1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GAS.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
25 #include "bfd_stdint.h"
27 #include "safe-ctype.h"
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
36 #include "dwarf2dbg.h"
38 /* Types of processor to assemble for. */
40 #define CPU_DEFAULT AARCH64_ARCH_V8
43 #define streq(a, b) (strcmp (a, b) == 0)
45 #define END_OF_INSN '\0'
47 static aarch64_feature_set cpu_variant;
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
62 /* Which ABI to use. */
71 #define DEFAULT_ARCH "aarch64"
74 /* DEFAULT_ARCH is initialized in gas/configure.tgt. */
75 static const char *default_arch = DEFAULT_ARCH;
77 /* AArch64 ABI for the output file. */
78 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
80 /* When non-zero, program to a 32-bit model, in which the C data types
81 int, long and all pointer types are 32-bit objects (ILP32); or to a
82 64-bit model, in which the C int type is 32-bits but the C long type
83 and all pointer types are 64-bit objects (LP64). */
84 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
99 /* Bits for DEFINED field in vector_type_el. */
100 #define NTA_HASTYPE 1
101 #define NTA_HASINDEX 2
102 #define NTA_HASVARWIDTH 4
104 struct vector_type_el
106 enum vector_el_type type;
107 unsigned char defined;
112 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116 bfd_reloc_code_real_type type;
119 enum aarch64_opnd opnd;
121 unsigned need_libopcodes_p : 1;
124 struct aarch64_instruction
126 /* libopcodes structure for instruction intermediate representation. */
128 /* Record assembly errors found during the parsing. */
131 enum aarch64_operand_error_kind kind;
134 /* The condition that appears in the assembly line. */
136 /* Relocation information (including the GAS internal fixup). */
138 /* Need to generate an immediate in the literal pool. */
139 unsigned gen_lit_pool : 1;
142 typedef struct aarch64_instruction aarch64_instruction;
144 static aarch64_instruction inst;
146 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
147 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
149 /* Diagnostics inline function utilities.
151 These are lightweight utilities which should only be called by parse_operands
152 and other parsers. GAS processes each assembly line by parsing it against
153 instruction template(s), in the case of multiple templates (for the same
154 mnemonic name), those templates are tried one by one until one succeeds or
155 all fail. An assembly line may fail a few templates before being
156 successfully parsed; an error saved here in most cases is not a user error
157 but an error indicating the current template is not the right template.
158 Therefore it is very important that errors can be saved at a low cost during
159 the parsing; we don't want to slow down the whole parsing by recording
160 non-user errors in detail.
162 Remember that the objective is to help GAS pick up the most appropriate
163 error message in the case of multiple templates, e.g. FMOV which has 8
169 inst.parsing_error.kind = AARCH64_OPDE_NIL;
170 inst.parsing_error.error = NULL;
173 static inline bfd_boolean
176 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
179 static inline const char *
180 get_error_message (void)
182 return inst.parsing_error.error;
185 static inline enum aarch64_operand_error_kind
186 get_error_kind (void)
188 return inst.parsing_error.kind;
192 set_error (enum aarch64_operand_error_kind kind, const char *error)
194 inst.parsing_error.kind = kind;
195 inst.parsing_error.error = error;
199 set_recoverable_error (const char *error)
201 set_error (AARCH64_OPDE_RECOVERABLE, error);
204 /* Use the DESC field of the corresponding aarch64_operand entry to compose
205 the error message. */
207 set_default_error (void)
209 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
213 set_syntax_error (const char *error)
215 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
219 set_first_syntax_error (const char *error)
222 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226 set_fatal_syntax_error (const char *error)
228 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
231 /* Number of littlenums required to hold an extended precision number. */
232 #define MAX_LITTLENUMS 6
234 /* Return value for certain parsers when the parsing fails; those parsers
235 return the information of the parsed result, e.g. register number, on
237 #define PARSE_FAIL -1
239 /* This is an invalid condition code that means no conditional field is
241 #define COND_ALWAYS 0x10
245 const char *template;
251 const char *template;
258 bfd_reloc_code_real_type reloc;
261 /* Macros to define the register types and masks for the purpose
264 #undef AARCH64_REG_TYPES
265 #define AARCH64_REG_TYPES \
266 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
267 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
268 BASIC_REG_TYPE(SP_32) /* wsp */ \
269 BASIC_REG_TYPE(SP_64) /* sp */ \
270 BASIC_REG_TYPE(Z_32) /* wzr */ \
271 BASIC_REG_TYPE(Z_64) /* xzr */ \
272 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
273 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
274 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
275 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
276 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
277 BASIC_REG_TYPE(VN) /* v[0-31] */ \
278 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
279 BASIC_REG_TYPE(PN) /* p[0-15] */ \
280 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
281 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
282 /* Typecheck: same, plus SVE registers. */ \
283 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
285 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
286 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
288 /* Typecheck: same, plus SVE registers. */ \
289 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
292 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
293 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
294 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
295 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
296 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
298 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
299 /* Typecheck: any [BHSDQ]P FP. */ \
300 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
301 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
302 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
307 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
308 be used for SVE instructions, since Zn and Pn are valid symbols \
309 in other contexts. */ \
310 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
312 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
313 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
314 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
315 | REG_TYPE(ZN) | REG_TYPE(PN)) \
316 /* Any integer register; used for error messages only. */ \
317 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
318 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
319 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
320 /* Pseudo type to mark the end of the enumerator sequence. */ \
323 #undef BASIC_REG_TYPE
324 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
325 #undef MULTI_REG_TYPE
326 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
328 /* Register type enumerators. */
329 typedef enum aarch64_reg_type_
331 /* A list of REG_TYPE_*. */
335 #undef BASIC_REG_TYPE
336 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
338 #define REG_TYPE(T) (1 << REG_TYPE_##T)
339 #undef MULTI_REG_TYPE
340 #define MULTI_REG_TYPE(T,V) V,
342 /* Structure for a hash table entry for a register. */
346 unsigned char number;
347 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
348 unsigned char builtin;
351 /* Values indexed by aarch64_reg_type to assist the type checking. */
352 static const unsigned reg_type_masks[] =
357 #undef BASIC_REG_TYPE
359 #undef MULTI_REG_TYPE
360 #undef AARCH64_REG_TYPES
362 /* Diagnostics used when we don't get a register of the expected type.
363 Note: this has to synchronized with aarch64_reg_type definitions
366 get_reg_expected_msg (aarch64_reg_type reg_type)
373 msg = N_("integer 32-bit register expected");
376 msg = N_("integer 64-bit register expected");
379 msg = N_("integer register expected");
381 case REG_TYPE_R64_SP:
382 msg = N_("64-bit integer or SP register expected");
384 case REG_TYPE_SVE_BASE:
385 msg = N_("base register expected");
388 msg = N_("integer or zero register expected");
390 case REG_TYPE_SVE_OFFSET:
391 msg = N_("offset register expected");
394 msg = N_("integer or SP register expected");
396 case REG_TYPE_R_Z_SP:
397 msg = N_("integer, zero or SP register expected");
400 msg = N_("8-bit SIMD scalar register expected");
403 msg = N_("16-bit SIMD scalar or floating-point half precision "
404 "register expected");
407 msg = N_("32-bit SIMD scalar or floating-point single precision "
408 "register expected");
411 msg = N_("64-bit SIMD scalar or floating-point double precision "
412 "register expected");
415 msg = N_("128-bit SIMD scalar or floating-point quad precision "
416 "register expected");
418 case REG_TYPE_R_Z_BHSDQ_V:
419 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
420 msg = N_("register expected");
422 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
423 msg = N_("SIMD scalar or floating-point register expected");
425 case REG_TYPE_VN: /* any V reg */
426 msg = N_("vector register expected");
429 msg = N_("SVE vector register expected");
432 msg = N_("SVE predicate register expected");
435 as_fatal (_("invalid register type %d"), reg_type);
440 /* Some well known registers that we refer to directly elsewhere. */
443 /* Instructions take 4 bytes in the object file. */
446 static struct hash_control *aarch64_ops_hsh;
447 static struct hash_control *aarch64_cond_hsh;
448 static struct hash_control *aarch64_shift_hsh;
449 static struct hash_control *aarch64_sys_regs_hsh;
450 static struct hash_control *aarch64_pstatefield_hsh;
451 static struct hash_control *aarch64_sys_regs_ic_hsh;
452 static struct hash_control *aarch64_sys_regs_dc_hsh;
453 static struct hash_control *aarch64_sys_regs_at_hsh;
454 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
455 static struct hash_control *aarch64_reg_hsh;
456 static struct hash_control *aarch64_barrier_opt_hsh;
457 static struct hash_control *aarch64_nzcv_hsh;
458 static struct hash_control *aarch64_pldop_hsh;
459 static struct hash_control *aarch64_hint_opt_hsh;
461 /* Stuff needed to resolve the label ambiguity
470 static symbolS *last_label_seen;
472 /* Literal pool structure. Held on a per-section
473 and per-sub-section basis. */
475 #define MAX_LITERAL_POOL_SIZE 1024
476 typedef struct literal_expression
479 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
480 LITTLENUM_TYPE * bignum;
481 } literal_expression;
483 typedef struct literal_pool
485 literal_expression literals[MAX_LITERAL_POOL_SIZE];
486 unsigned int next_free_entry;
492 struct literal_pool *next;
495 /* Pointer to a linked list of literal pools. */
496 static literal_pool *list_of_pools = NULL;
500 /* This array holds the chars that always start a comment. If the
501 pre-processor is disabled, these aren't very useful. */
502 const char comment_chars[] = "";
504 /* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output. */
507 /* Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output. */
510 /* Also note that comments like this one will always work. */
511 const char line_comment_chars[] = "#";
513 const char line_separator_chars[] = ";";
515 /* Chars that can be used to separate mant
516 from exp in floating point numbers. */
517 const char EXP_CHARS[] = "eE";
519 /* Chars that mean this number is a floating point constant. */
523 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
525 /* Prefix character that indicates the start of an immediate value. */
526 #define is_immediate_prefix(C) ((C) == '#')
528 /* Separator character handling. */
530 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
532 static inline bfd_boolean
533 skip_past_char (char **str, char c)
544 #define skip_past_comma(str) skip_past_char (str, ',')
546 /* Arithmetic expressions (possibly involving symbols). */
548 static bfd_boolean in_my_get_expression_p = FALSE;
550 /* Third argument to my_get_expression. */
551 #define GE_NO_PREFIX 0
552 #define GE_OPT_PREFIX 1
554 /* Return TRUE if the string pointed by *STR is successfully parsed
555 as an valid expression; *EP will be filled with the information of
556 such an expression. Otherwise return FALSE. */
559 my_get_expression (expressionS * ep, char **str, int prefix_mode,
564 int prefix_present_p = 0;
571 if (is_immediate_prefix (**str))
574 prefix_present_p = 1;
581 memset (ep, 0, sizeof (expressionS));
583 save_in = input_line_pointer;
584 input_line_pointer = *str;
585 in_my_get_expression_p = TRUE;
586 seg = expression (ep);
587 in_my_get_expression_p = FALSE;
589 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
591 /* We found a bad expression in md_operand(). */
592 *str = input_line_pointer;
593 input_line_pointer = save_in;
594 if (prefix_present_p && ! error_p ())
595 set_fatal_syntax_error (_("bad expression"));
597 set_first_syntax_error (_("bad expression"));
602 if (seg != absolute_section
603 && seg != text_section
604 && seg != data_section
605 && seg != bss_section && seg != undefined_section)
607 set_syntax_error (_("bad segment"));
608 *str = input_line_pointer;
609 input_line_pointer = save_in;
616 *str = input_line_pointer;
617 input_line_pointer = save_in;
621 /* Turn a string in input_line_pointer into a floating point constant
622 of type TYPE, and store the appropriate bytes in *LITP. The number
623 of LITTLENUMS emitted is stored in *SIZEP. An error message is
624 returned, or NULL on OK. */
627 md_atof (int type, char *litP, int *sizeP)
629 return ieee_md_atof (type, litP, sizeP, target_big_endian);
632 /* We handle all bad expressions here, so that we can report the faulty
633 instruction in the error message. */
635 md_operand (expressionS * exp)
637 if (in_my_get_expression_p)
638 exp->X_op = O_illegal;
641 /* Immediate values. */
643 /* Errors may be set multiple times during parsing or bit encoding
644 (particularly in the Neon bits), but usually the earliest error which is set
645 will be the most meaningful. Avoid overwriting it with later (cascading)
646 errors by calling this function. */
649 first_error (const char *error)
652 set_syntax_error (error);
655 /* Similar to first_error, but this function accepts formatted error
658 first_error_fmt (const char *format, ...)
663 /* N.B. this single buffer will not cause error messages for different
664 instructions to pollute each other; this is because at the end of
665 processing of each assembly line, error message if any will be
666 collected by as_bad. */
667 static char buffer[size];
671 int ret ATTRIBUTE_UNUSED;
672 va_start (args, format);
673 ret = vsnprintf (buffer, size, format, args);
674 know (ret <= size - 1 && ret >= 0);
676 set_syntax_error (buffer);
680 /* Register parsing. */
682 /* Generic register parser which is called by other specialized
684 CCP points to what should be the beginning of a register name.
685 If it is indeed a valid register name, advance CCP over it and
686 return the reg_entry structure; otherwise return NULL.
687 It does not issue diagnostics. */
690 parse_reg (char **ccp)
696 #ifdef REGISTER_PREFIX
697 if (*start != REGISTER_PREFIX)
703 if (!ISALPHA (*p) || !is_name_beginner (*p))
708 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
710 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
719 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
722 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
724 return (reg_type_masks[type] & (1 << reg->type)) != 0;
727 /* Try to parse a base or offset register. Allow SVE base and offset
728 registers if REG_TYPE includes SVE registers. Return the register
729 entry on success, setting *QUALIFIER to the register qualifier.
730 Return null otherwise.
732 Note that this function does not issue any diagnostics. */
734 static const reg_entry *
735 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
736 aarch64_opnd_qualifier_t *qualifier)
739 const reg_entry *reg = parse_reg (&str);
749 *qualifier = AARCH64_OPND_QLF_W;
755 *qualifier = AARCH64_OPND_QLF_X;
759 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
762 switch (TOLOWER (str[1]))
765 *qualifier = AARCH64_OPND_QLF_S_S;
768 *qualifier = AARCH64_OPND_QLF_S_D;
785 /* Try to parse a base or offset register. Return the register entry
786 on success, setting *QUALIFIER to the register qualifier. Return null
789 Note that this function does not issue any diagnostics. */
791 static const reg_entry *
792 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
794 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
797 /* Parse the qualifier of a vector register or vector element of type
798 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
799 succeeds; otherwise return FALSE.
801 Accept only one occurrence of:
802 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
805 parse_vector_type_for_operand (aarch64_reg_type reg_type,
806 struct vector_type_el *parsed_type, char **str)
810 unsigned element_size;
811 enum vector_el_type type;
814 gas_assert (*ptr == '.');
817 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
822 width = strtoul (ptr, &ptr, 10);
823 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
825 first_error_fmt (_("bad size %d in vector width specifier"), width);
830 switch (TOLOWER (*ptr))
849 if (reg_type == REG_TYPE_ZN || width == 1)
858 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
860 first_error (_("missing element size"));
863 if (width != 0 && width * element_size != 64
864 && width * element_size != 128
865 && !(width == 2 && element_size == 16)
866 && !(width == 4 && element_size == 8))
869 ("invalid element size %d and vector size combination %c"),
875 parsed_type->type = type;
876 parsed_type->width = width;
883 /* *STR contains an SVE zero/merge predication suffix. Parse it into
884 *PARSED_TYPE and point *STR at the end of the suffix. */
887 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
892 gas_assert (*ptr == '/');
894 switch (TOLOWER (*ptr))
897 parsed_type->type = NT_zero;
900 parsed_type->type = NT_merge;
903 if (*ptr != '\0' && *ptr != ',')
904 first_error_fmt (_("unexpected character `%c' in predication type"),
907 first_error (_("missing predication type"));
910 parsed_type->width = 0;
915 /* Parse a register of the type TYPE.
917 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
918 name or the parsed register is not of TYPE.
920 Otherwise return the register number, and optionally fill in the actual
921 type of the register in *RTYPE when multiple alternatives were given, and
922 return the register shape and element index information in *TYPEINFO.
924 IN_REG_LIST should be set with TRUE if the caller is parsing a register
928 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
929 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
932 const reg_entry *reg = parse_reg (&str);
933 struct vector_type_el atype;
934 struct vector_type_el parsetype;
935 bfd_boolean is_typed_vecreg = FALSE;
938 atype.type = NT_invtype;
946 set_default_error ();
950 if (! aarch64_check_reg_type (reg, type))
952 DEBUG_TRACE ("reg type check failed");
953 set_default_error ();
958 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
959 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
963 if (!parse_vector_type_for_operand (type, &parsetype, &str))
968 if (!parse_predication_for_operand (&parsetype, &str))
972 /* Register if of the form Vn.[bhsdq]. */
973 is_typed_vecreg = TRUE;
975 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
977 /* The width is always variable; we don't allow an integer width
979 gas_assert (parsetype.width == 0);
980 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
982 else if (parsetype.width == 0)
983 /* Expect index. In the new scheme we cannot have
984 Vn.[bhsdq] represent a scalar. Therefore any
985 Vn.[bhsdq] should have an index following it.
986 Except in reglists of course. */
987 atype.defined |= NTA_HASINDEX;
989 atype.defined |= NTA_HASTYPE;
991 atype.type = parsetype.type;
992 atype.width = parsetype.width;
995 if (skip_past_char (&str, '['))
999 /* Reject Sn[index] syntax. */
1000 if (!is_typed_vecreg)
1002 first_error (_("this type of register can't be indexed"));
1008 first_error (_("index not allowed inside register list"));
1012 atype.defined |= NTA_HASINDEX;
1014 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1016 if (exp.X_op != O_constant)
1018 first_error (_("constant expression required"));
1022 if (! skip_past_char (&str, ']'))
1025 atype.index = exp.X_add_number;
1027 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1029 /* Indexed vector register expected. */
1030 first_error (_("indexed vector register expected"));
1034 /* A vector reg Vn should be typed or indexed. */
1035 if (type == REG_TYPE_VN && atype.defined == 0)
1037 first_error (_("invalid use of vector register"));
1053 Return the register number on success; return PARSE_FAIL otherwise.
1055 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1056 the register (e.g. NEON double or quad reg when either has been requested).
1058 If this is a NEON vector register with additional type information, fill
1059 in the struct pointed to by VECTYPE (if non-NULL).
1061 This parser does not handle register list. */
1064 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1065 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1067 struct vector_type_el atype;
1069 int reg = parse_typed_reg (&str, type, rtype, &atype,
1070 /*in_reg_list= */ FALSE);
1072 if (reg == PARSE_FAIL)
1083 static inline bfd_boolean
1084 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1088 && e1.defined == e2.defined
1089 && e1.width == e2.width && e1.index == e2.index;
1092 /* This function parses a list of vector registers of type TYPE.
1093 On success, it returns the parsed register list information in the
1094 following encoded format:
1096 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1097 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1099 The information of the register shape and/or index is returned in
1102 It returns PARSE_FAIL if the register list is invalid.
1104 The list contains one to four registers.
1105 Each register can be one of:
1108 All <T> should be identical.
1109 All <index> should be identical.
1110 There are restrictions on <Vt> numbers which are checked later
1111 (by reg_list_valid_p). */
1114 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1115 struct vector_type_el *vectype)
1119 struct vector_type_el typeinfo, typeinfo_first;
1124 bfd_boolean error = FALSE;
1125 bfd_boolean expect_index = FALSE;
1129 set_syntax_error (_("expecting {"));
1135 typeinfo_first.defined = 0;
1136 typeinfo_first.type = NT_invtype;
1137 typeinfo_first.width = -1;
1138 typeinfo_first.index = 0;
1147 str++; /* skip over '-' */
1150 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1151 /*in_reg_list= */ TRUE);
1152 if (val == PARSE_FAIL)
1154 set_first_syntax_error (_("invalid vector register in list"));
1158 /* reject [bhsd]n */
1159 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1161 set_first_syntax_error (_("invalid scalar register in list"));
1166 if (typeinfo.defined & NTA_HASINDEX)
1167 expect_index = TRUE;
1171 if (val < val_range)
1173 set_first_syntax_error
1174 (_("invalid range in vector register list"));
1183 typeinfo_first = typeinfo;
1184 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1186 set_first_syntax_error
1187 (_("type mismatch in vector register list"));
1192 for (i = val_range; i <= val; i++)
1194 ret_val |= i << (5 * nb_regs);
1199 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1201 skip_whitespace (str);
1204 set_first_syntax_error (_("end of vector register list not found"));
1209 skip_whitespace (str);
1213 if (skip_past_char (&str, '['))
1217 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1218 if (exp.X_op != O_constant)
1220 set_first_syntax_error (_("constant expression required."));
1223 if (! skip_past_char (&str, ']'))
1226 typeinfo_first.index = exp.X_add_number;
1230 set_first_syntax_error (_("expected index"));
1237 set_first_syntax_error (_("too many registers in vector register list"));
1240 else if (nb_regs == 0)
1242 set_first_syntax_error (_("empty vector register list"));
1248 *vectype = typeinfo_first;
1250 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1253 /* Directives: register aliases. */
1256 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1261 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1264 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1267 /* Only warn about a redefinition if it's not defined as the
1269 else if (new->number != number || new->type != type)
1270 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1275 name = xstrdup (str);
1276 new = XNEW (reg_entry);
1279 new->number = number;
1281 new->builtin = FALSE;
1283 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1289 /* Look for the .req directive. This is of the form:
1291 new_register_name .req existing_register_name
1293 If we find one, or if it looks sufficiently like one that we want to
1294 handle any error here, return TRUE. Otherwise return FALSE. */
1297 create_register_alias (char *newname, char *p)
1299 const reg_entry *old;
1300 char *oldname, *nbuf;
1303 /* The input scrubber ensures that whitespace after the mnemonic is
1304 collapsed to single spaces. */
1306 if (strncmp (oldname, " .req ", 6) != 0)
1310 if (*oldname == '\0')
1313 old = hash_find (aarch64_reg_hsh, oldname);
1316 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1320 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1321 the desired alias name, and p points to its end. If not, then
1322 the desired alias name is in the global original_case_string. */
1323 #ifdef TC_CASE_SENSITIVE
1326 newname = original_case_string;
1327 nlen = strlen (newname);
1330 nbuf = xmemdup0 (newname, nlen);
1332 /* Create aliases under the new name as stated; an all-lowercase
1333 version of the new name; and an all-uppercase version of the new
1335 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1337 for (p = nbuf; *p; p++)
1340 if (strncmp (nbuf, newname, nlen))
1342 /* If this attempt to create an additional alias fails, do not bother
1343 trying to create the all-lower case alias. We will fail and issue
1344 a second, duplicate error message. This situation arises when the
1345 programmer does something like:
1348 The second .req creates the "Foo" alias but then fails to create
1349 the artificial FOO alias because it has already been created by the
1351 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1358 for (p = nbuf; *p; p++)
1361 if (strncmp (nbuf, newname, nlen))
1362 insert_reg_alias (nbuf, old->number, old->type);
1369 /* Should never be called, as .req goes between the alias and the
1370 register name, not at the beginning of the line. */
1372 s_req (int a ATTRIBUTE_UNUSED)
1374 as_bad (_("invalid syntax for .req directive"));
1377 /* The .unreq directive deletes an alias which was previously defined
1378 by .req. For example:
1384 s_unreq (int a ATTRIBUTE_UNUSED)
1389 name = input_line_pointer;
1391 while (*input_line_pointer != 0
1392 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1393 ++input_line_pointer;
1395 saved_char = *input_line_pointer;
1396 *input_line_pointer = 0;
1399 as_bad (_("invalid syntax for .unreq directive"));
1402 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1405 as_bad (_("unknown register alias '%s'"), name);
1406 else if (reg->builtin)
1407 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1414 hash_delete (aarch64_reg_hsh, name, FALSE);
1415 free ((char *) reg->name);
1418 /* Also locate the all upper case and all lower case versions.
