1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
48 #include "exceptions.h"
56 #include "typeprint.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_type_match (struct type *, struct type *, int);
102 static int ada_args_match (struct symbol *, struct value **, int);
104 static int full_match (const char *, const char *);
106 static struct value *make_array_descriptor (struct type *, struct value *);
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
112 static int is_nonfunction (struct ada_symbol_info *, int);
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
117 static int num_defns_collected (struct obstack *);
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121 static struct value *resolve_subexp (struct expression **, int *, int,
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, const struct block *);
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
129 static char *ada_op_name (enum exp_opcode);
131 static const char *ada_decoded_op_name (enum exp_opcode);
133 static int numeric_type_p (struct type *);
135 static int integer_type_p (struct type *);
137 static int scalar_type_p (struct type *);
139 static int discrete_type_p (struct type *);
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 const struct block *);
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
152 static struct value *evaluate_subexp_type (struct expression *, int *);
154 static struct type *ada_find_parallel_type_with_name (struct type *,
157 static int is_dynamic_field (struct type *, int);
159 static struct type *to_fixed_variant_branch_type (struct type *,
161 CORE_ADDR, struct value *);
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165 static struct type *to_fixed_range_type (struct type *, struct value *);
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
170 static struct value *unwrap_value (struct value *);
172 static struct type *constrained_packed_array_type (struct type *, long *);
174 static struct type *decode_constrained_packed_array_type (struct type *);
176 static long decode_packed_array_bitsize (struct type *);
178 static struct value *decode_constrained_packed_array (struct value *);
180 static int ada_is_packed_array_type (struct type *);
182 static int ada_is_unconstrained_packed_array_type (struct type *);
184 static struct value *value_subscript_packed (struct value *, int,
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189 static struct value *coerce_unspec_val_to_type (struct value *,
192 static struct value *get_var_value (char *, char *);
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
196 static int equiv_types (struct type *, struct type *);
198 static int is_name_suffix (const char *);
200 static int advance_wild_match (const char **, const char *, int);
202 static int wild_match (const char *, const char *);
204 static struct value *ada_coerce_ref (struct value *);
206 static LONGEST pos_atr (struct value *);
208 static struct value *value_pos_atr (struct type *, struct value *);
210 static struct value *value_val_atr (struct type *, struct value *);
212 static struct symbol *standard_lookup (const char *, const struct block *,
215 static struct value *ada_search_struct_field (char *, struct value *, int,
218 static struct value *ada_value_primitive_field (struct value *, int, int,
221 static int find_struct_field (const char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
231 static int ada_is_direct_array_type (struct type *);
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
236 static void check_size (const struct type *);
238 static struct value *ada_index_struct_field (int, struct value *, int,
241 static struct value *assign_aggregate (struct value *, struct value *,
245 static void aggregate_assign_from_choices (struct value *, struct value *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
250 static void aggregate_assign_positional (struct value *, struct value *,
252 int *, LONGEST *, int *, int,
256 static void aggregate_assign_others (struct value *, struct value *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 static void ada_forward_operator_length (struct expression *, int, int *,
270 static struct type *ada_find_any_type (const char *name);
273 /* The result of a symbol lookup to be stored in our symbol cache. */
277 /* The name used to perform the lookup. */
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
284 /* The block where the symbol was found, or NULL if no matching
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
291 /* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
300 #define HASH_SIZE 1009
302 struct ada_symbol_cache
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
311 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313 /* Maximum-sized dynamic type. */
314 static unsigned int varsize_limit;
316 /* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318 static char *ada_completer_word_break_characters =
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
344 /* Space for allocating results of ada_lookup_symbol_list. */
345 static struct obstack symbol_list_obstack;
347 /* Maintenance-related settings for this module. */
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
352 /* Implement the "maintenance set ada" (prefix) command. */
355 maint_set_ada_cmd (char *args, int from_tty)
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
361 /* Implement the "maintenance show ada" (prefix) command. */
364 maint_show_ada_cmd (char *args, int from_tty)
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371 static int ada_ignore_descriptive_types_p = 0;
373 /* Inferior-specific data. */
375 /* Per-inferior data for this module. */
377 struct ada_inferior_data
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
388 const struct exception_support_info *exception_info;
391 /* Our key to this module's inferior data. */
392 static const struct inferior_data *ada_inferior_data;
394 /* A cleanup routine for our inferior data. */
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 struct ada_inferior_data *data;
400 data = inferior_data (inf, ada_inferior_data);
405 /* Return our inferior data for the given inferior (INF).
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
416 struct ada_inferior_data *data;
418 data = inferior_data (inf, ada_inferior_data);
421 data = XCNEW (struct ada_inferior_data);
422 set_inferior_data (inf, ada_inferior_data, data);
428 /* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
432 ada_inferior_exit (struct inferior *inf)
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
439 /* program-space-specific data. */
441 /* This module's per-program-space data. */
442 struct ada_pspace_data
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
448 /* Key to our per-program-space data. */
449 static const struct program_space_data *ada_pspace_data_handle;
451 /* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
454 This function always returns a valid object. */
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
459 struct ada_pspace_data *data;
461 data = program_space_data (pspace, ada_pspace_data_handle);
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 /* The cleanup callback for this module's per-program-space data. */
474 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 struct ada_pspace_data *pspace_data = data;
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
485 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
486 all typedef layers have been peeled. Otherwise, return TYPE.
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
513 ada_typedef_target_type (struct type *type)
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
520 /* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
525 ada_unqualified_name (const char *decoded_name)
527 const char *result = strrchr (decoded_name, '.');
530 result++; /* Skip the dot... */
532 result = decoded_name;
537 /* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
541 add_angle_brackets (const char *str)
543 static char *result = NULL;
546 result = xstrprintf ("<%s>", str);
551 ada_get_gdb_completer_word_break_characters (void)
553 return ada_completer_word_break_characters;
556 /* Print an array element index using the Ada syntax. */
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
566 /* Assuming VECT points to an array of *SIZE objects of size
567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
568 updating *SIZE as necessary and returning the (new) array. */
571 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
573 if (*size < min_size)
576 if (*size < min_size)
578 vect = xrealloc (vect, *size * element_size);
583 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
584 suffix of FIELD_NAME beginning "___". */
587 field_name_match (const char *field_name, const char *target)
589 int len = strlen (target);
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
595 && strcmp (field_name + strlen (field_name) - 6,
600 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
609 ada_get_field_index (const struct type *type, const char *field_name,
613 struct type *struct_type = check_typedef ((struct type *) type);
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
620 error (_("Unable to find field %s in struct %s. Aborting"),
621 field_name, TYPE_NAME (struct_type));
626 /* The length of the prefix of NAME prior to any "___" suffix. */
629 ada_name_prefix_len (const char *name)
635 const char *p = strstr (name, "___");
638 return strlen (name);
644 /* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
648 is_suffix (const char *str, const char *suffix)
655 len2 = strlen (suffix);
656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 /* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
662 static struct value *
663 coerce_unspec_val_to_type (struct value *val, struct type *type)
665 type = ada_check_typedef (type);
666 if (value_type (val) == type)
670 struct value *result;
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
681 result = allocate_value (type);
682 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
684 set_value_component_location (result, val);
685 set_value_bitsize (result, value_bitsize (val));
686 set_value_bitpos (result, value_bitpos (val));
687 set_value_address (result, value_address (val));
692 static const gdb_byte *
693 cond_offset_host (const gdb_byte *valaddr, long offset)
698 return valaddr + offset;
702 cond_offset_target (CORE_ADDR address, long offset)
707 return address + offset;
710 /* Issue a warning (as for the definition of warning in utils.c, but
711 with exactly one argument rather than ...), unless the limit on the
712 number of warnings has passed during the evaluation of the current
715 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
716 provided by "complaint". */
717 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
720 lim_warning (const char *format, ...)
724 va_start (args, format);
725 warnings_issued += 1;
726 if (warnings_issued <= warning_limit)
727 vwarning (format, args);
732 /* Issue an error if the size of an object of type T is unreasonable,
733 i.e. if it would be a bad idea to allocate a value of this type in
737 check_size (const struct type *type)
739 if (TYPE_LENGTH (type) > varsize_limit)
740 error (_("object size is larger than varsize-limit"));
743 /* Maximum value of a SIZE-byte signed integer type. */
745 max_of_size (int size)
747 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
749 return top_bit | (top_bit - 1);
752 /* Minimum value of a SIZE-byte signed integer type. */
754 min_of_size (int size)
756 return -max_of_size (size) - 1;
759 /* Maximum value of a SIZE-byte unsigned integer type. */
761 umax_of_size (int size)
763 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
765 return top_bit | (top_bit - 1);
768 /* Maximum value of integral type T, as a signed quantity. */
770 max_of_type (struct type *t)
772 if (TYPE_UNSIGNED (t))
773 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
775 return max_of_size (TYPE_LENGTH (t));
778 /* Minimum value of integral type T, as a signed quantity. */
780 min_of_type (struct type *t)
782 if (TYPE_UNSIGNED (t))
785 return min_of_size (TYPE_LENGTH (t));
788 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
790 ada_discrete_type_high_bound (struct type *type)
792 type = resolve_dynamic_type (type, 0);
793 switch (TYPE_CODE (type))
795 case TYPE_CODE_RANGE:
796 return TYPE_HIGH_BOUND (type);
798 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
803 return max_of_type (type);
805 error (_("Unexpected type in ada_discrete_type_high_bound."));
809 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
811 ada_discrete_type_low_bound (struct type *type)
813 type = resolve_dynamic_type (type, 0);
814 switch (TYPE_CODE (type))
816 case TYPE_CODE_RANGE:
817 return TYPE_LOW_BOUND (type);
819 return TYPE_FIELD_ENUMVAL (type, 0);
824 return min_of_type (type);
826 error (_("Unexpected type in ada_discrete_type_low_bound."));
830 /* The identity on non-range types. For range types, the underlying
831 non-range scalar type. */
834 get_base_type (struct type *type)
836 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
838 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
840 type = TYPE_TARGET_TYPE (type);
845 /* Return a decoded version of the given VALUE. This means returning
846 a value whose type is obtained by applying all the GNAT-specific
847 encondings, making the resulting type a static but standard description
848 of the initial type. */
851 ada_get_decoded_value (struct value *value)
853 struct type *type = ada_check_typedef (value_type (value));
855 if (ada_is_array_descriptor_type (type)
856 || (ada_is_constrained_packed_array_type (type)
857 && TYPE_CODE (type) != TYPE_CODE_PTR))
859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
860 value = ada_coerce_to_simple_array_ptr (value);
862 value = ada_coerce_to_simple_array (value);
865 value = ada_to_fixed_value (value);
870 /* Same as ada_get_decoded_value, but with the given TYPE.
871 Because there is no associated actual value for this type,
872 the resulting type might be a best-effort approximation in
873 the case of dynamic types. */
876 ada_get_decoded_type (struct type *type)
878 type = to_static_fixed_type (type);
879 if (ada_is_constrained_packed_array_type (type))
880 type = ada_coerce_to_simple_array_type (type);
886 /* Language Selection */
888 /* If the main program is in Ada, return language_ada, otherwise return LANG
889 (the main program is in Ada iif the adainit symbol is found). */
892 ada_update_initial_language (enum language lang)
894 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
895 (struct objfile *) NULL).minsym != NULL)
901 /* If the main procedure is written in Ada, then return its name.
902 The result is good until the next call. Return NULL if the main
903 procedure doesn't appear to be in Ada. */
908 struct bound_minimal_symbol msym;
909 static char *main_program_name = NULL;
911 /* For Ada, the name of the main procedure is stored in a specific
912 string constant, generated by the binder. Look for that symbol,
913 extract its address, and then read that string. If we didn't find
914 that string, then most probably the main procedure is not written
916 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
918 if (msym.minsym != NULL)
920 CORE_ADDR main_program_name_addr;
923 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
924 if (main_program_name_addr == 0)
925 error (_("Invalid address for Ada main program name."));
927 xfree (main_program_name);
928 target_read_string (main_program_name_addr, &main_program_name,
933 return main_program_name;
936 /* The main procedure doesn't seem to be in Ada. */
942 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 const struct ada_opname_map ada_opname_table[] = {
946 {"Oadd", "\"+\"", BINOP_ADD},
947 {"Osubtract", "\"-\"", BINOP_SUB},
948 {"Omultiply", "\"*\"", BINOP_MUL},
949 {"Odivide", "\"/\"", BINOP_DIV},
950 {"Omod", "\"mod\"", BINOP_MOD},
951 {"Orem", "\"rem\"", BINOP_REM},
952 {"Oexpon", "\"**\"", BINOP_EXP},
953 {"Olt", "\"<\"", BINOP_LESS},
954 {"Ole", "\"<=\"", BINOP_LEQ},
955 {"Ogt", "\">\"", BINOP_GTR},
956 {"Oge", "\">=\"", BINOP_GEQ},
957 {"Oeq", "\"=\"", BINOP_EQUAL},
958 {"One", "\"/=\"", BINOP_NOTEQUAL},
959 {"Oand", "\"and\"", BINOP_BITWISE_AND},
960 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
961 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
962 {"Oconcat", "\"&\"", BINOP_CONCAT},
963 {"Oabs", "\"abs\"", UNOP_ABS},
964 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
965 {"Oadd", "\"+\"", UNOP_PLUS},
966 {"Osubtract", "\"-\"", UNOP_NEG},
970 /* The "encoded" form of DECODED, according to GNAT conventions.
971 The result is valid until the next call to ada_encode. */
974 ada_encode (const char *decoded)
976 static char *encoding_buffer = NULL;
977 static size_t encoding_buffer_size = 0;
984 GROW_VECT (encoding_buffer, encoding_buffer_size,
985 2 * strlen (decoded) + 10);
988 for (p = decoded; *p != '\0'; p += 1)
992 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
997 const struct ada_opname_map *mapping;
999 for (mapping = ada_opname_table;
1000 mapping->encoded != NULL
1001 && strncmp (mapping->decoded, p,
1002 strlen (mapping->decoded)) != 0; mapping += 1)
1004 if (mapping->encoded == NULL)
1005 error (_("invalid Ada operator name: %s"), p);
1006 strcpy (encoding_buffer + k, mapping->encoded);
1007 k += strlen (mapping->encoded);
1012 encoding_buffer[k] = *p;
1017 encoding_buffer[k] = '\0';
1018 return encoding_buffer;
1021 /* Return NAME folded to lower case, or, if surrounded by single
1022 quotes, unfolded, but with the quotes stripped away. Result good
1026 ada_fold_name (const char *name)
1028 static char *fold_buffer = NULL;
1029 static size_t fold_buffer_size = 0;
1031 int len = strlen (name);
1032 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1034 if (name[0] == '\'')
1036 strncpy (fold_buffer, name + 1, len - 2);
1037 fold_buffer[len - 2] = '\000';
1043 for (i = 0; i <= len; i += 1)
1044 fold_buffer[i] = tolower (name[i]);
1050 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053 is_lower_alphanum (const char c)
1055 return (isdigit (c) || (isalpha (c) && islower (c)));
1058 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1059 This function saves in LEN the length of that same symbol name but
1060 without either of these suffixes:
1066 These are suffixes introduced by the compiler for entities such as
1067 nested subprogram for instance, in order to avoid name clashes.
1068 They do not serve any purpose for the debugger. */
1071 ada_remove_trailing_digits (const char *encoded, int *len)
1073 if (*len > 1 && isdigit (encoded[*len - 1]))
1077 while (i > 0 && isdigit (encoded[i]))
1079 if (i >= 0 && encoded[i] == '.')
1081 else if (i >= 0 && encoded[i] == '$')
1083 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1085 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1090 /* Remove the suffix introduced by the compiler for protected object
1094 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1096 /* Remove trailing N. */
1098 /* Protected entry subprograms are broken into two
1099 separate subprograms: The first one is unprotected, and has
1100 a 'N' suffix; the second is the protected version, and has
1101 the 'P' suffix. The second calls the first one after handling
1102 the protection. Since the P subprograms are internally generated,
1103 we leave these names undecoded, giving the user a clue that this
1104 entity is internal. */
1107 && encoded[*len - 1] == 'N'
1108 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1112 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115 ada_remove_Xbn_suffix (const char *encoded, int *len)
1119 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 if (encoded[i] != 'X')
1128 if (isalnum (encoded[i-1]))
1132 /* If ENCODED follows the GNAT entity encoding conventions, then return
1133 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1134 replaced by ENCODED.
1136 The resulting string is valid until the next call of ada_decode.
1137 If the string is unchanged by decoding, the original string pointer
1141 ada_decode (const char *encoded)
1148 static char *decoding_buffer = NULL;
1149 static size_t decoding_buffer_size = 0;
1151 /* The name of the Ada main procedure starts with "_ada_".
1152 This prefix is not part of the decoded name, so skip this part
1153 if we see this prefix. */
1154 if (strncmp (encoded, "_ada_", 5) == 0)
1157 /* If the name starts with '_', then it is not a properly encoded
1158 name, so do not attempt to decode it. Similarly, if the name
1159 starts with '<', the name should not be decoded. */
1160 if (encoded[0] == '_' || encoded[0] == '<')
1163 len0 = strlen (encoded);
1165 ada_remove_trailing_digits (encoded, &len0);
1166 ada_remove_po_subprogram_suffix (encoded, &len0);
1168 /* Remove the ___X.* suffix if present. Do not forget to verify that
1169 the suffix is located before the current "end" of ENCODED. We want
1170 to avoid re-matching parts of ENCODED that have previously been
1171 marked as discarded (by decrementing LEN0). */
1172 p = strstr (encoded, "___");
1173 if (p != NULL && p - encoded < len0 - 3)
1181 /* Remove any trailing TKB suffix. It tells us that this symbol
1182 is for the body of a task, but that information does not actually
1183 appear in the decoded name. */
1185 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1188 /* Remove any trailing TB suffix. The TB suffix is slightly different
1189 from the TKB suffix because it is used for non-anonymous task
1192 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 /* Remove trailing "B" suffixes. */
1196 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1198 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1201 /* Make decoded big enough for possible expansion by operator name. */
1203 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1204 decoded = decoding_buffer;
1206 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1208 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1211 while ((i >= 0 && isdigit (encoded[i]))
1212 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1214 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1216 else if (encoded[i] == '$')
1220 /* The first few characters that are not alphabetic are not part
1221 of any encoding we use, so we can copy them over verbatim. */
1223 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1224 decoded[j] = encoded[i];
1229 /* Is this a symbol function? */
1230 if (at_start_name && encoded[i] == 'O')
1234 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1236 int op_len = strlen (ada_opname_table[k].encoded);
1237 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1239 && !isalnum (encoded[i + op_len]))
1241 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 j += strlen (ada_opname_table[k].decoded);
1248 if (ada_opname_table[k].encoded != NULL)
1253 /* Replace "TK__" with "__", which will eventually be translated
1254 into "." (just below). */
1256 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1260 be translated into "." (just below). These are internal names
1261 generated for anonymous blocks inside which our symbol is nested. */
1263 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1264 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1265 && isdigit (encoded [i+4]))
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++; /* Skip any extra digit. */
1272 /* Double-check that the "__B_{DIGITS}+" sequence we found
1273 is indeed followed by "__". */
1274 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1278 /* Remove _E{DIGITS}+[sb] */
1280 /* Just as for protected object subprograms, there are 2 categories
1281 of subprograms created by the compiler for each entry. The first
1282 one implements the actual entry code, and has a suffix following
1283 the convention above; the second one implements the barrier and
1284 uses the same convention as above, except that the 'E' is replaced
1287 Just as above, we do not decode the name of barrier functions
1288 to give the user a clue that the code he is debugging has been
1289 internally generated. */
1291 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1292 && isdigit (encoded[i+2]))
1296 while (k < len0 && isdigit (encoded[k]))
1300 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 /* Just as an extra precaution, make sure that if this
1304 suffix is followed by anything else, it is a '_'.
1305 Otherwise, we matched this sequence by accident. */
1307 || (k < len0 && encoded[k] == '_'))
1312 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1313 the GNAT front-end in protected object subprograms. */
1316 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1318 /* Backtrack a bit up until we reach either the begining of
1319 the encoded name, or "__". Make sure that we only find
1320 digits or lowercase characters. */
1321 const char *ptr = encoded + i - 1;
1323 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1330 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1332 /* This is a X[bn]* sequence not separated from the previous
1333 part of the name with a non-alpha-numeric character (in other
1334 words, immediately following an alpha-numeric character), then
1335 verify that it is placed at the end of the encoded name. If
1336 not, then the encoding is not valid and we should abort the
1337 decoding. Otherwise, just skip it, it is used in body-nested
1341 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1345 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1347 /* Replace '__' by '.'. */
1355 /* It's a character part of the decoded name, so just copy it
1357 decoded[j] = encoded[i];
1362 decoded[j] = '\000';
1364 /* Decoded names should never contain any uppercase character.
1365 Double-check this, and abort the decoding if we find one. */
1367 for (i = 0; decoded[i] != '\0'; i += 1)
1368 if (isupper (decoded[i]) || decoded[i] == ' ')
1371 if (strcmp (decoded, encoded) == 0)
1377 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1378 decoded = decoding_buffer;
1379 if (encoded[0] == '<')
1380 strcpy (decoded, encoded);
1382 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1387 /* Table for keeping permanent unique copies of decoded names. Once
1388 allocated, names in this table are never released. While this is a
1389 storage leak, it should not be significant unless there are massive
1390 changes in the set of decoded names in successive versions of a
1391 symbol table loaded during a single session. */
1392 static struct htab *decoded_names_store;
1394 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1395 in the language-specific part of GSYMBOL, if it has not been
1396 previously computed. Tries to save the decoded name in the same
1397 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1398 in any case, the decoded symbol has a lifetime at least that of
1400 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1401 const, but nevertheless modified to a semantically equivalent form
1402 when a decoded name is cached in it. */
1405 ada_decode_symbol (const struct general_symbol_info *arg)
1407 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1408 const char **resultp =
1409 &gsymbol->language_specific.mangled_lang.demangled_name;
1411 if (!gsymbol->ada_mangled)
1413 const char *decoded = ada_decode (gsymbol->name);
1414 struct obstack *obstack = gsymbol->language_specific.obstack;
1416 gsymbol->ada_mangled = 1;
1418 if (obstack != NULL)
1419 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 /* Sometimes, we can't find a corresponding objfile, in
1423 which case, we put the result on the heap. Since we only
1424 decode when needed, we hope this usually does not cause a
1425 significant memory leak (FIXME). */
1427 char **slot = (char **) htab_find_slot (decoded_names_store,
1431 *slot = xstrdup (decoded);
1440 ada_la_decode (const char *encoded, int options)
1442 return xstrdup (ada_decode (encoded));
1445 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1446 suffixes that encode debugging information or leading _ada_ on
1447 SYM_NAME (see is_name_suffix commentary for the debugging
1448 information that is ignored). If WILD, then NAME need only match a
1449 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1450 either argument is NULL. */
1453 match_name (const char *sym_name, const char *name, int wild)
1455 if (sym_name == NULL || name == NULL)
1458 return wild_match (sym_name, name) == 0;
1461 int len_name = strlen (name);
1463 return (strncmp (sym_name, name, len_name) == 0
1464 && is_name_suffix (sym_name + len_name))
1465 || (strncmp (sym_name, "_ada_", 5) == 0
1466 && strncmp (sym_name + 5, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name + 5));
1474 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1475 generated by the GNAT compiler to describe the index type used
1476 for each dimension of an array, check whether it follows the latest
1477 known encoding. If not, fix it up to conform to the latest encoding.
1478 Otherwise, do nothing. This function also does nothing if
1479 INDEX_DESC_TYPE is NULL.
1481 The GNAT encoding used to describle the array index type evolved a bit.
1482 Initially, the information would be provided through the name of each
1483 field of the structure type only, while the type of these fields was
1484 described as unspecified and irrelevant. The debugger was then expected
1485 to perform a global type lookup using the name of that field in order
1486 to get access to the full index type description. Because these global
1487 lookups can be very expensive, the encoding was later enhanced to make
1488 the global lookup unnecessary by defining the field type as being
1489 the full index type description.
1491 The purpose of this routine is to allow us to support older versions
1492 of the compiler by detecting the use of the older encoding, and by
1493 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1494 we essentially replace each field's meaningless type by the associated
1498 ada_fixup_array_indexes_type (struct type *index_desc_type)
1502 if (index_desc_type == NULL)
1504 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1506 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1507 to check one field only, no need to check them all). If not, return
1510 If our INDEX_DESC_TYPE was generated using the older encoding,
1511 the field type should be a meaningless integer type whose name
1512 is not equal to the field name. */
1513 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1514 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1515 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 /* Fixup each field of INDEX_DESC_TYPE. */
1519 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1521 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1522 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1529 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1531 static char *bound_name[] = {
1532 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1533 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536 /* Maximum number of array dimensions we are prepared to handle. */
1538 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1541 /* The desc_* routines return primitive portions of array descriptors
1544 /* The descriptor or array type, if any, indicated by TYPE; removes
1545 level of indirection, if needed. */
1547 static struct type *
1548 desc_base_type (struct type *type)
1552 type = ada_check_typedef (type);
1553 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1554 type = ada_typedef_target_type (type);
1557 && (TYPE_CODE (type) == TYPE_CODE_PTR
1558 || TYPE_CODE (type) == TYPE_CODE_REF))
1559 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1564 /* True iff TYPE indicates a "thin" array pointer type. */
1567 is_thin_pntr (struct type *type)
1570 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1571 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574 /* The descriptor type for thin pointer type TYPE. */
1576 static struct type *
1577 thin_descriptor_type (struct type *type)
1579 struct type *base_type = desc_base_type (type);
1581 if (base_type == NULL)
1583 if (is_suffix (ada_type_name (base_type), "___XVE"))
1587 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1589 if (alt_type == NULL)
1596 /* A pointer to the array data for thin-pointer value VAL. */
1598 static struct value *
1599 thin_data_pntr (struct value *val)
1601 struct type *type = ada_check_typedef (value_type (val));
1602 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1604 data_type = lookup_pointer_type (data_type);
1606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1607 return value_cast (data_type, value_copy (val));
1609 return value_from_longest (data_type, value_address (val));
1612 /* True iff TYPE indicates a "thick" array pointer type. */
1615 is_thick_pntr (struct type *type)
1617 type = desc_base_type (type);
1618 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1619 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1622 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1623 pointer to one, the type of its bounds data; otherwise, NULL. */
1625 static struct type *
1626 desc_bounds_type (struct type *type)
1630 type = desc_base_type (type);
1634 else if (is_thin_pntr (type))
1636 type = thin_descriptor_type (type);
1639 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1641 return ada_check_typedef (r);
1643 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1645 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1647 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1652 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1653 one, a pointer to its bounds data. Otherwise NULL. */
1655 static struct value *
1656 desc_bounds (struct value *arr)
1658 struct type *type = ada_check_typedef (value_type (arr));
1660 if (is_thin_pntr (type))
1662 struct type *bounds_type =
1663 desc_bounds_type (thin_descriptor_type (type));
1666 if (bounds_type == NULL)
1667 error (_("Bad GNAT array descriptor"));
1669 /* NOTE: The following calculation is not really kosher, but
1670 since desc_type is an XVE-encoded type (and shouldn't be),
1671 the correct calculation is a real pain. FIXME (and fix GCC). */
1672 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1673 addr = value_as_long (arr);
1675 addr = value_address (arr);
1678 value_from_longest (lookup_pointer_type (bounds_type),
1679 addr - TYPE_LENGTH (bounds_type));
1682 else if (is_thick_pntr (type))
1684 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1685 _("Bad GNAT array descriptor"));
1686 struct type *p_bounds_type = value_type (p_bounds);
1689 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1691 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1693 if (TYPE_STUB (target_type))
1694 p_bounds = value_cast (lookup_pointer_type
1695 (ada_check_typedef (target_type)),
1699 error (_("Bad GNAT array descriptor"));
1707 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1708 position of the field containing the address of the bounds data. */
1711 fat_pntr_bounds_bitpos (struct type *type)
1713 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1717 size of the field containing the address of the bounds data. */
1720 fat_pntr_bounds_bitsize (struct type *type)
1722 type = desc_base_type (type);
1724 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1725 return TYPE_FIELD_BITSIZE (type, 1);
1727 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1730 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1731 pointer to one, the type of its array data (a array-with-no-bounds type);
1732 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 static struct type *
1736 desc_data_target_type (struct type *type)
1738 type = desc_base_type (type);
1740 /* NOTE: The following is bogus; see comment in desc_bounds. */
1741 if (is_thin_pntr (type))
1742 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1743 else if (is_thick_pntr (type))
1745 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1749 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1755 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 static struct value *
1759 desc_data (struct value *arr)
1761 struct type *type = value_type (arr);
1763 if (is_thin_pntr (type))
1764 return thin_data_pntr (arr);
1765 else if (is_thick_pntr (type))
1766 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1767 _("Bad GNAT array descriptor"));
1773 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1774 position of the field containing the address of the data. */
1777 fat_pntr_data_bitpos (struct type *type)
1779 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1783 size of the field containing the address of the data. */
1786 fat_pntr_data_bitsize (struct type *type)
1788 type = desc_base_type (type);
1790 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1791 return TYPE_FIELD_BITSIZE (type, 0);
1793 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1797 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1798 bound, if WHICH is 1. The first bound is I=1. */
1800 static struct value *
1801 desc_one_bound (struct value *bounds, int i, int which)
1803 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1804 _("Bad GNAT array descriptor bounds"));
1807 /* If BOUNDS is an array-bounds structure type, return the bit position
1808 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1809 bound, if WHICH is 1. The first bound is I=1. */
1812 desc_bound_bitpos (struct type *type, int i, int which)
1814 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1817 /* If BOUNDS is an array-bounds structure type, return the bit field size
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1822 desc_bound_bitsize (struct type *type, int i, int which)
1824 type = desc_base_type (type);
1826 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1829 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1832 /* If TYPE is the type of an array-bounds structure, the type of its
1833 Ith bound (numbering from 1). Otherwise, NULL. */
1835 static struct type *
1836 desc_index_type (struct type *type, int i)
1838 type = desc_base_type (type);
1840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1841 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 /* The number of index positions in the array-bounds type TYPE.
1847 Return 0 if TYPE is NULL. */
1850 desc_arity (struct type *type)
1852 type = desc_base_type (type);
1855 return TYPE_NFIELDS (type) / 2;
1859 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1860 an array descriptor type (representing an unconstrained array
1864 ada_is_direct_array_type (struct type *type)
1868 type = ada_check_typedef (type);
1869 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1870 || ada_is_array_descriptor_type (type));
1873 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1877 ada_is_array_type (struct type *type)
1880 && (TYPE_CODE (type) == TYPE_CODE_PTR
1881 || TYPE_CODE (type) == TYPE_CODE_REF))
1882 type = TYPE_TARGET_TYPE (type);
1883 return ada_is_direct_array_type (type);
1886 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1889 ada_is_simple_array_type (struct type *type)
1893 type = ada_check_typedef (type);
1894 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1895 || (TYPE_CODE (type) == TYPE_CODE_PTR
1896 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1897 == TYPE_CODE_ARRAY));
1900 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903 ada_is_array_descriptor_type (struct type *type)
1905 struct type *data_type = desc_data_target_type (type);
1909 type = ada_check_typedef (type);
1910 return (data_type != NULL
1911 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1912 && desc_arity (desc_bounds_type (type)) > 0);
1915 /* Non-zero iff type is a partially mal-formed GNAT array
1916 descriptor. FIXME: This is to compensate for some problems with
1917 debugging output from GNAT. Re-examine periodically to see if it
1921 ada_is_bogus_array_descriptor (struct type *type)
1925 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1926 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1927 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1928 && !ada_is_array_descriptor_type (type);
1932 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1933 (fat pointer) returns the type of the array data described---specifically,
1934 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1935 in from the descriptor; otherwise, they are left unspecified. If
1936 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1937 returns NULL. The result is simply the type of ARR if ARR is not
1940 ada_type_of_array (struct value *arr, int bounds)
1942 if (ada_is_constrained_packed_array_type (value_type (arr)))
1943 return decode_constrained_packed_array_type (value_type (arr));
1945 if (!ada_is_array_descriptor_type (value_type (arr)))
1946 return value_type (arr);
1950 struct type *array_type =
1951 ada_check_typedef (desc_data_target_type (value_type (arr)));
1953 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1954 TYPE_FIELD_BITSIZE (array_type, 0) =
1955 decode_packed_array_bitsize (value_type (arr));
1961 struct type *elt_type;
1963 struct value *descriptor;
1965 elt_type = ada_array_element_type (value_type (arr), -1);
1966 arity = ada_array_arity (value_type (arr));
1968 if (elt_type == NULL || arity == 0)
1969 return ada_check_typedef (value_type (arr));
1971 descriptor = desc_bounds (arr);
1972 if (value_as_long (descriptor) == 0)
1976 struct type *range_type = alloc_type_copy (value_type (arr));
1977 struct type *array_type = alloc_type_copy (value_type (arr));
1978 struct value *low = desc_one_bound (descriptor, arity, 0);
1979 struct value *high = desc_one_bound (descriptor, arity, 1);
1982 create_static_range_type (range_type, value_type (low),
1983 longest_to_int (value_as_long (low)),
1984 longest_to_int (value_as_long (high)));
1985 elt_type = create_array_type (array_type, elt_type, range_type);
1987 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1989 /* We need to store the element packed bitsize, as well as
1990 recompute the array size, because it was previously
1991 computed based on the unpacked element size. */
1992 LONGEST lo = value_as_long (low);
1993 LONGEST hi = value_as_long (high);
1995 TYPE_FIELD_BITSIZE (elt_type, 0) =
1996 decode_packed_array_bitsize (value_type (arr));
1997 /* If the array has no element, then the size is already
1998 zero, and does not need to be recomputed. */
2002 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2004 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 return lookup_pointer_type (elt_type);
2013 /* If ARR does not represent an array, returns ARR unchanged.
2014 Otherwise, returns either a standard GDB array with bounds set
2015 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2016 GDB array. Returns NULL if ARR is a null fat pointer. */
2019 ada_coerce_to_simple_array_ptr (struct value *arr)
2021 if (ada_is_array_descriptor_type (value_type (arr)))
2023 struct type *arrType = ada_type_of_array (arr, 1);
2025 if (arrType == NULL)
2027 return value_cast (arrType, value_copy (desc_data (arr)));
2029 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2030 return decode_constrained_packed_array (arr);
2035 /* If ARR does not represent an array, returns ARR unchanged.
