1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 Contributed by Cygnus Support, using pieces from other GDB modules.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
35 #include "breakpoint.h"
37 #include "complaints.h"
39 #include "inferior.h" /* for write_pc */
40 #include "gdb-stabs.h"
42 #include "completer.h"
44 #include <sys/types.h>
46 #include "gdb_string.h"
57 /* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
60 extern int hp_som_som_object_present;
61 extern int hp_cxx_exception_support_initialized;
62 #define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
68 int (*ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*pre_add_symbol_hook) (char *);
75 void (*post_add_symbol_hook) (void);
76 void (*target_new_objfile_hook) (struct objfile *);
78 static void clear_symtab_users_cleanup (void *ignore);
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
83 struct complaint oldsyms_complaint =
85 "Replacing old symbols for `%s'", 0, 0
88 struct complaint empty_symtab_complaint =
90 "Empty symbol table found for `%s'", 0, 0
93 struct complaint unknown_option_complaint =
95 "Unknown option `%s' ignored", 0, 0
98 /* External variables and functions referenced. */
100 extern void report_transfer_performance (unsigned long, time_t, time_t);
102 /* Functions this file defines */
105 static int simple_read_overlay_region_table (void);
106 static void simple_free_overlay_region_table (void);
109 static void set_initial_language (void);
111 static void load_command (char *, int);
113 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
115 static void add_symbol_file_command (char *, int);
117 static void add_shared_symbol_files_command (char *, int);
119 static void cashier_psymtab (struct partial_symtab *);
121 bfd *symfile_bfd_open (char *);
123 int get_section_index (struct objfile *, char *);
125 static void find_sym_fns (struct objfile *);
127 static void decrement_reading_symtab (void *);
129 static void overlay_invalidate_all (void);
131 static int overlay_is_mapped (struct obj_section *);
133 void list_overlays_command (char *, int);
135 void map_overlay_command (char *, int);
137 void unmap_overlay_command (char *, int);
139 static void overlay_auto_command (char *, int);
141 static void overlay_manual_command (char *, int);
143 static void overlay_off_command (char *, int);
145 static void overlay_load_command (char *, int);
147 static void overlay_command (char *, int);
149 static void simple_free_overlay_table (void);
151 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
153 static int simple_read_overlay_table (void);
155 static int simple_overlay_update_1 (struct obj_section *);
157 static void add_filename_language (char *ext, enum language lang);
159 static void set_ext_lang_command (char *args, int from_tty);
161 static void info_ext_lang_command (char *args, int from_tty);
163 static void init_filename_language_table (void);
165 void _initialize_symfile (void);
167 /* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
171 static struct sym_fns *symtab_fns = NULL;
173 /* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
176 #ifdef SYMBOL_RELOADING_DEFAULT
177 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
179 int symbol_reloading = 0;
182 /* If non-zero, shared library symbols will be added automatically
183 when the inferior is created, new libraries are loaded, or when
184 attaching to the inferior. This is almost always what users will
185 want to have happen; but for very large programs, the startup time
186 will be excessive, and so if this is a problem, the user can clear
187 this flag and then add the shared library symbols as needed. Note
188 that there is a potential for confusion, since if the shared
189 library symbols are not loaded, commands like "info fun" will *not*
190 report all the functions that are actually present. */
192 int auto_solib_add = 1;
194 /* For systems that support it, a threshold size in megabytes. If
195 automatically adding a new library's symbol table to those already
196 known to the debugger would cause the total shared library symbol
197 size to exceed this threshhold, then the shlib's symbols are not
198 added. The threshold is ignored if the user explicitly asks for a
199 shlib to be added, such as when using the "sharedlibrary"
202 int auto_solib_limit;
205 /* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
210 compare_symbols (const void *s1p, const void *s2p)
212 register struct symbol **s1, **s2;
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
223 compare_psymbols -- compare two partial symbols by name
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
242 compare_psymbols (const void *s1p, const void *s2p)
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
253 if ((st1[0] - st2[0]) || !st1[0])
255 return (st1[0] - st2[0]);
257 else if ((st1[1] - st2[1]) || !st1[1])
259 return (st1[1] - st2[1]);
263 return (strcmp (st1, st2));
268 sort_pst_symbols (struct partial_symtab *pst)
270 /* Sort the global list; don't sort the static list */
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
277 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
280 sort_block_syms (register struct block *b)
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
286 /* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
290 sort_symtab_syms (register struct symtab *s)
292 register struct blockvector *bv;
295 register struct block *b;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
309 /* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
315 obsavestring (char *ptr, int size, struct obstack *obstackp)
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
332 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
336 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
347 /* True if we are nested inside psymtab_to_symtab. */
349 int currently_reading_symtab = 0;
352 decrement_reading_symtab (void *dummy)
354 currently_reading_symtab--;
357 /* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
363 psymtab_to_symtab (register struct partial_symtab *pst)
365 /* If it's been looked up before, return it. */
369 /* If it has not yet been read in, read it. */
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
381 /* Initialize entry point information for this objfile. */
384 init_entry_point_info (struct objfile *objfile)
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
391 /* Executable file -- record its entry point so we'll recognize
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
408 /* Get current entry point address. */
411 entry_point_address (void)
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
416 /* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
426 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
428 asection **lowest = (asection **) obj;
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
443 /* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
446 extern struct section_addr_info *
447 build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
450 struct section_addr_info *sap;
451 const struct section_table *stp;
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
457 for (stp = start, oidx = 0; stp != end; stp++)
459 if (bfd_get_section_flags (stp->bfd,
460 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
461 && oidx < MAX_SECTIONS)
463 sap->other[oidx].addr = stp->addr;
464 sap->other[oidx].name
465 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
466 sap->other[oidx].sectindex = stp->the_bfd_section->index;
475 /* Free all memory allocated by build_section_addr_info_from_section_table. */
478 free_section_addr_info (struct section_addr_info *sap)
482 for (idx = 0; idx < MAX_SECTIONS; idx++)
483 if (sap->other[idx].name)
484 xfree (sap->other[idx].name);
489 /* Parse the user's idea of an offset for dynamic linking, into our idea
490 of how to represent it for fast symbol reading. This is the default
491 version of the sym_fns.sym_offsets function for symbol readers that
492 don't need to do anything special. It allocates a section_offsets table
493 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
496 default_symfile_offsets (struct objfile *objfile,
497 struct section_addr_info *addrs)
500 asection *sect = NULL;
502 objfile->num_sections = SECT_OFF_MAX;
503 objfile->section_offsets = (struct section_offsets *)
504 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
505 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
507 /* Now calculate offsets for section that were specified by the
509 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
511 struct other_sections *osp ;
513 osp = &addrs->other[i] ;
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
523 /* Remember the bfd indexes for the .text, .data, .bss and
526 sect = bfd_get_section_by_name (objfile->obfd, ".text");
528 objfile->sect_index_text = sect->index;
530 sect = bfd_get_section_by_name (objfile->obfd, ".data");
532 objfile->sect_index_data = sect->index;
534 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
536 objfile->sect_index_bss = sect->index;
538 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
540 objfile->sect_index_rodata = sect->index;
542 /* This is where things get really weird... We MUST have valid
543 indices for the various sect_index_* members or gdb will abort.
544 So if for example, there is no ".text" section, we have to
545 accomodate that. Except when explicitly adding symbol files at
546 some address, section_offsets contains nothing but zeros, so it
547 doesn't matter which slot in section_offsets the individual
548 sect_index_* members index into. So if they are all zero, it is
549 safe to just point all the currently uninitialized indices to the
552 for (i = 0; i < objfile->num_sections; i++)
554 if (ANOFFSET (objfile->section_offsets, i) != 0)
559 if (i == objfile->num_sections)
561 if (objfile->sect_index_text == -1)
562 objfile->sect_index_text = 0;
563 if (objfile->sect_index_data == -1)
564 objfile->sect_index_data = 0;
565 if (objfile->sect_index_bss == -1)
566 objfile->sect_index_bss = 0;
567 if (objfile->sect_index_rodata == -1)
568 objfile->sect_index_rodata = 0;
572 /* Process a symbol file, as either the main file or as a dynamically
575 OBJFILE is where the symbols are to be read from.
577 ADDR is the address where the text segment was loaded, unless the
578 objfile is the main symbol file, in which case it is zero.
580 MAINLINE is nonzero if this is the main symbol file, or zero if
581 it's an extra symbol file such as dynamically loaded code.
583 VERBO is nonzero if the caller has printed a verbose message about
584 the symbol reading (and complaints can be more terse about it). */
587 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
588 int mainline, int verbo)
590 asection *lower_sect;
592 CORE_ADDR lower_offset;
593 struct section_addr_info local_addr;
594 struct cleanup *old_chain;
597 /* If ADDRS is NULL, initialize the local section_addr_info struct and
598 point ADDRS to it. We now establish the convention that an addr of
599 zero means no load address was specified. */
603 memset (&local_addr, 0, sizeof (local_addr));
607 init_entry_point_info (objfile);
608 find_sym_fns (objfile);
610 if (objfile->sf == NULL)
611 return; /* No symbols. */
613 /* Make sure that partially constructed symbol tables will be cleaned up
614 if an error occurs during symbol reading. */
615 old_chain = make_cleanup_free_objfile (objfile);
619 /* We will modify the main symbol table, make sure that all its users
620 will be cleaned up if an error occurs during symbol reading. */
621 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
623 /* Since no error yet, throw away the old symbol table. */
625 if (symfile_objfile != NULL)
627 free_objfile (symfile_objfile);
628 symfile_objfile = NULL;
631 /* Currently we keep symbols from the add-symbol-file command.
632 If the user wants to get rid of them, they should do "symbol-file"
633 without arguments first. Not sure this is the best behavior
636 (*objfile->sf->sym_new_init) (objfile);
639 /* Convert addr into an offset rather than an absolute address.
640 We find the lowest address of a loaded segment in the objfile,
641 and assume that <addr> is where that got loaded.