1419 Do not complain if we cannot find one or the other as it
1420 was probably deleted above. */
1422 nbuf = strdup (name);
1423 for (p = nbuf; *p; p++)
1425 reg = hash_find (aarch64_reg_hsh, nbuf);
1428 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1429 free ((char *) reg->name);
1433 for (p = nbuf; *p; p++)
1435 reg = hash_find (aarch64_reg_hsh, nbuf);
1438 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1439 free ((char *) reg->name);
1447 *input_line_pointer = saved_char;
1448 demand_empty_rest_of_line ();
1451 /* Directives: Instruction set selection. */
1454 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1455 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1459 /* Create a new mapping symbol for the transition to STATE. */
1462 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1465 const char *symname;
1472 type = BSF_NO_FLAGS;
1476 type = BSF_NO_FLAGS;
1482 symbolP = symbol_new (symname, now_seg, value, frag);
1483 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1485 /* Save the mapping symbols for future reference. Also check that
1486 we do not place two mapping symbols at the same offset within a
1487 frag. We'll handle overlap between frags in
1488 check_mapping_symbols.
1490 If .fill or other data filling directive generates zero sized data,
1491 the mapping symbol for the following code will have the same value
1492 as the one generated for the data filling directive. In this case,
1493 we replace the old symbol with the new one at the same address. */
1496 if (frag->tc_frag_data.first_map != NULL)
1498 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1499 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1502 frag->tc_frag_data.first_map = symbolP;
1504 if (frag->tc_frag_data.last_map != NULL)
1506 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1507 S_GET_VALUE (symbolP));
1508 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1509 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1512 frag->tc_frag_data.last_map = symbolP;
1515 /* We must sometimes convert a region marked as code to data during
1516 code alignment, if an odd number of bytes have to be padded. The
1517 code mapping symbol is pushed to an aligned address. */
1520 insert_data_mapping_symbol (enum mstate state,
1521 valueT value, fragS * frag, offsetT bytes)
1523 /* If there was already a mapping symbol, remove it. */
1524 if (frag->tc_frag_data.last_map != NULL
1525 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1526 frag->fr_address + value)
1528 symbolS *symp = frag->tc_frag_data.last_map;
1532 know (frag->tc_frag_data.first_map == symp);
1533 frag->tc_frag_data.first_map = NULL;
1535 frag->tc_frag_data.last_map = NULL;
1536 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1539 make_mapping_symbol (MAP_DATA, value, frag);
1540 make_mapping_symbol (state, value + bytes, frag);
1543 static void mapping_state_2 (enum mstate state, int max_chars);
1545 /* Set the mapping state to STATE. Only call this when about to
1546 emit some STATE bytes to the file. */
1549 mapping_state (enum mstate state)
1551 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1553 if (state == MAP_INSN)
1554 /* AArch64 instructions require 4-byte alignment. When emitting
1555 instructions into any section, record the appropriate section
1557 record_alignment (now_seg, 2);
1559 if (mapstate == state)
1560 /* The mapping symbol has already been emitted.
1561 There is nothing else to do. */
1564 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1565 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1566 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1567 evaluated later in the next else. */
1569 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1571 /* Only add the symbol if the offset is > 0:
1572 if we're at the first frag, check it's size > 0;
1573 if we're not at the first frag, then for sure
1574 the offset is > 0. */
1575 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1576 const int add_symbol = (frag_now != frag_first)
1577 || (frag_now_fix () > 0);
1580 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1584 mapping_state_2 (state, 0);
1587 /* Same as mapping_state, but MAX_CHARS bytes have already been
1588 allocated. Put the mapping symbol that far back. */
1591 mapping_state_2 (enum mstate state, int max_chars)
1593 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1595 if (!SEG_NORMAL (now_seg))
1598 if (mapstate == state)
1599 /* The mapping symbol has already been emitted.
1600 There is nothing else to do. */
1603 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1604 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1607 #define mapping_state(x) /* nothing */
1608 #define mapping_state_2(x, y) /* nothing */
1611 /* Directives: sectioning and alignment. */
1614 s_bss (int ignore ATTRIBUTE_UNUSED)
1616 /* We don't support putting frags in the BSS segment, we fake it by
1617 marking in_bss, then looking at s_skip for clues. */
1618 subseg_set (bss_section, 0);
1619 demand_empty_rest_of_line ();
1620 mapping_state (MAP_DATA);
1624 s_even (int ignore ATTRIBUTE_UNUSED)
1626 /* Never make frag if expect extra pass. */
1628 frag_align (1, 0, 0);
1630 record_alignment (now_seg, 1);
1632 demand_empty_rest_of_line ();
1635 /* Directives: Literal pools. */
1637 static literal_pool *
1638 find_literal_pool (int size)
1642 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1644 if (pool->section == now_seg
1645 && pool->sub_section == now_subseg && pool->size == size)
1652 static literal_pool *
1653 find_or_make_literal_pool (int size)
1655 /* Next literal pool ID number. */
1656 static unsigned int latest_pool_num = 1;
1659 pool = find_literal_pool (size);
1663 /* Create a new pool. */
1664 pool = XNEW (literal_pool);
1668 /* Currently we always put the literal pool in the current text
1669 section. If we were generating "small" model code where we
1670 knew that all code and initialised data was within 1MB then
1671 we could output literals to mergeable, read-only data
1674 pool->next_free_entry = 0;
1675 pool->section = now_seg;
1676 pool->sub_section = now_subseg;
1678 pool->next = list_of_pools;
1679 pool->symbol = NULL;
1681 /* Add it to the list. */
1682 list_of_pools = pool;
1685 /* New pools, and emptied pools, will have a NULL symbol. */
1686 if (pool->symbol == NULL)
1688 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1689 (valueT) 0, &zero_address_frag);
1690 pool->id = latest_pool_num++;
1697 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1698 Return TRUE on success, otherwise return FALSE. */
1700 add_to_lit_pool (expressionS *exp, int size)
1705 pool = find_or_make_literal_pool (size);
1707 /* Check if this literal value is already in the pool. */
1708 for (entry = 0; entry < pool->next_free_entry; entry++)
1710 expressionS * litexp = & pool->literals[entry].exp;
1712 if ((litexp->X_op == exp->X_op)
1713 && (exp->X_op == O_constant)
1714 && (litexp->X_add_number == exp->X_add_number)
1715 && (litexp->X_unsigned == exp->X_unsigned))
1718 if ((litexp->X_op == exp->X_op)
1719 && (exp->X_op == O_symbol)
1720 && (litexp->X_add_number == exp->X_add_number)
1721 && (litexp->X_add_symbol == exp->X_add_symbol)
1722 && (litexp->X_op_symbol == exp->X_op_symbol))
1726 /* Do we need to create a new entry? */
1727 if (entry == pool->next_free_entry)
1729 if (entry >= MAX_LITERAL_POOL_SIZE)
1731 set_syntax_error (_("literal pool overflow"));
1735 pool->literals[entry].exp = *exp;
1736 pool->next_free_entry += 1;
1737 if (exp->X_op == O_big)
1739 /* PR 16688: Bignums are held in a single global array. We must
1740 copy and preserve that value now, before it is overwritten. */
1741 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1743 memcpy (pool->literals[entry].bignum, generic_bignum,
1744 CHARS_PER_LITTLENUM * exp->X_add_number);
1747 pool->literals[entry].bignum = NULL;
1750 exp->X_op = O_symbol;
1751 exp->X_add_number = ((int) entry) * size;
1752 exp->X_add_symbol = pool->symbol;
1757 /* Can't use symbol_new here, so have to create a symbol and then at
1758 a later date assign it a value. That's what these functions do. */
1761 symbol_locate (symbolS * symbolP,
1762 const char *name,/* It is copied, the caller can modify. */
1763 segT segment, /* Segment identifier (SEG_<something>). */
1764 valueT valu, /* Symbol value. */
1765 fragS * frag) /* Associated fragment. */
1768 char *preserved_copy_of_name;
1770 name_length = strlen (name) + 1; /* +1 for \0. */
1771 obstack_grow (¬es, name, name_length);
1772 preserved_copy_of_name = obstack_finish (¬es);
1774 #ifdef tc_canonicalize_symbol_name
1775 preserved_copy_of_name =
1776 tc_canonicalize_symbol_name (preserved_copy_of_name);
1779 S_SET_NAME (symbolP, preserved_copy_of_name);
1781 S_SET_SEGMENT (symbolP, segment);
1782 S_SET_VALUE (symbolP, valu);
1783 symbol_clear_list_pointers (symbolP);
1785 symbol_set_frag (symbolP, frag);
1787 /* Link to end of symbol chain. */
1789 extern int symbol_table_frozen;
1791 if (symbol_table_frozen)
1795 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1797 obj_symbol_new_hook (symbolP);
1799 #ifdef tc_symbol_new_hook
1800 tc_symbol_new_hook (symbolP);
1804 verify_symbol_chain (symbol_rootP, symbol_lastP);
1805 #endif /* DEBUG_SYMS */
1810 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1817 for (align = 2; align <= 4; align++)
1819 int size = 1 << align;
1821 pool = find_literal_pool (size);
1822 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1825 /* Align pool as you have word accesses.
1826 Only make a frag if we have to. */
1828 frag_align (align, 0, 0);
1830 mapping_state (MAP_DATA);
1832 record_alignment (now_seg, align);
1834 sprintf (sym_name, "$$lit_\002%x", pool->id);
1836 symbol_locate (pool->symbol, sym_name, now_seg,
1837 (valueT) frag_now_fix (), frag_now);
1838 symbol_table_insert (pool->symbol);
1840 for (entry = 0; entry < pool->next_free_entry; entry++)
1842 expressionS * exp = & pool->literals[entry].exp;
1844 if (exp->X_op == O_big)
1846 /* PR 16688: Restore the global bignum value. */
1847 gas_assert (pool->literals[entry].bignum != NULL);
1848 memcpy (generic_bignum, pool->literals[entry].bignum,
1849 CHARS_PER_LITTLENUM * exp->X_add_number);
1852 /* First output the expression in the instruction to the pool. */
1853 emit_expr (exp, size); /* .word|.xword */
1855 if (exp->X_op == O_big)
1857 free (pool->literals[entry].bignum);
1858 pool->literals[entry].bignum = NULL;
1862 /* Mark the pool as empty. */
1863 pool->next_free_entry = 0;
1864 pool->symbol = NULL;
1869 /* Forward declarations for functions below, in the MD interface
1871 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1872 static struct reloc_table_entry * find_reloc_table_entry (char **);
1874 /* Directives: Data. */
1875 /* N.B. the support for relocation suffix in this directive needs to be
1876 implemented properly. */
1879 s_aarch64_elf_cons (int nbytes)
1883 #ifdef md_flush_pending_output
1884 md_flush_pending_output ();
1887 if (is_it_end_of_statement ())
1889 demand_empty_rest_of_line ();
1893 #ifdef md_cons_align
1894 md_cons_align (nbytes);
1897 mapping_state (MAP_DATA);
1900 struct reloc_table_entry *reloc;
1904 if (exp.X_op != O_symbol)
1905 emit_expr (&exp, (unsigned int) nbytes);
1908 skip_past_char (&input_line_pointer, '#');
1909 if (skip_past_char (&input_line_pointer, ':'))
1911 reloc = find_reloc_table_entry (&input_line_pointer);
1913 as_bad (_("unrecognized relocation suffix"));
1915 as_bad (_("unimplemented relocation suffix"));
1916 ignore_rest_of_line ();
1920 emit_expr (&exp, (unsigned int) nbytes);
1923 while (*input_line_pointer++ == ',');
1925 /* Put terminator back into stream. */
1926 input_line_pointer--;
1927 demand_empty_rest_of_line ();
1930 #endif /* OBJ_ELF */
1932 /* Output a 32-bit word, but mark as an instruction. */
1935 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1939 #ifdef md_flush_pending_output
1940 md_flush_pending_output ();
1943 if (is_it_end_of_statement ())
1945 demand_empty_rest_of_line ();
1949 /* Sections are assumed to start aligned. In executable section, there is no
1950 MAP_DATA symbol pending. So we only align the address during
1951 MAP_DATA --> MAP_INSN transition.
1952 For other sections, this is not guaranteed. */
1953 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1954 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1955 frag_align_code (2, 0);
1958 mapping_state (MAP_INSN);
1964 if (exp.X_op != O_constant)
1966 as_bad (_("constant expression required"));
1967 ignore_rest_of_line ();
1971 if (target_big_endian)
1973 unsigned int val = exp.X_add_number;
1974 exp.X_add_number = SWAP_32 (val);
1976 emit_expr (&exp, 4);
1978 while (*input_line_pointer++ == ',');
1980 /* Put terminator back into stream. */
1981 input_line_pointer--;
1982 demand_empty_rest_of_line ();
1986 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1989 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1995 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1996 BFD_RELOC_AARCH64_TLSDESC_ADD);
1998 demand_empty_rest_of_line ();
2001 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2004 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2008 /* Since we're just labelling the code, there's no need to define a
2011 /* Make sure there is enough room in this frag for the following
2012 blr. This trick only works if the blr follows immediately after
2013 the .tlsdesc directive. */
2015 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2016 BFD_RELOC_AARCH64_TLSDESC_CALL);
2018 demand_empty_rest_of_line ();
2021 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2024 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2030 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2031 BFD_RELOC_AARCH64_TLSDESC_LDR);
2033 demand_empty_rest_of_line ();
2035 #endif /* OBJ_ELF */
2037 static void s_aarch64_arch (int);
2038 static void s_aarch64_cpu (int);
2039 static void s_aarch64_arch_extension (int);
2041 /* This table describes all the machine specific pseudo-ops the assembler
2042 has to support. The fields are:
2043 pseudo-op name without dot
2044 function to call to execute this pseudo-op
2045 Integer arg to pass to the function. */
2047 const pseudo_typeS md_pseudo_table[] = {
2048 /* Never called because '.req' does not start a line. */
2050 {"unreq", s_unreq, 0},
2052 {"even", s_even, 0},
2053 {"ltorg", s_ltorg, 0},
2054 {"pool", s_ltorg, 0},
2055 {"cpu", s_aarch64_cpu, 0},
2056 {"arch", s_aarch64_arch, 0},
2057 {"arch_extension", s_aarch64_arch_extension, 0},
2058 {"inst", s_aarch64_inst, 0},
2060 {"tlsdescadd", s_tlsdescadd, 0},
2061 {"tlsdesccall", s_tlsdesccall, 0},
2062 {"tlsdescldr", s_tlsdescldr, 0},
2063 {"word", s_aarch64_elf_cons, 4},
2064 {"long", s_aarch64_elf_cons, 4},
2065 {"xword", s_aarch64_elf_cons, 8},
2066 {"dword", s_aarch64_elf_cons, 8},
2072 /* Check whether STR points to a register name followed by a comma or the
2073 end of line; REG_TYPE indicates which register types are checked
2074 against. Return TRUE if STR is such a register name; otherwise return
2075 FALSE. The function does not intend to produce any diagnostics, but since
2076 the register parser aarch64_reg_parse, which is called by this function,
2077 does produce diagnostics, we call clear_error to clear any diagnostics
2078 that may be generated by aarch64_reg_parse.
2079 Also, the function returns FALSE directly if there is any user error
2080 present at the function entry. This prevents the existing diagnostics
2081 state from being spoiled.
2082 The function currently serves parse_constant_immediate and
2083 parse_big_immediate only. */
2085 reg_name_p (char *str, aarch64_reg_type reg_type)
2089 /* Prevent the diagnostics state from being spoiled. */
2093 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2095 /* Clear the parsing error that may be set by the reg parser. */
2098 if (reg == PARSE_FAIL)
2101 skip_whitespace (str);
2102 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2108 /* Parser functions used exclusively in instruction operands. */
2110 /* Parse an immediate expression which may not be constant.
2112 To prevent the expression parser from pushing a register name
2113 into the symbol table as an undefined symbol, firstly a check is
2114 done to find out whether STR is a register of type REG_TYPE followed
2115 by a comma or the end of line. Return FALSE if STR is such a string. */
2118 parse_immediate_expression (char **str, expressionS *exp,
2119 aarch64_reg_type reg_type)
2121 if (reg_name_p (*str, reg_type))
2123 set_recoverable_error (_("immediate operand required"));
2127 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2129 if (exp->X_op == O_absent)
2131 set_fatal_syntax_error (_("missing immediate expression"));
2138 /* Constant immediate-value read function for use in insn parsing.
2139 STR points to the beginning of the immediate (with the optional
2140 leading #); *VAL receives the value. REG_TYPE says which register
2141 names should be treated as registers rather than as symbolic immediates.
2143 Return TRUE on success; otherwise return FALSE. */
2146 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2150 if (! parse_immediate_expression (str, &exp, reg_type))
2153 if (exp.X_op != O_constant)
2155 set_syntax_error (_("constant expression required"));
2159 *val = exp.X_add_number;
2164 encode_imm_float_bits (uint32_t imm)
2166 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2167 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2170 /* Return TRUE if the single-precision floating-point value encoded in IMM
2171 can be expressed in the AArch64 8-bit signed floating-point format with
2172 3-bit exponent and normalized 4 bits of precision; in other words, the
2173 floating-point value must be expressable as
2174 (+/-) n / 16 * power (2, r)
2175 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2178 aarch64_imm_float_p (uint32_t imm)
2180 /* If a single-precision floating-point value has the following bit
2181 pattern, it can be expressed in the AArch64 8-bit floating-point
2184 3 32222222 2221111111111
2185 1 09876543 21098765432109876543210
2186 n Eeeeeexx xxxx0000000000000000000
2188 where n, e and each x are either 0 or 1 independently, with
2193 /* Prepare the pattern for 'Eeeeee'. */
2194 if (((imm >> 30) & 0x1) == 0)
2195 pattern = 0x3e000000;
2197 pattern = 0x40000000;
2199 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2200 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2203 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2204 as an IEEE float without any loss of precision. Store the value in
2208 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2210 /* If a double-precision floating-point value has the following bit
2211 pattern, it can be expressed in a float:
2213 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2214 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2215 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2217 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2218 if Eeee_eeee != 1111_1111
2220 where n, e, s and S are either 0 or 1 independently and where ~ is the
2224 uint32_t high32 = imm >> 32;
2225 uint32_t low32 = imm;
2227 /* Lower 29 bits need to be 0s. */
2228 if ((imm & 0x1fffffff) != 0)
2231 /* Prepare the pattern for 'Eeeeeeeee'. */
2232 if (((high32 >> 30) & 0x1) == 0)
2233 pattern = 0x38000000;
2235 pattern = 0x40000000;
2238 if ((high32 & 0x78000000) != pattern)
2241 /* Check Eeee_eeee != 1111_1111. */
2242 if ((high32 & 0x7ff00000) == 0x47f00000)
2245 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2246 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2247 | (low32 >> 29)); /* 3 S bits. */
2251 /* Return true if we should treat OPERAND as a double-precision
2252 floating-point operand rather than a single-precision one. */
2254 double_precision_operand_p (const aarch64_opnd_info *operand)
2256 /* Check for unsuffixed SVE registers, which are allowed
2257 for LDR and STR but not in instructions that require an
2258 immediate. We get better error messages if we arbitrarily
2259 pick one size, parse the immediate normally, and then
2260 report the match failure in the normal way. */
2261 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2262 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2265 /* Parse a floating-point immediate. Return TRUE on success and return the
2266 value in *IMMED in the format of IEEE754 single-precision encoding.
2267 *CCP points to the start of the string; DP_P is TRUE when the immediate
2268 is expected to be in double-precision (N.B. this only matters when
2269 hexadecimal representation is involved). REG_TYPE says which register
2270 names should be treated as registers rather than as symbolic immediates.
2272 This routine accepts any IEEE float; it is up to the callers to reject
2276 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2277 aarch64_reg_type reg_type)
2281 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2282 int found_fpchar = 0;
2284 unsigned fpword = 0;
2285 bfd_boolean hex_p = FALSE;
2287 skip_past_char (&str, '#');
2290 skip_whitespace (fpnum);
2292 if (strncmp (fpnum, "0x", 2) == 0)
2294 /* Support the hexadecimal representation of the IEEE754 encoding.
2295 Double-precision is expected when DP_P is TRUE, otherwise the
2296 representation should be in single-precision. */
2297 if (! parse_constant_immediate (&str, &val, reg_type))
2302 if (!can_convert_double_to_float (val, &fpword))
2305 else if ((uint64_t) val > 0xffffffff)
2314 if (reg_name_p (str, reg_type))
2316 set_recoverable_error (_("immediate operand required"));
2320 /* We must not accidentally parse an integer as a floating-point number.
2321 Make sure that the value we parse is not an integer by checking for
2322 special characters '.' or 'e'. */
2323 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2324 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2338 if ((str = atof_ieee (str, 's', words)) == NULL)
2341 /* Our FP word must be 32 bits (single-precision FP). */
2342 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2344 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2354 set_fatal_syntax_error (_("invalid floating-point constant"));
2358 /* Less-generic immediate-value read function with the possibility of loading
2359 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2362 To prevent the expression parser from pushing a register name into the
2363 symbol table as an undefined symbol, a check is firstly done to find
2364 out whether STR is a register of type REG_TYPE followed by a comma or
2365 the end of line. Return FALSE if STR is such a register. */
2368 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2372 if (reg_name_p (ptr, reg_type))
2374 set_syntax_error (_("immediate operand required"));
2378 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2380 if (inst.reloc.exp.X_op == O_constant)
2381 *imm = inst.reloc.exp.X_add_number;
2388 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2389 if NEED_LIBOPCODES is non-zero, the fixup will need
2390 assistance from the libopcodes. */
2393 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2394 const aarch64_opnd_info *operand,
2395 int need_libopcodes_p)
2397 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2398 reloc->opnd = operand->type;
2399 if (need_libopcodes_p)
2400 reloc->need_libopcodes_p = 1;
2403 /* Return TRUE if the instruction needs to be fixed up later internally by
2404 the GAS; otherwise return FALSE. */
2406 static inline bfd_boolean
2407 aarch64_gas_internal_fixup_p (void)
2409 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2412 /* Assign the immediate value to the relevant field in *OPERAND if
2413 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2414 needs an internal fixup in a later stage.