2036 Otherwise, returns a standard GDB array describing ARR (which may
2037 be ARR itself if it already is in the proper form). */
2040 ada_coerce_to_simple_array (struct value *arr)
2042 if (ada_is_array_descriptor_type (value_type (arr)))
2044 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2047 error (_("Bounds unavailable for null array pointer."));
2048 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2049 return value_ind (arrVal);
2051 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2052 return decode_constrained_packed_array (arr);
2057 /* If TYPE represents a GNAT array type, return it translated to an
2058 ordinary GDB array type (possibly with BITSIZE fields indicating
2059 packing). For other types, is the identity. */
2062 ada_coerce_to_simple_array_type (struct type *type)
2064 if (ada_is_constrained_packed_array_type (type))
2065 return decode_constrained_packed_array_type (type);
2067 if (ada_is_array_descriptor_type (type))
2068 return ada_check_typedef (desc_data_target_type (type));
2073 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076 ada_is_packed_array_type (struct type *type)
2080 type = desc_base_type (type);
2081 type = ada_check_typedef (type);
2083 ada_type_name (type) != NULL
2084 && strstr (ada_type_name (type), "___XP") != NULL;
2087 /* Non-zero iff TYPE represents a standard GNAT constrained
2088 packed-array type. */
2091 ada_is_constrained_packed_array_type (struct type *type)
2093 return ada_is_packed_array_type (type)
2094 && !ada_is_array_descriptor_type (type);
2097 /* Non-zero iff TYPE represents an array descriptor for a
2098 unconstrained packed-array type. */
2101 ada_is_unconstrained_packed_array_type (struct type *type)
2103 return ada_is_packed_array_type (type)
2104 && ada_is_array_descriptor_type (type);
2107 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2108 return the size of its elements in bits. */
2111 decode_packed_array_bitsize (struct type *type)
2113 const char *raw_name;
2117 /* Access to arrays implemented as fat pointers are encoded as a typedef
2118 of the fat pointer type. We need the name of the fat pointer type
2119 to do the decoding, so strip the typedef layer. */
2120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2121 type = ada_typedef_target_type (type);
2123 raw_name = ada_type_name (ada_check_typedef (type));
2125 raw_name = ada_type_name (desc_base_type (type));
2130 tail = strstr (raw_name, "___XP");
2131 gdb_assert (tail != NULL);
2133 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 (_("could not understand bit size information on packed array"));
2143 /* Given that TYPE is a standard GDB array type with all bounds filled
2144 in, and that the element size of its ultimate scalar constituents
2145 (that is, either its elements, or, if it is an array of arrays, its
2146 elements' elements, etc.) is *ELT_BITS, return an identical type,
2147 but with the bit sizes of its elements (and those of any
2148 constituent arrays) recorded in the BITSIZE components of its
2149 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 static struct type *
2153 constrained_packed_array_type (struct type *type, long *elt_bits)
2155 struct type *new_elt_type;
2156 struct type *new_type;
2157 struct type *index_type_desc;
2158 struct type *index_type;
2159 LONGEST low_bound, high_bound;
2161 type = ada_check_typedef (type);
2162 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 index_type_desc = ada_find_parallel_type (type, "___XA");
2166 if (index_type_desc)
2167 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 index_type = TYPE_INDEX_TYPE (type);
2172 new_type = alloc_type_copy (type);
2174 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 create_array_type (new_type, new_elt_type, index_type);
2177 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2178 TYPE_NAME (new_type) = ada_type_name (type);
2180 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2181 low_bound = high_bound = 0;
2182 if (high_bound < low_bound)
2183 *elt_bits = TYPE_LENGTH (new_type) = 0;
2186 *elt_bits *= (high_bound - low_bound + 1);
2187 TYPE_LENGTH (new_type) =
2188 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2191 TYPE_FIXED_INSTANCE (new_type) = 1;
2195 /* The array type encoded by TYPE, where
2196 ada_is_constrained_packed_array_type (TYPE). */
2198 static struct type *
2199 decode_constrained_packed_array_type (struct type *type)
2201 const char *raw_name = ada_type_name (ada_check_typedef (type));
2204 struct type *shadow_type;
2208 raw_name = ada_type_name (desc_base_type (type));
2213 name = (char *) alloca (strlen (raw_name) + 1);
2214 tail = strstr (raw_name, "___XP");
2215 type = desc_base_type (type);
2217 memcpy (name, raw_name, tail - raw_name);
2218 name[tail - raw_name] = '\000';
2220 shadow_type = ada_find_parallel_type_with_name (type, name);
2222 if (shadow_type == NULL)
2224 lim_warning (_("could not find bounds information on packed array"));
2227 CHECK_TYPEDEF (shadow_type);
2229 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2231 lim_warning (_("could not understand bounds "
2232 "information on packed array"));
2236 bits = decode_packed_array_bitsize (type);
2237 return constrained_packed_array_type (shadow_type, &bits);
2240 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2241 array, returns a simple array that denotes that array. Its type is a
2242 standard GDB array type except that the BITSIZEs of the array
2243 target types are set to the number of bits in each element, and the
2244 type length is set appropriately. */
2246 static struct value *
2247 decode_constrained_packed_array (struct value *arr)
2251 /* If our value is a pointer, then dereference it. Likewise if
2252 the value is a reference. Make sure that this operation does not
2253 cause the target type to be fixed, as this would indirectly cause
2254 this array to be decoded. The rest of the routine assumes that
2255 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2256 and "value_ind" routines to perform the dereferencing, as opposed
2257 to using "ada_coerce_ref" or "ada_value_ind". */
2258 arr = coerce_ref (arr);
2259 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2260 arr = value_ind (arr);
2262 type = decode_constrained_packed_array_type (value_type (arr));
2265 error (_("can't unpack array"));
2269 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2270 && ada_is_modular_type (value_type (arr)))
2272 /* This is a (right-justified) modular type representing a packed
2273 array with no wrapper. In order to interpret the value through
2274 the (left-justified) packed array type we just built, we must
2275 first left-justify it. */
2276 int bit_size, bit_pos;
2279 mod = ada_modulus (value_type (arr)) - 1;
2286 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2287 arr = ada_value_primitive_packed_val (arr, NULL,
2288 bit_pos / HOST_CHAR_BIT,
2289 bit_pos % HOST_CHAR_BIT,
2294 return coerce_unspec_val_to_type (arr, type);
2298 /* The value of the element of packed array ARR at the ARITY indices
2299 given in IND. ARR must be a simple array. */
2301 static struct value *
2302 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2305 int bits, elt_off, bit_off;
2306 long elt_total_bit_offset;
2307 struct type *elt_type;
2311 elt_total_bit_offset = 0;
2312 elt_type = ada_check_typedef (value_type (arr));
2313 for (i = 0; i < arity; i += 1)
2315 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2316 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2318 (_("attempt to do packed indexing of "
2319 "something other than a packed array"));
2322 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2323 LONGEST lowerbound, upperbound;
2326 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2328 lim_warning (_("don't know bounds of array"));
2329 lowerbound = upperbound = 0;
2332 idx = pos_atr (ind[i]);
2333 if (idx < lowerbound || idx > upperbound)
2334 lim_warning (_("packed array index %ld out of bounds"),
2336 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2337 elt_total_bit_offset += (idx - lowerbound) * bits;
2338 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2341 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2342 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2344 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2349 /* Non-zero iff TYPE includes negative integer values. */
2352 has_negatives (struct type *type)
2354 switch (TYPE_CODE (type))
2359 return !TYPE_UNSIGNED (type);
2360 case TYPE_CODE_RANGE:
2361 return TYPE_LOW_BOUND (type) < 0;
2366 /* Create a new value of type TYPE from the contents of OBJ starting
2367 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2368 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2369 assigning through the result will set the field fetched from.
2370 VALADDR is ignored unless OBJ is NULL, in which case,
2371 VALADDR+OFFSET must address the start of storage containing the
2372 packed value. The value returned in this case is never an lval.
2373 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2376 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2377 long offset, int bit_offset, int bit_size,
2381 int src, /* Index into the source area */
2382 targ, /* Index into the target area */
2383 srcBitsLeft, /* Number of source bits left to move */
2384 nsrc, ntarg, /* Number of source and target bytes */
2385 unusedLS, /* Number of bits in next significant
2386 byte of source that are unused */
2387 accumSize; /* Number of meaningful bits in accum */
2388 unsigned char *bytes; /* First byte containing data to unpack */
2389 unsigned char *unpacked;
2390 unsigned long accum; /* Staging area for bits being transferred */
2392 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2393 /* Transmit bytes from least to most significant; delta is the direction
2394 the indices move. */
2395 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2397 type = ada_check_typedef (type);
2401 v = allocate_value (type);
2402 bytes = (unsigned char *) (valaddr + offset);
2404 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2406 v = value_at (type, value_address (obj));
2407 type = value_type (v);
2408 bytes = (unsigned char *) alloca (len);
2409 read_memory (value_address (v) + offset, bytes, len);
2413 v = allocate_value (type);
2414 bytes = (unsigned char *) value_contents (obj) + offset;
2419 long new_offset = offset;
2421 set_value_component_location (v, obj);
2422 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2423 set_value_bitsize (v, bit_size);
2424 if (value_bitpos (v) >= HOST_CHAR_BIT)
2427 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2429 set_value_offset (v, new_offset);
2431 /* Also set the parent value. This is needed when trying to
2432 assign a new value (in inferior memory). */
2433 set_value_parent (v, obj);
2436 set_value_bitsize (v, bit_size);
2437 unpacked = (unsigned char *) value_contents (v);
2439 srcBitsLeft = bit_size;
2441 ntarg = TYPE_LENGTH (type);
2445 memset (unpacked, 0, TYPE_LENGTH (type));
2448 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2451 if (has_negatives (type)
2452 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2456 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2459 switch (TYPE_CODE (type))
2461 case TYPE_CODE_ARRAY:
2462 case TYPE_CODE_UNION:
2463 case TYPE_CODE_STRUCT:
2464 /* Non-scalar values must be aligned at a byte boundary... */
2466 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2467 /* ... And are placed at the beginning (most-significant) bytes
2469 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2474 targ = TYPE_LENGTH (type) - 1;
2480 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2483 unusedLS = bit_offset;
2486 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2493 /* Mask for removing bits of the next source byte that are not
2494 part of the value. */
2495 unsigned int unusedMSMask =
2496 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2498 /* Sign-extend bits for this byte. */
2499 unsigned int signMask = sign & ~unusedMSMask;
2502 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2503 accumSize += HOST_CHAR_BIT - unusedLS;
2504 if (accumSize >= HOST_CHAR_BIT)
2506 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2507 accumSize -= HOST_CHAR_BIT;
2508 accum >>= HOST_CHAR_BIT;
2512 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2519 accum |= sign << accumSize;
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2530 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2531 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2534 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2535 int src_offset, int n, int bits_big_endian_p)
2537 unsigned int accum, mask;
2538 int accum_bits, chunk_size;
2540 target += targ_offset / HOST_CHAR_BIT;
2541 targ_offset %= HOST_CHAR_BIT;
2542 source += src_offset / HOST_CHAR_BIT;
2543 src_offset %= HOST_CHAR_BIT;
2544 if (bits_big_endian_p)
2546 accum = (unsigned char) *source;
2548 accum_bits = HOST_CHAR_BIT - src_offset;
2554 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2555 accum_bits += HOST_CHAR_BIT;
2557 chunk_size = HOST_CHAR_BIT - targ_offset;
2560 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2561 mask = ((1 << chunk_size) - 1) << unused_right;
2564 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2566 accum_bits -= chunk_size;
2573 accum = (unsigned char) *source >> src_offset;
2575 accum_bits = HOST_CHAR_BIT - src_offset;
2579 accum = accum + ((unsigned char) *source << accum_bits);
2580 accum_bits += HOST_CHAR_BIT;
2582 chunk_size = HOST_CHAR_BIT - targ_offset;
2585 mask = ((1 << chunk_size) - 1) << targ_offset;
2586 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2588 accum_bits -= chunk_size;
2589 accum >>= chunk_size;
2596 /* Store the contents of FROMVAL into the location of TOVAL.
2597 Return a new value with the location of TOVAL and contents of
2598 FROMVAL. Handles assignment into packed fields that have
2599 floating-point or non-scalar types. */
2601 static struct value *
2602 ada_value_assign (struct value *toval, struct value *fromval)
2604 struct type *type = value_type (toval);
2605 int bits = value_bitsize (toval);
2607 toval = ada_coerce_ref (toval);
2608 fromval = ada_coerce_ref (fromval);
2610 if (ada_is_direct_array_type (value_type (toval)))
2611 toval = ada_coerce_to_simple_array (toval);
2612 if (ada_is_direct_array_type (value_type (fromval)))
2613 fromval = ada_coerce_to_simple_array (fromval);
2615 if (!deprecated_value_modifiable (toval))
2616 error (_("Left operand of assignment is not a modifiable lvalue."));
2618 if (VALUE_LVAL (toval) == lval_memory
2620 && (TYPE_CODE (type) == TYPE_CODE_FLT
2621 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2623 int len = (value_bitpos (toval)
2624 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2626 gdb_byte *buffer = alloca (len);
2628 CORE_ADDR to_addr = value_address (toval);
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 fromval = value_cast (type, fromval);
2633 read_memory (to_addr, buffer, len);
2634 from_size = value_bitsize (fromval);
2636 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2637 if (gdbarch_bits_big_endian (get_type_arch (type)))
2638 move_bits (buffer, value_bitpos (toval),
2639 value_contents (fromval), from_size - bits, bits, 1);
2641 move_bits (buffer, value_bitpos (toval),
2642 value_contents (fromval), 0, bits, 0);
2643 write_memory_with_notification (to_addr, buffer, len);
2645 val = value_copy (toval);
2646 memcpy (value_contents_raw (val), value_contents (fromval),
2647 TYPE_LENGTH (type));
2648 deprecated_set_value_type (val, type);
2653 return value_assign (toval, fromval);
2657 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2658 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2659 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2660 * COMPONENT, and not the inferior's memory. The current contents
2661 * of COMPONENT are ignored. */
2663 value_assign_to_component (struct value *container, struct value *component,
2666 LONGEST offset_in_container =
2667 (LONGEST) (value_address (component) - value_address (container));
2668 int bit_offset_in_container =
2669 value_bitpos (component) - value_bitpos (container);
2672 val = value_cast (value_type (component), val);
2674 if (value_bitsize (component) == 0)
2675 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2677 bits = value_bitsize (component);
2679 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2680 move_bits (value_contents_writeable (container) + offset_in_container,
2681 value_bitpos (container) + bit_offset_in_container,
2682 value_contents (val),
2683 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2686 move_bits (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), 0, bits, 0);
2691 /* The value of the element of array ARR at the ARITY indices given in IND.
2692 ARR may be either a simple array, GNAT array descriptor, or pointer
2696 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2700 struct type *elt_type;
2702 elt = ada_coerce_to_simple_array (arr);
2704 elt_type = ada_check_typedef (value_type (elt));
2705 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2707 return value_subscript_packed (elt, arity, ind);
2709 for (k = 0; k < arity; k += 1)
2711 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2712 error (_("too many subscripts (%d expected)"), k);
2713 elt = value_subscript (elt, pos_atr (ind[k]));
2718 /* Assuming ARR is a pointer to a GDB array, the value of the element
2719 of *ARR at the ARITY indices given in IND.
2720 Does not read the entire array into memory. */
2722 static struct value *
2723 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2727 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2729 for (k = 0; k < arity; k += 1)
2733 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2734 error (_("too many subscripts (%d expected)"), k);
2735 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2737 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2738 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2739 type = TYPE_TARGET_TYPE (type);
2742 return value_ind (arr);
2745 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2746 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2747 elements starting at index LOW. The lower bound of this array is LOW, as
2749 static struct value *
2750 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2753 struct type *type0 = ada_check_typedef (type);
2754 CORE_ADDR base = value_as_address (array_ptr)
2755 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2756 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2757 struct type *index_type
2758 = create_static_range_type (NULL,
2759 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2761 struct type *slice_type =
2762 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2764 return value_at_lazy (slice_type, base);
2768 static struct value *
2769 ada_value_slice (struct value *array, int low, int high)
2771 struct type *type = ada_check_typedef (value_type (array));
2772 struct type *index_type
2773 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2774 struct type *slice_type =
2775 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2777 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2780 /* If type is a record type in the form of a standard GNAT array
2781 descriptor, returns the number of dimensions for type. If arr is a
2782 simple array, returns the number of "array of"s that prefix its
2783 type designation. Otherwise, returns 0. */
2786 ada_array_arity (struct type *type)
2793 type = desc_base_type (type);
2796 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2797 return desc_arity (desc_bounds_type (type));
2799 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2802 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2808 /* If TYPE is a record type in the form of a standard GNAT array
2809 descriptor or a simple array type, returns the element type for
2810 TYPE after indexing by NINDICES indices, or by all indices if
2811 NINDICES is -1. Otherwise, returns NULL. */
2814 ada_array_element_type (struct type *type, int nindices)
2816 type = desc_base_type (type);
2818 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2821 struct type *p_array_type;
2823 p_array_type = desc_data_target_type (type);
2825 k = ada_array_arity (type);
2829 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2830 if (nindices >= 0 && k > nindices)
2832 while (k > 0 && p_array_type != NULL)
2834 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2837 return p_array_type;
2839 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2843 type = TYPE_TARGET_TYPE (type);
2852 /* The type of nth index in arrays of given type (n numbering from 1).
2853 Does not examine memory. Throws an error if N is invalid or TYPE
2854 is not an array type. NAME is the name of the Ada attribute being
2855 evaluated ('range, 'first, 'last, or 'length); it is used in building
2856 the error message. */
2858 static struct type *
2859 ada_index_type (struct type *type, int n, const char *name)
2861 struct type *result_type;
2863 type = desc_base_type (type);
2865 if (n < 0 || n > ada_array_arity (type))
2866 error (_("invalid dimension number to '%s"), name);
2868 if (ada_is_simple_array_type (type))
2872 for (i = 1; i < n; i += 1)
2873 type = TYPE_TARGET_TYPE (type);
2874 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2875 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2876 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2877 perhaps stabsread.c would make more sense. */
2878 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2883 result_type = desc_index_type (desc_bounds_type (type), n);
2884 if (result_type == NULL)
2885 error (_("attempt to take bound of something that is not an array"));
2891 /* Given that arr is an array type, returns the lower bound of the
2892 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2893 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2894 array-descriptor type. It works for other arrays with bounds supplied
2895 by run-time quantities other than discriminants. */
2898 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2900 struct type *type, *index_type_desc, *index_type;
2903 gdb_assert (which == 0 || which == 1);
2905 if (ada_is_constrained_packed_array_type (arr_type))
2906 arr_type = decode_constrained_packed_array_type (arr_type);
2908 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2909 return (LONGEST) - which;
2911 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2912 type = TYPE_TARGET_TYPE (arr_type);
2916 index_type_desc = ada_find_parallel_type (type, "___XA");
2917 ada_fixup_array_indexes_type (index_type_desc);
2918 if (index_type_desc != NULL)
2919 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2923 struct type *elt_type = check_typedef (type);
2925 for (i = 1; i < n; i++)
2926 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2928 index_type = TYPE_INDEX_TYPE (elt_type);
2932 (LONGEST) (which == 0
2933 ? ada_discrete_type_low_bound (index_type)
2934 : ada_discrete_type_high_bound (index_type));
2937 /* Given that arr is an array value, returns the lower bound of the
2938 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2939 WHICH is 1. This routine will also work for arrays with bounds
2940 supplied by run-time quantities other than discriminants. */
2943 ada_array_bound (struct value *arr, int n, int which)
2945 struct type *arr_type;
2947 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2948 arr = value_ind (arr);
2949 arr_type = value_enclosing_type (arr);
2951 if (ada_is_constrained_packed_array_type (arr_type))
2952 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2953 else if (ada_is_simple_array_type (arr_type))
2954 return ada_array_bound_from_type (arr_type, n, which);
2956 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2959 /* Given that arr is an array value, returns the length of the
2960 nth index. This routine will also work for arrays with bounds
2961 supplied by run-time quantities other than discriminants.
2962 Does not work for arrays indexed by enumeration types with representation
2963 clauses at the moment. */
2966 ada_array_length (struct value *arr, int n)
2968 struct type *arr_type;
2970 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2971 arr = value_ind (arr);
2972 arr_type = value_enclosing_type (arr);
2974 if (ada_is_constrained_packed_array_type (arr_type))
2975 return ada_array_length (decode_constrained_packed_array (arr), n);
2977 if (ada_is_simple_array_type (arr_type))
2978 return (ada_array_bound_from_type (arr_type, n, 1)
2979 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2981 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2982 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2985 /* An empty array whose type is that of ARR_TYPE (an array type),
2986 with bounds LOW to LOW-1. */
2988 static struct value *
2989 empty_array (struct type *arr_type, int low)
2991 struct type *arr_type0 = ada_check_typedef (arr_type);
2992 struct type *index_type
2993 = create_static_range_type
2994 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2995 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2997 return allocate_value (create_array_type (NULL, elt_type, index_type));
3001 /* Name resolution */
3003 /* The "decoded" name for the user-definable Ada operator corresponding
3007 ada_decoded_op_name (enum exp_opcode op)
3011 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3013 if (ada_opname_table[i].op == op)
3014 return ada_opname_table[i].decoded;
3016 error (_("Could not find operator name for opcode"));
3020 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3021 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3022 undefined namespace) and converts operators that are
3023 user-defined into appropriate function calls. If CONTEXT_TYPE is
3024 non-null, it provides a preferred result type [at the moment, only
3025 type void has any effect---causing procedures to be preferred over
3026 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3027 return type is preferred. May change (expand) *EXP. */
3030 resolve (struct expression **expp, int void_context_p)
3032 struct type *context_type = NULL;
3036 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3038 resolve_subexp (expp, &pc, 1, context_type);
3041 /* Resolve the operator of the subexpression beginning at
3042 position *POS of *EXPP. "Resolving" consists of replacing
3043 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3044 with their resolutions, replacing built-in operators with
3045 function calls to user-defined operators, where appropriate, and,
3046 when DEPROCEDURE_P is non-zero, converting function-valued variables
3047 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3048 are as in ada_resolve, above. */
3050 static struct value *
3051 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3052 struct type *context_type)
3056 struct expression *exp; /* Convenience: == *expp. */
3057 enum exp_opcode op = (*expp)->elts[pc].opcode;
3058 struct value **argvec; /* Vector of operand types (alloca'ed). */
3059 int nargs; /* Number of operands. */
3066 /* Pass one: resolve operands, saving their types and updating *pos,
3071 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3072 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3077 resolve_subexp (expp, pos, 0, NULL);
3079 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3084 resolve_subexp (expp, pos, 0, NULL);
3089 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3092 case OP_ATR_MODULUS:
3102 case TERNOP_IN_RANGE:
3103 case BINOP_IN_BOUNDS:
3109 case OP_DISCRETE_RANGE:
3111 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3120 arg1 = resolve_subexp (expp, pos, 0, NULL);
3122 resolve_subexp (expp, pos, 1, NULL);
3124 resolve_subexp (expp, pos, 1, value_type (arg1));
3141 case BINOP_LOGICAL_AND:
3142 case BINOP_LOGICAL_OR:
3143 case BINOP_BITWISE_AND:
3144 case BINOP_BITWISE_IOR:
3145 case BINOP_BITWISE_XOR:
3148 case BINOP_NOTEQUAL:
3155 case BINOP_SUBSCRIPT:
3163 case UNOP_LOGICAL_NOT:
3179 case OP_INTERNALVAR:
3189 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3192 case STRUCTOP_STRUCT:
3193 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3206 error (_("Unexpected operator during name resolution"));
3209 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3210 for (i = 0; i < nargs; i += 1)
3211 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3215 /* Pass two: perform any resolution on principal operator. */
3222 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3224 struct ada_symbol_info *candidates;
3228 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3229 (exp->elts[pc + 2].symbol),
3230 exp->elts[pc + 1].block, VAR_DOMAIN,
3233 if (n_candidates > 1)
3235 /* Types tend to get re-introduced locally, so if there
3236 are any local symbols that are not types, first filter
3239 for (j = 0; j < n_candidates; j += 1)
3240 switch (SYMBOL_CLASS (candidates[j].sym))
3245 case LOC_REGPARM_ADDR:
3253 if (j < n_candidates)
3256 while (j < n_candidates)
3258 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3260 candidates[j] = candidates[n_candidates - 1];
3269 if (n_candidates == 0)
3270 error (_("No definition found for %s"),
3271 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3272 else if (n_candidates == 1)
3274 else if (deprocedure_p
3275 && !is_nonfunction (candidates, n_candidates))
3277 i = ada_resolve_function
3278 (candidates, n_candidates, NULL, 0,
3279 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3282 error (_("Could not find a match for %s"),
3283 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3287 printf_filtered (_("Multiple matches for %s\n"),
3288 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3289 user_select_syms (candidates, n_candidates, 1);
3293 exp->elts[pc + 1].block = candidates[i].block;
3294 exp->elts[pc + 2].symbol = candidates[i].sym;
3295 if (innermost_block == NULL
3296 || contained_in (candidates[i].block, innermost_block))
3297 innermost_block = candidates[i].block;
3301 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3304 replace_operator_with_call (expp, pc, 0, 0,
3305 exp->elts[pc + 2].symbol,
3306 exp->elts[pc + 1].block);
3313 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3314 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3316 struct ada_symbol_info *candidates;
3320 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3321 (exp->elts[pc + 5].symbol),
3322 exp->elts[pc + 4].block, VAR_DOMAIN,
3324 if (n_candidates == 1)
3328 i = ada_resolve_function
3329 (candidates, n_candidates,
3331 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3334 error (_("Could not find a match for %s"),
3335 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3338 exp->elts[pc + 4].block = candidates[i].block;
3339 exp->elts[pc + 5].symbol = candidates[i].sym;
3340 if (innermost_block == NULL
3341 || contained_in (candidates[i].block, innermost_block))
3342 innermost_block = candidates[i].block;
3353 case BINOP_BITWISE_AND:
3354 case BINOP_BITWISE_IOR:
3355 case BINOP_BITWISE_XOR:
3357 case BINOP_NOTEQUAL:
3365 case UNOP_LOGICAL_NOT:
3367 if (possible_user_operator_p (op, argvec))
3369 struct ada_symbol_info *candidates;
3373 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3374 (struct block *) NULL, VAR_DOMAIN,
3376 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3377 ada_decoded_op_name (op), NULL);
3381 replace_operator_with_call (expp, pc, nargs, 1,
3382 candidates[i].sym, candidates[i].block);
3393 return evaluate_subexp_type (exp, pos);
3396 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3397 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3399 /* The term "match" here is rather loose. The match is heuristic and
3403 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3405 ftype = ada_check_typedef (ftype);
3406 atype = ada_check_typedef (atype);
3408 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3409 ftype = TYPE_TARGET_TYPE (ftype);
3410 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3411 atype = TYPE_TARGET_TYPE (atype);
3413 switch (TYPE_CODE (ftype))
3416 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3418 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3419 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3420 TYPE_TARGET_TYPE (atype), 0);
3423 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3425 case TYPE_CODE_ENUM:
3426 case TYPE_CODE_RANGE:
3427 switch (TYPE_CODE (atype))
3430 case TYPE_CODE_ENUM:
3431 case TYPE_CODE_RANGE:
3437 case TYPE_CODE_ARRAY:
3438 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3439 || ada_is_array_descriptor_type (atype));
3441 case TYPE_CODE_STRUCT:
3442 if (ada_is_array_descriptor_type (ftype))
3443 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3444 || ada_is_array_descriptor_type (atype));
3446 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3447 && !ada_is_array_descriptor_type (atype));
3449 case TYPE_CODE_UNION:
3451 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3455 /* Return non-zero if the formals of FUNC "sufficiently match" the
3456 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3457 may also be an enumeral, in which case it is treated as a 0-
3458 argument function. */
3461 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3464 struct type *func_type = SYMBOL_TYPE (func);
3466 if (SYMBOL_CLASS (func) == LOC_CONST
3467 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3468 return (n_actuals == 0);
3469 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3472 if (TYPE_NFIELDS (func_type) != n_actuals)
3475 for (i = 0; i < n_actuals; i += 1)
3477 if (actuals[i] == NULL)
3481 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3483 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3485 if (!ada_type_match (ftype, atype, 1))
3492 /* False iff function type FUNC_TYPE definitely does not produce a value
3493 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3494 FUNC_TYPE is not a valid function type with a non-null return type
3495 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3498 return_match (struct type *func_type, struct type *context_type)
3500 struct type *return_type;
3502 if (func_type == NULL)
3505 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3506 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3508 return_type = get_base_type (func_type);
3509 if (return_type == NULL)
3512 context_type = get_base_type (context_type);
3514 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3515 return context_type == NULL || return_type == context_type;
3516 else if (context_type == NULL)
3517 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3519 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3523 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3524 function (if any) that matches the types of the NARGS arguments in
3525 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3526 that returns that type, then eliminate matches that don't. If
3527 CONTEXT_TYPE is void and there is at least one match that does not
3528 return void, eliminate all matches that do.
3530 Asks the user if there is more than one match remaining. Returns -1
3531 if there is no such symbol or none is selected. NAME is used
3532 solely for messages. May re-arrange and modify SYMS in
3533 the process; the index returned is for the modified vector. */
3536 ada_resolve_function (struct ada_symbol_info syms[],
3537 int nsyms, struct value **args, int nargs,
3538 const char *name, struct type *context_type)
3542 int m; /* Number of hits */
3545 /* In the first pass of the loop, we only accept functions matching
3546 context_type. If none are found, we add a second pass of the loop
3547 where every function is accepted. */
3548 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3550 for (k = 0; k < nsyms; k += 1)
3552 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3554 if (ada_args_match (syms[k].sym, args, nargs)
3555 && (fallback || return_match (type, context_type)))
3567 printf_filtered (_("Multiple matches for %s\n"), name);
3568 user_select_syms (syms, m, 1);
3574 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3575 in a listing of choices during disambiguation (see sort_choices, below).
3576 The idea is that overloadings of a subprogram name from the
3577 same package should sort in their source order. We settle for ordering
3578 such symbols by their trailing number (__N or $N). */
3581 encoded_ordered_before (const char *N0, const char *N1)
3585 else if (N0 == NULL)
3591 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3593 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3595 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3596 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3601 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3604 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3606 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3607 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3609 return (strcmp (N0, N1) < 0);
3613 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3617 sort_choices (struct ada_symbol_info syms[], int nsyms)
3621 for (i = 1; i < nsyms; i += 1)
3623 struct ada_symbol_info sym = syms[i];
3626 for (j = i - 1; j >= 0; j -= 1)
3628 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3629 SYMBOL_LINKAGE_NAME (sym.sym)))
3631 syms[j + 1] = syms[j];
3637 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3638 by asking the user (if necessary), returning the number selected,
3639 and setting the first elements of SYMS items. Error if no symbols
3642 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3643 to be re-integrated one of these days. */
3646 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3649 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3651 int first_choice = (max_results == 1) ? 1 : 2;
3652 const char *select_mode = multiple_symbols_select_mode ();
3654 if (max_results < 1)
3655 error (_("Request to select 0 symbols!"));
3659 if (select_mode == multiple_symbols_cancel)
3661 canceled because the command is ambiguous\n\
3662 See set/show multiple-symbol."));
3664 /* If select_mode is "all", then return all possible symbols.
3665 Only do that if more than one symbol can be selected, of course.
3666 Otherwise, display the menu as usual. */
3667 if (select_mode == multiple_symbols_all && max_results > 1)
3670 printf_unfiltered (_("[0] cancel\n"));
3671 if (max_results > 1)
3672 printf_unfiltered (_("[1] all\n"));
3674 sort_choices (syms, nsyms);
3676 for (i = 0; i < nsyms; i += 1)
3678 if (syms[i].sym == NULL)
3681 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3683 struct symtab_and_line sal =
3684 find_function_start_sal (syms[i].sym, 1);
3686 if (sal.symtab == NULL)
3687 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3689 SYMBOL_PRINT_NAME (syms[i].sym),
3692 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3693 SYMBOL_PRINT_NAME (syms[i].sym),
3694 symtab_to_filename_for_display (sal.symtab),
3701 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3702 && SYMBOL_TYPE (syms[i].sym) != NULL
3703 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3704 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3706 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3707 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3709 SYMBOL_PRINT_NAME (syms[i].sym),
3710 symtab_to_filename_for_display (symtab),
3711 SYMBOL_LINE (syms[i].sym));
3712 else if (is_enumeral
3713 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3715 printf_unfiltered (("[%d] "), i + first_choice);
3716 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3717 gdb_stdout, -1, 0, &type_print_raw_options);
3718 printf_unfiltered (_("'(%s) (enumeral)\n"),
3719 SYMBOL_PRINT_NAME (syms[i].sym));
3721 else if (symtab != NULL)
3722 printf_unfiltered (is_enumeral
3723 ? _("[%d] %s in %s (enumeral)\n")
3724 : _("[%d] %s at %s:?\n"),
3726 SYMBOL_PRINT_NAME (syms[i].sym),
3727 symtab_to_filename_for_display (symtab));
3729 printf_unfiltered (is_enumeral
3730 ? _("[%d] %s (enumeral)\n")
3731 : _("[%d] %s at ?\n"),
3733 SYMBOL_PRINT_NAME (syms[i].sym));
3737 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3740 for (i = 0; i < n_chosen; i += 1)
3741 syms[i] = syms[chosen[i]];
3746 /* Read and validate a set of numeric choices from the user in the
3747 range 0 .. N_CHOICES-1. Place the results in increasing
3748 order in CHOICES[0 .. N-1], and return N.
3750 The user types choices as a sequence of numbers on one line
3751 separated by blanks, encoding them as follows:
3753 + A choice of 0 means to cancel the selection, throwing an error.
3754 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3755 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3757 The user is not allowed to choose more than MAX_RESULTS values.
3759 ANNOTATION_SUFFIX, if present, is used to annotate the input
3760 prompts (for use with the -f switch). */
3763 get_selections (int *choices, int n_choices, int max_results,
3764 int is_all_choice, char *annotation_suffix)
3769 int first_choice = is_all_choice ? 2 : 1;
3771 prompt = getenv ("PS2");
3775 args = command_line_input (prompt, 0, annotation_suffix);
3778 error_no_arg (_("one or more choice numbers"));
3782 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3783 order, as given in args. Choices are validated. */
3789 args = skip_spaces (args);
3790 if (*args == '\0' && n_chosen == 0)
3791 error_no_arg (_("one or more choice numbers"));
3792 else if (*args == '\0')
3795 choice = strtol (args, &args2, 10);
3796 if (args == args2 || choice < 0
3797 || choice > n_choices + first_choice - 1)
3798 error (_("Argument must be choice number"));
3802 error (_("cancelled"));
3804 if (choice < first_choice)
3806 n_chosen = n_choices;
3807 for (j = 0; j < n_choices; j += 1)
3811 choice -= first_choice;
3813 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3817 if (j < 0 || choice != choices[j])
3821 for (k = n_chosen - 1; k > j; k -= 1)
3822 choices[k + 1] = choices[k];
3823 choices[j + 1] = choice;
3828 if (n_chosen > max_results)
3829 error (_("Select no more than %d of the above"), max_results);
3834 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3835 on the function identified by SYM and BLOCK, and taking NARGS
3836 arguments. Update *EXPP as needed to hold more space. */
3839 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3840 int oplen, struct symbol *sym,
3841 const struct block *block)
3843 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3844 symbol, -oplen for operator being replaced). */
3845 struct expression *newexp = (struct expression *)
3846 xzalloc (sizeof (struct expression)
3847 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3848 struct expression *exp = *expp;
3850 newexp->nelts = exp->nelts + 7 - oplen;
3851 newexp->language_defn = exp->language_defn;
3852 newexp->gdbarch = exp->gdbarch;
3853 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3854 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3855 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3857 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3858 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3860 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3861 newexp->elts[pc + 4].block = block;
3862 newexp->elts[pc + 5].symbol = sym;
3868 /* Type-class predicates */
3870 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3874 numeric_type_p (struct type *type)
3880 switch (TYPE_CODE (type))
3885 case TYPE_CODE_RANGE:
3886 return (type == TYPE_TARGET_TYPE (type)
3887 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3894 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3897 integer_type_p (struct type *type)
3903 switch (TYPE_CODE (type))
3907 case TYPE_CODE_RANGE:
3908 return (type == TYPE_TARGET_TYPE (type)
3909 || integer_type_p (TYPE_TARGET_TYPE (type)));
3916 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3919 scalar_type_p (struct type *type)
3925 switch (TYPE_CODE (type))
3928 case TYPE_CODE_RANGE:
3929 case TYPE_CODE_ENUM:
3938 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3941 discrete_type_p (struct type *type)
3947 switch (TYPE_CODE (type))
3950 case TYPE_CODE_RANGE:
3951 case TYPE_CODE_ENUM:
3952 case TYPE_CODE_BOOL:
3960 /* Returns non-zero if OP with operands in the vector ARGS could be
3961 a user-defined function. Errs on the side of pre-defined operators
3962 (i.e., result 0). */
3965 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3967 struct type *type0 =
3968 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3969 struct type *type1 =
3970 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3984 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3988 case BINOP_BITWISE_AND:
3989 case BINOP_BITWISE_IOR:
3990 case BINOP_BITWISE_XOR:
3991 return (!(integer_type_p (type0) && integer_type_p (type1)));
3994 case BINOP_NOTEQUAL:
3999 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4002 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4005 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4009 case UNOP_LOGICAL_NOT:
4011 return (!numeric_type_p (type0));
4020 1. In the following, we assume that a renaming type's name may
4021 have an ___XD suffix. It would be nice if this went away at some
4023 2. We handle both the (old) purely type-based representation of
4024 renamings and the (new) variable-based encoding. At some point,
4025 it is devoutly to be hoped that the former goes away
4026 (FIXME: hilfinger-2007-07-09).
4027 3. Subprogram renamings are not implemented, although the XRS
4028 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4030 /* If SYM encodes a renaming,
4032 <renaming> renames <renamed entity>,
4034 sets *LEN to the length of the renamed entity's name,
4035 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4036 the string describing the subcomponent selected from the renamed
4037 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4038 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4039 are undefined). Otherwise, returns a value indicating the category
4040 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4041 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4042 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4043 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4044 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4045 may be NULL, in which case they are not assigned.
