 const struct frame_id f_id = frame->this_id.value;
170 gdb_assert (f_id.stack_status != FID_STACK_INVALID
172 || f_id.special_addr_p);
174 if (f_id.stack_status == FID_STACK_VALID)
175 hash = iterative_hash (&f_id.stack_addr,
176 sizeof (f_id.stack_addr), hash);
177 if (f_id.code_addr_p)
178 hash = iterative_hash (&f_id.code_addr,
179 sizeof (f_id.code_addr), hash);
180 if (f_id.special_addr_p)
181 hash = iterative_hash (&f_id.special_addr,
182 sizeof (f_id.special_addr), hash);
187 /* Internal equality function for the hash table. This function
188 defers equality operations to frame_id_eq. */
191 frame_addr_hash_eq (const void *a, const void *b)
193 const struct frame_info *f_entry = a;
194 const struct frame_info *f_element = b;
196 return frame_id_eq (f_entry->this_id.value,
197 f_element->this_id.value);
200 /* Internal function to create the frame_stash hash table. 100 seems
201 to be a good compromise to start the hash table at. */
204 frame_stash_create (void)
206 frame_stash = htab_create (100,
212 /* Internal function to add a frame to the frame_stash hash table.
213 Returns false if a frame with the same ID was already stashed, true
217 frame_stash_add (struct frame_info *frame)
219 struct frame_info **slot;
221 /* Do not try to stash the sentinel frame. */
222 gdb_assert (frame->level >= 0);
224 slot = (struct frame_info **) htab_find_slot (frame_stash,
228 /* If we already have a frame in the stack with the same id, we
229 either have a stack cycle (corrupted stack?), or some bug
230 elsewhere in GDB. In any case, ignore the duplicate and return
231 an indication to the caller. */
239 /* Internal function to search the frame stash for an entry with the
240 given frame ID. If found, return that frame. Otherwise return
243 static struct frame_info *
244 frame_stash_find (struct frame_id id)
246 struct frame_info dummy;
247 struct frame_info *frame;
249 dummy.this_id.value = id;
250 frame = htab_find (frame_stash, &dummy);
254 /* Internal function to invalidate the frame stash by removing all
255 entries in it. This only occurs when the frame cache is
259 frame_stash_invalidate (void)
261 htab_empty (frame_stash);
264 /* Flag to control debugging. */
266 unsigned int frame_debug;
268 show_frame_debug (struct ui_file *file, int from_tty,
269 struct cmd_list_element *c, const char *value)
271 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
274 /* Flag to indicate whether backtraces should stop at main et.al. */
276 static int backtrace_past_main;
278 show_backtrace_past_main (struct ui_file *file, int from_tty,
279 struct cmd_list_element *c, const char *value)
281 fprintf_filtered (file,
282 _("Whether backtraces should "
283 "continue past \"main\" is %s.\n"),
287 static int backtrace_past_entry;
289 show_backtrace_past_entry (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
292 fprintf_filtered (file, _("Whether backtraces should continue past the "
293 "entry point of a program is %s.\n"),
297 static unsigned int backtrace_limit = UINT_MAX;
299 show_backtrace_limit (struct ui_file *file, int from_tty,
300 struct cmd_list_element *c, const char *value)
302 fprintf_filtered (file,
303 _("An upper bound on the number "
304 "of backtrace levels is %s.\n"),
310 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
313 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
315 fprintf_unfiltered (file, "!%s", name);
319 fprint_frame_id (struct ui_file *file, struct frame_id id)
321 fprintf_unfiltered (file, "{");
323 if (id.stack_status == FID_STACK_INVALID)
324 fprintf_unfiltered (file, "!stack");
325 else if (id.stack_status == FID_STACK_UNAVAILABLE)
326 fprintf_unfiltered (file, "stack=<unavailable>");
328 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
329 fprintf_unfiltered (file, ",");
331 fprint_field (file, "code", id.code_addr_p, id.code_addr);
332 fprintf_unfiltered (file, ",");
334 fprint_field (file, "special", id.special_addr_p, id.special_addr);
336 if (id.artificial_depth)
337 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
339 fprintf_unfiltered (file, "}");
343 fprint_frame_type (struct ui_file *file, enum frame_type type)
348 fprintf_unfiltered (file, "NORMAL_FRAME");
351 fprintf_unfiltered (file, "DUMMY_FRAME");
354 fprintf_unfiltered (file, "INLINE_FRAME");
357 fprintf_unfiltered (file, "TAILCALL_FRAME");
360 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
363 fprintf_unfiltered (file, "ARCH_FRAME");
366 fprintf_unfiltered (file, "SENTINEL_FRAME");
369 fprintf_unfiltered (file, "<unknown type>");
375 fprint_frame (struct ui_file *file, struct frame_info *fi)
379 fprintf_unfiltered (file, "<NULL frame>");
382 fprintf_unfiltered (file, "{");
383 fprintf_unfiltered (file, "level=%d", fi->level);
384 fprintf_unfiltered (file, ",");
385 fprintf_unfiltered (file, "type=");
386 if (fi->unwind != NULL)
387 fprint_frame_type (file, fi->unwind->type);
389 fprintf_unfiltered (file, "<unknown>");
390 fprintf_unfiltered (file, ",");
391 fprintf_unfiltered (file, "unwind=");
392 if (fi->unwind != NULL)
393 gdb_print_host_address (fi->unwind, file);
395 fprintf_unfiltered (file, "<unknown>");
396 fprintf_unfiltered (file, ",");
397 fprintf_unfiltered (file, "pc=");
398 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
399 fprintf_unfiltered (file, "<unknown>");
400 else if (fi->next->prev_pc.status == CC_VALUE)
401 fprintf_unfiltered (file, "%s",
402 hex_string (fi->next->prev_pc.value));
403 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
404 val_print_not_saved (file);
405 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
406 val_print_unavailable (file);
407 fprintf_unfiltered (file, ",");
408 fprintf_unfiltered (file, "id=");
410 fprint_frame_id (file, fi->this_id.value);
412 fprintf_unfiltered (file, "<unknown>");
413 fprintf_unfiltered (file, ",");
414 fprintf_unfiltered (file, "func=");
415 if (fi->next != NULL && fi->next->prev_func.p)
416 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
418 fprintf_unfiltered (file, "<unknown>");
419 fprintf_unfiltered (file, "}");
422 /* Given FRAME, return the enclosing frame as found in real frames read-in from
423 inferior memory. Skip any previous frames which were made up by GDB.