2415 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2416 IMM.VALUE that may get assigned with the constant. */
2418 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2419 aarch64_opnd_info *operand,
2421 int need_libopcodes_p,
2424 if (reloc->exp.X_op == O_constant)
2427 operand->addr.offset.imm = reloc->exp.X_add_number;
2429 operand->imm.value = reloc->exp.X_add_number;
2430 reloc->type = BFD_RELOC_UNUSED;
2434 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2435 /* Tell libopcodes to ignore this operand or not. This is helpful
2436 when one of the operands needs to be fixed up later but we need
2437 libopcodes to check the other operands. */
2438 operand->skip = skip_p;
2442 /* Relocation modifiers. Each entry in the table contains the textual
2443 name for the relocation which may be placed before a symbol used as
2444 a load/store offset, or add immediate. It must be surrounded by a
2445 leading and trailing colon, for example:
2447 ldr x0, [x1, #:rello:varsym]
2448 add x0, x1, #:rello:varsym */
2450 struct reloc_table_entry
2454 bfd_reloc_code_real_type adr_type;
2455 bfd_reloc_code_real_type adrp_type;
2456 bfd_reloc_code_real_type movw_type;
2457 bfd_reloc_code_real_type add_type;
2458 bfd_reloc_code_real_type ldst_type;
2459 bfd_reloc_code_real_type ld_literal_type;
2462 static struct reloc_table_entry reloc_table[] = {
2463 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2468 BFD_RELOC_AARCH64_ADD_LO12,
2469 BFD_RELOC_AARCH64_LDST_LO12,
2472 /* Higher 21 bits of pc-relative page offset: ADRP */
2475 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2481 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2484 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2490 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2494 BFD_RELOC_AARCH64_MOVW_G0,
2499 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2503 BFD_RELOC_AARCH64_MOVW_G0_S,
2508 /* Less significant bits 0-15 of address/value: MOVK, no check */
2512 BFD_RELOC_AARCH64_MOVW_G0_NC,
2517 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2521 BFD_RELOC_AARCH64_MOVW_G1,
2526 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2530 BFD_RELOC_AARCH64_MOVW_G1_S,
2535 /* Less significant bits 16-31 of address/value: MOVK, no check */
2539 BFD_RELOC_AARCH64_MOVW_G1_NC,
2544 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2548 BFD_RELOC_AARCH64_MOVW_G2,
2553 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2557 BFD_RELOC_AARCH64_MOVW_G2_S,
2562 /* Less significant bits 32-47 of address/value: MOVK, no check */
2566 BFD_RELOC_AARCH64_MOVW_G2_NC,
2571 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2575 BFD_RELOC_AARCH64_MOVW_G3,
2580 /* Get to the page containing GOT entry for a symbol. */
2583 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2587 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2589 /* 12 bit offset into the page containing GOT entry for that symbol. */
2595 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2598 /* 0-15 bits of address/value: MOVk, no check. */
2602 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2607 /* Most significant bits 16-31 of address/value: MOVZ. */
2611 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2616 /* 15 bit offset into the page containing GOT entry for that symbol. */
2622 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2625 /* Get to the page containing GOT TLS entry for a symbol */
2626 {"gottprel_g0_nc", 0,
2629 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2634 /* Get to the page containing GOT TLS entry for a symbol */
2638 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2643 /* Get to the page containing GOT TLS entry for a symbol */
2645 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2646 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2652 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2657 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2661 /* Lower 16 bits address/value: MOVk. */
2665 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2670 /* Most significant bits 16-31 of address/value: MOVZ. */
2674 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2679 /* Get to the page containing GOT TLS entry for a symbol */
2681 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2682 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2686 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2688 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2693 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
2694 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2697 /* Get to the page containing GOT TLS entry for a symbol.
2698 The same as GD, we allocate two consecutive GOT slots
2699 for module index and module offset, the only difference
2700 with GD is the module offset should be initialized to
2701 zero without any outstanding runtime relocation. */
2703 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2704 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2710 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2711 {"tlsldm_lo12_nc", 0,
2715 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2719 /* 12 bit offset into the module TLS base address. */
2724 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2725 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2728 /* Same as dtprel_lo12, no overflow check. */
2729 {"dtprel_lo12_nc", 0,
2733 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2734 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2737 /* bits[23:12] of offset to the module TLS base address. */
2742 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2746 /* bits[15:0] of offset to the module TLS base address. */
2750 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2755 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2759 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2764 /* bits[31:16] of offset to the module TLS base address. */
2768 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2773 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2777 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2782 /* bits[47:32] of offset to the module TLS base address. */
2786 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2791 /* Lower 16 bit offset into GOT entry for a symbol */
2792 {"tlsdesc_off_g0_nc", 0,
2795 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2800 /* Higher 16 bit offset into GOT entry for a symbol */
2801 {"tlsdesc_off_g1", 0,
2804 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2809 /* Get to the page containing GOT TLS entry for a symbol */
2812 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2816 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2818 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2819 {"gottprel_lo12", 0,
2824 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2827 /* Get tp offset for a symbol. */
2832 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2836 /* Get tp offset for a symbol. */
2841 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2845 /* Get tp offset for a symbol. */
2850 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2854 /* Get tp offset for a symbol. */
2855 {"tprel_lo12_nc", 0,
2859 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2863 /* Most significant bits 32-47 of address/value: MOVZ. */
2867 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2872 /* Most significant bits 16-31 of address/value: MOVZ. */
2876 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2881 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2885 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2890 /* Most significant bits 0-15 of address/value: MOVZ. */
2894 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2899 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2903 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2908 /* 15bit offset from got entry to base address of GOT table. */
2914 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2917 /* 14bit offset from got entry to base address of GOT table. */
2923 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2927 /* Given the address of a pointer pointing to the textual name of a
2928 relocation as may appear in assembler source, attempt to find its
2929 details in reloc_table. The pointer will be updated to the character
2930 after the trailing colon. On failure, NULL will be returned;
2931 otherwise return the reloc_table_entry. */
2933 static struct reloc_table_entry *
2934 find_reloc_table_entry (char **str)
2937 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2939 int length = strlen (reloc_table[i].name);
2941 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2942 && (*str)[length] == ':')
2944 *str += (length + 1);
2945 return &reloc_table[i];
2952 /* Mode argument to parse_shift and parser_shifter_operand. */
2953 enum parse_shift_mode
2955 SHIFTED_NONE, /* no shifter allowed */
2956 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2958 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2960 SHIFTED_LSL, /* bare "lsl #n" */
2961 SHIFTED_MUL, /* bare "mul #n" */
2962 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2963 SHIFTED_MUL_VL, /* "mul vl" */
2964 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2967 /* Parse a <shift> operator on an AArch64 data processing instruction.
2968 Return TRUE on success; otherwise return FALSE. */
2970 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2972 const struct aarch64_name_value_pair *shift_op;
2973 enum aarch64_modifier_kind kind;
2979 for (p = *str; ISALPHA (*p); p++)
2984 set_syntax_error (_("shift expression expected"));
2988 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2990 if (shift_op == NULL)
2992 set_syntax_error (_("shift operator expected"));
2996 kind = aarch64_get_operand_modifier (shift_op);
2998 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3000 set_syntax_error (_("invalid use of 'MSL'"));
3004 if (kind == AARCH64_MOD_MUL
3005 && mode != SHIFTED_MUL
3006 && mode != SHIFTED_MUL_VL)
3008 set_syntax_error (_("invalid use of 'MUL'"));
3014 case SHIFTED_LOGIC_IMM:
3015 if (aarch64_extend_operator_p (kind))
3017 set_syntax_error (_("extending shift is not permitted"));
3022 case SHIFTED_ARITH_IMM:
3023 if (kind == AARCH64_MOD_ROR)
3025 set_syntax_error (_("'ROR' shift is not permitted"));
3031 if (kind != AARCH64_MOD_LSL)
3033 set_syntax_error (_("only 'LSL' shift is permitted"));
3039 if (kind != AARCH64_MOD_MUL)
3041 set_syntax_error (_("only 'MUL' is permitted"));
3046 case SHIFTED_MUL_VL:
3047 /* "MUL VL" consists of two separate tokens. Require the first
3048 token to be "MUL" and look for a following "VL". */
3049 if (kind == AARCH64_MOD_MUL)
3051 skip_whitespace (p);
3052 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3055 kind = AARCH64_MOD_MUL_VL;
3059 set_syntax_error (_("only 'MUL VL' is permitted"));
3062 case SHIFTED_REG_OFFSET:
3063 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3064 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3066 set_fatal_syntax_error
3067 (_("invalid shift for the register offset addressing mode"));
3072 case SHIFTED_LSL_MSL:
3073 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3075 set_syntax_error (_("invalid shift operator"));
3084 /* Whitespace can appear here if the next thing is a bare digit. */
3085 skip_whitespace (p);
3087 /* Parse shift amount. */
3089 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3090 exp.X_op = O_absent;
3093 if (is_immediate_prefix (*p))
3098 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3100 if (kind == AARCH64_MOD_MUL_VL)
3101 /* For consistency, give MUL VL the same shift amount as an implicit
3103 operand->shifter.amount = 1;
3104 else if (exp.X_op == O_absent)
3106 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
3108 set_syntax_error (_("missing shift amount"));
3111 operand->shifter.amount = 0;
3113 else if (exp.X_op != O_constant)
3115 set_syntax_error (_("constant shift amount required"));
3118 /* For parsing purposes, MUL #n has no inherent range. The range
3119 depends on the operand and will be checked by operand-specific
3121 else if (kind != AARCH64_MOD_MUL
3122 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3124 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3129 operand->shifter.amount = exp.X_add_number;
3130 operand->shifter.amount_present = 1;
3133 operand->shifter.operator_present = 1;
3134 operand->shifter.kind = kind;
3140 /* Parse a <shifter_operand> for a data processing instruction:
3143 #<immediate>, LSL #imm
3145 Validation of immediate operands is deferred to md_apply_fix.
3147 Return TRUE on success; otherwise return FALSE. */
3150 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3151 enum parse_shift_mode mode)
3155 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3160 /* Accept an immediate expression. */
3161 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3164 /* Accept optional LSL for arithmetic immediate values. */
3165 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3166 if (! parse_shift (&p, operand, SHIFTED_LSL))
3169 /* Not accept any shifter for logical immediate values. */
3170 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3171 && parse_shift (&p, operand, mode))
3173 set_syntax_error (_("unexpected shift operator"));
3181 /* Parse a <shifter_operand> for a data processing instruction:
3186 #<immediate>, LSL #imm
3188 where <shift> is handled by parse_shift above, and the last two
3189 cases are handled by the function above.
3191 Validation of immediate operands is deferred to md_apply_fix.
3193 Return TRUE on success; otherwise return FALSE. */
3196 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3197 enum parse_shift_mode mode)
3199 const reg_entry *reg;
3200 aarch64_opnd_qualifier_t qualifier;
3201 enum aarch64_operand_class opd_class
3202 = aarch64_get_operand_class (operand->type);
3204 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3207 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3209 set_syntax_error (_("unexpected register in the immediate operand"));
3213 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3215 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3219 operand->reg.regno = reg->number;
3220 operand->qualifier = qualifier;
3222 /* Accept optional shift operation on register. */
3223 if (! skip_past_comma (str))
3226 if (! parse_shift (str, operand, mode))
3231 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3234 (_("integer register expected in the extended/shifted operand "
3239 /* We have a shifted immediate variable. */
3240 return parse_shifter_operand_imm (str, operand, mode);
3243 /* Return TRUE on success; return FALSE otherwise. */
3246 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3247 enum parse_shift_mode mode)
3251 /* Determine if we have the sequence of characters #: or just :
3252 coming next. If we do, then we check for a :rello: relocation
3253 modifier. If we don't, punt the whole lot to
3254 parse_shifter_operand. */
3256 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3258 struct reloc_table_entry *entry;
3266 /* Try to parse a relocation. Anything else is an error. */
3267 if (!(entry = find_reloc_table_entry (str)))
3269 set_syntax_error (_("unknown relocation modifier"));
3273 if (entry->add_type == 0)
3276 (_("this relocation modifier is not allowed on this instruction"));
3280 /* Save str before we decompose it. */
3283 /* Next, we parse the expression. */
3284 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3287 /* Record the relocation type (use the ADD variant here). */
3288 inst.reloc.type = entry->add_type;
3289 inst.reloc.pc_rel = entry->pc_rel;
3291 /* If str is empty, we've reached the end, stop here. */
3295 /* Otherwise, we have a shifted reloc modifier, so rewind to
3296 recover the variable name and continue parsing for the shifter. */
3298 return parse_shifter_operand_imm (str, operand, mode);
3301 return parse_shifter_operand (str, operand, mode);
3304 /* Parse all forms of an address expression. Information is written
3305 to *OPERAND and/or inst.reloc.
3307 The A64 instruction set has the following addressing modes:
3310 [base] // in SIMD ld/st structure
3311 [base{,#0}] // in ld/st exclusive
3313 [base,Xm{,LSL #imm}]
3314 [base,Xm,SXTX {#imm}]
3315 [base,Wm,(S|U)XTW {#imm}]
3320 [base],Xm // in SIMD ld/st structure
3321 PC-relative (literal)
3325 [base,Zm.D{,LSL #imm}]
3326 [base,Zm.S,(S|U)XTW {#imm}]
3327 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3330 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3331 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3332 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3334 (As a convenience, the notation "=immediate" is permitted in conjunction
3335 with the pc-relative literal load instructions to automatically place an
3336 immediate value or symbolic address in a nearby literal pool and generate
3337 a hidden label which references it.)
3339 Upon a successful parsing, the address structure in *OPERAND will be
3340 filled in the following way:
3342 .base_regno = <base>
3343 .offset.is_reg // 1 if the offset is a register
3345 .offset.regno = <Rm>
3347 For different addressing modes defined in the A64 ISA:
3350 .pcrel=0; .preind=1; .postind=0; .writeback=0
3352 .pcrel=0; .preind=1; .postind=0; .writeback=1
3354 .pcrel=0; .preind=0; .postind=1; .writeback=1
3355 PC-relative (literal)
3356 .pcrel=1; .preind=1; .postind=0; .writeback=0
3358 The shift/extension information, if any, will be stored in .shifter.
3359 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3360 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3361 corresponding register.
3363 BASE_TYPE says which types of base register should be accepted and
3364 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3365 is the type of shifter that is allowed for immediate offsets,
3366 or SHIFTED_NONE if none.
3368 In all other respects, it is the caller's responsibility to check
3369 for addressing modes not supported by the instruction, and to set
3373 parse_address_main (char **str, aarch64_opnd_info *operand,
3374 aarch64_opnd_qualifier_t *base_qualifier,
3375 aarch64_opnd_qualifier_t *offset_qualifier,
3376 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3377 enum parse_shift_mode imm_shift_mode)
3380 const reg_entry *reg;
3381 expressionS *exp = &inst.reloc.exp;
3383 *base_qualifier = AARCH64_OPND_QLF_NIL;
3384 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3385 if (! skip_past_char (&p, '['))
3387 /* =immediate or label. */
3388 operand->addr.pcrel = 1;
3389 operand->addr.preind = 1;
3391 /* #:<reloc_op>:<symbol> */
3392 skip_past_char (&p, '#');
3393 if (skip_past_char (&p, ':'))
3395 bfd_reloc_code_real_type ty;
3396 struct reloc_table_entry *entry;
3398 /* Try to parse a relocation modifier. Anything else is
3400 entry = find_reloc_table_entry (&p);
3403 set_syntax_error (_("unknown relocation modifier"));
3407 switch (operand->type)
3409 case AARCH64_OPND_ADDR_PCREL21:
3411 ty = entry->adr_type;
3415 ty = entry->ld_literal_type;
3422 (_("this relocation modifier is not allowed on this "
3428 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3430 set_syntax_error (_("invalid relocation expression"));
3434 /* #:<reloc_op>:<expr> */
3435 /* Record the relocation type. */
3436 inst.reloc.type = ty;
3437 inst.reloc.pc_rel = entry->pc_rel;
3442 if (skip_past_char (&p, '='))
3443 /* =immediate; need to generate the literal in the literal pool. */
3444 inst.gen_lit_pool = 1;
3446 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3448 set_syntax_error (_("invalid address"));
3459 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3460 if (!reg || !aarch64_check_reg_type (reg, base_type))
3462 set_syntax_error (_(get_reg_expected_msg (base_type)));
3465 operand->addr.base_regno = reg->number;
3468 if (skip_past_comma (&p))
3471 operand->addr.preind = 1;
3473 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3476 if (!aarch64_check_reg_type (reg, offset_type))
3478 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3483 operand->addr.offset.regno = reg->number;
3484 operand->addr.offset.is_reg = 1;
3485 /* Shifted index. */
3486 if (skip_past_comma (&p))
3489 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3490 /* Use the diagnostics set in parse_shift, so not set new
3491 error message here. */
3495 [base,Xm{,LSL #imm}]
3496 [base,Xm,SXTX {#imm}]
3497 [base,Wm,(S|U)XTW {#imm}] */
3498 if (operand->shifter.kind == AARCH64_MOD_NONE
3499 || operand->shifter.kind == AARCH64_MOD_LSL
3500 || operand->shifter.kind == AARCH64_MOD_SXTX)
3502 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3504 set_syntax_error (_("invalid use of 32-bit register offset"));
3507 if (aarch64_get_qualifier_esize (*base_qualifier)
3508 != aarch64_get_qualifier_esize (*offset_qualifier))
3510 set_syntax_error (_("offset has different size from base"));
3514 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3516 set_syntax_error (_("invalid use of 64-bit register offset"));
3522 /* [Xn,#:<reloc_op>:<symbol> */
3523 skip_past_char (&p, '#');
3524 if (skip_past_char (&p, ':'))
3526 struct reloc_table_entry *entry;
3528 /* Try to parse a relocation modifier. Anything else is
3530 if (!(entry = find_reloc_table_entry (&p)))
3532 set_syntax_error (_("unknown relocation modifier"));
3536 if (entry->ldst_type == 0)
3539 (_("this relocation modifier is not allowed on this "
3544 /* [Xn,#:<reloc_op>: */
3545 /* We now have the group relocation table entry corresponding to
3546 the name in the assembler source. Next, we parse the
3548 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3550 set_syntax_error (_("invalid relocation expression"));
3554 /* [Xn,#:<reloc_op>:<expr> */
3555 /* Record the load/store relocation type. */
3556 inst.reloc.type = entry->ldst_type;
3557 inst.reloc.pc_rel = entry->pc_rel;
3561 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3563 set_syntax_error (_("invalid expression in the address"));
3567 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3568 /* [Xn,<expr>,<shifter> */
3569 if (! parse_shift (&p, operand, imm_shift_mode))
3575 if (! skip_past_char (&p, ']'))
3577 set_syntax_error (_("']' expected"));
3581 if (skip_past_char (&p, '!'))
3583 if (operand->addr.preind && operand->addr.offset.is_reg)
3585 set_syntax_error (_("register offset not allowed in pre-indexed "
3586 "addressing mode"));
3590 operand->addr.writeback = 1;
3592 else if (skip_past_comma (&p))
3595 operand->addr.postind = 1;
3596 operand->addr.writeback = 1;
3598 if (operand->addr.preind)
3600 set_syntax_error (_("cannot combine pre- and post-indexing"));
3604 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3608 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3610 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3614 operand->addr.offset.regno = reg->number;
3615 operand->addr.offset.is_reg = 1;
3617 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3620 set_syntax_error (_("invalid expression in the address"));
3625 /* If at this point neither .preind nor .postind is set, we have a
3626 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3627 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3629 if (operand->addr.writeback)
3632 set_syntax_error (_("missing offset in the pre-indexed address"));
3635 operand->addr.preind = 1;
3636 inst.reloc.exp.X_op = O_constant;
3637 inst.reloc.exp.X_add_number = 0;
3644 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3647 parse_address (char **str, aarch64_opnd_info *operand)
3649 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3650 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3651 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3654 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3655 The arguments have the same meaning as for parse_address_main.
3656 Return TRUE on success. */
3658 parse_sve_address (char **str, aarch64_opnd_info *operand,
3659 aarch64_opnd_qualifier_t *base_qualifier,
3660 aarch64_opnd_qualifier_t *offset_qualifier)
3662 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3663 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3667 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3668 Return TRUE on success; otherwise return FALSE. */
3670 parse_half (char **str, int *internal_fixup_p)
3674 skip_past_char (&p, '#');
3676 gas_assert (internal_fixup_p);
3677 *internal_fixup_p = 0;
3681 struct reloc_table_entry *entry;
3683 /* Try to parse a relocation. Anything else is an error. */
3685 if (!(entry = find_reloc_table_entry (&p)))
3687 set_syntax_error (_("unknown relocation modifier"));
3691 if (entry->movw_type == 0)
3694 (_("this relocation modifier is not allowed on this instruction"));
3698 inst.reloc.type = entry->movw_type;
3701 *internal_fixup_p = 1;
3703 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3710 /* Parse an operand for an ADRP instruction:
3712 Return TRUE on success; otherwise return FALSE. */
3715 parse_adrp (char **str)
3722 struct reloc_table_entry *entry;
3724 /* Try to parse a relocation. Anything else is an error. */
3726 if (!(entry = find_reloc_table_entry (&p)))
3728 set_syntax_error (_("unknown relocation modifier"));
3732 if (entry->adrp_type == 0)
3735 (_("this relocation modifier is not allowed on this instruction"));
3739 inst.reloc.type = entry->adrp_type;
3742 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3744 inst.reloc.pc_rel = 1;
3746 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3753 /* Miscellaneous. */
3755 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3756 of SIZE tokens in which index I gives the token for field value I,
3757 or is null if field value I is invalid. REG_TYPE says which register
3758 names should be treated as registers rather than as symbolic immediates.
3760 Return true on success, moving *STR past the operand and storing the
3761 field value in *VAL. */
3764 parse_enum_string (char **str, int64_t *val, const char *const *array,
3765 size_t size, aarch64_reg_type reg_type)
3771 /* Match C-like tokens. */
3773 while (ISALNUM (*q))
3776 for (i = 0; i < size; ++i)
3778 && strncasecmp (array[i], p, q - p) == 0
3779 && array[i][q - p] == 0)
3786 if (!parse_immediate_expression (&p, &exp, reg_type))
3789 if (exp.X_op == O_constant
3790 && (uint64_t) exp.X_add_number < size)
3792 *val = exp.X_add_number;
3797 /* Use the default error for this operand. */
3801 /* Parse an option for a preload instruction. Returns the encoding for the
3802 option, or PARSE_FAIL. */
3805 parse_pldop (char **str)
3808 const struct aarch64_name_value_pair *o;
3811 while (ISALNUM (*q))
3814 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3822 /* Parse an option for a barrier instruction. Returns the encoding for the
3823 option, or PARSE_FAIL. */
3826 parse_barrier (char **str)
3829 const asm_barrier_opt *o;
3832 while (ISALPHA (*q))
3835 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3843 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3844 return 0 if successful. Otherwise return PARSE_FAIL. */
3847 parse_barrier_psb (char **str,
3848 const struct aarch64_name_value_pair ** hint_opt)
3851 const struct aarch64_name_value_pair *o;
3854 while (ISALPHA (*q))
3857 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3860 set_fatal_syntax_error
3861 ( _("unknown or missing option to PSB"));
3865 if (o->value != 0x11)
3867 /* PSB only accepts option name 'CSYNC'. */
3869 (_("the specified option is not accepted for PSB"));
3878 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3879 Returns the encoding for the option, or PARSE_FAIL.
3881 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3882 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3884 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3885 field, otherwise as a system register.
