1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
7 Contributed by the Center for Software Science at the
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
31 #include "completer.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
45 #include "hppa-tdep.h"
47 static int hppa_debug = 0;
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
61 /* Get at various relevent fields of an instruction word. */
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
76 /* Handle 32/64-bit struct return conventions. */
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
83 if (TYPE_LENGTH (type) <= 2 * 4)
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
96 regcache_cooked_read_part (regcache, reg, 4 - part,
99 regcache_cooked_write_part (regcache, reg, 4 - part,
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
112 return RETURN_VALUE_REGISTER_CONVENTION;
115 return RETURN_VALUE_STRUCT_CONVENTION;
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
130 /* Floats are right aligned? */
131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
142 /* Integrals are right aligned. */
143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
152 else if (TYPE_LENGTH (type) <= 2 * 8)
154 /* Composite values are left aligned. */
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
158 int part = min (8, TYPE_LENGTH (type) - b);
160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 (char *) readbuf + b);
162 if (writebuf != NULL)
163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 (const char *) writebuf + b);
166 return RETURN_VALUE_REGISTER_CONVENTION;
169 return RETURN_VALUE_STRUCT_CONVENTION;
172 /* Routines to extract various sized constants out of hppa
175 /* This assumes that no garbage lies outside of the lower bits of
179 hppa_sign_extend (unsigned val, unsigned bits)
181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
184 /* For many immediate values the sign bit is the low bit! */
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
196 hppa_get_field (unsigned word, int from, int to)
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
201 /* extract the immediate field from a ld{bhw}s instruction */
204 hppa_extract_5_load (unsigned word)
206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
209 /* extract the immediate field from a break instruction */
212 hppa_extract_5r_store (unsigned word)
214 return (word & MASK_5);
217 /* extract the immediate field from a {sr}sm instruction */
220 hppa_extract_5R_store (unsigned word)
222 return (word >> 16 & MASK_5);
225 /* extract a 14 bit immediate field */
228 hppa_extract_14 (unsigned word)
230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
233 /* extract a 21 bit constant */
236 hppa_extract_21 (unsigned word)
242 val = hppa_get_field (word, 20, 20);
244 val |= hppa_get_field (word, 9, 19);
246 val |= hppa_get_field (word, 5, 6);
248 val |= hppa_get_field (word, 0, 4);
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
258 hppa_extract_17 (unsigned word)
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
267 hppa_symbol_address(const char *sym)
269 struct minimal_symbol *minsym;
271 minsym = lookup_minimal_symbol (sym, NULL, NULL);
273 return SYMBOL_VALUE_ADDRESS (minsym);
275 return (CORE_ADDR)-1;
279 /* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
284 compare_unwind_entries (const void *arg1, const void *arg2)
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
289 if (a->region_start > b->region_start)
291 else if (a->region_start < b->region_start)
298 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
300 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
303 bfd_vma value = section->vma - section->filepos;
304 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
306 if (value < *low_text_segment_address)
307 *low_text_segment_address = value;
312 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 asection *section, unsigned int entries, unsigned int size,
314 CORE_ADDR text_offset)
316 /* We will read the unwind entries into temporary memory, then
317 fill in the actual unwind table. */
323 char *buf = alloca (size);
324 CORE_ADDR low_text_segment_address;
326 /* For ELF targets, then unwinds are supposed to
327 be segment relative offsets instead of absolute addresses.
329 Note that when loading a shared library (text_offset != 0) the
330 unwinds are already relative to the text_offset that will be
332 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
334 low_text_segment_address = -1;
336 bfd_map_over_sections (objfile->obfd,
337 record_text_segment_lowaddr,
338 &low_text_segment_address);
340 text_offset = low_text_segment_address;
343 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
345 /* Now internalize the information being careful to handle host/target
347 for (i = 0; i < entries; i++)
349 table[i].region_start = bfd_get_32 (objfile->obfd,
351 table[i].region_start += text_offset;
353 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 table[i].region_end += text_offset;
356 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
358 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 table[i].Millicode = (tmp >> 30) & 0x1;
360 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 table[i].Region_description = (tmp >> 27) & 0x3;
362 table[i].reserved1 = (tmp >> 26) & 0x1;
363 table[i].Entry_SR = (tmp >> 25) & 0x1;
364 table[i].Entry_FR = (tmp >> 21) & 0xf;
365 table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 table[i].Args_stored = (tmp >> 15) & 0x1;
367 table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 table[i].Ada_Region = (tmp >> 9) & 0x1;
373 table[i].cxx_info = (tmp >> 8) & 0x1;
374 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 table[i].reserved2 = (tmp >> 5) & 0x1;
377 table[i].Save_SP = (tmp >> 4) & 0x1;
378 table[i].Save_RP = (tmp >> 3) & 0x1;
379 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 table[i].Cleanup_defined = tmp & 0x1;
382 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
384 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 table[i].Large_frame = (tmp >> 29) & 0x1;
387 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 table[i].reserved4 = (tmp >> 27) & 0x1;
389 table[i].Total_frame_size = tmp & 0x7ffffff;
391 /* Stub unwinds are handled elsewhere. */
392 table[i].stub_unwind.stub_type = 0;
393 table[i].stub_unwind.padding = 0;
398 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
399 the object file. This info is used mainly by find_unwind_entry() to find
400 out the stack frame size and frame pointer used by procedures. We put
401 everything on the psymbol obstack in the objfile so that it automatically
402 gets freed when the objfile is destroyed. */
405 read_unwind_info (struct objfile *objfile)
407 asection *unwind_sec, *stub_unwind_sec;
408 unsigned unwind_size, stub_unwind_size, total_size;
409 unsigned index, unwind_entries;
410 unsigned stub_entries, total_entries;
411 CORE_ADDR text_offset;
412 struct hppa_unwind_info *ui;
413 struct hppa_objfile_private *obj_private;
415 text_offset = ANOFFSET (objfile->section_offsets, 0);
416 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 sizeof (struct hppa_unwind_info));
423 /* For reasons unknown the HP PA64 tools generate multiple unwinder
424 sections in a single executable. So we just iterate over every
425 section in the BFD looking for unwinder sections intead of trying
426 to do a lookup with bfd_get_section_by_name.
428 First determine the total size of the unwind tables so that we
429 can allocate memory in a nice big hunk. */
431 for (unwind_sec = objfile->obfd->sections;
433 unwind_sec = unwind_sec->next)
435 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
438 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
441 total_entries += unwind_entries;
445 /* Now compute the size of the stub unwinds. Note the ELF tools do not
446 use stub unwinds at the curren time. */
447 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
451 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
456 stub_unwind_size = 0;
460 /* Compute total number of unwind entries and their total size. */
461 total_entries += stub_entries;
462 total_size = total_entries * sizeof (struct unwind_table_entry);
464 /* Allocate memory for the unwind table. */
465 ui->table = (struct unwind_table_entry *)
466 obstack_alloc (&objfile->objfile_obstack, total_size);
467 ui->last = total_entries - 1;
469 /* Now read in each unwind section and internalize the standard unwind
472 for (unwind_sec = objfile->obfd->sections;
474 unwind_sec = unwind_sec->next)
476 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
479 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
482 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 unwind_entries, unwind_size, text_offset);
484 index += unwind_entries;
488 /* Now read in and internalize the stub unwind entries. */
489 if (stub_unwind_size > 0)
492 char *buf = alloca (stub_unwind_size);
494 /* Read in the stub unwind entries. */
495 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 0, stub_unwind_size);
498 /* Now convert them into regular unwind entries. */
499 for (i = 0; i < stub_entries; i++, index++)
501 /* Clear out the next unwind entry. */
502 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
504 /* Convert offset & size into region_start and region_end.