424 Return the original frame if no immediate previous frames exist. */
426 static struct frame_info *
427 skip_artificial_frames (struct frame_info *frame)
429 /* Note we use get_prev_frame_always, and not get_prev_frame. The
430 latter will truncate the frame chain, leading to this function
431 unintentionally returning a null_frame_id (e.g., when the user
432 sets a backtrace limit). This is safe, because as these frames
433 are made up by GDB, there must be a real frame in the chain
435 while (get_frame_type (frame) == INLINE_FRAME
436 || get_frame_type (frame) == TAILCALL_FRAME)
437 frame = get_prev_frame_always (frame);
442 /* Compute the frame's uniq ID that can be used to, later, re-find the
446 compute_frame_id (struct frame_info *fi)
448 gdb_assert (!fi->this_id.p);
451 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
453 /* Find the unwinder. */
454 if (fi->unwind == NULL)
455 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
456 /* Find THIS frame's ID. */
457 /* Default to outermost if no ID is found. */
458 fi->this_id.value = outer_frame_id;
459 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
460 gdb_assert (frame_id_p (fi->this_id.value));
464 fprintf_unfiltered (gdb_stdlog, "-> ");
465 fprint_frame_id (gdb_stdlog, fi->this_id.value);
466 fprintf_unfiltered (gdb_stdlog, " }\n");
470 /* Return a frame uniq ID that can be used to, later, re-find the
474 get_frame_id (struct frame_info *fi)
477 return null_frame_id;
479 gdb_assert (fi->this_id.p);
480 return fi->this_id.value;
484 get_stack_frame_id (struct frame_info *next_frame)
486 return get_frame_id (skip_artificial_frames (next_frame));
490 frame_unwind_caller_id (struct frame_info *next_frame)
492 struct frame_info *this_frame;
494 /* Use get_prev_frame_always, and not get_prev_frame. The latter
495 will truncate the frame chain, leading to this function
496 unintentionally returning a null_frame_id (e.g., when a caller
497 requests the frame ID of "main()"s caller. */
499 next_frame = skip_artificial_frames (next_frame);
500 this_frame = get_prev_frame_always (next_frame);
502 return get_frame_id (skip_artificial_frames (this_frame));
504 return null_frame_id;
507 const struct frame_id null_frame_id; /* All zeros. */
508 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
511 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
512 CORE_ADDR special_addr)
514 struct frame_id id = null_frame_id;
516 id.stack_addr = stack_addr;
517 id.stack_status = FID_STACK_VALID;
518 id.code_addr = code_addr;
520 id.special_addr = special_addr;
521 id.special_addr_p = 1;
528 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
530 struct frame_id id = null_frame_id;
532 id.stack_status = FID_STACK_UNAVAILABLE;
533 id.code_addr = code_addr;
541 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
542 CORE_ADDR special_addr)
544 struct frame_id id = null_frame_id;
546 id.stack_status = FID_STACK_UNAVAILABLE;
547 id.code_addr = code_addr;
549 id.special_addr = special_addr;
550 id.special_addr_p = 1;
555 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
557 struct frame_id id = null_frame_id;
559 id.stack_addr = stack_addr;
560 id.stack_status = FID_STACK_VALID;
561 id.code_addr = code_addr;
567 frame_id_build_wild (CORE_ADDR stack_addr)
569 struct frame_id id = null_frame_id;
571 id.stack_addr = stack_addr;
572 id.stack_status = FID_STACK_VALID;
577 frame_id_p (struct frame_id l)
581 /* The frame is valid iff it has a valid stack address. */
582 p = l.stack_status != FID_STACK_INVALID;
583 /* outer_frame_id is also valid. */
584 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
588 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
589 fprint_frame_id (gdb_stdlog, l);
590 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
596 frame_id_artificial_p (struct frame_id l)
601 return (l.artificial_depth != 0);
605 frame_id_eq (struct frame_id l, struct frame_id r)
609 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
610 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
611 /* The outermost frame marker is equal to itself. This is the
612 dodgy thing about outer_frame_id, since between execution steps
613 we might step into another function - from which we can't
614 unwind either. More thought required to get rid of
617 else if (l.stack_status == FID_STACK_INVALID
618 || l.stack_status == FID_STACK_INVALID)
619 /* Like a NaN, if either ID is invalid, the result is false.
620 Note that a frame ID is invalid iff it is the null frame ID. */
622 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
623 /* If .stack addresses are different, the frames are different. */
625 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
626 /* An invalid code addr is a wild card. If .code addresses are
627 different, the frames are different. */
629 else if (l.special_addr_p && r.special_addr_p
630 && l.special_addr != r.special_addr)
631 /* An invalid special addr is a wild card (or unused). Otherwise
632 if special addresses are different, the frames are different. */
634 else if (l.artificial_depth != r.artificial_depth)
635 /* If artifical depths are different, the frames must be different. */
638 /* Frames are equal. */
643 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
644 fprint_frame_id (gdb_stdlog, l);
645 fprintf_unfiltered (gdb_stdlog, ",r=");
646 fprint_frame_id (gdb_stdlog, r);
647 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
652 /* Safety net to check whether frame ID L should be inner to
653 frame ID R, according to their stack addresses.
655 This method cannot be used to compare arbitrary frames, as the
656 ranges of valid stack addresses may be discontiguous (e.g. due
659 However, it can be used as safety net to discover invalid frame
660 IDs in certain circumstances. Assuming that NEXT is the immediate
661 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
663 * The stack address of NEXT must be inner-than-or-equal to the stack
666 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
669 * If NEXT and THIS have different stack addresses, no other frame
670 in the frame chain may have a stack address in between.
672 Therefore, if frame_id_inner (TEST, THIS) holds, but
673 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
674 to a valid frame in the frame chain.
676 The sanity checks above cannot be performed when a SIGTRAMP frame
677 is involved, because signal handlers might be executed on a different
678 stack than the stack used by the routine that caused the signal
679 to be raised. This can happen for instance when a thread exceeds
680 its maximum stack size. In this case, certain compilers implement
681 a stack overflow strategy that cause the handler to be run on a
685 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
689 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
690 /* Like NaN, any operation involving an invalid ID always fails.
691 Likewise if either ID has an unavailable stack address. */
693 else if (l.artificial_depth > r.artificial_depth
694 && l.stack_addr == r.stack_addr
695 && l.code_addr_p == r.code_addr_p
696 && l.special_addr_p == r.special_addr_p
697 && l.special_addr == r.special_addr)
699 /* Same function, different inlined functions. */
700 const struct block *lb, *rb;
702 gdb_assert (l.code_addr_p && r.code_addr_p);
704 lb = block_for_pc (l.code_addr);
705 rb = block_for_pc (r.code_addr);
707 if (lb == NULL || rb == NULL)
708 /* Something's gone wrong. */
711 /* This will return true if LB and RB are the same block, or
712 if the block with the smaller depth lexically encloses the
713 block with the greater depth. */
714 inner = contained_in (lb, rb);
717 /* Only return non-zero when strictly inner than. Note that, per
718 comment in "frame.h", there is some fuzz here. Frameless
719 functions are not strictly inner than (same .stack but
720 different .code and/or .special address). */
721 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
724 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
725 fprint_frame_id (gdb_stdlog, l);
726 fprintf_unfiltered (gdb_stdlog, ",r=");
727 fprint_frame_id (gdb_stdlog, r);
728 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
734 frame_find_by_id (struct frame_id id)
736 struct frame_info *frame, *prev_frame;
738 /* ZERO denotes the null frame, let the caller decide what to do
739 about it. Should it instead return get_current_frame()? */
740 if (!frame_id_p (id))
743 /* Try using the frame stash first. Finding it there removes the need
744 to perform the search by looping over all frames, which can be very
745 CPU-intensive if the number of frames is very high (the loop is O(n)
746 and get_prev_frame performs a series of checks that are relatively
747 expensive). This optimization is particularly useful when this function
748 is called from another function (such as value_fetch_lazy, case
749 VALUE_LVAL (val) == lval_register) which already loops over all frames,
750 making the overall behavior O(n^2). */
751 frame = frame_stash_find (id);
755 for (frame = get_current_frame (); ; frame = prev_frame)
757 struct frame_id this = get_frame_id (frame);
759 if (frame_id_eq (id, this))
760 /* An exact match. */
763 prev_frame = get_prev_frame (frame);
767 /* As a safety net to avoid unnecessary backtracing while trying
768 to find an invalid ID, we check for a common situation where
769 we can detect from comparing stack addresses that no other
770 frame in the current frame chain can have this ID. See the
771 comment at frame_id_inner for details. */
772 if (get_frame_type (frame) == NORMAL_FRAME
773 && !frame_id_inner (get_frame_arch (frame), id, this)
774 && frame_id_inner (get_frame_arch (prev_frame), id,
775 get_frame_id (prev_frame)))
782 frame_unwind_pc (struct frame_info *this_frame)
784 if (this_frame->prev_pc.status == CC_UNKNOWN)
786 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
788 volatile struct gdb_exception ex;
789 struct gdbarch *prev_gdbarch;
792 /* The right way. The `pure' way. The one true way. This
793 method depends solely on the register-unwind code to
794 determine the value of registers in THIS frame, and hence
795 the value of this frame's PC (resume address). A typical
796 implementation is no more than:
798 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
799 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
801 Note: this method is very heavily dependent on a correct
802 register-unwind implementation, it pays to fix that
803 method first; this method is frame type agnostic, since
804 it only deals with register values, it works with any
805 frame. This is all in stark contrast to the old
806 FRAME_SAVED_PC which would try to directly handle all the
807 different ways that a PC could be unwound. */
808 prev_gdbarch = frame_unwind_arch (this_frame);
810 TRY_CATCH (ex, RETURN_MASK_ERROR)
812 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
816 if (ex.error == NOT_AVAILABLE_ERROR)
818 this_frame->prev_pc.status = CC_UNAVAILABLE;
821 fprintf_unfiltered (gdb_stdlog,
822 "{ frame_unwind_pc (this_frame=%d)"
823 " -> <unavailable> }\n",
826 else if (ex.error == OPTIMIZED_OUT_ERROR)
828 this_frame->prev_pc.status = CC_NOT_SAVED;
831 fprintf_unfiltered (gdb_stdlog,
832 "{ frame_unwind_pc (this_frame=%d)"
833 " -> <not saved> }\n",
837 throw_exception (ex);
841 this_frame->prev_pc.value = pc;
842 this_frame->prev_pc.status = CC_VALUE;
844 fprintf_unfiltered (gdb_stdlog,
845 "{ frame_unwind_pc (this_frame=%d) "
848 hex_string (this_frame->prev_pc.value));
852 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
855 if (this_frame->prev_pc.status == CC_VALUE)
856 return this_frame->prev_pc.value;
857 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
858 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
859 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
860 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
862 internal_error (__FILE__, __LINE__,
863 "unexpected prev_pc status: %d",
864 (int) this_frame->prev_pc.status);
868 frame_unwind_caller_pc (struct frame_info *this_frame)
870 return frame_unwind_pc (skip_artificial_frames (this_frame));
874 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
876 struct frame_info *next_frame = this_frame->next;
878 if (!next_frame->prev_func.p)
880 CORE_ADDR addr_in_block;
882 /* Make certain that this, and not the adjacent, function is
884 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
886 next_frame->prev_func.p = -1;
888 fprintf_unfiltered (gdb_stdlog,
889 "{ get_frame_func (this_frame=%d)"
890 " -> unavailable }\n",
895 next_frame->prev_func.p = 1;
896 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
898 fprintf_unfiltered (gdb_stdlog,
899 "{ get_frame_func (this_frame=%d) -> %s }\n",
901 hex_string (next_frame->prev_func.addr));
905 if (next_frame->prev_func.p < 0)
912 *pc = next_frame->prev_func.addr;
918 get_frame_func (struct frame_info *this_frame)
922 if (!get_frame_func_if_available (this_frame, &pc))
923 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
928 static enum register_status
929 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
931 if (!deprecated_frame_register_read (src, regnum, buf))
932 return REG_UNAVAILABLE;
938 frame_save_as_regcache (struct frame_info *this_frame)
940 struct address_space *aspace = get_frame_address_space (this_frame);
941 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
943 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
945 regcache_save (regcache, do_frame_register_read, this_frame);
946 discard_cleanups (cleanups);
951 frame_pop (struct frame_info *this_frame)
953 struct frame_info *prev_frame;
954 struct regcache *scratch;
955 struct cleanup *cleanups;
957 if (get_frame_type (this_frame) == DUMMY_FRAME)
959 /* Popping a dummy frame involves restoring more than just registers.