643 We no longer warn if the lowest section is not a text segment (as
644 happens for the PA64 port. */
647 /* Find lowest loadable section to be used as starting point for
648 continguous sections. FIXME!! won't work without call to find
649 .text first, but this assumes text is lowest section. */
650 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
651 if (lower_sect == NULL)
652 bfd_map_over_sections (objfile->obfd, find_lowest_section,
654 if (lower_sect == NULL)
655 warning ("no loadable sections found in added symbol-file %s",
658 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
659 warning ("Lowest section in %s is %s at %s",
661 bfd_section_name (objfile->obfd, lower_sect),
662 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
663 if (lower_sect != NULL)
664 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
668 /* Calculate offsets for the loadable sections.
669 FIXME! Sections must be in order of increasing loadable section
670 so that contiguous sections can use the lower-offset!!!
672 Adjust offsets if the segments are not contiguous.
673 If the section is contiguous, its offset should be set to
674 the offset of the highest loadable section lower than it
675 (the loadable section directly below it in memory).
676 this_offset = lower_offset = lower_addr - lower_orig_addr */
678 /* Calculate offsets for sections. */
679 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
681 if (addrs->other[i].addr != 0)
683 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
686 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
687 lower_offset = addrs->other[i].addr;
688 /* This is the index used by BFD. */
689 addrs->other[i].sectindex = sect->index ;
693 warning ("section %s not found in %s", addrs->other[i].name,
695 addrs->other[i].addr = 0;
699 addrs->other[i].addr = lower_offset;
703 /* Initialize symbol reading routines for this objfile, allow complaints to
704 appear for this new file, and record how verbose to be, then do the
705 initial symbol reading for this file. */
707 (*objfile->sf->sym_init) (objfile);
708 clear_complaints (1, verbo);
710 (*objfile->sf->sym_offsets) (objfile, addrs);
712 #ifndef IBM6000_TARGET
713 /* This is a SVR4/SunOS specific hack, I think. In any event, it
714 screws RS/6000. sym_offsets should be doing this sort of thing,
715 because it knows the mapping between bfd sections and
717 /* This is a hack. As far as I can tell, section offsets are not
718 target dependent. They are all set to addr with a couple of
719 exceptions. The exceptions are sysvr4 shared libraries, whose
720 offsets are kept in solib structures anyway and rs6000 xcoff
721 which handles shared libraries in a completely unique way.
723 Section offsets are built similarly, except that they are built
724 by adding addr in all cases because there is no clear mapping
725 from section_offsets into actual sections. Note that solib.c
726 has a different algorithm for finding section offsets.
728 These should probably all be collapsed into some target
729 independent form of shared library support. FIXME. */
733 struct obj_section *s;
735 /* Map section offsets in "addr" back to the object's
736 sections by comparing the section names with bfd's
737 section names. Then adjust the section address by
738 the offset. */ /* for gdb/13815 */
740 ALL_OBJFILE_OSECTIONS (objfile, s)
742 CORE_ADDR s_addr = 0;
746 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
748 if (strcmp (bfd_section_name (s->objfile->obfd,
750 addrs->other[i].name) == 0)
751 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
753 s->addr -= s->offset;
755 s->endaddr -= s->offset;
756 s->endaddr += s_addr;
760 #endif /* not IBM6000_TARGET */
762 (*objfile->sf->sym_read) (objfile, mainline);
764 if (!have_partial_symbols () && !have_full_symbols ())
767 printf_filtered ("(no debugging symbols found)...");
771 /* Don't allow char * to have a typename (else would get caddr_t).
772 Ditto void *. FIXME: Check whether this is now done by all the
773 symbol readers themselves (many of them now do), and if so remove
776 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
777 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
779 /* Mark the objfile has having had initial symbol read attempted. Note
780 that this does not mean we found any symbols... */
782 objfile->flags |= OBJF_SYMS;
784 /* Discard cleanups as symbol reading was successful. */
786 discard_cleanups (old_chain);
788 /* Call this after reading in a new symbol table to give target
789 dependent code a crack at the new symbols. For instance, this
790 could be used to update the values of target-specific symbols GDB
791 needs to keep track of (such as _sigtramp, or whatever). */
793 TARGET_SYMFILE_POSTREAD (objfile);
796 /* Perform required actions after either reading in the initial
797 symbols for a new objfile, or mapping in the symbols from a reusable
801 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
804 /* If this is the main symbol file we have to clean up all users of the
805 old main symbol file. Otherwise it is sufficient to fixup all the
806 breakpoints that may have been redefined by this symbol file. */
809 /* OK, make it the "real" symbol file. */
810 symfile_objfile = objfile;
812 clear_symtab_users ();
816 breakpoint_re_set ();
819 /* We're done reading the symbol file; finish off complaints. */
820 clear_complaints (0, verbo);
823 /* Process a symbol file, as either the main file or as a dynamically
826 NAME is the file name (which will be tilde-expanded and made
827 absolute herein) (but we don't free or modify NAME itself).
828 FROM_TTY says how verbose to be. MAINLINE specifies whether this
829 is the main symbol file, or whether it's an extra symbol file such
830 as dynamically loaded code. If !mainline, ADDR is the address
831 where the text segment was loaded.
833 Upon success, returns a pointer to the objfile that was added.
834 Upon failure, jumps back to command level (never returns). */
837 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
838 int mainline, int flags)
840 struct objfile *objfile;
841 struct partial_symtab *psymtab;
844 /* Open a bfd for the file, and give user a chance to burp if we'd be
845 interactively wiping out any existing symbols. */
847 abfd = symfile_bfd_open (name);
849 if ((have_full_symbols () || have_partial_symbols ())
852 && !query ("Load new symbol table from \"%s\"? ", name))
853 error ("Not confirmed.");
855 objfile = allocate_objfile (abfd, flags);
857 /* If the objfile uses a mapped symbol file, and we have a psymtab for
858 it, then skip reading any symbols at this time. */
860 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
862 /* We mapped in an existing symbol table file that already has had
863 initial symbol reading performed, so we can skip that part. Notify
864 the user that instead of reading the symbols, they have been mapped.
866 if (from_tty || info_verbose)
868 printf_filtered ("Mapped symbols for %s...", name);
870 gdb_flush (gdb_stdout);
872 init_entry_point_info (objfile);
873 find_sym_fns (objfile);
877 /* We either created a new mapped symbol table, mapped an existing
878 symbol table file which has not had initial symbol reading
879 performed, or need to read an unmapped symbol table. */
880 if (from_tty || info_verbose)
882 if (pre_add_symbol_hook)
883 pre_add_symbol_hook (name);
886 printf_filtered ("Reading symbols from %s...", name);
888 gdb_flush (gdb_stdout);
891 syms_from_objfile (objfile, addrs, mainline, from_tty);
894 /* We now have at least a partial symbol table. Check to see if the
895 user requested that all symbols be read on initial access via either
896 the gdb startup command line or on a per symbol file basis. Expand
897 all partial symbol tables for this objfile if so. */
899 if ((flags & OBJF_READNOW) || readnow_symbol_files)
901 if (from_tty || info_verbose)
903 printf_filtered ("expanding to full symbols...");
905 gdb_flush (gdb_stdout);
908 for (psymtab = objfile->psymtabs;
910 psymtab = psymtab->next)
912 psymtab_to_symtab (psymtab);
916 if (from_tty || info_verbose)
918 if (post_add_symbol_hook)
919 post_add_symbol_hook ();
922 printf_filtered ("done.\n");
923 gdb_flush (gdb_stdout);
927 if (objfile->sf == NULL)
928 return objfile; /* No symbols. */
930 new_symfile_objfile (objfile, mainline, from_tty);
932 if (target_new_objfile_hook)
933 target_new_objfile_hook (objfile);
938 /* Call symbol_file_add() with default values and update whatever is
939 affected by the loading of a new main().
940 Used when the file is supplied in the gdb command line
941 and by some targets with special loading requirements.
942 The auxiliary function, symbol_file_add_main_1(), has the flags
943 argument for the switches that can only be specified in the symbol_file
947 symbol_file_add_main (char *args, int from_tty)
949 symbol_file_add_main_1 (args, from_tty, 0);
953 symbol_file_add_main_1 (char *args, int from_tty, int flags)
955 symbol_file_add (args, from_tty, NULL, 1, flags);
958 RESET_HP_UX_GLOBALS ();
961 /* Getting new symbols may change our opinion about
962 what is frameless. */
963 reinit_frame_cache ();
965 set_initial_language ();
969 symbol_file_clear (int from_tty)
971 if ((have_full_symbols () || have_partial_symbols ())
973 && !query ("Discard symbol table from `%s'? ",
974 symfile_objfile->name))
975 error ("Not confirmed.");
976 free_all_objfiles ();
978 /* solib descriptors may have handles to objfiles. Since their
979 storage has just been released, we'd better wipe the solib
982 #if defined(SOLIB_RESTART)
986 symfile_objfile = NULL;
988 printf_unfiltered ("No symbol file now.\n");
990 RESET_HP_UX_GLOBALS ();
994 /* This is the symbol-file command. Read the file, analyze its
995 symbols, and add a struct symtab to a symtab list. The syntax of
996 the command is rather bizarre--(1) buildargv implements various
997 quoting conventions which are undocumented and have little or
998 nothing in common with the way things are quoted (or not quoted)
999 elsewhere in GDB, (2) options are used, which are not generally
1000 used in GDB (perhaps "set mapped on", "set readnow on" would be
1001 better), (3) the order of options matters, which is contrary to GNU
1002 conventions (because it is confusing and inconvenient). */
1003 /* Note: ezannoni 2000-04-17. This function used to have support for
1004 rombug (see remote-os9k.c). It consisted of a call to target_link()
1005 (target.c) to get the address of the text segment from the target,
1006 and pass that to symbol_file_add(). This is no longer supported. */
1009 symbol_file_command (char *args, int from_tty)
1013 struct cleanup *cleanups;
1014 int flags = OBJF_USERLOADED;
1020 symbol_file_clear (from_tty);
1024 if ((argv = buildargv (args)) == NULL)
1028 cleanups = make_cleanup_freeargv (argv);
1029 while (*argv != NULL)
1031 if (STREQ (*argv, "-mapped"))
1032 flags |= OBJF_MAPPED;
1034 if (STREQ (*argv, "-readnow"))
1035 flags |= OBJF_READNOW;
1038 error ("unknown option `%s'", *argv);
1043 symbol_file_add_main_1 (name, from_tty, flags);
1050 error ("no symbol file name was specified");
1052 do_cleanups (cleanups);
1056 /* Set the initial language.