505 Stuff away the stub type into "reserved" fields. */
506 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
508 ui->table[index].region_start += text_offset;
510 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
513 ui->table[index].region_end
514 = ui->table[index].region_start + 4 *
515 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
521 /* Unwind table needs to be kept sorted. */
522 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 compare_unwind_entries);
525 /* Keep a pointer to the unwind information. */
526 obj_private = (struct hppa_objfile_private *)
527 objfile_data (objfile, hppa_objfile_priv_data);
528 if (obj_private == NULL)
530 obj_private = (struct hppa_objfile_private *)
531 obstack_alloc (&objfile->objfile_obstack,
532 sizeof (struct hppa_objfile_private));
533 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
534 obj_private->unwind_info = NULL;
535 obj_private->so_info = NULL;
538 obj_private->unwind_info = ui;
541 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
542 of the objfiles seeking the unwind table entry for this PC. Each objfile
543 contains a sorted list of struct unwind_table_entry. Since we do a binary
544 search of the unwind tables, we depend upon them to be sorted. */
546 struct unwind_table_entry *
547 find_unwind_entry (CORE_ADDR pc)
549 int first, middle, last;
550 struct objfile *objfile;
551 struct hppa_objfile_private *priv;
554 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
557 /* A function at address 0? Not in HP-UX! */
558 if (pc == (CORE_ADDR) 0)
561 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
565 ALL_OBJFILES (objfile)
567 struct hppa_unwind_info *ui;
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
571 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
575 read_unwind_info (objfile);
576 priv = objfile_data (objfile, hppa_objfile_priv_data);
578 error ("Internal error reading unwind information.");
579 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
582 /* First, check the cache */
585 && pc >= ui->cache->region_start
586 && pc <= ui->cache->region_end)
589 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590 paddr_nz ((CORE_ADDR) ui->cache));
594 /* Not in the cache, do a binary search */
599 while (first <= last)
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
605 ui->cache = &ui->table[middle];
607 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608 paddr_nz ((CORE_ADDR) ui->cache));
609 return &ui->table[middle];
612 if (pc < ui->table[middle].region_start)
617 } /* ALL_OBJFILES() */
620 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
625 static const unsigned char *
626 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
628 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
629 (*len) = sizeof (breakpoint);
633 /* Return the name of a register. */
636 hppa32_register_name (int i)
638 static char *names[] = {
639 "flags", "r1", "rp", "r3",
640 "r4", "r5", "r6", "r7",
641 "r8", "r9", "r10", "r11",
642 "r12", "r13", "r14", "r15",
643 "r16", "r17", "r18", "r19",
644 "r20", "r21", "r22", "r23",
645 "r24", "r25", "r26", "dp",
646 "ret0", "ret1", "sp", "r31",
647 "sar", "pcoqh", "pcsqh", "pcoqt",
648 "pcsqt", "eiem", "iir", "isr",
649 "ior", "ipsw", "goto", "sr4",
650 "sr0", "sr1", "sr2", "sr3",
651 "sr5", "sr6", "sr7", "cr0",
652 "cr8", "cr9", "ccr", "cr12",
653 "cr13", "cr24", "cr25", "cr26",
654 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655 "fpsr", "fpe1", "fpe2", "fpe3",
656 "fpe4", "fpe5", "fpe6", "fpe7",
657 "fr4", "fr4R", "fr5", "fr5R",
658 "fr6", "fr6R", "fr7", "fr7R",
659 "fr8", "fr8R", "fr9", "fr9R",
660 "fr10", "fr10R", "fr11", "fr11R",
661 "fr12", "fr12R", "fr13", "fr13R",
662 "fr14", "fr14R", "fr15", "fr15R",
663 "fr16", "fr16R", "fr17", "fr17R",
664 "fr18", "fr18R", "fr19", "fr19R",
665 "fr20", "fr20R", "fr21", "fr21R",
666 "fr22", "fr22R", "fr23", "fr23R",
667 "fr24", "fr24R", "fr25", "fr25R",
668 "fr26", "fr26R", "fr27", "fr27R",
669 "fr28", "fr28R", "fr29", "fr29R",
670 "fr30", "fr30R", "fr31", "fr31R"
672 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
679 hppa64_register_name (int i)
681 static char *names[] = {
682 "flags", "r1", "rp", "r3",
683 "r4", "r5", "r6", "r7",
684 "r8", "r9", "r10", "r11",
685 "r12", "r13", "r14", "r15",
686 "r16", "r17", "r18", "r19",
687 "r20", "r21", "r22", "r23",
688 "r24", "r25", "r26", "dp",
689 "ret0", "ret1", "sp", "r31",
690 "sar", "pcoqh", "pcsqh", "pcoqt",
691 "pcsqt", "eiem", "iir", "isr",
692 "ior", "ipsw", "goto", "sr4",
693 "sr0", "sr1", "sr2", "sr3",
694 "sr5", "sr6", "sr7", "cr0",
695 "cr8", "cr9", "ccr", "cr12",
696 "cr13", "cr24", "cr25", "cr26",
697 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698 "fpsr", "fpe1", "fpe2", "fpe3",
699 "fr4", "fr5", "fr6", "fr7",
700 "fr8", "fr9", "fr10", "fr11",
701 "fr12", "fr13", "fr14", "fr15",
702 "fr16", "fr17", "fr18", "fr19",
703 "fr20", "fr21", "fr22", "fr23",
704 "fr24", "fr25", "fr26", "fr27",
705 "fr28", "fr29", "fr30", "fr31"
707 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
713 /* This function pushes a stack frame with arguments as part of the
714 inferior function calling mechanism.
716 This is the version of the function for the 32-bit PA machines, in
717 which later arguments appear at lower addresses. (The stack always
718 grows towards higher addresses.)