4047 [Currently, however, GCC does not generate subprogram renamings.] */
4049 enum ada_renaming_category
4050 ada_parse_renaming (struct symbol *sym,
4051 const char **renamed_entity, int *len,
4052 const char **renaming_expr)
4054 enum ada_renaming_category kind;
4059 return ADA_NOT_RENAMING;
4060 switch (SYMBOL_CLASS (sym))
4063 return ADA_NOT_RENAMING;
4065 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4066 renamed_entity, len, renaming_expr);
4070 case LOC_OPTIMIZED_OUT:
4071 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4073 return ADA_NOT_RENAMING;
4077 kind = ADA_OBJECT_RENAMING;
4081 kind = ADA_EXCEPTION_RENAMING;
4085 kind = ADA_PACKAGE_RENAMING;
4089 kind = ADA_SUBPROGRAM_RENAMING;
4093 return ADA_NOT_RENAMING;
4097 if (renamed_entity != NULL)
4098 *renamed_entity = info;
4099 suffix = strstr (info, "___XE");
4100 if (suffix == NULL || suffix == info)
4101 return ADA_NOT_RENAMING;
4103 *len = strlen (info) - strlen (suffix);
4105 if (renaming_expr != NULL)
4106 *renaming_expr = suffix;
4110 /* Assuming TYPE encodes a renaming according to the old encoding in
4111 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4112 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4113 ADA_NOT_RENAMING otherwise. */
4114 static enum ada_renaming_category
4115 parse_old_style_renaming (struct type *type,
4116 const char **renamed_entity, int *len,
4117 const char **renaming_expr)
4119 enum ada_renaming_category kind;
4124 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4125 || TYPE_NFIELDS (type) != 1)
4126 return ADA_NOT_RENAMING;
4128 name = type_name_no_tag (type);
4130 return ADA_NOT_RENAMING;
4132 name = strstr (name, "___XR");
4134 return ADA_NOT_RENAMING;
4139 kind = ADA_OBJECT_RENAMING;
4142 kind = ADA_EXCEPTION_RENAMING;
4145 kind = ADA_PACKAGE_RENAMING;
4148 kind = ADA_SUBPROGRAM_RENAMING;
4151 return ADA_NOT_RENAMING;
4154 info = TYPE_FIELD_NAME (type, 0);
4156 return ADA_NOT_RENAMING;
4157 if (renamed_entity != NULL)
4158 *renamed_entity = info;
4159 suffix = strstr (info, "___XE");
4160 if (renaming_expr != NULL)
4161 *renaming_expr = suffix + 5;
4162 if (suffix == NULL || suffix == info)
4163 return ADA_NOT_RENAMING;
4165 *len = suffix - info;
4169 /* Compute the value of the given RENAMING_SYM, which is expected to
4170 be a symbol encoding a renaming expression. BLOCK is the block
4171 used to evaluate the renaming. */
4173 static struct value *
4174 ada_read_renaming_var_value (struct symbol *renaming_sym,
4175 const struct block *block)
4177 const char *sym_name;
4178 struct expression *expr;
4179 struct value *value;
4180 struct cleanup *old_chain = NULL;
4182 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4183 expr = parse_exp_1 (&sym_name, 0, block, 0);
4184 old_chain = make_cleanup (free_current_contents, &expr);
4185 value = evaluate_expression (expr);
4187 do_cleanups (old_chain);
4192 /* Evaluation: Function Calls */
4194 /* Return an lvalue containing the value VAL. This is the identity on
4195 lvalues, and otherwise has the side-effect of allocating memory
4196 in the inferior where a copy of the value contents is copied. */
4198 static struct value *
4199 ensure_lval (struct value *val)
4201 if (VALUE_LVAL (val) == not_lval
4202 || VALUE_LVAL (val) == lval_internalvar)
4204 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4205 const CORE_ADDR addr =
4206 value_as_long (value_allocate_space_in_inferior (len));
4208 set_value_address (val, addr);
4209 VALUE_LVAL (val) = lval_memory;
4210 write_memory (addr, value_contents (val), len);
4216 /* Return the value ACTUAL, converted to be an appropriate value for a
4217 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4218 allocating any necessary descriptors (fat pointers), or copies of
4219 values not residing in memory, updating it as needed. */
4222 ada_convert_actual (struct value *actual, struct type *formal_type0)
4224 struct type *actual_type = ada_check_typedef (value_type (actual));
4225 struct type *formal_type = ada_check_typedef (formal_type0);
4226 struct type *formal_target =
4227 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4228 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4229 struct type *actual_target =
4230 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4231 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4233 if (ada_is_array_descriptor_type (formal_target)
4234 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4235 return make_array_descriptor (formal_type, actual);
4236 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4237 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4239 struct value *result;
4241 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4242 && ada_is_array_descriptor_type (actual_target))
4243 result = desc_data (actual);
4244 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4246 if (VALUE_LVAL (actual) != lval_memory)
4250 actual_type = ada_check_typedef (value_type (actual));
4251 val = allocate_value (actual_type);
4252 memcpy ((char *) value_contents_raw (val),
4253 (char *) value_contents (actual),
4254 TYPE_LENGTH (actual_type));
4255 actual = ensure_lval (val);
4257 result = value_addr (actual);
4261 return value_cast_pointers (formal_type, result, 0);
4263 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4264 return ada_value_ind (actual);
4269 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4270 type TYPE. This is usually an inefficient no-op except on some targets
4271 (such as AVR) where the representation of a pointer and an address
4275 value_pointer (struct value *value, struct type *type)
4277 struct gdbarch *gdbarch = get_type_arch (type);
4278 unsigned len = TYPE_LENGTH (type);
4279 gdb_byte *buf = alloca (len);
4282 addr = value_address (value);
4283 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4284 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4289 /* Push a descriptor of type TYPE for array value ARR on the stack at
4290 *SP, updating *SP to reflect the new descriptor. Return either
4291 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4292 to-descriptor type rather than a descriptor type), a struct value *
4293 representing a pointer to this descriptor. */
4295 static struct value *
4296 make_array_descriptor (struct type *type, struct value *arr)
4298 struct type *bounds_type = desc_bounds_type (type);
4299 struct type *desc_type = desc_base_type (type);
4300 struct value *descriptor = allocate_value (desc_type);
4301 struct value *bounds = allocate_value (bounds_type);
4304 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4307 modify_field (value_type (bounds), value_contents_writeable (bounds),
4308 ada_array_bound (arr, i, 0),
4309 desc_bound_bitpos (bounds_type, i, 0),
4310 desc_bound_bitsize (bounds_type, i, 0));
4311 modify_field (value_type (bounds), value_contents_writeable (bounds),
4312 ada_array_bound (arr, i, 1),
4313 desc_bound_bitpos (bounds_type, i, 1),
4314 desc_bound_bitsize (bounds_type, i, 1));
4317 bounds = ensure_lval (bounds);
4319 modify_field (value_type (descriptor),
4320 value_contents_writeable (descriptor),
4321 value_pointer (ensure_lval (arr),
4322 TYPE_FIELD_TYPE (desc_type, 0)),
4323 fat_pntr_data_bitpos (desc_type),
4324 fat_pntr_data_bitsize (desc_type));
4326 modify_field (value_type (descriptor),
4327 value_contents_writeable (descriptor),
4328 value_pointer (bounds,
4329 TYPE_FIELD_TYPE (desc_type, 1)),
4330 fat_pntr_bounds_bitpos (desc_type),
4331 fat_pntr_bounds_bitsize (desc_type));
4333 descriptor = ensure_lval (descriptor);
4335 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4336 return value_addr (descriptor);
4341 /* Symbol Cache Module */
4343 /* Performance measurements made as of 2010-01-15 indicate that
4344 this cache does bring some noticeable improvements. Depending
4345 on the type of entity being printed, the cache can make it as much
4346 as an order of magnitude faster than without it.
4348 The descriptive type DWARF extension has significantly reduced
4349 the need for this cache, at least when DWARF is being used. However,
4350 even in this case, some expensive name-based symbol searches are still
4351 sometimes necessary - to find an XVZ variable, mostly. */
4353 /* Initialize the contents of SYM_CACHE. */
4356 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4358 obstack_init (&sym_cache->cache_space);
4359 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4362 /* Free the memory used by SYM_CACHE. */
4365 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4367 obstack_free (&sym_cache->cache_space, NULL);
4371 /* Return the symbol cache associated to the given program space PSPACE.
4372 If not allocated for this PSPACE yet, allocate and initialize one. */
4374 static struct ada_symbol_cache *
4375 ada_get_symbol_cache (struct program_space *pspace)
4377 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4378 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4380 if (sym_cache == NULL)
4382 sym_cache = XCNEW (struct ada_symbol_cache);
4383 ada_init_symbol_cache (sym_cache);
4389 /* Clear all entries from the symbol cache. */
4392 ada_clear_symbol_cache (void)
4394 struct ada_symbol_cache *sym_cache
4395 = ada_get_symbol_cache (current_program_space);
4397 obstack_free (&sym_cache->cache_space, NULL);
4398 ada_init_symbol_cache (sym_cache);
4401 /* Search our cache for an entry matching NAME and NAMESPACE.
4402 Return it if found, or NULL otherwise. */
4404 static struct cache_entry **
4405 find_entry (const char *name, domain_enum namespace)
4407 struct ada_symbol_cache *sym_cache
4408 = ada_get_symbol_cache (current_program_space);
4409 int h = msymbol_hash (name) % HASH_SIZE;
4410 struct cache_entry **e;
4412 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4414 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4420 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4421 Return 1 if found, 0 otherwise.
4423 If an entry was found and SYM is not NULL, set *SYM to the entry's
4424 SYM. Same principle for BLOCK if not NULL. */
4427 lookup_cached_symbol (const char *name, domain_enum namespace,
4428 struct symbol **sym, const struct block **block)
4430 struct cache_entry **e = find_entry (name, namespace);
4437 *block = (*e)->block;
4441 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4442 in domain NAMESPACE, save this result in our symbol cache. */
4445 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4446 const struct block *block)
4448 struct ada_symbol_cache *sym_cache
4449 = ada_get_symbol_cache (current_program_space);
4452 struct cache_entry *e;
4454 /* If the symbol is a local symbol, then do not cache it, as a search
4455 for that symbol depends on the context. To determine whether
4456 the symbol is local or not, we check the block where we found it
4457 against the global and static blocks of its associated symtab. */
4459 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4460 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4463 h = msymbol_hash (name) % HASH_SIZE;
4464 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4466 e->next = sym_cache->root[h];
4467 sym_cache->root[h] = e;
4468 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4469 strcpy (copy, name);
4471 e->namespace = namespace;
4477 /* Return nonzero if wild matching should be used when searching for
4478 all symbols matching LOOKUP_NAME.
4480 LOOKUP_NAME is expected to be a symbol name after transformation
4481 for Ada lookups (see ada_name_for_lookup). */
4484 should_use_wild_match (const char *lookup_name)
4486 return (strstr (lookup_name, "__") == NULL);
4489 /* Return the result of a standard (literal, C-like) lookup of NAME in
4490 given DOMAIN, visible from lexical block BLOCK. */
4492 static struct symbol *
4493 standard_lookup (const char *name, const struct block *block,
4496 /* Initialize it just to avoid a GCC false warning. */
4497 struct symbol *sym = NULL;
4499 if (lookup_cached_symbol (name, domain, &sym, NULL))
4501 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4502 cache_symbol (name, domain, sym, block_found);
4507 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4508 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4509 since they contend in overloading in the same way. */
4511 is_nonfunction (struct ada_symbol_info syms[], int n)
4515 for (i = 0; i < n; i += 1)
4516 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4517 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4518 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4524 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4525 struct types. Otherwise, they may not. */
4528 equiv_types (struct type *type0, struct type *type1)
4532 if (type0 == NULL || type1 == NULL
4533 || TYPE_CODE (type0) != TYPE_CODE (type1))
4535 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4536 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4537 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4538 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4544 /* True iff SYM0 represents the same entity as SYM1, or one that is
4545 no more defined than that of SYM1. */
4548 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4552 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4553 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4556 switch (SYMBOL_CLASS (sym0))
4562 struct type *type0 = SYMBOL_TYPE (sym0);
4563 struct type *type1 = SYMBOL_TYPE (sym1);
4564 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4565 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4566 int len0 = strlen (name0);
4569 TYPE_CODE (type0) == TYPE_CODE (type1)
4570 && (equiv_types (type0, type1)
4571 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4572 && strncmp (name1 + len0, "___XV", 5) == 0));
4575 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4576 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4582 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4583 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4586 add_defn_to_vec (struct obstack *obstackp,
4588 const struct block *block)
4591 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4593 /* Do not try to complete stub types, as the debugger is probably
4594 already scanning all symbols matching a certain name at the
4595 time when this function is called. Trying to replace the stub
4596 type by its associated full type will cause us to restart a scan
4597 which may lead to an infinite recursion. Instead, the client
4598 collecting the matching symbols will end up collecting several
4599 matches, with at least one of them complete. It can then filter
4600 out the stub ones if needed. */
4602 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4604 if (lesseq_defined_than (sym, prevDefns[i].sym))
4606 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4608 prevDefns[i].sym = sym;
4609 prevDefns[i].block = block;
4615 struct ada_symbol_info info;
4619 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4623 /* Number of ada_symbol_info structures currently collected in
4624 current vector in *OBSTACKP. */
4627 num_defns_collected (struct obstack *obstackp)
4629 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4632 /* Vector of ada_symbol_info structures currently collected in current
4633 vector in *OBSTACKP. If FINISH, close off the vector and return
4634 its final address. */
4636 static struct ada_symbol_info *
4637 defns_collected (struct obstack *obstackp, int finish)
4640 return obstack_finish (obstackp);
4642 return (struct ada_symbol_info *) obstack_base (obstackp);
4645 /* Return a bound minimal symbol matching NAME according to Ada
4646 decoding rules. Returns an invalid symbol if there is no such
4647 minimal symbol. Names prefixed with "standard__" are handled
4648 specially: "standard__" is first stripped off, and only static and
4649 global symbols are searched. */
4651 struct bound_minimal_symbol
4652 ada_lookup_simple_minsym (const char *name)
4654 struct bound_minimal_symbol result;
4655 struct objfile *objfile;
4656 struct minimal_symbol *msymbol;
4657 const int wild_match_p = should_use_wild_match (name);
4659 memset (&result, 0, sizeof (result));
4661 /* Special case: If the user specifies a symbol name inside package
4662 Standard, do a non-wild matching of the symbol name without
4663 the "standard__" prefix. This was primarily introduced in order
4664 to allow the user to specifically access the standard exceptions
4665 using, for instance, Standard.Constraint_Error when Constraint_Error
4666 is ambiguous (due to the user defining its own Constraint_Error
4667 entity inside its program). */
4668 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4669 name += sizeof ("standard__") - 1;
4671 ALL_MSYMBOLS (objfile, msymbol)
4673 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4674 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4676 result.minsym = msymbol;
4677 result.objfile = objfile;
4685 /* For all subprograms that statically enclose the subprogram of the
4686 selected frame, add symbols matching identifier NAME in DOMAIN
4687 and their blocks to the list of data in OBSTACKP, as for
4688 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4689 with a wildcard prefix. */
4692 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4693 const char *name, domain_enum namespace,
4698 /* True if TYPE is definitely an artificial type supplied to a symbol
4699 for which no debugging information was given in the symbol file. */
4702 is_nondebugging_type (struct type *type)
4704 const char *name = ada_type_name (type);
4706 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4709 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4710 that are deemed "identical" for practical purposes.
4712 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4713 types and that their number of enumerals is identical (in other
4714 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4717 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4721 /* The heuristic we use here is fairly conservative. We consider
4722 that 2 enumerate types are identical if they have the same
4723 number of enumerals and that all enumerals have the same
4724 underlying value and name. */
4726 /* All enums in the type should have an identical underlying value. */
4727 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4728 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4731 /* All enumerals should also have the same name (modulo any numerical
4733 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4735 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4736 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4737 int len_1 = strlen (name_1);
4738 int len_2 = strlen (name_2);
4740 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4741 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4743 || strncmp (TYPE_FIELD_NAME (type1, i),
4744 TYPE_FIELD_NAME (type2, i),
4752 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4753 that are deemed "identical" for practical purposes. Sometimes,
4754 enumerals are not strictly identical, but their types are so similar
4755 that they can be considered identical.
4757 For instance, consider the following code:
4759 type Color is (Black, Red, Green, Blue, White);
4760 type RGB_Color is new Color range Red .. Blue;
4762 Type RGB_Color is a subrange of an implicit type which is a copy
4763 of type Color. If we call that implicit type RGB_ColorB ("B" is
4764 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4765 As a result, when an expression references any of the enumeral
4766 by name (Eg. "print green"), the expression is technically
4767 ambiguous and the user should be asked to disambiguate. But
4768 doing so would only hinder the user, since it wouldn't matter
4769 what choice he makes, the outcome would always be the same.
4770 So, for practical purposes, we consider them as the same. */
4773 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4777 /* Before performing a thorough comparison check of each type,
4778 we perform a series of inexpensive checks. We expect that these
4779 checks will quickly fail in the vast majority of cases, and thus
4780 help prevent the unnecessary use of a more expensive comparison.
4781 Said comparison also expects us to make some of these checks
4782 (see ada_identical_enum_types_p). */
4784 /* Quick check: All symbols should have an enum type. */
4785 for (i = 0; i < nsyms; i++)
4786 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4789 /* Quick check: They should all have the same value. */
4790 for (i = 1; i < nsyms; i++)
4791 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4794 /* Quick check: They should all have the same number of enumerals. */
4795 for (i = 1; i < nsyms; i++)
4796 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4797 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4800 /* All the sanity checks passed, so we might have a set of
4801 identical enumeration types. Perform a more complete
4802 comparison of the type of each symbol. */
4803 for (i = 1; i < nsyms; i++)
4804 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4805 SYMBOL_TYPE (syms[0].sym)))
4811 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4812 duplicate other symbols in the list (The only case I know of where
4813 this happens is when object files containing stabs-in-ecoff are
4814 linked with files containing ordinary ecoff debugging symbols (or no
4815 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4816 Returns the number of items in the modified list. */
4819 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4823 /* We should never be called with less than 2 symbols, as there
4824 cannot be any extra symbol in that case. But it's easy to
4825 handle, since we have nothing to do in that case. */
4834 /* If two symbols have the same name and one of them is a stub type,
4835 the get rid of the stub. */
4837 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4838 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4840 for (j = 0; j < nsyms; j++)
4843 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4844 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4845 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4846 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4851 /* Two symbols with the same name, same class and same address
4852 should be identical. */
4854 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4855 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4856 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4858 for (j = 0; j < nsyms; j += 1)
4861 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4862 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4863 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4864 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4865 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4866 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4873 for (j = i + 1; j < nsyms; j += 1)
4874 syms[j - 1] = syms[j];
4881 /* If all the remaining symbols are identical enumerals, then
4882 just keep the first one and discard the rest.
4884 Unlike what we did previously, we do not discard any entry
4885 unless they are ALL identical. This is because the symbol
4886 comparison is not a strict comparison, but rather a practical
4887 comparison. If all symbols are considered identical, then
4888 we can just go ahead and use the first one and discard the rest.
4889 But if we cannot reduce the list to a single element, we have
4890 to ask the user to disambiguate anyways. And if we have to
4891 present a multiple-choice menu, it's less confusing if the list
4892 isn't missing some choices that were identical and yet distinct. */
4893 if (symbols_are_identical_enums (syms, nsyms))
4899 /* Given a type that corresponds to a renaming entity, use the type name
4900 to extract the scope (package name or function name, fully qualified,
4901 and following the GNAT encoding convention) where this renaming has been
4902 defined. The string returned needs to be deallocated after use. */
4905 xget_renaming_scope (struct type *renaming_type)
4907 /* The renaming types adhere to the following convention:
4908 <scope>__<rename>___<XR extension>.
4909 So, to extract the scope, we search for the "___XR" extension,
4910 and then backtrack until we find the first "__". */
4912 const char *name = type_name_no_tag (renaming_type);
4913 char *suffix = strstr (name, "___XR");
4918 /* Now, backtrack a bit until we find the first "__". Start looking
4919 at suffix - 3, as the <rename> part is at least one character long. */
4921 for (last = suffix - 3; last > name; last--)
4922 if (last[0] == '_' && last[1] == '_')
4925 /* Make a copy of scope and return it. */
4927 scope_len = last - name;
4928 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4930 strncpy (scope, name, scope_len);
4931 scope[scope_len] = '\0';
4936 /* Return nonzero if NAME corresponds to a package name. */
4939 is_package_name (const char *name)
4941 /* Here, We take advantage of the fact that no symbols are generated
4942 for packages, while symbols are generated for each function.
4943 So the condition for NAME represent a package becomes equivalent
4944 to NAME not existing in our list of symbols. There is only one
4945 small complication with library-level functions (see below). */
4949 /* If it is a function that has not been defined at library level,
4950 then we should be able to look it up in the symbols. */
4951 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4954 /* Library-level function names start with "_ada_". See if function
4955 "_ada_" followed by NAME can be found. */
4957 /* Do a quick check that NAME does not contain "__", since library-level
4958 functions names cannot contain "__" in them. */
4959 if (strstr (name, "__") != NULL)
4962 fun_name = xstrprintf ("_ada_%s", name);
4964 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4967 /* Return nonzero if SYM corresponds to a renaming entity that is
4968 not visible from FUNCTION_NAME. */
4971 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4974 struct cleanup *old_chain;
4976 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4979 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4980 old_chain = make_cleanup (xfree, scope);
4982 /* If the rename has been defined in a package, then it is visible. */
4983 if (is_package_name (scope))
4985 do_cleanups (old_chain);
4989 /* Check that the rename is in the current function scope by checking
4990 that its name starts with SCOPE. */
4992 /* If the function name starts with "_ada_", it means that it is
4993 a library-level function. Strip this prefix before doing the
4994 comparison, as the encoding for the renaming does not contain
4996 if (strncmp (function_name, "_ada_", 5) == 0)
5000 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5002 do_cleanups (old_chain);
5003 return is_invisible;
5007 /* Remove entries from SYMS that corresponds to a renaming entity that
5008 is not visible from the function associated with CURRENT_BLOCK or
5009 that is superfluous due to the presence of more specific renaming
5010 information. Places surviving symbols in the initial entries of
5011 SYMS and returns the number of surviving symbols.
5014 First, in cases where an object renaming is implemented as a
5015 reference variable, GNAT may produce both the actual reference
5016 variable and the renaming encoding. In this case, we discard the
5019 Second, GNAT emits a type following a specified encoding for each renaming
5020 entity. Unfortunately, STABS currently does not support the definition
5021 of types that are local to a given lexical block, so all renamings types
5022 are emitted at library level. As a consequence, if an application
5023 contains two renaming entities using the same name, and a user tries to
5024 print the value of one of these entities, the result of the ada symbol
5025 lookup will also contain the wrong renaming type.
5027 This function partially covers for this limitation by attempting to
5028 remove from the SYMS list renaming symbols that should be visible
5029 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5030 method with the current information available. The implementation
5031 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5033 - When the user tries to print a rename in a function while there
5034 is another rename entity defined in a package: Normally, the
5035 rename in the function has precedence over the rename in the
5036 package, so the latter should be removed from the list. This is
5037 currently not the case.
5039 - This function will incorrectly remove valid renames if
5040 the CURRENT_BLOCK corresponds to a function which symbol name
5041 has been changed by an "Export" pragma. As a consequence,
5042 the user will be unable to print such rename entities. */
5045 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5046 int nsyms, const struct block *current_block)
5048 struct symbol *current_function;
5049 const char *current_function_name;
5051 int is_new_style_renaming;
5053 /* If there is both a renaming foo___XR... encoded as a variable and
5054 a simple variable foo in the same block, discard the latter.
5055 First, zero out such symbols, then compress. */
5056 is_new_style_renaming = 0;
5057 for (i = 0; i < nsyms; i += 1)
5059 struct symbol *sym = syms[i].sym;
5060 const struct block *block = syms[i].block;
5064 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5066 name = SYMBOL_LINKAGE_NAME (sym);
5067 suffix = strstr (name, "___XR");
5071 int name_len = suffix - name;
5074 is_new_style_renaming = 1;
5075 for (j = 0; j < nsyms; j += 1)
5076 if (i != j && syms[j].sym != NULL
5077 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5079 && block == syms[j].block)
5083 if (is_new_style_renaming)
5087 for (j = k = 0; j < nsyms; j += 1)
5088 if (syms[j].sym != NULL)
5096 /* Extract the function name associated to CURRENT_BLOCK.
5097 Abort if unable to do so. */
5099 if (current_block == NULL)
5102 current_function = block_linkage_function (current_block);
5103 if (current_function == NULL)
5106 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5107 if (current_function_name == NULL)
5110 /* Check each of the symbols, and remove it from the list if it is
5111 a type corresponding to a renaming that is out of the scope of
5112 the current block. */
5117 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5118 == ADA_OBJECT_RENAMING
5119 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5123 for (j = i + 1; j < nsyms; j += 1)
5124 syms[j - 1] = syms[j];
5134 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5135 whose name and domain match NAME and DOMAIN respectively.
5136 If no match was found, then extend the search to "enclosing"
5137 routines (in other words, if we're inside a nested function,
5138 search the symbols defined inside the enclosing functions).
5139 If WILD_MATCH_P is nonzero, perform the naming matching in
5140 "wild" mode (see function "wild_match" for more info).
5142 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5145 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5146 const struct block *block, domain_enum domain,
5149 int block_depth = 0;
5151 while (block != NULL)
5154 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5157 /* If we found a non-function match, assume that's the one. */
5158 if (is_nonfunction (defns_collected (obstackp, 0),
5159 num_defns_collected (obstackp)))
5162 block = BLOCK_SUPERBLOCK (block);
5165 /* If no luck so far, try to find NAME as a local symbol in some lexically
5166 enclosing subprogram. */
5167 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5168 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5171 /* An object of this type is used as the user_data argument when
5172 calling the map_matching_symbols method. */
5176 struct objfile *objfile;
5177 struct obstack *obstackp;
5178 struct symbol *arg_sym;
5182 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5183 to a list of symbols. DATA0 is a pointer to a struct match_data *
5184 containing the obstack that collects the symbol list, the file that SYM
5185 must come from, a flag indicating whether a non-argument symbol has
5186 been found in the current block, and the last argument symbol
5187 passed in SYM within the current block (if any). When SYM is null,
5188 marking the end of a block, the argument symbol is added if no
5189 other has been found. */
5192 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5194 struct match_data *data = (struct match_data *) data0;
5198 if (!data->found_sym && data->arg_sym != NULL)
5199 add_defn_to_vec (data->obstackp,
5200 fixup_symbol_section (data->arg_sym, data->objfile),
5202 data->found_sym = 0;
5203 data->arg_sym = NULL;
5207 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5209 else if (SYMBOL_IS_ARGUMENT (sym))
5210 data->arg_sym = sym;
5213 data->found_sym = 1;
5214 add_defn_to_vec (data->obstackp,
5215 fixup_symbol_section (sym, data->objfile),
5222 /* Implements compare_names, but only applying the comparision using
5223 the given CASING. */
5226 compare_names_with_case (const char *string1, const char *string2,
5227 enum case_sensitivity casing)
5229 while (*string1 != '\0' && *string2 != '\0')
5233 if (isspace (*string1) || isspace (*string2))
5234 return strcmp_iw_ordered (string1, string2);
5236 if (casing == case_sensitive_off)
5238 c1 = tolower (*string1);
5239 c2 = tolower (*string2);
5256 return strcmp_iw_ordered (string1, string2);
5258 if (*string2 == '\0')
5260 if (is_name_suffix (string1))
5267 if (*string2 == '(')
5268 return strcmp_iw_ordered (string1, string2);
5271 if (casing == case_sensitive_off)
5272 return tolower (*string1) - tolower (*string2);
5274 return *string1 - *string2;
5279 /* Compare STRING1 to STRING2, with results as for strcmp.
5280 Compatible with strcmp_iw_ordered in that...
5282 strcmp_iw_ordered (STRING1, STRING2) <= 0
5286 compare_names (STRING1, STRING2) <= 0
5288 (they may differ as to what symbols compare equal). */
5291 compare_names (const char *string1, const char *string2)
5295 /* Similar to what strcmp_iw_ordered does, we need to perform
5296 a case-insensitive comparison first, and only resort to
5297 a second, case-sensitive, comparison if the first one was
5298 not sufficient to differentiate the two strings. */
5300 result = compare_names_with_case (string1, string2, case_sensitive_off);
5302 result = compare_names_with_case (string1, string2, case_sensitive_on);
5307 /* Add to OBSTACKP all non-local symbols whose name and domain match
5308 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5309 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5312 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5313 domain_enum domain, int global,
5316 struct objfile *objfile;
5317 struct match_data data;
5319 memset (&data, 0, sizeof data);
5320 data.obstackp = obstackp;
5322 ALL_OBJFILES (objfile)
5324 data.objfile = objfile;
5327 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5328 aux_add_nonlocal_symbols, &data,
5331 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5332 aux_add_nonlocal_symbols, &data,
5333 full_match, compare_names);
5336 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5338 ALL_OBJFILES (objfile)
5340 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5341 strcpy (name1, "_ada_");
5342 strcpy (name1 + sizeof ("_ada_") - 1, name);
5343 data.objfile = objfile;
5344 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5346 aux_add_nonlocal_symbols,
5348 full_match, compare_names);
5353 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5354 non-zero, enclosing scope and in global scopes, returning the number of
5356 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5357 indicating the symbols found and the blocks and symbol tables (if
5358 any) in which they were found. This vector is transient---good only to
5359 the next call of ada_lookup_symbol_list.
5361 When full_search is non-zero, any non-function/non-enumeral
5362 symbol match within the nest of blocks whose innermost member is BLOCK0,
5363 is the one match returned (no other matches in that or
5364 enclosing blocks is returned). If there are any matches in or
5365 surrounding BLOCK0, then these alone are returned.
5367 Names prefixed with "standard__" are handled specially: "standard__"
5368 is first stripped off, and only static and global symbols are searched. */
5371 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5372 domain_enum namespace,
5373 struct ada_symbol_info **results,
5377 const struct block *block;
5379 const int wild_match_p = should_use_wild_match (name0);
5383 obstack_free (&symbol_list_obstack, NULL);
5384 obstack_init (&symbol_list_obstack);
5388 /* Search specified block and its superiors. */
5393 /* Special case: If the user specifies a symbol name inside package
5394 Standard, do a non-wild matching of the symbol name without
5395 the "standard__" prefix. This was primarily introduced in order
5396 to allow the user to specifically access the standard exceptions
5397 using, for instance, Standard.Constraint_Error when Constraint_Error
5398 is ambiguous (due to the user defining its own Constraint_Error
5399 entity inside its program). */
5400 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5403 name = name0 + sizeof ("standard__") - 1;
5406 /* Check the non-global symbols. If we have ANY match, then we're done. */
5412 ada_add_local_symbols (&symbol_list_obstack, name, block,
5413 namespace, wild_match_p);
5417 /* In the !full_search case we're are being called by
5418 ada_iterate_over_symbols, and we don't want to search
5420 ada_add_block_symbols (&symbol_list_obstack, block, name,
5421 namespace, NULL, wild_match_p);
5423 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5427 /* No non-global symbols found. Check our cache to see if we have
5428 already performed this search before. If we have, then return
5432 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5435 add_defn_to_vec (&symbol_list_obstack, sym, block);
5439 /* Search symbols from all global blocks. */
5441 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5444 /* Now add symbols from all per-file blocks if we've gotten no hits
5445 (not strictly correct, but perhaps better than an error). */
5447 if (num_defns_collected (&symbol_list_obstack) == 0)
5448 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5452 ndefns = num_defns_collected (&symbol_list_obstack);
5453 *results = defns_collected (&symbol_list_obstack, 1);
5455 ndefns = remove_extra_symbols (*results, ndefns);
5457 if (ndefns == 0 && full_search)
5458 cache_symbol (name0, namespace, NULL, NULL);
5460 if (ndefns == 1 && full_search && cacheIfUnique)
5461 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5463 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5468 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5469 in global scopes, returning the number of matches, and setting *RESULTS
5470 to a vector of (SYM,BLOCK) tuples.
5471 See ada_lookup_symbol_list_worker for further details. */
5474 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5475 domain_enum domain, struct ada_symbol_info **results)
5477 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5480 /* Implementation of the la_iterate_over_symbols method. */
5483 ada_iterate_over_symbols (const struct block *block,
5484 const char *name, domain_enum domain,
5485 symbol_found_callback_ftype *callback,
5489 struct ada_symbol_info *results;
5491 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5492 for (i = 0; i < ndefs; ++i)
5494 if (! (*callback) (results[i].sym, data))
5499 /* If NAME is the name of an entity, return a string that should
5500 be used to look that entity up in Ada units. This string should
5501 be deallocated after use using xfree.
5503 NAME can have any form that the "break" or "print" commands might
5504 recognize. In other words, it does not have to be the "natural"
5505 name, or the "encoded" name. */
5508 ada_name_for_lookup (const char *name)
5511 int nlen = strlen (name);
5513 if (name[0] == '<' && name[nlen - 1] == '>')
5515 canon = xmalloc (nlen - 1);
5516 memcpy (canon, name + 1, nlen - 2);
5517 canon[nlen - 2] = '\0';
5520 canon = xstrdup (ada_encode (ada_fold_name (name)));
5524 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5525 to 1, but choosing the first symbol found if there are multiple
5528 The result is stored in *INFO, which must be non-NULL.
5529 If no match is found, INFO->SYM is set to NULL. */
5532 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5533 domain_enum namespace,
5534 struct ada_symbol_info *info)
5536 struct ada_symbol_info *candidates;
5539 gdb_assert (info != NULL);
5540 memset (info, 0, sizeof (struct ada_symbol_info));
5542 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5543 if (n_candidates == 0)
5546 *info = candidates[0];
5547 info->sym = fixup_symbol_section (info->sym, NULL);
5550 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5551 scope and in global scopes, or NULL if none. NAME is folded and
5552 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5553 choosing the first symbol if there are multiple choices.