960 dummy_frame_pop does all the work. */
961 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
965 /* Ensure that we have a frame to pop to. */
966 prev_frame = get_prev_frame_always (this_frame);
969 error (_("Cannot pop the initial frame."));
971 /* Ignore TAILCALL_FRAME type frames, they were executed already before
972 entering THISFRAME. */
973 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
974 prev_frame = get_prev_frame (prev_frame);
976 /* Make a copy of all the register values unwound from this frame.
977 Save them in a scratch buffer so that there isn't a race between
978 trying to extract the old values from the current regcache while
979 at the same time writing new values into that same cache. */
980 scratch = frame_save_as_regcache (prev_frame);
981 cleanups = make_cleanup_regcache_xfree (scratch);
983 /* FIXME: cagney/2003-03-16: It should be possible to tell the
984 target's register cache that it is about to be hit with a burst
985 register transfer and that the sequence of register writes should
986 be batched. The pair target_prepare_to_store() and
987 target_store_registers() kind of suggest this functionality.
988 Unfortunately, they don't implement it. Their lack of a formal
989 definition can lead to targets writing back bogus values
990 (arguably a bug in the target code mind). */
991 /* Now copy those saved registers into the current regcache.
992 Here, regcache_cpy() calls regcache_restore(). */
993 regcache_cpy (get_current_regcache (), scratch);
994 do_cleanups (cleanups);
996 /* We've made right mess of GDB's local state, just discard
998 reinit_frame_cache ();
1002 frame_register_unwind (struct frame_info *frame, int regnum,
1003 int *optimizedp, int *unavailablep,
1004 enum lval_type *lvalp, CORE_ADDR *addrp,
1005 int *realnump, gdb_byte *bufferp)
1007 struct value *value;
1009 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1010 that the value proper does not need to be fetched. */
1011 gdb_assert (optimizedp != NULL);
1012 gdb_assert (lvalp != NULL);
1013 gdb_assert (addrp != NULL);
1014 gdb_assert (realnump != NULL);
1015 /* gdb_assert (bufferp != NULL); */
1017 value = frame_unwind_register_value (frame, regnum);
1019 gdb_assert (value != NULL);
1021 *optimizedp = value_optimized_out (value);
1022 *unavailablep = !value_entirely_available (value);
1023 *lvalp = VALUE_LVAL (value);
1024 *addrp = value_address (value);
1025 *realnump = VALUE_REGNUM (value);
1029 if (!*optimizedp && !*unavailablep)
1030 memcpy (bufferp, value_contents_all (value),
1031 TYPE_LENGTH (value_type (value)));
1033 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1036 /* Dispose of the new value. This prevents watchpoints from
1037 trying to watch the saved frame pointer. */
1038 release_value (value);
1043 frame_register (struct frame_info *frame, int regnum,
1044 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1045 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1047 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1048 that the value proper does not need to be fetched. */
1049 gdb_assert (optimizedp != NULL);
1050 gdb_assert (lvalp != NULL);
1051 gdb_assert (addrp != NULL);
1052 gdb_assert (realnump != NULL);
1053 /* gdb_assert (bufferp != NULL); */
1055 /* Obtain the register value by unwinding the register from the next
1056 (more inner frame). */
1057 gdb_assert (frame != NULL && frame->next != NULL);
1058 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1059 lvalp, addrp, realnump, bufferp);
1063 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1069 enum lval_type lval;
1071 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1072 &lval, &addr, &realnum, buf);
1075 throw_error (OPTIMIZED_OUT_ERROR,
1076 _("Register %d was not saved"), regnum);
1078 throw_error (NOT_AVAILABLE_ERROR,
1079 _("Register %d is not available"), regnum);
1083 get_frame_register (struct frame_info *frame,
1084 int regnum, gdb_byte *buf)
1086 frame_unwind_register (frame->next, regnum, buf);
1090 frame_unwind_register_value (struct frame_info *frame, int regnum)
1092 struct gdbarch *gdbarch;
1093 struct value *value;
1095 gdb_assert (frame != NULL);
1096 gdbarch = frame_unwind_arch (frame);
1100 fprintf_unfiltered (gdb_stdlog,
1101 "{ frame_unwind_register_value "
1102 "(frame=%d,regnum=%d(%s),...) ",
1103 frame->level, regnum,
1104 user_reg_map_regnum_to_name (gdbarch, regnum));
1107 /* Find the unwinder. */
1108 if (frame->unwind == NULL)
1109 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1111 /* Ask this frame to unwind its register. */
1112 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1116 fprintf_unfiltered (gdb_stdlog, "->");
1117 if (value_optimized_out (value))
1119 fprintf_unfiltered (gdb_stdlog, " ");
1120 val_print_optimized_out (value, gdb_stdlog);
1124 if (VALUE_LVAL (value) == lval_register)
1125 fprintf_unfiltered (gdb_stdlog, " register=%d",
1126 VALUE_REGNUM (value));
1127 else if (VALUE_LVAL (value) == lval_memory)
1128 fprintf_unfiltered (gdb_stdlog, " address=%s",
1130 value_address (value)));
1132 fprintf_unfiltered (gdb_stdlog, " computed");
1134 if (value_lazy (value))
1135 fprintf_unfiltered (gdb_stdlog, " lazy");
1139 const gdb_byte *buf = value_contents (value);
1141 fprintf_unfiltered (gdb_stdlog, " bytes=");
1142 fprintf_unfiltered (gdb_stdlog, "[");
1143 for (i = 0; i < register_size (gdbarch, regnum); i++)
1144 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1145 fprintf_unfiltered (gdb_stdlog, "]");
1149 fprintf_unfiltered (gdb_stdlog, " }\n");
1156 get_frame_register_value (struct frame_info *frame, int regnum)
1158 return frame_unwind_register_value (frame->next, regnum);
1162 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1164 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1166 int size = register_size (gdbarch, regnum);
1167 gdb_byte buf[MAX_REGISTER_SIZE];
1169 frame_unwind_register (frame, regnum, buf);
1170 return extract_signed_integer (buf, size, byte_order);
1174 get_frame_register_signed (struct frame_info *frame, int regnum)
1176 return frame_unwind_register_signed (frame->next, regnum);
1180 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1182 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1184 int size = register_size (gdbarch, regnum);
1185 gdb_byte buf[MAX_REGISTER_SIZE];
1187 frame_unwind_register (frame, regnum, buf);
1188 return extract_unsigned_integer (buf, size, byte_order);
1192 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1194 return frame_unwind_register_unsigned (frame->next, regnum);
1198 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1201 struct value *regval = get_frame_register_value (frame, regnum);
1203 if (!value_optimized_out (regval)
1204 && value_entirely_available (regval))
1206 struct gdbarch *gdbarch = get_frame_arch (frame);
1207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1208 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1210 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1218 put_frame_register (struct frame_info *frame, int regnum,
1219 const gdb_byte *buf)
1221 struct gdbarch *gdbarch = get_frame_arch (frame);
1225 enum lval_type lval;
1228 frame_register (frame, regnum, &optim, &unavail,
1229 &lval, &addr, &realnum, NULL);
1231 error (_("Attempt to assign to a register that was not saved."));
1236 write_memory (addr, buf, register_size (gdbarch, regnum));
1240 regcache_cooked_write (get_current_regcache (), realnum, buf);
1243 error (_("Attempt to assign to an unmodifiable value."));
1247 /* This function is deprecated. Use get_frame_register_value instead,
1248 which provides more accurate information.