720 We simply allocate the appropriate amount of stack space and put
721 arguments into their proper slots. */
724 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
725 struct regcache *regcache, CORE_ADDR bp_addr,
726 int nargs, struct value **args, CORE_ADDR sp,
727 int struct_return, CORE_ADDR struct_addr)
729 /* Stack base address at which any pass-by-reference parameters are
731 CORE_ADDR struct_end = 0;
732 /* Stack base address at which the first parameter is stored. */
733 CORE_ADDR param_end = 0;
735 /* The inner most end of the stack after all the parameters have
737 CORE_ADDR new_sp = 0;
739 /* Two passes. First pass computes the location of everything,
740 second pass writes the bytes out. */
743 /* Global pointer (r19) of the function we are trying to call. */
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
748 for (write_pass = 0; write_pass < 2; write_pass++)
750 CORE_ADDR struct_ptr = 0;
751 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752 struct_ptr is adjusted for each argument below, so the first
753 argument will end up at sp-36. */
754 CORE_ADDR param_ptr = 32;
756 int small_struct = 0;
758 for (i = 0; i < nargs; i++)
760 struct value *arg = args[i];
761 struct type *type = check_typedef (VALUE_TYPE (arg));
762 /* The corresponding parameter that is pushed onto the
763 stack, and [possibly] passed in a register. */
766 memset (param_val, 0, sizeof param_val);
767 if (TYPE_LENGTH (type) > 8)
769 /* Large parameter, pass by reference. Store the value
770 in "struct" area and then pass its address. */
772 struct_ptr += align_up (TYPE_LENGTH (type), 8);
774 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
776 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
778 else if (TYPE_CODE (type) == TYPE_CODE_INT
779 || TYPE_CODE (type) == TYPE_CODE_ENUM)
781 /* Integer value store, right aligned. "unpack_long"
782 takes care of any sign-extension problems. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 store_unsigned_integer (param_val, param_len,
786 VALUE_CONTENTS (arg)));
788 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
790 /* Floating point value store, right aligned. */
791 param_len = align_up (TYPE_LENGTH (type), 4);
792 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
796 param_len = align_up (TYPE_LENGTH (type), 4);
798 /* Small struct value are stored right-aligned. */
799 memcpy (param_val + param_len - TYPE_LENGTH (type),
800 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
802 /* Structures of size 5, 6 and 7 bytes are special in that
803 the higher-ordered word is stored in the lower-ordered
804 argument, and even though it is a 8-byte quantity the
805 registers need not be 8-byte aligned. */
806 if (param_len > 4 && param_len < 8)
810 param_ptr += param_len;
811 if (param_len == 8 && !small_struct)
812 param_ptr = align_up (param_ptr, 8);
814 /* First 4 non-FP arguments are passed in gr26-gr23.
815 First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 First 2 64-bit FP arguments are passed in fr5 and fr7.
818 The rest go on the stack, starting at sp-36, towards lower
819 addresses. 8-byte arguments must be aligned to a 8-byte
823 write_memory (param_end - param_ptr, param_val, param_len);
825 /* There are some cases when we don't know the type
826 expected by the callee (e.g. for variadic functions), so
827 pass the parameters in both general and fp regs. */
830 int grreg = 26 - (param_ptr - 36) / 4;
831 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
834 regcache_cooked_write (regcache, grreg, param_val);
835 regcache_cooked_write (regcache, fpLreg, param_val);
839 regcache_cooked_write (regcache, grreg + 1,
842 regcache_cooked_write (regcache, fpreg, param_val);
843 regcache_cooked_write (regcache, fpreg + 1,
850 /* Update the various stack pointers. */
853 struct_end = sp + align_up (struct_ptr, 64);
854 /* PARAM_PTR already accounts for all the arguments passed
855 by the user. However, the ABI mandates minimum stack
856 space allocations for outgoing arguments. The ABI also
857 mandates minimum stack alignments which we must
859 param_end = struct_end + align_up (param_ptr, 64);
863 /* If a structure has to be returned, set up register 28 to hold its
866 write_register (28, struct_addr);
868 gp = tdep->find_global_pointer (function);
871 write_register (19, gp);
873 /* Set the return address. */
874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
876 /* Update the Stack Pointer. */
877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
882 /* This function pushes a stack frame with arguments as part of the
883 inferior function calling mechanism.
885 This is the version for the PA64, in which later arguments appear
886 at higher addresses. (The stack always grows towards higher
889 We simply allocate the appropriate amount of stack space and put
890 arguments into their proper slots.
892 This ABI also requires that the caller provide an argument pointer
893 to the callee, so we do that too. */
896 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
897 struct regcache *regcache, CORE_ADDR bp_addr,
898 int nargs, struct value **args, CORE_ADDR sp,
899 int struct_return, CORE_ADDR struct_addr)
901 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902 reverse engineering testsuite failures. */
904 /* Stack base address at which any pass-by-reference parameters are
906 CORE_ADDR struct_end = 0;
907 /* Stack base address at which the first parameter is stored. */
908 CORE_ADDR param_end = 0;
910 /* The inner most end of the stack after all the parameters have
912 CORE_ADDR new_sp = 0;
914 /* Two passes. First pass computes the location of everything,
915 second pass writes the bytes out. */
917 for (write_pass = 0; write_pass < 2; write_pass++)
919 CORE_ADDR struct_ptr = 0;
920 CORE_ADDR param_ptr = 0;
922 for (i = 0; i < nargs; i++)
924 struct value *arg = args[i];
925 struct type *type = check_typedef (VALUE_TYPE (arg));
926 if ((TYPE_CODE (type) == TYPE_CODE_INT
927 || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 && TYPE_LENGTH (type) <= 8)
930 /* Integer value store, right aligned. "unpack_long"
931 takes care of any sign-extension problems. */
935 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 int reg = 27 - param_ptr / 8;
937 write_memory_unsigned_integer (param_end - param_ptr,
940 regcache_cooked_write_unsigned (regcache, reg, val);
945 /* Small struct value, store left aligned? */
947 if (TYPE_LENGTH (type) > 8)
949 param_ptr = align_up (param_ptr, 16);
950 reg = 26 - param_ptr / 8;
951 param_ptr += align_up (TYPE_LENGTH (type), 16);
955 param_ptr = align_up (param_ptr, 8);
956 reg = 26 - param_ptr / 8;
957 param_ptr += align_up (TYPE_LENGTH (type), 8);
962 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
964 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
968 int len = min (8, TYPE_LENGTH (type) - byte);
969 regcache_cooked_write_part (regcache, reg, 0, len,
970 VALUE_CONTENTS (arg) + byte);
977 /* Update the various stack pointers. */
980 struct_end = sp + struct_ptr;
981 /* PARAM_PTR already accounts for all the arguments passed
982 by the user. However, the ABI mandates minimum stack
983 space allocations for outgoing arguments. The ABI also
984 mandates minimum stack alignments which we must
986 param_end = struct_end + max (align_up (param_ptr, 16), 64);
990 /* If a structure has to be returned, set up register 28 to hold its
993 write_register (28, struct_addr);
995 /* Set the return address. */
996 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
998 /* Update the Stack Pointer. */
999 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
1001 /* The stack will have 32 bytes of additional space for a frame marker. */
1002 return param_end + 64;
1006 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1008 struct target_ops *targ)
1015 target_read_memory(plabel, (char *)&addr, 4);
1022 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1024 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1026 return align_up (addr, 64);
1029 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1032 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1034 /* Just always 16-byte align. */
1035 return align_up (addr, 16);
1039 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1043 hppa_target_read_pc (ptid_t ptid)
1045 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1047 /* The following test does not belong here. It is OS-specific, and belongs
1049 /* Test SS_INSYSCALL */
1051 return read_register_pid (31, ptid) & ~0x3;
1053 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1056 /* Write out the PC. If currently in a syscall, then also write the new
1057 PC value into %r31. */
1060 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1062 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1064 /* The following test does not belong here. It is OS-specific, and belongs
1066 /* If in a syscall, then set %r31. Also make sure to get the
1067 privilege bits set correctly. */
1068 /* Test SS_INSYSCALL */
1070 write_register_pid (31, v | 0x3, ptid);
1072 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1076 /* return the alignment of a type in bytes. Structures have the maximum
1077 alignment required by their fields. */
1080 hppa_alignof (struct type *type)
1082 int max_align, align, i;
1083 CHECK_TYPEDEF (type);
1084 switch (TYPE_CODE (type))
1089 return TYPE_LENGTH (type);
1090 case TYPE_CODE_ARRAY:
1091 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092 case TYPE_CODE_STRUCT:
1093 case TYPE_CODE_UNION:
1095 for (i = 0; i < TYPE_NFIELDS (type); i++)
1097 /* Bit fields have no real alignment. */
1098 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1099 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1101 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 max_align = max (max_align, align);
1111 /* For the given instruction (INST), return any adjustment it makes
1112 to the stack pointer or zero for no adjustment.