5554 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5557 ada_lookup_symbol (const char *name, const struct block *block0,
5558 domain_enum namespace, int *is_a_field_of_this)
5560 struct ada_symbol_info info;
5562 if (is_a_field_of_this != NULL)
5563 *is_a_field_of_this = 0;
5565 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5566 block0, namespace, &info);
5570 static struct symbol *
5571 ada_lookup_symbol_nonlocal (const char *name,
5572 const struct block *block,
5573 const domain_enum domain)
5575 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5579 /* True iff STR is a possible encoded suffix of a normal Ada name
5580 that is to be ignored for matching purposes. Suffixes of parallel
5581 names (e.g., XVE) are not included here. Currently, the possible suffixes
5582 are given by any of the regular expressions:
5584 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5585 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5586 TKB [subprogram suffix for task bodies]
5587 _E[0-9]+[bs]$ [protected object entry suffixes]
5588 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5590 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5591 match is performed. This sequence is used to differentiate homonyms,
5592 is an optional part of a valid name suffix. */
5595 is_name_suffix (const char *str)
5598 const char *matching;
5599 const int len = strlen (str);
5601 /* Skip optional leading __[0-9]+. */
5603 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5606 while (isdigit (str[0]))
5612 if (str[0] == '.' || str[0] == '$')
5615 while (isdigit (matching[0]))
5617 if (matching[0] == '\0')
5623 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5626 while (isdigit (matching[0]))
5628 if (matching[0] == '\0')
5632 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5634 if (strcmp (str, "TKB") == 0)
5638 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5639 with a N at the end. Unfortunately, the compiler uses the same
5640 convention for other internal types it creates. So treating
5641 all entity names that end with an "N" as a name suffix causes
5642 some regressions. For instance, consider the case of an enumerated
5643 type. To support the 'Image attribute, it creates an array whose
5645 Having a single character like this as a suffix carrying some
5646 information is a bit risky. Perhaps we should change the encoding
5647 to be something like "_N" instead. In the meantime, do not do
5648 the following check. */
5649 /* Protected Object Subprograms */
5650 if (len == 1 && str [0] == 'N')
5655 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5658 while (isdigit (matching[0]))
5660 if ((matching[0] == 'b' || matching[0] == 's')
5661 && matching [1] == '\0')
5665 /* ??? We should not modify STR directly, as we are doing below. This
5666 is fine in this case, but may become problematic later if we find
5667 that this alternative did not work, and want to try matching
5668 another one from the begining of STR. Since we modified it, we
5669 won't be able to find the begining of the string anymore! */
5673 while (str[0] != '_' && str[0] != '\0')
5675 if (str[0] != 'n' && str[0] != 'b')
5681 if (str[0] == '\000')
5686 if (str[1] != '_' || str[2] == '\000')
5690 if (strcmp (str + 3, "JM") == 0)
5692 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5693 the LJM suffix in favor of the JM one. But we will
5694 still accept LJM as a valid suffix for a reasonable
5695 amount of time, just to allow ourselves to debug programs
5696 compiled using an older version of GNAT. */
5697 if (strcmp (str + 3, "LJM") == 0)
5701 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5702 || str[4] == 'U' || str[4] == 'P')
5704 if (str[4] == 'R' && str[5] != 'T')
5708 if (!isdigit (str[2]))
5710 for (k = 3; str[k] != '\0'; k += 1)
5711 if (!isdigit (str[k]) && str[k] != '_')
5715 if (str[0] == '$' && isdigit (str[1]))
5717 for (k = 2; str[k] != '\0'; k += 1)
5718 if (!isdigit (str[k]) && str[k] != '_')
5725 /* Return non-zero if the string starting at NAME and ending before
5726 NAME_END contains no capital letters. */
5729 is_valid_name_for_wild_match (const char *name0)
5731 const char *decoded_name = ada_decode (name0);
5734 /* If the decoded name starts with an angle bracket, it means that
5735 NAME0 does not follow the GNAT encoding format. It should then
5736 not be allowed as a possible wild match. */
5737 if (decoded_name[0] == '<')
5740 for (i=0; decoded_name[i] != '\0'; i++)
5741 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5747 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5748 that could start a simple name. Assumes that *NAMEP points into
5749 the string beginning at NAME0. */
5752 advance_wild_match (const char **namep, const char *name0, int target0)
5754 const char *name = *namep;
5764 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5767 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5772 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5773 || name[2] == target0))
5781 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5791 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5792 informational suffixes of NAME (i.e., for which is_name_suffix is
5793 true). Assumes that PATN is a lower-cased Ada simple name. */
5796 wild_match (const char *name, const char *patn)
5799 const char *name0 = name;
5803 const char *match = name;
5807 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5810 if (*p == '\0' && is_name_suffix (name))
5811 return match != name0 && !is_valid_name_for_wild_match (name0);
5813 if (name[-1] == '_')
5816 if (!advance_wild_match (&name, name0, *patn))
5821 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5822 informational suffix. */
5825 full_match (const char *sym_name, const char *search_name)
5827 return !match_name (sym_name, search_name, 0);
5831 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5832 vector *defn_symbols, updating the list of symbols in OBSTACKP
5833 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5834 OBJFILE is the section containing BLOCK. */
5837 ada_add_block_symbols (struct obstack *obstackp,
5838 const struct block *block, const char *name,
5839 domain_enum domain, struct objfile *objfile,
5842 struct block_iterator iter;
5843 int name_len = strlen (name);
5844 /* A matching argument symbol, if any. */
5845 struct symbol *arg_sym;
5846 /* Set true when we find a matching non-argument symbol. */
5854 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5855 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5857 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5858 SYMBOL_DOMAIN (sym), domain)
5859 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5861 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5863 else if (SYMBOL_IS_ARGUMENT (sym))
5868 add_defn_to_vec (obstackp,
5869 fixup_symbol_section (sym, objfile),
5877 for (sym = block_iter_match_first (block, name, full_match, &iter);
5878 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5880 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5881 SYMBOL_DOMAIN (sym), domain))
5883 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5885 if (SYMBOL_IS_ARGUMENT (sym))
5890 add_defn_to_vec (obstackp,
5891 fixup_symbol_section (sym, objfile),
5899 if (!found_sym && arg_sym != NULL)
5901 add_defn_to_vec (obstackp,
5902 fixup_symbol_section (arg_sym, objfile),
5911 ALL_BLOCK_SYMBOLS (block, iter, sym)
5913 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5914 SYMBOL_DOMAIN (sym), domain))
5918 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5921 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5923 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5928 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5930 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5932 if (SYMBOL_IS_ARGUMENT (sym))
5937 add_defn_to_vec (obstackp,
5938 fixup_symbol_section (sym, objfile),
5946 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5947 They aren't parameters, right? */
5948 if (!found_sym && arg_sym != NULL)
5950 add_defn_to_vec (obstackp,
5951 fixup_symbol_section (arg_sym, objfile),
5958 /* Symbol Completion */
5960 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5961 name in a form that's appropriate for the completion. The result
5962 does not need to be deallocated, but is only good until the next call.
5964 TEXT_LEN is equal to the length of TEXT.
5965 Perform a wild match if WILD_MATCH_P is set.
5966 ENCODED_P should be set if TEXT represents the start of a symbol name
5967 in its encoded form. */
5970 symbol_completion_match (const char *sym_name,
5971 const char *text, int text_len,
5972 int wild_match_p, int encoded_p)
5974 const int verbatim_match = (text[0] == '<');
5979 /* Strip the leading angle bracket. */
5984 /* First, test against the fully qualified name of the symbol. */
5986 if (strncmp (sym_name, text, text_len) == 0)
5989 if (match && !encoded_p)
5991 /* One needed check before declaring a positive match is to verify
5992 that iff we are doing a verbatim match, the decoded version
5993 of the symbol name starts with '<'. Otherwise, this symbol name
5994 is not a suitable completion. */
5995 const char *sym_name_copy = sym_name;
5996 int has_angle_bracket;
5998 sym_name = ada_decode (sym_name);
5999 has_angle_bracket = (sym_name[0] == '<');
6000 match = (has_angle_bracket == verbatim_match);
6001 sym_name = sym_name_copy;
6004 if (match && !verbatim_match)
6006 /* When doing non-verbatim match, another check that needs to
6007 be done is to verify that the potentially matching symbol name
6008 does not include capital letters, because the ada-mode would
6009 not be able to understand these symbol names without the
6010 angle bracket notation. */
6013 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6018 /* Second: Try wild matching... */
6020 if (!match && wild_match_p)
6022 /* Since we are doing wild matching, this means that TEXT
6023 may represent an unqualified symbol name. We therefore must
6024 also compare TEXT against the unqualified name of the symbol. */
6025 sym_name = ada_unqualified_name (ada_decode (sym_name));
6027 if (strncmp (sym_name, text, text_len) == 0)
6031 /* Finally: If we found a mach, prepare the result to return. */
6037 sym_name = add_angle_brackets (sym_name);
6040 sym_name = ada_decode (sym_name);
6045 /* A companion function to ada_make_symbol_completion_list().
6046 Check if SYM_NAME represents a symbol which name would be suitable
6047 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6048 it is appended at the end of the given string vector SV.
6050 ORIG_TEXT is the string original string from the user command
6051 that needs to be completed. WORD is the entire command on which
6052 completion should be performed. These two parameters are used to
6053 determine which part of the symbol name should be added to the
6055 if WILD_MATCH_P is set, then wild matching is performed.
6056 ENCODED_P should be set if TEXT represents a symbol name in its
6057 encoded formed (in which case the completion should also be
6061 symbol_completion_add (VEC(char_ptr) **sv,
6062 const char *sym_name,
6063 const char *text, int text_len,
6064 const char *orig_text, const char *word,
6065 int wild_match_p, int encoded_p)
6067 const char *match = symbol_completion_match (sym_name, text, text_len,
6068 wild_match_p, encoded_p);
6074 /* We found a match, so add the appropriate completion to the given
6077 if (word == orig_text)
6079 completion = xmalloc (strlen (match) + 5);
6080 strcpy (completion, match);
6082 else if (word > orig_text)
6084 /* Return some portion of sym_name. */
6085 completion = xmalloc (strlen (match) + 5);
6086 strcpy (completion, match + (word - orig_text));
6090 /* Return some of ORIG_TEXT plus sym_name. */
6091 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6092 strncpy (completion, word, orig_text - word);
6093 completion[orig_text - word] = '\0';
6094 strcat (completion, match);
6097 VEC_safe_push (char_ptr, *sv, completion);
6100 /* An object of this type is passed as the user_data argument to the
6101 expand_symtabs_matching method. */
6102 struct add_partial_datum
6104 VEC(char_ptr) **completions;
6113 /* A callback for expand_symtabs_matching. */
6116 ada_complete_symbol_matcher (const char *name, void *user_data)
6118 struct add_partial_datum *data = user_data;
6120 return symbol_completion_match (name, data->text, data->text_len,
6121 data->wild_match, data->encoded) != NULL;
6124 /* Return a list of possible symbol names completing TEXT0. WORD is
6125 the entire command on which completion is made. */
6127 static VEC (char_ptr) *
6128 ada_make_symbol_completion_list (const char *text0, const char *word,
6129 enum type_code code)
6135 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6138 struct minimal_symbol *msymbol;
6139 struct objfile *objfile;
6140 const struct block *b, *surrounding_static_block = 0;
6142 struct block_iterator iter;
6143 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6145 gdb_assert (code == TYPE_CODE_UNDEF);
6147 if (text0[0] == '<')
6149 text = xstrdup (text0);
6150 make_cleanup (xfree, text);
6151 text_len = strlen (text);
6157 text = xstrdup (ada_encode (text0));
6158 make_cleanup (xfree, text);
6159 text_len = strlen (text);
6160 for (i = 0; i < text_len; i++)
6161 text[i] = tolower (text[i]);
6163 encoded_p = (strstr (text0, "__") != NULL);
6164 /* If the name contains a ".", then the user is entering a fully
6165 qualified entity name, and the match must not be done in wild
6166 mode. Similarly, if the user wants to complete what looks like
6167 an encoded name, the match must not be done in wild mode. */
6168 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6171 /* First, look at the partial symtab symbols. */
6173 struct add_partial_datum data;
6175 data.completions = &completions;
6177 data.text_len = text_len;
6180 data.wild_match = wild_match_p;
6181 data.encoded = encoded_p;
6182 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6186 /* At this point scan through the misc symbol vectors and add each
6187 symbol you find to the list. Eventually we want to ignore
6188 anything that isn't a text symbol (everything else will be
6189 handled by the psymtab code above). */
6191 ALL_MSYMBOLS (objfile, msymbol)
6194 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6195 text, text_len, text0, word, wild_match_p,
6199 /* Search upwards from currently selected frame (so that we can
6200 complete on local vars. */
6202 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6204 if (!BLOCK_SUPERBLOCK (b))
6205 surrounding_static_block = b; /* For elmin of dups */
6207 ALL_BLOCK_SYMBOLS (b, iter, sym)
6209 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6210 text, text_len, text0, word,
6211 wild_match_p, encoded_p);
6215 /* Go through the symtabs and check the externs and statics for
6216 symbols which match. */
6218 ALL_SYMTABS (objfile, s)
6221 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6222 ALL_BLOCK_SYMBOLS (b, iter, sym)
6224 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6225 text, text_len, text0, word,
6226 wild_match_p, encoded_p);
6230 ALL_SYMTABS (objfile, s)
6233 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6234 /* Don't do this block twice. */
6235 if (b == surrounding_static_block)
6237 ALL_BLOCK_SYMBOLS (b, iter, sym)
6239 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6240 text, text_len, text0, word,
6241 wild_match_p, encoded_p);
6245 do_cleanups (old_chain);
6251 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6252 for tagged types. */
6255 ada_is_dispatch_table_ptr_type (struct type *type)
6259 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6262 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6266 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6269 /* Return non-zero if TYPE is an interface tag. */
6272 ada_is_interface_tag (struct type *type)
6274 const char *name = TYPE_NAME (type);
6279 return (strcmp (name, "ada__tags__interface_tag") == 0);
6282 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6283 to be invisible to users. */
6286 ada_is_ignored_field (struct type *type, int field_num)
6288 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6291 /* Check the name of that field. */
6293 const char *name = TYPE_FIELD_NAME (type, field_num);
6295 /* Anonymous field names should not be printed.
6296 brobecker/2007-02-20: I don't think this can actually happen
6297 but we don't want to print the value of annonymous fields anyway. */
6301 /* Normally, fields whose name start with an underscore ("_")
6302 are fields that have been internally generated by the compiler,
6303 and thus should not be printed. The "_parent" field is special,
6304 however: This is a field internally generated by the compiler
6305 for tagged types, and it contains the components inherited from
6306 the parent type. This field should not be printed as is, but
6307 should not be ignored either. */
6308 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6312 /* If this is the dispatch table of a tagged type or an interface tag,
6314 if (ada_is_tagged_type (type, 1)
6315 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6316 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6319 /* Not a special field, so it should not be ignored. */
6323 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6324 pointer or reference type whose ultimate target has a tag field. */
6327 ada_is_tagged_type (struct type *type, int refok)
6329 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6332 /* True iff TYPE represents the type of X'Tag */
6335 ada_is_tag_type (struct type *type)
6337 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6341 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6343 return (name != NULL
6344 && strcmp (name, "ada__tags__dispatch_table") == 0);
6348 /* The type of the tag on VAL. */
6351 ada_tag_type (struct value *val)
6353 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6356 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6357 retired at Ada 05). */
6360 is_ada95_tag (struct value *tag)
6362 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6365 /* The value of the tag on VAL. */
6368 ada_value_tag (struct value *val)
6370 return ada_value_struct_elt (val, "_tag", 0);
6373 /* The value of the tag on the object of type TYPE whose contents are
6374 saved at VALADDR, if it is non-null, or is at memory address
6377 static struct value *
6378 value_tag_from_contents_and_address (struct type *type,
6379 const gdb_byte *valaddr,
6382 int tag_byte_offset;
6383 struct type *tag_type;
6385 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6388 const gdb_byte *valaddr1 = ((valaddr == NULL)
6390 : valaddr + tag_byte_offset);
6391 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6393 return value_from_contents_and_address (tag_type, valaddr1, address1);
6398 static struct type *
6399 type_from_tag (struct value *tag)
6401 const char *type_name = ada_tag_name (tag);
6403 if (type_name != NULL)
6404 return ada_find_any_type (ada_encode (type_name));
6408 /* Given a value OBJ of a tagged type, return a value of this
6409 type at the base address of the object. The base address, as
6410 defined in Ada.Tags, it is the address of the primary tag of
6411 the object, and therefore where the field values of its full
6412 view can be fetched. */
6415 ada_tag_value_at_base_address (struct value *obj)
6417 volatile struct gdb_exception e;
6419 LONGEST offset_to_top = 0;
6420 struct type *ptr_type, *obj_type;
6422 CORE_ADDR base_address;
6424 obj_type = value_type (obj);
6426 /* It is the responsability of the caller to deref pointers. */
6428 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6429 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6432 tag = ada_value_tag (obj);
6436 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6438 if (is_ada95_tag (tag))
6441 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6442 ptr_type = lookup_pointer_type (ptr_type);
6443 val = value_cast (ptr_type, tag);
6447 /* It is perfectly possible that an exception be raised while
6448 trying to determine the base address, just like for the tag;
6449 see ada_tag_name for more details. We do not print the error
6450 message for the same reason. */
6452 TRY_CATCH (e, RETURN_MASK_ERROR)
6454 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6460 /* If offset is null, nothing to do. */
6462 if (offset_to_top == 0)
6465 /* -1 is a special case in Ada.Tags; however, what should be done
6466 is not quite clear from the documentation. So do nothing for
6469 if (offset_to_top == -1)
6472 base_address = value_address (obj) - offset_to_top;
6473 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6475 /* Make sure that we have a proper tag at the new address.
6476 Otherwise, offset_to_top is bogus (which can happen when
6477 the object is not initialized yet). */
6482 obj_type = type_from_tag (tag);
6487 return value_from_contents_and_address (obj_type, NULL, base_address);
6490 /* Return the "ada__tags__type_specific_data" type. */
6492 static struct type *
6493 ada_get_tsd_type (struct inferior *inf)
6495 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6497 if (data->tsd_type == 0)
6498 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6499 return data->tsd_type;
6502 /* Return the TSD (type-specific data) associated to the given TAG.
6503 TAG is assumed to be the tag of a tagged-type entity.
6505 May return NULL if we are unable to get the TSD. */
6507 static struct value *
6508 ada_get_tsd_from_tag (struct value *tag)
6513 /* First option: The TSD is simply stored as a field of our TAG.
6514 Only older versions of GNAT would use this format, but we have
6515 to test it first, because there are no visible markers for
6516 the current approach except the absence of that field. */
6518 val = ada_value_struct_elt (tag, "tsd", 1);
6522 /* Try the second representation for the dispatch table (in which
6523 there is no explicit 'tsd' field in the referent of the tag pointer,
6524 and instead the tsd pointer is stored just before the dispatch
6527 type = ada_get_tsd_type (current_inferior());
6530 type = lookup_pointer_type (lookup_pointer_type (type));
6531 val = value_cast (type, tag);
6534 return value_ind (value_ptradd (val, -1));
6537 /* Given the TSD of a tag (type-specific data), return a string
6538 containing the name of the associated type.
6540 The returned value is good until the next call. May return NULL
6541 if we are unable to determine the tag name. */
6544 ada_tag_name_from_tsd (struct value *tsd)
6546 static char name[1024];
6550 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6553 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6554 for (p = name; *p != '\0'; p += 1)
6560 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6563 Return NULL if the TAG is not an Ada tag, or if we were unable to
6564 determine the name of that tag. The result is good until the next
6568 ada_tag_name (struct value *tag)
6570 volatile struct gdb_exception e;
6573 if (!ada_is_tag_type (value_type (tag)))
6576 /* It is perfectly possible that an exception be raised while trying
6577 to determine the TAG's name, even under normal circumstances:
6578 The associated variable may be uninitialized or corrupted, for
6579 instance. We do not let any exception propagate past this point.
6580 instead we return NULL.
6582 We also do not print the error message either (which often is very
6583 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6584 the caller print a more meaningful message if necessary. */
6585 TRY_CATCH (e, RETURN_MASK_ERROR)
6587 struct value *tsd = ada_get_tsd_from_tag (tag);
6590 name = ada_tag_name_from_tsd (tsd);
6596 /* The parent type of TYPE, or NULL if none. */
6599 ada_parent_type (struct type *type)
6603 type = ada_check_typedef (type);
6605 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6608 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6609 if (ada_is_parent_field (type, i))
6611 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6613 /* If the _parent field is a pointer, then dereference it. */
6614 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6615 parent_type = TYPE_TARGET_TYPE (parent_type);
6616 /* If there is a parallel XVS type, get the actual base type. */
6617 parent_type = ada_get_base_type (parent_type);
6619 return ada_check_typedef (parent_type);
6625 /* True iff field number FIELD_NUM of structure type TYPE contains the
6626 parent-type (inherited) fields of a derived type. Assumes TYPE is
6627 a structure type with at least FIELD_NUM+1 fields. */
6630 ada_is_parent_field (struct type *type, int field_num)
6632 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6634 return (name != NULL
6635 && (strncmp (name, "PARENT", 6) == 0
6636 || strncmp (name, "_parent", 7) == 0));
6639 /* True iff field number FIELD_NUM of structure type TYPE is a
6640 transparent wrapper field (which should be silently traversed when doing
6641 field selection and flattened when printing). Assumes TYPE is a
6642 structure type with at least FIELD_NUM+1 fields. Such fields are always
6646 ada_is_wrapper_field (struct type *type, int field_num)
6648 const char *name = TYPE_FIELD_NAME (type, field_num);
6650 return (name != NULL
6651 && (strncmp (name, "PARENT", 6) == 0
6652 || strcmp (name, "REP") == 0
6653 || strncmp (name, "_parent", 7) == 0
6654 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6657 /* True iff field number FIELD_NUM of structure or union type TYPE
6658 is a variant wrapper. Assumes TYPE is a structure type with at least
6659 FIELD_NUM+1 fields. */
6662 ada_is_variant_part (struct type *type, int field_num)
6664 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6666 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6667 || (is_dynamic_field (type, field_num)
6668 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6669 == TYPE_CODE_UNION)));
6672 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6673 whose discriminants are contained in the record type OUTER_TYPE,
6674 returns the type of the controlling discriminant for the variant.
6675 May return NULL if the type could not be found. */
6678 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6680 char *name = ada_variant_discrim_name (var_type);
6682 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6685 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6686 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6687 represents a 'when others' clause; otherwise 0. */
6690 ada_is_others_clause (struct type *type, int field_num)
6692 const char *name = TYPE_FIELD_NAME (type, field_num);
6694 return (name != NULL && name[0] == 'O');
6697 /* Assuming that TYPE0 is the type of the variant part of a record,
6698 returns the name of the discriminant controlling the variant.
6699 The value is valid until the next call to ada_variant_discrim_name. */
6702 ada_variant_discrim_name (struct type *type0)
6704 static char *result = NULL;
6705 static size_t result_len = 0;
6708 const char *discrim_end;
6709 const char *discrim_start;
6711 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6712 type = TYPE_TARGET_TYPE (type0);
6716 name = ada_type_name (type);
6718 if (name == NULL || name[0] == '\000')
6721 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6724 if (strncmp (discrim_end, "___XVN", 6) == 0)
6727 if (discrim_end == name)
6730 for (discrim_start = discrim_end; discrim_start != name + 3;
6733 if (discrim_start == name + 1)
6735 if ((discrim_start > name + 3
6736 && strncmp (discrim_start - 3, "___", 3) == 0)
6737 || discrim_start[-1] == '.')
6741 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6742 strncpy (result, discrim_start, discrim_end - discrim_start);
6743 result[discrim_end - discrim_start] = '\0';
6747 /* Scan STR for a subtype-encoded number, beginning at position K.
6748 Put the position of the character just past the number scanned in
6749 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6750 Return 1 if there was a valid number at the given position, and 0
6751 otherwise. A "subtype-encoded" number consists of the absolute value
6752 in decimal, followed by the letter 'm' to indicate a negative number.
6753 Assumes 0m does not occur. */
6756 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6760 if (!isdigit (str[k]))
6763 /* Do it the hard way so as not to make any assumption about
6764 the relationship of unsigned long (%lu scan format code) and
6767 while (isdigit (str[k]))
6769 RU = RU * 10 + (str[k] - '0');
6776 *R = (-(LONGEST) (RU - 1)) - 1;
6782 /* NOTE on the above: Technically, C does not say what the results of
6783 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6784 number representable as a LONGEST (although either would probably work
6785 in most implementations). When RU>0, the locution in the then branch
6786 above is always equivalent to the negative of RU. */
6793 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6794 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6795 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6798 ada_in_variant (LONGEST val, struct type *type, int field_num)
6800 const char *name = TYPE_FIELD_NAME (type, field_num);
6814 if (!ada_scan_number (name, p + 1, &W, &p))
6824 if (!ada_scan_number (name, p + 1, &L, &p)
6825 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6827 if (val >= L && val <= U)
6839 /* FIXME: Lots of redundancy below. Try to consolidate. */
6841 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6842 ARG_TYPE, extract and return the value of one of its (non-static)
6843 fields. FIELDNO says which field. Differs from value_primitive_field
6844 only in that it can handle packed values of arbitrary type. */
6846 static struct value *
6847 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6848 struct type *arg_type)
6852 arg_type = ada_check_typedef (arg_type);
6853 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6855 /* Handle packed fields. */
6857 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6859 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6860 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6862 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6863 offset + bit_pos / 8,
6864 bit_pos % 8, bit_size, type);
6867 return value_primitive_field (arg1, offset, fieldno, arg_type);
6870 /* Find field with name NAME in object of type TYPE. If found,
6871 set the following for each argument that is non-null:
6872 - *FIELD_TYPE_P to the field's type;
6873 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6874 an object of that type;
6875 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6876 - *BIT_SIZE_P to its size in bits if the field is packed, and
6878 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6879 fields up to but not including the desired field, or by the total
6880 number of fields if not found. A NULL value of NAME never
6881 matches; the function just counts visible fields in this case.
6883 Returns 1 if found, 0 otherwise. */
6886 find_struct_field (const char *name, struct type *type, int offset,
6887 struct type **field_type_p,
6888 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6893 type = ada_check_typedef (type);
6895 if (field_type_p != NULL)
6896 *field_type_p = NULL;
6897 if (byte_offset_p != NULL)
6899 if (bit_offset_p != NULL)
6901 if (bit_size_p != NULL)
6904 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6906 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6907 int fld_offset = offset + bit_pos / 8;
6908 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6910 if (t_field_name == NULL)
6913 else if (name != NULL && field_name_match (t_field_name, name))
6915 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6917 if (field_type_p != NULL)
6918 *field_type_p = TYPE_FIELD_TYPE (type, i);
6919 if (byte_offset_p != NULL)
6920 *byte_offset_p = fld_offset;
6921 if (bit_offset_p != NULL)
6922 *bit_offset_p = bit_pos % 8;
6923 if (bit_size_p != NULL)
6924 *bit_size_p = bit_size;
6927 else if (ada_is_wrapper_field (type, i))
6929 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6930 field_type_p, byte_offset_p, bit_offset_p,
6931 bit_size_p, index_p))
6934 else if (ada_is_variant_part (type, i))
6936 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6939 struct type *field_type
6940 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6942 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6944 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6946 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6947 field_type_p, byte_offset_p,
6948 bit_offset_p, bit_size_p, index_p))
6952 else if (index_p != NULL)
6958 /* Number of user-visible fields in record type TYPE. */
6961 num_visible_fields (struct type *type)
6966 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6970 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6971 and search in it assuming it has (class) type TYPE.
6972 If found, return value, else return NULL.
6974 Searches recursively through wrapper fields (e.g., '_parent'). */
6976 static struct value *
6977 ada_search_struct_field (char *name, struct value *arg, int offset,
6982 type = ada_check_typedef (type);
6983 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6985 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6987 if (t_field_name == NULL)
6990 else if (field_name_match (t_field_name, name))
6991 return ada_value_primitive_field (arg, offset, i, type);
6993 else if (ada_is_wrapper_field (type, i))
6995 struct value *v = /* Do not let indent join lines here. */
6996 ada_search_struct_field (name, arg,
6997 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6998 TYPE_FIELD_TYPE (type, i));
7004 else if (ada_is_variant_part (type, i))
7006 /* PNH: Do we ever get here? See find_struct_field. */
7008 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7010 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7012 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7014 struct value *v = ada_search_struct_field /* Force line
7017 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7018 TYPE_FIELD_TYPE (field_type, j));
7028 static struct value *ada_index_struct_field_1 (int *, struct value *,
7029 int, struct type *);
7032 /* Return field #INDEX in ARG, where the index is that returned by
7033 * find_struct_field through its INDEX_P argument. Adjust the address
7034 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7035 * If found, return value, else return NULL. */
7037 static struct value *
7038 ada_index_struct_field (int index, struct value *arg, int offset,
7041 return ada_index_struct_field_1 (&index, arg, offset, type);
7045 /* Auxiliary function for ada_index_struct_field. Like
7046 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7049 static struct value *
7050 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7054 type = ada_check_typedef (type);
7056 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7058 if (TYPE_FIELD_NAME (type, i) == NULL)
7060 else if (ada_is_wrapper_field (type, i))
7062 struct value *v = /* Do not let indent join lines here. */
7063 ada_index_struct_field_1 (index_p, arg,
7064 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7065 TYPE_FIELD_TYPE (type, i));
7071 else if (ada_is_variant_part (type, i))
7073 /* PNH: Do we ever get here? See ada_search_struct_field,
7074 find_struct_field. */
7075 error (_("Cannot assign this kind of variant record"));
7077 else if (*index_p == 0)
7078 return ada_value_primitive_field (arg, offset, i, type);
7085 /* Given ARG, a value of type (pointer or reference to a)*
7086 structure/union, extract the component named NAME from the ultimate
7087 target structure/union and return it as a value with its
7090 The routine searches for NAME among all members of the structure itself
7091 and (recursively) among all members of any wrapper members
7094 If NO_ERR, then simply return NULL in case of error, rather than
7098 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7100 struct type *t, *t1;
7104 t1 = t = ada_check_typedef (value_type (arg));
7105 if (TYPE_CODE (t) == TYPE_CODE_REF)
7107 t1 = TYPE_TARGET_TYPE (t);
7110 t1 = ada_check_typedef (t1);
7111 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7113 arg = coerce_ref (arg);
7118 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7120 t1 = TYPE_TARGET_TYPE (t);
7123 t1 = ada_check_typedef (t1);
7124 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7126 arg = value_ind (arg);
7133 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7137 v = ada_search_struct_field (name, arg, 0, t);
7140 int bit_offset, bit_size, byte_offset;
7141 struct type *field_type;
7144 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7145 address = value_address (ada_value_ind (arg));
7147 address = value_address (ada_coerce_ref (arg));
7149 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7150 if (find_struct_field (name, t1, 0,
7151 &field_type, &byte_offset, &bit_offset,
7156 if (TYPE_CODE (t) == TYPE_CODE_REF)
7157 arg = ada_coerce_ref (arg);
7159 arg = ada_value_ind (arg);
7160 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7161 bit_offset, bit_size,
7165 v = value_at_lazy (field_type, address + byte_offset);
7169 if (v != NULL || no_err)
7172 error (_("There is no member named %s."), name);
7178 error (_("Attempt to extract a component of "
7179 "a value that is not a record."));
7182 /* Given a type TYPE, look up the type of the component of type named NAME.
7183 If DISPP is non-null, add its byte displacement from the beginning of a
7184 structure (pointed to by a value) of type TYPE to *DISPP (does not
7185 work for packed fields).
7187 Matches any field whose name has NAME as a prefix, possibly
7190 TYPE can be either a struct or union. If REFOK, TYPE may also
7191 be a (pointer or reference)+ to a struct or union, and the
7192 ultimate target type will be searched.
7194 Looks recursively into variant clauses and parent types.
7196 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7197 TYPE is not a type of the right kind. */
7199 static struct type *
7200 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7201 int noerr, int *dispp)
7208 if (refok && type != NULL)
7211 type = ada_check_typedef (type);
7212 if (TYPE_CODE (type) != TYPE_CODE_PTR
7213 && TYPE_CODE (type) != TYPE_CODE_REF)
7215 type = TYPE_TARGET_TYPE (type);
7219 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7220 && TYPE_CODE (type) != TYPE_CODE_UNION))
7226 target_terminal_ours ();
7227 gdb_flush (gdb_stdout);
7229 error (_("Type (null) is not a structure or union type"));
7232 /* XXX: type_sprint */
7233 fprintf_unfiltered (gdb_stderr, _("Type "));
7234 type_print (type, "", gdb_stderr, -1);
7235 error (_(" is not a structure or union type"));
7240 type = to_static_fixed_type (type);
7242 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7244 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7248 if (t_field_name == NULL)
7251 else if (field_name_match (t_field_name, name))
7254 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7255 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7258 else if (ada_is_wrapper_field (type, i))
7261 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7266 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7271 else if (ada_is_variant_part (type, i))
7274 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7277 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7279 /* FIXME pnh 2008/01/26: We check for a field that is
7280 NOT wrapped in a struct, since the compiler sometimes
7281 generates these for unchecked variant types. Revisit
7282 if the compiler changes this practice. */
7283 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7285 if (v_field_name != NULL
7286 && field_name_match (v_field_name, name))
7287 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7289 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7296 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7307 target_terminal_ours ();
7308 gdb_flush (gdb_stdout);
7311 /* XXX: type_sprint */
7312 fprintf_unfiltered (gdb_stderr, _("Type "));
7313 type_print (type, "", gdb_stderr, -1);
7314 error (_(" has no component named <null>"));
7318 /* XXX: type_sprint */
7319 fprintf_unfiltered (gdb_stderr, _("Type "));
7320 type_print (type, "", gdb_stderr, -1);
7321 error (_(" has no component named %s"), name);
7328 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7329 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7330 represents an unchecked union (that is, the variant part of a
7331 record that is named in an Unchecked_Union pragma). */
7334 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7336 char *discrim_name = ada_variant_discrim_name (var_type);
7338 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7343 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7344 within a value of type OUTER_TYPE that is stored in GDB at
7345 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7346 numbering from 0) is applicable. Returns -1 if none are. */
7349 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7350 const gdb_byte *outer_valaddr)
7354 char *discrim_name = ada_variant_discrim_name (var_type);
7355 struct value *outer;
7356 struct value *discrim;
7357 LONGEST discrim_val;
7359 /* Using plain value_from_contents_and_address here causes problems
7360 because we will end up trying to resolve a type that is currently
7361 being constructed. */
7362 outer = value_from_contents_and_address_unresolved (outer_type,
7364 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7365 if (discrim == NULL)
7367 discrim_val = value_as_long (discrim);
7370 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7372 if (ada_is_others_clause (var_type, i))
7374 else if (ada_in_variant (discrim_val, var_type, i))
7378 return others_clause;
7383 /* Dynamic-Sized Records */
7385 /* Strategy: The type ostensibly attached to a value with dynamic size
7386 (i.e., a size that is not statically recorded in the debugging
7387 data) does not accurately reflect the size or layout of the value.
7388 Our strategy is to convert these values to values with accurate,
7389 conventional types that are constructed on the fly. */
7391 /* There is a subtle and tricky problem here. In general, we cannot
7392 determine the size of dynamic records without its data. However,
7393 the 'struct value' data structure, which GDB uses to represent
7394 quantities in the inferior process (the target), requires the size
7395 of the type at the time of its allocation in order to reserve space
7396 for GDB's internal copy of the data. That's why the
7397 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7398 rather than struct value*s.
7400 However, GDB's internal history variables ($1, $2, etc.) are
7401 struct value*s containing internal copies of the data that are not, in
7402 general, the same as the data at their corresponding addresses in
7403 the target. Fortunately, the types we give to these values are all
7404 conventional, fixed-size types (as per the strategy described
7405 above), so that we don't usually have to perform the
7406 'to_fixed_xxx_type' conversions to look at their values.
7407 Unfortunately, there is one exception: if one of the internal
7408 history variables is an array whose elements are unconstrained
7409 records, then we will need to create distinct fixed types for each
7410 element selected. */
7412 /* The upshot of all of this is that many routines take a (type, host
7413 address, target address) triple as arguments to represent a value.
7414 The host address, if non-null, is supposed to contain an internal
7415 copy of the relevant data; otherwise, the program is to consult the
7416 target at the target address. */
7418 /* Assuming that VAL0 represents a pointer value, the result of
7419 dereferencing it. Differs from value_ind in its treatment of
7420 dynamic-sized types. */
7423 ada_value_ind (struct value *val0)
7425 struct value *val = value_ind (val0);
7427 if (ada_is_tagged_type (value_type (val), 0))
7428 val = ada_tag_value_at_base_address (val);
7430 return ada_to_fixed_value (val);
7433 /* The value resulting from dereferencing any "reference to"
7434 qualifiers on VAL0. */
7436 static struct value *
7437 ada_coerce_ref (struct value *val0)
7439 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7441 struct value *val = val0;
7443 val = coerce_ref (val);
7445 if (ada_is_tagged_type (value_type (val), 0))
7446 val = ada_tag_value_at_base_address (val);
7448 return ada_to_fixed_value (val);
7454 /* Return OFF rounded upward if necessary to a multiple of
7455 ALIGNMENT (a power of 2). */
7458 align_value (unsigned int off, unsigned int alignment)
7460 return (off + alignment - 1) & ~(alignment - 1);
7463 /* Return the bit alignment required for field #F of template type TYPE. */
7466 field_alignment (struct type *type, int f)
7468 const char *name = TYPE_FIELD_NAME (type, f);
7472 /* The field name should never be null, unless the debugging information
7473 is somehow malformed. In this case, we assume the field does not
7474 require any alignment. */
7478 len = strlen (name);
7480 if (!isdigit (name[len - 1]))
7483 if (isdigit (name[len - 2]))
7484 align_offset = len - 2;
7486 align_offset = len - 1;
7488 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7489 return TARGET_CHAR_BIT;
7491 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7494 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7496 static struct symbol *
7497 ada_find_any_type_symbol (const char *name)
7501 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7502 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7505 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7509 /* Find a type named NAME. Ignores ambiguity. This routine will look
7510 solely for types defined by debug info, it will not search the GDB
7513 static struct type *
7514 ada_find_any_type (const char *name)
7516 struct symbol *sym = ada_find_any_type_symbol (name);
7519 return SYMBOL_TYPE (sym);
7524 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7525 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7526 symbol, in which case it is returned. Otherwise, this looks for
7527 symbols whose name is that of NAME_SYM suffixed with "___XR".