1250 Find and return the value of REGNUM for the specified stack frame.
1251 The number of bytes copied is REGISTER_SIZE (REGNUM).
1253 Returns 0 if the register value could not be found. */
1256 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1261 enum lval_type lval;
1265 frame_register (frame, regnum, &optimized, &unavailable,
1266 &lval, &addr, &realnum, myaddr);
1268 return !optimized && !unavailable;
1272 get_frame_register_bytes (struct frame_info *frame, int regnum,
1273 CORE_ADDR offset, int len, gdb_byte *myaddr,
1274 int *optimizedp, int *unavailablep)
1276 struct gdbarch *gdbarch = get_frame_arch (frame);
1281 /* Skip registers wholly inside of OFFSET. */
1282 while (offset >= register_size (gdbarch, regnum))
1284 offset -= register_size (gdbarch, regnum);
1288 /* Ensure that we will not read beyond the end of the register file.
1289 This can only ever happen if the debug information is bad. */
1291 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1292 for (i = regnum; i < numregs; i++)
1294 int thissize = register_size (gdbarch, i);
1297 break; /* This register is not available on this architecture. */
1298 maxsize += thissize;
1301 error (_("Bad debug information detected: "
1302 "Attempt to read %d bytes from registers."), len);
1304 /* Copy the data. */
1307 int curr_len = register_size (gdbarch, regnum) - offset;
1312 if (curr_len == register_size (gdbarch, regnum))
1314 enum lval_type lval;
1318 frame_register (frame, regnum, optimizedp, unavailablep,
1319 &lval, &addr, &realnum, myaddr);
1320 if (*optimizedp || *unavailablep)
1325 gdb_byte buf[MAX_REGISTER_SIZE];
1326 enum lval_type lval;
1330 frame_register (frame, regnum, optimizedp, unavailablep,
1331 &lval, &addr, &realnum, buf);
1332 if (*optimizedp || *unavailablep)
1334 memcpy (myaddr, buf + offset, curr_len);
1349 put_frame_register_bytes (struct frame_info *frame, int regnum,
1350 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1352 struct gdbarch *gdbarch = get_frame_arch (frame);
1354 /* Skip registers wholly inside of OFFSET. */
1355 while (offset >= register_size (gdbarch, regnum))
1357 offset -= register_size (gdbarch, regnum);
1361 /* Copy the data. */
1364 int curr_len = register_size (gdbarch, regnum) - offset;
1369 if (curr_len == register_size (gdbarch, regnum))
1371 put_frame_register (frame, regnum, myaddr);
1375 gdb_byte buf[MAX_REGISTER_SIZE];
1377 deprecated_frame_register_read (frame, regnum, buf);
1378 memcpy (buf + offset, myaddr, curr_len);
1379 put_frame_register (frame, regnum, buf);
1389 /* Create a sentinel frame. */
1391 static struct frame_info *
1392 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1394 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1397 frame->pspace = pspace;
1398 frame->aspace = get_regcache_aspace (regcache);
1399 /* Explicitly initialize the sentinel frame's cache. Provide it
1400 with the underlying regcache. In the future additional
1401 information, such as the frame's thread will be added. */
1402 frame->prologue_cache = sentinel_frame_cache (regcache);
1403 /* For the moment there is only one sentinel frame implementation. */
1404 frame->unwind = &sentinel_frame_unwind;
1405 /* Link this frame back to itself. The frame is self referential
1406 (the unwound PC is the same as the pc), so make it so. */
1407 frame->next = frame;
1408 /* Make the sentinel frame's ID valid, but invalid. That way all
1409 comparisons with it should fail. */
1410 frame->this_id.p = 1;
1411 frame->this_id.value = null_frame_id;
1414 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1415 fprint_frame (gdb_stdlog, frame);
1416 fprintf_unfiltered (gdb_stdlog, " }\n");
1421 /* Info about the innermost stack frame (contents of FP register). */
1423 static struct frame_info *current_frame;
1425 /* Cache for frame addresses already read by gdb. Valid only while
1426 inferior is stopped. Control variables for the frame cache should
1427 be local to this module. */
1429 static struct obstack frame_cache_obstack;
1432 frame_obstack_zalloc (unsigned long size)
1434 void *data = obstack_alloc (&frame_cache_obstack, size);
1436 memset (data, 0, size);
1440 /* Return the innermost (currently executing) stack frame. This is
1441 split into two functions. The function unwind_to_current_frame()
1442 is wrapped in catch exceptions so that, even when the unwind of the
1443 sentinel frame fails, the function still returns a stack frame. */
1446 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1448 struct frame_info *frame = get_prev_frame (args);
1450 /* A sentinel frame can fail to unwind, e.g., because its PC value
1451 lands in somewhere like start. */
1454 current_frame = frame;
1459 get_current_frame (void)
1461 /* First check, and report, the lack of registers. Having GDB
1462 report "No stack!" or "No memory" when the target doesn't even
1463 have registers is very confusing. Besides, "printcmd.exp"
1464 explicitly checks that ``print $pc'' with no registers prints "No
1466 if (!target_has_registers)
1467 error (_("No registers."));
1468 if (!target_has_stack)
1469 error (_("No stack."));
1470 if (!target_has_memory)
1471 error (_("No memory."));
1472 /* Traceframes are effectively a substitute for the live inferior. */
1473 if (get_traceframe_number () < 0)
1475 if (ptid_equal (inferior_ptid, null_ptid))
1476 error (_("No selected thread."));
1477 if (is_exited (inferior_ptid))
1478 error (_("Invalid selected thread."));
1479 if (is_executing (inferior_ptid))
1480 error (_("Target is executing."));
1483 if (current_frame == NULL)
1485 struct frame_info *sentinel_frame =
1486 create_sentinel_frame (current_program_space, get_current_regcache ());
1487 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1488 sentinel_frame, RETURN_MASK_ERROR) != 0)
1490 /* Oops! Fake a current frame? Is this useful? It has a PC
1491 of zero, for instance. */
1492 current_frame = sentinel_frame;
1495 return current_frame;
1498 /* The "selected" stack frame is used by default for local and arg
1499 access. May be zero, for no selected frame. */
1501 static struct frame_info *selected_frame;
1504 has_stack_frames (void)
1506 if (!target_has_registers || !target_has_stack || !target_has_memory)
1509 /* Traceframes are effectively a substitute for the live inferior. */
1510 if (get_traceframe_number () < 0)
1512 /* No current inferior, no frame. */
1513 if (ptid_equal (inferior_ptid, null_ptid))
1516 /* Don't try to read from a dead thread. */
1517 if (is_exited (inferior_ptid))
1520 /* ... or from a spinning thread. */
1521 if (is_executing (inferior_ptid))
1528 /* Return the selected frame. Always non-NULL (unless there isn't an
1529 inferior sufficient for creating a frame) in which case an error is
1533 get_selected_frame (const char *message)
1535 if (selected_frame == NULL)
1537 if (message != NULL && !has_stack_frames ())
1538 error (("%s"), message);
1539 /* Hey! Don't trust this. It should really be re-finding the
1540 last selected frame of the currently selected thread. This,
1541 though, is better than nothing. */
1542 select_frame (get_current_frame ());
1544 /* There is always a frame. */
1545 gdb_assert (selected_frame != NULL);
1546 return selected_frame;
1549 /* If there is a selected frame, return it. Otherwise, return NULL. */
1552 get_selected_frame_if_set (void)
1554 return selected_frame;
1557 /* This is a variant of get_selected_frame() which can be called when
1558 the inferior does not have a frame; in that case it will return
1559 NULL instead of calling error(). */
1562 deprecated_safe_get_selected_frame (void)
1564 if (!has_stack_frames ())
1566 return get_selected_frame (NULL);
1569 /* Select frame FI (or NULL - to invalidate the current frame). */
1572 select_frame (struct frame_info *fi)
1574 selected_frame = fi;
1575 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1576 frame is being invalidated. */
1577 if (deprecated_selected_frame_level_changed_hook)
1578 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1580 /* FIXME: kseitz/2002-08-28: It would be nice to call
1581 selected_frame_level_changed_event() right here, but due to limitations
1582 in the current interfaces, we would end up flooding UIs with events
1583 because select_frame() is used extensively internally.