3889 parse_sys_reg (char **str, struct hash_control *sys_regs,
3890 int imple_defined_p, int pstatefield_p)
3894 const aarch64_sys_reg *o;
3898 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3900 *p++ = TOLOWER (*q);
3902 /* Assert that BUF be large enough. */
3903 gas_assert (p - buf == q - *str);
3905 o = hash_find (sys_regs, buf);
3908 if (!imple_defined_p)
3912 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3913 unsigned int op0, op1, cn, cm, op2;
3915 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3918 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3920 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3925 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3926 as_bad (_("selected processor does not support PSTATE field "
3928 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3929 as_bad (_("selected processor does not support system register "
3931 if (aarch64_sys_reg_deprecated_p (o))
3932 as_warn (_("system register name '%s' is deprecated and may be "
3933 "removed in a future release"), buf);
3941 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3942 for the option, or NULL. */
3944 static const aarch64_sys_ins_reg *
3945 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3949 const aarch64_sys_ins_reg *o;
3952 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3954 *p++ = TOLOWER (*q);
3957 o = hash_find (sys_ins_regs, buf);
3961 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3962 as_bad (_("selected processor does not support system register "
3969 #define po_char_or_fail(chr) do { \
3970 if (! skip_past_char (&str, chr)) \
3974 #define po_reg_or_fail(regtype) do { \
3975 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3976 if (val == PARSE_FAIL) \
3978 set_default_error (); \
3983 #define po_int_reg_or_fail(reg_type) do { \
3984 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
3985 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
3987 set_default_error (); \
3990 info->reg.regno = reg->number; \
3991 info->qualifier = qualifier; \
3994 #define po_imm_nc_or_fail() do { \
3995 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3999 #define po_imm_or_fail(min, max) do { \
4000 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4002 if (val < min || val > max) \
4004 set_fatal_syntax_error (_("immediate value out of range "\
4005 #min " to "#max)); \
4010 #define po_enum_or_fail(array) do { \
4011 if (!parse_enum_string (&str, &val, array, \
4012 ARRAY_SIZE (array), imm_reg_type)) \
4016 #define po_misc_or_fail(expr) do { \
4021 /* encode the 12-bit imm field of Add/sub immediate */
4022 static inline uint32_t
4023 encode_addsub_imm (uint32_t imm)
4028 /* encode the shift amount field of Add/sub immediate */
4029 static inline uint32_t
4030 encode_addsub_imm_shift_amount (uint32_t cnt)
4036 /* encode the imm field of Adr instruction */
4037 static inline uint32_t
4038 encode_adr_imm (uint32_t imm)
4040 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4041 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4044 /* encode the immediate field of Move wide immediate */
4045 static inline uint32_t
4046 encode_movw_imm (uint32_t imm)
4051 /* encode the 26-bit offset of unconditional branch */
4052 static inline uint32_t
4053 encode_branch_ofs_26 (uint32_t ofs)
4055 return ofs & ((1 << 26) - 1);
4058 /* encode the 19-bit offset of conditional branch and compare & branch */
4059 static inline uint32_t
4060 encode_cond_branch_ofs_19 (uint32_t ofs)
4062 return (ofs & ((1 << 19) - 1)) << 5;
4065 /* encode the 19-bit offset of ld literal */
4066 static inline uint32_t
4067 encode_ld_lit_ofs_19 (uint32_t ofs)
4069 return (ofs & ((1 << 19) - 1)) << 5;
4072 /* Encode the 14-bit offset of test & branch. */
4073 static inline uint32_t
4074 encode_tst_branch_ofs_14 (uint32_t ofs)
4076 return (ofs & ((1 << 14) - 1)) << 5;
4079 /* Encode the 16-bit imm field of svc/hvc/smc. */
4080 static inline uint32_t
4081 encode_svc_imm (uint32_t imm)
4086 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4087 static inline uint32_t
4088 reencode_addsub_switch_add_sub (uint32_t opcode)
4090 return opcode ^ (1 << 30);
4093 static inline uint32_t
4094 reencode_movzn_to_movz (uint32_t opcode)
4096 return opcode | (1 << 30);
4099 static inline uint32_t
4100 reencode_movzn_to_movn (uint32_t opcode)
4102 return opcode & ~(1 << 30);
4105 /* Overall per-instruction processing. */
4107 /* We need to be able to fix up arbitrary expressions in some statements.
4108 This is so that we can handle symbols that are an arbitrary distance from
4109 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4110 which returns part of an address in a form which will be valid for
4111 a data instruction. We do this by pushing the expression into a symbol
4112 in the expr_section, and creating a fix for that. */
4115 fix_new_aarch64 (fragS * frag,
4117 short int size, expressionS * exp, int pc_rel, int reloc)
4127 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4131 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4138 /* Diagnostics on operands errors. */
4140 /* By default, output verbose error message.
4141 Disable the verbose error message by -mno-verbose-error. */
4142 static int verbose_error_p = 1;
4144 #ifdef DEBUG_AARCH64
4145 /* N.B. this is only for the purpose of debugging. */
4146 const char* operand_mismatch_kind_names[] =
4149 "AARCH64_OPDE_RECOVERABLE",
4150 "AARCH64_OPDE_SYNTAX_ERROR",
4151 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4152 "AARCH64_OPDE_INVALID_VARIANT",
4153 "AARCH64_OPDE_OUT_OF_RANGE",
4154 "AARCH64_OPDE_UNALIGNED",
4155 "AARCH64_OPDE_REG_LIST",
4156 "AARCH64_OPDE_OTHER_ERROR",
4158 #endif /* DEBUG_AARCH64 */
4160 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4162 When multiple errors of different kinds are found in the same assembly
4163 line, only the error of the highest severity will be picked up for
4164 issuing the diagnostics. */
4166 static inline bfd_boolean
4167 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4168 enum aarch64_operand_error_kind rhs)
4170 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4171 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4172 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4173 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4174 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4175 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4176 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4177 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4181 /* Helper routine to get the mnemonic name from the assembly instruction
4182 line; should only be called for the diagnosis purpose, as there is
4183 string copy operation involved, which may affect the runtime
4184 performance if used in elsewhere. */
4187 get_mnemonic_name (const char *str)
4189 static char mnemonic[32];
4192 /* Get the first 15 bytes and assume that the full name is included. */
4193 strncpy (mnemonic, str, 31);
4194 mnemonic[31] = '\0';
4196 /* Scan up to the end of the mnemonic, which must end in white space,
4197 '.', or end of string. */
4198 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4203 /* Append '...' to the truncated long name. */
4204 if (ptr - mnemonic == 31)
4205 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4211 reset_aarch64_instruction (aarch64_instruction *instruction)
4213 memset (instruction, '\0', sizeof (aarch64_instruction));
4214 instruction->reloc.type = BFD_RELOC_UNUSED;
4217 /* Data structures storing one user error in the assembly code related to
4220 struct operand_error_record
4222 const aarch64_opcode *opcode;
4223 aarch64_operand_error detail;
4224 struct operand_error_record *next;
4227 typedef struct operand_error_record operand_error_record;
4229 struct operand_errors
4231 operand_error_record *head;
4232 operand_error_record *tail;
4235 typedef struct operand_errors operand_errors;
4237 /* Top-level data structure reporting user errors for the current line of
4239 The way md_assemble works is that all opcodes sharing the same mnemonic
4240 name are iterated to find a match to the assembly line. In this data
4241 structure, each of the such opcodes will have one operand_error_record
4242 allocated and inserted. In other words, excessive errors related with
4243 a single opcode are disregarded. */
4244 operand_errors operand_error_report;
4246 /* Free record nodes. */
4247 static operand_error_record *free_opnd_error_record_nodes = NULL;
4249 /* Initialize the data structure that stores the operand mismatch
4250 information on assembling one line of the assembly code. */
4252 init_operand_error_report (void)
4254 if (operand_error_report.head != NULL)
4256 gas_assert (operand_error_report.tail != NULL);
4257 operand_error_report.tail->next = free_opnd_error_record_nodes;
4258 free_opnd_error_record_nodes = operand_error_report.head;
4259 operand_error_report.head = NULL;
4260 operand_error_report.tail = NULL;
4263 gas_assert (operand_error_report.tail == NULL);
4266 /* Return TRUE if some operand error has been recorded during the
4267 parsing of the current assembly line using the opcode *OPCODE;
4268 otherwise return FALSE. */
4269 static inline bfd_boolean
4270 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4272 operand_error_record *record = operand_error_report.head;
4273 return record && record->opcode == opcode;
4276 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4277 OPCODE field is initialized with OPCODE.
4278 N.B. only one record for each opcode, i.e. the maximum of one error is
4279 recorded for each instruction template. */
4282 add_operand_error_record (const operand_error_record* new_record)
4284 const aarch64_opcode *opcode = new_record->opcode;
4285 operand_error_record* record = operand_error_report.head;
4287 /* The record may have been created for this opcode. If not, we need
4289 if (! opcode_has_operand_error_p (opcode))
4291 /* Get one empty record. */
4292 if (free_opnd_error_record_nodes == NULL)
4294 record = XNEW (operand_error_record);
4298 record = free_opnd_error_record_nodes;
4299 free_opnd_error_record_nodes = record->next;
4301 record->opcode = opcode;
4302 /* Insert at the head. */
4303 record->next = operand_error_report.head;
4304 operand_error_report.head = record;
4305 if (operand_error_report.tail == NULL)
4306 operand_error_report.tail = record;
4308 else if (record->detail.kind != AARCH64_OPDE_NIL
4309 && record->detail.index <= new_record->detail.index
4310 && operand_error_higher_severity_p (record->detail.kind,
4311 new_record->detail.kind))
4313 /* In the case of multiple errors found on operands related with a
4314 single opcode, only record the error of the leftmost operand and
4315 only if the error is of higher severity. */
4316 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4317 " the existing error %s on operand %d",
4318 operand_mismatch_kind_names[new_record->detail.kind],
4319 new_record->detail.index,
4320 operand_mismatch_kind_names[record->detail.kind],
4321 record->detail.index);
4325 record->detail = new_record->detail;
4329 record_operand_error_info (const aarch64_opcode *opcode,
4330 aarch64_operand_error *error_info)
4332 operand_error_record record;
4333 record.opcode = opcode;
4334 record.detail = *error_info;
4335 add_operand_error_record (&record);
4338 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4339 error message *ERROR, for operand IDX (count from 0). */
4342 record_operand_error (const aarch64_opcode *opcode, int idx,
4343 enum aarch64_operand_error_kind kind,
4346 aarch64_operand_error info;
4347 memset(&info, 0, sizeof (info));
4351 record_operand_error_info (opcode, &info);
4355 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4356 enum aarch64_operand_error_kind kind,
4357 const char* error, const int *extra_data)
4359 aarch64_operand_error info;
4363 info.data[0] = extra_data[0];
4364 info.data[1] = extra_data[1];
4365 info.data[2] = extra_data[2];
4366 record_operand_error_info (opcode, &info);
4370 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4371 const char* error, int lower_bound,
4374 int data[3] = {lower_bound, upper_bound, 0};
4375 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4379 /* Remove the operand error record for *OPCODE. */
4380 static void ATTRIBUTE_UNUSED
4381 remove_operand_error_record (const aarch64_opcode *opcode)
4383 if (opcode_has_operand_error_p (opcode))
4385 operand_error_record* record = operand_error_report.head;
4386 gas_assert (record != NULL && operand_error_report.tail != NULL);
4387 operand_error_report.head = record->next;
4388 record->next = free_opnd_error_record_nodes;
4389 free_opnd_error_record_nodes = record;
4390 if (operand_error_report.head == NULL)
4392 gas_assert (operand_error_report.tail == record);
4393 operand_error_report.tail = NULL;
4398 /* Given the instruction in *INSTR, return the index of the best matched
4399 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4401 Return -1 if there is no qualifier sequence; return the first match
4402 if there is multiple matches found. */
4405 find_best_match (const aarch64_inst *instr,
4406 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4408 int i, num_opnds, max_num_matched, idx;
4410 num_opnds = aarch64_num_of_operands (instr->opcode);
4413 DEBUG_TRACE ("no operand");
4417 max_num_matched = 0;
4420 /* For each pattern. */
4421 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4424 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4426 /* Most opcodes has much fewer patterns in the list. */
4427 if (empty_qualifier_sequence_p (qualifiers))
4429 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4433 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4434 if (*qualifiers == instr->operands[j].qualifier)
4437 if (num_matched > max_num_matched)
4439 max_num_matched = num_matched;
4444 DEBUG_TRACE ("return with %d", idx);
4448 /* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
4449 corresponding operands in *INSTR. */
4452 assign_qualifier_sequence (aarch64_inst *instr,
4453 const aarch64_opnd_qualifier_t *qualifiers)
4456 int num_opnds = aarch64_num_of_operands (instr->opcode);
4457 gas_assert (num_opnds);
4458 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4459 instr->operands[i].qualifier = *qualifiers;
4462 /* Print operands for the diagnosis purpose. */
4465 print_operands (char *buf, const aarch64_opcode *opcode,
4466 const aarch64_opnd_info *opnds)
4470 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4474 /* We regard the opcode operand info more, however we also look into
4475 the inst->operands to support the disassembling of the optional
4477 The two operand code should be the same in all cases, apart from
4478 when the operand can be optional. */
4479 if (opcode->operands[i] == AARCH64_OPND_NIL
4480 || opnds[i].type == AARCH64_OPND_NIL)
4483 /* Generate the operand string in STR. */
4484 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
4488 strcat (buf, i == 0 ? " " : ", ");
4490 /* Append the operand string. */
4495 /* Send to stderr a string as information. */
4498 output_info (const char *format, ...)
4504 file = as_where (&line);
4508 fprintf (stderr, "%s:%u: ", file, line);
4510 fprintf (stderr, "%s: ", file);
4512 fprintf (stderr, _("Info: "));
4513 va_start (args, format);
4514 vfprintf (stderr, format, args);
4516 (void) putc ('\n', stderr);
4519 /* Output one operand error record. */
4522 output_operand_error_record (const operand_error_record *record, char *str)
4524 const aarch64_operand_error *detail = &record->detail;
4525 int idx = detail->index;
4526 const aarch64_opcode *opcode = record->opcode;
4527 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4528 : AARCH64_OPND_NIL);
4530 switch (detail->kind)
4532 case AARCH64_OPDE_NIL:
4536 case AARCH64_OPDE_SYNTAX_ERROR:
4537 case AARCH64_OPDE_RECOVERABLE:
4538 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4539 case AARCH64_OPDE_OTHER_ERROR:
4540 /* Use the prepared error message if there is, otherwise use the
4541 operand description string to describe the error. */
4542 if (detail->error != NULL)
4545 as_bad (_("%s -- `%s'"), detail->error, str);
4547 as_bad (_("%s at operand %d -- `%s'"),
4548 detail->error, idx + 1, str);
4552 gas_assert (idx >= 0);
4553 as_bad (_("operand %d must be %s -- `%s'"), idx + 1,
4554 aarch64_get_operand_desc (opd_code), str);
4558 case AARCH64_OPDE_INVALID_VARIANT:
4559 as_bad (_("operand mismatch -- `%s'"), str);
4560 if (verbose_error_p)
4562 /* We will try to correct the erroneous instruction and also provide
4563 more information e.g. all other valid variants.
4565 The string representation of the corrected instruction and other
4566 valid variants are generated by
4568 1) obtaining the intermediate representation of the erroneous
4570 2) manipulating the IR, e.g. replacing the operand qualifier;
4571 3) printing out the instruction by calling the printer functions
4572 shared with the disassembler.
4574 The limitation of this method is that the exact input assembly
4575 line cannot be accurately reproduced in some cases, for example an
4576 optional operand present in the actual assembly line will be
4577 omitted in the output; likewise for the optional syntax rules,
4578 e.g. the # before the immediate. Another limitation is that the
4579 assembly symbols and relocation operations in the assembly line
4580 currently cannot be printed out in the error report. Last but not
4581 least, when there is other error(s) co-exist with this error, the
4582 'corrected' instruction may be still incorrect, e.g. given
4583 'ldnp h0,h1,[x0,#6]!'
4584 this diagnosis will provide the version:
4585 'ldnp s0,s1,[x0,#6]!'
4586 which is still not right. */
4587 size_t len = strlen (get_mnemonic_name (str));
4591 aarch64_inst *inst_base = &inst.base;
4592 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4595 reset_aarch64_instruction (&inst);
4596 inst_base->opcode = opcode;
4598 /* Reset the error report so that there is no side effect on the
4599 following operand parsing. */
4600 init_operand_error_report ();
4603 result = parse_operands (str + len, opcode)
4604 && programmer_friendly_fixup (&inst);
4605 gas_assert (result);
4606 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4608 gas_assert (!result);
4610 /* Find the most matched qualifier sequence. */
4611 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4612 gas_assert (qlf_idx > -1);
4614 /* Assign the qualifiers. */
4615 assign_qualifier_sequence (inst_base,
4616 opcode->qualifiers_list[qlf_idx]);
4618 /* Print the hint. */
4619 output_info (_(" did you mean this?"));
4620 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4621 print_operands (buf, opcode, inst_base->operands);
4622 output_info (_(" %s"), buf);
4624 /* Print out other variant(s) if there is any. */
4626 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4627 output_info (_(" other valid variant(s):"));
4629 /* For each pattern. */
4630 qualifiers_list = opcode->qualifiers_list;
4631 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4633 /* Most opcodes has much fewer patterns in the list.
4634 First NIL qualifier indicates the end in the list. */
4635 if (empty_qualifier_sequence_p (*qualifiers_list))
4640 /* Mnemonics name. */
4641 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4643 /* Assign the qualifiers. */
4644 assign_qualifier_sequence (inst_base, *qualifiers_list);
4646 /* Print instruction. */
4647 print_operands (buf, opcode, inst_base->operands);
4649 output_info (_(" %s"), buf);
4655 case AARCH64_OPDE_UNTIED_OPERAND:
4656 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4657 detail->index + 1, str);
4660 case AARCH64_OPDE_OUT_OF_RANGE:
4661 if (detail->data[0] != detail->data[1])
4662 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4663 detail->error ? detail->error : _("immediate value"),
4664 detail->data[0], detail->data[1], idx + 1, str);
4666 as_bad (_("%s must be %d at operand %d -- `%s'"),
4667 detail->error ? detail->error : _("immediate value"),
4668 detail->data[0], idx + 1, str);
4671 case AARCH64_OPDE_REG_LIST:
4672 if (detail->data[0] == 1)
4673 as_bad (_("invalid number of registers in the list; "
4674 "only 1 register is expected at operand %d -- `%s'"),
4677 as_bad (_("invalid number of registers in the list; "
4678 "%d registers are expected at operand %d -- `%s'"),
4679 detail->data[0], idx + 1, str);
4682 case AARCH64_OPDE_UNALIGNED:
4683 as_bad (_("immediate value must be a multiple of "
4684 "%d at operand %d -- `%s'"),
4685 detail->data[0], idx + 1, str);
4694 /* Process and output the error message about the operand mismatching.
4696 When this function is called, the operand error information had
4697 been collected for an assembly line and there will be multiple
4698 errors in the case of multiple instruction templates; output the
4699 error message that most closely describes the problem. */
4702 output_operand_error_report (char *str)
4704 int largest_error_pos;
4705 const char *msg = NULL;
4706 enum aarch64_operand_error_kind kind;
4707 operand_error_record *curr;
4708 operand_error_record *head = operand_error_report.head;
4709 operand_error_record *record = NULL;
4711 /* No error to report. */
4715 gas_assert (head != NULL && operand_error_report.tail != NULL);
4717 /* Only one error. */
4718 if (head == operand_error_report.tail)
4720 DEBUG_TRACE ("single opcode entry with error kind: %s",
4721 operand_mismatch_kind_names[head->detail.kind]);
4722 output_operand_error_record (head, str);
4726 /* Find the error kind of the highest severity. */
4727 DEBUG_TRACE ("multiple opcode entries with error kind");
4728 kind = AARCH64_OPDE_NIL;
4729 for (curr = head; curr != NULL; curr = curr->next)
4731 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4732 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4733 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4734 kind = curr->detail.kind;
4736 gas_assert (kind != AARCH64_OPDE_NIL);
4738 /* Pick up one of errors of KIND to report. */
4739 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4740 for (curr = head; curr != NULL; curr = curr->next)
4742 if (curr->detail.kind != kind)
4744 /* If there are multiple errors, pick up the one with the highest
4745 mismatching operand index. In the case of multiple errors with
4746 the equally highest operand index, pick up the first one or the
4747 first one with non-NULL error message. */
4748 if (curr->detail.index > largest_error_pos
4749 || (curr->detail.index == largest_error_pos && msg == NULL
4750 && curr->detail.error != NULL))
4752 largest_error_pos = curr->detail.index;
4754 msg = record->detail.error;
4758 gas_assert (largest_error_pos != -2 && record != NULL);
4759 DEBUG_TRACE ("Pick up error kind %s to report",
4760 operand_mismatch_kind_names[record->detail.kind]);
4763 output_operand_error_record (record, str);
4766 /* Write an AARCH64 instruction to buf - always little-endian. */
4768 put_aarch64_insn (char *buf, uint32_t insn)
4770 unsigned char *where = (unsigned char *) buf;
4772 where[1] = insn >> 8;
4773 where[2] = insn >> 16;
4774 where[3] = insn >> 24;
4778 get_aarch64_insn (char *buf)
4780 unsigned char *where = (unsigned char *) buf;
4782 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4787 output_inst (struct aarch64_inst *new_inst)
4791 to = frag_more (INSN_SIZE);
4793 frag_now->tc_frag_data.recorded = 1;
4795 put_aarch64_insn (to, inst.base.value);
4797 if (inst.reloc.type != BFD_RELOC_UNUSED)
4799 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4800 INSN_SIZE, &inst.reloc.exp,
4803 DEBUG_TRACE ("Prepared relocation fix up");
4804 /* Don't check the addend value against the instruction size,
4805 that's the job of our code in md_apply_fix(). */
4806 fixp->fx_no_overflow = 1;
4807 if (new_inst != NULL)
4808 fixp->tc_fix_data.inst = new_inst;
4809 if (aarch64_gas_internal_fixup_p ())
4811 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4812 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4813 fixp->fx_addnumber = inst.reloc.flags;
4817 dwarf2_emit_insn (INSN_SIZE);
4820 /* Link together opcodes of the same name. */
4824 aarch64_opcode *opcode;
4825 struct templates *next;
4828 typedef struct templates templates;
4831 lookup_mnemonic (const char *start, int len)
4833 templates *templ = NULL;
4835 templ = hash_find_n (aarch64_ops_hsh, start, len);
4839 /* Subroutine of md_assemble, responsible for looking up the primary
4840 opcode from the mnemonic the user wrote. STR points to the
4841 beginning of the mnemonic. */
4844 opcode_lookup (char **str)
4846 char *end, *base, *dot;
4847 const aarch64_cond *cond;
4851 /* Scan up to the end of the mnemonic, which must end in white space,
4852 '.', or end of string. */
4854 for (base = end = *str; is_part_of_name(*end); end++)
4855 if (*end == '.' && !dot)
4858 if (end == base || dot == base)
4861 inst.cond = COND_ALWAYS;
4863 /* Handle a possible condition. */
4866 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
4869 inst.cond = cond->value;
4885 if (inst.cond == COND_ALWAYS)
4887 /* Look for unaffixed mnemonic. */
4888 return lookup_mnemonic (base, len);
4892 /* append ".c" to mnemonic if conditional */
4893 memcpy (condname, base, len);
4894 memcpy (condname + len, ".c", 2);
4897 return lookup_mnemonic (base, len);
4903 /* Internal helper routine converting a vector_type_el structure *VECTYPE
4904 to a corresponding operand qualifier. */
4906 static inline aarch64_opnd_qualifier_t
4907 vectype_to_qualifier (const struct vector_type_el *vectype)
4909 /* Element size in bytes indexed by vector_el_type. */
4910 const unsigned char ele_size[5]
4912 const unsigned int ele_base [5] =
4914 AARCH64_OPND_QLF_V_8B,
4915 AARCH64_OPND_QLF_V_2H,
4916 AARCH64_OPND_QLF_V_2S,
4917 AARCH64_OPND_QLF_V_1D,
4918 AARCH64_OPND_QLF_V_1Q
4921 if (!vectype->defined || vectype->type == NT_invtype)
4922 goto vectype_conversion_fail;
4924 if (vectype->type == NT_zero)
4925 return AARCH64_OPND_QLF_P_Z;
4926 if (vectype->type == NT_merge)
4927 return AARCH64_OPND_QLF_P_M;
4929 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4931 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
4932 /* Vector element register. */
4933 return AARCH64_OPND_QLF_S_B + vectype->type;
4936 /* Vector register. */
4937 int reg_size = ele_size[vectype->type] * vectype->width;
4940 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
4941 goto vectype_conversion_fail;
4943 /* The conversion is by calculating the offset from the base operand
4944 qualifier for the vector type. The operand qualifiers are regular
4945 enough that the offset can established by shifting the vector width by
4946 a vector-type dependent amount. */
4948 if (vectype->type == NT_b)
4950 else if (vectype->type == NT_h || vectype->type == NT_s)
4952 else if (vectype->type >= NT_d)
4957 offset = ele_base [vectype->type] + (vectype->width >> shift);
4958 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4959 && offset <= AARCH64_OPND_QLF_V_1Q);
4963 vectype_conversion_fail:
4964 first_error (_("bad vector arrangement type"));
4965 return AARCH64_OPND_QLF_NIL;
4968 /* Process an optional operand that is found omitted from the assembly line.