7528 Return symbol if found, and NULL otherwise. */
7531 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7533 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7536 if (strstr (name, "___XR") != NULL)
7539 sym = find_old_style_renaming_symbol (name, block);
7544 /* Not right yet. FIXME pnh 7/20/2007. */
7545 sym = ada_find_any_type_symbol (name);
7546 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7552 static struct symbol *
7553 find_old_style_renaming_symbol (const char *name, const struct block *block)
7555 const struct symbol *function_sym = block_linkage_function (block);
7558 if (function_sym != NULL)
7560 /* If the symbol is defined inside a function, NAME is not fully
7561 qualified. This means we need to prepend the function name
7562 as well as adding the ``___XR'' suffix to build the name of
7563 the associated renaming symbol. */
7564 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7565 /* Function names sometimes contain suffixes used
7566 for instance to qualify nested subprograms. When building
7567 the XR type name, we need to make sure that this suffix is
7568 not included. So do not include any suffix in the function
7569 name length below. */
7570 int function_name_len = ada_name_prefix_len (function_name);
7571 const int rename_len = function_name_len + 2 /* "__" */
7572 + strlen (name) + 6 /* "___XR\0" */ ;
7574 /* Strip the suffix if necessary. */
7575 ada_remove_trailing_digits (function_name, &function_name_len);
7576 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7577 ada_remove_Xbn_suffix (function_name, &function_name_len);
7579 /* Library-level functions are a special case, as GNAT adds
7580 a ``_ada_'' prefix to the function name to avoid namespace
7581 pollution. However, the renaming symbols themselves do not
7582 have this prefix, so we need to skip this prefix if present. */
7583 if (function_name_len > 5 /* "_ada_" */
7584 && strstr (function_name, "_ada_") == function_name)
7587 function_name_len -= 5;
7590 rename = (char *) alloca (rename_len * sizeof (char));
7591 strncpy (rename, function_name, function_name_len);
7592 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7597 const int rename_len = strlen (name) + 6;
7599 rename = (char *) alloca (rename_len * sizeof (char));
7600 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7603 return ada_find_any_type_symbol (rename);
7606 /* Because of GNAT encoding conventions, several GDB symbols may match a
7607 given type name. If the type denoted by TYPE0 is to be preferred to
7608 that of TYPE1 for purposes of type printing, return non-zero;
7609 otherwise return 0. */
7612 ada_prefer_type (struct type *type0, struct type *type1)
7616 else if (type0 == NULL)
7618 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7620 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7622 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7624 else if (ada_is_constrained_packed_array_type (type0))
7626 else if (ada_is_array_descriptor_type (type0)
7627 && !ada_is_array_descriptor_type (type1))
7631 const char *type0_name = type_name_no_tag (type0);
7632 const char *type1_name = type_name_no_tag (type1);
7634 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7635 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7641 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7642 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7645 ada_type_name (struct type *type)
7649 else if (TYPE_NAME (type) != NULL)
7650 return TYPE_NAME (type);
7652 return TYPE_TAG_NAME (type);
7655 /* Search the list of "descriptive" types associated to TYPE for a type
7656 whose name is NAME. */
7658 static struct type *
7659 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7661 struct type *result;
7663 if (ada_ignore_descriptive_types_p)
7666 /* If there no descriptive-type info, then there is no parallel type
7668 if (!HAVE_GNAT_AUX_INFO (type))
7671 result = TYPE_DESCRIPTIVE_TYPE (type);
7672 while (result != NULL)
7674 const char *result_name = ada_type_name (result);
7676 if (result_name == NULL)
7678 warning (_("unexpected null name on descriptive type"));
7682 /* If the names match, stop. */
7683 if (strcmp (result_name, name) == 0)
7686 /* Otherwise, look at the next item on the list, if any. */
7687 if (HAVE_GNAT_AUX_INFO (result))
7688 result = TYPE_DESCRIPTIVE_TYPE (result);
7693 /* If we didn't find a match, see whether this is a packed array. With
7694 older compilers, the descriptive type information is either absent or
7695 irrelevant when it comes to packed arrays so the above lookup fails.
7696 Fall back to using a parallel lookup by name in this case. */
7697 if (result == NULL && ada_is_constrained_packed_array_type (type))
7698 return ada_find_any_type (name);
7703 /* Find a parallel type to TYPE with the specified NAME, using the
7704 descriptive type taken from the debugging information, if available,
7705 and otherwise using the (slower) name-based method. */
7707 static struct type *
7708 ada_find_parallel_type_with_name (struct type *type, const char *name)
7710 struct type *result = NULL;
7712 if (HAVE_GNAT_AUX_INFO (type))
7713 result = find_parallel_type_by_descriptive_type (type, name);
7715 result = ada_find_any_type (name);
7720 /* Same as above, but specify the name of the parallel type by appending
7721 SUFFIX to the name of TYPE. */
7724 ada_find_parallel_type (struct type *type, const char *suffix)
7727 const char *typename = ada_type_name (type);
7730 if (typename == NULL)
7733 len = strlen (typename);
7735 name = (char *) alloca (len + strlen (suffix) + 1);
7737 strcpy (name, typename);
7738 strcpy (name + len, suffix);
7740 return ada_find_parallel_type_with_name (type, name);
7743 /* If TYPE is a variable-size record type, return the corresponding template
7744 type describing its fields. Otherwise, return NULL. */
7746 static struct type *
7747 dynamic_template_type (struct type *type)
7749 type = ada_check_typedef (type);
7751 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7752 || ada_type_name (type) == NULL)
7756 int len = strlen (ada_type_name (type));
7758 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7761 return ada_find_parallel_type (type, "___XVE");
7765 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7766 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7769 is_dynamic_field (struct type *templ_type, int field_num)
7771 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7774 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7775 && strstr (name, "___XVL") != NULL;
7778 /* The index of the variant field of TYPE, or -1 if TYPE does not
7779 represent a variant record type. */
7782 variant_field_index (struct type *type)
7786 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7789 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7791 if (ada_is_variant_part (type, f))
7797 /* A record type with no fields. */
7799 static struct type *
7800 empty_record (struct type *template)
7802 struct type *type = alloc_type_copy (template);
7804 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7805 TYPE_NFIELDS (type) = 0;
7806 TYPE_FIELDS (type) = NULL;
7807 INIT_CPLUS_SPECIFIC (type);
7808 TYPE_NAME (type) = "<empty>";
7809 TYPE_TAG_NAME (type) = NULL;
7810 TYPE_LENGTH (type) = 0;
7814 /* An ordinary record type (with fixed-length fields) that describes
7815 the value of type TYPE at VALADDR or ADDRESS (see comments at
7816 the beginning of this section) VAL according to GNAT conventions.
7817 DVAL0 should describe the (portion of a) record that contains any
7818 necessary discriminants. It should be NULL if value_type (VAL) is
7819 an outer-level type (i.e., as opposed to a branch of a variant.) A
7820 variant field (unless unchecked) is replaced by a particular branch
7823 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7824 length are not statically known are discarded. As a consequence,
7825 VALADDR, ADDRESS and DVAL0 are ignored.
7827 NOTE: Limitations: For now, we assume that dynamic fields and
7828 variants occupy whole numbers of bytes. However, they need not be
7832 ada_template_to_fixed_record_type_1 (struct type *type,
7833 const gdb_byte *valaddr,
7834 CORE_ADDR address, struct value *dval0,
7835 int keep_dynamic_fields)
7837 struct value *mark = value_mark ();
7840 int nfields, bit_len;
7846 /* Compute the number of fields in this record type that are going
7847 to be processed: unless keep_dynamic_fields, this includes only
7848 fields whose position and length are static will be processed. */
7849 if (keep_dynamic_fields)
7850 nfields = TYPE_NFIELDS (type);
7854 while (nfields < TYPE_NFIELDS (type)
7855 && !ada_is_variant_part (type, nfields)
7856 && !is_dynamic_field (type, nfields))
7860 rtype = alloc_type_copy (type);
7861 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7862 INIT_CPLUS_SPECIFIC (rtype);
7863 TYPE_NFIELDS (rtype) = nfields;
7864 TYPE_FIELDS (rtype) = (struct field *)
7865 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7866 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7867 TYPE_NAME (rtype) = ada_type_name (type);
7868 TYPE_TAG_NAME (rtype) = NULL;
7869 TYPE_FIXED_INSTANCE (rtype) = 1;
7875 for (f = 0; f < nfields; f += 1)
7877 off = align_value (off, field_alignment (type, f))
7878 + TYPE_FIELD_BITPOS (type, f);
7879 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7880 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7882 if (ada_is_variant_part (type, f))
7887 else if (is_dynamic_field (type, f))
7889 const gdb_byte *field_valaddr = valaddr;
7890 CORE_ADDR field_address = address;
7891 struct type *field_type =
7892 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7896 /* rtype's length is computed based on the run-time
7897 value of discriminants. If the discriminants are not
7898 initialized, the type size may be completely bogus and
7899 GDB may fail to allocate a value for it. So check the
7900 size first before creating the value. */
7902 /* Using plain value_from_contents_and_address here
7903 causes problems because we will end up trying to
7904 resolve a type that is currently being
7906 dval = value_from_contents_and_address_unresolved (rtype,
7909 rtype = value_type (dval);
7914 /* If the type referenced by this field is an aligner type, we need
7915 to unwrap that aligner type, because its size might not be set.
7916 Keeping the aligner type would cause us to compute the wrong
7917 size for this field, impacting the offset of the all the fields
7918 that follow this one. */
7919 if (ada_is_aligner_type (field_type))
7921 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7923 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7924 field_address = cond_offset_target (field_address, field_offset);
7925 field_type = ada_aligned_type (field_type);
7928 field_valaddr = cond_offset_host (field_valaddr,
7929 off / TARGET_CHAR_BIT);
7930 field_address = cond_offset_target (field_address,
7931 off / TARGET_CHAR_BIT);
7933 /* Get the fixed type of the field. Note that, in this case,
7934 we do not want to get the real type out of the tag: if
7935 the current field is the parent part of a tagged record,
7936 we will get the tag of the object. Clearly wrong: the real
7937 type of the parent is not the real type of the child. We
7938 would end up in an infinite loop. */
7939 field_type = ada_get_base_type (field_type);
7940 field_type = ada_to_fixed_type (field_type, field_valaddr,
7941 field_address, dval, 0);
7942 /* If the field size is already larger than the maximum
7943 object size, then the record itself will necessarily
7944 be larger than the maximum object size. We need to make
7945 this check now, because the size might be so ridiculously
7946 large (due to an uninitialized variable in the inferior)
7947 that it would cause an overflow when adding it to the
7949 check_size (field_type);
7951 TYPE_FIELD_TYPE (rtype, f) = field_type;
7952 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7953 /* The multiplication can potentially overflow. But because
7954 the field length has been size-checked just above, and
7955 assuming that the maximum size is a reasonable value,
7956 an overflow should not happen in practice. So rather than
7957 adding overflow recovery code to this already complex code,
7958 we just assume that it's not going to happen. */
7960 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7964 /* Note: If this field's type is a typedef, it is important
7965 to preserve the typedef layer.
7967 Otherwise, we might be transforming a typedef to a fat
7968 pointer (encoding a pointer to an unconstrained array),
7969 into a basic fat pointer (encoding an unconstrained
7970 array). As both types are implemented using the same
7971 structure, the typedef is the only clue which allows us
7972 to distinguish between the two options. Stripping it
7973 would prevent us from printing this field appropriately. */
7974 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7975 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7976 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7978 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7981 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7983 /* We need to be careful of typedefs when computing
7984 the length of our field. If this is a typedef,
7985 get the length of the target type, not the length
7987 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7988 field_type = ada_typedef_target_type (field_type);
7991 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7994 if (off + fld_bit_len > bit_len)
7995 bit_len = off + fld_bit_len;
7997 TYPE_LENGTH (rtype) =
7998 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8001 /* We handle the variant part, if any, at the end because of certain
8002 odd cases in which it is re-ordered so as NOT to be the last field of
8003 the record. This can happen in the presence of representation
8005 if (variant_field >= 0)
8007 struct type *branch_type;
8009 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8013 /* Using plain value_from_contents_and_address here causes
8014 problems because we will end up trying to resolve a type
8015 that is currently being constructed. */
8016 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8018 rtype = value_type (dval);
8024 to_fixed_variant_branch_type
8025 (TYPE_FIELD_TYPE (type, variant_field),
8026 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8027 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8028 if (branch_type == NULL)
8030 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8031 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8032 TYPE_NFIELDS (rtype) -= 1;
8036 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8037 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8039 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8041 if (off + fld_bit_len > bit_len)
8042 bit_len = off + fld_bit_len;
8043 TYPE_LENGTH (rtype) =
8044 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8048 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8049 should contain the alignment of that record, which should be a strictly
8050 positive value. If null or negative, then something is wrong, most
8051 probably in the debug info. In that case, we don't round up the size
8052 of the resulting type. If this record is not part of another structure,
8053 the current RTYPE length might be good enough for our purposes. */
8054 if (TYPE_LENGTH (type) <= 0)
8056 if (TYPE_NAME (rtype))
8057 warning (_("Invalid type size for `%s' detected: %d."),
8058 TYPE_NAME (rtype), TYPE_LENGTH (type));
8060 warning (_("Invalid type size for <unnamed> detected: %d."),
8061 TYPE_LENGTH (type));
8065 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8066 TYPE_LENGTH (type));
8069 value_free_to_mark (mark);
8070 if (TYPE_LENGTH (rtype) > varsize_limit)
8071 error (_("record type with dynamic size is larger than varsize-limit"));
8075 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8078 static struct type *
8079 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8080 CORE_ADDR address, struct value *dval0)
8082 return ada_template_to_fixed_record_type_1 (type, valaddr,
8086 /* An ordinary record type in which ___XVL-convention fields and
8087 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8088 static approximations, containing all possible fields. Uses
8089 no runtime values. Useless for use in values, but that's OK,
8090 since the results are used only for type determinations. Works on both
8091 structs and unions. Representation note: to save space, we memorize
8092 the result of this function in the TYPE_TARGET_TYPE of the
8095 static struct type *
8096 template_to_static_fixed_type (struct type *type0)
8102 if (TYPE_TARGET_TYPE (type0) != NULL)
8103 return TYPE_TARGET_TYPE (type0);
8105 nfields = TYPE_NFIELDS (type0);
8108 for (f = 0; f < nfields; f += 1)
8110 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8111 struct type *new_type;
8113 if (is_dynamic_field (type0, f))
8114 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8116 new_type = static_unwrap_type (field_type);
8117 if (type == type0 && new_type != field_type)
8119 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8120 TYPE_CODE (type) = TYPE_CODE (type0);
8121 INIT_CPLUS_SPECIFIC (type);
8122 TYPE_NFIELDS (type) = nfields;
8123 TYPE_FIELDS (type) = (struct field *)
8124 TYPE_ALLOC (type, nfields * sizeof (struct field));
8125 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8126 sizeof (struct field) * nfields);
8127 TYPE_NAME (type) = ada_type_name (type0);
8128 TYPE_TAG_NAME (type) = NULL;
8129 TYPE_FIXED_INSTANCE (type) = 1;
8130 TYPE_LENGTH (type) = 0;
8132 TYPE_FIELD_TYPE (type, f) = new_type;
8133 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8138 /* Given an object of type TYPE whose contents are at VALADDR and
8139 whose address in memory is ADDRESS, returns a revision of TYPE,
8140 which should be a non-dynamic-sized record, in which the variant
8141 part, if any, is replaced with the appropriate branch. Looks
8142 for discriminant values in DVAL0, which can be NULL if the record
8143 contains the necessary discriminant values. */
8145 static struct type *
8146 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8147 CORE_ADDR address, struct value *dval0)
8149 struct value *mark = value_mark ();
8152 struct type *branch_type;
8153 int nfields = TYPE_NFIELDS (type);
8154 int variant_field = variant_field_index (type);
8156 if (variant_field == -1)
8161 dval = value_from_contents_and_address (type, valaddr, address);
8162 type = value_type (dval);
8167 rtype = alloc_type_copy (type);
8168 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8169 INIT_CPLUS_SPECIFIC (rtype);
8170 TYPE_NFIELDS (rtype) = nfields;
8171 TYPE_FIELDS (rtype) =
8172 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8173 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8174 sizeof (struct field) * nfields);
8175 TYPE_NAME (rtype) = ada_type_name (type);
8176 TYPE_TAG_NAME (rtype) = NULL;
8177 TYPE_FIXED_INSTANCE (rtype) = 1;
8178 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8180 branch_type = to_fixed_variant_branch_type
8181 (TYPE_FIELD_TYPE (type, variant_field),
8182 cond_offset_host (valaddr,
8183 TYPE_FIELD_BITPOS (type, variant_field)
8185 cond_offset_target (address,
8186 TYPE_FIELD_BITPOS (type, variant_field)
8187 / TARGET_CHAR_BIT), dval);
8188 if (branch_type == NULL)
8192 for (f = variant_field + 1; f < nfields; f += 1)
8193 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8194 TYPE_NFIELDS (rtype) -= 1;
8198 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8199 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8200 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8201 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8203 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8205 value_free_to_mark (mark);
8209 /* An ordinary record type (with fixed-length fields) that describes
8210 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8211 beginning of this section]. Any necessary discriminants' values
8212 should be in DVAL, a record value; it may be NULL if the object
8213 at ADDR itself contains any necessary discriminant values.
8214 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8215 values from the record are needed. Except in the case that DVAL,
8216 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8217 unchecked) is replaced by a particular branch of the variant.
8219 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8220 is questionable and may be removed. It can arise during the
8221 processing of an unconstrained-array-of-record type where all the
8222 variant branches have exactly the same size. This is because in
8223 such cases, the compiler does not bother to use the XVS convention
8224 when encoding the record. I am currently dubious of this
8225 shortcut and suspect the compiler should be altered. FIXME. */
8227 static struct type *
8228 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8229 CORE_ADDR address, struct value *dval)
8231 struct type *templ_type;
8233 if (TYPE_FIXED_INSTANCE (type0))
8236 templ_type = dynamic_template_type (type0);
8238 if (templ_type != NULL)
8239 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8240 else if (variant_field_index (type0) >= 0)
8242 if (dval == NULL && valaddr == NULL && address == 0)
8244 return to_record_with_fixed_variant_part (type0, valaddr, address,
8249 TYPE_FIXED_INSTANCE (type0) = 1;
8255 /* An ordinary record type (with fixed-length fields) that describes
8256 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8257 union type. Any necessary discriminants' values should be in DVAL,
8258 a record value. That is, this routine selects the appropriate
8259 branch of the union at ADDR according to the discriminant value
8260 indicated in the union's type name. Returns VAR_TYPE0 itself if
8261 it represents a variant subject to a pragma Unchecked_Union. */
8263 static struct type *
8264 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8265 CORE_ADDR address, struct value *dval)
8268 struct type *templ_type;
8269 struct type *var_type;
8271 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8272 var_type = TYPE_TARGET_TYPE (var_type0);
8274 var_type = var_type0;
8276 templ_type = ada_find_parallel_type (var_type, "___XVU");
8278 if (templ_type != NULL)
8279 var_type = templ_type;
8281 if (is_unchecked_variant (var_type, value_type (dval)))
8284 ada_which_variant_applies (var_type,
8285 value_type (dval), value_contents (dval));
8288 return empty_record (var_type);
8289 else if (is_dynamic_field (var_type, which))
8290 return to_fixed_record_type
8291 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8292 valaddr, address, dval);
8293 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8295 to_fixed_record_type
8296 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8298 return TYPE_FIELD_TYPE (var_type, which);
8301 /* Assuming that TYPE0 is an array type describing the type of a value
8302 at ADDR, and that DVAL describes a record containing any
8303 discriminants used in TYPE0, returns a type for the value that
8304 contains no dynamic components (that is, no components whose sizes
8305 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8306 true, gives an error message if the resulting type's size is over
8309 static struct type *
8310 to_fixed_array_type (struct type *type0, struct value *dval,
8313 struct type *index_type_desc;
8314 struct type *result;
8315 int constrained_packed_array_p;
8317 type0 = ada_check_typedef (type0);
8318 if (TYPE_FIXED_INSTANCE (type0))
8321 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8322 if (constrained_packed_array_p)
8323 type0 = decode_constrained_packed_array_type (type0);
8325 index_type_desc = ada_find_parallel_type (type0, "___XA");
8326 ada_fixup_array_indexes_type (index_type_desc);
8327 if (index_type_desc == NULL)
8329 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8331 /* NOTE: elt_type---the fixed version of elt_type0---should never
8332 depend on the contents of the array in properly constructed
8334 /* Create a fixed version of the array element type.
8335 We're not providing the address of an element here,
8336 and thus the actual object value cannot be inspected to do
8337 the conversion. This should not be a problem, since arrays of
8338 unconstrained objects are not allowed. In particular, all
8339 the elements of an array of a tagged type should all be of
8340 the same type specified in the debugging info. No need to
8341 consult the object tag. */
8342 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8344 /* Make sure we always create a new array type when dealing with
8345 packed array types, since we're going to fix-up the array
8346 type length and element bitsize a little further down. */
8347 if (elt_type0 == elt_type && !constrained_packed_array_p)
8350 result = create_array_type (alloc_type_copy (type0),
8351 elt_type, TYPE_INDEX_TYPE (type0));
8356 struct type *elt_type0;
8359 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8360 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8362 /* NOTE: result---the fixed version of elt_type0---should never
8363 depend on the contents of the array in properly constructed
8365 /* Create a fixed version of the array element type.
8366 We're not providing the address of an element here,
8367 and thus the actual object value cannot be inspected to do
8368 the conversion. This should not be a problem, since arrays of
8369 unconstrained objects are not allowed. In particular, all
8370 the elements of an array of a tagged type should all be of
8371 the same type specified in the debugging info. No need to
8372 consult the object tag. */
8374 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8377 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8379 struct type *range_type =
8380 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8382 result = create_array_type (alloc_type_copy (elt_type0),
8383 result, range_type);
8384 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8386 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8387 error (_("array type with dynamic size is larger than varsize-limit"));
8390 /* We want to preserve the type name. This can be useful when
8391 trying to get the type name of a value that has already been
8392 printed (for instance, if the user did "print VAR; whatis $". */
8393 TYPE_NAME (result) = TYPE_NAME (type0);
8395 if (constrained_packed_array_p)
8397 /* So far, the resulting type has been created as if the original
8398 type was a regular (non-packed) array type. As a result, the
8399 bitsize of the array elements needs to be set again, and the array
8400 length needs to be recomputed based on that bitsize. */
8401 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8402 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8404 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8405 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8406 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8407 TYPE_LENGTH (result)++;
8410 TYPE_FIXED_INSTANCE (result) = 1;
8415 /* A standard type (containing no dynamically sized components)
8416 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8417 DVAL describes a record containing any discriminants used in TYPE0,
8418 and may be NULL if there are none, or if the object of type TYPE at
8419 ADDRESS or in VALADDR contains these discriminants.
8421 If CHECK_TAG is not null, in the case of tagged types, this function
8422 attempts to locate the object's tag and use it to compute the actual
8423 type. However, when ADDRESS is null, we cannot use it to determine the
8424 location of the tag, and therefore compute the tagged type's actual type.
8425 So we return the tagged type without consulting the tag. */
8427 static struct type *
8428 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8429 CORE_ADDR address, struct value *dval, int check_tag)
8431 type = ada_check_typedef (type);
8432 switch (TYPE_CODE (type))
8436 case TYPE_CODE_STRUCT:
8438 struct type *static_type = to_static_fixed_type (type);
8439 struct type *fixed_record_type =
8440 to_fixed_record_type (type, valaddr, address, NULL);
8442 /* If STATIC_TYPE is a tagged type and we know the object's address,
8443 then we can determine its tag, and compute the object's actual
8444 type from there. Note that we have to use the fixed record
8445 type (the parent part of the record may have dynamic fields
8446 and the way the location of _tag is expressed may depend on
8449 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8452 value_tag_from_contents_and_address
8456 struct type *real_type = type_from_tag (tag);
8458 value_from_contents_and_address (fixed_record_type,
8461 fixed_record_type = value_type (obj);
8462 if (real_type != NULL)
8463 return to_fixed_record_type
8465 value_address (ada_tag_value_at_base_address (obj)), NULL);
8468 /* Check to see if there is a parallel ___XVZ variable.
8469 If there is, then it provides the actual size of our type. */
8470 else if (ada_type_name (fixed_record_type) != NULL)
8472 const char *name = ada_type_name (fixed_record_type);
8473 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8477 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8478 size = get_int_var_value (xvz_name, &xvz_found);
8479 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8481 fixed_record_type = copy_type (fixed_record_type);
8482 TYPE_LENGTH (fixed_record_type) = size;
8484 /* The FIXED_RECORD_TYPE may have be a stub. We have
8485 observed this when the debugging info is STABS, and
8486 apparently it is something that is hard to fix.
8488 In practice, we don't need the actual type definition
8489 at all, because the presence of the XVZ variable allows us
8490 to assume that there must be a XVS type as well, which we
8491 should be able to use later, when we need the actual type
8494 In the meantime, pretend that the "fixed" type we are
8495 returning is NOT a stub, because this can cause trouble
8496 when using this type to create new types targeting it.
8497 Indeed, the associated creation routines often check
8498 whether the target type is a stub and will try to replace
8499 it, thus using a type with the wrong size. This, in turn,
8500 might cause the new type to have the wrong size too.
8501 Consider the case of an array, for instance, where the size
8502 of the array is computed from the number of elements in
8503 our array multiplied by the size of its element. */
8504 TYPE_STUB (fixed_record_type) = 0;
8507 return fixed_record_type;
8509 case TYPE_CODE_ARRAY:
8510 return to_fixed_array_type (type, dval, 1);
8511 case TYPE_CODE_UNION:
8515 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8519 /* The same as ada_to_fixed_type_1, except that it preserves the type
8520 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8522 The typedef layer needs be preserved in order to differentiate between
8523 arrays and array pointers when both types are implemented using the same
8524 fat pointer. In the array pointer case, the pointer is encoded as
8525 a typedef of the pointer type. For instance, considering:
8527 type String_Access is access String;
8528 S1 : String_Access := null;
8530 To the debugger, S1 is defined as a typedef of type String. But
8531 to the user, it is a pointer. So if the user tries to print S1,
8532 we should not dereference the array, but print the array address
8535 If we didn't preserve the typedef layer, we would lose the fact that
8536 the type is to be presented as a pointer (needs de-reference before
8537 being printed). And we would also use the source-level type name. */
8540 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8541 CORE_ADDR address, struct value *dval, int check_tag)
8544 struct type *fixed_type =
8545 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8547 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8548 then preserve the typedef layer.
8550 Implementation note: We can only check the main-type portion of
8551 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8552 from TYPE now returns a type that has the same instance flags
8553 as TYPE. For instance, if TYPE is a "typedef const", and its
8554 target type is a "struct", then the typedef elimination will return
8555 a "const" version of the target type. See check_typedef for more
8556 details about how the typedef layer elimination is done.
8558 brobecker/2010-11-19: It seems to me that the only case where it is
8559 useful to preserve the typedef layer is when dealing with fat pointers.
8560 Perhaps, we could add a check for that and preserve the typedef layer
8561 only in that situation. But this seems unecessary so far, probably
8562 because we call check_typedef/ada_check_typedef pretty much everywhere.
8564 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8565 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8566 == TYPE_MAIN_TYPE (fixed_type)))
8572 /* A standard (static-sized) type corresponding as well as possible to
8573 TYPE0, but based on no runtime data. */
8575 static struct type *
8576 to_static_fixed_type (struct type *type0)
8583 if (TYPE_FIXED_INSTANCE (type0))
8586 type0 = ada_check_typedef (type0);
8588 switch (TYPE_CODE (type0))
8592 case TYPE_CODE_STRUCT:
8593 type = dynamic_template_type (type0);
8595 return template_to_static_fixed_type (type);
8597 return template_to_static_fixed_type (type0);
8598 case TYPE_CODE_UNION:
8599 type = ada_find_parallel_type (type0, "___XVU");
8601 return template_to_static_fixed_type (type);
8603 return template_to_static_fixed_type (type0);
8607 /* A static approximation of TYPE with all type wrappers removed. */
8609 static struct type *
8610 static_unwrap_type (struct type *type)
8612 if (ada_is_aligner_type (type))
8614 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8615 if (ada_type_name (type1) == NULL)
8616 TYPE_NAME (type1) = ada_type_name (type);
8618 return static_unwrap_type (type1);
8622 struct type *raw_real_type = ada_get_base_type (type);
8624 if (raw_real_type == type)
8627 return to_static_fixed_type (raw_real_type);
8631 /* In some cases, incomplete and private types require
8632 cross-references that are not resolved as records (for example,
8634 type FooP is access Foo;
8636 type Foo is array ...;
8637 ). In these cases, since there is no mechanism for producing
8638 cross-references to such types, we instead substitute for FooP a
8639 stub enumeration type that is nowhere resolved, and whose tag is
8640 the name of the actual type. Call these types "non-record stubs". */
8642 /* A type equivalent to TYPE that is not a non-record stub, if one
8643 exists, otherwise TYPE. */
8646 ada_check_typedef (struct type *type)
8651 /* If our type is a typedef type of a fat pointer, then we're done.
8652 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8653 what allows us to distinguish between fat pointers that represent
8654 array types, and fat pointers that represent array access types
8655 (in both cases, the compiler implements them as fat pointers). */
8656 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8657 && is_thick_pntr (ada_typedef_target_type (type)))
8660 CHECK_TYPEDEF (type);
8661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8662 || !TYPE_STUB (type)
8663 || TYPE_TAG_NAME (type) == NULL)
8667 const char *name = TYPE_TAG_NAME (type);
8668 struct type *type1 = ada_find_any_type (name);
8673 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8674 stubs pointing to arrays, as we don't create symbols for array
8675 types, only for the typedef-to-array types). If that's the case,
8676 strip the typedef layer. */
8677 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8678 type1 = ada_check_typedef (type1);
8684 /* A value representing the data at VALADDR/ADDRESS as described by
8685 type TYPE0, but with a standard (static-sized) type that correctly
8686 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8687 type, then return VAL0 [this feature is simply to avoid redundant
8688 creation of struct values]. */
8690 static struct value *
8691 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8694 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8696 if (type == type0 && val0 != NULL)
8699 return value_from_contents_and_address (type, 0, address);
8702 /* A value representing VAL, but with a standard (static-sized) type
8703 that correctly describes it. Does not necessarily create a new
8707 ada_to_fixed_value (struct value *val)
8709 val = unwrap_value (val);
8710 val = ada_to_fixed_value_create (value_type (val),
8711 value_address (val),
8719 /* Table mapping attribute numbers to names.
8720 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8722 static const char *attribute_names[] = {
8740 ada_attribute_name (enum exp_opcode n)
8742 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8743 return attribute_names[n - OP_ATR_FIRST + 1];
8745 return attribute_names[0];
8748 /* Evaluate the 'POS attribute applied to ARG. */
8751 pos_atr (struct value *arg)
8753 struct value *val = coerce_ref (arg);
8754 struct type *type = value_type (val);
8756 if (!discrete_type_p (type))
8757 error (_("'POS only defined on discrete types"));
8759 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8762 LONGEST v = value_as_long (val);
8764 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8766 if (v == TYPE_FIELD_ENUMVAL (type, i))
8769 error (_("enumeration value is invalid: can't find 'POS"));
8772 return value_as_long (val);
8775 static struct value *
8776 value_pos_atr (struct type *type, struct value *arg)
8778 return value_from_longest (type, pos_atr (arg));
8781 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8783 static struct value *
8784 value_val_atr (struct type *type, struct value *arg)
8786 if (!discrete_type_p (type))
8787 error (_("'VAL only defined on discrete types"));
8788 if (!integer_type_p (value_type (arg)))
8789 error (_("'VAL requires integral argument"));
8791 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8793 long pos = value_as_long (arg);
8795 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8796 error (_("argument to 'VAL out of range"));
8797 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8800 return value_from_longest (type, value_as_long (arg));
8806 /* True if TYPE appears to be an Ada character type.
8807 [At the moment, this is true only for Character and Wide_Character;
8808 It is a heuristic test that could stand improvement]. */
8811 ada_is_character_type (struct type *type)
8815 /* If the type code says it's a character, then assume it really is,
8816 and don't check any further. */
8817 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8820 /* Otherwise, assume it's a character type iff it is a discrete type
8821 with a known character type name. */
8822 name = ada_type_name (type);
8823 return (name != NULL
8824 && (TYPE_CODE (type) == TYPE_CODE_INT
8825 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8826 && (strcmp (name, "character") == 0
8827 || strcmp (name, "wide_character") == 0
8828 || strcmp (name, "wide_wide_character") == 0
8829 || strcmp (name, "unsigned char") == 0));
8832 /* True if TYPE appears to be an Ada string type. */
8835 ada_is_string_type (struct type *type)
8837 type = ada_check_typedef (type);
8839 && TYPE_CODE (type) != TYPE_CODE_PTR
8840 && (ada_is_simple_array_type (type)
8841 || ada_is_array_descriptor_type (type))
8842 && ada_array_arity (type) == 1)
8844 struct type *elttype = ada_array_element_type (type, 1);
8846 return ada_is_character_type (elttype);
8852 /* The compiler sometimes provides a parallel XVS type for a given
8853 PAD type. Normally, it is safe to follow the PAD type directly,
8854 but older versions of the compiler have a bug that causes the offset
8855 of its "F" field to be wrong. Following that field in that case
8856 would lead to incorrect results, but this can be worked around
8857 by ignoring the PAD type and using the associated XVS type instead.
8859 Set to True if the debugger should trust the contents of PAD types.
8860 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8861 static int trust_pad_over_xvs = 1;
8863 /* True if TYPE is a struct type introduced by the compiler to force the
8864 alignment of a value. Such types have a single field with a
8865 distinctive name. */
8868 ada_is_aligner_type (struct type *type)
8870 type = ada_check_typedef (type);
8872 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8875 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8876 && TYPE_NFIELDS (type) == 1
8877 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8880 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8881 the parallel type. */
8884 ada_get_base_type (struct type *raw_type)
8886 struct type *real_type_namer;
8887 struct type *raw_real_type;
8889 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8892 if (ada_is_aligner_type (raw_type))
8893 /* The encoding specifies that we should always use the aligner type.
8894 So, even if this aligner type has an associated XVS type, we should
8897 According to the compiler gurus, an XVS type parallel to an aligner
8898 type may exist because of a stabs limitation. In stabs, aligner
8899 types are empty because the field has a variable-sized type, and
8900 thus cannot actually be used as an aligner type. As a result,
8901 we need the associated parallel XVS type to decode the type.
8902 Since the policy in the compiler is to not change the internal
8903 representation based on the debugging info format, we sometimes
8904 end up having a redundant XVS type parallel to the aligner type. */
8907 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8908 if (real_type_namer == NULL
8909 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8910 || TYPE_NFIELDS (real_type_namer) != 1)
8913 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8915 /* This is an older encoding form where the base type needs to be
8916 looked up by name. We prefer the newer enconding because it is
8918 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8919 if (raw_real_type == NULL)
8922 return raw_real_type;
8925 /* The field in our XVS type is a reference to the base type. */
8926 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8929 /* The type of value designated by TYPE, with all aligners removed. */
8932 ada_aligned_type (struct type *type)
8934 if (ada_is_aligner_type (type))
8935 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8937 return ada_get_base_type (type);
8941 /* The address of the aligned value in an object at address VALADDR
8942 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8945 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8947 if (ada_is_aligner_type (type))
8948 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8950 TYPE_FIELD_BITPOS (type,
8951 0) / TARGET_CHAR_BIT);
8958 /* The printed representation of an enumeration literal with encoded
8959 name NAME. The value is good to the next call of ada_enum_name. */
8961 ada_enum_name (const char *name)
8963 static char *result;
8964 static size_t result_len = 0;
8967 /* First, unqualify the enumeration name:
8968 1. Search for the last '.' character. If we find one, then skip
8969 all the preceding characters, the unqualified name starts
8970 right after that dot.