1585 Once we have frame-parameterized frame (and frame-related) commands,
1586 the event notification can be moved here, since this function will only
1587 be called when the user's selected frame is being changed. */
1589 /* Ensure that symbols for this frame are read in. Also, determine the
1590 source language of this frame, and switch to it if desired. */
1595 /* We retrieve the frame's symtab by using the frame PC.
1596 However we cannot use the frame PC as-is, because it usually
1597 points to the instruction following the "call", which is
1598 sometimes the first instruction of another function. So we
1599 rely on get_frame_address_in_block() which provides us with a
1600 PC which is guaranteed to be inside the frame's code
1602 if (get_frame_address_in_block_if_available (fi, &pc))
1604 struct symtab *s = find_pc_symtab (pc);
1607 && s->language != current_language->la_language
1608 && s->language != language_unknown
1609 && language_mode == language_mode_auto)
1610 set_language (s->language);
1615 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1616 Always returns a non-NULL value. */
1619 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1621 struct frame_info *fi;
1625 fprintf_unfiltered (gdb_stdlog,
1626 "{ create_new_frame (addr=%s, pc=%s) ",
1627 hex_string (addr), hex_string (pc));
1630 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1632 fi->next = create_sentinel_frame (current_program_space,
1633 get_current_regcache ());
1635 /* Set/update this frame's cached PC value, found in the next frame.
1636 Do this before looking for this frame's unwinder. A sniffer is
1637 very likely to read this, and the corresponding unwinder is
1638 entitled to rely that the PC doesn't magically change. */
1639 fi->next->prev_pc.value = pc;
1640 fi->next->prev_pc.status = CC_VALUE;
1642 /* We currently assume that frame chain's can't cross spaces. */
1643 fi->pspace = fi->next->pspace;
1644 fi->aspace = fi->next->aspace;
1646 /* Select/initialize both the unwind function and the frame's type
1648 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1651 fi->this_id.value = frame_id_build (addr, pc);
1655 fprintf_unfiltered (gdb_stdlog, "-> ");
1656 fprint_frame (gdb_stdlog, fi);
1657 fprintf_unfiltered (gdb_stdlog, " }\n");
1663 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1664 innermost frame). Be careful to not fall off the bottom of the
1665 frame chain and onto the sentinel frame. */
1668 get_next_frame (struct frame_info *this_frame)
1670 if (this_frame->level > 0)
1671 return this_frame->next;
1676 /* Observer for the target_changed event. */
1679 frame_observer_target_changed (struct target_ops *target)
1681 reinit_frame_cache ();
1684 /* Flush the entire frame cache. */
1687 reinit_frame_cache (void)
1689 struct frame_info *fi;
1691 /* Tear down all frame caches. */
1692 for (fi = current_frame; fi != NULL; fi = fi->prev)
1694 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1695 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1696 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1697 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1700 /* Since we can't really be sure what the first object allocated was. */
1701 obstack_free (&frame_cache_obstack, 0);
1702 obstack_init (&frame_cache_obstack);
1704 if (current_frame != NULL)
1705 annotate_frames_invalid ();
1707 current_frame = NULL; /* Invalidate cache */
1708 select_frame (NULL);
1709 frame_stash_invalidate ();
1711 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1714 /* Find where a register is saved (in memory or another register).
1715 The result of frame_register_unwind is just where it is saved
1716 relative to this particular frame. */
1719 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1720 int *optimizedp, enum lval_type *lvalp,
1721 CORE_ADDR *addrp, int *realnump)
1723 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1725 while (this_frame != NULL)
1729 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1730 lvalp, addrp, realnump, NULL);
1735 if (*lvalp != lval_register)
1739 this_frame = get_next_frame (this_frame);
1743 /* Called during frame unwinding to remove a previous frame pointer from a
1744 frame passed in ARG. */
1747 remove_prev_frame (void *arg)
1749 struct frame_info *this_frame, *prev_frame;
1751 this_frame = (struct frame_info *) arg;
1752 prev_frame = this_frame->prev;
1753 gdb_assert (prev_frame != NULL);
1755 prev_frame->next = NULL;
1756 this_frame->prev = NULL;
1759 /* Get the previous raw frame, and check that it is not identical to
1760 same other frame frame already in the chain. If it is, there is
1761 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1762 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1763 validity tests, that compare THIS_FRAME and the next frame, we do
1764 this right after creating the previous frame, to avoid ever ending
1765 up with two frames with the same id in the frame chain. */
1767 static struct frame_info *
1768 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1770 struct frame_info *prev_frame;
1771 struct cleanup *prev_frame_cleanup;
1773 prev_frame = get_prev_frame_raw (this_frame);
1774 if (prev_frame == NULL)
1777 /* The cleanup will remove the previous frame that get_prev_frame_raw
1778 linked onto THIS_FRAME. */
1779 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1781 compute_frame_id (prev_frame);
1782 if (!frame_stash_add (prev_frame))
1784 /* Another frame with the same id was already in the stash. We just
1785 detected a cycle. */
1788 fprintf_unfiltered (gdb_stdlog, "-> ");
1789 fprint_frame (gdb_stdlog, NULL);
1790 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1792 this_frame->stop_reason = UNWIND_SAME_ID;
1794 prev_frame->next = NULL;
1795 this_frame->prev = NULL;
1799 discard_cleanups (prev_frame_cleanup);
1803 /* Helper function for get_prev_frame_always, this is called inside a
1804 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1805 there is no such frame. This may throw an exception. */
1807 static struct frame_info *
1808 get_prev_frame_always_1 (struct frame_info *this_frame)
1810 struct gdbarch *gdbarch;
1812 gdb_assert (this_frame != NULL);
1813 gdbarch = get_frame_arch (this_frame);
1817 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1818 if (this_frame != NULL)
1819 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1821 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1822 fprintf_unfiltered (gdb_stdlog, ") ");
1825 /* Only try to do the unwind once. */
1826 if (this_frame->prev_p)
1830 fprintf_unfiltered (gdb_stdlog, "-> ");
1831 fprint_frame (gdb_stdlog, this_frame->prev);
1832 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1834 return this_frame->prev;
1837 /* If the frame unwinder hasn't been selected yet, we must do so
1838 before setting prev_p; otherwise the check for misbehaved
1839 sniffers will think that this frame's sniffer tried to unwind
1840 further (see frame_cleanup_after_sniffer). */
1841 if (this_frame->unwind == NULL)
1842 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1844 this_frame->prev_p = 1;
1845 this_frame->stop_reason = UNWIND_NO_REASON;
1847 /* If we are unwinding from an inline frame, all of the below tests
1848 were already performed when we unwound from the next non-inline
1849 frame. We must skip them, since we can not get THIS_FRAME's ID
1850 until we have unwound all the way down to the previous non-inline
1852 if (get_frame_type (this_frame) == INLINE_FRAME)
1853 return get_prev_frame_if_no_cycle (this_frame);
1855 /* Check that this frame is unwindable. If it isn't, don't try to
1856 unwind to the prev frame. */
1857 this_frame->stop_reason
1858 = this_frame->unwind->stop_reason (this_frame,
1859 &this_frame->prologue_cache);
1861 if (this_frame->stop_reason != UNWIND_NO_REASON)
1865 enum unwind_stop_reason reason = this_frame->stop_reason;
1867 fprintf_unfiltered (gdb_stdlog, "-> ");
1868 fprint_frame (gdb_stdlog, NULL);
1869 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1870 frame_stop_reason_symbol_string (reason));
1875 /* Check that this frame's ID isn't inner to (younger, below, next)
1876 the next frame. This happens when a frame unwind goes backwards.