1058 A better solution would be to record the language in the psymtab when reading
1059 partial symbols, and then use it (if known) to set the language. This would
1060 be a win for formats that encode the language in an easily discoverable place,
1061 such as DWARF. For stabs, we can jump through hoops looking for specially
1062 named symbols or try to intuit the language from the specific type of stabs
1063 we find, but we can't do that until later when we read in full symbols.
1067 set_initial_language (void)
1069 struct partial_symtab *pst;
1070 enum language lang = language_unknown;
1072 pst = find_main_psymtab ();
1075 if (pst->filename != NULL)
1077 lang = deduce_language_from_filename (pst->filename);
1079 if (lang == language_unknown)
1081 /* Make C the default language */
1084 set_language (lang);
1085 expected_language = current_language; /* Don't warn the user */
1089 /* Open file specified by NAME and hand it off to BFD for preliminary
1090 analysis. Result is a newly initialized bfd *, which includes a newly
1091 malloc'd` copy of NAME (tilde-expanded and made absolute).
1092 In case of trouble, error() is called. */
1095 symfile_bfd_open (char *name)
1099 char *absolute_name;
1103 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1105 /* Look down path for it, allocate 2nd new malloc'd copy. */
1106 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1107 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1110 char *exename = alloca (strlen (name) + 5);
1111 strcat (strcpy (exename, name), ".exe");
1112 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1118 make_cleanup (xfree, name);
1119 perror_with_name (name);
1121 xfree (name); /* Free 1st new malloc'd copy */
1122 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1123 /* It'll be freed in free_objfile(). */
1125 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1129 make_cleanup (xfree, name);
1130 error ("\"%s\": can't open to read symbols: %s.", name,
1131 bfd_errmsg (bfd_get_error ()));
1133 sym_bfd->cacheable = 1;
1135 if (!bfd_check_format (sym_bfd, bfd_object))
1137 /* FIXME: should be checking for errors from bfd_close (for one thing,
1138 on error it does not free all the storage associated with the
1140 bfd_close (sym_bfd); /* This also closes desc */
1141 make_cleanup (xfree, name);
1142 error ("\"%s\": can't read symbols: %s.", name,
1143 bfd_errmsg (bfd_get_error ()));
1148 /* Return the section index for the given section name. Return -1 if
1149 the section was not found. */
1151 get_section_index (struct objfile *objfile, char *section_name)
1153 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1160 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1161 startup by the _initialize routine in each object file format reader,
1162 to register information about each format the the reader is prepared
1166 add_symtab_fns (struct sym_fns *sf)
1168 sf->next = symtab_fns;
1173 /* Initialize to read symbols from the symbol file sym_bfd. It either
1174 returns or calls error(). The result is an initialized struct sym_fns
1175 in the objfile structure, that contains cached information about the
1179 find_sym_fns (struct objfile *objfile)
1182 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1183 char *our_target = bfd_get_target (objfile->obfd);
1185 if (our_flavour == bfd_target_srec_flavour
1186 || our_flavour == bfd_target_ihex_flavour
1187 || our_flavour == bfd_target_tekhex_flavour)
1188 return; /* No symbols. */
1190 /* Special kludge for apollo. See dstread.c. */
1191 if (STREQN (our_target, "apollo", 6))
1192 our_flavour = (enum bfd_flavour) -2;
1194 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1196 if (our_flavour == sf->sym_flavour)
1202 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1203 bfd_get_target (objfile->obfd));
1206 /* This function runs the load command of our current target. */
1209 load_command (char *arg, int from_tty)
1212 arg = get_exec_file (1);
1213 target_load (arg, from_tty);
1215 /* After re-loading the executable, we don't really know which
1216 overlays are mapped any more. */
1217 overlay_cache_invalid = 1;
1220 /* This version of "load" should be usable for any target. Currently
1221 it is just used for remote targets, not inftarg.c or core files,
1222 on the theory that only in that case is it useful.
1224 Avoiding xmodem and the like seems like a win (a) because we don't have
1225 to worry about finding it, and (b) On VMS, fork() is very slow and so
1226 we don't want to run a subprocess. On the other hand, I'm not sure how
1227 performance compares. */
1229 static int download_write_size = 512;
1230 static int validate_download = 0;
1232 /* Callback service function for generic_load (bfd_map_over_sections). */
1235 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1237 bfd_size_type *sum = data;
1239 *sum += bfd_get_section_size_before_reloc (asec);
1242 /* Opaque data for load_section_callback. */
1243 struct load_section_data {
1244 unsigned long load_offset;
1245 unsigned long write_count;
1246 unsigned long data_count;
1247 bfd_size_type total_size;
1250 /* Callback service function for generic_load (bfd_map_over_sections). */
1253 load_section_callback (bfd *abfd, asection *asec, void *data)
1255 struct load_section_data *args = data;
1257 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1259 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1263 struct cleanup *old_chain;
1264 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1265 bfd_size_type block_size;
1267 const char *sect_name = bfd_get_section_name (abfd, asec);
1270 if (download_write_size > 0 && size > download_write_size)
1271 block_size = download_write_size;
1275 buffer = xmalloc (size);
1276 old_chain = make_cleanup (xfree, buffer);
1278 /* Is this really necessary? I guess it gives the user something
1279 to look at during a long download. */
1280 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1281 sect_name, paddr_nz (size), paddr_nz (lma));
1283 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1289 bfd_size_type this_transfer = size - sent;
1291 if (this_transfer >= block_size)
1292 this_transfer = block_size;
1293 len = target_write_memory_partial (lma, buffer,
1294 this_transfer, &err);
1297 if (validate_download)
1299 /* Broken memories and broken monitors manifest
1300 themselves here when bring new computers to
1301 life. This doubles already slow downloads. */
1302 /* NOTE: cagney/1999-10-18: A more efficient
1303 implementation might add a verify_memory()
1304 method to the target vector and then use
1305 that. remote.c could implement that method
1306 using the ``qCRC'' packet. */
1307 char *check = xmalloc (len);
1308 struct cleanup *verify_cleanups =
1309 make_cleanup (xfree, check);
1311 if (target_read_memory (lma, check, len) != 0)
1312 error ("Download verify read failed at 0x%s",
1314 if (memcmp (buffer, check, len) != 0)
1315 error ("Download verify compare failed at 0x%s",
1317 do_cleanups (verify_cleanups);
1319 args->data_count += len;
1322 args->write_count += 1;
1325 || (ui_load_progress_hook != NULL
1326 && ui_load_progress_hook (sect_name, sent)))
1327 error ("Canceled the download");
1329 if (show_load_progress != NULL)
1330 show_load_progress (sect_name, sent, size,
1331 args->data_count, args->total_size);
1333 while (sent < size);
1336 error ("Memory access error while loading section %s.", sect_name);
1338 do_cleanups (old_chain);
1344 generic_load (char *args, int from_tty)
1348 time_t start_time, end_time; /* Start and end times of download */
1350 struct cleanup *old_cleanups;
1352 struct load_section_data cbdata;
1355 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1356 cbdata.write_count = 0; /* Number of writes needed. */
1357 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1358 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1360 /* Parse the input argument - the user can specify a load offset as
1361 a second argument. */
1362 filename = xmalloc (strlen (args) + 1);
1363 old_cleanups = make_cleanup (xfree, filename);
1364 strcpy (filename, args);
1365 offptr = strchr (filename, ' ');
1370 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1371 if (offptr == endptr)
1372 error ("Invalid download offset:%s\n", offptr);
1376 cbdata.load_offset = 0;
1378 /* Open the file for loading. */
1379 loadfile_bfd = bfd_openr (filename, gnutarget);
1380 if (loadfile_bfd == NULL)
1382 perror_with_name (filename);
1386 /* FIXME: should be checking for errors from bfd_close (for one thing,
1387 on error it does not free all the storage associated with the
1389 make_cleanup_bfd_close (loadfile_bfd);
1391 if (!bfd_check_format (loadfile_bfd, bfd_object))
1393 error ("\"%s\" is not an object file: %s", filename,
1394 bfd_errmsg (bfd_get_error ()));
1397 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1398 (void *) &cbdata.total_size);
1400 start_time = time (NULL);
1402 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1404 end_time = time (NULL);
1406 entry = bfd_get_start_address (loadfile_bfd);
1407 ui_out_text (uiout, "Start address ");
1408 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1409 ui_out_text (uiout, ", load size ");
1410 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1411 ui_out_text (uiout, "\n");
1412 /* We were doing this in remote-mips.c, I suspect it is right
1413 for other targets too. */
1416 /* FIXME: are we supposed to call symbol_file_add or not? According to
1417 a comment from remote-mips.c (where a call to symbol_file_add was
1418 commented out), making the call confuses GDB if more than one file is
1419 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1422 print_transfer_performance (gdb_stdout, cbdata.data_count,
1423 cbdata.write_count, end_time - start_time);
1425 do_cleanups (old_cleanups);
1428 /* Report how fast the transfer went. */
1430 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1431 replaced by print_transfer_performance (with a very different
1432 function signature). */
1435 report_transfer_performance (unsigned long data_count, time_t start_time,
1438 print_transfer_performance (gdb_stdout, data_count,
1439 end_time - start_time, 0);
1443 print_transfer_performance (struct ui_file *stream,
1444 unsigned long data_count,
1445 unsigned long write_count,
1446 unsigned long time_count)
1448 ui_out_text (uiout, "Transfer rate: ");
1451 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1452 (data_count * 8) / time_count);
1453 ui_out_text (uiout, " bits/sec");
1457 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1458 ui_out_text (uiout, " bits in <1 sec");
1460 if (write_count > 0)
1462 ui_out_text (uiout, ", ");
1463 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1464 ui_out_text (uiout, " bytes/write");
1466 ui_out_text (uiout, ".\n");
1469 /* This function allows the addition of incrementally linked object files.