1114 This only handles instructions commonly found in prologues. */
1117 prologue_inst_adjust_sp (unsigned long inst)
1119 /* This must persist across calls. */
1120 static int save_high21;
1122 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123 if ((inst & 0xffffc000) == 0x37de0000)
1124 return hppa_extract_14 (inst);
1127 if ((inst & 0xffe00000) == 0x6fc00000)
1128 return hppa_extract_14 (inst);
1130 /* std,ma X,D(sp) */
1131 if ((inst & 0xffe00008) == 0x73c00008)
1132 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1134 /* addil high21,%r1; ldo low11,(%r1),%r30)
1135 save high bits in save_high21 for later use. */
1136 if ((inst & 0xffe00000) == 0x28200000)
1138 save_high21 = hppa_extract_21 (inst);
1142 if ((inst & 0xffff0000) == 0x343e0000)
1143 return save_high21 + hppa_extract_14 (inst);
1145 /* fstws as used by the HP compilers. */
1146 if ((inst & 0xffffffe0) == 0x2fd01220)
1147 return hppa_extract_5_load (inst);
1149 /* No adjustment. */
1153 /* Return nonzero if INST is a branch of some kind, else return zero. */
1156 is_branch (unsigned long inst)
1185 /* Return the register number for a GR which is saved by INST or
1186 zero it INST does not save a GR. */
1189 inst_saves_gr (unsigned long inst)
1191 /* Does it look like a stw? */
1192 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193 || (inst >> 26) == 0x1f
1194 || ((inst >> 26) == 0x1f
1195 && ((inst >> 6) == 0xa)))
1196 return hppa_extract_5R_store (inst);
1198 /* Does it look like a std? */
1199 if ((inst >> 26) == 0x1c
1200 || ((inst >> 26) == 0x03
1201 && ((inst >> 6) & 0xf) == 0xb))
1202 return hppa_extract_5R_store (inst);
1204 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1205 if ((inst >> 26) == 0x1b)
1206 return hppa_extract_5R_store (inst);
1208 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1210 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211 || ((inst >> 26) == 0x3
1212 && (((inst >> 6) & 0xf) == 0x8
1213 || (inst >> 6) & 0xf) == 0x9))
1214 return hppa_extract_5R_store (inst);
1219 /* Return the register number for a FR which is saved by INST or
1220 zero it INST does not save a FR.
1222 Note we only care about full 64bit register stores (that's the only
1223 kind of stores the prologue will use).
1225 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1228 inst_saves_fr (unsigned long inst)
1230 /* is this an FSTD ? */
1231 if ((inst & 0xfc00dfc0) == 0x2c001200)
1232 return hppa_extract_5r_store (inst);
1233 if ((inst & 0xfc000002) == 0x70000002)
1234 return hppa_extract_5R_store (inst);
1235 /* is this an FSTW ? */
1236 if ((inst & 0xfc00df80) == 0x24001200)
1237 return hppa_extract_5r_store (inst);
1238 if ((inst & 0xfc000002) == 0x7c000000)
1239 return hppa_extract_5R_store (inst);
1243 /* Advance PC across any function entry prologue instructions
1244 to reach some "real" code.
1246 Use information in the unwind table to determine what exactly should
1247 be in the prologue. */
1251 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1254 CORE_ADDR orig_pc = pc;
1255 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256 unsigned long args_stored, status, i, restart_gr, restart_fr;
1257 struct unwind_table_entry *u;
1258 int final_iteration;
1264 u = find_unwind_entry (pc);
1268 /* If we are not at the beginning of a function, then return now. */
1269 if ((pc & ~0x3) != u->region_start)
1272 /* This is how much of a frame adjustment we need to account for. */
1273 stack_remaining = u->Total_frame_size << 3;
1275 /* Magic register saves we want to know about. */
1276 save_rp = u->Save_RP;
1277 save_sp = u->Save_SP;
1279 /* An indication that args may be stored into the stack. Unfortunately
1280 the HPUX compilers tend to set this in cases where no args were
1284 /* Turn the Entry_GR field into a bitmask. */
1286 for (i = 3; i < u->Entry_GR + 3; i++)
1288 /* Frame pointer gets saved into a special location. */
1289 if (u->Save_SP && i == HPPA_FP_REGNUM)
1292 save_gr |= (1 << i);
1294 save_gr &= ~restart_gr;
1296 /* Turn the Entry_FR field into a bitmask too. */
1298 for (i = 12; i < u->Entry_FR + 12; i++)
1299 save_fr |= (1 << i);
1300 save_fr &= ~restart_fr;
1302 final_iteration = 0;
1304 /* Loop until we find everything of interest or hit a branch.
1306 For unoptimized GCC code and for any HP CC code this will never ever
1307 examine any user instructions.