8971 2. Otherwise, we may be debugging on a target where the compiler
8972 translates dots into "__". Search forward for double underscores,
8973 but stop searching when we hit an overloading suffix, which is
8974 of the form "__" followed by digits. */
8976 tmp = strrchr (name, '.');
8981 while ((tmp = strstr (name, "__")) != NULL)
8983 if (isdigit (tmp[2]))
8994 if (name[1] == 'U' || name[1] == 'W')
8996 if (sscanf (name + 2, "%x", &v) != 1)
9002 GROW_VECT (result, result_len, 16);
9003 if (isascii (v) && isprint (v))
9004 xsnprintf (result, result_len, "'%c'", v);
9005 else if (name[1] == 'U')
9006 xsnprintf (result, result_len, "[\"%02x\"]", v);
9008 xsnprintf (result, result_len, "[\"%04x\"]", v);
9014 tmp = strstr (name, "__");
9016 tmp = strstr (name, "$");
9019 GROW_VECT (result, result_len, tmp - name + 1);
9020 strncpy (result, name, tmp - name);
9021 result[tmp - name] = '\0';
9029 /* Evaluate the subexpression of EXP starting at *POS as for
9030 evaluate_type, updating *POS to point just past the evaluated
9033 static struct value *
9034 evaluate_subexp_type (struct expression *exp, int *pos)
9036 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9039 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9042 static struct value *
9043 unwrap_value (struct value *val)
9045 struct type *type = ada_check_typedef (value_type (val));
9047 if (ada_is_aligner_type (type))
9049 struct value *v = ada_value_struct_elt (val, "F", 0);
9050 struct type *val_type = ada_check_typedef (value_type (v));
9052 if (ada_type_name (val_type) == NULL)
9053 TYPE_NAME (val_type) = ada_type_name (type);
9055 return unwrap_value (v);
9059 struct type *raw_real_type =
9060 ada_check_typedef (ada_get_base_type (type));
9062 /* If there is no parallel XVS or XVE type, then the value is
9063 already unwrapped. Return it without further modification. */
9064 if ((type == raw_real_type)
9065 && ada_find_parallel_type (type, "___XVE") == NULL)
9069 coerce_unspec_val_to_type
9070 (val, ada_to_fixed_type (raw_real_type, 0,
9071 value_address (val),
9076 static struct value *
9077 cast_to_fixed (struct type *type, struct value *arg)
9081 if (type == value_type (arg))
9083 else if (ada_is_fixed_point_type (value_type (arg)))
9084 val = ada_float_to_fixed (type,
9085 ada_fixed_to_float (value_type (arg),
9086 value_as_long (arg)));
9089 DOUBLEST argd = value_as_double (arg);
9091 val = ada_float_to_fixed (type, argd);
9094 return value_from_longest (type, val);
9097 static struct value *
9098 cast_from_fixed (struct type *type, struct value *arg)
9100 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9101 value_as_long (arg));
9103 return value_from_double (type, val);
9106 /* Given two array types T1 and T2, return nonzero iff both arrays
9107 contain the same number of elements. */
9110 ada_same_array_size_p (struct type *t1, struct type *t2)
9112 LONGEST lo1, hi1, lo2, hi2;
9114 /* Get the array bounds in order to verify that the size of
9115 the two arrays match. */
9116 if (!get_array_bounds (t1, &lo1, &hi1)
9117 || !get_array_bounds (t2, &lo2, &hi2))
9118 error (_("unable to determine array bounds"));
9120 /* To make things easier for size comparison, normalize a bit
9121 the case of empty arrays by making sure that the difference
9122 between upper bound and lower bound is always -1. */
9128 return (hi1 - lo1 == hi2 - lo2);
9131 /* Assuming that VAL is an array of integrals, and TYPE represents
9132 an array with the same number of elements, but with wider integral
9133 elements, return an array "casted" to TYPE. In practice, this
9134 means that the returned array is built by casting each element
9135 of the original array into TYPE's (wider) element type. */
9137 static struct value *
9138 ada_promote_array_of_integrals (struct type *type, struct value *val)
9140 struct type *elt_type = TYPE_TARGET_TYPE (type);
9145 /* Verify that both val and type are arrays of scalars, and
9146 that the size of val's elements is smaller than the size
9147 of type's element. */
9148 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9149 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9150 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9151 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9152 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9153 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9155 if (!get_array_bounds (type, &lo, &hi))
9156 error (_("unable to determine array bounds"));
9158 res = allocate_value (type);
9160 /* Promote each array element. */
9161 for (i = 0; i < hi - lo + 1; i++)
9163 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9165 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9166 value_contents_all (elt), TYPE_LENGTH (elt_type));
9172 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9173 return the converted value. */
9175 static struct value *
9176 coerce_for_assign (struct type *type, struct value *val)
9178 struct type *type2 = value_type (val);
9183 type2 = ada_check_typedef (type2);
9184 type = ada_check_typedef (type);
9186 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9187 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9189 val = ada_value_ind (val);
9190 type2 = value_type (val);
9193 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9194 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9196 if (!ada_same_array_size_p (type, type2))
9197 error (_("cannot assign arrays of different length"));
9199 if (is_integral_type (TYPE_TARGET_TYPE (type))
9200 && is_integral_type (TYPE_TARGET_TYPE (type2))
9201 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9202 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9204 /* Allow implicit promotion of the array elements to
9206 return ada_promote_array_of_integrals (type, val);
9209 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9210 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9211 error (_("Incompatible types in assignment"));
9212 deprecated_set_value_type (val, type);
9217 static struct value *
9218 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9221 struct type *type1, *type2;
9224 arg1 = coerce_ref (arg1);
9225 arg2 = coerce_ref (arg2);
9226 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9227 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9229 if (TYPE_CODE (type1) != TYPE_CODE_INT
9230 || TYPE_CODE (type2) != TYPE_CODE_INT)
9231 return value_binop (arg1, arg2, op);
9240 return value_binop (arg1, arg2, op);
9243 v2 = value_as_long (arg2);
9245 error (_("second operand of %s must not be zero."), op_string (op));
9247 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9248 return value_binop (arg1, arg2, op);
9250 v1 = value_as_long (arg1);
9255 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9256 v += v > 0 ? -1 : 1;
9264 /* Should not reach this point. */
9268 val = allocate_value (type1);
9269 store_unsigned_integer (value_contents_raw (val),
9270 TYPE_LENGTH (value_type (val)),
9271 gdbarch_byte_order (get_type_arch (type1)), v);
9276 ada_value_equal (struct value *arg1, struct value *arg2)
9278 if (ada_is_direct_array_type (value_type (arg1))
9279 || ada_is_direct_array_type (value_type (arg2)))
9281 /* Automatically dereference any array reference before
9282 we attempt to perform the comparison. */
9283 arg1 = ada_coerce_ref (arg1);
9284 arg2 = ada_coerce_ref (arg2);
9286 arg1 = ada_coerce_to_simple_array (arg1);
9287 arg2 = ada_coerce_to_simple_array (arg2);
9288 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9289 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9290 error (_("Attempt to compare array with non-array"));
9291 /* FIXME: The following works only for types whose
9292 representations use all bits (no padding or undefined bits)
9293 and do not have user-defined equality. */
9295 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9296 && memcmp (value_contents (arg1), value_contents (arg2),
9297 TYPE_LENGTH (value_type (arg1))) == 0;
9299 return value_equal (arg1, arg2);
9302 /* Total number of component associations in the aggregate starting at
9303 index PC in EXP. Assumes that index PC is the start of an
9307 num_component_specs (struct expression *exp, int pc)
9311 m = exp->elts[pc + 1].longconst;
9314 for (i = 0; i < m; i += 1)
9316 switch (exp->elts[pc].opcode)
9322 n += exp->elts[pc + 1].longconst;
9325 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9330 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9331 component of LHS (a simple array or a record), updating *POS past
9332 the expression, assuming that LHS is contained in CONTAINER. Does
9333 not modify the inferior's memory, nor does it modify LHS (unless
9334 LHS == CONTAINER). */
9337 assign_component (struct value *container, struct value *lhs, LONGEST index,
9338 struct expression *exp, int *pos)
9340 struct value *mark = value_mark ();
9343 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9345 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9346 struct value *index_val = value_from_longest (index_type, index);
9348 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9352 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9353 elt = ada_to_fixed_value (elt);
9356 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9357 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9359 value_assign_to_component (container, elt,
9360 ada_evaluate_subexp (NULL, exp, pos,
9363 value_free_to_mark (mark);
9366 /* Assuming that LHS represents an lvalue having a record or array
9367 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9368 of that aggregate's value to LHS, advancing *POS past the
9369 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9370 lvalue containing LHS (possibly LHS itself). Does not modify
9371 the inferior's memory, nor does it modify the contents of
9372 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9374 static struct value *
9375 assign_aggregate (struct value *container,
9376 struct value *lhs, struct expression *exp,
9377 int *pos, enum noside noside)
9379 struct type *lhs_type;
9380 int n = exp->elts[*pos+1].longconst;
9381 LONGEST low_index, high_index;
9384 int max_indices, num_indices;
9388 if (noside != EVAL_NORMAL)
9390 for (i = 0; i < n; i += 1)
9391 ada_evaluate_subexp (NULL, exp, pos, noside);
9395 container = ada_coerce_ref (container);
9396 if (ada_is_direct_array_type (value_type (container)))
9397 container = ada_coerce_to_simple_array (container);
9398 lhs = ada_coerce_ref (lhs);
9399 if (!deprecated_value_modifiable (lhs))
9400 error (_("Left operand of assignment is not a modifiable lvalue."));
9402 lhs_type = value_type (lhs);
9403 if (ada_is_direct_array_type (lhs_type))
9405 lhs = ada_coerce_to_simple_array (lhs);
9406 lhs_type = value_type (lhs);
9407 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9408 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9410 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9413 high_index = num_visible_fields (lhs_type) - 1;
9416 error (_("Left-hand side must be array or record."));
9418 num_specs = num_component_specs (exp, *pos - 3);
9419 max_indices = 4 * num_specs + 4;
9420 indices = alloca (max_indices * sizeof (indices[0]));
9421 indices[0] = indices[1] = low_index - 1;
9422 indices[2] = indices[3] = high_index + 1;
9425 for (i = 0; i < n; i += 1)
9427 switch (exp->elts[*pos].opcode)
9430 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9431 &num_indices, max_indices,
9432 low_index, high_index);
9435 aggregate_assign_positional (container, lhs, exp, pos, indices,
9436 &num_indices, max_indices,
9437 low_index, high_index);
9441 error (_("Misplaced 'others' clause"));
9442 aggregate_assign_others (container, lhs, exp, pos, indices,
9443 num_indices, low_index, high_index);
9446 error (_("Internal error: bad aggregate clause"));
9453 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9454 construct at *POS, updating *POS past the construct, given that
9455 the positions are relative to lower bound LOW, where HIGH is the
9456 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9457 updating *NUM_INDICES as needed. CONTAINER is as for
9458 assign_aggregate. */
9460 aggregate_assign_positional (struct value *container,
9461 struct value *lhs, struct expression *exp,
9462 int *pos, LONGEST *indices, int *num_indices,
9463 int max_indices, LONGEST low, LONGEST high)
9465 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9467 if (ind - 1 == high)
9468 warning (_("Extra components in aggregate ignored."));
9471 add_component_interval (ind, ind, indices, num_indices, max_indices);
9473 assign_component (container, lhs, ind, exp, pos);
9476 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9479 /* Assign into the components of LHS indexed by the OP_CHOICES
9480 construct at *POS, updating *POS past the construct, given that
9481 the allowable indices are LOW..HIGH. Record the indices assigned
9482 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9483 needed. CONTAINER is as for assign_aggregate. */
9485 aggregate_assign_from_choices (struct value *container,
9486 struct value *lhs, struct expression *exp,
9487 int *pos, LONGEST *indices, int *num_indices,
9488 int max_indices, LONGEST low, LONGEST high)
9491 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9492 int choice_pos, expr_pc;
9493 int is_array = ada_is_direct_array_type (value_type (lhs));
9495 choice_pos = *pos += 3;
9497 for (j = 0; j < n_choices; j += 1)
9498 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9500 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9502 for (j = 0; j < n_choices; j += 1)
9504 LONGEST lower, upper;
9505 enum exp_opcode op = exp->elts[choice_pos].opcode;
9507 if (op == OP_DISCRETE_RANGE)
9510 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9512 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9517 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9529 name = &exp->elts[choice_pos + 2].string;
9532 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9535 error (_("Invalid record component association."));
9537 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9539 if (! find_struct_field (name, value_type (lhs), 0,
9540 NULL, NULL, NULL, NULL, &ind))
9541 error (_("Unknown component name: %s."), name);
9542 lower = upper = ind;
9545 if (lower <= upper && (lower < low || upper > high))
9546 error (_("Index in component association out of bounds."));
9548 add_component_interval (lower, upper, indices, num_indices,
9550 while (lower <= upper)
9555 assign_component (container, lhs, lower, exp, &pos1);
9561 /* Assign the value of the expression in the OP_OTHERS construct in
9562 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9563 have not been previously assigned. The index intervals already assigned
9564 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9565 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9567 aggregate_assign_others (struct value *container,
9568 struct value *lhs, struct expression *exp,
9569 int *pos, LONGEST *indices, int num_indices,
9570 LONGEST low, LONGEST high)
9573 int expr_pc = *pos + 1;
9575 for (i = 0; i < num_indices - 2; i += 2)
9579 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9584 assign_component (container, lhs, ind, exp, &localpos);
9587 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9590 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9591 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9592 modifying *SIZE as needed. It is an error if *SIZE exceeds
9593 MAX_SIZE. The resulting intervals do not overlap. */
9595 add_component_interval (LONGEST low, LONGEST high,
9596 LONGEST* indices, int *size, int max_size)
9600 for (i = 0; i < *size; i += 2) {
9601 if (high >= indices[i] && low <= indices[i + 1])
9605 for (kh = i + 2; kh < *size; kh += 2)
9606 if (high < indices[kh])
9608 if (low < indices[i])
9610 indices[i + 1] = indices[kh - 1];
9611 if (high > indices[i + 1])
9612 indices[i + 1] = high;
9613 memcpy (indices + i + 2, indices + kh, *size - kh);
9614 *size -= kh - i - 2;
9617 else if (high < indices[i])
9621 if (*size == max_size)
9622 error (_("Internal error: miscounted aggregate components."));
9624 for (j = *size-1; j >= i+2; j -= 1)
9625 indices[j] = indices[j - 2];
9627 indices[i + 1] = high;
9630 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9633 static struct value *
9634 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9636 if (type == ada_check_typedef (value_type (arg2)))
9639 if (ada_is_fixed_point_type (type))
9640 return (cast_to_fixed (type, arg2));
9642 if (ada_is_fixed_point_type (value_type (arg2)))
9643 return cast_from_fixed (type, arg2);
9645 return value_cast (type, arg2);
9648 /* Evaluating Ada expressions, and printing their result.
9649 ------------------------------------------------------
9654 We usually evaluate an Ada expression in order to print its value.
9655 We also evaluate an expression in order to print its type, which
9656 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9657 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9658 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9659 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9662 Evaluating expressions is a little more complicated for Ada entities
9663 than it is for entities in languages such as C. The main reason for
9664 this is that Ada provides types whose definition might be dynamic.
9665 One example of such types is variant records. Or another example
9666 would be an array whose bounds can only be known at run time.
9668 The following description is a general guide as to what should be
9669 done (and what should NOT be done) in order to evaluate an expression
9670 involving such types, and when. This does not cover how the semantic
9671 information is encoded by GNAT as this is covered separatly. For the
9672 document used as the reference for the GNAT encoding, see exp_dbug.ads
9673 in the GNAT sources.
9675 Ideally, we should embed each part of this description next to its
9676 associated code. Unfortunately, the amount of code is so vast right
9677 now that it's hard to see whether the code handling a particular
9678 situation might be duplicated or not. One day, when the code is
9679 cleaned up, this guide might become redundant with the comments
9680 inserted in the code, and we might want to remove it.
9682 2. ``Fixing'' an Entity, the Simple Case:
9683 -----------------------------------------
9685 When evaluating Ada expressions, the tricky issue is that they may
9686 reference entities whose type contents and size are not statically
9687 known. Consider for instance a variant record:
9689 type Rec (Empty : Boolean := True) is record
9692 when False => Value : Integer;
9695 Yes : Rec := (Empty => False, Value => 1);
9696 No : Rec := (empty => True);
9698 The size and contents of that record depends on the value of the
9699 descriminant (Rec.Empty). At this point, neither the debugging
9700 information nor the associated type structure in GDB are able to
9701 express such dynamic types. So what the debugger does is to create
9702 "fixed" versions of the type that applies to the specific object.
9703 We also informally refer to this opperation as "fixing" an object,
9704 which means creating its associated fixed type.
9706 Example: when printing the value of variable "Yes" above, its fixed
9707 type would look like this:
9714 On the other hand, if we printed the value of "No", its fixed type
9721 Things become a little more complicated when trying to fix an entity
9722 with a dynamic type that directly contains another dynamic type,
9723 such as an array of variant records, for instance. There are
9724 two possible cases: Arrays, and records.
9726 3. ``Fixing'' Arrays:
9727 ---------------------
9729 The type structure in GDB describes an array in terms of its bounds,
9730 and the type of its elements. By design, all elements in the array
9731 have the same type and we cannot represent an array of variant elements
9732 using the current type structure in GDB. When fixing an array,
9733 we cannot fix the array element, as we would potentially need one
9734 fixed type per element of the array. As a result, the best we can do
9735 when fixing an array is to produce an array whose bounds and size
9736 are correct (allowing us to read it from memory), but without having
9737 touched its element type. Fixing each element will be done later,
9738 when (if) necessary.
9740 Arrays are a little simpler to handle than records, because the same
9741 amount of memory is allocated for each element of the array, even if
9742 the amount of space actually used by each element differs from element
9743 to element. Consider for instance the following array of type Rec:
9745 type Rec_Array is array (1 .. 2) of Rec;
9747 The actual amount of memory occupied by each element might be different
9748 from element to element, depending on the value of their discriminant.
9749 But the amount of space reserved for each element in the array remains
9750 fixed regardless. So we simply need to compute that size using
9751 the debugging information available, from which we can then determine
9752 the array size (we multiply the number of elements of the array by
9753 the size of each element).
9755 The simplest case is when we have an array of a constrained element
9756 type. For instance, consider the following type declarations:
9758 type Bounded_String (Max_Size : Integer) is
9760 Buffer : String (1 .. Max_Size);
9762 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9764 In this case, the compiler describes the array as an array of
9765 variable-size elements (identified by its XVS suffix) for which
9766 the size can be read in the parallel XVZ variable.
9768 In the case of an array of an unconstrained element type, the compiler
9769 wraps the array element inside a private PAD type. This type should not
9770 be shown to the user, and must be "unwrap"'ed before printing. Note
9771 that we also use the adjective "aligner" in our code to designate
9772 these wrapper types.
9774 In some cases, the size allocated for each element is statically
9775 known. In that case, the PAD type already has the correct size,
9776 and the array element should remain unfixed.
9778 But there are cases when this size is not statically known.
9779 For instance, assuming that "Five" is an integer variable:
9781 type Dynamic is array (1 .. Five) of Integer;
9782 type Wrapper (Has_Length : Boolean := False) is record
9785 when True => Length : Integer;
9789 type Wrapper_Array is array (1 .. 2) of Wrapper;
9791 Hello : Wrapper_Array := (others => (Has_Length => True,
9792 Data => (others => 17),
9796 The debugging info would describe variable Hello as being an
9797 array of a PAD type. The size of that PAD type is not statically
9798 known, but can be determined using a parallel XVZ variable.
9799 In that case, a copy of the PAD type with the correct size should
9800 be used for the fixed array.
9802 3. ``Fixing'' record type objects:
9803 ----------------------------------
9805 Things are slightly different from arrays in the case of dynamic
9806 record types. In this case, in order to compute the associated
9807 fixed type, we need to determine the size and offset of each of
9808 its components. This, in turn, requires us to compute the fixed
9809 type of each of these components.
9811 Consider for instance the example:
9813 type Bounded_String (Max_Size : Natural) is record
9814 Str : String (1 .. Max_Size);
9817 My_String : Bounded_String (Max_Size => 10);
9819 In that case, the position of field "Length" depends on the size
9820 of field Str, which itself depends on the value of the Max_Size
9821 discriminant. In order to fix the type of variable My_String,
9822 we need to fix the type of field Str. Therefore, fixing a variant
9823 record requires us to fix each of its components.
9825 However, if a component does not have a dynamic size, the component
9826 should not be fixed. In particular, fields that use a PAD type
9827 should not fixed. Here is an example where this might happen
9828 (assuming type Rec above):
9830 type Container (Big : Boolean) is record
9834 when True => Another : Integer;
9838 My_Container : Container := (Big => False,
9839 First => (Empty => True),
9842 In that example, the compiler creates a PAD type for component First,
9843 whose size is constant, and then positions the component After just
9844 right after it. The offset of component After is therefore constant
9847 The debugger computes the position of each field based on an algorithm
9848 that uses, among other things, the actual position and size of the field
9849 preceding it. Let's now imagine that the user is trying to print
9850 the value of My_Container. If the type fixing was recursive, we would
9851 end up computing the offset of field After based on the size of the
9852 fixed version of field First. And since in our example First has
9853 only one actual field, the size of the fixed type is actually smaller
9854 than the amount of space allocated to that field, and thus we would
9855 compute the wrong offset of field After.
9857 To make things more complicated, we need to watch out for dynamic
9858 components of variant records (identified by the ___XVL suffix in
9859 the component name). Even if the target type is a PAD type, the size
9860 of that type might not be statically known. So the PAD type needs
9861 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9862 we might end up with the wrong size for our component. This can be
9863 observed with the following type declarations:
9865 type Octal is new Integer range 0 .. 7;
9866 type Octal_Array is array (Positive range <>) of Octal;
9867 pragma Pack (Octal_Array);
9869 type Octal_Buffer (Size : Positive) is record
9870 Buffer : Octal_Array (1 .. Size);
9874 In that case, Buffer is a PAD type whose size is unset and needs
9875 to be computed by fixing the unwrapped type.
9877 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9878 ----------------------------------------------------------
9880 Lastly, when should the sub-elements of an entity that remained unfixed
9881 thus far, be actually fixed?
9883 The answer is: Only when referencing that element. For instance
9884 when selecting one component of a record, this specific component
9885 should be fixed at that point in time. Or when printing the value
9886 of a record, each component should be fixed before its value gets
9887 printed. Similarly for arrays, the element of the array should be
9888 fixed when printing each element of the array, or when extracting
9889 one element out of that array. On the other hand, fixing should
9890 not be performed on the elements when taking a slice of an array!
9892 Note that one of the side-effects of miscomputing the offset and
9893 size of each field is that we end up also miscomputing the size
9894 of the containing type. This can have adverse results when computing
9895 the value of an entity. GDB fetches the value of an entity based
9896 on the size of its type, and thus a wrong size causes GDB to fetch
9897 the wrong amount of memory. In the case where the computed size is
9898 too small, GDB fetches too little data to print the value of our
9899 entiry. Results in this case as unpredicatble, as we usually read
9900 past the buffer containing the data =:-o. */
9902 /* Implement the evaluate_exp routine in the exp_descriptor structure
9903 for the Ada language. */
9905 static struct value *
9906 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9907 int *pos, enum noside noside)
9913 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9916 struct value **argvec;
9920 op = exp->elts[pc].opcode;
9926 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9928 if (noside == EVAL_NORMAL)
9929 arg1 = unwrap_value (arg1);
9931 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9932 then we need to perform the conversion manually, because
9933 evaluate_subexp_standard doesn't do it. This conversion is
9934 necessary in Ada because the different kinds of float/fixed
9935 types in Ada have different representations.
9937 Similarly, we need to perform the conversion from OP_LONG
9939 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9940 arg1 = ada_value_cast (expect_type, arg1, noside);
9946 struct value *result;
9949 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9950 /* The result type will have code OP_STRING, bashed there from
9951 OP_ARRAY. Bash it back. */
9952 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9953 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9959 type = exp->elts[pc + 1].type;
9960 arg1 = evaluate_subexp (type, exp, pos, noside);
9961 if (noside == EVAL_SKIP)
9963 arg1 = ada_value_cast (type, arg1, noside);
9968 type = exp->elts[pc + 1].type;
9969 return ada_evaluate_subexp (type, exp, pos, noside);
9972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9973 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9975 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9976 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9978 return ada_value_assign (arg1, arg1);
9980 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9981 except if the lhs of our assignment is a convenience variable.
9982 In the case of assigning to a convenience variable, the lhs
9983 should be exactly the result of the evaluation of the rhs. */
9984 type = value_type (arg1);
9985 if (VALUE_LVAL (arg1) == lval_internalvar)
9987 arg2 = evaluate_subexp (type, exp, pos, noside);
9988 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9990 if (ada_is_fixed_point_type (value_type (arg1)))
9991 arg2 = cast_to_fixed (value_type (arg1), arg2);
9992 else if (ada_is_fixed_point_type (value_type (arg2)))
9994 (_("Fixed-point values must be assigned to fixed-point variables"));
9996 arg2 = coerce_for_assign (value_type (arg1), arg2);
9997 return ada_value_assign (arg1, arg2);
10000 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10001 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10002 if (noside == EVAL_SKIP)
10004 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10005 return (value_from_longest
10006 (value_type (arg1),
10007 value_as_long (arg1) + value_as_long (arg2)));
10008 if ((ada_is_fixed_point_type (value_type (arg1))
10009 || ada_is_fixed_point_type (value_type (arg2)))
10010 && value_type (arg1) != value_type (arg2))
10011 error (_("Operands of fixed-point addition must have the same type"));
10012 /* Do the addition, and cast the result to the type of the first
10013 argument. We cannot cast the result to a reference type, so if
10014 ARG1 is a reference type, find its underlying type. */
10015 type = value_type (arg1);
10016 while (TYPE_CODE (type) == TYPE_CODE_REF)
10017 type = TYPE_TARGET_TYPE (type);
10018 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10019 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10022 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10023 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10024 if (noside == EVAL_SKIP)
10026 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10027 return (value_from_longest
10028 (value_type (arg1),
10029 value_as_long (arg1) - value_as_long (arg2)));
10030 if ((ada_is_fixed_point_type (value_type (arg1))
10031 || ada_is_fixed_point_type (value_type (arg2)))
10032 && value_type (arg1) != value_type (arg2))
10033 error (_("Operands of fixed-point subtraction "
10034 "must have the same type"));
10035 /* Do the substraction, and cast the result to the type of the first
10036 argument. We cannot cast the result to a reference type, so if
10037 ARG1 is a reference type, find its underlying type. */
10038 type = value_type (arg1);
10039 while (TYPE_CODE (type) == TYPE_CODE_REF)
10040 type = TYPE_TARGET_TYPE (type);
10041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10042 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10049 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10050 if (noside == EVAL_SKIP)
10052 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10054 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10055 return value_zero (value_type (arg1), not_lval);
10059 type = builtin_type (exp->gdbarch)->builtin_double;
10060 if (ada_is_fixed_point_type (value_type (arg1)))
10061 arg1 = cast_from_fixed (type, arg1);
10062 if (ada_is_fixed_point_type (value_type (arg2)))
10063 arg2 = cast_from_fixed (type, arg2);
10064 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10065 return ada_value_binop (arg1, arg2, op);
10069 case BINOP_NOTEQUAL:
10070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10071 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10072 if (noside == EVAL_SKIP)
10074 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10078 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10079 tem = ada_value_equal (arg1, arg2);
10081 if (op == BINOP_NOTEQUAL)
10083 type = language_bool_type (exp->language_defn, exp->gdbarch);
10084 return value_from_longest (type, (LONGEST) tem);
10087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 if (noside == EVAL_SKIP)
10090 else if (ada_is_fixed_point_type (value_type (arg1)))
10091 return value_cast (value_type (arg1), value_neg (arg1));
10094 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10095 return value_neg (arg1);
10098 case BINOP_LOGICAL_AND:
10099 case BINOP_LOGICAL_OR:
10100 case UNOP_LOGICAL_NOT:
10105 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10106 type = language_bool_type (exp->language_defn, exp->gdbarch);
10107 return value_cast (type, val);
10110 case BINOP_BITWISE_AND:
10111 case BINOP_BITWISE_IOR:
10112 case BINOP_BITWISE_XOR:
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10118 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10120 return value_cast (value_type (arg1), val);
10126 if (noside == EVAL_SKIP)
10132 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10133 /* Only encountered when an unresolved symbol occurs in a
10134 context other than a function call, in which case, it is
10136 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10137 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10139 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10141 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10142 /* Check to see if this is a tagged type. We also need to handle
10143 the case where the type is a reference to a tagged type, but
10144 we have to be careful to exclude pointers to tagged types.
10145 The latter should be shown as usual (as a pointer), whereas
10146 a reference should mostly be transparent to the user. */
10147 if (ada_is_tagged_type (type, 0)
10148 || (TYPE_CODE (type) == TYPE_CODE_REF
10149 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10151 /* Tagged types are a little special in the fact that the real
10152 type is dynamic and can only be determined by inspecting the
10153 object's tag. This means that we need to get the object's
10154 value first (EVAL_NORMAL) and then extract the actual object
10157 Note that we cannot skip the final step where we extract
10158 the object type from its tag, because the EVAL_NORMAL phase
10159 results in dynamic components being resolved into fixed ones.
10160 This can cause problems when trying to print the type
10161 description of tagged types whose parent has a dynamic size:
10162 We use the type name of the "_parent" component in order
10163 to print the name of the ancestor type in the type description.
10164 If that component had a dynamic size, the resolution into
10165 a fixed type would result in the loss of that type name,
10166 thus preventing us from printing the name of the ancestor
10167 type in the type description. */
10168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10170 if (TYPE_CODE (type) != TYPE_CODE_REF)
10172 struct type *actual_type;
10174 actual_type = type_from_tag (ada_value_tag (arg1));
10175 if (actual_type == NULL)
10176 /* If, for some reason, we were unable to determine
10177 the actual type from the tag, then use the static
10178 approximation that we just computed as a fallback.
10179 This can happen if the debugging information is
10180 incomplete, for instance. */
10181 actual_type = type;
10182 return value_zero (actual_type, not_lval);
10186 /* In the case of a ref, ada_coerce_ref takes care
10187 of determining the actual type. But the evaluation
10188 should return a ref as it should be valid to ask
10189 for its address; so rebuild a ref after coerce. */
10190 arg1 = ada_coerce_ref (arg1);
10191 return value_ref (arg1);
10195 /* Records and unions for which GNAT encodings have been
10196 generated need to be statically fixed as well.
10197 Otherwise, non-static fixing produces a type where
10198 all dynamic properties are removed, which prevents "ptype"
10199 from being able to completely describe the type.
10200 For instance, a case statement in a variant record would be
10201 replaced by the relevant components based on the actual
10202 value of the discriminants. */
10203 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10204 && dynamic_template_type (type) != NULL)
10205 || (TYPE_CODE (type) == TYPE_CODE_UNION
10206 && ada_find_parallel_type (type, "___XVU") != NULL))
10209 return value_zero (to_static_fixed_type (type), not_lval);
10213 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10214 return ada_to_fixed_value (arg1);
10219 /* Allocate arg vector, including space for the function to be
10220 called in argvec[0] and a terminating NULL. */
10221 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10223 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10225 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10226 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10227 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10228 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10231 for (tem = 0; tem <= nargs; tem += 1)
10232 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10235 if (noside == EVAL_SKIP)
10239 if (ada_is_constrained_packed_array_type
10240 (desc_base_type (value_type (argvec[0]))))
10241 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10242 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10243 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10244 /* This is a packed array that has already been fixed, and
10245 therefore already coerced to a simple array. Nothing further
10248 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10249 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10250 && VALUE_LVAL (argvec[0]) == lval_memory))
10251 argvec[0] = value_addr (argvec[0]);
10253 type = ada_check_typedef (value_type (argvec[0]));
10255 /* Ada allows us to implicitly dereference arrays when subscripting
10256 them. So, if this is an array typedef (encoding use for array
10257 access types encoded as fat pointers), strip it now. */
10258 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10259 type = ada_typedef_target_type (type);
10261 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10263 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10265 case TYPE_CODE_FUNC:
10266 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10268 case TYPE_CODE_ARRAY:
10270 case TYPE_CODE_STRUCT:
10271 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10272 argvec[0] = ada_value_ind (argvec[0]);
10273 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10276 error (_("cannot subscript or call something of type `%s'"),
10277 ada_type_name (value_type (argvec[0])));
10282 switch (TYPE_CODE (type))
10284 case TYPE_CODE_FUNC:
10285 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10287 struct type *rtype = TYPE_TARGET_TYPE (type);
10289 if (TYPE_GNU_IFUNC (type))
10290 return allocate_value (TYPE_TARGET_TYPE (rtype));
10291 return allocate_value (rtype);
10293 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10294 case TYPE_CODE_INTERNAL_FUNCTION:
10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10296 /* We don't know anything about what the internal
10297 function might return, but we have to return
10299 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10302 return call_internal_function (exp->gdbarch, exp->language_defn,
10303 argvec[0], nargs, argvec + 1);
10305 case TYPE_CODE_STRUCT:
10309 arity = ada_array_arity (type);
10310 type = ada_array_element_type (type, nargs);
10312 error (_("cannot subscript or call a record"));
10313 if (arity != nargs)
10314 error (_("wrong number of subscripts; expecting %d"), arity);
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 return value_zero (ada_aligned_type (type), lval_memory);
10318 unwrap_value (ada_value_subscript
10319 (argvec[0], nargs, argvec + 1));
10321 case TYPE_CODE_ARRAY:
10322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10324 type = ada_array_element_type (type, nargs);
10326 error (_("element type of array unknown"));
10328 return value_zero (ada_aligned_type (type), lval_memory);
10331 unwrap_value (ada_value_subscript
10332 (ada_coerce_to_simple_array (argvec[0]),
10333 nargs, argvec + 1));
10334 case TYPE_CODE_PTR: /* Pointer to array */
10335 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10337 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10338 type = ada_array_element_type (type, nargs);
10340 error (_("element type of array unknown"));
10342 return value_zero (ada_aligned_type (type), lval_memory);
10345 unwrap_value (ada_value_ptr_subscript (argvec[0],
10346 nargs, argvec + 1));
10349 error (_("Attempt to index or call something other than an "
10350 "array or function"));
10355 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10356 struct value *low_bound_val =
10357 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10358 struct value *high_bound_val =
10359 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10361 LONGEST high_bound;
10363 low_bound_val = coerce_ref (low_bound_val);
10364 high_bound_val = coerce_ref (high_bound_val);
10365 low_bound = pos_atr (low_bound_val);
10366 high_bound = pos_atr (high_bound_val);
10368 if (noside == EVAL_SKIP)
10371 /* If this is a reference to an aligner type, then remove all
10373 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10374 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10375 TYPE_TARGET_TYPE (value_type (array)) =
10376 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10378 if (ada_is_constrained_packed_array_type (value_type (array)))
10379 error (_("cannot slice a packed array"));
10381 /* If this is a reference to an array or an array lvalue,
10382 convert to a pointer. */
10383 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10384 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10385 && VALUE_LVAL (array) == lval_memory))
10386 array = value_addr (array);
10388 if (noside == EVAL_AVOID_SIDE_EFFECTS
10389 && ada_is_array_descriptor_type (ada_check_typedef
10390 (value_type (array))))
10391 return empty_array (ada_type_of_array (array, 0), low_bound);
10393 array = ada_coerce_to_simple_array_ptr (array);
10395 /* If we have more than one level of pointer indirection,
10396 dereference the value until we get only one level. */
10397 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10398 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10400 array = value_ind (array);
10402 /* Make sure we really do have an array type before going further,
10403 to avoid a SEGV when trying to get the index type or the target
10404 type later down the road if the debug info generated by
10405 the compiler is incorrect or incomplete. */
10406 if (!ada_is_simple_array_type (value_type (array)))
10407 error (_("cannot take slice of non-array"));
10409 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10412 struct type *type0 = ada_check_typedef (value_type (array));
10414 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10415 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10418 struct type *arr_type0 =
10419 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10421 return ada_value_slice_from_ptr (array, arr_type0,
10422 longest_to_int (low_bound),
10423 longest_to_int (high_bound));
10426 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10428 else if (high_bound < low_bound)
10429 return empty_array (value_type (array), low_bound);
10431 return ada_value_slice (array, longest_to_int (low_bound),
10432 longest_to_int (high_bound));
10435 case UNOP_IN_RANGE:
10437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10438 type = check_typedef (exp->elts[pc + 1].type);
10440 if (noside == EVAL_SKIP)
10443 switch (TYPE_CODE (type))
10446 lim_warning (_("Membership test incompletely implemented; "
10447 "always returns true"));
10448 type = language_bool_type (exp->language_defn, exp->gdbarch);
10449 return value_from_longest (type, (LONGEST) 1);
10451 case TYPE_CODE_RANGE:
10452 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10453 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10456 type = language_bool_type (exp->language_defn, exp->gdbarch);
10458 value_from_longest (type,
10459 (value_less (arg1, arg3)
10460 || value_equal (arg1, arg3))
10461 && (value_less (arg2, arg1)
10462 || value_equal (arg2, arg1)));
10465 case BINOP_IN_BOUNDS:
10467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10468 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10473 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10475 type = language_bool_type (exp->language_defn, exp->gdbarch);
10476 return value_zero (type, not_lval);
10479 tem = longest_to_int (exp->elts[pc + 1].longconst);
10481 type = ada_index_type (value_type (arg2), tem, "range");
10483 type = value_type (arg1);
10485 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10486 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10490 type = language_bool_type (exp->language_defn, exp->gdbarch);
10492 value_from_longest (type,
10493 (value_less (arg1, arg3)
10494 || value_equal (arg1, arg3))
10495 && (value_less (arg2, arg1)
10496 || value_equal (arg2, arg1)));
10498 case TERNOP_IN_RANGE:
10499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10500 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10501 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10503 if (noside == EVAL_SKIP)
10506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10508 type = language_bool_type (exp->language_defn, exp->gdbarch);
10510 value_from_longest (type,
10511 (value_less (arg1, arg3)
10512 || value_equal (arg1, arg3))
10513 && (value_less (arg2, arg1)
10514 || value_equal (arg2, arg1)));
10518 case OP_ATR_LENGTH:
10520 struct type *type_arg;
10522 if (exp->elts[*pos].opcode == OP_TYPE)
10524 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10526 type_arg = check_typedef (exp->elts[pc + 2].type);
10530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10534 if (exp->elts[*pos].opcode != OP_LONG)
10535 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10536 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10539 if (noside == EVAL_SKIP)
10542 if (type_arg == NULL)
10544 arg1 = ada_coerce_ref (arg1);
10546 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10547 arg1 = ada_coerce_to_simple_array (arg1);
10549 if (op == OP_ATR_LENGTH)
10550 type = builtin_type (exp->gdbarch)->builtin_int;
10553 type = ada_index_type (value_type (arg1), tem,
10554 ada_attribute_name (op));
10556 type = builtin_type (exp->gdbarch)->builtin_int;
10559 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10560 return allocate_value (type);
10564 default: /* Should never happen. */
10565 error (_("unexpected attribute encountered"));
10567 return value_from_longest
10568 (type, ada_array_bound (arg1, tem, 0));
10570 return value_from_longest
10571 (type, ada_array_bound (arg1, tem, 1));
10572 case OP_ATR_LENGTH:
10573 return value_from_longest
10574 (type, ada_array_length (arg1, tem));
10577 else if (discrete_type_p (type_arg))
10579 struct type *range_type;
10580 const char *name = ada_type_name (type_arg);
10583 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10584 range_type = to_fixed_range_type (type_arg, NULL);
10585 if (range_type == NULL)
10586 range_type = type_arg;
10590 error (_("unexpected attribute encountered"));
10592 return value_from_longest
10593 (range_type, ada_discrete_type_low_bound (range_type));
10595 return value_from_longest
10596 (range_type, ada_discrete_type_high_bound (range_type));
10597 case OP_ATR_LENGTH:
10598 error (_("the 'length attribute applies only to array types"));
10601 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10602 error (_("unimplemented type attribute"));
10607 if (ada_is_constrained_packed_array_type (type_arg))
10608 type_arg = decode_constrained_packed_array_type (type_arg);
10610 if (op == OP_ATR_LENGTH)
10611 type = builtin_type (exp->gdbarch)->builtin_int;
10614 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10616 type = builtin_type (exp->gdbarch)->builtin_int;
10619 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10620 return allocate_value (type);
10625 error (_("unexpected attribute encountered"));
10627 low = ada_array_bound_from_type (type_arg, tem, 0);
10628 return value_from_longest (type, low);
10630 high = ada_array_bound_from_type (type_arg, tem, 1);
10631 return value_from_longest (type, high);
10632 case OP_ATR_LENGTH:
10633 low = ada_array_bound_from_type (type_arg, tem, 0);
10634 high = ada_array_bound_from_type (type_arg, tem, 1);
10635 return value_from_longest (type, high - low + 1);
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 if (noside == EVAL_SKIP)
10645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10646 return value_zero (ada_tag_type (arg1), not_lval);
10648 return ada_value_tag (arg1);
10652 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 if (noside == EVAL_SKIP)
10657 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10658 return value_zero (value_type (arg1), not_lval);
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10662 return value_binop (arg1, arg2,
10663 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10666 case OP_ATR_MODULUS:
10668 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10670 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10671 if (noside == EVAL_SKIP)
10674 if (!ada_is_modular_type (type_arg))
10675 error (_("'modulus must be applied to modular type"));
10677 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10678 ada_modulus (type_arg));
10683 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10685 if (noside == EVAL_SKIP)
10687 type = builtin_type (exp->gdbarch)->builtin_int;
10688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10689 return value_zero (type, not_lval);
10691 return value_pos_atr (type, arg1);
10694 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10695 type = value_type (arg1);
10697 /* If the argument is a reference, then dereference its type, since
10698 the user is really asking for the size of the actual object,
10699 not the size of the pointer. */
10700 if (TYPE_CODE (type) == TYPE_CODE_REF)
10701 type = TYPE_TARGET_TYPE (type);
10703 if (noside == EVAL_SKIP)
10705 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10706 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10708 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10709 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10712 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10713 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10714 type = exp->elts[pc + 2].type;
10715 if (noside == EVAL_SKIP)
10717 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10718 return value_zero (type, not_lval);
10720 return value_val_atr (type, arg1);
10723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10725 if (noside == EVAL_SKIP)
10727 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10728 return value_zero (value_type (arg1), not_lval);
10731 /* For integer exponentiation operations,
10732 only promote the first argument. */
10733 if (is_integral_type (value_type (arg2)))
10734 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10738 return value_binop (arg1, arg2, op);
10742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10743 if (noside == EVAL_SKIP)
10749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10750 if (noside == EVAL_SKIP)
10752 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10753 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10754 return value_neg (arg1);
10759 preeval_pos = *pos;
10760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10761 if (noside == EVAL_SKIP)
10763 type = ada_check_typedef (value_type (arg1));
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10766 if (ada_is_array_descriptor_type (type))
10767 /* GDB allows dereferencing GNAT array descriptors. */
10769 struct type *arrType = ada_type_of_array (arg1, 0);
10771 if (arrType == NULL)
10772 error (_("Attempt to dereference null array pointer."));
10773 return value_at_lazy (arrType, 0);
10775 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10776 || TYPE_CODE (type) == TYPE_CODE_REF
10777 /* In C you can dereference an array to get the 1st elt. */
10778 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10780 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10781 only be determined by inspecting the object's tag.