1470 It does not modify any state in the target, only in the debugger. */
1471 /* Note: ezannoni 2000-04-13 This function/command used to have a
1472 special case syntax for the rombug target (Rombug is the boot
1473 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1474 rombug case, the user doesn't need to supply a text address,
1475 instead a call to target_link() (in target.c) would supply the
1476 value to use. We are now discontinuing this type of ad hoc syntax. */
1480 add_symbol_file_command (char *args, int from_tty)
1482 char *filename = NULL;
1483 int flags = OBJF_USERLOADED;
1485 int expecting_option = 0;
1486 int section_index = 0;
1490 int expecting_sec_name = 0;
1491 int expecting_sec_addr = 0;
1497 } sect_opts[SECT_OFF_MAX];
1499 struct section_addr_info section_addrs;
1500 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1505 error ("add-symbol-file takes a file name and an address");
1507 /* Make a copy of the string that we can safely write into. */
1508 args = xstrdup (args);
1510 /* Ensure section_addrs is initialized */
1511 memset (§ion_addrs, 0, sizeof (section_addrs));
1513 while (*args != '\000')
1515 /* Any leading spaces? */
1516 while (isspace (*args))
1519 /* Point arg to the beginning of the argument. */
1522 /* Move args pointer over the argument. */
1523 while ((*args != '\000') && !isspace (*args))
1526 /* If there are more arguments, terminate arg and
1528 if (*args != '\000')
1531 /* Now process the argument. */
1534 /* The first argument is the file name. */
1535 filename = tilde_expand (arg);
1536 make_cleanup (xfree, filename);
1541 /* The second argument is always the text address at which
1542 to load the program. */
1543 sect_opts[section_index].name = ".text";
1544 sect_opts[section_index].value = arg;
1549 /* It's an option (starting with '-') or it's an argument
1554 if (strcmp (arg, "-mapped") == 0)
1555 flags |= OBJF_MAPPED;
1557 if (strcmp (arg, "-readnow") == 0)
1558 flags |= OBJF_READNOW;
1560 if (strcmp (arg, "-s") == 0)
1562 if (section_index >= SECT_OFF_MAX)
1563 error ("Too many sections specified.");
1564 expecting_sec_name = 1;
1565 expecting_sec_addr = 1;
1570 if (expecting_sec_name)
1572 sect_opts[section_index].name = arg;
1573 expecting_sec_name = 0;
1576 if (expecting_sec_addr)
1578 sect_opts[section_index].value = arg;
1579 expecting_sec_addr = 0;
1583 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1589 /* Print the prompt for the query below. And save the arguments into
1590 a sect_addr_info structure to be passed around to other
1591 functions. We have to split this up into separate print
1592 statements because local_hex_string returns a local static
1595 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1596 for (i = 0; i < section_index; i++)
1599 char *val = sect_opts[i].value;
1600 char *sec = sect_opts[i].name;
1602 val = sect_opts[i].value;
1603 if (val[0] == '0' && val[1] == 'x')
1604 addr = strtoul (val+2, NULL, 16);
1606 addr = strtoul (val, NULL, 10);
1608 /* Here we store the section offsets in the order they were
1609 entered on the command line. */
1610 section_addrs.other[sec_num].name = sec;
1611 section_addrs.other[sec_num].addr = addr;
1612 printf_filtered ("\t%s_addr = %s\n",
1614 local_hex_string ((unsigned long)addr));
1617 /* The object's sections are initialized when a
1618 call is made to build_objfile_section_table (objfile).
1619 This happens in reread_symbols.
1620 At this point, we don't know what file type this is,
1621 so we can't determine what section names are valid. */
1624 if (from_tty && (!query ("%s", "")))
1625 error ("Not confirmed.");
1627 symbol_file_add (filename, from_tty, §ion_addrs, 0, flags);
1629 /* Getting new symbols may change our opinion about what is
1631 reinit_frame_cache ();
1632 do_cleanups (my_cleanups);
1636 add_shared_symbol_files_command (char *args, int from_tty)
1638 #ifdef ADD_SHARED_SYMBOL_FILES
1639 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1641 error ("This command is not available in this configuration of GDB.");
1645 /* Re-read symbols if a symbol-file has changed. */
1647 reread_symbols (void)
1649 struct objfile *objfile;
1652 struct stat new_statbuf;
1655 /* With the addition of shared libraries, this should be modified,
1656 the load time should be saved in the partial symbol tables, since
1657 different tables may come from different source files. FIXME.
1658 This routine should then walk down each partial symbol table
1659 and see if the symbol table that it originates from has been changed */
1661 for (objfile = object_files; objfile; objfile = objfile->next)
1665 #ifdef IBM6000_TARGET
1666 /* If this object is from a shared library, then you should
1667 stat on the library name, not member name. */
1669 if (objfile->obfd->my_archive)
1670 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1673 res = stat (objfile->name, &new_statbuf);
1676 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1677 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1681 new_modtime = new_statbuf.st_mtime;
1682 if (new_modtime != objfile->mtime)
1684 struct cleanup *old_cleanups;
1685 struct section_offsets *offsets;
1687 char *obfd_filename;
1689 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1692 /* There are various functions like symbol_file_add,
1693 symfile_bfd_open, syms_from_objfile, etc., which might
1694 appear to do what we want. But they have various other
1695 effects which we *don't* want. So we just do stuff
1696 ourselves. We don't worry about mapped files (for one thing,
1697 any mapped file will be out of date). */
1699 /* If we get an error, blow away this objfile (not sure if
1700 that is the correct response for things like shared
1702 old_cleanups = make_cleanup_free_objfile (objfile);
1703 /* We need to do this whenever any symbols go away. */
1704 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1706 /* Clean up any state BFD has sitting around. We don't need
1707 to close the descriptor but BFD lacks a way of closing the
1708 BFD without closing the descriptor. */
1709 obfd_filename = bfd_get_filename (objfile->obfd);
1710 if (!bfd_close (objfile->obfd))
1711 error ("Can't close BFD for %s: %s", objfile->name,
1712 bfd_errmsg (bfd_get_error ()));
1713 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1714 if (objfile->obfd == NULL)
1715 error ("Can't open %s to read symbols.", objfile->name);
1716 /* bfd_openr sets cacheable to true, which is what we want. */
1717 if (!bfd_check_format (objfile->obfd, bfd_object))
1718 error ("Can't read symbols from %s: %s.", objfile->name,
1719 bfd_errmsg (bfd_get_error ()));
1721 /* Save the offsets, we will nuke them with the rest of the
1723 num_offsets = objfile->num_sections;
1724 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1725 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1727 /* Nuke all the state that we will re-read. Much of the following
1728 code which sets things to NULL really is necessary to tell
1729 other parts of GDB that there is nothing currently there. */
1731 /* FIXME: Do we have to free a whole linked list, or is this
1733 if (objfile->global_psymbols.list)
1734 xmfree (objfile->md, objfile->global_psymbols.list);
1735 memset (&objfile->global_psymbols, 0,
1736 sizeof (objfile->global_psymbols));
1737 if (objfile->static_psymbols.list)
1738 xmfree (objfile->md, objfile->static_psymbols.list);
1739 memset (&objfile->static_psymbols, 0,
1740 sizeof (objfile->static_psymbols));
1742 /* Free the obstacks for non-reusable objfiles */
1743 free_bcache (&objfile->psymbol_cache);
1744 free_bcache (&objfile->macro_cache);
1745 obstack_free (&objfile->psymbol_obstack, 0);
1746 obstack_free (&objfile->symbol_obstack, 0);
1747 obstack_free (&objfile->type_obstack, 0);
1748 objfile->sections = NULL;
1749 objfile->symtabs = NULL;
1750 objfile->psymtabs = NULL;
1751 objfile->free_psymtabs = NULL;
1752 objfile->msymbols = NULL;
1753 objfile->minimal_symbol_count = 0;
1754 memset (&objfile->msymbol_hash, 0,
1755 sizeof (objfile->msymbol_hash));
1756 memset (&objfile->msymbol_demangled_hash, 0,
1757 sizeof (objfile->msymbol_demangled_hash));
1758 objfile->fundamental_types = NULL;
1759 if (objfile->sf != NULL)
1761 (*objfile->sf->sym_finish) (objfile);
1764 /* We never make this a mapped file. */
1766 /* obstack_specify_allocation also initializes the obstack so
1768 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1770 obstack_specify_allocation (&objfile->macro_cache.cache, 0, 0,
1772 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1774 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1776 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1778 if (build_objfile_section_table (objfile))
1780 error ("Can't find the file sections in `%s': %s",
1781 objfile->name, bfd_errmsg (bfd_get_error ()));
1784 /* We use the same section offsets as from last time. I'm not
1785 sure whether that is always correct for shared libraries. */
1786 objfile->section_offsets = (struct section_offsets *)
1787 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1788 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1789 objfile->num_sections = num_offsets;
1791 /* What the hell is sym_new_init for, anyway? The concept of
1792 distinguishing between the main file and additional files
1793 in this way seems rather dubious. */
1794 if (objfile == symfile_objfile)
1796 (*objfile->sf->sym_new_init) (objfile);
1798 RESET_HP_UX_GLOBALS ();
1802 (*objfile->sf->sym_init) (objfile);
1803 clear_complaints (1, 1);
1804 /* The "mainline" parameter is a hideous hack; I think leaving it
1805 zero is OK since dbxread.c also does what it needs to do if
1806 objfile->global_psymbols.size is 0. */
1807 (*objfile->sf->sym_read) (objfile, 0);
1808 if (!have_partial_symbols () && !have_full_symbols ())
1811 printf_filtered ("(no debugging symbols found)\n");
1814 objfile->flags |= OBJF_SYMS;
1816 /* We're done reading the symbol file; finish off complaints. */
1817 clear_complaints (0, 1);
1819 /* Getting new symbols may change our opinion about what is
1822 reinit_frame_cache ();
1824 /* Discard cleanups as symbol reading was successful. */
1825 discard_cleanups (old_cleanups);
1827 /* If the mtime has changed between the time we set new_modtime
1828 and now, we *want* this to be out of date, so don't call stat
1830 objfile->mtime = new_modtime;
1833 /* Call this after reading in a new symbol table to give target