1877 This check is valid only if this frame and the next frame are NORMAL.
1878 See the comment at frame_id_inner for details. */
1879 if (get_frame_type (this_frame) == NORMAL_FRAME
1880 && this_frame->next->unwind->type == NORMAL_FRAME
1881 && frame_id_inner (get_frame_arch (this_frame->next),
1882 get_frame_id (this_frame),
1883 get_frame_id (this_frame->next)))
1885 CORE_ADDR this_pc_in_block;
1886 struct minimal_symbol *morestack_msym;
1887 const char *morestack_name = NULL;
1889 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1890 this_pc_in_block = get_frame_address_in_block (this_frame);
1891 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1893 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1894 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1898 fprintf_unfiltered (gdb_stdlog, "-> ");
1899 fprint_frame (gdb_stdlog, NULL);
1900 fprintf_unfiltered (gdb_stdlog,
1901 " // this frame ID is inner }\n");
1903 this_frame->stop_reason = UNWIND_INNER_ID;
1908 /* Check that this and the next frame do not unwind the PC register
1909 to the same memory location. If they do, then even though they
1910 have different frame IDs, the new frame will be bogus; two
1911 functions can't share a register save slot for the PC. This can
1912 happen when the prologue analyzer finds a stack adjustment, but
1915 This check does assume that the "PC register" is roughly a
1916 traditional PC, even if the gdbarch_unwind_pc method adjusts
1917 it (we do not rely on the value, only on the unwound PC being
1918 dependent on this value). A potential improvement would be
1919 to have the frame prev_pc method and the gdbarch unwind_pc
1920 method set the same lval and location information as
1921 frame_register_unwind. */
1922 if (this_frame->level > 0
1923 && gdbarch_pc_regnum (gdbarch) >= 0
1924 && get_frame_type (this_frame) == NORMAL_FRAME
1925 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1926 || get_frame_type (this_frame->next) == INLINE_FRAME))
1928 int optimized, realnum, nrealnum;
1929 enum lval_type lval, nlval;
1930 CORE_ADDR addr, naddr;
1932 frame_register_unwind_location (this_frame,
1933 gdbarch_pc_regnum (gdbarch),
1934 &optimized, &lval, &addr, &realnum);
1935 frame_register_unwind_location (get_next_frame (this_frame),
1936 gdbarch_pc_regnum (gdbarch),
1937 &optimized, &nlval, &naddr, &nrealnum);
1939 if ((lval == lval_memory && lval == nlval && addr == naddr)
1940 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1944 fprintf_unfiltered (gdb_stdlog, "-> ");
1945 fprint_frame (gdb_stdlog, NULL);
1946 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1949 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1950 this_frame->prev = NULL;
1955 return get_prev_frame_if_no_cycle (this_frame);
1958 /* Return a "struct frame_info" corresponding to the frame that called
1959 THIS_FRAME. Returns NULL if there is no such frame.
1961 Unlike get_prev_frame, this function always tries to unwind the
1965 get_prev_frame_always (struct frame_info *this_frame)
1967 volatile struct gdb_exception ex;
1968 struct frame_info *prev_frame = NULL;
1970 TRY_CATCH (ex, RETURN_MASK_ERROR)
1972 prev_frame = get_prev_frame_always_1 (this_frame);
1976 if (ex.error == MEMORY_ERROR)
1978 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
1979 if (ex.message != NULL)
1984 /* The error needs to live as long as the frame does.
1985 Allocate using stack local STOP_STRING then assign the
1986 pointer to the frame, this allows the STOP_STRING on the
1987 frame to be of type 'const char *'. */
1988 size = strlen (ex.message) + 1;
1989 stop_string = frame_obstack_zalloc (size);
1990 memcpy (stop_string, ex.message, size);
1991 this_frame->stop_string = stop_string;
1996 throw_exception (ex);
2002 /* Construct a new "struct frame_info" and link it previous to
2005 static struct frame_info *
2006 get_prev_frame_raw (struct frame_info *this_frame)
2008 struct frame_info *prev_frame;
2010 /* Allocate the new frame but do not wire it in to the frame chain.
2011 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2012 frame->next to pull some fancy tricks (of course such code is, by
2013 definition, recursive). Try to prevent it.
2015 There is no reason to worry about memory leaks, should the
2016 remainder of the function fail. The allocated memory will be
2017 quickly reclaimed when the frame cache is flushed, and the `we've
2018 been here before' check above will stop repeated memory
2019 allocation calls. */
2020 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2021 prev_frame->level = this_frame->level + 1;
2023 /* For now, assume we don't have frame chains crossing address
2025 prev_frame->pspace = this_frame->pspace;
2026 prev_frame->aspace = this_frame->aspace;
2028 /* Don't yet compute ->unwind (and hence ->type). It is computed
2029 on-demand in get_frame_type, frame_register_unwind, and
2032 /* Don't yet compute the frame's ID. It is computed on-demand by
2035 /* The unwound frame ID is validate at the start of this function,
2036 as part of the logic to decide if that frame should be further
2037 unwound, and not here while the prev frame is being created.
2038 Doing this makes it possible for the user to examine a frame that
2039 has an invalid frame ID.
2041 Some very old VAX code noted: [...] For the sake of argument,
2042 suppose that the stack is somewhat trashed (which is one reason
2043 that "info frame" exists). So, return 0 (indicating we don't
2044 know the address of the arglist) if we don't know what frame this
2048 this_frame->prev = prev_frame;
2049 prev_frame->next = this_frame;
2053 fprintf_unfiltered (gdb_stdlog, "-> ");
2054 fprint_frame (gdb_stdlog, prev_frame);
2055 fprintf_unfiltered (gdb_stdlog, " }\n");
2061 /* Debug routine to print a NULL frame being returned. */
2064 frame_debug_got_null_frame (struct frame_info *this_frame,
2069 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2070 if (this_frame != NULL)
2071 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2073 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2074 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2078 /* Is this (non-sentinel) frame in the "main"() function? */
2081 inside_main_func (struct frame_info *this_frame)
2083 struct bound_minimal_symbol msymbol;
2086 if (symfile_objfile == 0)
2088 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2089 if (msymbol.minsym == NULL)
2091 /* Make certain that the code, and not descriptor, address is
2093 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2094 BMSYMBOL_VALUE_ADDRESS (msymbol),
2096 return maddr == get_frame_func (this_frame);
2099 /* Test whether THIS_FRAME is inside the process entry point function. */
2102 inside_entry_func (struct frame_info *this_frame)
2104 CORE_ADDR entry_point;
2106 if (!entry_point_address_query (&entry_point))
2109 return get_frame_func (this_frame) == entry_point;
2112 /* Return a structure containing various interesting information about
2113 the frame that called THIS_FRAME. Returns NULL if there is entier
2114 no such frame or the frame fails any of a set of target-independent
2115 condition that should terminate the frame chain (e.g., as unwinding
2118 This function should not contain target-dependent tests, such as
2119 checking whether the program-counter is zero. */
2122 get_prev_frame (struct frame_info *this_frame)
2127 /* There is always a frame. If this assertion fails, suspect that
2128 something should be calling get_selected_frame() or
2129 get_current_frame(). */
2130 gdb_assert (this_frame != NULL);
2131 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2133 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2134 sense to stop unwinding at a dummy frame. One place where a dummy
2135 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2136 pcsqh register (space register for the instruction at the head of the
2137 instruction queue) cannot be written directly; the only way to set it
2138 is to branch to code that is in the target space. In order to implement
2139 frame dummies on HPUX, the called function is made to jump back to where
2140 the inferior was when the user function was called. If gdb was inside
2141 the main function when we created the dummy frame, the dummy frame will
2142 point inside the main function. */
2143 if (this_frame->level >= 0
2144 && get_frame_type (this_frame) == NORMAL_FRAME
2145 && !backtrace_past_main
2147 && inside_main_func (this_frame))
2148 /* Don't unwind past main(). Note, this is done _before_ the
2149 frame has been marked as previously unwound. That way if the
2150 user later decides to enable unwinds past main(), that will
2151 automatically happen. */
2153 frame_debug_got_null_frame (this_frame, "inside main func");
2157 /* If the user's backtrace limit has been exceeded, stop. We must
2158 add two to the current level; one of those accounts for backtrace_limit
2159 being 1-based and the level being 0-based, and the other accounts for
2160 the level of the new frame instead of the level of the current
2162 if (this_frame->level + 2 > backtrace_limit)
2164 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2168 /* If we're already inside the entry function for the main objfile,
2169 then it isn't valid. Don't apply this test to a dummy frame -
2170 dummy frame PCs typically land in the entry func. Don't apply
2171 this test to the sentinel frame. Sentinel frames should always
2172 be allowed to unwind. */
2173 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2174 wasn't checking for "main" in the minimal symbols. With that
2175 fixed asm-source tests now stop in "main" instead of halting the
2176 backtrace in weird and wonderful ways somewhere inside the entry
2177 file. Suspect that tests for inside the entry file/func were
2178 added to work around that (now fixed) case. */
2179 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2180 suggested having the inside_entry_func test use the
2181 inside_main_func() msymbol trick (along with entry_point_address()