4969 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4970 instruction's opcode entry while IDX is the index of this omitted operand.
4974 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4975 int idx, aarch64_opnd_info *operand)
4977 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4978 gas_assert (optional_operand_p (opcode, idx));
4979 gas_assert (!operand->present);
4983 case AARCH64_OPND_Rd:
4984 case AARCH64_OPND_Rn:
4985 case AARCH64_OPND_Rm:
4986 case AARCH64_OPND_Rt:
4987 case AARCH64_OPND_Rt2:
4988 case AARCH64_OPND_Rs:
4989 case AARCH64_OPND_Ra:
4990 case AARCH64_OPND_Rt_SYS:
4991 case AARCH64_OPND_Rd_SP:
4992 case AARCH64_OPND_Rn_SP:
4993 case AARCH64_OPND_Rm_SP:
4994 case AARCH64_OPND_Fd:
4995 case AARCH64_OPND_Fn:
4996 case AARCH64_OPND_Fm:
4997 case AARCH64_OPND_Fa:
4998 case AARCH64_OPND_Ft:
4999 case AARCH64_OPND_Ft2:
5000 case AARCH64_OPND_Sd:
5001 case AARCH64_OPND_Sn:
5002 case AARCH64_OPND_Sm:
5003 case AARCH64_OPND_Va:
5004 case AARCH64_OPND_Vd:
5005 case AARCH64_OPND_Vn:
5006 case AARCH64_OPND_Vm:
5007 case AARCH64_OPND_VdD1:
5008 case AARCH64_OPND_VnD1:
5009 operand->reg.regno = default_value;
5012 case AARCH64_OPND_Ed:
5013 case AARCH64_OPND_En:
5014 case AARCH64_OPND_Em:
5015 case AARCH64_OPND_SM3_IMM2:
5016 operand->reglane.regno = default_value;
5019 case AARCH64_OPND_IDX:
5020 case AARCH64_OPND_BIT_NUM:
5021 case AARCH64_OPND_IMMR:
5022 case AARCH64_OPND_IMMS:
5023 case AARCH64_OPND_SHLL_IMM:
5024 case AARCH64_OPND_IMM_VLSL:
5025 case AARCH64_OPND_IMM_VLSR:
5026 case AARCH64_OPND_CCMP_IMM:
5027 case AARCH64_OPND_FBITS:
5028 case AARCH64_OPND_UIMM4:
5029 case AARCH64_OPND_UIMM3_OP1:
5030 case AARCH64_OPND_UIMM3_OP2:
5031 case AARCH64_OPND_IMM:
5032 case AARCH64_OPND_IMM_2:
5033 case AARCH64_OPND_WIDTH:
5034 case AARCH64_OPND_UIMM7:
5035 case AARCH64_OPND_NZCV:
5036 case AARCH64_OPND_SVE_PATTERN:
5037 case AARCH64_OPND_SVE_PRFOP:
5038 operand->imm.value = default_value;
5041 case AARCH64_OPND_SVE_PATTERN_SCALED:
5042 operand->imm.value = default_value;
5043 operand->shifter.kind = AARCH64_MOD_MUL;
5044 operand->shifter.amount = 1;
5047 case AARCH64_OPND_EXCEPTION:
5048 inst.reloc.type = BFD_RELOC_UNUSED;
5051 case AARCH64_OPND_BARRIER_ISB:
5052 operand->barrier = aarch64_barrier_options + default_value;
5059 /* Process the relocation type for move wide instructions.
5060 Return TRUE on success; otherwise return FALSE. */
5063 process_movw_reloc_info (void)
5068 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5070 if (inst.base.opcode->op == OP_MOVK)
5071 switch (inst.reloc.type)
5073 case BFD_RELOC_AARCH64_MOVW_G0_S:
5074 case BFD_RELOC_AARCH64_MOVW_G1_S:
5075 case BFD_RELOC_AARCH64_MOVW_G2_S:
5076 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5077 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5078 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5079 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5081 (_("the specified relocation type is not allowed for MOVK"));
5087 switch (inst.reloc.type)
5089 case BFD_RELOC_AARCH64_MOVW_G0:
5090 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5091 case BFD_RELOC_AARCH64_MOVW_G0_S:
5092 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5093 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5094 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5095 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5096 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5097 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5098 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5099 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5102 case BFD_RELOC_AARCH64_MOVW_G1:
5103 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5104 case BFD_RELOC_AARCH64_MOVW_G1_S:
5105 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5106 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5107 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5108 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5109 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5110 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5111 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5112 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5115 case BFD_RELOC_AARCH64_MOVW_G2:
5116 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5117 case BFD_RELOC_AARCH64_MOVW_G2_S:
5118 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5119 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5122 set_fatal_syntax_error
5123 (_("the specified relocation type is not allowed for 32-bit "
5129 case BFD_RELOC_AARCH64_MOVW_G3:
5132 set_fatal_syntax_error
5133 (_("the specified relocation type is not allowed for 32-bit "
5140 /* More cases should be added when more MOVW-related relocation types
5141 are supported in GAS. */
5142 gas_assert (aarch64_gas_internal_fixup_p ());
5143 /* The shift amount should have already been set by the parser. */
5146 inst.base.operands[1].shifter.amount = shift;
5150 /* A primitive log calculator. */
5152 static inline unsigned int
5153 get_logsz (unsigned int size)
5155 const unsigned char ls[16] =
5156 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5162 gas_assert (ls[size - 1] != (unsigned char)-1);
5163 return ls[size - 1];
5166 /* Determine and return the real reloc type code for an instruction
5167 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5169 static inline bfd_reloc_code_real_type
5170 ldst_lo12_determine_real_reloc_type (void)
5173 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5174 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5176 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
5178 BFD_RELOC_AARCH64_LDST8_LO12,
5179 BFD_RELOC_AARCH64_LDST16_LO12,
5180 BFD_RELOC_AARCH64_LDST32_LO12,
5181 BFD_RELOC_AARCH64_LDST64_LO12,
5182 BFD_RELOC_AARCH64_LDST128_LO12
5185 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5186 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5187 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5188 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5189 BFD_RELOC_AARCH64_NONE
5192 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5193 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5194 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5195 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5196 BFD_RELOC_AARCH64_NONE
5200 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5201 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5203 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
5204 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5206 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5208 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5210 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5212 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5213 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5214 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5215 gas_assert (logsz <= 3);
5217 gas_assert (logsz <= 4);
5219 /* In reloc.c, these pseudo relocation types should be defined in similar
5220 order as above reloc_ldst_lo12 array. Because the array index calculation
5221 below relies on this. */
5222 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5225 /* Check whether a register list REGINFO is valid. The registers must be
5226 numbered in increasing order (modulo 32), in increments of one or two.
5228 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5231 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5234 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5236 uint32_t i, nb_regs, prev_regno, incr;
5238 nb_regs = 1 + (reginfo & 0x3);
5240 prev_regno = reginfo & 0x1f;
5241 incr = accept_alternate ? 2 : 1;
5243 for (i = 1; i < nb_regs; ++i)
5245 uint32_t curr_regno;
5247 curr_regno = reginfo & 0x1f;
5248 if (curr_regno != ((prev_regno + incr) & 0x1f))
5250 prev_regno = curr_regno;
5256 /* Generic instruction operand parser. This does no encoding and no
5257 semantic validation; it merely squirrels values away in the inst
5258 structure. Returns TRUE or FALSE depending on whether the
5259 specified grammar matched. */
5262 parse_operands (char *str, const aarch64_opcode *opcode)
5265 char *backtrack_pos = 0;
5266 const enum aarch64_opnd *operands = opcode->operands;
5267 aarch64_reg_type imm_reg_type;
5270 skip_whitespace (str);
5272 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5273 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
5275 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5277 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5280 const reg_entry *reg;
5281 int comma_skipped_p = 0;
5282 aarch64_reg_type rtype;
5283 struct vector_type_el vectype;
5284 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5285 aarch64_opnd_info *info = &inst.base.operands[i];
5286 aarch64_reg_type reg_type;
5288 DEBUG_TRACE ("parse operand %d", i);
5290 /* Assign the operand code. */
5291 info->type = operands[i];
5293 if (optional_operand_p (opcode, i))
5295 /* Remember where we are in case we need to backtrack. */
5296 gas_assert (!backtrack_pos);
5297 backtrack_pos = str;
5300 /* Expect comma between operands; the backtrack mechanism will take
5301 care of cases of omitted optional operand. */
5302 if (i > 0 && ! skip_past_char (&str, ','))
5304 set_syntax_error (_("comma expected between operands"));
5308 comma_skipped_p = 1;
5310 switch (operands[i])
5312 case AARCH64_OPND_Rd:
5313 case AARCH64_OPND_Rn:
5314 case AARCH64_OPND_Rm:
5315 case AARCH64_OPND_Rt:
5316 case AARCH64_OPND_Rt2:
5317 case AARCH64_OPND_Rs:
5318 case AARCH64_OPND_Ra:
5319 case AARCH64_OPND_Rt_SYS:
5320 case AARCH64_OPND_PAIRREG:
5321 case AARCH64_OPND_SVE_Rm:
5322 po_int_reg_or_fail (REG_TYPE_R_Z);
5325 case AARCH64_OPND_Rd_SP:
5326 case AARCH64_OPND_Rn_SP:
5327 case AARCH64_OPND_SVE_Rn_SP:
5328 case AARCH64_OPND_Rm_SP:
5329 po_int_reg_or_fail (REG_TYPE_R_SP);
5332 case AARCH64_OPND_Rm_EXT:
5333 case AARCH64_OPND_Rm_SFT:
5334 po_misc_or_fail (parse_shifter_operand
5335 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5337 : SHIFTED_LOGIC_IMM)));
5338 if (!info->shifter.operator_present)
5340 /* Default to LSL if not present. Libopcodes prefers shifter
5341 kind to be explicit. */
5342 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5343 info->shifter.kind = AARCH64_MOD_LSL;
5344 /* For Rm_EXT, libopcodes will carry out further check on whether
5345 or not stack pointer is used in the instruction (Recall that
5346 "the extend operator is not optional unless at least one of
5347 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5351 case AARCH64_OPND_Fd:
5352 case AARCH64_OPND_Fn:
5353 case AARCH64_OPND_Fm:
5354 case AARCH64_OPND_Fa:
5355 case AARCH64_OPND_Ft:
5356 case AARCH64_OPND_Ft2:
5357 case AARCH64_OPND_Sd:
5358 case AARCH64_OPND_Sn:
5359 case AARCH64_OPND_Sm:
5360 case AARCH64_OPND_SVE_VZn:
5361 case AARCH64_OPND_SVE_Vd:
5362 case AARCH64_OPND_SVE_Vm:
5363 case AARCH64_OPND_SVE_Vn:
5364 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5365 if (val == PARSE_FAIL)
5367 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5370 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5372 info->reg.regno = val;
5373 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5376 case AARCH64_OPND_SVE_Pd:
5377 case AARCH64_OPND_SVE_Pg3:
5378 case AARCH64_OPND_SVE_Pg4_5:
5379 case AARCH64_OPND_SVE_Pg4_10:
5380 case AARCH64_OPND_SVE_Pg4_16:
5381 case AARCH64_OPND_SVE_Pm:
5382 case AARCH64_OPND_SVE_Pn:
5383 case AARCH64_OPND_SVE_Pt:
5384 reg_type = REG_TYPE_PN;
5387 case AARCH64_OPND_SVE_Za_5:
5388 case AARCH64_OPND_SVE_Za_16:
5389 case AARCH64_OPND_SVE_Zd:
5390 case AARCH64_OPND_SVE_Zm_5:
5391 case AARCH64_OPND_SVE_Zm_16:
5392 case AARCH64_OPND_SVE_Zn:
5393 case AARCH64_OPND_SVE_Zt:
5394 reg_type = REG_TYPE_ZN;
5397 case AARCH64_OPND_Va:
5398 case AARCH64_OPND_Vd:
5399 case AARCH64_OPND_Vn:
5400 case AARCH64_OPND_Vm:
5401 reg_type = REG_TYPE_VN;
5403 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5404 if (val == PARSE_FAIL)
5406 first_error (_(get_reg_expected_msg (reg_type)));
5409 if (vectype.defined & NTA_HASINDEX)
5412 info->reg.regno = val;
5413 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5414 && vectype.type == NT_invtype)
5415 /* Unqualified Pn and Zn registers are allowed in certain
5416 contexts. Rely on F_STRICT qualifier checking to catch
5418 info->qualifier = AARCH64_OPND_QLF_NIL;
5421 info->qualifier = vectype_to_qualifier (&vectype);
5422 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5427 case AARCH64_OPND_VdD1:
5428 case AARCH64_OPND_VnD1:
5429 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5430 if (val == PARSE_FAIL)
5432 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5435 if (vectype.type != NT_d || vectype.index != 1)
5437 set_fatal_syntax_error
5438 (_("the top half of a 128-bit FP/SIMD register is expected"));
5441 info->reg.regno = val;
5442 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5443 here; it is correct for the purpose of encoding/decoding since
5444 only the register number is explicitly encoded in the related
5445 instructions, although this appears a bit hacky. */
5446 info->qualifier = AARCH64_OPND_QLF_S_D;
5449 case AARCH64_OPND_SVE_Zm3_INDEX:
5450 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5451 case AARCH64_OPND_SVE_Zm4_INDEX:
5452 case AARCH64_OPND_SVE_Zn_INDEX:
5453 reg_type = REG_TYPE_ZN;
5454 goto vector_reg_index;
5456 case AARCH64_OPND_Ed:
5457 case AARCH64_OPND_En:
5458 case AARCH64_OPND_Em:
5459 case AARCH64_OPND_SM3_IMM2:
5460 reg_type = REG_TYPE_VN;
5462 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5463 if (val == PARSE_FAIL)
5465 first_error (_(get_reg_expected_msg (reg_type)));
5468 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5471 info->reglane.regno = val;
5472 info->reglane.index = vectype.index;
5473 info->qualifier = vectype_to_qualifier (&vectype);
5474 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5478 case AARCH64_OPND_SVE_ZnxN:
5479 case AARCH64_OPND_SVE_ZtxN:
5480 reg_type = REG_TYPE_ZN;
5481 goto vector_reg_list;
5483 case AARCH64_OPND_LVn:
5484 case AARCH64_OPND_LVt:
5485 case AARCH64_OPND_LVt_AL:
5486 case AARCH64_OPND_LEt:
5487 reg_type = REG_TYPE_VN;
5489 if (reg_type == REG_TYPE_ZN
5490 && get_opcode_dependent_value (opcode) == 1
5493 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5494 if (val == PARSE_FAIL)
5496 first_error (_(get_reg_expected_msg (reg_type)));
5499 info->reglist.first_regno = val;
5500 info->reglist.num_regs = 1;
5504 val = parse_vector_reg_list (&str, reg_type, &vectype);
5505 if (val == PARSE_FAIL)
5507 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5509 set_fatal_syntax_error (_("invalid register list"));
5512 info->reglist.first_regno = (val >> 2) & 0x1f;
5513 info->reglist.num_regs = (val & 0x3) + 1;
5515 if (operands[i] == AARCH64_OPND_LEt)
5517 if (!(vectype.defined & NTA_HASINDEX))
5519 info->reglist.has_index = 1;
5520 info->reglist.index = vectype.index;
5524 if (vectype.defined & NTA_HASINDEX)
5526 if (!(vectype.defined & NTA_HASTYPE))
5528 if (reg_type == REG_TYPE_ZN)
5529 set_fatal_syntax_error (_("missing type suffix"));
5533 info->qualifier = vectype_to_qualifier (&vectype);
5534 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5538 case AARCH64_OPND_CRn:
5539 case AARCH64_OPND_CRm:
5541 char prefix = *(str++);
5542 if (prefix != 'c' && prefix != 'C')
5545 po_imm_nc_or_fail ();
5548 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5551 info->qualifier = AARCH64_OPND_QLF_CR;
5552 info->imm.value = val;
5556 case AARCH64_OPND_SHLL_IMM:
5557 case AARCH64_OPND_IMM_VLSR:
5558 po_imm_or_fail (1, 64);
5559 info->imm.value = val;
5562 case AARCH64_OPND_CCMP_IMM:
5563 case AARCH64_OPND_SIMM5:
5564 case AARCH64_OPND_FBITS:
5565 case AARCH64_OPND_UIMM4:
5566 case AARCH64_OPND_UIMM3_OP1:
5567 case AARCH64_OPND_UIMM3_OP2:
5568 case AARCH64_OPND_IMM_VLSL:
5569 case AARCH64_OPND_IMM:
5570 case AARCH64_OPND_IMM_2:
5571 case AARCH64_OPND_WIDTH:
5572 case AARCH64_OPND_SVE_INV_LIMM:
5573 case AARCH64_OPND_SVE_LIMM:
5574 case AARCH64_OPND_SVE_LIMM_MOV:
5575 case AARCH64_OPND_SVE_SHLIMM_PRED:
5576 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5577 case AARCH64_OPND_SVE_SHRIMM_PRED:
5578 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5579 case AARCH64_OPND_SVE_SIMM5:
5580 case AARCH64_OPND_SVE_SIMM5B:
5581 case AARCH64_OPND_SVE_SIMM6:
5582 case AARCH64_OPND_SVE_SIMM8:
5583 case AARCH64_OPND_SVE_UIMM3:
5584 case AARCH64_OPND_SVE_UIMM7:
5585 case AARCH64_OPND_SVE_UIMM8:
5586 case AARCH64_OPND_SVE_UIMM8_53:
5587 case AARCH64_OPND_IMM_ROT1:
5588 case AARCH64_OPND_IMM_ROT2:
5589 case AARCH64_OPND_IMM_ROT3:
5590 case AARCH64_OPND_SVE_IMM_ROT1:
5591 case AARCH64_OPND_SVE_IMM_ROT2:
5592 po_imm_nc_or_fail ();
5593 info->imm.value = val;
5596 case AARCH64_OPND_SVE_AIMM:
5597 case AARCH64_OPND_SVE_ASIMM:
5598 po_imm_nc_or_fail ();
5599 info->imm.value = val;
5600 skip_whitespace (str);
5601 if (skip_past_comma (&str))
5602 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5604 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5607 case AARCH64_OPND_SVE_PATTERN:
5608 po_enum_or_fail (aarch64_sve_pattern_array);
5609 info->imm.value = val;
5612 case AARCH64_OPND_SVE_PATTERN_SCALED:
5613 po_enum_or_fail (aarch64_sve_pattern_array);
5614 info->imm.value = val;
5615 if (skip_past_comma (&str)
5616 && !parse_shift (&str, info, SHIFTED_MUL))
5618 if (!info->shifter.operator_present)
5620 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5621 info->shifter.kind = AARCH64_MOD_MUL;
5622 info->shifter.amount = 1;
5626 case AARCH64_OPND_SVE_PRFOP:
5627 po_enum_or_fail (aarch64_sve_prfop_array);
5628 info->imm.value = val;
5631 case AARCH64_OPND_UIMM7:
5632 po_imm_or_fail (0, 127);
5633 info->imm.value = val;
5636 case AARCH64_OPND_IDX:
5637 case AARCH64_OPND_MASK:
5638 case AARCH64_OPND_BIT_NUM:
5639 case AARCH64_OPND_IMMR:
5640 case AARCH64_OPND_IMMS:
5641 po_imm_or_fail (0, 63);
5642 info->imm.value = val;
5645 case AARCH64_OPND_IMM0:
5646 po_imm_nc_or_fail ();
5649 set_fatal_syntax_error (_("immediate zero expected"));
5652 info->imm.value = 0;
5655 case AARCH64_OPND_FPIMM0:
5658 bfd_boolean res1 = FALSE, res2 = FALSE;
5659 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5660 it is probably not worth the effort to support it. */
5661 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5664 || !(res2 = parse_constant_immediate (&str, &val,
5667 if ((res1 && qfloat == 0) || (res2 && val == 0))
5669 info->imm.value = 0;
5670 info->imm.is_fp = 1;
5673 set_fatal_syntax_error (_("immediate zero expected"));
5677 case AARCH64_OPND_IMM_MOV:
5680 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5681 reg_name_p (str, REG_TYPE_VN))
5684 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5686 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5687 later. fix_mov_imm_insn will try to determine a machine
5688 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5689 message if the immediate cannot be moved by a single
5691 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5692 inst.base.operands[i].skip = 1;
5696 case AARCH64_OPND_SIMD_IMM:
5697 case AARCH64_OPND_SIMD_IMM_SFT:
5698 if (! parse_big_immediate (&str, &val, imm_reg_type))
5700 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5702 /* need_libopcodes_p */ 1,
5705 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5706 shift, we don't check it here; we leave the checking to
5707 the libopcodes (operand_general_constraint_met_p). By
5708 doing this, we achieve better diagnostics. */
5709 if (skip_past_comma (&str)
5710 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5712 if (!info->shifter.operator_present
5713 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5715 /* Default to LSL if not present. Libopcodes prefers shifter
5716 kind to be explicit. */
5717 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5718 info->shifter.kind = AARCH64_MOD_LSL;
5722 case AARCH64_OPND_FPIMM:
5723 case AARCH64_OPND_SIMD_FPIMM:
5724 case AARCH64_OPND_SVE_FPIMM8:
5729 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5730 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5731 || !aarch64_imm_float_p (qfloat))
5734 set_fatal_syntax_error (_("invalid floating-point"
5738 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5739 inst.base.operands[i].imm.is_fp = 1;
5743 case AARCH64_OPND_SVE_I1_HALF_ONE:
5744 case AARCH64_OPND_SVE_I1_HALF_TWO:
5745 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5750 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5751 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5754 set_fatal_syntax_error (_("invalid floating-point"
5758 inst.base.operands[i].imm.value = qfloat;
5759 inst.base.operands[i].imm.is_fp = 1;
5763 case AARCH64_OPND_LIMM:
5764 po_misc_or_fail (parse_shifter_operand (&str, info,
5765 SHIFTED_LOGIC_IMM));
5766 if (info->shifter.operator_present)
5768 set_fatal_syntax_error
5769 (_("shift not allowed for bitmask immediate"));
5772 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5774 /* need_libopcodes_p */ 1,
5778 case AARCH64_OPND_AIMM:
5779 if (opcode->op == OP_ADD)
5780 /* ADD may have relocation types. */
5781 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5782 SHIFTED_ARITH_IMM));
5784 po_misc_or_fail (parse_shifter_operand (&str, info,
5785 SHIFTED_ARITH_IMM));
5786 switch (inst.reloc.type)
5788 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5789 info->shifter.amount = 12;
5791 case BFD_RELOC_UNUSED:
5792 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5793 if (info->shifter.kind != AARCH64_MOD_NONE)
5794 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5795 inst.reloc.pc_rel = 0;
5800 info->imm.value = 0;
5801 if (!info->shifter.operator_present)
5803 /* Default to LSL if not present. Libopcodes prefers shifter
5804 kind to be explicit. */
5805 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5806 info->shifter.kind = AARCH64_MOD_LSL;
5810 case AARCH64_OPND_HALF:
5812 /* #<imm16> or relocation. */
5813 int internal_fixup_p;
5814 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5815 if (internal_fixup_p)
5816 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5817 skip_whitespace (str);
5818 if (skip_past_comma (&str))
5820 /* {, LSL #<shift>} */
5821 if (! aarch64_gas_internal_fixup_p ())
5823 set_fatal_syntax_error (_("can't mix relocation modifier "
5824 "with explicit shift"));
5827 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5830 inst.base.operands[i].shifter.amount = 0;
5831 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5832 inst.base.operands[i].imm.value = 0;
5833 if (! process_movw_reloc_info ())
5838 case AARCH64_OPND_EXCEPTION:
5839 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5841 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5843 /* need_libopcodes_p */ 0,
5847 case AARCH64_OPND_NZCV:
5849 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5853 info->imm.value = nzcv->value;
5856 po_imm_or_fail (0, 15);
5857 info->imm.value = val;
5861 case AARCH64_OPND_COND:
5862 case AARCH64_OPND_COND1:
5867 while (ISALPHA (*str));
5868 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5869 if (info->cond == NULL)
5871 set_syntax_error (_("invalid condition"));
5874 else if (operands[i] == AARCH64_OPND_COND1
5875 && (info->cond->value & 0xe) == 0xe)
5877 /* Do not allow AL or NV. */
5878 set_default_error ();
5884 case AARCH64_OPND_ADDR_ADRP:
5885 po_misc_or_fail (parse_adrp (&str));
5886 /* Clear the value as operand needs to be relocated. */
5887 info->imm.value = 0;
5890 case AARCH64_OPND_ADDR_PCREL14:
5891 case AARCH64_OPND_ADDR_PCREL19:
5892 case AARCH64_OPND_ADDR_PCREL21:
5893 case AARCH64_OPND_ADDR_PCREL26:
5894 po_misc_or_fail (parse_address (&str, info));
5895 if (!info->addr.pcrel)
5897 set_syntax_error (_("invalid pc-relative address"));
5900 if (inst.gen_lit_pool
5901 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5903 /* Only permit "=value" in the literal load instructions.