1834 dependent code a crack at the new symbols. For instance, this
1835 could be used to update the values of target-specific symbols GDB
1836 needs to keep track of (such as _sigtramp, or whatever). */
1838 TARGET_SYMFILE_POSTREAD (objfile);
1844 clear_symtab_users ();
1856 static filename_language *filename_language_table;
1857 static int fl_table_size, fl_table_next;
1860 add_filename_language (char *ext, enum language lang)
1862 if (fl_table_next >= fl_table_size)
1864 fl_table_size += 10;
1865 filename_language_table =
1866 xrealloc (filename_language_table,
1867 fl_table_size * sizeof (*filename_language_table));
1870 filename_language_table[fl_table_next].ext = xstrdup (ext);
1871 filename_language_table[fl_table_next].lang = lang;
1875 static char *ext_args;
1878 set_ext_lang_command (char *args, int from_tty)
1881 char *cp = ext_args;
1884 /* First arg is filename extension, starting with '.' */
1886 error ("'%s': Filename extension must begin with '.'", ext_args);
1888 /* Find end of first arg. */
1889 while (*cp && !isspace (*cp))
1893 error ("'%s': two arguments required -- filename extension and language",
1896 /* Null-terminate first arg */
1899 /* Find beginning of second arg, which should be a source language. */
1900 while (*cp && isspace (*cp))
1904 error ("'%s': two arguments required -- filename extension and language",
1907 /* Lookup the language from among those we know. */
1908 lang = language_enum (cp);
1910 /* Now lookup the filename extension: do we already know it? */
1911 for (i = 0; i < fl_table_next; i++)
1912 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1915 if (i >= fl_table_next)
1917 /* new file extension */
1918 add_filename_language (ext_args, lang);
1922 /* redefining a previously known filename extension */
1925 /* query ("Really make files of type %s '%s'?", */
1926 /* ext_args, language_str (lang)); */
1928 xfree (filename_language_table[i].ext);
1929 filename_language_table[i].ext = xstrdup (ext_args);
1930 filename_language_table[i].lang = lang;
1935 info_ext_lang_command (char *args, int from_tty)
1939 printf_filtered ("Filename extensions and the languages they represent:");
1940 printf_filtered ("\n\n");
1941 for (i = 0; i < fl_table_next; i++)
1942 printf_filtered ("\t%s\t- %s\n",
1943 filename_language_table[i].ext,
1944 language_str (filename_language_table[i].lang));
1948 init_filename_language_table (void)
1950 if (fl_table_size == 0) /* protect against repetition */
1954 filename_language_table =
1955 xmalloc (fl_table_size * sizeof (*filename_language_table));
1956 add_filename_language (".c", language_c);
1957 add_filename_language (".C", language_cplus);
1958 add_filename_language (".cc", language_cplus);
1959 add_filename_language (".cp", language_cplus);
1960 add_filename_language (".cpp", language_cplus);
1961 add_filename_language (".cxx", language_cplus);
1962 add_filename_language (".c++", language_cplus);
1963 add_filename_language (".java", language_java);
1964 add_filename_language (".class", language_java);
1965 add_filename_language (".ch", language_chill);
1966 add_filename_language (".c186", language_chill);
1967 add_filename_language (".c286", language_chill);
1968 add_filename_language (".f", language_fortran);
1969 add_filename_language (".F", language_fortran);
1970 add_filename_language (".s", language_asm);
1971 add_filename_language (".S", language_asm);
1972 add_filename_language (".pas", language_pascal);
1973 add_filename_language (".p", language_pascal);
1974 add_filename_language (".pp", language_pascal);
1979 deduce_language_from_filename (char *filename)
1984 if (filename != NULL)
1985 if ((cp = strrchr (filename, '.')) != NULL)
1986 for (i = 0; i < fl_table_next; i++)
1987 if (strcmp (cp, filename_language_table[i].ext) == 0)
1988 return filename_language_table[i].lang;
1990 return language_unknown;
1995 Allocate and partly initialize a new symbol table. Return a pointer
1996 to it. error() if no space.
1998 Caller must set these fields:
2004 possibly free_named_symtabs (symtab->filename);
2008 allocate_symtab (char *filename, struct objfile *objfile)
2010 register struct symtab *symtab;
2012 symtab = (struct symtab *)
2013 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2014 memset (symtab, 0, sizeof (*symtab));
2015 symtab->filename = obsavestring (filename, strlen (filename),
2016 &objfile->symbol_obstack);
2017 symtab->fullname = NULL;
2018 symtab->language = deduce_language_from_filename (filename);
2019 symtab->debugformat = obsavestring ("unknown", 7,
2020 &objfile->symbol_obstack);
2022 /* Hook it to the objfile it comes from */
2024 symtab->objfile = objfile;
2025 symtab->next = objfile->symtabs;
2026 objfile->symtabs = symtab;
2028 /* FIXME: This should go away. It is only defined for the Z8000,
2029 and the Z8000 definition of this macro doesn't have anything to
2030 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2031 here for convenience. */
2032 #ifdef INIT_EXTRA_SYMTAB_INFO
2033 INIT_EXTRA_SYMTAB_INFO (symtab);
2039 struct partial_symtab *
2040 allocate_psymtab (char *filename, struct objfile *objfile)
2042 struct partial_symtab *psymtab;
2044 if (objfile->free_psymtabs)
2046 psymtab = objfile->free_psymtabs;
2047 objfile->free_psymtabs = psymtab->next;
2050 psymtab = (struct partial_symtab *)
2051 obstack_alloc (&objfile->psymbol_obstack,
2052 sizeof (struct partial_symtab));
2054 memset (psymtab, 0, sizeof (struct partial_symtab));
2055 psymtab->filename = obsavestring (filename, strlen (filename),
2056 &objfile->psymbol_obstack);
2057 psymtab->symtab = NULL;
2059 /* Prepend it to the psymtab list for the objfile it belongs to.
2060 Psymtabs are searched in most recent inserted -> least recent
2063 psymtab->objfile = objfile;
2064 psymtab->next = objfile->psymtabs;
2065 objfile->psymtabs = psymtab;
2068 struct partial_symtab **prev_pst;
2069 psymtab->objfile = objfile;
2070 psymtab->next = NULL;
2071 prev_pst = &(objfile->psymtabs);
2072 while ((*prev_pst) != NULL)
2073 prev_pst = &((*prev_pst)->next);
2074 (*prev_pst) = psymtab;
2082 discard_psymtab (struct partial_symtab *pst)
2084 struct partial_symtab **prev_pst;
2087 Empty psymtabs happen as a result of header files which don't
2088 have any symbols in them. There can be a lot of them. But this
2089 check is wrong, in that a psymtab with N_SLINE entries but
2090 nothing else is not empty, but we don't realize that. Fixing
2091 that without slowing things down might be tricky. */
2093 /* First, snip it out of the psymtab chain */
2095 prev_pst = &(pst->objfile->psymtabs);
2096 while ((*prev_pst) != pst)
2097 prev_pst = &((*prev_pst)->next);
2098 (*prev_pst) = pst->next;
2100 /* Next, put it on a free list for recycling */
2102 pst->next = pst->objfile->free_psymtabs;
2103 pst->objfile->free_psymtabs = pst;
2107 /* Reset all data structures in gdb which may contain references to symbol
2111 clear_symtab_users (void)
2113 /* Someday, we should do better than this, by only blowing away
2114 the things that really need to be blown. */
2115 clear_value_history ();
2117 clear_internalvars ();
2118 breakpoint_re_set ();
2119 set_default_breakpoint (0, 0, 0, 0);
2120 current_source_symtab = 0;
2121 current_source_line = 0;
2122 clear_pc_function_cache ();
2123 if (target_new_objfile_hook)
2124 target_new_objfile_hook (NULL);
2128 clear_symtab_users_cleanup (void *ignore)
2130 clear_symtab_users ();
2133 /* clear_symtab_users_once:
2135 This function is run after symbol reading, or from a cleanup.
2136 If an old symbol table was obsoleted, the old symbol table
2137 has been blown away, but the other GDB data structures that may
2138 reference it have not yet been cleared or re-directed. (The old
2139 symtab was zapped, and the cleanup queued, in free_named_symtab()
2142 This function can be queued N times as a cleanup, or called
2143 directly; it will do all the work the first time, and then will be a
2144 no-op until the next time it is queued. This works by bumping a
2145 counter at queueing time. Much later when the cleanup is run, or at
2146 the end of symbol processing (in case the cleanup is discarded), if
2147 the queued count is greater than the "done-count", we do the work
2148 and set the done-count to the queued count. If the queued count is
2149 less than or equal to the done-count, we just ignore the call. This
2150 is needed because reading a single .o file will often replace many
2151 symtabs (one per .h file, for example), and we don't want to reset
2152 the breakpoints N times in the user's face.
2154 The reason we both queue a cleanup, and call it directly after symbol
2155 reading, is because the cleanup protects us in case of errors, but is
2156 discarded if symbol reading is successful. */
2159 /* FIXME: As free_named_symtabs is currently a big noop this function
2160 is no longer needed. */
2161 static void clear_symtab_users_once (void);
2163 static int clear_symtab_users_queued;
2164 static int clear_symtab_users_done;
2167 clear_symtab_users_once (void)
2169 /* Enforce once-per-`do_cleanups'-semantics */
2170 if (clear_symtab_users_queued <= clear_symtab_users_done)
2172 clear_symtab_users_done = clear_symtab_users_queued;
2174 clear_symtab_users ();
2178 /* Delete the specified psymtab, and any others that reference it. */
2181 cashier_psymtab (struct partial_symtab *pst)
2183 struct partial_symtab *ps, *pprev = NULL;
2186 /* Find its previous psymtab in the chain */
2187 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2196 /* Unhook it from the chain. */
2197 if (ps == pst->objfile->psymtabs)
2198 pst->objfile->psymtabs = ps->next;
2200 pprev->next = ps->next;
2202 /* FIXME, we can't conveniently deallocate the entries in the
2203 partial_symbol lists (global_psymbols/static_psymbols) that
2204 this psymtab points to. These just take up space until all
2205 the psymtabs are reclaimed. Ditto the dependencies list and
2206 filename, which are all in the psymbol_obstack. */
2208 /* We need to cashier any psymtab that has this one as a dependency... */
2210 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2212 for (i = 0; i < ps->number_of_dependencies; i++)
2214 if (ps->dependencies[i] == pst)
2216 cashier_psymtab (ps);
2217 goto again; /* Must restart, chain has been munged. */
2224 /* If a symtab or psymtab for filename NAME is found, free it along
2225 with any dependent breakpoints, displays, etc.