1309 For optimzied GCC code we're faced with problems. GCC will schedule
1310 its prologue and make prologue instructions available for delay slot
1311 filling. The end result is user code gets mixed in with the prologue
1312 and a prologue instruction may be in the delay slot of the first branch
1315 Some unexpected things are expected with debugging optimized code, so
1316 we allow this routine to walk past user instructions in optimized
1318 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1321 unsigned int reg_num;
1322 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1323 unsigned long old_save_rp, old_save_sp, next_inst;
1325 /* Save copies of all the triggers so we can compare them later
1327 old_save_gr = save_gr;
1328 old_save_fr = save_fr;
1329 old_save_rp = save_rp;
1330 old_save_sp = save_sp;
1331 old_stack_remaining = stack_remaining;
1333 status = deprecated_read_memory_nobpt (pc, buf, 4);
1334 inst = extract_unsigned_integer (buf, 4);
1340 /* Note the interesting effects of this instruction. */
1341 stack_remaining -= prologue_inst_adjust_sp (inst);
1343 /* There are limited ways to store the return pointer into the
1345 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1348 /* These are the only ways we save SP into the stack. At this time
1349 the HP compilers never bother to save SP into the stack. */
1350 if ((inst & 0xffffc000) == 0x6fc10000
1351 || (inst & 0xffffc00c) == 0x73c10008)
1354 /* Are we loading some register with an offset from the argument
1356 if ((inst & 0xffe00000) == 0x37a00000
1357 || (inst & 0xffffffe0) == 0x081d0240)
1363 /* Account for general and floating-point register saves. */
1364 reg_num = inst_saves_gr (inst);
1365 save_gr &= ~(1 << reg_num);
1367 /* Ugh. Also account for argument stores into the stack.
1368 Unfortunately args_stored only tells us that some arguments
1369 where stored into the stack. Not how many or what kind!
1371 This is a kludge as on the HP compiler sets this bit and it
1372 never does prologue scheduling. So once we see one, skip past
1373 all of them. We have similar code for the fp arg stores below.
1375 FIXME. Can still die if we have a mix of GR and FR argument
1377 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1379 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1382 status = deprecated_read_memory_nobpt (pc, buf, 4);
1383 inst = extract_unsigned_integer (buf, 4);
1386 reg_num = inst_saves_gr (inst);
1392 reg_num = inst_saves_fr (inst);
1393 save_fr &= ~(1 << reg_num);
1395 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1396 next_inst = extract_unsigned_integer (buf, 4);
1402 /* We've got to be read to handle the ldo before the fp register
1404 if ((inst & 0xfc000000) == 0x34000000
1405 && inst_saves_fr (next_inst) >= 4
1406 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1408 /* So we drop into the code below in a reasonable state. */
1409 reg_num = inst_saves_fr (next_inst);
1413 /* Ugh. Also account for argument stores into the stack.
1414 This is a kludge as on the HP compiler sets this bit and it
1415 never does prologue scheduling. So once we see one, skip past
1417 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1419 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1422 status = deprecated_read_memory_nobpt (pc, buf, 4);
1423 inst = extract_unsigned_integer (buf, 4);
1426 if ((inst & 0xfc000000) != 0x34000000)
1428 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1429 next_inst = extract_unsigned_integer (buf, 4);
1432 reg_num = inst_saves_fr (next_inst);
1438 /* Quit if we hit any kind of branch. This can happen if a prologue
1439 instruction is in the delay slot of the first call/branch. */
1440 if (is_branch (inst) && stop_before_branch)
1443 /* What a crock. The HP compilers set args_stored even if no
1444 arguments were stored into the stack (boo hiss). This could
1445 cause this code to then skip a bunch of user insns (up to the
1448 To combat this we try to identify when args_stored was bogusly
1449 set and clear it. We only do this when args_stored is nonzero,
1450 all other resources are accounted for, and nothing changed on
1453 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1454 && old_save_gr == save_gr && old_save_fr == save_fr
1455 && old_save_rp == save_rp && old_save_sp == save_sp
1456 && old_stack_remaining == stack_remaining)
1462 /* !stop_before_branch, so also look at the insn in the delay slot
1464 if (final_iteration)
1466 if (is_branch (inst))
1467 final_iteration = 1;
1470 /* We've got a tenative location for the end of the prologue. However
1471 because of limitations in the unwind descriptor mechanism we may
1472 have went too far into user code looking for the save of a register
1473 that does not exist. So, if there registers we expected to be saved
1474 but never were, mask them out and restart.
1476 This should only happen in optimized code, and should be very rare. */
1477 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1480 restart_gr = save_gr;
1481 restart_fr = save_fr;
1489 /* Return the address of the PC after the last prologue instruction if
1490 we can determine it from the debug symbols. Else return zero. */
1493 after_prologue (CORE_ADDR pc)
1495 struct symtab_and_line sal;
1496 CORE_ADDR func_addr, func_end;
1499 /* If we can not find the symbol in the partial symbol table, then
1500 there is no hope we can determine the function's start address
1502 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1505 /* Get the line associated with FUNC_ADDR. */
1506 sal = find_pc_line (func_addr, 0);
1508 /* There are only two cases to consider. First, the end of the source line
1509 is within the function bounds. In that case we return the end of the
1510 source line. Second is the end of the source line extends beyond the
1511 bounds of the current function. We need to use the slow code to
1512 examine instructions in that case.
1514 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1515 the wrong thing to do. In fact, it should be entirely possible for this
1516 function to always return zero since the slow instruction scanning code
1517 is supposed to *always* work. If it does not, then it is a bug. */
1518 if (sal.end < func_end)
1524 /* To skip prologues, I use this predicate. Returns either PC itself
1525 if the code at PC does not look like a function prologue; otherwise
1526 returns an address that (if we're lucky) follows the prologue.
1528 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1529 It doesn't necessarily skips all the insns in the prologue. In fact
1530 we might not want to skip all the insns because a prologue insn may
1531 appear in the delay slot of the first branch, and we don't want to
1532 skip over the branch in that case. */
1535 hppa_skip_prologue (CORE_ADDR pc)
1539 CORE_ADDR post_prologue_pc;
1542 /* See if we can determine the end of the prologue via the symbol table.
1543 If so, then return either PC, or the PC after the prologue, whichever
1546 post_prologue_pc = after_prologue (pc);
1548 /* If after_prologue returned a useful address, then use it. Else
1549 fall back on the instruction skipping code.
1551 Some folks have claimed this causes problems because the breakpoint
1552 may be the first instruction of the prologue. If that happens, then
1553 the instruction skipping code has a bug that needs to be fixed. */
1554 if (post_prologue_pc != 0)
1555 return max (pc, post_prologue_pc);
1557 return (skip_prologue_hard_way (pc, 1));
1560 struct hppa_frame_cache
1563 struct trad_frame_saved_reg *saved_regs;
1566 static struct hppa_frame_cache *
1567 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1569 struct hppa_frame_cache *cache;
1574 struct unwind_table_entry *u;
1575 CORE_ADDR prologue_end;
1580 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1581 frame_relative_level(next_frame));
1583 if ((*this_cache) != NULL)
1586 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1587 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1588 return (*this_cache);
1590 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1591 (*this_cache) = cache;
1592 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1595 u = find_unwind_entry (frame_pc_unwind (next_frame));
1599 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1600 return (*this_cache);
1603 /* Turn the Entry_GR field into a bitmask. */
1605 for (i = 3; i < u->Entry_GR + 3; i++)
1607 /* Frame pointer gets saved into a special location. */
1608 if (u->Save_SP && i == HPPA_FP_REGNUM)
1611 saved_gr_mask |= (1 << i);
1614 /* Turn the Entry_FR field into a bitmask too. */
1616 for (i = 12; i < u->Entry_FR + 12; i++)
1617 saved_fr_mask |= (1 << i);
1619 /* Loop until we find everything of interest or hit a branch.