2182 I guess) to determine the address range of the start function.
2183 That should provide a far better stopper than the current
2185 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2186 applied tail-call optimizations to main so that a function called
2187 from main returns directly to the caller of main. Since we don't
2188 stop at main, we should at least stop at the entry point of the
2190 if (this_frame->level >= 0
2191 && get_frame_type (this_frame) == NORMAL_FRAME
2192 && !backtrace_past_entry
2194 && inside_entry_func (this_frame))
2196 frame_debug_got_null_frame (this_frame, "inside entry func");
2200 /* Assume that the only way to get a zero PC is through something
2201 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2202 will never unwind a zero PC. */
2203 if (this_frame->level > 0
2204 && (get_frame_type (this_frame) == NORMAL_FRAME
2205 || get_frame_type (this_frame) == INLINE_FRAME)
2206 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2207 && frame_pc_p && frame_pc == 0)
2209 frame_debug_got_null_frame (this_frame, "zero PC");
2213 return get_prev_frame_always (this_frame);
2217 get_frame_pc (struct frame_info *frame)
2219 gdb_assert (frame->next != NULL);
2220 return frame_unwind_pc (frame->next);
2224 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2226 volatile struct gdb_exception ex;
2228 gdb_assert (frame->next != NULL);
2230 TRY_CATCH (ex, RETURN_MASK_ERROR)
2232 *pc = frame_unwind_pc (frame->next);
2236 if (ex.error == NOT_AVAILABLE_ERROR)
2239 throw_exception (ex);
2245 /* Return an address that falls within THIS_FRAME's code block. */
2248 get_frame_address_in_block (struct frame_info *this_frame)
2250 /* A draft address. */
2251 CORE_ADDR pc = get_frame_pc (this_frame);
2253 struct frame_info *next_frame = this_frame->next;
2255 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2256 Normally the resume address is inside the body of the function
2257 associated with THIS_FRAME, but there is a special case: when
2258 calling a function which the compiler knows will never return
2259 (for instance abort), the call may be the very last instruction
2260 in the calling function. The resume address will point after the
2261 call and may be at the beginning of a different function
2264 If THIS_FRAME is a signal frame or dummy frame, then we should
2265 not adjust the unwound PC. For a dummy frame, GDB pushed the
2266 resume address manually onto the stack. For a signal frame, the
2267 OS may have pushed the resume address manually and invoked the
2268 handler (e.g. GNU/Linux), or invoked the trampoline which called
2269 the signal handler - but in either case the signal handler is
2270 expected to return to the trampoline. So in both of these
2271 cases we know that the resume address is executable and
2272 related. So we only need to adjust the PC if THIS_FRAME
2273 is a normal function.
2275 If the program has been interrupted while THIS_FRAME is current,
2276 then clearly the resume address is inside the associated
2277 function. There are three kinds of interruption: debugger stop
2278 (next frame will be SENTINEL_FRAME), operating system
2279 signal or exception (next frame will be SIGTRAMP_FRAME),
2280 or debugger-induced function call (next frame will be
2281 DUMMY_FRAME). So we only need to adjust the PC if
2282 NEXT_FRAME is a normal function.
2284 We check the type of NEXT_FRAME first, since it is already
2285 known; frame type is determined by the unwinder, and since
2286 we have THIS_FRAME we've already selected an unwinder for
2289 If the next frame is inlined, we need to keep going until we find
2290 the real function - for instance, if a signal handler is invoked
2291 while in an inlined function, then the code address of the
2292 "calling" normal function should not be adjusted either. */
2294 while (get_frame_type (next_frame) == INLINE_FRAME)
2295 next_frame = next_frame->next;
2297 if ((get_frame_type (next_frame) == NORMAL_FRAME
2298 || get_frame_type (next_frame) == TAILCALL_FRAME)
2299 && (get_frame_type (this_frame) == NORMAL_FRAME
2300 || get_frame_type (this_frame) == TAILCALL_FRAME
2301 || get_frame_type (this_frame) == INLINE_FRAME))
2308 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2311 volatile struct gdb_exception ex;
2313 TRY_CATCH (ex, RETURN_MASK_ERROR)
2315 *pc = get_frame_address_in_block (this_frame);
2317 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2319 else if (ex.reason < 0)
2320 throw_exception (ex);
2326 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2328 struct frame_info *next_frame;
2332 /* If the next frame represents an inlined function call, this frame's
2333 sal is the "call site" of that inlined function, which can not
2334 be inferred from get_frame_pc. */
2335 next_frame = get_next_frame (frame);
2336 if (frame_inlined_callees (frame) > 0)
2341 sym = get_frame_function (next_frame);
2343 sym = inline_skipped_symbol (inferior_ptid);
2345 /* If frame is inline, it certainly has symbols. */
2348 if (SYMBOL_LINE (sym) != 0)
2350 sal->symtab = SYMBOL_SYMTAB (sym);
2351 sal->line = SYMBOL_LINE (sym);
2354 /* If the symbol does not have a location, we don't know where
2355 the call site is. Do not pretend to. This is jarring, but
2356 we can't do much better. */
2357 sal->pc = get_frame_pc (frame);
2359 sal->pspace = get_frame_program_space (frame);
2364 /* If FRAME is not the innermost frame, that normally means that
2365 FRAME->pc points at the return instruction (which is *after* the
2366 call instruction), and we want to get the line containing the
2367 call (because the call is where the user thinks the program is).