2226 Used when loading new versions of object modules with the "add-file"
2227 command. This is only called on the top-level symtab or psymtab's name;
2228 it is not called for subsidiary files such as .h files.
2230 Return value is 1 if we blew away the environment, 0 if not.
2231 FIXME. The return value appears to never be used.
2233 FIXME. I think this is not the best way to do this. We should
2234 work on being gentler to the environment while still cleaning up
2235 all stray pointers into the freed symtab. */
2238 free_named_symtabs (char *name)
2241 /* FIXME: With the new method of each objfile having it's own
2242 psymtab list, this function needs serious rethinking. In particular,
2243 why was it ever necessary to toss psymtabs with specific compilation
2244 unit filenames, as opposed to all psymtabs from a particular symbol
2246 Well, the answer is that some systems permit reloading of particular
2247 compilation units. We want to blow away any old info about these
2248 compilation units, regardless of which objfiles they arrived in. --gnu. */
2250 register struct symtab *s;
2251 register struct symtab *prev;
2252 register struct partial_symtab *ps;
2253 struct blockvector *bv;
2256 /* We only wack things if the symbol-reload switch is set. */
2257 if (!symbol_reloading)
2260 /* Some symbol formats have trouble providing file names... */
2261 if (name == 0 || *name == '\0')
2264 /* Look for a psymtab with the specified name. */
2267 for (ps = partial_symtab_list; ps; ps = ps->next)
2269 if (STREQ (name, ps->filename))
2271 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2272 goto again2; /* Must restart, chain has been munged */
2276 /* Look for a symtab with the specified name. */
2278 for (s = symtab_list; s; s = s->next)
2280 if (STREQ (name, s->filename))
2287 if (s == symtab_list)
2288 symtab_list = s->next;
2290 prev->next = s->next;
2292 /* For now, queue a delete for all breakpoints, displays, etc., whether
2293 or not they depend on the symtab being freed. This should be
2294 changed so that only those data structures affected are deleted. */
2296 /* But don't delete anything if the symtab is empty.
2297 This test is necessary due to a bug in "dbxread.c" that
2298 causes empty symtabs to be created for N_SO symbols that
2299 contain the pathname of the object file. (This problem
2300 has been fixed in GDB 3.9x). */
2302 bv = BLOCKVECTOR (s);
2303 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2304 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2305 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2307 complain (&oldsyms_complaint, name);
2309 clear_symtab_users_queued++;
2310 make_cleanup (clear_symtab_users_once, 0);
2315 complain (&empty_symtab_complaint, name);
2322 /* It is still possible that some breakpoints will be affected
2323 even though no symtab was found, since the file might have
2324 been compiled without debugging, and hence not be associated
2325 with a symtab. In order to handle this correctly, we would need
2326 to keep a list of text address ranges for undebuggable files.
2327 For now, we do nothing, since this is a fairly obscure case. */
2331 /* FIXME, what about the minimal symbol table? */
2338 /* Allocate and partially fill a partial symtab. It will be
2339 completely filled at the end of the symbol list.
2341 FILENAME is the name of the symbol-file we are reading from. */
2343 struct partial_symtab *
2344 start_psymtab_common (struct objfile *objfile,
2345 struct section_offsets *section_offsets, char *filename,
2346 CORE_ADDR textlow, struct partial_symbol **global_syms,
2347 struct partial_symbol **static_syms)
2349 struct partial_symtab *psymtab;
2351 psymtab = allocate_psymtab (filename, objfile);
2352 psymtab->section_offsets = section_offsets;
2353 psymtab->textlow = textlow;
2354 psymtab->texthigh = psymtab->textlow; /* default */
2355 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2356 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2360 /* Add a symbol with a long value to a psymtab.
2361 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2364 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2365 enum address_class class,
2366 struct psymbol_allocation_list *list, long val, /* Value as a long */
2367 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2368 enum language language, struct objfile *objfile)
2370 register struct partial_symbol *psym;
2371 char *buf = alloca (namelength + 1);
2372 /* psymbol is static so that there will be no uninitialized gaps in the
2373 structure which might contain random data, causing cache misses in
2375 static struct partial_symbol psymbol;
2377 /* Create local copy of the partial symbol */
2378 memcpy (buf, name, namelength);
2379 buf[namelength] = '\0';
2380 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2381 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2384 SYMBOL_VALUE (&psymbol) = val;
2388 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2390 SYMBOL_SECTION (&psymbol) = 0;
2391 SYMBOL_LANGUAGE (&psymbol) = language;
2392 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2393 PSYMBOL_CLASS (&psymbol) = class;
2394 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2396 /* Stash the partial symbol away in the cache */
2397 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2399 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2400 if (list->next >= list->list + list->size)
2402 extend_psymbol_list (list, objfile);
2404 *list->next++ = psym;
2405 OBJSTAT (objfile, n_psyms++);
2408 /* Add a symbol with a long value to a psymtab. This differs from
2409 * add_psymbol_to_list above in taking both a mangled and a demangled
2413 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2414 int dem_namelength, namespace_enum namespace,
2415 enum address_class class,
2416 struct psymbol_allocation_list *list, long val, /* Value as a long */
2417 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2418 enum language language,
2419 struct objfile *objfile)
2421 register struct partial_symbol *psym;
2422 char *buf = alloca (namelength + 1);
2423 /* psymbol is static so that there will be no uninitialized gaps in the
2424 structure which might contain random data, causing cache misses in
2426 static struct partial_symbol psymbol;
2428 /* Create local copy of the partial symbol */
2430 memcpy (buf, name, namelength);
2431 buf[namelength] = '\0';
2432 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2434 buf = alloca (dem_namelength + 1);
2435 memcpy (buf, dem_name, dem_namelength);
2436 buf[dem_namelength] = '\0';
2441 case language_cplus:
2442 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2443 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2445 case language_chill:
2446 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2447 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2449 /* FIXME What should be done for the default case? Ignoring for now. */
2452 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2455 SYMBOL_VALUE (&psymbol) = val;
2459 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2461 SYMBOL_SECTION (&psymbol) = 0;
2462 SYMBOL_LANGUAGE (&psymbol) = language;
2463 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2464 PSYMBOL_CLASS (&psymbol) = class;
2465 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2467 /* Stash the partial symbol away in the cache */
2468 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2470 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2471 if (list->next >= list->list + list->size)
2473 extend_psymbol_list (list, objfile);
2475 *list->next++ = psym;
2476 OBJSTAT (objfile, n_psyms++);
2479 /* Initialize storage for partial symbols. */
2482 init_psymbol_list (struct objfile *objfile, int total_symbols)
2484 /* Free any previously allocated psymbol lists. */
2486 if (objfile->global_psymbols.list)
2488 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2490 if (objfile->static_psymbols.list)
2492 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2495 /* Current best guess is that approximately a twentieth
2496 of the total symbols (in a debugging file) are global or static
2499 objfile->global_psymbols.size = total_symbols / 10;
2500 objfile->static_psymbols.size = total_symbols / 10;
2502 if (objfile->global_psymbols.size > 0)
2504 objfile->global_psymbols.next =
2505 objfile->global_psymbols.list = (struct partial_symbol **)
2506 xmmalloc (objfile->md, (objfile->global_psymbols.size
2507 * sizeof (struct partial_symbol *)));
2509 if (objfile->static_psymbols.size > 0)
2511 objfile->static_psymbols.next =
2512 objfile->static_psymbols.list = (struct partial_symbol **)
2513 xmmalloc (objfile->md, (objfile->static_psymbols.size
2514 * sizeof (struct partial_symbol *)));
2519 The following code implements an abstraction for debugging overlay sections.
2521 The target model is as follows:
2522 1) The gnu linker will permit multiple sections to be mapped into the
2523 same VMA, each with its own unique LMA (or load address).
2524 2) It is assumed that some runtime mechanism exists for mapping the
2525 sections, one by one, from the load address into the VMA address.
2526 3) This code provides a mechanism for gdb to keep track of which
2527 sections should be considered to be mapped from the VMA to the LMA.
2528 This information is used for symbol lookup, and memory read/write.
2529 For instance, if a section has been mapped then its contents
2530 should be read from the VMA, otherwise from the LMA.
2532 Two levels of debugger support for overlays are available. One is
2533 "manual", in which the debugger relies on the user to tell it which
2534 overlays are currently mapped. This level of support is
2535 implemented entirely in the core debugger, and the information about
2536 whether a section is mapped is kept in the objfile->obj_section table.
2538 The second level of support is "automatic", and is only available if
2539 the target-specific code provides functionality to read the target's
2540 overlay mapping table, and translate its contents for the debugger
2541 (by updating the mapped state information in the obj_section tables).
2543 The interface is as follows:
2545 overlay map <name> -- tell gdb to consider this section mapped
2546 overlay unmap <name> -- tell gdb to consider this section unmapped
2547 overlay list -- list the sections that GDB thinks are mapped
2548 overlay read-target -- get the target's state of what's mapped
2549 overlay off/manual/auto -- set overlay debugging state
2550 Functional interface:
2551 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2552 section, return that section.