1621 For unoptimized GCC code and for any HP CC code this will never ever
1622 examine any user instructions.
1624 For optimized GCC code we're faced with problems. GCC will schedule
1625 its prologue and make prologue instructions available for delay slot
1626 filling. The end result is user code gets mixed in with the prologue
1627 and a prologue instruction may be in the delay slot of the first branch
1630 Some unexpected things are expected with debugging optimized code, so
1631 we allow this routine to walk past user instructions in optimized
1634 int final_iteration = 0;
1635 CORE_ADDR pc, end_pc;
1636 int looking_for_sp = u->Save_SP;
1637 int looking_for_rp = u->Save_RP;
1640 /* We have to use skip_prologue_hard_way instead of just
1641 skip_prologue_using_sal, in case we stepped into a function without
1642 symbol information. hppa_skip_prologue also bounds the returned
1643 pc by the passed in pc, so it will not return a pc in the next
1646 We used to call hppa_skip_prologue to find the end of the prologue,
1647 but if some non-prologue instructions get scheduled into the prologue,
1648 and the program is compiled with debug information, the "easy" way
1649 in hppa_skip_prologue will return a prologue end that is too early
1650 for us to notice any potential frame adjustments. */
1652 /* We used to use frame_func_unwind () to locate the beginning of the
1653 function to pass to skip_prologue (). However, when objects are
1654 compiled without debug symbols, frame_func_unwind can return the wrong
1655 function (or 0). We can do better than that by using unwind records. */
1657 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1658 end_pc = frame_pc_unwind (next_frame);
1660 if (prologue_end != 0 && end_pc > prologue_end)
1661 end_pc = prologue_end;
1665 for (pc = u->region_start;
1666 ((saved_gr_mask || saved_fr_mask
1667 || looking_for_sp || looking_for_rp
1668 || frame_size < (u->Total_frame_size << 3))
1676 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1679 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1680 return (*this_cache);
1683 inst = extract_unsigned_integer (buf4, sizeof buf4);
1685 /* Note the interesting effects of this instruction. */
1686 frame_size += prologue_inst_adjust_sp (inst);
1688 /* There are limited ways to store the return pointer into the
1690 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1693 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1695 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1698 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1700 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1703 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1706 /* Check to see if we saved SP into the stack. This also
1707 happens to indicate the location of the saved frame
1709 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1710 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1713 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1715 else if (inst == 0x08030241) /* copy %r3, %r1 */
1720 /* Account for general and floating-point register saves. */
1721 reg = inst_saves_gr (inst);
1722 if (reg >= 3 && reg <= 18
1723 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1725 saved_gr_mask &= ~(1 << reg);
1726 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1727 /* stwm with a positive displacement is a _post_
1729 cache->saved_regs[reg].addr = 0;
1730 else if ((inst & 0xfc00000c) == 0x70000008)
1731 /* A std has explicit post_modify forms. */
1732 cache->saved_regs[reg].addr = 0;
1737 if ((inst >> 26) == 0x1c)
1738 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1739 else if ((inst >> 26) == 0x03)
1740 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1742 offset = hppa_extract_14 (inst);
1744 /* Handle code with and without frame pointers. */
1746 cache->saved_regs[reg].addr = offset;
1748 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1752 /* GCC handles callee saved FP regs a little differently.
1754 It emits an instruction to put the value of the start of
1755 the FP store area into %r1. It then uses fstds,ma with a
1756 basereg of %r1 for the stores.
1758 HP CC emits them at the current stack pointer modifying the
1759 stack pointer as it stores each register. */
1761 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1762 if ((inst & 0xffffc000) == 0x34610000
1763 || (inst & 0xffffc000) == 0x37c10000)
1764 fp_loc = hppa_extract_14 (inst);
1766 reg = inst_saves_fr (inst);
1767 if (reg >= 12 && reg <= 21)
1769 /* Note +4 braindamage below is necessary because the FP
1770 status registers are internally 8 registers rather than
1771 the expected 4 registers. */
1772 saved_fr_mask &= ~(1 << reg);
1775 /* 1st HP CC FP register store. After this
1776 instruction we've set enough state that the GCC and
1777 HPCC code are both handled in the same manner. */
1778 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1783 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1788 /* Quit if we hit any kind of branch the previous iteration. */
1789 if (final_iteration)
1791 /* We want to look precisely one instruction beyond the branch
1792 if we have not found everything yet. */
1793 if (is_branch (inst))
1794 final_iteration = 1;
1799 /* The frame base always represents the value of %sp at entry to
1800 the current function (and is thus equivalent to the "saved"
1802 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1806 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1807 "prologue_end=0x%s) ",
1809 paddr_nz (frame_pc_unwind (next_frame)),
1810 paddr_nz (prologue_end));
1812 /* Check to see if a frame pointer is available, and use it for
1813 frame unwinding if it is.
1815 There are some situations where we need to rely on the frame
1816 pointer to do stack unwinding. For example, if a function calls
1817 alloca (), the stack pointer can get adjusted inside the body of
1818 the function. In this case, the ABI requires that the compiler
1819 maintain a frame pointer for the function.
1821 The unwind record has a flag (alloca_frame) that indicates that
1822 a function has a variable frame; unfortunately, gcc/binutils
1823 does not set this flag. Instead, whenever a frame pointer is used
1824 and saved on the stack, the Save_SP flag is set. We use this to
1825 decide whether to use the frame pointer for unwinding.
1827 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1828 instead of Save_SP. */
1830 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1832 if (frame_pc_unwind (next_frame) >= prologue_end
1833 && u->Save_SP && fp != 0)
1838 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1839 paddr_nz (cache->base));
1842 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1844 /* Both we're expecting the SP to be saved and the SP has been
1845 saved. The entry SP value is saved at this frame's SP
1847 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1850 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1851 paddr_nz (cache->base));
1855 /* The prologue has been slowly allocating stack space. Adjust
1857 cache->base = this_sp - frame_size;
1859 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1860 paddr_nz (cache->base));
1863 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1866 /* The PC is found in the "return register", "Millicode" uses "r31"
1867 as the return register while normal code uses "rp". */
1870 if (trad_frame_addr_p (cache->saved_regs, 31))
1871 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1874 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1875 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1880 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1881 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1884 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1885 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1889 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1890 frame. However, there is a one-insn window where we haven't saved it
1891 yet, but we've already clobbered it. Detect this case and fix it up.