10782 This means that we need to evaluate completely the
10783 expression in order to get its type. */
10785 if ((TYPE_CODE (type) == TYPE_CODE_REF
10786 || TYPE_CODE (type) == TYPE_CODE_PTR)
10787 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10789 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10791 type = value_type (ada_value_ind (arg1));
10795 type = to_static_fixed_type
10797 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10800 return value_zero (type, lval_memory);
10802 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10804 /* GDB allows dereferencing an int. */
10805 if (expect_type == NULL)
10806 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10811 to_static_fixed_type (ada_aligned_type (expect_type));
10812 return value_zero (expect_type, lval_memory);
10816 error (_("Attempt to take contents of a non-pointer value."));
10818 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10819 type = ada_check_typedef (value_type (arg1));
10821 if (TYPE_CODE (type) == TYPE_CODE_INT)
10822 /* GDB allows dereferencing an int. If we were given
10823 the expect_type, then use that as the target type.
10824 Otherwise, assume that the target type is an int. */
10826 if (expect_type != NULL)
10827 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10830 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10831 (CORE_ADDR) value_as_address (arg1));
10834 if (ada_is_array_descriptor_type (type))
10835 /* GDB allows dereferencing GNAT array descriptors. */
10836 return ada_coerce_to_simple_array (arg1);
10838 return ada_value_ind (arg1);
10840 case STRUCTOP_STRUCT:
10841 tem = longest_to_int (exp->elts[pc + 1].longconst);
10842 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10843 preeval_pos = *pos;
10844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10845 if (noside == EVAL_SKIP)
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10849 struct type *type1 = value_type (arg1);
10851 if (ada_is_tagged_type (type1, 1))
10853 type = ada_lookup_struct_elt_type (type1,
10854 &exp->elts[pc + 2].string,
10857 /* If the field is not found, check if it exists in the
10858 extension of this object's type. This means that we
10859 need to evaluate completely the expression. */
10863 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10865 arg1 = ada_value_struct_elt (arg1,
10866 &exp->elts[pc + 2].string,
10868 arg1 = unwrap_value (arg1);
10869 type = value_type (ada_to_fixed_value (arg1));
10874 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10877 return value_zero (ada_aligned_type (type), lval_memory);
10880 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10881 arg1 = unwrap_value (arg1);
10882 return ada_to_fixed_value (arg1);
10885 /* The value is not supposed to be used. This is here to make it
10886 easier to accommodate expressions that contain types. */
10888 if (noside == EVAL_SKIP)
10890 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10891 return allocate_value (exp->elts[pc + 1].type);
10893 error (_("Attempt to use a type name as an expression"));
10898 case OP_DISCRETE_RANGE:
10899 case OP_POSITIONAL:
10901 if (noside == EVAL_NORMAL)
10905 error (_("Undefined name, ambiguous name, or renaming used in "
10906 "component association: %s."), &exp->elts[pc+2].string);
10908 error (_("Aggregates only allowed on the right of an assignment"));
10910 internal_error (__FILE__, __LINE__,
10911 _("aggregate apparently mangled"));
10914 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10916 for (tem = 0; tem < nargs; tem += 1)
10917 ada_evaluate_subexp (NULL, exp, pos, noside);
10922 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10928 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10929 type name that encodes the 'small and 'delta information.
10930 Otherwise, return NULL. */
10932 static const char *
10933 fixed_type_info (struct type *type)
10935 const char *name = ada_type_name (type);
10936 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10938 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10940 const char *tail = strstr (name, "___XF_");
10947 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10948 return fixed_type_info (TYPE_TARGET_TYPE (type));
10953 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10956 ada_is_fixed_point_type (struct type *type)
10958 return fixed_type_info (type) != NULL;
10961 /* Return non-zero iff TYPE represents a System.Address type. */
10964 ada_is_system_address_type (struct type *type)
10966 return (TYPE_NAME (type)
10967 && strcmp (TYPE_NAME (type), "system__address") == 0);
10970 /* Assuming that TYPE is the representation of an Ada fixed-point
10971 type, return its delta, or -1 if the type is malformed and the
10972 delta cannot be determined. */
10975 ada_delta (struct type *type)
10977 const char *encoding = fixed_type_info (type);
10980 /* Strictly speaking, num and den are encoded as integer. However,
10981 they may not fit into a long, and they will have to be converted
10982 to DOUBLEST anyway. So scan them as DOUBLEST. */
10983 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10990 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10991 factor ('SMALL value) associated with the type. */
10994 scaling_factor (struct type *type)
10996 const char *encoding = fixed_type_info (type);
10997 DOUBLEST num0, den0, num1, den1;
11000 /* Strictly speaking, num's and den's are encoded as integer. However,
11001 they may not fit into a long, and they will have to be converted
11002 to DOUBLEST anyway. So scan them as DOUBLEST. */
11003 n = sscanf (encoding,
11004 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11005 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11006 &num0, &den0, &num1, &den1);
11011 return num1 / den1;
11013 return num0 / den0;
11017 /* Assuming that X is the representation of a value of fixed-point
11018 type TYPE, return its floating-point equivalent. */
11021 ada_fixed_to_float (struct type *type, LONGEST x)
11023 return (DOUBLEST) x *scaling_factor (type);
11026 /* The representation of a fixed-point value of type TYPE
11027 corresponding to the value X. */
11030 ada_float_to_fixed (struct type *type, DOUBLEST x)
11032 return (LONGEST) (x / scaling_factor (type) + 0.5);
11039 /* Scan STR beginning at position K for a discriminant name, and
11040 return the value of that discriminant field of DVAL in *PX. If
11041 PNEW_K is not null, put the position of the character beyond the
11042 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11043 not alter *PX and *PNEW_K if unsuccessful. */
11046 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11049 static char *bound_buffer = NULL;
11050 static size_t bound_buffer_len = 0;
11053 struct value *bound_val;
11055 if (dval == NULL || str == NULL || str[k] == '\0')
11058 pend = strstr (str + k, "__");
11062 k += strlen (bound);
11066 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11067 bound = bound_buffer;
11068 strncpy (bound_buffer, str + k, pend - (str + k));
11069 bound[pend - (str + k)] = '\0';
11073 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11074 if (bound_val == NULL)
11077 *px = value_as_long (bound_val);
11078 if (pnew_k != NULL)
11083 /* Value of variable named NAME in the current environment. If
11084 no such variable found, then if ERR_MSG is null, returns 0, and
11085 otherwise causes an error with message ERR_MSG. */
11087 static struct value *
11088 get_var_value (char *name, char *err_msg)
11090 struct ada_symbol_info *syms;
11093 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11098 if (err_msg == NULL)
11101 error (("%s"), err_msg);
11104 return value_of_variable (syms[0].sym, syms[0].block);
11107 /* Value of integer variable named NAME in the current environment. If
11108 no such variable found, returns 0, and sets *FLAG to 0. If
11109 successful, sets *FLAG to 1. */
11112 get_int_var_value (char *name, int *flag)
11114 struct value *var_val = get_var_value (name, 0);
11126 return value_as_long (var_val);
11131 /* Return a range type whose base type is that of the range type named
11132 NAME in the current environment, and whose bounds are calculated
11133 from NAME according to the GNAT range encoding conventions.
11134 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11135 corresponding range type from debug information; fall back to using it
11136 if symbol lookup fails. If a new type must be created, allocate it
11137 like ORIG_TYPE was. The bounds information, in general, is encoded
11138 in NAME, the base type given in the named range type. */
11140 static struct type *
11141 to_fixed_range_type (struct type *raw_type, struct value *dval)
11144 struct type *base_type;
11145 char *subtype_info;
11147 gdb_assert (raw_type != NULL);
11148 gdb_assert (TYPE_NAME (raw_type) != NULL);
11150 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11151 base_type = TYPE_TARGET_TYPE (raw_type);
11153 base_type = raw_type;
11155 name = TYPE_NAME (raw_type);
11156 subtype_info = strstr (name, "___XD");
11157 if (subtype_info == NULL)
11159 LONGEST L = ada_discrete_type_low_bound (raw_type);
11160 LONGEST U = ada_discrete_type_high_bound (raw_type);
11162 if (L < INT_MIN || U > INT_MAX)
11165 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11170 static char *name_buf = NULL;
11171 static size_t name_len = 0;
11172 int prefix_len = subtype_info - name;
11178 GROW_VECT (name_buf, name_len, prefix_len + 5);
11179 strncpy (name_buf, name, prefix_len);
11180 name_buf[prefix_len] = '\0';
11183 bounds_str = strchr (subtype_info, '_');
11186 if (*subtype_info == 'L')
11188 if (!ada_scan_number (bounds_str, n, &L, &n)
11189 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11191 if (bounds_str[n] == '_')
11193 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11201 strcpy (name_buf + prefix_len, "___L");
11202 L = get_int_var_value (name_buf, &ok);
11205 lim_warning (_("Unknown lower bound, using 1."));
11210 if (*subtype_info == 'U')
11212 if (!ada_scan_number (bounds_str, n, &U, &n)
11213 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11220 strcpy (name_buf + prefix_len, "___U");
11221 U = get_int_var_value (name_buf, &ok);
11224 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11229 type = create_static_range_type (alloc_type_copy (raw_type),
11231 TYPE_NAME (type) = name;
11236 /* True iff NAME is the name of a range type. */
11239 ada_is_range_type_name (const char *name)
11241 return (name != NULL && strstr (name, "___XD"));
11245 /* Modular types */
11247 /* True iff TYPE is an Ada modular type. */
11250 ada_is_modular_type (struct type *type)
11252 struct type *subranged_type = get_base_type (type);
11254 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11255 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11256 && TYPE_UNSIGNED (subranged_type));
11259 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11262 ada_modulus (struct type *type)
11264 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11268 /* Ada exception catchpoint support:
11269 ---------------------------------
11271 We support 3 kinds of exception catchpoints:
11272 . catchpoints on Ada exceptions
11273 . catchpoints on unhandled Ada exceptions
11274 . catchpoints on failed assertions
11276 Exceptions raised during failed assertions, or unhandled exceptions
11277 could perfectly be caught with the general catchpoint on Ada exceptions.
11278 However, we can easily differentiate these two special cases, and having
11279 the option to distinguish these two cases from the rest can be useful
11280 to zero-in on certain situations.
11282 Exception catchpoints are a specialized form of breakpoint,
11283 since they rely on inserting breakpoints inside known routines
11284 of the GNAT runtime. The implementation therefore uses a standard
11285 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11288 Support in the runtime for exception catchpoints have been changed
11289 a few times already, and these changes affect the implementation
11290 of these catchpoints. In order to be able to support several
11291 variants of the runtime, we use a sniffer that will determine
11292 the runtime variant used by the program being debugged. */
11294 /* Ada's standard exceptions.
11296 The Ada 83 standard also defined Numeric_Error. But there so many
11297 situations where it was unclear from the Ada 83 Reference Manual
11298 (RM) whether Constraint_Error or Numeric_Error should be raised,
11299 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11300 Interpretation saying that anytime the RM says that Numeric_Error
11301 should be raised, the implementation may raise Constraint_Error.
11302 Ada 95 went one step further and pretty much removed Numeric_Error
11303 from the list of standard exceptions (it made it a renaming of
11304 Constraint_Error, to help preserve compatibility when compiling
11305 an Ada83 compiler). As such, we do not include Numeric_Error from
11306 this list of standard exceptions. */
11308 static char *standard_exc[] = {
11309 "constraint_error",
11315 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11317 /* A structure that describes how to support exception catchpoints
11318 for a given executable. */
11320 struct exception_support_info
11322 /* The name of the symbol to break on in order to insert
11323 a catchpoint on exceptions. */
11324 const char *catch_exception_sym;
11326 /* The name of the symbol to break on in order to insert
11327 a catchpoint on unhandled exceptions. */
11328 const char *catch_exception_unhandled_sym;
11330 /* The name of the symbol to break on in order to insert
11331 a catchpoint on failed assertions. */
11332 const char *catch_assert_sym;
11334 /* Assuming that the inferior just triggered an unhandled exception
11335 catchpoint, this function is responsible for returning the address
11336 in inferior memory where the name of that exception is stored.
11337 Return zero if the address could not be computed. */
11338 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11341 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11342 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11344 /* The following exception support info structure describes how to
11345 implement exception catchpoints with the latest version of the
11346 Ada runtime (as of 2007-03-06). */
11348 static const struct exception_support_info default_exception_support_info =
11350 "__gnat_debug_raise_exception", /* catch_exception_sym */
11351 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11352 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11353 ada_unhandled_exception_name_addr
11356 /* The following exception support info structure describes how to
11357 implement exception catchpoints with a slightly older version
11358 of the Ada runtime. */
11360 static const struct exception_support_info exception_support_info_fallback =
11362 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11363 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11364 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11365 ada_unhandled_exception_name_addr_from_raise
11368 /* Return nonzero if we can detect the exception support routines
11369 described in EINFO.
11371 This function errors out if an abnormal situation is detected
11372 (for instance, if we find the exception support routines, but
11373 that support is found to be incomplete). */
11376 ada_has_this_exception_support (const struct exception_support_info *einfo)
11378 struct symbol *sym;
11380 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11381 that should be compiled with debugging information. As a result, we
11382 expect to find that symbol in the symtabs. */
11384 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11387 /* Perhaps we did not find our symbol because the Ada runtime was
11388 compiled without debugging info, or simply stripped of it.
11389 It happens on some GNU/Linux distributions for instance, where
11390 users have to install a separate debug package in order to get
11391 the runtime's debugging info. In that situation, let the user
11392 know why we cannot insert an Ada exception catchpoint.
11394 Note: Just for the purpose of inserting our Ada exception
11395 catchpoint, we could rely purely on the associated minimal symbol.
11396 But we would be operating in degraded mode anyway, since we are
11397 still lacking the debugging info needed later on to extract
11398 the name of the exception being raised (this name is printed in
11399 the catchpoint message, and is also used when trying to catch
11400 a specific exception). We do not handle this case for now. */
11401 struct bound_minimal_symbol msym
11402 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11404 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11405 error (_("Your Ada runtime appears to be missing some debugging "
11406 "information.\nCannot insert Ada exception catchpoint "
11407 "in this configuration."));
11412 /* Make sure that the symbol we found corresponds to a function. */
11414 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11415 error (_("Symbol \"%s\" is not a function (class = %d)"),
11416 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11421 /* Inspect the Ada runtime and determine which exception info structure
11422 should be used to provide support for exception catchpoints.
11424 This function will always set the per-inferior exception_info,
11425 or raise an error. */
11428 ada_exception_support_info_sniffer (void)
11430 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11432 /* If the exception info is already known, then no need to recompute it. */
11433 if (data->exception_info != NULL)
11436 /* Check the latest (default) exception support info. */
11437 if (ada_has_this_exception_support (&default_exception_support_info))
11439 data->exception_info = &default_exception_support_info;
11443 /* Try our fallback exception suport info. */
11444 if (ada_has_this_exception_support (&exception_support_info_fallback))
11446 data->exception_info = &exception_support_info_fallback;
11450 /* Sometimes, it is normal for us to not be able to find the routine
11451 we are looking for. This happens when the program is linked with
11452 the shared version of the GNAT runtime, and the program has not been
11453 started yet. Inform the user of these two possible causes if
11456 if (ada_update_initial_language (language_unknown) != language_ada)
11457 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11459 /* If the symbol does not exist, then check that the program is
11460 already started, to make sure that shared libraries have been
11461 loaded. If it is not started, this may mean that the symbol is
11462 in a shared library. */
11464 if (ptid_get_pid (inferior_ptid) == 0)
11465 error (_("Unable to insert catchpoint. Try to start the program first."));
11467 /* At this point, we know that we are debugging an Ada program and
11468 that the inferior has been started, but we still are not able to
11469 find the run-time symbols. That can mean that we are in
11470 configurable run time mode, or that a-except as been optimized
11471 out by the linker... In any case, at this point it is not worth
11472 supporting this feature. */
11474 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11477 /* True iff FRAME is very likely to be that of a function that is
11478 part of the runtime system. This is all very heuristic, but is
11479 intended to be used as advice as to what frames are uninteresting
11483 is_known_support_routine (struct frame_info *frame)
11485 struct symtab_and_line sal;
11487 enum language func_lang;
11489 const char *fullname;
11491 /* If this code does not have any debugging information (no symtab),
11492 This cannot be any user code. */
11494 find_frame_sal (frame, &sal);
11495 if (sal.symtab == NULL)
11498 /* If there is a symtab, but the associated source file cannot be
11499 located, then assume this is not user code: Selecting a frame
11500 for which we cannot display the code would not be very helpful
11501 for the user. This should also take care of case such as VxWorks
11502 where the kernel has some debugging info provided for a few units. */
11504 fullname = symtab_to_fullname (sal.symtab);
11505 if (access (fullname, R_OK) != 0)
11508 /* Check the unit filename againt the Ada runtime file naming.
11509 We also check the name of the objfile against the name of some
11510 known system libraries that sometimes come with debugging info
11513 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11515 re_comp (known_runtime_file_name_patterns[i]);
11516 if (re_exec (lbasename (sal.symtab->filename)))
11518 if (sal.symtab->objfile != NULL
11519 && re_exec (objfile_name (sal.symtab->objfile)))
11523 /* Check whether the function is a GNAT-generated entity. */
11525 find_frame_funname (frame, &func_name, &func_lang, NULL);
11526 if (func_name == NULL)
11529 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11531 re_comp (known_auxiliary_function_name_patterns[i]);
11532 if (re_exec (func_name))
11543 /* Find the first frame that contains debugging information and that is not
11544 part of the Ada run-time, starting from FI and moving upward. */
11547 ada_find_printable_frame (struct frame_info *fi)
11549 for (; fi != NULL; fi = get_prev_frame (fi))
11551 if (!is_known_support_routine (fi))
11560 /* Assuming that the inferior just triggered an unhandled exception
11561 catchpoint, return the address in inferior memory where the name
11562 of the exception is stored.
11564 Return zero if the address could not be computed. */
11567 ada_unhandled_exception_name_addr (void)
11569 return parse_and_eval_address ("e.full_name");
11572 /* Same as ada_unhandled_exception_name_addr, except that this function
11573 should be used when the inferior uses an older version of the runtime,
11574 where the exception name needs to be extracted from a specific frame
11575 several frames up in the callstack. */
11578 ada_unhandled_exception_name_addr_from_raise (void)
11581 struct frame_info *fi;
11582 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11583 struct cleanup *old_chain;
11585 /* To determine the name of this exception, we need to select
11586 the frame corresponding to RAISE_SYM_NAME. This frame is
11587 at least 3 levels up, so we simply skip the first 3 frames
11588 without checking the name of their associated function. */
11589 fi = get_current_frame ();
11590 for (frame_level = 0; frame_level < 3; frame_level += 1)
11592 fi = get_prev_frame (fi);
11594 old_chain = make_cleanup (null_cleanup, NULL);
11598 enum language func_lang;
11600 find_frame_funname (fi, &func_name, &func_lang, NULL);
11601 if (func_name != NULL)
11603 make_cleanup (xfree, func_name);
11605 if (strcmp (func_name,
11606 data->exception_info->catch_exception_sym) == 0)
11607 break; /* We found the frame we were looking for... */
11608 fi = get_prev_frame (fi);
11611 do_cleanups (old_chain);
11617 return parse_and_eval_address ("id.full_name");
11620 /* Assuming the inferior just triggered an Ada exception catchpoint
11621 (of any type), return the address in inferior memory where the name
11622 of the exception is stored, if applicable.
11624 Return zero if the address could not be computed, or if not relevant. */
11627 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11628 struct breakpoint *b)
11630 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11634 case ada_catch_exception:
11635 return (parse_and_eval_address ("e.full_name"));
11638 case ada_catch_exception_unhandled:
11639 return data->exception_info->unhandled_exception_name_addr ();
11642 case ada_catch_assert:
11643 return 0; /* Exception name is not relevant in this case. */
11647 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11651 return 0; /* Should never be reached. */
11654 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11655 any error that ada_exception_name_addr_1 might cause to be thrown.
11656 When an error is intercepted, a warning with the error message is printed,
11657 and zero is returned. */
11660 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11661 struct breakpoint *b)
11663 volatile struct gdb_exception e;
11664 CORE_ADDR result = 0;
11666 TRY_CATCH (e, RETURN_MASK_ERROR)
11668 result = ada_exception_name_addr_1 (ex, b);
11673 warning (_("failed to get exception name: %s"), e.message);
11680 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11682 /* Ada catchpoints.
11684 In the case of catchpoints on Ada exceptions, the catchpoint will
11685 stop the target on every exception the program throws. When a user
11686 specifies the name of a specific exception, we translate this
11687 request into a condition expression (in text form), and then parse
11688 it into an expression stored in each of the catchpoint's locations.
11689 We then use this condition to check whether the exception that was
11690 raised is the one the user is interested in. If not, then the
11691 target is resumed again. We store the name of the requested
11692 exception, in order to be able to re-set the condition expression
11693 when symbols change. */
11695 /* An instance of this type is used to represent an Ada catchpoint
11696 breakpoint location. It includes a "struct bp_location" as a kind
11697 of base class; users downcast to "struct bp_location *" when
11700 struct ada_catchpoint_location
11702 /* The base class. */
11703 struct bp_location base;
11705 /* The condition that checks whether the exception that was raised
11706 is the specific exception the user specified on catchpoint
11708 struct expression *excep_cond_expr;
11711 /* Implement the DTOR method in the bp_location_ops structure for all
11712 Ada exception catchpoint kinds. */
11715 ada_catchpoint_location_dtor (struct bp_location *bl)
11717 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11719 xfree (al->excep_cond_expr);
11722 /* The vtable to be used in Ada catchpoint locations. */
11724 static const struct bp_location_ops ada_catchpoint_location_ops =
11726 ada_catchpoint_location_dtor
11729 /* An instance of this type is used to represent an Ada catchpoint.
11730 It includes a "struct breakpoint" as a kind of base class; users
11731 downcast to "struct breakpoint *" when needed. */
11733 struct ada_catchpoint
11735 /* The base class. */
11736 struct breakpoint base;
11738 /* The name of the specific exception the user specified. */
11739 char *excep_string;
11742 /* Parse the exception condition string in the context of each of the
11743 catchpoint's locations, and store them for later evaluation. */
11746 create_excep_cond_exprs (struct ada_catchpoint *c)
11748 struct cleanup *old_chain;
11749 struct bp_location *bl;
11752 /* Nothing to do if there's no specific exception to catch. */
11753 if (c->excep_string == NULL)
11756 /* Same if there are no locations... */
11757 if (c->base.loc == NULL)
11760 /* Compute the condition expression in text form, from the specific
11761 expection we want to catch. */
11762 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11763 old_chain = make_cleanup (xfree, cond_string);
11765 /* Iterate over all the catchpoint's locations, and parse an
11766 expression for each. */
11767 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11769 struct ada_catchpoint_location *ada_loc
11770 = (struct ada_catchpoint_location *) bl;
11771 struct expression *exp = NULL;
11773 if (!bl->shlib_disabled)
11775 volatile struct gdb_exception e;
11779 TRY_CATCH (e, RETURN_MASK_ERROR)
11781 exp = parse_exp_1 (&s, bl->address,
11782 block_for_pc (bl->address), 0);
11786 warning (_("failed to reevaluate internal exception condition "
11787 "for catchpoint %d: %s"),
11788 c->base.number, e.message);
11789 /* There is a bug in GCC on sparc-solaris when building with
11790 optimization which causes EXP to change unexpectedly
11791 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11792 The problem should be fixed starting with GCC 4.9.
11793 In the meantime, work around it by forcing EXP back
11799 ada_loc->excep_cond_expr = exp;
11802 do_cleanups (old_chain);
11805 /* Implement the DTOR method in the breakpoint_ops structure for all
11806 exception catchpoint kinds. */
11809 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11811 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11813 xfree (c->excep_string);
11815 bkpt_breakpoint_ops.dtor (b);
11818 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11819 structure for all exception catchpoint kinds. */
11821 static struct bp_location *
11822 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11823 struct breakpoint *self)
11825 struct ada_catchpoint_location *loc;
11827 loc = XNEW (struct ada_catchpoint_location);
11828 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11829 loc->excep_cond_expr = NULL;
11833 /* Implement the RE_SET method in the breakpoint_ops structure for all
11834 exception catchpoint kinds. */
11837 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11839 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11841 /* Call the base class's method. This updates the catchpoint's
11843 bkpt_breakpoint_ops.re_set (b);
11845 /* Reparse the exception conditional expressions. One for each
11847 create_excep_cond_exprs (c);
11850 /* Returns true if we should stop for this breakpoint hit. If the
11851 user specified a specific exception, we only want to cause a stop
11852 if the program thrown that exception. */
11855 should_stop_exception (const struct bp_location *bl)
11857 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11858 const struct ada_catchpoint_location *ada_loc
11859 = (const struct ada_catchpoint_location *) bl;
11860 volatile struct gdb_exception ex;
11863 /* With no specific exception, should always stop. */
11864 if (c->excep_string == NULL)
11867 if (ada_loc->excep_cond_expr == NULL)
11869 /* We will have a NULL expression if back when we were creating
11870 the expressions, this location's had failed to parse. */
11875 TRY_CATCH (ex, RETURN_MASK_ALL)
11877 struct value *mark;
11879 mark = value_mark ();
11880 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11881 value_free_to_mark (mark);
11884 exception_fprintf (gdb_stderr, ex,
11885 _("Error in testing exception condition:\n"));
11889 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11890 for all exception catchpoint kinds. */
11893 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11895 bs->stop = should_stop_exception (bs->bp_location_at);
11898 /* Implement the PRINT_IT method in the breakpoint_ops structure
11899 for all exception catchpoint kinds. */
11901 static enum print_stop_action
11902 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11904 struct ui_out *uiout = current_uiout;
11905 struct breakpoint *b = bs->breakpoint_at;
11907 annotate_catchpoint (b->number);
11909 if (ui_out_is_mi_like_p (uiout))
11911 ui_out_field_string (uiout, "reason",
11912 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11913 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11916 ui_out_text (uiout,
11917 b->disposition == disp_del ? "\nTemporary catchpoint "
11918 : "\nCatchpoint ");
11919 ui_out_field_int (uiout, "bkptno", b->number);
11920 ui_out_text (uiout, ", ");
11924 case ada_catch_exception:
11925 case ada_catch_exception_unhandled:
11927 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11928 char exception_name[256];
11932 read_memory (addr, (gdb_byte *) exception_name,
11933 sizeof (exception_name) - 1);
11934 exception_name [sizeof (exception_name) - 1] = '\0';
11938 /* For some reason, we were unable to read the exception
11939 name. This could happen if the Runtime was compiled
11940 without debugging info, for instance. In that case,
11941 just replace the exception name by the generic string
11942 "exception" - it will read as "an exception" in the
11943 notification we are about to print. */
11944 memcpy (exception_name, "exception", sizeof ("exception"));
11946 /* In the case of unhandled exception breakpoints, we print
11947 the exception name as "unhandled EXCEPTION_NAME", to make
11948 it clearer to the user which kind of catchpoint just got
11949 hit. We used ui_out_text to make sure that this extra
11950 info does not pollute the exception name in the MI case. */
11951 if (ex == ada_catch_exception_unhandled)
11952 ui_out_text (uiout, "unhandled ");
11953 ui_out_field_string (uiout, "exception-name", exception_name);
11956 case ada_catch_assert:
11957 /* In this case, the name of the exception is not really
11958 important. Just print "failed assertion" to make it clearer
11959 that his program just hit an assertion-failure catchpoint.
11960 We used ui_out_text because this info does not belong in
11962 ui_out_text (uiout, "failed assertion");
11965 ui_out_text (uiout, " at ");
11966 ada_find_printable_frame (get_current_frame ());
11968 return PRINT_SRC_AND_LOC;
11971 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11972 for all exception catchpoint kinds. */
11975 print_one_exception (enum ada_exception_catchpoint_kind ex,
11976 struct breakpoint *b, struct bp_location **last_loc)
11978 struct ui_out *uiout = current_uiout;
11979 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11980 struct value_print_options opts;
11982 get_user_print_options (&opts);
11983 if (opts.addressprint)
11985 annotate_field (4);
11986 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11989 annotate_field (5);
11990 *last_loc = b->loc;
11993 case ada_catch_exception:
11994 if (c->excep_string != NULL)
11996 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11998 ui_out_field_string (uiout, "what", msg);
12002 ui_out_field_string (uiout, "what", "all Ada exceptions");
12006 case ada_catch_exception_unhandled:
12007 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12010 case ada_catch_assert:
12011 ui_out_field_string (uiout, "what", "failed Ada assertions");
12015 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12020 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12021 for all exception catchpoint kinds. */
12024 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12025 struct breakpoint *b)
12027 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12028 struct ui_out *uiout = current_uiout;
12030 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12031 : _("Catchpoint "));
12032 ui_out_field_int (uiout, "bkptno", b->number);
12033 ui_out_text (uiout, ": ");
12037 case ada_catch_exception:
12038 if (c->excep_string != NULL)
12040 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12041 struct cleanup *old_chain = make_cleanup (xfree, info);
12043 ui_out_text (uiout, info);
12044 do_cleanups (old_chain);
12047 ui_out_text (uiout, _("all Ada exceptions"));
12050 case ada_catch_exception_unhandled:
12051 ui_out_text (uiout, _("unhandled Ada exceptions"));
12054 case ada_catch_assert:
12055 ui_out_text (uiout, _("failed Ada assertions"));
12059 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12064 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12065 for all exception catchpoint kinds. */
12068 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12069 struct breakpoint *b, struct ui_file *fp)
12071 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12075 case ada_catch_exception:
12076 fprintf_filtered (fp, "catch exception");
12077 if (c->excep_string != NULL)
12078 fprintf_filtered (fp, " %s", c->excep_string);
12081 case ada_catch_exception_unhandled:
12082 fprintf_filtered (fp, "catch exception unhandled");
12085 case ada_catch_assert:
12086 fprintf_filtered (fp, "catch assert");
12090 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12092 print_recreate_thread (b, fp);
12095 /* Virtual table for "catch exception" breakpoints. */
12098 dtor_catch_exception (struct breakpoint *b)
12100 dtor_exception (ada_catch_exception, b);
12103 static struct bp_location *
12104 allocate_location_catch_exception (struct breakpoint *self)
12106 return allocate_location_exception (ada_catch_exception, self);
12110 re_set_catch_exception (struct breakpoint *b)
12112 re_set_exception (ada_catch_exception, b);
12116 check_status_catch_exception (bpstat bs)
12118 check_status_exception (ada_catch_exception, bs);
12121 static enum print_stop_action
12122 print_it_catch_exception (bpstat bs)
12124 return print_it_exception (ada_catch_exception, bs);
12128 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12130 print_one_exception (ada_catch_exception, b, last_loc);
12134 print_mention_catch_exception (struct breakpoint *b)
12136 print_mention_exception (ada_catch_exception, b);
12140 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12142 print_recreate_exception (ada_catch_exception, b, fp);
12145 static struct breakpoint_ops catch_exception_breakpoint_ops;
12147 /* Virtual table for "catch exception unhandled" breakpoints. */
12150 dtor_catch_exception_unhandled (struct breakpoint *b)
12152 dtor_exception (ada_catch_exception_unhandled, b);
12155 static struct bp_location *
12156 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12158 return allocate_location_exception (ada_catch_exception_unhandled, self);
12162 re_set_catch_exception_unhandled (struct breakpoint *b)
12164 re_set_exception (ada_catch_exception_unhandled, b);
12168 check_status_catch_exception_unhandled (bpstat bs)
12170 check_status_exception (ada_catch_exception_unhandled, bs);
12173 static enum print_stop_action
12174 print_it_catch_exception_unhandled (bpstat bs)
12176 return print_it_exception (ada_catch_exception_unhandled, bs);
12180 print_one_catch_exception_unhandled (struct breakpoint *b,
12181 struct bp_location **last_loc)
12183 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12187 print_mention_catch_exception_unhandled (struct breakpoint *b)
12189 print_mention_exception (ada_catch_exception_unhandled, b);
12193 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12194 struct ui_file *fp)
12196 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12199 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12201 /* Virtual table for "catch assert" breakpoints. */
12204 dtor_catch_assert (struct breakpoint *b)
12206 dtor_exception (ada_catch_assert, b);
12209 static struct bp_location *
12210 allocate_location_catch_assert (struct breakpoint *self)
12212 return allocate_location_exception (ada_catch_assert, self);
12216 re_set_catch_assert (struct breakpoint *b)
12218 re_set_exception (ada_catch_assert, b);
12222 check_status_catch_assert (bpstat bs)
12224 check_status_exception (ada_catch_assert, bs);
12227 static enum print_stop_action
12228 print_it_catch_assert (bpstat bs)
12230 return print_it_exception (ada_catch_assert, bs);
12234 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12236 print_one_exception (ada_catch_assert, b, last_loc);
12240 print_mention_catch_assert (struct breakpoint *b)
12242 print_mention_exception (ada_catch_assert, b);
12246 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12248 print_recreate_exception (ada_catch_assert, b, fp);
12251 static struct breakpoint_ops catch_assert_breakpoint_ops;
12253 /* Return a newly allocated copy of the first space-separated token
12254 in ARGSP, and then adjust ARGSP to point immediately after that
12257 Return NULL if ARGPS does not contain any more tokens. */
12260 ada_get_next_arg (char **argsp)
12262 char *args = *argsp;
12266 args = skip_spaces (args);
12267 if (args[0] == '\0')
12268 return NULL; /* No more arguments. */
12270 /* Find the end of the current argument. */
12272 end = skip_to_space (args);
12274 /* Adjust ARGSP to point to the start of the next argument. */
12278 /* Make a copy of the current argument and return it. */
12280 result = xmalloc (end - args + 1);
12281 strncpy (result, args, end - args);
12282 result[end - args] = '\0';
12287 /* Split the arguments specified in a "catch exception" command.