2368 However, if the next frame is either a SIGTRAMP_FRAME or a
2369 DUMMY_FRAME, then the next frame will contain a saved interrupt
2370 PC and such a PC indicates the current (rather than next)
2371 instruction/line, consequently, for such cases, want to get the
2372 line containing fi->pc. */
2373 if (!get_frame_pc_if_available (frame, &pc))
2379 notcurrent = (pc != get_frame_address_in_block (frame));
2380 (*sal) = find_pc_line (pc, notcurrent);
2383 /* Per "frame.h", return the ``address'' of the frame. Code should
2384 really be using get_frame_id(). */
2386 get_frame_base (struct frame_info *fi)
2388 return get_frame_id (fi).stack_addr;
2391 /* High-level offsets into the frame. Used by the debug info. */
2394 get_frame_base_address (struct frame_info *fi)
2396 if (get_frame_type (fi) != NORMAL_FRAME)
2398 if (fi->base == NULL)
2399 fi->base = frame_base_find_by_frame (fi);
2400 /* Sneaky: If the low-level unwind and high-level base code share a
2401 common unwinder, let them share the prologue cache. */
2402 if (fi->base->unwind == fi->unwind)
2403 return fi->base->this_base (fi, &fi->prologue_cache);
2404 return fi->base->this_base (fi, &fi->base_cache);
2408 get_frame_locals_address (struct frame_info *fi)
2410 if (get_frame_type (fi) != NORMAL_FRAME)
2412 /* If there isn't a frame address method, find it. */
2413 if (fi->base == NULL)
2414 fi->base = frame_base_find_by_frame (fi);
2415 /* Sneaky: If the low-level unwind and high-level base code share a
2416 common unwinder, let them share the prologue cache. */
2417 if (fi->base->unwind == fi->unwind)
2418 return fi->base->this_locals (fi, &fi->prologue_cache);
2419 return fi->base->this_locals (fi, &fi->base_cache);
2423 get_frame_args_address (struct frame_info *fi)
2425 if (get_frame_type (fi) != NORMAL_FRAME)
2427 /* If there isn't a frame address method, find it. */
2428 if (fi->base == NULL)
2429 fi->base = frame_base_find_by_frame (fi);
2430 /* Sneaky: If the low-level unwind and high-level base code share a
2431 common unwinder, let them share the prologue cache. */
2432 if (fi->base->unwind == fi->unwind)
2433 return fi->base->this_args (fi, &fi->prologue_cache);
2434 return fi->base->this_args (fi, &fi->base_cache);
2437 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2441 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2443 if (fi->unwind == NULL)
2444 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2445 return fi->unwind == unwinder;
2448 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2449 or -1 for a NULL frame. */
2452 frame_relative_level (struct frame_info *fi)
2461 get_frame_type (struct frame_info *frame)
2463 if (frame->unwind == NULL)
2464 /* Initialize the frame's unwinder because that's what
2465 provides the frame's type. */
2466 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2467 return frame->unwind->type;
2470 struct program_space *
2471 get_frame_program_space (struct frame_info *frame)
2473 return frame->pspace;
2476 struct program_space *
2477 frame_unwind_program_space (struct frame_info *this_frame)
2479 gdb_assert (this_frame);
2481 /* This is really a placeholder to keep the API consistent --- we
2482 assume for now that we don't have frame chains crossing
2484 return this_frame->pspace;
2487 struct address_space *
2488 get_frame_address_space (struct frame_info *frame)
2490 return frame->aspace;
2493 /* Memory access methods. */
2496 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2497 gdb_byte *buf, int len)
2499 read_memory (addr, buf, len);
2503 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2506 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2509 return read_memory_integer (addr, len, byte_order);
2513 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2516 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2519 return read_memory_unsigned_integer (addr, len, byte_order);
2523 safe_frame_unwind_memory (struct frame_info *this_frame,
2524 CORE_ADDR addr, gdb_byte *buf, int len)
2526 /* NOTE: target_read_memory returns zero on success! */
2527 return !target_read_memory (addr, buf, len);
2530 /* Architecture methods. */
2533 get_frame_arch (struct frame_info *this_frame)
2535 return frame_unwind_arch (this_frame->next);
2539 frame_unwind_arch (struct frame_info *next_frame)
2541 if (!next_frame->prev_arch.p)
2543 struct gdbarch *arch;
2545 if (next_frame->unwind == NULL)
2546 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2548 if (next_frame->unwind->prev_arch != NULL)
2549 arch = next_frame->unwind->prev_arch (next_frame,
2550 &next_frame->prologue_cache);
2552 arch = get_frame_arch (next_frame);
2554 next_frame->prev_arch.arch = arch;
2555 next_frame->prev_arch.p = 1;
2557 fprintf_unfiltered (gdb_stdlog,
2558 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2560 gdbarch_bfd_arch_info (arch)->printable_name);
2563 return next_frame->prev_arch.arch;
2567 frame_unwind_caller_arch (struct frame_info *next_frame)
2569 return frame_unwind_arch (skip_artificial_frames (next_frame));
2572 /* Stack pointer methods. */
2575 get_frame_sp (struct frame_info *this_frame)
2577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2579 /* Normality - an architecture that provides a way of obtaining any
2580 frame inner-most address. */
2581 if (gdbarch_unwind_sp_p (gdbarch))
2582 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2583 operate on THIS_FRAME now. */
2584 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2585 /* Now things are really are grim. Hope that the value returned by
2586 the gdbarch_sp_regnum register is meaningful. */
2587 if (gdbarch_sp_regnum (gdbarch) >= 0)
2588 return get_frame_register_unsigned (this_frame,
2589 gdbarch_sp_regnum (gdbarch));
2590 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2593 /* Return the reason why we can't unwind past FRAME. */
2595 enum unwind_stop_reason
2596 get_frame_unwind_stop_reason (struct frame_info *frame)
2598 /* Fill-in STOP_REASON. */
2599 get_prev_frame_always (frame);
2600 gdb_assert (frame->prev_p);
2602 return frame->stop_reason;
2605 /* Return a string explaining REASON. */
2608 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2612 #define SET(name, description) \
2613 case name: return _(description);
2614 #include "unwind_stop_reasons.def"
2618 internal_error (__FILE__, __LINE__,
2619 "Invalid frame stop reason");
2624 frame_stop_reason_string (struct frame_info *fi)
2626 gdb_assert (fi->prev_p);
2627 gdb_assert (fi->prev == NULL);
2629 /* Return the specific string if we have one. */
2630 if (fi->stop_string != NULL)
2631 return fi->stop_string;
2633 /* Return the generic string if we have nothing better. */
2634 return unwind_stop_reason_to_string (fi->stop_reason);
2637 /* Return the enum symbol name of REASON as a string, to use in debug
2641 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2645 #define SET(name, description) \
2646 case name: return #name;
2647 #include "unwind_stop_reasons.def"
2651 internal_error (__FILE__, __LINE__,
2652 "Invalid frame stop reason");
2656 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2660 frame_cleanup_after_sniffer (void *arg)
2662 struct frame_info *frame = arg;
2664 /* The sniffer should not allocate a prologue cache if it did not
2665 match this frame. */
2666 gdb_assert (frame->prologue_cache == NULL);
2668 /* No sniffer should extend the frame chain; sniff based on what is
2670 gdb_assert (!frame->prev_p);
2672 /* The sniffer should not check the frame's ID; that's circular. */
2673 gdb_assert (!frame->this_id.p);
2675 /* Clear cached fields dependent on the unwinder.
2677 The previous PC is independent of the unwinder, but the previous
2678 function is not (see get_frame_address_in_block). */
2679 frame->prev_func.p = 0;
2680 frame->prev_func.addr = 0;
2682 /* Discard the unwinder last, so that we can easily find it if an assertion
2683 in this function triggers. */
2684 frame->unwind = NULL;
2687 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2688 Return a cleanup which should be called if unwinding fails, and
2689 discarded if it succeeds. */
2692 frame_prepare_for_sniffer (struct frame_info *frame,
2693 const struct frame_unwind *unwind)
2695 gdb_assert (frame->unwind == NULL);
2696 frame->unwind = unwind;
2697 return make_cleanup (frame_cleanup_after_sniffer, frame);
2700 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2702 static struct cmd_list_element *set_backtrace_cmdlist;
2703 static struct cmd_list_element *show_backtrace_cmdlist;
2706 set_backtrace_cmd (char *args, int from_tty)
2708 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2713 show_backtrace_cmd (char *args, int from_tty)
2715 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2719 _initialize_frame (void)
2721 obstack_init (&frame_cache_obstack);
2723 frame_stash_create ();
2725 observer_attach_target_changed (frame_observer_target_changed);
2727 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2728 Set backtrace specific variables.\n\
2729 Configure backtrace variables such as the backtrace limit"),
2730 &set_backtrace_cmdlist, "set backtrace ",
2731 0/*allow-unknown*/, &setlist);
2732 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2733 Show backtrace specific variables\n\
2734 Show backtrace variables such as the backtrace limit"),
2735 &show_backtrace_cmdlist, "show backtrace ",
2736 0/*allow-unknown*/, &showlist);
2738 add_setshow_boolean_cmd ("past-main", class_obscure,
2739 &backtrace_past_main, _("\
2740 Set whether backtraces should continue past \"main\"."), _("\
2741 Show whether backtraces should continue past \"main\"."), _("\
2742 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2743 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2744 of the stack trace."),
2746 show_backtrace_past_main,
2747 &set_backtrace_cmdlist,
2748 &show_backtrace_cmdlist);
2750 add_setshow_boolean_cmd ("past-entry", class_obscure,
2751 &backtrace_past_entry, _("\
2752 Set whether backtraces should continue past the entry point of a program."),
2754 Show whether backtraces should continue past the entry point of a program."),
2756 Normally there are no callers beyond the entry point of a program, so GDB\n\
2757 will terminate the backtrace there. Set this variable if you need to see\n\
2758 the rest of the stack trace."),
2760 show_backtrace_past_entry,
2761 &set_backtrace_cmdlist,
2762 &show_backtrace_cmdlist);
2764 add_setshow_uinteger_cmd ("limit", class_obscure,
2765 &backtrace_limit, _("\
2766 Set an upper bound on the number of backtrace levels."), _("\
2767 Show the upper bound on the number of backtrace levels."), _("\
2768 No more than the specified number of frames can be displayed or examined.\n\
2769 Literal \"unlimited\" or zero means no limit."),
2771 show_backtrace_limit,
2772 &set_backtrace_cmdlist,
2773 &show_backtrace_cmdlist);
2775 /* Debug this files internals. */
2776 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2777 Set frame debugging."), _("\
2778 Show frame debugging."), _("\
2779 When non-zero, frame specific internal debugging is enabled."),
2782 &setdebuglist, &showdebuglist);