1893 The prologue sequence for frame-pointer functions is:
1894 0: stw %rp, -20(%sp)
1897 c: stw,ma %r1, XX(%sp)
1899 So if we are at offset c, the r3 value that we want is not yet saved
1900 on the stack, but it's been overwritten. The prologue analyzer will
1901 set fp_in_r1 when it sees the copy insn so we know to get the value
1903 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1906 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1907 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1911 /* Convert all the offsets into addresses. */
1913 for (reg = 0; reg < NUM_REGS; reg++)
1915 if (trad_frame_addr_p (cache->saved_regs, reg))
1916 cache->saved_regs[reg].addr += cache->base;
1921 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1922 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1923 return (*this_cache);
1927 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1928 struct frame_id *this_id)
1930 struct hppa_frame_cache *info;
1931 CORE_ADDR pc = frame_pc_unwind (next_frame);
1932 struct unwind_table_entry *u;
1934 info = hppa_frame_cache (next_frame, this_cache);
1935 u = find_unwind_entry (pc);
1937 (*this_id) = frame_id_build (info->base, u->region_start);
1941 hppa_frame_prev_register (struct frame_info *next_frame,
1943 int regnum, int *optimizedp,
1944 enum lval_type *lvalp, CORE_ADDR *addrp,
1945 int *realnump, void *valuep)
1947 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1948 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1949 optimizedp, lvalp, addrp, realnump, valuep);
1952 static const struct frame_unwind hppa_frame_unwind =
1956 hppa_frame_prev_register
1959 static const struct frame_unwind *
1960 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1962 CORE_ADDR pc = frame_pc_unwind (next_frame);
1964 if (find_unwind_entry (pc))
1965 return &hppa_frame_unwind;
1970 /* This is a generic fallback frame unwinder that kicks in if we fail all
1971 the other ones. Normally we would expect the stub and regular unwinder
1972 to work, but in some cases we might hit a function that just doesn't
1973 have any unwind information available. In this case we try to do
1974 unwinding solely based on code reading. This is obviously going to be
1975 slow, so only use this as a last resort. Currently this will only
1976 identify the stack and pc for the frame. */
1978 static struct hppa_frame_cache *
1979 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1981 struct hppa_frame_cache *cache;
1982 unsigned int frame_size;
1984 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1987 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1988 frame_relative_level(next_frame));
1990 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1991 (*this_cache) = cache;
1992 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1994 pc = frame_func_unwind (next_frame);
1995 cur_pc = frame_pc_unwind (next_frame);
1999 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2001 if (start_pc == 0 || end_pc == 0)
2003 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2004 "fail.", paddr_nz (pc));
2008 if (end_pc > cur_pc)
2011 for (pc = start_pc; pc < end_pc; pc += 4)
2015 insn = read_memory_unsigned_integer (pc, 4);
2017 frame_size += prologue_inst_adjust_sp (insn);
2019 /* There are limited ways to store the return pointer into the
2021 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2023 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2026 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2034 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2035 frame_size, found_rp);
2037 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2038 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2040 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2042 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2043 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2047 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2048 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2055 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2056 struct frame_id *this_id)
2058 struct hppa_frame_cache *info =
2059 hppa_fallback_frame_cache (next_frame, this_cache);
2060 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2064 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2066 int regnum, int *optimizedp,
2067 enum lval_type *lvalp, CORE_ADDR *addrp,
2068 int *realnump, void *valuep)
2070 struct hppa_frame_cache *info =
2071 hppa_fallback_frame_cache (next_frame, this_cache);
2072 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2073 optimizedp, lvalp, addrp, realnump, valuep);
2076 static const struct frame_unwind hppa_fallback_frame_unwind =
2079 hppa_fallback_frame_this_id,
2080 hppa_fallback_frame_prev_register
2083 static const struct frame_unwind *
2084 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2086 return &hppa_fallback_frame_unwind;
2089 /* Stub frames, used for all kinds of call stubs. */
2090 struct hppa_stub_unwind_cache
2093 struct trad_frame_saved_reg *saved_regs;
2096 static struct hppa_stub_unwind_cache *
2097 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2100 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2101 struct hppa_stub_unwind_cache *info;
2102 struct unwind_table_entry *u;
2107 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2109 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2111 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2113 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2115 /* HPUX uses export stubs in function calls; the export stub clobbers
2116 the return value of the caller, and, later restores it from the
2118 u = find_unwind_entry (frame_pc_unwind (next_frame));
2120 if (u && u->stub_unwind.stub_type == EXPORT)
2122 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2128 /* By default we assume that stubs do not change the rp. */
2129 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2135 hppa_stub_frame_this_id (struct frame_info *next_frame,
2136 void **this_prologue_cache,
2137 struct frame_id *this_id)
2139 struct hppa_stub_unwind_cache *info
2140 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2141 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2145 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2146 void **this_prologue_cache,
2147 int regnum, int *optimizedp,
2148 enum lval_type *lvalp, CORE_ADDR *addrp,
2149 int *realnump, void *valuep)
2151 struct hppa_stub_unwind_cache *info
2152 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2153 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2154 optimizedp, lvalp, addrp, realnump, valuep);
2157 static const struct frame_unwind hppa_stub_frame_unwind = {
2159 hppa_stub_frame_this_id,
2160 hppa_stub_frame_prev_register
2163 static const struct frame_unwind *
2164 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2166 CORE_ADDR pc = frame_pc_unwind (next_frame);
2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2171 || (tdep->in_solib_call_trampoline != NULL
2172 && tdep->in_solib_call_trampoline (pc, NULL))
2173 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2174 return &hppa_stub_frame_unwind;
2178 static struct frame_id
2179 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2181 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2183 frame_pc_unwind (next_frame));
2187 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2189 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2192 /* Instead of this nasty cast, add a method pvoid() that prints out a
2193 host VOID data type (remember %p isn't portable). */
2196 hppa_pointer_to_address_hack (void *ptr)
2198 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2199 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2203 unwind_command (char *exp, int from_tty)
2206 struct unwind_table_entry *u;
2208 /* If we have an expression, evaluate it and use it as the address. */
2210 if (exp != 0 && *exp != 0)
2211 address = parse_and_eval_address (exp);
2215 u = find_unwind_entry (address);
2219 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2223 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2224 paddr_nz (hppa_pointer_to_address_hack (u)));
2226 printf_unfiltered ("\tregion_start = ");
2227 print_address (u->region_start, gdb_stdout);
2228 gdb_flush (gdb_stdout);
2230 printf_unfiltered ("\n\tregion_end = ");
2231 print_address (u->region_end, gdb_stdout);
2232 gdb_flush (gdb_stdout);
2234 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2236 printf_unfiltered ("\n\tflags =");
2237 pif (Cannot_unwind);
2239 pif (Millicode_save_sr0);
2242 pif (Variable_Frame);
2243 pif (Separate_Package_Body);
2244 pif (Frame_Extension_Millicode);
2245 pif (Stack_Overflow_Check);
2246 pif (Two_Instruction_SP_Increment);
2250 pif (Save_MRP_in_frame);
2251 pif (extn_ptr_defined);
2252 pif (Cleanup_defined);
2253 pif (MPE_XL_interrupt_marker);
2254 pif (HP_UX_interrupt_marker);
2257 putchar_unfiltered ('\n');
2259 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2261 pin (Region_description);
2264 pin (Total_frame_size);
2268 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2270 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2272 An example of this occurs when an a.out is linked against a foo.sl.