5904 The literal will be generated by programmer_friendly_fixup. */
5905 set_syntax_error (_("invalid use of \"=immediate\""));
5908 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5910 set_syntax_error (_("unrecognized relocation suffix"));
5913 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5915 info->imm.value = inst.reloc.exp.X_add_number;
5916 inst.reloc.type = BFD_RELOC_UNUSED;
5920 info->imm.value = 0;
5921 if (inst.reloc.type == BFD_RELOC_UNUSED)
5922 switch (opcode->iclass)
5926 /* e.g. CBZ or B.COND */
5927 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5928 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5932 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5933 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5937 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5939 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5940 : BFD_RELOC_AARCH64_JUMP26;
5943 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5944 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5947 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5948 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5954 inst.reloc.pc_rel = 1;
5958 case AARCH64_OPND_ADDR_SIMPLE:
5959 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5961 /* [<Xn|SP>{, #<simm>}] */
5963 /* First use the normal address-parsing routines, to get
5964 the usual syntax errors. */
5965 po_misc_or_fail (parse_address (&str, info));
5966 if (info->addr.pcrel || info->addr.offset.is_reg
5967 || !info->addr.preind || info->addr.postind
5968 || info->addr.writeback)
5970 set_syntax_error (_("invalid addressing mode"));
5974 /* Then retry, matching the specific syntax of these addresses. */
5976 po_char_or_fail ('[');
5977 po_reg_or_fail (REG_TYPE_R64_SP);
5978 /* Accept optional ", #0". */
5979 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5980 && skip_past_char (&str, ','))
5982 skip_past_char (&str, '#');
5983 if (! skip_past_char (&str, '0'))
5985 set_fatal_syntax_error
5986 (_("the optional immediate offset can only be 0"));
5990 po_char_or_fail (']');
5994 case AARCH64_OPND_ADDR_REGOFF:
5995 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5996 po_misc_or_fail (parse_address (&str, info));
5998 if (info->addr.pcrel || !info->addr.offset.is_reg
5999 || !info->addr.preind || info->addr.postind
6000 || info->addr.writeback)
6002 set_syntax_error (_("invalid addressing mode"));
6005 if (!info->shifter.operator_present)
6007 /* Default to LSL if not present. Libopcodes prefers shifter
6008 kind to be explicit. */
6009 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6010 info->shifter.kind = AARCH64_MOD_LSL;
6012 /* Qualifier to be deduced by libopcodes. */
6015 case AARCH64_OPND_ADDR_SIMM7:
6016 po_misc_or_fail (parse_address (&str, info));
6017 if (info->addr.pcrel || info->addr.offset.is_reg
6018 || (!info->addr.preind && !info->addr.postind))
6020 set_syntax_error (_("invalid addressing mode"));
6023 if (inst.reloc.type != BFD_RELOC_UNUSED)
6025 set_syntax_error (_("relocation not allowed"));
6028 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6030 /* need_libopcodes_p */ 1,
6034 case AARCH64_OPND_ADDR_SIMM9:
6035 case AARCH64_OPND_ADDR_SIMM9_2:
6036 po_misc_or_fail (parse_address (&str, info));
6037 if (info->addr.pcrel || info->addr.offset.is_reg
6038 || (!info->addr.preind && !info->addr.postind)
6039 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6040 && info->addr.writeback))
6042 set_syntax_error (_("invalid addressing mode"));
6045 if (inst.reloc.type != BFD_RELOC_UNUSED)
6047 set_syntax_error (_("relocation not allowed"));
6050 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6052 /* need_libopcodes_p */ 1,
6056 case AARCH64_OPND_ADDR_SIMM10:
6057 case AARCH64_OPND_ADDR_OFFSET:
6058 po_misc_or_fail (parse_address (&str, info));
6059 if (info->addr.pcrel || info->addr.offset.is_reg
6060 || !info->addr.preind || info->addr.postind)
6062 set_syntax_error (_("invalid addressing mode"));
6065 if (inst.reloc.type != BFD_RELOC_UNUSED)
6067 set_syntax_error (_("relocation not allowed"));
6070 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6072 /* need_libopcodes_p */ 1,
6076 case AARCH64_OPND_ADDR_UIMM12:
6077 po_misc_or_fail (parse_address (&str, info));
6078 if (info->addr.pcrel || info->addr.offset.is_reg
6079 || !info->addr.preind || info->addr.writeback)
6081 set_syntax_error (_("invalid addressing mode"));
6084 if (inst.reloc.type == BFD_RELOC_UNUSED)
6085 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6086 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6088 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6090 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
6091 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6092 /* Leave qualifier to be determined by libopcodes. */
6095 case AARCH64_OPND_SIMD_ADDR_POST:
6096 /* [<Xn|SP>], <Xm|#<amount>> */
6097 po_misc_or_fail (parse_address (&str, info));
6098 if (!info->addr.postind || !info->addr.writeback)
6100 set_syntax_error (_("invalid addressing mode"));
6103 if (!info->addr.offset.is_reg)
6105 if (inst.reloc.exp.X_op == O_constant)
6106 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6109 set_fatal_syntax_error
6110 (_("writeback value must be an immediate constant"));
6117 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
6118 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6119 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6120 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6121 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6122 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6123 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6124 case AARCH64_OPND_SVE_ADDR_RI_U6:
6125 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6126 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6127 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6128 /* [X<n>{, #imm, MUL VL}]
6130 but recognizing SVE registers. */
6131 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6132 &offset_qualifier));
6133 if (base_qualifier != AARCH64_OPND_QLF_X)
6135 set_syntax_error (_("invalid addressing mode"));
6139 if (info->addr.pcrel || info->addr.offset.is_reg
6140 || !info->addr.preind || info->addr.writeback)
6142 set_syntax_error (_("invalid addressing mode"));
6145 if (inst.reloc.type != BFD_RELOC_UNUSED
6146 || inst.reloc.exp.X_op != O_constant)
6148 /* Make sure this has priority over
6149 "invalid addressing mode". */
6150 set_fatal_syntax_error (_("constant offset required"));
6153 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6156 case AARCH64_OPND_SVE_ADDR_RR:
6157 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6158 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6159 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6160 case AARCH64_OPND_SVE_ADDR_RX:
6161 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6162 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6163 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6164 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6165 but recognizing SVE registers. */
6166 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6167 &offset_qualifier));
6168 if (base_qualifier != AARCH64_OPND_QLF_X
6169 || offset_qualifier != AARCH64_OPND_QLF_X)
6171 set_syntax_error (_("invalid addressing mode"));
6176 case AARCH64_OPND_SVE_ADDR_RZ:
6177 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6178 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6179 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6180 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6181 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6182 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6183 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6184 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6185 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6186 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6187 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6188 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6189 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6190 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6191 &offset_qualifier));
6192 if (base_qualifier != AARCH64_OPND_QLF_X
6193 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6194 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6196 set_syntax_error (_("invalid addressing mode"));
6199 info->qualifier = offset_qualifier;
6202 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6203 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6204 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6205 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6206 /* [Z<n>.<T>{, #imm}] */
6207 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6208 &offset_qualifier));
6209 if (base_qualifier != AARCH64_OPND_QLF_S_S
6210 && base_qualifier != AARCH64_OPND_QLF_S_D)
6212 set_syntax_error (_("invalid addressing mode"));
6215 info->qualifier = base_qualifier;
6218 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6219 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6220 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6221 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6222 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6226 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6228 here since we get better error messages by leaving it to
6229 the qualifier checking routines. */
6230 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6231 &offset_qualifier));
6232 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6233 && base_qualifier != AARCH64_OPND_QLF_S_D)
6234 || offset_qualifier != base_qualifier)
6236 set_syntax_error (_("invalid addressing mode"));
6239 info->qualifier = base_qualifier;
6242 case AARCH64_OPND_SYSREG:
6243 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
6246 set_syntax_error (_("unknown or missing system register name"));
6249 inst.base.operands[i].sysreg = val;
6252 case AARCH64_OPND_PSTATEFIELD:
6253 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
6256 set_syntax_error (_("unknown or missing PSTATE field name"));
6259 inst.base.operands[i].pstatefield = val;
6262 case AARCH64_OPND_SYSREG_IC:
6263 inst.base.operands[i].sysins_op =
6264 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6266 case AARCH64_OPND_SYSREG_DC:
6267 inst.base.operands[i].sysins_op =
6268 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6270 case AARCH64_OPND_SYSREG_AT:
6271 inst.base.operands[i].sysins_op =
6272 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6274 case AARCH64_OPND_SYSREG_TLBI:
6275 inst.base.operands[i].sysins_op =
6276 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6278 if (inst.base.operands[i].sysins_op == NULL)
6280 set_fatal_syntax_error ( _("unknown or missing operation name"));
6285 case AARCH64_OPND_BARRIER:
6286 case AARCH64_OPND_BARRIER_ISB:
6287 val = parse_barrier (&str);
6288 if (val != PARSE_FAIL
6289 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6291 /* ISB only accepts options name 'sy'. */
6293 (_("the specified option is not accepted in ISB"));
6294 /* Turn off backtrack as this optional operand is present. */
6298 /* This is an extension to accept a 0..15 immediate. */
6299 if (val == PARSE_FAIL)
6300 po_imm_or_fail (0, 15);
6301 info->barrier = aarch64_barrier_options + val;
6304 case AARCH64_OPND_PRFOP:
6305 val = parse_pldop (&str);
6306 /* This is an extension to accept a 0..31 immediate. */
6307 if (val == PARSE_FAIL)
6308 po_imm_or_fail (0, 31);
6309 inst.base.operands[i].prfop = aarch64_prfops + val;
6312 case AARCH64_OPND_BARRIER_PSB:
6313 val = parse_barrier_psb (&str, &(info->hint_option));
6314 if (val == PARSE_FAIL)
6319 as_fatal (_("unhandled operand code %d"), operands[i]);
6322 /* If we get here, this operand was successfully parsed. */
6323 inst.base.operands[i].present = 1;
6327 /* The parse routine should already have set the error, but in case
6328 not, set a default one here. */
6330 set_default_error ();
6332 if (! backtrack_pos)
6333 goto parse_operands_return;
6336 /* We reach here because this operand is marked as optional, and
6337 either no operand was supplied or the operand was supplied but it
6338 was syntactically incorrect. In the latter case we report an
6339 error. In the former case we perform a few more checks before
6340 dropping through to the code to insert the default operand. */
6342 char *tmp = backtrack_pos;
6343 char endchar = END_OF_INSN;
6345 if (i != (aarch64_num_of_operands (opcode) - 1))
6347 skip_past_char (&tmp, ',');
6349 if (*tmp != endchar)
6350 /* The user has supplied an operand in the wrong format. */
6351 goto parse_operands_return;
6353 /* Make sure there is not a comma before the optional operand.
6354 For example the fifth operand of 'sys' is optional:
6356 sys #0,c0,c0,#0, <--- wrong
6357 sys #0,c0,c0,#0 <--- correct. */
6358 if (comma_skipped_p && i && endchar == END_OF_INSN)
6360 set_fatal_syntax_error
6361 (_("unexpected comma before the omitted optional operand"));
6362 goto parse_operands_return;
6366 /* Reaching here means we are dealing with an optional operand that is
6367 omitted from the assembly line. */
6368 gas_assert (optional_operand_p (opcode, i));
6370 process_omitted_operand (operands[i], opcode, i, info);
6372 /* Try again, skipping the optional operand at backtrack_pos. */
6373 str = backtrack_pos;
6376 /* Clear any error record after the omitted optional operand has been
6377 successfully handled. */
6381 /* Check if we have parsed all the operands. */
6382 if (*str != '\0' && ! error_p ())
6384 /* Set I to the index of the last present operand; this is
6385 for the purpose of diagnostics. */
6386 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6388 set_fatal_syntax_error
6389 (_("unexpected characters following instruction"));
6392 parse_operands_return:
6396 DEBUG_TRACE ("parsing FAIL: %s - %s",
6397 operand_mismatch_kind_names[get_error_kind ()],
6398 get_error_message ());
6399 /* Record the operand error properly; this is useful when there
6400 are multiple instruction templates for a mnemonic name, so that
6401 later on, we can select the error that most closely describes
6403 record_operand_error (opcode, i, get_error_kind (),
6404 get_error_message ());
6409 DEBUG_TRACE ("parsing SUCCESS");
6414 /* It does some fix-up to provide some programmer friendly feature while
6415 keeping the libopcodes happy, i.e. libopcodes only accepts
6416 the preferred architectural syntax.
6417 Return FALSE if there is any failure; otherwise return TRUE. */
6420 programmer_friendly_fixup (aarch64_instruction *instr)
6422 aarch64_inst *base = &instr->base;
6423 const aarch64_opcode *opcode = base->opcode;
6424 enum aarch64_op op = opcode->op;
6425 aarch64_opnd_info *operands = base->operands;
6427 DEBUG_TRACE ("enter");
6429 switch (opcode->iclass)
6432 /* TBNZ Xn|Wn, #uimm6, label
6433 Test and Branch Not Zero: conditionally jumps to label if bit number
6434 uimm6 in register Xn is not zero. The bit number implies the width of
6435 the register, which may be written and should be disassembled as Wn if
6436 uimm is less than 32. */
6437 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6439 if (operands[1].imm.value >= 32)
6441 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6445 operands[0].qualifier = AARCH64_OPND_QLF_X;
6449 /* LDR Wt, label | =value
6450 As a convenience assemblers will typically permit the notation
6451 "=value" in conjunction with the pc-relative literal load instructions
6452 to automatically place an immediate value or symbolic address in a
6453 nearby literal pool and generate a hidden label which references it.
6454 ISREG has been set to 0 in the case of =value. */
6455 if (instr->gen_lit_pool
6456 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6458 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6459 if (op == OP_LDRSW_LIT)
6461 if (instr->reloc.exp.X_op != O_constant
6462 && instr->reloc.exp.X_op != O_big
6463 && instr->reloc.exp.X_op != O_symbol)
6465 record_operand_error (opcode, 1,
6466 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6467 _("constant expression expected"));
6470 if (! add_to_lit_pool (&instr->reloc.exp, size))
6472 record_operand_error (opcode, 1,
6473 AARCH64_OPDE_OTHER_ERROR,
6474 _("literal pool insertion failed"));
6482 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6483 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6484 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6485 A programmer-friendly assembler should accept a destination Xd in
6486 place of Wd, however that is not the preferred form for disassembly.
6488 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6489 && operands[1].qualifier == AARCH64_OPND_QLF_W
6490 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6491 operands[0].qualifier = AARCH64_OPND_QLF_W;
6496 /* In the 64-bit form, the final register operand is written as Wm
6497 for all but the (possibly omitted) UXTX/LSL and SXTX
6499 As a programmer-friendly assembler, we accept e.g.
6500 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6501 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6502 int idx = aarch64_operand_index (opcode->operands,
6503 AARCH64_OPND_Rm_EXT);
6504 gas_assert (idx == 1 || idx == 2);
6505 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6506 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6507 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6508 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6509 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6510 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6518 DEBUG_TRACE ("exit with SUCCESS");
6522 /* Check for loads and stores that will cause unpredictable behavior. */
6525 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6527 aarch64_inst *base = &instr->base;
6528 const aarch64_opcode *opcode = base->opcode;
6529 const aarch64_opnd_info *opnds = base->operands;
6530 switch (opcode->iclass)
6537 /* Loading/storing the base register is unpredictable if writeback. */
6538 if ((aarch64_get_operand_class (opnds[0].type)
6539 == AARCH64_OPND_CLASS_INT_REG)
6540 && opnds[0].reg.regno == opnds[1].addr.base_regno
6541 && opnds[1].addr.base_regno != REG_SP
6542 && opnds[1].addr.writeback)
6543 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6546 case ldstnapair_offs:
6547 case ldstpair_indexed:
6548 /* Loading/storing the base register is unpredictable if writeback. */
6549 if ((aarch64_get_operand_class (opnds[0].type)
6550 == AARCH64_OPND_CLASS_INT_REG)
6551 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6552 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6553 && opnds[2].addr.base_regno != REG_SP
6554 && opnds[2].addr.writeback)
6555 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6556 /* Load operations must load different registers. */
6557 if ((opcode->opcode & (1 << 22))
6558 && opnds[0].reg.regno == opnds[1].reg.regno)
6559 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6566 /* A wrapper function to interface with libopcodes on encoding and
6567 record the error message if there is any.
6569 Return TRUE on success; otherwise return FALSE. */
6572 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6575 aarch64_operand_error error_info;
6576 error_info.kind = AARCH64_OPDE_NIL;
6577 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6581 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6582 record_operand_error_info (opcode, &error_info);
6587 #ifdef DEBUG_AARCH64
6589 dump_opcode_operands (const aarch64_opcode *opcode)
6592 while (opcode->operands[i] != AARCH64_OPND_NIL)
6594 aarch64_verbose ("\t\t opnd%d: %s", i,
6595 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6596 ? aarch64_get_operand_name (opcode->operands[i])
6597 : aarch64_get_operand_desc (opcode->operands[i]));
6601 #endif /* DEBUG_AARCH64 */
6603 /* This is the guts of the machine-dependent assembler. STR points to a
6604 machine dependent instruction. This function is supposed to emit
6605 the frags/bytes it assembles to. */
6608 md_assemble (char *str)
6611 templates *template;
6612 aarch64_opcode *opcode;
6613 aarch64_inst *inst_base;
6614 unsigned saved_cond;
6616 /* Align the previous label if needed. */
6617 if (last_label_seen != NULL)
6619 symbol_set_frag (last_label_seen, frag_now);
6620 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6621 S_SET_SEGMENT (last_label_seen, now_seg);
6624 inst.reloc.type = BFD_RELOC_UNUSED;
6626 DEBUG_TRACE ("\n\n");
6627 DEBUG_TRACE ("==============================");
6628 DEBUG_TRACE ("Enter md_assemble with %s", str);
6630 template = opcode_lookup (&p);
6633 /* It wasn't an instruction, but it might be a register alias of
6634 the form alias .req reg directive. */
6635 if (!create_register_alias (str, p))
6636 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6641 skip_whitespace (p);
6644 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6645 get_mnemonic_name (str), str);
6649 init_operand_error_report ();
6651 /* Sections are assumed to start aligned. In executable section, there is no
6652 MAP_DATA symbol pending. So we only align the address during
6653 MAP_DATA --> MAP_INSN transition.
6654 For other sections, this is not guaranteed. */
6655 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6656 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6657 frag_align_code (2, 0);
6659 saved_cond = inst.cond;
6660 reset_aarch64_instruction (&inst);
6661 inst.cond = saved_cond;
6663 /* Iterate through all opcode entries with the same mnemonic name. */
6666 opcode = template->opcode;
6668 DEBUG_TRACE ("opcode %s found", opcode->name);
6669 #ifdef DEBUG_AARCH64
6671 dump_opcode_operands (opcode);
6672 #endif /* DEBUG_AARCH64 */
6674 mapping_state (MAP_INSN);
6676 inst_base = &inst.base;
6677 inst_base->opcode = opcode;
6679 /* Truly conditionally executed instructions, e.g. b.cond. */
6680 if (opcode->flags & F_COND)
6682 gas_assert (inst.cond != COND_ALWAYS);
6683 inst_base->cond = get_cond_from_value (inst.cond);
6684 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6686 else if (inst.cond != COND_ALWAYS)
6688 /* It shouldn't arrive here, where the assembly looks like a
6689 conditional instruction but the found opcode is unconditional. */
6694 if (parse_operands (p, opcode)
6695 && programmer_friendly_fixup (&inst)
6696 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6698 /* Check that this instruction is supported for this CPU. */
6699 if (!opcode->avariant
6700 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6702 as_bad (_("selected processor does not support `%s'"), str);
6706 warn_unpredictable_ldst (&inst, str);
6708 if (inst.reloc.type == BFD_RELOC_UNUSED
6709 || !inst.reloc.need_libopcodes_p)
6713 /* If there is relocation generated for the instruction,
6714 store the instruction information for the future fix-up. */
6715 struct aarch64_inst *copy;
6716 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6717 copy = XNEW (struct aarch64_inst);
6718 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6724 template = template->next;
6725 if (template != NULL)
6727 reset_aarch64_instruction (&inst);
6728 inst.cond = saved_cond;
6731 while (template != NULL);
6733 /* Issue the error messages if any. */
6734 output_operand_error_report (str);
6737 /* Various frobbings of labels and their addresses. */
6740 aarch64_start_line_hook (void)
6742 last_label_seen = NULL;
6746 aarch64_frob_label (symbolS * sym)
6748 last_label_seen = sym;
6750 dwarf2_emit_label (sym);
6754 aarch64_data_in_code (void)
6756 if (!strncmp (input_line_pointer + 1, "data:", 5))
6758 *input_line_pointer = '/';
6759 input_line_pointer += 5;
6760 *input_line_pointer = 0;
6768 aarch64_canonicalize_symbol_name (char *name)
6772 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6773 *(name + len - 5) = 0;
6778 /* Table of all register names defined by default. The user can
6779 define additional names with .req. Note that all register names
6780 should appear in both upper and lowercase variants. Some registers
6781 also have mixed-case names. */
6783 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6784 #define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
6785 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
6786 #define REGSET16(p,t) \
6787 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6788 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6789 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6790 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6791 #define REGSET31(p,t) \
6793 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6794 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6795 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6796 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6797 #define REGSET(p,t) \
6798 REGSET31(p,t), REGNUM(p,31,t)
6800 /* These go into aarch64_reg_hsh hash-table. */
6801 static const reg_entry reg_names[] = {
6802 /* Integer registers. */
6803 REGSET31 (x, R_64), REGSET31 (X, R_64),
6804 REGSET31 (w, R_32), REGSET31 (W, R_32),
6806 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
6807 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 16, R_64),
6808 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
6809 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
6810 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6811 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6813 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6814 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6816 /* Floating-point single precision registers. */
6817 REGSET (s, FP_S), REGSET (S, FP_S),
6819 /* Floating-point double precision registers. */
6820 REGSET (d, FP_D), REGSET (D, FP_D),
6822 /* Floating-point half precision registers. */
6823 REGSET (h, FP_H), REGSET (H, FP_H),
6825 /* Floating-point byte precision registers. */
6826 REGSET (b, FP_B), REGSET (B, FP_B),
6828 /* Floating-point quad precision registers. */
6829 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6831 /* FP/SIMD registers. */
6832 REGSET (v, VN), REGSET (V, VN),
6834 /* SVE vector registers. */
6835 REGSET (z, ZN), REGSET (Z, ZN),
6837 /* SVE predicate registers. */
6838 REGSET16 (p, PN), REGSET16 (P, PN)
6856 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6857 static const asm_nzcv nzcv_names[] = {
6858 {"nzcv", B (n, z, c, v)},
6859 {"nzcV", B (n, z, c, V)},
6860 {"nzCv", B (n, z, C, v)},
6861 {"nzCV", B (n, z, C, V)},
6862 {"nZcv", B (n, Z, c, v)},
6863 {"nZcV", B (n, Z, c, V)},
6864 {"nZCv", B (n, Z, C, v)},
6865 {"nZCV", B (n, Z, C, V)},
6866 {"Nzcv", B (N, z, c, v)},
6867 {"NzcV", B (N, z, c, V)},
6868 {"NzCv", B (N, z, C, v)},
6869 {"NzCV", B (N, z, C, V)},
6870 {"NZcv", B (N, Z, c, v)},
6871 {"NZcV", B (N, Z, c, V)},
6872 {"NZCv", B (N, Z, C, v)},
6873 {"NZCV", B (N, Z, C, V)}
6886 /* MD interface: bits in the object file. */
6888 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6889 for use in the a.out file, and stores them in the array pointed to by buf.