2553 find_pc_overlay(pc): find any overlay section that contains
2554 the pc, either in its VMA or its LMA
2555 overlay_is_mapped(sect): true if overlay is marked as mapped
2556 section_is_overlay(sect): true if section's VMA != LMA
2557 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2558 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2559 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2560 overlay_mapped_address(...): map an address from section's LMA to VMA
2561 overlay_unmapped_address(...): map an address from section's VMA to LMA
2562 symbol_overlayed_address(...): Return a "current" address for symbol:
2563 either in VMA or LMA depending on whether
2564 the symbol's section is currently mapped
2567 /* Overlay debugging state: */
2569 enum overlay_debugging_state overlay_debugging = ovly_off;
2570 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2572 /* Target vector for refreshing overlay mapped state */
2573 static void simple_overlay_update (struct obj_section *);
2574 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2576 /* Function: section_is_overlay (SECTION)
2577 Returns true if SECTION has VMA not equal to LMA, ie.
2578 SECTION is loaded at an address different from where it will "run". */
2581 section_is_overlay (asection *section)
2583 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2585 if (overlay_debugging)
2586 if (section && section->lma != 0 &&
2587 section->vma != section->lma)
2593 /* Function: overlay_invalidate_all (void)
2594 Invalidate the mapped state of all overlay sections (mark it as stale). */
2597 overlay_invalidate_all (void)
2599 struct objfile *objfile;
2600 struct obj_section *sect;
2602 ALL_OBJSECTIONS (objfile, sect)
2603 if (section_is_overlay (sect->the_bfd_section))
2604 sect->ovly_mapped = -1;
2607 /* Function: overlay_is_mapped (SECTION)
2608 Returns true if section is an overlay, and is currently mapped.
2609 Private: public access is thru function section_is_mapped.
2611 Access to the ovly_mapped flag is restricted to this function, so
2612 that we can do automatic update. If the global flag
2613 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2614 overlay_invalidate_all. If the mapped state of the particular
2615 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2618 overlay_is_mapped (struct obj_section *osect)
2620 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2623 switch (overlay_debugging)
2627 return 0; /* overlay debugging off */
2628 case ovly_auto: /* overlay debugging automatic */
2629 /* Unles there is a target_overlay_update function,
2630 there's really nothing useful to do here (can't really go auto) */
2631 if (target_overlay_update)
2633 if (overlay_cache_invalid)
2635 overlay_invalidate_all ();
2636 overlay_cache_invalid = 0;
2638 if (osect->ovly_mapped == -1)
2639 (*target_overlay_update) (osect);
2641 /* fall thru to manual case */
2642 case ovly_on: /* overlay debugging manual */
2643 return osect->ovly_mapped == 1;
2647 /* Function: section_is_mapped
2648 Returns true if section is an overlay, and is currently mapped. */
2651 section_is_mapped (asection *section)
2653 struct objfile *objfile;
2654 struct obj_section *osect;
2656 if (overlay_debugging)
2657 if (section && section_is_overlay (section))
2658 ALL_OBJSECTIONS (objfile, osect)
2659 if (osect->the_bfd_section == section)
2660 return overlay_is_mapped (osect);
2665 /* Function: pc_in_unmapped_range
2666 If PC falls into the lma range of SECTION, return true, else false. */
2669 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2671 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2675 if (overlay_debugging)
2676 if (section && section_is_overlay (section))
2678 size = bfd_get_section_size_before_reloc (section);
2679 if (section->lma <= pc && pc < section->lma + size)
2685 /* Function: pc_in_mapped_range
2686 If PC falls into the vma range of SECTION, return true, else false. */
2689 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2691 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2695 if (overlay_debugging)
2696 if (section && section_is_overlay (section))
2698 size = bfd_get_section_size_before_reloc (section);
2699 if (section->vma <= pc && pc < section->vma + size)
2706 /* Return true if the mapped ranges of sections A and B overlap, false
2709 sections_overlap (asection *a, asection *b)
2711 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2713 CORE_ADDR a_start = a->vma;
2714 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2715 CORE_ADDR b_start = b->vma;
2716 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2718 return (a_start < b_end && b_start < a_end);
2721 /* Function: overlay_unmapped_address (PC, SECTION)
2722 Returns the address corresponding to PC in the unmapped (load) range.
2723 May be the same as PC. */
2726 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2728 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2730 if (overlay_debugging)
2731 if (section && section_is_overlay (section) &&
2732 pc_in_mapped_range (pc, section))
2733 return pc + section->lma - section->vma;
2738 /* Function: overlay_mapped_address (PC, SECTION)
2739 Returns the address corresponding to PC in the mapped (runtime) range.
2740 May be the same as PC. */
2743 overlay_mapped_address (CORE_ADDR pc, asection *section)
2745 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2747 if (overlay_debugging)
2748 if (section && section_is_overlay (section) &&
2749 pc_in_unmapped_range (pc, section))
2750 return pc + section->vma - section->lma;
2756 /* Function: symbol_overlayed_address
2757 Return one of two addresses (relative to the VMA or to the LMA),
2758 depending on whether the section is mapped or not. */
2761 symbol_overlayed_address (CORE_ADDR address, asection *section)
2763 if (overlay_debugging)
2765 /* If the symbol has no section, just return its regular address. */
2768 /* If the symbol's section is not an overlay, just return its address */
2769 if (!section_is_overlay (section))
2771 /* If the symbol's section is mapped, just return its address */
2772 if (section_is_mapped (section))
2775 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2776 * then return its LOADED address rather than its vma address!!
2778 return overlay_unmapped_address (address, section);
2783 /* Function: find_pc_overlay (PC)
2784 Return the best-match overlay section for PC:
2785 If PC matches a mapped overlay section's VMA, return that section.
2786 Else if PC matches an unmapped section's VMA, return that section.
2787 Else if PC matches an unmapped section's LMA, return that section. */
2790 find_pc_overlay (CORE_ADDR pc)
2792 struct objfile *objfile;
2793 struct obj_section *osect, *best_match = NULL;
2795 if (overlay_debugging)
2796 ALL_OBJSECTIONS (objfile, osect)
2797 if (section_is_overlay (osect->the_bfd_section))
2799 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2801 if (overlay_is_mapped (osect))
2802 return osect->the_bfd_section;
2806 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2809 return best_match ? best_match->the_bfd_section : NULL;
2812 /* Function: find_pc_mapped_section (PC)
2813 If PC falls into the VMA address range of an overlay section that is
2814 currently marked as MAPPED, return that section. Else return NULL. */
2817 find_pc_mapped_section (CORE_ADDR pc)
2819 struct objfile *objfile;
2820 struct obj_section *osect;
2822 if (overlay_debugging)
2823 ALL_OBJSECTIONS (objfile, osect)
2824 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2825 overlay_is_mapped (osect))
2826 return osect->the_bfd_section;
2831 /* Function: list_overlays_command
2832 Print a list of mapped sections and their PC ranges */
2835 list_overlays_command (char *args, int from_tty)
2838 struct objfile *objfile;
2839 struct obj_section *osect;
2841 if (overlay_debugging)
2842 ALL_OBJSECTIONS (objfile, osect)
2843 if (overlay_is_mapped (osect))
2849 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2850 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2851 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2852 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2854 printf_filtered ("Section %s, loaded at ", name);
2855 print_address_numeric (lma, 1, gdb_stdout);
2856 puts_filtered (" - ");
2857 print_address_numeric (lma + size, 1, gdb_stdout);
2858 printf_filtered (", mapped at ");
2859 print_address_numeric (vma, 1, gdb_stdout);
2860 puts_filtered (" - ");
2861 print_address_numeric (vma + size, 1, gdb_stdout);
2862 puts_filtered ("\n");
2867 printf_filtered ("No sections are mapped.\n");
2870 /* Function: map_overlay_command
2871 Mark the named section as mapped (ie. residing at its VMA address). */
2874 map_overlay_command (char *args, int from_tty)
2876 struct objfile *objfile, *objfile2;
2877 struct obj_section *sec, *sec2;
2880 if (!overlay_debugging)
2882 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2883 the 'overlay manual' command.");
2885 if (args == 0 || *args == 0)
2886 error ("Argument required: name of an overlay section");
2888 /* First, find a section matching the user supplied argument */
2889 ALL_OBJSECTIONS (objfile, sec)
2890 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2892 /* Now, check to see if the section is an overlay. */
2893 bfdsec = sec->the_bfd_section;
2894 if (!section_is_overlay (bfdsec))
2895 continue; /* not an overlay section */
2897 /* Mark the overlay as "mapped" */
2898 sec->ovly_mapped = 1;
2900 /* Next, make a pass and unmap any sections that are
2901 overlapped by this new section: */
2902 ALL_OBJSECTIONS (objfile2, sec2)
2903 if (sec2->ovly_mapped
2905 && sec->the_bfd_section != sec2->the_bfd_section
2906 && sections_overlap (sec->the_bfd_section,
2907 sec2->the_bfd_section))
2910 printf_filtered ("Note: section %s unmapped by overlap\n",
2911 bfd_section_name (objfile->obfd,
2912 sec2->the_bfd_section));
2913 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2917 error ("No overlay section called %s", args);
2920 /* Function: unmap_overlay_command
2921 Mark the overlay section as unmapped
2922 (ie. resident in its LMA address range, rather than the VMA range). */
2925 unmap_overlay_command (char *args, int from_tty)
2927 struct objfile *objfile;
2928 struct obj_section *sec;
2930 if (!overlay_debugging)
2932 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2933 the 'overlay manual' command.");
2935 if (args == 0 || *args == 0)
2936 error ("Argument required: name of an overlay section");
2938 /* First, find a section matching the user supplied argument */
2939 ALL_OBJSECTIONS (objfile, sec)
2940 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2942 if (!sec->ovly_mapped)
2943 error ("Section %s is not mapped", args);
2944 sec->ovly_mapped = 0;
2947 error ("No overlay section called %s", args);
2950 /* Function: overlay_auto_command
2951 A utility command to turn on overlay debugging.
2952 Possibly this should be done via a set/show command. */
2955 overlay_auto_command (char *args, int from_tty)
2957 overlay_debugging = ovly_auto;
2958 enable_overlay_breakpoints ();
2960 printf_filtered ("Automatic overlay debugging enabled.");
2963 /* Function: overlay_manual_command
2964 A utility command to turn on overlay debugging.
2965 Possibly this should be done via a set/show command. */
2968 overlay_manual_command (char *args, int from_tty)
2970 overlay_debugging = ovly_on;
2971 disable_overlay_breakpoints ();
2973 printf_filtered ("Overlay debugging enabled.");
2976 /* Function: overlay_off_command
2977 A utility command to turn on overlay debugging.
2978 Possibly this should be done via a set/show command. */
2981 overlay_off_command (char *args, int from_tty)
2983 overlay_debugging = ovly_off;
2984 disable_overlay_breakpoints ();
2986 printf_filtered ("Overlay debugging disabled.");
2990 overlay_load_command (char *args, int from_tty)
2992 if (target_overlay_update)
2993 (*target_overlay_update) (NULL);
2995 error ("This target does not know how to read its overlay state.");
2998 /* Function: overlay_command
2999 A place-holder for a mis-typed command */
3001 /* Command list chain containing all defined "overlay" subcommands. */
3002 struct cmd_list_element *overlaylist;
3005 overlay_command (char *args, int from_tty)
3008 ("\"overlay\" must be followed by the name of an overlay command.\n");
3009 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3013 /* Target Overlays for the "Simplest" overlay manager:
3015 This is GDB's default target overlay layer. It works with the
3016 minimal overlay manager supplied as an example by Cygnus. The
3017 entry point is via a function pointer "target_overlay_update",
3018 so targets that use a different runtime overlay manager can
3019 substitute their own overlay_update function and take over the
3022 The overlay_update function pokes around in the target's data structures
3023 to see what overlays are mapped, and updates GDB's overlay mapping with
3026 In this simple implementation, the target data structures are as follows:
3027 unsigned _novlys; /# number of overlay sections #/
3028 unsigned _ovly_table[_novlys][4] = {
3029 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3030 {..., ..., ..., ...},
3032 unsigned _novly_regions; /# number of overlay regions #/
3033 unsigned _ovly_region_table[_novly_regions][3] = {
3034 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3037 These functions will attempt to update GDB's mappedness state in the
3038 symbol section table, based on the target's mappedness state.