12288 Set EX to the appropriate catchpoint type.
12289 Set EXCEP_STRING to the name of the specific exception if
12290 specified by the user.
12291 If a condition is found at the end of the arguments, the condition
12292 expression is stored in COND_STRING (memory must be deallocated
12293 after use). Otherwise COND_STRING is set to NULL. */
12296 catch_ada_exception_command_split (char *args,
12297 enum ada_exception_catchpoint_kind *ex,
12298 char **excep_string,
12299 char **cond_string)
12301 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12302 char *exception_name;
12305 exception_name = ada_get_next_arg (&args);
12306 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12308 /* This is not an exception name; this is the start of a condition
12309 expression for a catchpoint on all exceptions. So, "un-get"
12310 this token, and set exception_name to NULL. */
12311 xfree (exception_name);
12312 exception_name = NULL;
12315 make_cleanup (xfree, exception_name);
12317 /* Check to see if we have a condition. */
12319 args = skip_spaces (args);
12320 if (strncmp (args, "if", 2) == 0
12321 && (isspace (args[2]) || args[2] == '\0'))
12324 args = skip_spaces (args);
12326 if (args[0] == '\0')
12327 error (_("Condition missing after `if' keyword"));
12328 cond = xstrdup (args);
12329 make_cleanup (xfree, cond);
12331 args += strlen (args);
12334 /* Check that we do not have any more arguments. Anything else
12337 if (args[0] != '\0')
12338 error (_("Junk at end of expression"));
12340 discard_cleanups (old_chain);
12342 if (exception_name == NULL)
12344 /* Catch all exceptions. */
12345 *ex = ada_catch_exception;
12346 *excep_string = NULL;
12348 else if (strcmp (exception_name, "unhandled") == 0)
12350 /* Catch unhandled exceptions. */
12351 *ex = ada_catch_exception_unhandled;
12352 *excep_string = NULL;
12356 /* Catch a specific exception. */
12357 *ex = ada_catch_exception;
12358 *excep_string = exception_name;
12360 *cond_string = cond;
12363 /* Return the name of the symbol on which we should break in order to
12364 implement a catchpoint of the EX kind. */
12366 static const char *
12367 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12369 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12371 gdb_assert (data->exception_info != NULL);
12375 case ada_catch_exception:
12376 return (data->exception_info->catch_exception_sym);
12378 case ada_catch_exception_unhandled:
12379 return (data->exception_info->catch_exception_unhandled_sym);
12381 case ada_catch_assert:
12382 return (data->exception_info->catch_assert_sym);
12385 internal_error (__FILE__, __LINE__,
12386 _("unexpected catchpoint kind (%d)"), ex);
12390 /* Return the breakpoint ops "virtual table" used for catchpoints
12393 static const struct breakpoint_ops *
12394 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12398 case ada_catch_exception:
12399 return (&catch_exception_breakpoint_ops);
12401 case ada_catch_exception_unhandled:
12402 return (&catch_exception_unhandled_breakpoint_ops);
12404 case ada_catch_assert:
12405 return (&catch_assert_breakpoint_ops);
12408 internal_error (__FILE__, __LINE__,
12409 _("unexpected catchpoint kind (%d)"), ex);
12413 /* Return the condition that will be used to match the current exception
12414 being raised with the exception that the user wants to catch. This
12415 assumes that this condition is used when the inferior just triggered
12416 an exception catchpoint.
12418 The string returned is a newly allocated string that needs to be
12419 deallocated later. */
12422 ada_exception_catchpoint_cond_string (const char *excep_string)
12426 /* The standard exceptions are a special case. They are defined in
12427 runtime units that have been compiled without debugging info; if
12428 EXCEP_STRING is the not-fully-qualified name of a standard
12429 exception (e.g. "constraint_error") then, during the evaluation
12430 of the condition expression, the symbol lookup on this name would
12431 *not* return this standard exception. The catchpoint condition
12432 may then be set only on user-defined exceptions which have the
12433 same not-fully-qualified name (e.g. my_package.constraint_error).
12435 To avoid this unexcepted behavior, these standard exceptions are
12436 systematically prefixed by "standard". This means that "catch
12437 exception constraint_error" is rewritten into "catch exception
12438 standard.constraint_error".
12440 If an exception named contraint_error is defined in another package of
12441 the inferior program, then the only way to specify this exception as a
12442 breakpoint condition is to use its fully-qualified named:
12443 e.g. my_package.constraint_error. */
12445 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12447 if (strcmp (standard_exc [i], excep_string) == 0)
12449 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12453 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12456 /* Return the symtab_and_line that should be used to insert an exception
12457 catchpoint of the TYPE kind.
12459 EXCEP_STRING should contain the name of a specific exception that
12460 the catchpoint should catch, or NULL otherwise.
12462 ADDR_STRING returns the name of the function where the real
12463 breakpoint that implements the catchpoints is set, depending on the
12464 type of catchpoint we need to create. */
12466 static struct symtab_and_line
12467 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12468 char **addr_string, const struct breakpoint_ops **ops)
12470 const char *sym_name;
12471 struct symbol *sym;
12473 /* First, find out which exception support info to use. */
12474 ada_exception_support_info_sniffer ();
12476 /* Then lookup the function on which we will break in order to catch
12477 the Ada exceptions requested by the user. */
12478 sym_name = ada_exception_sym_name (ex);
12479 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12481 /* We can assume that SYM is not NULL at this stage. If the symbol
12482 did not exist, ada_exception_support_info_sniffer would have
12483 raised an exception.
12485 Also, ada_exception_support_info_sniffer should have already
12486 verified that SYM is a function symbol. */
12487 gdb_assert (sym != NULL);
12488 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12490 /* Set ADDR_STRING. */
12491 *addr_string = xstrdup (sym_name);
12494 *ops = ada_exception_breakpoint_ops (ex);
12496 return find_function_start_sal (sym, 1);
12499 /* Create an Ada exception catchpoint.
12501 EX_KIND is the kind of exception catchpoint to be created.
12503 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12504 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12505 of the exception to which this catchpoint applies. When not NULL,
12506 the string must be allocated on the heap, and its deallocation
12507 is no longer the responsibility of the caller.
12509 COND_STRING, if not NULL, is the catchpoint condition. This string
12510 must be allocated on the heap, and its deallocation is no longer
12511 the responsibility of the caller.
12513 TEMPFLAG, if nonzero, means that the underlying breakpoint
12514 should be temporary.
12516 FROM_TTY is the usual argument passed to all commands implementations. */
12519 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12520 enum ada_exception_catchpoint_kind ex_kind,
12521 char *excep_string,
12527 struct ada_catchpoint *c;
12528 char *addr_string = NULL;
12529 const struct breakpoint_ops *ops = NULL;
12530 struct symtab_and_line sal
12531 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12533 c = XNEW (struct ada_catchpoint);
12534 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12535 ops, tempflag, disabled, from_tty);
12536 c->excep_string = excep_string;
12537 create_excep_cond_exprs (c);
12538 if (cond_string != NULL)
12539 set_breakpoint_condition (&c->base, cond_string, from_tty);
12540 install_breakpoint (0, &c->base, 1);
12543 /* Implement the "catch exception" command. */
12546 catch_ada_exception_command (char *arg, int from_tty,
12547 struct cmd_list_element *command)
12549 struct gdbarch *gdbarch = get_current_arch ();
12551 enum ada_exception_catchpoint_kind ex_kind;
12552 char *excep_string = NULL;
12553 char *cond_string = NULL;
12555 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12559 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12561 create_ada_exception_catchpoint (gdbarch, ex_kind,
12562 excep_string, cond_string,
12563 tempflag, 1 /* enabled */,
12567 /* Split the arguments specified in a "catch assert" command.
12569 ARGS contains the command's arguments (or the empty string if
12570 no arguments were passed).
12572 If ARGS contains a condition, set COND_STRING to that condition
12573 (the memory needs to be deallocated after use). */
12576 catch_ada_assert_command_split (char *args, char **cond_string)
12578 args = skip_spaces (args);
12580 /* Check whether a condition was provided. */
12581 if (strncmp (args, "if", 2) == 0
12582 && (isspace (args[2]) || args[2] == '\0'))
12585 args = skip_spaces (args);
12586 if (args[0] == '\0')
12587 error (_("condition missing after `if' keyword"));
12588 *cond_string = xstrdup (args);
12591 /* Otherwise, there should be no other argument at the end of
12593 else if (args[0] != '\0')
12594 error (_("Junk at end of arguments."));
12597 /* Implement the "catch assert" command. */
12600 catch_assert_command (char *arg, int from_tty,
12601 struct cmd_list_element *command)
12603 struct gdbarch *gdbarch = get_current_arch ();
12605 char *cond_string = NULL;
12607 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12611 catch_ada_assert_command_split (arg, &cond_string);
12612 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12614 tempflag, 1 /* enabled */,
12618 /* Return non-zero if the symbol SYM is an Ada exception object. */
12621 ada_is_exception_sym (struct symbol *sym)
12623 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12625 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12626 && SYMBOL_CLASS (sym) != LOC_BLOCK
12627 && SYMBOL_CLASS (sym) != LOC_CONST
12628 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12629 && type_name != NULL && strcmp (type_name, "exception") == 0);
12632 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12633 Ada exception object. This matches all exceptions except the ones
12634 defined by the Ada language. */
12637 ada_is_non_standard_exception_sym (struct symbol *sym)
12641 if (!ada_is_exception_sym (sym))
12644 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12645 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12646 return 0; /* A standard exception. */
12648 /* Numeric_Error is also a standard exception, so exclude it.
12649 See the STANDARD_EXC description for more details as to why
12650 this exception is not listed in that array. */
12651 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12657 /* A helper function for qsort, comparing two struct ada_exc_info
12660 The comparison is determined first by exception name, and then
12661 by exception address. */
12664 compare_ada_exception_info (const void *a, const void *b)
12666 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12667 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12670 result = strcmp (exc_a->name, exc_b->name);
12674 if (exc_a->addr < exc_b->addr)
12676 if (exc_a->addr > exc_b->addr)
12682 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12683 routine, but keeping the first SKIP elements untouched.
12685 All duplicates are also removed. */
12688 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12691 struct ada_exc_info *to_sort
12692 = VEC_address (ada_exc_info, *exceptions) + skip;
12694 = VEC_length (ada_exc_info, *exceptions) - skip;
12697 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12698 compare_ada_exception_info);
12700 for (i = 1, j = 1; i < to_sort_len; i++)
12701 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12702 to_sort[j++] = to_sort[i];
12704 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12707 /* A function intended as the "name_matcher" callback in the struct
12708 quick_symbol_functions' expand_symtabs_matching method.
12710 SEARCH_NAME is the symbol's search name.
12712 If USER_DATA is not NULL, it is a pointer to a regext_t object
12713 used to match the symbol (by natural name). Otherwise, when USER_DATA
12714 is null, no filtering is performed, and all symbols are a positive
12718 ada_exc_search_name_matches (const char *search_name, void *user_data)
12720 regex_t *preg = user_data;
12725 /* In Ada, the symbol "search name" is a linkage name, whereas
12726 the regular expression used to do the matching refers to
12727 the natural name. So match against the decoded name. */
12728 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12731 /* Add all exceptions defined by the Ada standard whose name match
12732 a regular expression.
12734 If PREG is not NULL, then this regexp_t object is used to
12735 perform the symbol name matching. Otherwise, no name-based
12736 filtering is performed.
12738 EXCEPTIONS is a vector of exceptions to which matching exceptions
12742 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12746 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12749 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12751 struct bound_minimal_symbol msymbol
12752 = ada_lookup_simple_minsym (standard_exc[i]);
12754 if (msymbol.minsym != NULL)
12756 struct ada_exc_info info
12757 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12759 VEC_safe_push (ada_exc_info, *exceptions, &info);
12765 /* Add all Ada exceptions defined locally and accessible from the given
12768 If PREG is not NULL, then this regexp_t object is used to
12769 perform the symbol name matching. Otherwise, no name-based
12770 filtering is performed.
12772 EXCEPTIONS is a vector of exceptions to which matching exceptions
12776 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12777 VEC(ada_exc_info) **exceptions)
12779 const struct block *block = get_frame_block (frame, 0);
12783 struct block_iterator iter;
12784 struct symbol *sym;
12786 ALL_BLOCK_SYMBOLS (block, iter, sym)
12788 switch (SYMBOL_CLASS (sym))
12795 if (ada_is_exception_sym (sym))
12797 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12798 SYMBOL_VALUE_ADDRESS (sym)};
12800 VEC_safe_push (ada_exc_info, *exceptions, &info);
12804 if (BLOCK_FUNCTION (block) != NULL)
12806 block = BLOCK_SUPERBLOCK (block);
12810 /* Add all exceptions defined globally whose name name match
12811 a regular expression, excluding standard exceptions.
12813 The reason we exclude standard exceptions is that they need
12814 to be handled separately: Standard exceptions are defined inside
12815 a runtime unit which is normally not compiled with debugging info,
12816 and thus usually do not show up in our symbol search. However,
12817 if the unit was in fact built with debugging info, we need to
12818 exclude them because they would duplicate the entry we found
12819 during the special loop that specifically searches for those
12820 standard exceptions.
12822 If PREG is not NULL, then this regexp_t object is used to
12823 perform the symbol name matching. Otherwise, no name-based
12824 filtering is performed.
12826 EXCEPTIONS is a vector of exceptions to which matching exceptions
12830 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12832 struct objfile *objfile;
12835 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12836 VARIABLES_DOMAIN, preg);
12838 ALL_PRIMARY_SYMTABS (objfile, s)
12840 const struct blockvector *bv = BLOCKVECTOR (s);
12843 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12845 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12846 struct block_iterator iter;
12847 struct symbol *sym;
12849 ALL_BLOCK_SYMBOLS (b, iter, sym)
12850 if (ada_is_non_standard_exception_sym (sym)
12852 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12855 struct ada_exc_info info
12856 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12858 VEC_safe_push (ada_exc_info, *exceptions, &info);
12864 /* Implements ada_exceptions_list with the regular expression passed
12865 as a regex_t, rather than a string.
12867 If not NULL, PREG is used to filter out exceptions whose names
12868 do not match. Otherwise, all exceptions are listed. */
12870 static VEC(ada_exc_info) *
12871 ada_exceptions_list_1 (regex_t *preg)
12873 VEC(ada_exc_info) *result = NULL;
12874 struct cleanup *old_chain
12875 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12878 /* First, list the known standard exceptions. These exceptions
12879 need to be handled separately, as they are usually defined in
12880 runtime units that have been compiled without debugging info. */
12882 ada_add_standard_exceptions (preg, &result);
12884 /* Next, find all exceptions whose scope is local and accessible
12885 from the currently selected frame. */
12887 if (has_stack_frames ())
12889 prev_len = VEC_length (ada_exc_info, result);
12890 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12892 if (VEC_length (ada_exc_info, result) > prev_len)
12893 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12896 /* Add all exceptions whose scope is global. */
12898 prev_len = VEC_length (ada_exc_info, result);
12899 ada_add_global_exceptions (preg, &result);
12900 if (VEC_length (ada_exc_info, result) > prev_len)
12901 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12903 discard_cleanups (old_chain);
12907 /* Return a vector of ada_exc_info.
12909 If REGEXP is NULL, all exceptions are included in the result.
12910 Otherwise, it should contain a valid regular expression,
12911 and only the exceptions whose names match that regular expression
12912 are included in the result.
12914 The exceptions are sorted in the following order:
12915 - Standard exceptions (defined by the Ada language), in
12916 alphabetical order;
12917 - Exceptions only visible from the current frame, in
12918 alphabetical order;
12919 - Exceptions whose scope is global, in alphabetical order. */
12921 VEC(ada_exc_info) *
12922 ada_exceptions_list (const char *regexp)
12924 VEC(ada_exc_info) *result = NULL;
12925 struct cleanup *old_chain = NULL;
12928 if (regexp != NULL)
12929 old_chain = compile_rx_or_error (®, regexp,
12930 _("invalid regular expression"));
12932 result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL);
12934 if (old_chain != NULL)
12935 do_cleanups (old_chain);
12939 /* Implement the "info exceptions" command. */
12942 info_exceptions_command (char *regexp, int from_tty)
12944 VEC(ada_exc_info) *exceptions;
12945 struct cleanup *cleanup;
12946 struct gdbarch *gdbarch = get_current_arch ();
12948 struct ada_exc_info *info;
12950 exceptions = ada_exceptions_list (regexp);
12951 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12953 if (regexp != NULL)
12955 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12957 printf_filtered (_("All defined Ada exceptions:\n"));
12959 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12960 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12962 do_cleanups (cleanup);
12966 /* Information about operators given special treatment in functions
12968 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12970 #define ADA_OPERATORS \
12971 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12972 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12973 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12974 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12975 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12976 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12977 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12978 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12979 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12980 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12981 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12982 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12983 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12984 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12985 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12986 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12987 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12988 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12989 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12992 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12995 switch (exp->elts[pc - 1].opcode)
12998 operator_length_standard (exp, pc, oplenp, argsp);
13001 #define OP_DEFN(op, len, args, binop) \
13002 case op: *oplenp = len; *argsp = args; break;
13008 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13013 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13018 /* Implementation of the exp_descriptor method operator_check. */
13021 ada_operator_check (struct expression *exp, int pos,
13022 int (*objfile_func) (struct objfile *objfile, void *data),
13025 const union exp_element *const elts = exp->elts;
13026 struct type *type = NULL;
13028 switch (elts[pos].opcode)
13030 case UNOP_IN_RANGE:
13032 type = elts[pos + 1].type;
13036 return operator_check_standard (exp, pos, objfile_func, data);
13039 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13041 if (type && TYPE_OBJFILE (type)
13042 && (*objfile_func) (TYPE_OBJFILE (type), data))
13049 ada_op_name (enum exp_opcode opcode)
13054 return op_name_standard (opcode);
13056 #define OP_DEFN(op, len, args, binop) case op: return #op;
13061 return "OP_AGGREGATE";
13063 return "OP_CHOICES";
13069 /* As for operator_length, but assumes PC is pointing at the first
13070 element of the operator, and gives meaningful results only for the
13071 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13074 ada_forward_operator_length (struct expression *exp, int pc,
13075 int *oplenp, int *argsp)
13077 switch (exp->elts[pc].opcode)
13080 *oplenp = *argsp = 0;
13083 #define OP_DEFN(op, len, args, binop) \
13084 case op: *oplenp = len; *argsp = args; break;
13090 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13095 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13101 int len = longest_to_int (exp->elts[pc + 1].longconst);
13103 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13111 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13113 enum exp_opcode op = exp->elts[elt].opcode;
13118 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13122 /* Ada attributes ('Foo). */
13125 case OP_ATR_LENGTH:
13129 case OP_ATR_MODULUS:
13136 case UNOP_IN_RANGE:
13138 /* XXX: gdb_sprint_host_address, type_sprint */
13139 fprintf_filtered (stream, _("Type @"));
13140 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13141 fprintf_filtered (stream, " (");
13142 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13143 fprintf_filtered (stream, ")");
13145 case BINOP_IN_BOUNDS:
13146 fprintf_filtered (stream, " (%d)",
13147 longest_to_int (exp->elts[pc + 2].longconst));
13149 case TERNOP_IN_RANGE:
13154 case OP_DISCRETE_RANGE:
13155 case OP_POSITIONAL:
13162 char *name = &exp->elts[elt + 2].string;
13163 int len = longest_to_int (exp->elts[elt + 1].longconst);
13165 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13170 return dump_subexp_body_standard (exp, stream, elt);
13174 for (i = 0; i < nargs; i += 1)
13175 elt = dump_subexp (exp, stream, elt);
13180 /* The Ada extension of print_subexp (q.v.). */
13183 ada_print_subexp (struct expression *exp, int *pos,
13184 struct ui_file *stream, enum precedence prec)
13186 int oplen, nargs, i;
13188 enum exp_opcode op = exp->elts[pc].opcode;
13190 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13197 print_subexp_standard (exp, pos, stream, prec);
13201 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13204 case BINOP_IN_BOUNDS:
13205 /* XXX: sprint_subexp */
13206 print_subexp (exp, pos, stream, PREC_SUFFIX);
13207 fputs_filtered (" in ", stream);
13208 print_subexp (exp, pos, stream, PREC_SUFFIX);
13209 fputs_filtered ("'range", stream);
13210 if (exp->elts[pc + 1].longconst > 1)
13211 fprintf_filtered (stream, "(%ld)",
13212 (long) exp->elts[pc + 1].longconst);
13215 case TERNOP_IN_RANGE:
13216 if (prec >= PREC_EQUAL)
13217 fputs_filtered ("(", stream);
13218 /* XXX: sprint_subexp */
13219 print_subexp (exp, pos, stream, PREC_SUFFIX);
13220 fputs_filtered (" in ", stream);
13221 print_subexp (exp, pos, stream, PREC_EQUAL);
13222 fputs_filtered (" .. ", stream);
13223 print_subexp (exp, pos, stream, PREC_EQUAL);
13224 if (prec >= PREC_EQUAL)
13225 fputs_filtered (")", stream);
13230 case OP_ATR_LENGTH:
13234 case OP_ATR_MODULUS:
13239 if (exp->elts[*pos].opcode == OP_TYPE)
13241 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13242 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13243 &type_print_raw_options);
13247 print_subexp (exp, pos, stream, PREC_SUFFIX);
13248 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13253 for (tem = 1; tem < nargs; tem += 1)
13255 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13256 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13258 fputs_filtered (")", stream);
13263 type_print (exp->elts[pc + 1].type, "", stream, 0);
13264 fputs_filtered ("'(", stream);
13265 print_subexp (exp, pos, stream, PREC_PREFIX);
13266 fputs_filtered (")", stream);
13269 case UNOP_IN_RANGE:
13270 /* XXX: sprint_subexp */
13271 print_subexp (exp, pos, stream, PREC_SUFFIX);
13272 fputs_filtered (" in ", stream);
13273 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13274 &type_print_raw_options);
13277 case OP_DISCRETE_RANGE:
13278 print_subexp (exp, pos, stream, PREC_SUFFIX);
13279 fputs_filtered ("..", stream);
13280 print_subexp (exp, pos, stream, PREC_SUFFIX);
13284 fputs_filtered ("others => ", stream);
13285 print_subexp (exp, pos, stream, PREC_SUFFIX);
13289 for (i = 0; i < nargs-1; i += 1)
13292 fputs_filtered ("|", stream);
13293 print_subexp (exp, pos, stream, PREC_SUFFIX);
13295 fputs_filtered (" => ", stream);
13296 print_subexp (exp, pos, stream, PREC_SUFFIX);
13299 case OP_POSITIONAL:
13300 print_subexp (exp, pos, stream, PREC_SUFFIX);
13304 fputs_filtered ("(", stream);
13305 for (i = 0; i < nargs; i += 1)
13308 fputs_filtered (", ", stream);
13309 print_subexp (exp, pos, stream, PREC_SUFFIX);
13311 fputs_filtered (")", stream);
13316 /* Table mapping opcodes into strings for printing operators
13317 and precedences of the operators. */
13319 static const struct op_print ada_op_print_tab[] = {
13320 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13321 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13322 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13323 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13324 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13325 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13326 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13327 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13328 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13329 {">=", BINOP_GEQ, PREC_ORDER, 0},
13330 {">", BINOP_GTR, PREC_ORDER, 0},
13331 {"<", BINOP_LESS, PREC_ORDER, 0},
13332 {">>", BINOP_RSH, PREC_SHIFT, 0},
13333 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13334 {"+", BINOP_ADD, PREC_ADD, 0},
13335 {"-", BINOP_SUB, PREC_ADD, 0},
13336 {"&", BINOP_CONCAT, PREC_ADD, 0},
13337 {"*", BINOP_MUL, PREC_MUL, 0},
13338 {"/", BINOP_DIV, PREC_MUL, 0},
13339 {"rem", BINOP_REM, PREC_MUL, 0},
13340 {"mod", BINOP_MOD, PREC_MUL, 0},
13341 {"**", BINOP_EXP, PREC_REPEAT, 0},
13342 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13343 {"-", UNOP_NEG, PREC_PREFIX, 0},
13344 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13345 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13346 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13347 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13348 {".all", UNOP_IND, PREC_SUFFIX, 1},
13349 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13350 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13354 enum ada_primitive_types {
13355 ada_primitive_type_int,
13356 ada_primitive_type_long,
13357 ada_primitive_type_short,
13358 ada_primitive_type_char,
13359 ada_primitive_type_float,
13360 ada_primitive_type_double,
13361 ada_primitive_type_void,
13362 ada_primitive_type_long_long,
13363 ada_primitive_type_long_double,
13364 ada_primitive_type_natural,
13365 ada_primitive_type_positive,
13366 ada_primitive_type_system_address,
13367 nr_ada_primitive_types
13371 ada_language_arch_info (struct gdbarch *gdbarch,
13372 struct language_arch_info *lai)
13374 const struct builtin_type *builtin = builtin_type (gdbarch);
13376 lai->primitive_type_vector
13377 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13380 lai->primitive_type_vector [ada_primitive_type_int]
13381 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13383 lai->primitive_type_vector [ada_primitive_type_long]
13384 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13385 0, "long_integer");
13386 lai->primitive_type_vector [ada_primitive_type_short]
13387 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13388 0, "short_integer");
13389 lai->string_char_type
13390 = lai->primitive_type_vector [ada_primitive_type_char]
13391 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13392 lai->primitive_type_vector [ada_primitive_type_float]
13393 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13395 lai->primitive_type_vector [ada_primitive_type_double]
13396 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13397 "long_float", NULL);
13398 lai->primitive_type_vector [ada_primitive_type_long_long]
13399 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13400 0, "long_long_integer");
13401 lai->primitive_type_vector [ada_primitive_type_long_double]
13402 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13403 "long_long_float", NULL);
13404 lai->primitive_type_vector [ada_primitive_type_natural]
13405 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13407 lai->primitive_type_vector [ada_primitive_type_positive]
13408 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13410 lai->primitive_type_vector [ada_primitive_type_void]
13411 = builtin->builtin_void;
13413 lai->primitive_type_vector [ada_primitive_type_system_address]
13414 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13415 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13416 = "system__address";
13418 lai->bool_type_symbol = NULL;
13419 lai->bool_type_default = builtin->builtin_bool;
13422 /* Language vector */
13424 /* Not really used, but needed in the ada_language_defn. */
13427 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13429 ada_emit_char (c, type, stream, quoter, 1);
13433 parse (struct parser_state *ps)
13435 warnings_issued = 0;
13436 return ada_parse (ps);
13439 static const struct exp_descriptor ada_exp_descriptor = {
13441 ada_operator_length,
13442 ada_operator_check,
13444 ada_dump_subexp_body,
13445 ada_evaluate_subexp
13448 /* Implement the "la_get_symbol_name_cmp" language_defn method
13451 static symbol_name_cmp_ftype
13452 ada_get_symbol_name_cmp (const char *lookup_name)
13454 if (should_use_wild_match (lookup_name))
13457 return compare_names;
13460 /* Implement the "la_read_var_value" language_defn method for Ada. */
13462 static struct value *
13463 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13465 const struct block *frame_block = NULL;
13466 struct symbol *renaming_sym = NULL;
13468 /* The only case where default_read_var_value is not sufficient
13469 is when VAR is a renaming... */
13471 frame_block = get_frame_block (frame, NULL);
13473 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13474 if (renaming_sym != NULL)
13475 return ada_read_renaming_var_value (renaming_sym, frame_block);
13477 /* This is a typical case where we expect the default_read_var_value
13478 function to work. */
13479 return default_read_var_value (var, frame);
13482 const struct language_defn ada_language_defn = {
13483 "ada", /* Language name */
13487 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13488 that's not quite what this means. */
13490 macro_expansion_no,
13491 &ada_exp_descriptor,
13495 ada_printchar, /* Print a character constant */
13496 ada_printstr, /* Function to print string constant */
13497 emit_char, /* Function to print single char (not used) */
13498 ada_print_type, /* Print a type using appropriate syntax */
13499 ada_print_typedef, /* Print a typedef using appropriate syntax */
13500 ada_val_print, /* Print a value using appropriate syntax */
13501 ada_value_print, /* Print a top-level value */
13502 ada_read_var_value, /* la_read_var_value */
13503 NULL, /* Language specific skip_trampoline */
13504 NULL, /* name_of_this */
13505 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13506 basic_lookup_transparent_type, /* lookup_transparent_type */
13507 ada_la_decode, /* Language specific symbol demangler */
13508 NULL, /* Language specific
13509 class_name_from_physname */
13510 ada_op_print_tab, /* expression operators for printing */
13511 0, /* c-style arrays */
13512 1, /* String lower bound */
13513 ada_get_gdb_completer_word_break_characters,
13514 ada_make_symbol_completion_list,
13515 ada_language_arch_info,
13516 ada_print_array_index,
13517 default_pass_by_reference,
13519 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13520 ada_iterate_over_symbols,
13525 /* Provide a prototype to silence -Wmissing-prototypes. */
13526 extern initialize_file_ftype _initialize_ada_language;
13528 /* Command-list for the "set/show ada" prefix command. */
13529 static struct cmd_list_element *set_ada_list;
13530 static struct cmd_list_element *show_ada_list;
13532 /* Implement the "set ada" prefix command. */
13535 set_ada_command (char *arg, int from_tty)
13537 printf_unfiltered (_(\
13538 "\"set ada\" must be followed by the name of a setting.\n"));
13539 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13542 /* Implement the "show ada" prefix command. */
13545 show_ada_command (char *args, int from_tty)
13547 cmd_show_list (show_ada_list, from_tty, "");
13551 initialize_ada_catchpoint_ops (void)
13553 struct breakpoint_ops *ops;
13555 initialize_breakpoint_ops ();
13557 ops = &catch_exception_breakpoint_ops;
13558 *ops = bkpt_breakpoint_ops;
13559 ops->dtor = dtor_catch_exception;
13560 ops->allocate_location = allocate_location_catch_exception;
13561 ops->re_set = re_set_catch_exception;
13562 ops->check_status = check_status_catch_exception;
13563 ops->print_it = print_it_catch_exception;
13564 ops->print_one = print_one_catch_exception;
13565 ops->print_mention = print_mention_catch_exception;
13566 ops->print_recreate = print_recreate_catch_exception;
13568 ops = &catch_exception_unhandled_breakpoint_ops;
13569 *ops = bkpt_breakpoint_ops;
13570 ops->dtor = dtor_catch_exception_unhandled;
13571 ops->allocate_location = allocate_location_catch_exception_unhandled;
13572 ops->re_set = re_set_catch_exception_unhandled;
13573 ops->check_status = check_status_catch_exception_unhandled;
13574 ops->print_it = print_it_catch_exception_unhandled;
13575 ops->print_one = print_one_catch_exception_unhandled;
13576 ops->print_mention = print_mention_catch_exception_unhandled;
13577 ops->print_recreate = print_recreate_catch_exception_unhandled;
13579 ops = &catch_assert_breakpoint_ops;
13580 *ops = bkpt_breakpoint_ops;
13581 ops->dtor = dtor_catch_assert;
13582 ops->allocate_location = allocate_location_catch_assert;
13583 ops->re_set = re_set_catch_assert;
13584 ops->check_status = check_status_catch_assert;
13585 ops->print_it = print_it_catch_assert;
13586 ops->print_one = print_one_catch_assert;
13587 ops->print_mention = print_mention_catch_assert;
13588 ops->print_recreate = print_recreate_catch_assert;
13591 /* This module's 'new_objfile' observer. */
13594 ada_new_objfile_observer (struct objfile *objfile)
13596 ada_clear_symbol_cache ();
13599 /* This module's 'free_objfile' observer. */
13602 ada_free_objfile_observer (struct objfile *objfile)
13604 ada_clear_symbol_cache ();
13608 _initialize_ada_language (void)
13610 add_language (&ada_language_defn);
13612 initialize_ada_catchpoint_ops ();
13614 add_prefix_cmd ("ada", no_class, set_ada_command,
13615 _("Prefix command for changing Ada-specfic settings"),
13616 &set_ada_list, "set ada ", 0, &setlist);
13618 add_prefix_cmd ("ada", no_class, show_ada_command,
13619 _("Generic command for showing Ada-specific settings."),
13620 &show_ada_list, "show ada ", 0, &showlist);
13622 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13623 &trust_pad_over_xvs, _("\
13624 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13625 Show whether an optimization trusting PAD types over XVS types is activated"),
13627 This is related to the encoding used by the GNAT compiler. The debugger\n\
13628 should normally trust the contents of PAD types, but certain older versions\n\
13629 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13630 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13631 work around this bug. It is always safe to turn this option \"off\", but\n\
13632 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13633 this option to \"off\" unless necessary."),
13634 NULL, NULL, &set_ada_list, &show_ada_list);
13636 add_catch_command ("exception", _("\
13637 Catch Ada exceptions, when raised.\n\
13638 With an argument, catch only exceptions with the given name."),
13639 catch_ada_exception_command,
13643 add_catch_command ("assert", _("\
13644 Catch failed Ada assertions, when raised.\n\
13645 With an argument, catch only exceptions with the given name."),
13646 catch_assert_command,
13651 varsize_limit = 65536;
13653 add_info ("exceptions", info_exceptions_command,
13655 List all Ada exception names.\n\
13656 If a regular expression is passed as an argument, only those matching\n\
13657 the regular expression are listed."));
13659 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13660 _("Set Ada maintenance-related variables."),
13661 &maint_set_ada_cmdlist, "maintenance set ada ",
13662 0/*allow-unknown*/, &maintenance_set_cmdlist);
13664 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13665 _("Show Ada maintenance-related variables"),
13666 &maint_show_ada_cmdlist, "maintenance show ada ",
13667 0/*allow-unknown*/, &maintenance_show_cmdlist);
13669 add_setshow_boolean_cmd
13670 ("ignore-descriptive-types", class_maintenance,
13671 &ada_ignore_descriptive_types_p,
13672 _("Set whether descriptive types generated by GNAT should be ignored."),
13673 _("Show whether descriptive types generated by GNAT should be ignored."),
13675 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13676 DWARF attribute."),
13677 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13679 obstack_init (&symbol_list_obstack);
13681 decoded_names_store = htab_create_alloc
13682 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13683 NULL, xcalloc, xfree);
13685 /* The ada-lang observers. */
13686 observer_attach_new_objfile (ada_new_objfile_observer);
13687 observer_attach_free_objfile (ada_free_objfile_observer);
13688 observer_attach_inferior_exit (ada_inferior_exit);
13690 /* Setup various context-specific data. */
13692 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13693 ada_pspace_data_handle
13694 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);