6890 This knows about the endian-ness of the target machine and does
6891 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6892 2 (short) and 4 (long) Floating numbers are put out as a series of
6893 LITTLENUMS (shorts, here at least). */
6896 md_number_to_chars (char *buf, valueT val, int n)
6898 if (target_big_endian)
6899 number_to_chars_bigendian (buf, val, n);
6901 number_to_chars_littleendian (buf, val, n);
6904 /* MD interface: Sections. */
6906 /* Estimate the size of a frag before relaxing. Assume everything fits in
6910 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6916 /* Round up a section size to the appropriate boundary. */
6919 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6924 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
6925 of an rs_align_code fragment.
6927 Here we fill the frag with the appropriate info for padding the
6928 output stream. The resulting frag will consist of a fixed (fr_fix)
6929 and of a repeating (fr_var) part.
6931 The fixed content is always emitted before the repeating content and
6932 these two parts are used as follows in constructing the output:
6933 - the fixed part will be used to align to a valid instruction word
6934 boundary, in case that we start at a misaligned address; as no
6935 executable instruction can live at the misaligned location, we
6936 simply fill with zeros;
6937 - the variable part will be used to cover the remaining padding and
6938 we fill using the AArch64 NOP instruction.
6940 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6941 enough storage space for up to 3 bytes for padding the back to a valid
6942 instruction alignment and exactly 4 bytes to store the NOP pattern. */
6945 aarch64_handle_align (fragS * fragP)
6947 /* NOP = d503201f */
6948 /* AArch64 instructions are always little-endian. */
6949 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6951 int bytes, fix, noop_size;
6954 if (fragP->fr_type != rs_align_code)
6957 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6958 p = fragP->fr_literal + fragP->fr_fix;
6961 gas_assert (fragP->tc_frag_data.recorded);
6964 noop_size = sizeof (aarch64_noop);
6966 fix = bytes & (noop_size - 1);
6970 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6974 fragP->fr_fix += fix;
6978 memcpy (p, aarch64_noop, noop_size);
6979 fragP->fr_var = noop_size;
6982 /* Perform target specific initialisation of a frag.
6983 Note - despite the name this initialisation is not done when the frag
6984 is created, but only when its type is assigned. A frag can be created
6985 and used a long time before its type is set, so beware of assuming that
6986 this initialisation is performed first. */
6990 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6991 int max_chars ATTRIBUTE_UNUSED)
6995 #else /* OBJ_ELF is defined. */
6997 aarch64_init_frag (fragS * fragP, int max_chars)
6999 /* Record a mapping symbol for alignment frags. We will delete this
7000 later if the alignment ends up empty. */
7001 if (!fragP->tc_frag_data.recorded)
7002 fragP->tc_frag_data.recorded = 1;
7004 /* PR 21809: Do not set a mapping state for debug sections
7005 - it just confuses other tools. */
7006 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
7009 switch (fragP->fr_type)
7013 mapping_state_2 (MAP_DATA, max_chars);
7016 /* PR 20364: We can get alignment frags in code sections,
7017 so do not just assume that we should use the MAP_DATA state. */
7018 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7021 mapping_state_2 (MAP_INSN, max_chars);
7028 /* Initialize the DWARF-2 unwind information for this procedure. */
7031 tc_aarch64_frame_initial_instructions (void)
7033 cfi_add_CFA_def_cfa (REG_SP, 0);
7035 #endif /* OBJ_ELF */
7037 /* Convert REGNAME to a DWARF-2 register number. */
7040 tc_aarch64_regname_to_dw2regnum (char *regname)
7042 const reg_entry *reg = parse_reg (®name);
7048 case REG_TYPE_SP_32:
7049 case REG_TYPE_SP_64:
7059 return reg->number + 64;
7067 /* Implement DWARF2_ADDR_SIZE. */
7070 aarch64_dwarf2_addr_size (void)
7072 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7076 return bfd_arch_bits_per_address (stdoutput) / 8;
7079 /* MD interface: Symbol and relocation handling. */
7081 /* Return the address within the segment that a PC-relative fixup is
7082 relative to. For AArch64 PC-relative fixups applied to instructions
7083 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7086 md_pcrel_from_section (fixS * fixP, segT seg)
7088 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7090 /* If this is pc-relative and we are going to emit a relocation
7091 then we just want to put out any pipeline compensation that the linker
7092 will need. Otherwise we want to use the calculated base. */
7094 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7095 || aarch64_force_relocation (fixP)))
7098 /* AArch64 should be consistent for all pc-relative relocations. */
7099 return base + AARCH64_PCREL_OFFSET;
7102 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7103 Otherwise we have no need to default values of symbols. */
7106 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7109 if (name[0] == '_' && name[1] == 'G'
7110 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7114 if (symbol_find (name))
7115 as_bad (_("GOT already in the symbol table"));
7117 GOT_symbol = symbol_new (name, undefined_section,
7118 (valueT) 0, &zero_address_frag);
7128 /* Return non-zero if the indicated VALUE has overflowed the maximum
7129 range expressible by a unsigned number with the indicated number of
7133 unsigned_overflow (valueT value, unsigned bits)
7136 if (bits >= sizeof (valueT) * 8)
7138 lim = (valueT) 1 << bits;
7139 return (value >= lim);
7143 /* Return non-zero if the indicated VALUE has overflowed the maximum
7144 range expressible by an signed number with the indicated number of
7148 signed_overflow (offsetT value, unsigned bits)
7151 if (bits >= sizeof (offsetT) * 8)
7153 lim = (offsetT) 1 << (bits - 1);
7154 return (value < -lim || value >= lim);
7157 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7158 unsigned immediate offset load/store instruction, try to encode it as
7159 an unscaled, 9-bit, signed immediate offset load/store instruction.
7160 Return TRUE if it is successful; otherwise return FALSE.
7162 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7163 in response to the standard LDR/STR mnemonics when the immediate offset is
7164 unambiguous, i.e. when it is negative or unaligned. */
7167 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7170 enum aarch64_op new_op;
7171 const aarch64_opcode *new_opcode;
7173 gas_assert (instr->opcode->iclass == ldst_pos);
7175 switch (instr->opcode->op)
7177 case OP_LDRB_POS:new_op = OP_LDURB; break;
7178 case OP_STRB_POS: new_op = OP_STURB; break;
7179 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7180 case OP_LDRH_POS: new_op = OP_LDURH; break;
7181 case OP_STRH_POS: new_op = OP_STURH; break;
7182 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7183 case OP_LDR_POS: new_op = OP_LDUR; break;
7184 case OP_STR_POS: new_op = OP_STUR; break;
7185 case OP_LDRF_POS: new_op = OP_LDURV; break;
7186 case OP_STRF_POS: new_op = OP_STURV; break;
7187 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7188 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7189 default: new_op = OP_NIL; break;
7192 if (new_op == OP_NIL)
7195 new_opcode = aarch64_get_opcode (new_op);
7196 gas_assert (new_opcode != NULL);
7198 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7199 instr->opcode->op, new_opcode->op);
7201 aarch64_replace_opcode (instr, new_opcode);
7203 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7204 qualifier matching may fail because the out-of-date qualifier will
7205 prevent the operand being updated with a new and correct qualifier. */
7206 idx = aarch64_operand_index (instr->opcode->operands,
7207 AARCH64_OPND_ADDR_SIMM9);
7208 gas_assert (idx == 1);
7209 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7211 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7213 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7219 /* Called by fix_insn to fix a MOV immediate alias instruction.
7221 Operand for a generic move immediate instruction, which is an alias
7222 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7223 a 32-bit/64-bit immediate value into general register. An assembler error
7224 shall result if the immediate cannot be created by a single one of these
7225 instructions. If there is a choice, then to ensure reversability an
7226 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7229 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7231 const aarch64_opcode *opcode;
7233 /* Need to check if the destination is SP/ZR. The check has to be done
7234 before any aarch64_replace_opcode. */
7235 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7236 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7238 instr->operands[1].imm.value = value;
7239 instr->operands[1].skip = 0;
7243 /* Try the MOVZ alias. */
7244 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7245 aarch64_replace_opcode (instr, opcode);
7246 if (aarch64_opcode_encode (instr->opcode, instr,
7247 &instr->value, NULL, NULL))
7249 put_aarch64_insn (buf, instr->value);
7252 /* Try the MOVK alias. */
7253 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7254 aarch64_replace_opcode (instr, opcode);
7255 if (aarch64_opcode_encode (instr->opcode, instr,
7256 &instr->value, NULL, NULL))
7258 put_aarch64_insn (buf, instr->value);
7263 if (try_mov_bitmask_p)
7265 /* Try the ORR alias. */
7266 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7267 aarch64_replace_opcode (instr, opcode);
7268 if (aarch64_opcode_encode (instr->opcode, instr,
7269 &instr->value, NULL, NULL))
7271 put_aarch64_insn (buf, instr->value);
7276 as_bad_where (fixP->fx_file, fixP->fx_line,
7277 _("immediate cannot be moved by a single instruction"));
7280 /* An instruction operand which is immediate related may have symbol used
7281 in the assembly, e.g.
7284 .set u32, 0x00ffff00
7286 At the time when the assembly instruction is parsed, a referenced symbol,
7287 like 'u32' in the above example may not have been seen; a fixS is created
7288 in such a case and is handled here after symbols have been resolved.
7289 Instruction is fixed up with VALUE using the information in *FIXP plus
7290 extra information in FLAGS.
7292 This function is called by md_apply_fix to fix up instructions that need
7293 a fix-up described above but does not involve any linker-time relocation. */
7296 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7300 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7301 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7302 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7306 /* Now the instruction is about to be fixed-up, so the operand that
7307 was previously marked as 'ignored' needs to be unmarked in order
7308 to get the encoding done properly. */
7309 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7310 new_inst->operands[idx].skip = 0;
7313 gas_assert (opnd != AARCH64_OPND_NIL);
7317 case AARCH64_OPND_EXCEPTION:
7318 if (unsigned_overflow (value, 16))
7319 as_bad_where (fixP->fx_file, fixP->fx_line,
7320 _("immediate out of range"));
7321 insn = get_aarch64_insn (buf);
7322 insn |= encode_svc_imm (value);
7323 put_aarch64_insn (buf, insn);
7326 case AARCH64_OPND_AIMM:
7327 /* ADD or SUB with immediate.
7328 NOTE this assumes we come here with a add/sub shifted reg encoding
7329 3 322|2222|2 2 2 21111 111111
7330 1 098|7654|3 2 1 09876 543210 98765 43210
7331 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7332 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7333 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7334 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7336 3 322|2222|2 2 221111111111
7337 1 098|7654|3 2 109876543210 98765 43210
7338 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7339 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7340 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7341 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7342 Fields sf Rn Rd are already set. */
7343 insn = get_aarch64_insn (buf);
7347 insn = reencode_addsub_switch_add_sub (insn);
7351 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7352 && unsigned_overflow (value, 12))
7354 /* Try to shift the value by 12 to make it fit. */
7355 if (((value >> 12) << 12) == value
7356 && ! unsigned_overflow (value, 12 + 12))
7359 insn |= encode_addsub_imm_shift_amount (1);
7363 if (unsigned_overflow (value, 12))
7364 as_bad_where (fixP->fx_file, fixP->fx_line,
7365 _("immediate out of range"));
7367 insn |= encode_addsub_imm (value);
7369 put_aarch64_insn (buf, insn);
7372 case AARCH64_OPND_SIMD_IMM:
7373 case AARCH64_OPND_SIMD_IMM_SFT:
7374 case AARCH64_OPND_LIMM:
7375 /* Bit mask immediate. */
7376 gas_assert (new_inst != NULL);
7377 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7378 new_inst->operands[idx].imm.value = value;
7379 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7380 &new_inst->value, NULL, NULL))
7381 put_aarch64_insn (buf, new_inst->value);
7383 as_bad_where (fixP->fx_file, fixP->fx_line,
7384 _("invalid immediate"));
7387 case AARCH64_OPND_HALF:
7388 /* 16-bit unsigned immediate. */
7389 if (unsigned_overflow (value, 16))
7390 as_bad_where (fixP->fx_file, fixP->fx_line,
7391 _("immediate out of range"));
7392 insn = get_aarch64_insn (buf);
7393 insn |= encode_movw_imm (value & 0xffff);
7394 put_aarch64_insn (buf, insn);
7397 case AARCH64_OPND_IMM_MOV:
7398 /* Operand for a generic move immediate instruction, which is
7399 an alias instruction that generates a single MOVZ, MOVN or ORR
7400 instruction to loads a 32-bit/64-bit immediate value into general
7401 register. An assembler error shall result if the immediate cannot be
7402 created by a single one of these instructions. If there is a choice,
7403 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7404 and MOVZ or MOVN to ORR. */
7405 gas_assert (new_inst != NULL);
7406 fix_mov_imm_insn (fixP, buf, new_inst, value);
7409 case AARCH64_OPND_ADDR_SIMM7:
7410 case AARCH64_OPND_ADDR_SIMM9:
7411 case AARCH64_OPND_ADDR_SIMM9_2:
7412 case AARCH64_OPND_ADDR_SIMM10:
7413 case AARCH64_OPND_ADDR_UIMM12:
7414 /* Immediate offset in an address. */
7415 insn = get_aarch64_insn (buf);
7417 gas_assert (new_inst != NULL && new_inst->value == insn);
7418 gas_assert (new_inst->opcode->operands[1] == opnd
7419 || new_inst->opcode->operands[2] == opnd);
7421 /* Get the index of the address operand. */
7422 if (new_inst->opcode->operands[1] == opnd)
7423 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7426 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7429 /* Update the resolved offset value. */
7430 new_inst->operands[idx].addr.offset.imm = value;
7432 /* Encode/fix-up. */
7433 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7434 &new_inst->value, NULL, NULL))
7436 put_aarch64_insn (buf, new_inst->value);
7439 else if (new_inst->opcode->iclass == ldst_pos
7440 && try_to_encode_as_unscaled_ldst (new_inst))
7442 put_aarch64_insn (buf, new_inst->value);
7446 as_bad_where (fixP->fx_file, fixP->fx_line,
7447 _("immediate offset out of range"));
7452 as_fatal (_("unhandled operand code %d"), opnd);
7456 /* Apply a fixup (fixP) to segment data, once it has been determined
7457 by our caller that we have all the info we need to fix it up.
7459 Parameter valP is the pointer to the value of the bits. */
7462 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7464 offsetT value = *valP;
7466 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7468 unsigned flags = fixP->fx_addnumber;
7470 DEBUG_TRACE ("\n\n");
7471 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7472 DEBUG_TRACE ("Enter md_apply_fix");
7474 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7476 /* Note whether this will delete the relocation. */
7478 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7481 /* Process the relocations. */
7482 switch (fixP->fx_r_type)
7484 case BFD_RELOC_NONE:
7485 /* This will need to go in the object file. */
7490 case BFD_RELOC_8_PCREL:
7491 if (fixP->fx_done || !seg->use_rela_p)
7492 md_number_to_chars (buf, value, 1);
7496 case BFD_RELOC_16_PCREL:
7497 if (fixP->fx_done || !seg->use_rela_p)
7498 md_number_to_chars (buf, value, 2);
7502 case BFD_RELOC_32_PCREL:
7503 if (fixP->fx_done || !seg->use_rela_p)
7504 md_number_to_chars (buf, value, 4);
7508 case BFD_RELOC_64_PCREL:
7509 if (fixP->fx_done || !seg->use_rela_p)
7510 md_number_to_chars (buf, value, 8);
7513 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7514 /* We claim that these fixups have been processed here, even if
7515 in fact we generate an error because we do not have a reloc
7516 for them, so tc_gen_reloc() will reject them. */
7518 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7520 as_bad_where (fixP->fx_file, fixP->fx_line,
7521 _("undefined symbol %s used as an immediate value"),
7522 S_GET_NAME (fixP->fx_addsy));
7523 goto apply_fix_return;
7525 fix_insn (fixP, flags, value);
7528 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7529 if (fixP->fx_done || !seg->use_rela_p)
7532 as_bad_where (fixP->fx_file, fixP->fx_line,
7533 _("pc-relative load offset not word aligned"));
7534 if (signed_overflow (value, 21))
7535 as_bad_where (fixP->fx_file, fixP->fx_line,
7536 _("pc-relative load offset out of range"));
7537 insn = get_aarch64_insn (buf);
7538 insn |= encode_ld_lit_ofs_19 (value >> 2);
7539 put_aarch64_insn (buf, insn);
7543 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7544 if (fixP->fx_done || !seg->use_rela_p)
7546 if (signed_overflow (value, 21))
7547 as_bad_where (fixP->fx_file, fixP->fx_line,
7548 _("pc-relative address offset out of range"));
7549 insn = get_aarch64_insn (buf);
7550 insn |= encode_adr_imm (value);
7551 put_aarch64_insn (buf, insn);
7555 case BFD_RELOC_AARCH64_BRANCH19:
7556 if (fixP->fx_done || !seg->use_rela_p)
7559 as_bad_where (fixP->fx_file, fixP->fx_line,
7560 _("conditional branch target not word aligned"));
7561 if (signed_overflow (value, 21))
7562 as_bad_where (fixP->fx_file, fixP->fx_line,
7563 _("conditional branch out of range"));
7564 insn = get_aarch64_insn (buf);
7565 insn |= encode_cond_branch_ofs_19 (value >> 2);
7566 put_aarch64_insn (buf, insn);
7570 case BFD_RELOC_AARCH64_TSTBR14:
7571 if (fixP->fx_done || !seg->use_rela_p)
7574 as_bad_where (fixP->fx_file, fixP->fx_line,
7575 _("conditional branch target not word aligned"));
7576 if (signed_overflow (value, 16))
7577 as_bad_where (fixP->fx_file, fixP->fx_line,
7578 _("conditional branch out of range"));
7579 insn = get_aarch64_insn (buf);
7580 insn |= encode_tst_branch_ofs_14 (value >> 2);
7581 put_aarch64_insn (buf, insn);
7585 case BFD_RELOC_AARCH64_CALL26:
7586 case BFD_RELOC_AARCH64_JUMP26:
7587 if (fixP->fx_done || !seg->use_rela_p)
7590 as_bad_where (fixP->fx_file, fixP->fx_line,
7591 _("branch target not word aligned"));
7592 if (signed_overflow (value, 28))
7593 as_bad_where (fixP->fx_file, fixP->fx_line,
7594 _("branch out of range"));
7595 insn = get_aarch64_insn (buf);
7596 insn |= encode_branch_ofs_26 (value >> 2);
7597 put_aarch64_insn (buf, insn);
7601 case BFD_RELOC_AARCH64_MOVW_G0:
7602 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7603 case BFD_RELOC_AARCH64_MOVW_G0_S:
7604 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7607 case BFD_RELOC_AARCH64_MOVW_G1:
7608 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7609 case BFD_RELOC_AARCH64_MOVW_G1_S:
7610 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7613 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7615 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7616 /* Should always be exported to object file, see
7617 aarch64_force_relocation(). */
7618 gas_assert (!fixP->fx_done);
7619 gas_assert (seg->use_rela_p);
7621 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7623 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7624 /* Should always be exported to object file, see
7625 aarch64_force_relocation(). */
7626 gas_assert (!fixP->fx_done);
7627 gas_assert (seg->use_rela_p);
7629 case BFD_RELOC_AARCH64_MOVW_G2:
7630 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7631 case BFD_RELOC_AARCH64_MOVW_G2_S:
7634 case BFD_RELOC_AARCH64_MOVW_G3:
7637 if (fixP->fx_done || !seg->use_rela_p)
7639 insn = get_aarch64_insn (buf);
7643 /* REL signed addend must fit in 16 bits */
7644 if (signed_overflow (value, 16))
7645 as_bad_where (fixP->fx_file, fixP->fx_line,
7646 _("offset out of range"));
7650 /* Check for overflow and scale. */
7651 switch (fixP->fx_r_type)
7653 case BFD_RELOC_AARCH64_MOVW_G0:
7654 case BFD_RELOC_AARCH64_MOVW_G1:
7655 case BFD_RELOC_AARCH64_MOVW_G2:
7656 case BFD_RELOC_AARCH64_MOVW_G3:
7657 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7658 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7659 if (unsigned_overflow (value, scale + 16))
7660 as_bad_where (fixP->fx_file, fixP->fx_line,
7661 _("unsigned value out of range"));
7663 case BFD_RELOC_AARCH64_MOVW_G0_S:
7664 case BFD_RELOC_AARCH64_MOVW_G1_S:
7665 case BFD_RELOC_AARCH64_MOVW_G2_S:
7666 /* NOTE: We can only come here with movz or movn. */
7667 if (signed_overflow (value, scale + 16))
7668 as_bad_where (fixP->fx_file, fixP->fx_line,
7669 _("signed value out of range"));
7672 /* Force use of MOVN. */
7674 insn = reencode_movzn_to_movn (insn);
7678 /* Force use of MOVZ. */
7679 insn = reencode_movzn_to_movz (insn);
7683 /* Unchecked relocations. */
7689 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7690 insn |= encode_movw_imm (value & 0xffff);
7692 put_aarch64_insn (buf, insn);
7696 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7697 fixP->fx_r_type = (ilp32_p
7698 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7699 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7700 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7701 /* Should always be exported to object file, see
7702 aarch64_force_relocation(). */
7703 gas_assert (!fixP->fx_done);
7704 gas_assert (seg->use_rela_p);
7707 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7708 fixP->fx_r_type = (ilp32_p
7709 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7710 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
7711 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7712 /* Should always be exported to object file, see
7713 aarch64_force_relocation(). */
7714 gas_assert (!fixP->fx_done);
7715 gas_assert (seg->use_rela_p);
7718 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7719 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7720 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7721 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7722 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7723 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7724 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7725 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7726 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7727 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7728 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7729 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7730 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7731 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7732 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7733 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7734 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7735 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7736 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7737 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7738 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7739 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7740 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7741 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7742 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7743 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7744 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7745 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7746 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7747 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7748 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7749 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7750 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7751 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7752 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7753 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7754 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7755 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7756 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7758 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7759 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7760 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7761 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7762 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7763 /* Should always be exported to object file, see
7764 aarch64_force_relocation(). */
7765 gas_assert (!fixP->fx_done);
7766 gas_assert (seg->use_rela_p);
7769 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7770 /* Should always be exported to object file, see
7771 aarch64_force_relocation(). */
7772 fixP->fx_r_type = (ilp32_p
7773 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7774 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7775 gas_assert (!fixP->fx_done);
7776 gas_assert (seg->use_rela_p);
7779 case BFD_RELOC_AARCH64_ADD_LO12:
7780 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7781 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7782 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7783 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7784 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7785 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7786 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7787 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7788 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7789 case BFD_RELOC_AARCH64_LDST128_LO12:
7790 case BFD_RELOC_AARCH64_LDST16_LO12:
7791 case BFD_RELOC_AARCH64_LDST32_LO12:
7792 case BFD_RELOC_AARCH64_LDST64_LO12:
7793 case BFD_RELOC_AARCH64_LDST8_LO12:
7794 /* Should always be exported to object file, see
7795 aarch64_force_relocation(). */
7796 gas_assert (!fixP->fx_done);
7797 gas_assert (seg->use_rela_p);
7800 case BFD_RELOC_AARCH64_TLSDESC_ADD:
7801 case BFD_RELOC_AARCH64_TLSDESC_CALL:
7802 case BFD_RELOC_AARCH64_TLSDESC_LDR:
7805 case BFD_RELOC_UNUSED:
7806 /* An error will already have been reported. */
7810 as_bad_where (fixP->fx_file, fixP->fx_line,
7811 _("unexpected %s fixup"),
7812 bfd_get_reloc_code_name (fixP->fx_r_type));
7817 /* Free the allocated the struct aarch64_inst.