3040 To do this, we keep a cached copy of the target's _ovly_table, and
3041 attempt to detect when the cached copy is invalidated. The main
3042 entry point is "simple_overlay_update(SECT), which looks up SECT in
3043 the cached table and re-reads only the entry for that section from
3044 the target (whenever possible).
3047 /* Cached, dynamically allocated copies of the target data structures: */
3048 static unsigned (*cache_ovly_table)[4] = 0;
3050 static unsigned (*cache_ovly_region_table)[3] = 0;
3052 static unsigned cache_novlys = 0;
3054 static unsigned cache_novly_regions = 0;
3056 static CORE_ADDR cache_ovly_table_base = 0;
3058 static CORE_ADDR cache_ovly_region_table_base = 0;
3062 VMA, SIZE, LMA, MAPPED
3064 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3066 /* Throw away the cached copy of _ovly_table */
3068 simple_free_overlay_table (void)
3070 if (cache_ovly_table)
3071 xfree (cache_ovly_table);
3073 cache_ovly_table = NULL;
3074 cache_ovly_table_base = 0;
3078 /* Throw away the cached copy of _ovly_region_table */
3080 simple_free_overlay_region_table (void)
3082 if (cache_ovly_region_table)
3083 xfree (cache_ovly_region_table);
3084 cache_novly_regions = 0;
3085 cache_ovly_region_table = NULL;
3086 cache_ovly_region_table_base = 0;
3090 /* Read an array of ints from the target into a local buffer.
3091 Convert to host order. int LEN is number of ints */
3093 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3095 /* FIXME (alloca): Not safe if array is very large. */
3096 char *buf = alloca (len * TARGET_LONG_BYTES);
3099 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3100 for (i = 0; i < len; i++)
3101 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3105 /* Find and grab a copy of the target _ovly_table
3106 (and _novlys, which is needed for the table's size) */
3108 simple_read_overlay_table (void)
3110 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3112 simple_free_overlay_table ();
3113 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3116 error ("Error reading inferior's overlay table: "
3117 "couldn't find `_novlys' variable\n"
3118 "in inferior. Use `overlay manual' mode.");
3122 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3123 if (! ovly_table_msym)
3125 error ("Error reading inferior's overlay table: couldn't find "
3126 "`_ovly_table' array\n"
3127 "in inferior. Use `overlay manual' mode.");
3131 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3133 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3134 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3135 read_target_long_array (cache_ovly_table_base,
3136 (int *) cache_ovly_table,
3139 return 1; /* SUCCESS */
3143 /* Find and grab a copy of the target _ovly_region_table
3144 (and _novly_regions, which is needed for the table's size) */
3146 simple_read_overlay_region_table (void)
3148 struct minimal_symbol *msym;
3150 simple_free_overlay_region_table ();
3151 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3153 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3155 return 0; /* failure */
3156 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3157 if (cache_ovly_region_table != NULL)
3159 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3162 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3163 read_target_long_array (cache_ovly_region_table_base,
3164 (int *) cache_ovly_region_table,
3165 cache_novly_regions * 3);
3168 return 0; /* failure */
3171 return 0; /* failure */
3172 return 1; /* SUCCESS */
3176 /* Function: simple_overlay_update_1
3177 A helper function for simple_overlay_update. Assuming a cached copy
3178 of _ovly_table exists, look through it to find an entry whose vma,
3179 lma and size match those of OSECT. Re-read the entry and make sure
3180 it still matches OSECT (else the table may no longer be valid).
3181 Set OSECT's mapped state to match the entry. Return: 1 for
3182 success, 0 for failure. */
3185 simple_overlay_update_1 (struct obj_section *osect)
3188 bfd *obfd = osect->objfile->obfd;
3189 asection *bsect = osect->the_bfd_section;
3191 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3192 for (i = 0; i < cache_novlys; i++)
3193 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3194 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3195 /* && cache_ovly_table[i][SIZE] == size */ )
3197 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3198 (int *) cache_ovly_table[i], 4);
3199 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3200 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3201 /* && cache_ovly_table[i][SIZE] == size */ )
3203 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3206 else /* Warning! Warning! Target's ovly table has changed! */
3212 /* Function: simple_overlay_update
3213 If OSECT is NULL, then update all sections' mapped state
3214 (after re-reading the entire target _ovly_table).
3215 If OSECT is non-NULL, then try to find a matching entry in the
3216 cached ovly_table and update only OSECT's mapped state.
3217 If a cached entry can't be found or the cache isn't valid, then
3218 re-read the entire cache, and go ahead and update all sections. */
3221 simple_overlay_update (struct obj_section *osect)
3223 struct objfile *objfile;
3225 /* Were we given an osect to look up? NULL means do all of them. */
3227 /* Have we got a cached copy of the target's overlay table? */
3228 if (cache_ovly_table != NULL)
3229 /* Does its cached location match what's currently in the symtab? */
3230 if (cache_ovly_table_base ==
3231 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3232 /* Then go ahead and try to look up this single section in the cache */
3233 if (simple_overlay_update_1 (osect))
3234 /* Found it! We're done. */
3237 /* Cached table no good: need to read the entire table anew.
3238 Or else we want all the sections, in which case it's actually
3239 more efficient to read the whole table in one block anyway. */
3241 if (! simple_read_overlay_table ())
3244 /* Now may as well update all sections, even if only one was requested. */
3245 ALL_OBJSECTIONS (objfile, osect)
3246 if (section_is_overlay (osect->the_bfd_section))
3249 bfd *obfd = osect->objfile->obfd;
3250 asection *bsect = osect->the_bfd_section;
3252 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3253 for (i = 0; i < cache_novlys; i++)
3254 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3255 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3256 /* && cache_ovly_table[i][SIZE] == size */ )
3257 { /* obj_section matches i'th entry in ovly_table */
3258 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3259 break; /* finished with inner for loop: break out */
3266 _initialize_symfile (void)
3268 struct cmd_list_element *c;
3270 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3271 "Load symbol table from executable file FILE.\n\
3272 The `file' command can also load symbol tables, as well as setting the file\n\
3273 to execute.", &cmdlist);
3274 set_cmd_completer (c, filename_completer);
3276 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3277 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3278 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3279 ADDR is the starting address of the file's text.\n\
3280 The optional arguments are section-name section-address pairs and\n\
3281 should be specified if the data and bss segments are not contiguous\n\
3282 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3284 set_cmd_completer (c, filename_completer);
3286 c = add_cmd ("add-shared-symbol-files", class_files,
3287 add_shared_symbol_files_command,
3288 "Load the symbols from shared objects in the dynamic linker's link map.",
3290 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3293 c = add_cmd ("load", class_files, load_command,
3294 "Dynamically load FILE into the running program, and record its symbols\n\
3295 for access from GDB.", &cmdlist);
3296 set_cmd_completer (c, filename_completer);
3299 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3300 (char *) &symbol_reloading,
3301 "Set dynamic symbol table reloading multiple times in one run.",
3305 add_prefix_cmd ("overlay", class_support, overlay_command,
3306 "Commands for debugging overlays.", &overlaylist,
3307 "overlay ", 0, &cmdlist);
3309 add_com_alias ("ovly", "overlay", class_alias, 1);
3310 add_com_alias ("ov", "overlay", class_alias, 1);
3312 add_cmd ("map-overlay", class_support, map_overlay_command,
3313 "Assert that an overlay section is mapped.", &overlaylist);
3315 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3316 "Assert that an overlay section is unmapped.", &overlaylist);
3318 add_cmd ("list-overlays", class_support, list_overlays_command,
3319 "List mappings of overlay sections.", &overlaylist);
3321 add_cmd ("manual", class_support, overlay_manual_command,
3322 "Enable overlay debugging.", &overlaylist);
3323 add_cmd ("off", class_support, overlay_off_command,
3324 "Disable overlay debugging.", &overlaylist);
3325 add_cmd ("auto", class_support, overlay_auto_command,
3326 "Enable automatic overlay debugging.", &overlaylist);
3327 add_cmd ("load-target", class_support, overlay_load_command,
3328 "Read the overlay mapping state from the target.", &overlaylist);
3330 /* Filename extension to source language lookup table: */
3331 init_filename_language_table ();
3332 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3334 "Set mapping between filename extension and source language.\n\
3335 Usage: set extension-language .foo bar",
3337 set_cmd_cfunc (c, set_ext_lang_command);
3339 add_info ("extensions", info_ext_lang_command,
3340 "All filename extensions associated with a source language.");
3343 (add_set_cmd ("download-write-size", class_obscure,
3344 var_integer, (char *) &download_write_size,
3345 "Set the write size used when downloading a program.\n"
3346 "Only used when downloading a program onto a remote\n"
3347 "target. Specify zero, or a negative value, to disable\n"
3348 "blocked writes. The actual size of each transfer is also\n"
3349 "limited by the size of the target packet and the memory\n"