7818 N.B. currently there are very limited number of fix-up types actually use
7819 this field, so the impact on the performance should be minimal . */
7820 if (fixP->tc_fix_data.inst != NULL)
7821 free (fixP->tc_fix_data.inst);
7826 /* Translate internal representation of relocation info to BFD target
7830 tc_gen_reloc (asection * section, fixS * fixp)
7833 bfd_reloc_code_real_type code;
7835 reloc = XNEW (arelent);
7837 reloc->sym_ptr_ptr = XNEW (asymbol *);
7838 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7839 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7843 if (section->use_rela_p)
7844 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7846 fixp->fx_offset = reloc->address;
7848 reloc->addend = fixp->fx_offset;
7850 code = fixp->fx_r_type;
7855 code = BFD_RELOC_16_PCREL;
7860 code = BFD_RELOC_32_PCREL;
7865 code = BFD_RELOC_64_PCREL;
7872 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7873 if (reloc->howto == NULL)
7875 as_bad_where (fixp->fx_file, fixp->fx_line,
7877 ("cannot represent %s relocation in this object file format"),
7878 bfd_get_reloc_code_name (code));
7885 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7888 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7890 bfd_reloc_code_real_type type;
7894 FIXME: @@ Should look at CPU word size. */
7901 type = BFD_RELOC_16;
7904 type = BFD_RELOC_32;
7907 type = BFD_RELOC_64;
7910 as_bad (_("cannot do %u-byte relocation"), size);
7911 type = BFD_RELOC_UNUSED;
7915 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7919 aarch64_force_relocation (struct fix *fixp)
7921 switch (fixp->fx_r_type)
7923 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7924 /* Perform these "immediate" internal relocations
7925 even if the symbol is extern or weak. */
7928 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7929 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7930 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7931 /* Pseudo relocs that need to be fixed up according to
7935 case BFD_RELOC_AARCH64_ADD_LO12:
7936 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7937 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7938 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7939 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7940 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7941 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7942 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7943 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7944 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7945 case BFD_RELOC_AARCH64_LDST128_LO12:
7946 case BFD_RELOC_AARCH64_LDST16_LO12:
7947 case BFD_RELOC_AARCH64_LDST32_LO12:
7948 case BFD_RELOC_AARCH64_LDST64_LO12:
7949 case BFD_RELOC_AARCH64_LDST8_LO12:
7950 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7951 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7952 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7953 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7954 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7955 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7956 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7957 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7958 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7959 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7960 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7961 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7962 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7963 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7964 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7965 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7966 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7967 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7968 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7969 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7970 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7971 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7972 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7973 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7974 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7975 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7976 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7977 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7978 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7979 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7980 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7981 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7982 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7983 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7984 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7985 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7986 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7987 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7988 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7989 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7990 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7991 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7992 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7993 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7994 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7995 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7996 /* Always leave these relocations for the linker. */
8003 return generic_force_reloc (fixp);
8008 /* Implement md_after_parse_args. This is the earliest time we need to decide
8009 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8012 aarch64_after_parse_args (void)
8014 if (aarch64_abi != AARCH64_ABI_NONE)
8017 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8018 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8019 aarch64_abi = AARCH64_ABI_ILP32;
8021 aarch64_abi = AARCH64_ABI_LP64;
8025 elf64_aarch64_target_format (void)
8027 if (strcmp (TARGET_OS, "cloudabi") == 0)
8029 /* FIXME: What to do for ilp32_p ? */
8030 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
8032 if (target_big_endian)
8033 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
8035 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
8039 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8041 elf_frob_symbol (symp, puntp);
8045 /* MD interface: Finalization. */
8047 /* A good place to do this, although this was probably not intended
8048 for this kind of use. We need to dump the literal pool before
8049 references are made to a null symbol pointer. */
8052 aarch64_cleanup (void)
8056 for (pool = list_of_pools; pool; pool = pool->next)
8058 /* Put it at the end of the relevant section. */
8059 subseg_set (pool->section, pool->sub_section);
8065 /* Remove any excess mapping symbols generated for alignment frags in
8066 SEC. We may have created a mapping symbol before a zero byte
8067 alignment; remove it if there's a mapping symbol after the
8070 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8071 void *dummy ATTRIBUTE_UNUSED)
8073 segment_info_type *seginfo = seg_info (sec);
8076 if (seginfo == NULL || seginfo->frchainP == NULL)
8079 for (fragp = seginfo->frchainP->frch_root;
8080 fragp != NULL; fragp = fragp->fr_next)
8082 symbolS *sym = fragp->tc_frag_data.last_map;
8083 fragS *next = fragp->fr_next;
8085 /* Variable-sized frags have been converted to fixed size by
8086 this point. But if this was variable-sized to start with,
8087 there will be a fixed-size frag after it. So don't handle
8089 if (sym == NULL || next == NULL)
8092 if (S_GET_VALUE (sym) < next->fr_address)
8093 /* Not at the end of this frag. */
8095 know (S_GET_VALUE (sym) == next->fr_address);
8099 if (next->tc_frag_data.first_map != NULL)
8101 /* Next frag starts with a mapping symbol. Discard this
8103 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8107 if (next->fr_next == NULL)
8109 /* This mapping symbol is at the end of the section. Discard
8111 know (next->fr_fix == 0 && next->fr_var == 0);
8112 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8116 /* As long as we have empty frags without any mapping symbols,
8118 /* If the next frag is non-empty and does not start with a
8119 mapping symbol, then this mapping symbol is required. */
8120 if (next->fr_address != next->fr_next->fr_address)
8123 next = next->fr_next;
8125 while (next != NULL);
8130 /* Adjust the symbol table. */
8133 aarch64_adjust_symtab (void)
8136 /* Remove any overlapping mapping symbols generated by alignment frags. */
8137 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8138 /* Now do generic ELF adjustments. */
8139 elf_adjust_symtab ();
8144 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8146 const char *hash_err;
8148 hash_err = hash_insert (table, key, value);
8150 printf ("Internal Error: Can't hash %s\n", key);
8154 fill_instruction_hash_table (void)
8156 aarch64_opcode *opcode = aarch64_opcode_table;
8158 while (opcode->name != NULL)
8160 templates *templ, *new_templ;
8161 templ = hash_find (aarch64_ops_hsh, opcode->name);
8163 new_templ = XNEW (templates);
8164 new_templ->opcode = opcode;
8165 new_templ->next = NULL;
8168 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8171 new_templ->next = templ->next;
8172 templ->next = new_templ;
8179 convert_to_upper (char *dst, const char *src, size_t num)
8182 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8183 *dst = TOUPPER (*src);
8187 /* Assume STR point to a lower-case string, allocate, convert and return
8188 the corresponding upper-case string. */
8189 static inline const char*
8190 get_upper_str (const char *str)
8193 size_t len = strlen (str);
8194 ret = XNEWVEC (char, len + 1);
8195 convert_to_upper (ret, str, len);
8199 /* MD interface: Initialization. */
8207 if ((aarch64_ops_hsh = hash_new ()) == NULL
8208 || (aarch64_cond_hsh = hash_new ()) == NULL
8209 || (aarch64_shift_hsh = hash_new ()) == NULL
8210 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8211 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8212 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8213 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8214 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8215 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8216 || (aarch64_reg_hsh = hash_new ()) == NULL
8217 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8218 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8219 || (aarch64_pldop_hsh = hash_new ()) == NULL
8220 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8221 as_fatal (_("virtual memory exhausted"));
8223 fill_instruction_hash_table ();
8225 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8226 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8227 (void *) (aarch64_sys_regs + i));
8229 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8230 checked_hash_insert (aarch64_pstatefield_hsh,
8231 aarch64_pstatefields[i].name,
8232 (void *) (aarch64_pstatefields + i));
8234 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8235 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8236 aarch64_sys_regs_ic[i].name,
8237 (void *) (aarch64_sys_regs_ic + i));
8239 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8240 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8241 aarch64_sys_regs_dc[i].name,
8242 (void *) (aarch64_sys_regs_dc + i));
8244 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8245 checked_hash_insert (aarch64_sys_regs_at_hsh,
8246 aarch64_sys_regs_at[i].name,
8247 (void *) (aarch64_sys_regs_at + i));
8249 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8250 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8251 aarch64_sys_regs_tlbi[i].name,
8252 (void *) (aarch64_sys_regs_tlbi + i));
8254 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8255 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8256 (void *) (reg_names + i));
8258 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8259 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8260 (void *) (nzcv_names + i));
8262 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8264 const char *name = aarch64_operand_modifiers[i].name;
8265 checked_hash_insert (aarch64_shift_hsh, name,
8266 (void *) (aarch64_operand_modifiers + i));
8267 /* Also hash the name in the upper case. */
8268 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8269 (void *) (aarch64_operand_modifiers + i));
8272 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8275 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8276 the same condition code. */
8277 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8279 const char *name = aarch64_conds[i].names[j];
8282 checked_hash_insert (aarch64_cond_hsh, name,
8283 (void *) (aarch64_conds + i));
8284 /* Also hash the name in the upper case. */
8285 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8286 (void *) (aarch64_conds + i));
8290 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8292 const char *name = aarch64_barrier_options[i].name;
8293 /* Skip xx00 - the unallocated values of option. */
8296 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8297 (void *) (aarch64_barrier_options + i));
8298 /* Also hash the name in the upper case. */
8299 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8300 (void *) (aarch64_barrier_options + i));
8303 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8305 const char* name = aarch64_prfops[i].name;
8306 /* Skip the unallocated hint encodings. */
8309 checked_hash_insert (aarch64_pldop_hsh, name,
8310 (void *) (aarch64_prfops + i));
8311 /* Also hash the name in the upper case. */
8312 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8313 (void *) (aarch64_prfops + i));
8316 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8318 const char* name = aarch64_hint_options[i].name;
8320 checked_hash_insert (aarch64_hint_opt_hsh, name,
8321 (void *) (aarch64_hint_options + i));
8322 /* Also hash the name in the upper case. */
8323 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8324 (void *) (aarch64_hint_options + i));
8327 /* Set the cpu variant based on the command-line options. */
8329 mcpu_cpu_opt = march_cpu_opt;
8332 mcpu_cpu_opt = &cpu_default;
8334 cpu_variant = *mcpu_cpu_opt;
8336 /* Record the CPU type. */
8337 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8339 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8342 /* Command line processing. */
8344 const char *md_shortopts = "m:";
8346 #ifdef AARCH64_BI_ENDIAN
8347 #define OPTION_EB (OPTION_MD_BASE + 0)
8348 #define OPTION_EL (OPTION_MD_BASE + 1)
8350 #if TARGET_BYTES_BIG_ENDIAN
8351 #define OPTION_EB (OPTION_MD_BASE + 0)
8353 #define OPTION_EL (OPTION_MD_BASE + 1)
8357 struct option md_longopts[] = {
8359 {"EB", no_argument, NULL, OPTION_EB},
8362 {"EL", no_argument, NULL, OPTION_EL},
8364 {NULL, no_argument, NULL, 0}
8367 size_t md_longopts_size = sizeof (md_longopts);
8369 struct aarch64_option_table
8371 const char *option; /* Option name to match. */
8372 const char *help; /* Help information. */
8373 int *var; /* Variable to change. */
8374 int value; /* What to change it to. */
8375 char *deprecated; /* If non-null, print this message. */
8378 static struct aarch64_option_table aarch64_opts[] = {
8379 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8380 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8382 #ifdef DEBUG_AARCH64
8383 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8384 #endif /* DEBUG_AARCH64 */
8385 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8387 {"mno-verbose-error", N_("do not output verbose error messages"),
8388 &verbose_error_p, 0, NULL},
8389 {NULL, NULL, NULL, 0, NULL}
8392 struct aarch64_cpu_option_table
8395 const aarch64_feature_set value;
8396 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8398 const char *canonical_name;
8401 /* This list should, at a minimum, contain all the cpu names
8402 recognized by GCC. */
8403 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8404 {"all", AARCH64_ANY, NULL},
8405 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8406 AARCH64_FEATURE_CRC), "Cortex-A35"},
8407 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8408 AARCH64_FEATURE_CRC), "Cortex-A53"},
8409 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8410 AARCH64_FEATURE_CRC), "Cortex-A57"},
8411 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8412 AARCH64_FEATURE_CRC), "Cortex-A72"},
8413 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8414 AARCH64_FEATURE_CRC), "Cortex-A73"},
8415 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8416 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8418 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8419 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8421 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8422 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8423 "Samsung Exynos M1"},
8424 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8425 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8426 | AARCH64_FEATURE_RDMA),
8428 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8429 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8430 | AARCH64_FEATURE_RDMA),
8431 "Qualcomm QDF24XX"},
8432 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_3,
8433 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8434 "Qualcomm Saphira"},
8435 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8436 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8438 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8439 AARCH64_FEATURE_CRYPTO),
8441 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8442 in earlier releases and is superseded by 'xgene1' in all
8444 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8445 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8446 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8447 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8448 {"generic", AARCH64_ARCH_V8, NULL},
8450 {NULL, AARCH64_ARCH_NONE, NULL}
8453 struct aarch64_arch_option_table
8456 const aarch64_feature_set value;
8459 /* This list should, at a minimum, contain all the architecture names
8460 recognized by GCC. */
8461 static const struct aarch64_arch_option_table aarch64_archs[] = {
8462 {"all", AARCH64_ANY},
8463 {"armv8-a", AARCH64_ARCH_V8},
8464 {"armv8.1-a", AARCH64_ARCH_V8_1},
8465 {"armv8.2-a", AARCH64_ARCH_V8_2},
8466 {"armv8.3-a", AARCH64_ARCH_V8_3},
8467 {"armv8.4-a", AARCH64_ARCH_V8_4},
8468 {NULL, AARCH64_ARCH_NONE}
8471 /* ISA extensions. */
8472 struct aarch64_option_cpu_value_table
8475 const aarch64_feature_set value;
8476 const aarch64_feature_set require; /* Feature dependencies. */
8479 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8480 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8482 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO
8483 | AARCH64_FEATURE_AES
8484 | AARCH64_FEATURE_SHA2, 0),
8485 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8486 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8488 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8490 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8491 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8492 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8494 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8496 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8498 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8499 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8500 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8501 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8502 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8504 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8505 AARCH64_FEATURE (AARCH64_FEATURE_F16
8506 | AARCH64_FEATURE_SIMD
8507 | AARCH64_FEATURE_COMPNUM, 0)},
8508 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8509 AARCH64_FEATURE (AARCH64_FEATURE_F16
8510 | AARCH64_FEATURE_SIMD, 0)},
8511 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8513 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
8515 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
8517 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
8519 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
8521 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA2
8522 | AARCH64_FEATURE_SHA3, 0),
8524 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8527 struct aarch64_long_option_table
8529 const char *option; /* Substring to match. */
8530 const char *help; /* Help information. */
8531 int (*func) (const char *subopt); /* Function to decode sub-option. */
8532 char *deprecated; /* If non-null, print this message. */
8535 /* Transitive closure of features depending on set. */
8536 static aarch64_feature_set
8537 aarch64_feature_disable_set (aarch64_feature_set set)
8539 const struct aarch64_option_cpu_value_table *opt;
8540 aarch64_feature_set prev = 0;
8542 while (prev != set) {
8544 for (opt = aarch64_features; opt->name != NULL; opt++)
8545 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8546 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8551 /* Transitive closure of dependencies of set. */
8552 static aarch64_feature_set
8553 aarch64_feature_enable_set (aarch64_feature_set set)
8555 const struct aarch64_option_cpu_value_table *opt;
8556 aarch64_feature_set prev = 0;
8558 while (prev != set) {
8560 for (opt = aarch64_features; opt->name != NULL; opt++)
8561 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8562 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8568 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8569 bfd_boolean ext_only)
8571 /* We insist on extensions being added before being removed. We achieve
8572 this by using the ADDING_VALUE variable to indicate whether we are
8573 adding an extension (1) or removing it (0) and only allowing it to
8574 change in the order -1 -> 1 -> 0. */
8575 int adding_value = -1;
8576 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8578 /* Copy the feature set, so that we can modify it. */
8582 while (str != NULL && *str != 0)
8584 const struct aarch64_option_cpu_value_table *opt;
8585 const char *ext = NULL;
8592 as_bad (_("invalid architectural extension"));
8596 ext = strchr (++str, '+');
8602 optlen = strlen (str);
8604 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8606 if (adding_value != 0)
8611 else if (optlen > 0)
8613 if (adding_value == -1)
8615 else if (adding_value != 1)
8617 as_bad (_("must specify extensions to add before specifying "
8618 "those to remove"));
8625 as_bad (_("missing architectural extension"));
8629 gas_assert (adding_value != -1);
8631 for (opt = aarch64_features; opt->name != NULL; opt++)
8632 if (strncmp (opt->name, str, optlen) == 0)
8634 aarch64_feature_set set;
8636 /* Add or remove the extension. */
8639 set = aarch64_feature_enable_set (opt->value);
8640 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8644 set = aarch64_feature_disable_set (opt->value);
8645 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8650 if (opt->name == NULL)
8652 as_bad (_("unknown architectural extension `%s'"), str);
8663 aarch64_parse_cpu (const char *str)
8665 const struct aarch64_cpu_option_table *opt;
8666 const char *ext = strchr (str, '+');
8672 optlen = strlen (str);
8676 as_bad (_("missing cpu name `%s'"), str);
8680 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8681 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8683 mcpu_cpu_opt = &opt->value;
8685 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
8690 as_bad (_("unknown cpu `%s'"), str);
8695 aarch64_parse_arch (const char *str)
8697 const struct aarch64_arch_option_table *opt;
8698 const char *ext = strchr (str, '+');
8704 optlen = strlen (str);
8708 as_bad (_("missing architecture name `%s'"), str);
8712 for (opt = aarch64_archs; opt->name != NULL; opt++)
8713 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8715 march_cpu_opt = &opt->value;
8717 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
8722 as_bad (_("unknown architecture `%s'\n"), str);
8727 struct aarch64_option_abi_value_table
8730 enum aarch64_abi_type value;
8733 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8734 {"ilp32", AARCH64_ABI_ILP32},
8735 {"lp64", AARCH64_ABI_LP64},
8739 aarch64_parse_abi (const char *str)
8745 as_bad (_("missing abi name `%s'"), str);
8749 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8750 if (strcmp (str, aarch64_abis[i].name) == 0)
8752 aarch64_abi = aarch64_abis[i].value;
8756 as_bad (_("unknown abi `%s'\n"), str);
8760 static struct aarch64_long_option_table aarch64_long_opts[] = {
8762 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8763 aarch64_parse_abi, NULL},
8764 #endif /* OBJ_ELF */
8765 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8766 aarch64_parse_cpu, NULL},
8767 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8768 aarch64_parse_arch, NULL},
8769 {NULL, NULL, 0, NULL}
8773 md_parse_option (int c, const char *arg)
8775 struct aarch64_option_table *opt;
8776 struct aarch64_long_option_table *lopt;
8782 target_big_endian = 1;
8788 target_big_endian = 0;
8793 /* Listing option. Just ignore these, we don't support additional
8798 for (opt = aarch64_opts; opt->option != NULL; opt++)
8800 if (c == opt->option[0]
8801 && ((arg == NULL && opt->option[1] == 0)
8802 || streq (arg, opt->option + 1)))
8804 /* If the option is deprecated, tell the user. */
8805 if (opt->deprecated != NULL)
8806 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8807 arg ? arg : "", _(opt->deprecated));
8809 if (opt->var != NULL)
8810 *opt->var = opt->value;
8816 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8818 /* These options are expected to have an argument. */
8819 if (c == lopt->option[0]
8821 && strncmp (arg, lopt->option + 1,
8822 strlen (lopt->option + 1)) == 0)
8824 /* If the option is deprecated, tell the user. */
8825 if (lopt->deprecated != NULL)
8826 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8827 _(lopt->deprecated));
8829 /* Call the sup-option parser. */
8830 return lopt->func (arg + strlen (lopt->option) - 1);
8841 md_show_usage (FILE * fp)
8843 struct aarch64_option_table *opt;
8844 struct aarch64_long_option_table *lopt;
8846 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8848 for (opt = aarch64_opts; opt->option != NULL; opt++)
8849 if (opt->help != NULL)
8850 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8852 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8853 if (lopt->help != NULL)
8854 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8858 -EB assemble code for a big-endian cpu\n"));
8863 -EL assemble code for a little-endian cpu\n"));
8867 /* Parse a .cpu directive. */
8870 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8872 const struct aarch64_cpu_option_table *opt;
8878 name = input_line_pointer;
8879 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8880 input_line_pointer++;
8881 saved_char = *input_line_pointer;
8882 *input_line_pointer = 0;
8884 ext = strchr (name, '+');
8887 optlen = ext - name;
8889 optlen = strlen (name);
8891 /* Skip the first "all" entry. */
8892 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8893 if (strlen (opt->name) == optlen
8894 && strncmp (name, opt->name, optlen) == 0)
8896 mcpu_cpu_opt = &opt->value;
8898 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8901 cpu_variant = *mcpu_cpu_opt;
8903 *input_line_pointer = saved_char;
8904 demand_empty_rest_of_line ();
8907 as_bad (_("unknown cpu `%s'"), name);
8908 *input_line_pointer = saved_char;
8909 ignore_rest_of_line ();
8913 /* Parse a .arch directive. */
8916 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8918 const struct aarch64_arch_option_table *opt;
8924 name = input_line_pointer;
8925 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8926 input_line_pointer++;
8927 saved_char = *input_line_pointer;
8928 *input_line_pointer = 0;
8930 ext = strchr (name, '+');
8933 optlen = ext - name;
8935 optlen = strlen (name);
8937 /* Skip the first "all" entry. */
8938 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8939 if (strlen (opt->name) == optlen
8940 && strncmp (name, opt->name, optlen) == 0)
8942 mcpu_cpu_opt = &opt->value;
8944 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8947 cpu_variant = *mcpu_cpu_opt;
8949 *input_line_pointer = saved_char;
8950 demand_empty_rest_of_line ();
8954 as_bad (_("unknown architecture `%s'\n"), name);
8955 *input_line_pointer = saved_char;
8956 ignore_rest_of_line ();
8959 /* Parse a .arch_extension directive. */
8962 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8965 char *ext = input_line_pointer;;
8967 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8968 input_line_pointer++;
8969 saved_char = *input_line_pointer;
8970 *input_line_pointer = 0;
8972 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8975 cpu_variant = *mcpu_cpu_opt;
8977 *input_line_pointer = saved_char;
8978 demand_empty_rest_of_line ();
8981 /* Copy symbol information. */
8984 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8986 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);