2273 The foo.sl defines a global bar(), and the a.out declares a signature
2274 for bar(). However, the a.out doesn't directly call bar(), but passes
2275 its address in another call.
2277 If you have this scenario and attempt to "break bar" before running,
2278 gdb will find a minimal symbol for bar() in the a.out. But that
2279 symbol's address will be negative. What this appears to denote is
2280 an index backwards from the base of the procedure linkage table (PLT)
2281 into the data linkage table (DLT), the end of which is contiguous
2282 with the start of the PLT. This is clearly not a valid address for
2283 us to set a breakpoint on.
2285 Note that one must be careful in how one checks for a negative address.
2286 0xc0000000 is a legitimate address of something in a shared text
2287 segment, for example. Since I don't know what the possible range
2288 is of these "really, truly negative" addresses that come from the
2289 minimal symbols, I'm resorting to the gross hack of checking the
2290 top byte of the address for all 1's. Sigh. */
2292 return (!target_has_stack && (pc & 0xFF000000));
2296 hppa_instruction_nullified (void)
2298 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2299 avoid the type cast. I'm leaving it as is for now as I'm doing
2300 semi-mechanical multiarching-related changes. */
2301 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2302 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2304 return ((ipsw & 0x00200000) && !(flags & 0x2));
2307 /* Return the GDB type object for the "standard" data type of data
2310 static struct type *
2311 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2313 if (reg_nr < HPPA_FP4_REGNUM)
2314 return builtin_type_uint32;
2316 return builtin_type_ieee_single_big;
2319 /* Return the GDB type object for the "standard" data type of data
2320 in register N. hppa64 version. */
2322 static struct type *
2323 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2325 if (reg_nr < HPPA_FP4_REGNUM)
2326 return builtin_type_uint64;
2328 return builtin_type_ieee_double_big;
2331 /* Return True if REGNUM is not a register available to the user
2332 through ptrace(). */
2335 hppa_cannot_store_register (int regnum)
2338 || regnum == HPPA_PCSQ_HEAD_REGNUM
2339 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2340 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2345 hppa_smash_text_address (CORE_ADDR addr)
2347 /* The low two bits of the PC on the PA contain the privilege level.
2348 Some genius implementing a (non-GCC) compiler apparently decided
2349 this means that "addresses" in a text section therefore include a
2350 privilege level, and thus symbol tables should contain these bits.
2351 This seems like a bonehead thing to do--anyway, it seems to work
2352 for our purposes to just ignore those bits. */
2354 return (addr &= ~0x3);
2357 /* Get the ith function argument for the current function. */
2359 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2363 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2368 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2369 int regnum, void *buf)
2373 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2374 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2376 store_unsigned_integer (buf, sizeof(tmp), tmp);
2380 hppa_find_global_pointer (struct value *function)
2386 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2387 struct trad_frame_saved_reg saved_regs[],
2388 int regnum, int *optimizedp,
2389 enum lval_type *lvalp, CORE_ADDR *addrp,
2390 int *realnump, void *valuep)
2392 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2398 trad_frame_get_prev_register (next_frame, saved_regs,
2399 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2400 lvalp, addrp, realnump, valuep);
2402 pc = extract_unsigned_integer (valuep, 4);
2403 store_unsigned_integer (valuep, 4, pc + 4);
2406 /* It's a computed value. */
2414 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2415 optimizedp, lvalp, addrp, realnump, valuep);
2419 /* Here is a table of C type sizes on hppa with various compiles
2420 and options. I measured this on PA 9000/800 with HP-UX 11.11
2421 and these compilers:
2423 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2424 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2425 /opt/aCC/bin/aCC B3910B A.03.45
2426 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2428 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2429 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2430 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2431 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2432 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2433 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2434 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2435 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2439 compiler and options
2440 char, short, int, long, long long
2441 float, double, long double
2444 So all these compilers use either ILP32 or LP64 model.
2445 TODO: gcc has more options so it needs more investigation.
2447 For floating point types, see:
2449 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2450 HP-UX floating-point guide, hpux 11.00
2452 -- chastain 2003-12-18 */
2454 static struct gdbarch *
2455 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2457 struct gdbarch_tdep *tdep;
2458 struct gdbarch *gdbarch;
2460 /* Try to determine the ABI of the object we are loading. */
2461 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2463 /* If it's a SOM file, assume it's HP/UX SOM. */
2464 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2465 info.osabi = GDB_OSABI_HPUX_SOM;
2468 /* find a candidate among the list of pre-declared architectures. */
2469 arches = gdbarch_list_lookup_by_info (arches, &info);
2471 return (arches->gdbarch);
2473 /* If none found, then allocate and initialize one. */
2474 tdep = XZALLOC (struct gdbarch_tdep);
2475 gdbarch = gdbarch_alloc (&info, tdep);
2477 /* Determine from the bfd_arch_info structure if we are dealing with
2478 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2479 then default to a 32bit machine. */
2480 if (info.bfd_arch_info != NULL)
2481 tdep->bytes_per_address =
2482 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2484 tdep->bytes_per_address = 4;
2486 tdep->find_global_pointer = hppa_find_global_pointer;
2488 /* Some parts of the gdbarch vector depend on whether we are running
2489 on a 32 bits or 64 bits target. */
2490 switch (tdep->bytes_per_address)
2493 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2494 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2495 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2498 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2499 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2500 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2503 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2504 tdep->bytes_per_address);
2507 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2508 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2510 /* The following gdbarch vector elements are the same in both ILP32
2511 and LP64, but might show differences some day. */
2512 set_gdbarch_long_long_bit (gdbarch, 64);
2513 set_gdbarch_long_double_bit (gdbarch, 128);
2514 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2516 /* The following gdbarch vector elements do not depend on the address
2517 size, or in any other gdbarch element previously set. */
2518 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2519 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2520 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2521 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2522 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2523 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2524 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2525 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2526 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2527 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2528 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2530 /* Helper for function argument information. */
2531 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2533 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2535 /* When a hardware watchpoint triggers, we'll move the inferior past
2536 it by removing all eventpoints; stepping past the instruction
2537 that caused the trigger; reinserting eventpoints; and checking
2538 whether any watched location changed. */
2539 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2541 /* Inferior function call methods. */
2542 switch (tdep->bytes_per_address)
2545 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2546 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2547 set_gdbarch_convert_from_func_ptr_addr
2548 (gdbarch, hppa32_convert_from_func_ptr_addr);
2551 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2552 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2555 internal_error (__FILE__, __LINE__, "bad switch");
2558 /* Struct return methods. */
2559 switch (tdep->bytes_per_address)
2562 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2565 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2568 internal_error (__FILE__, __LINE__, "bad switch");
2571 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2572 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2574 /* Frame unwind methods. */
2575 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2576 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2578 /* Hook in ABI-specific overrides, if they have been registered. */
2579 gdbarch_init_osabi (info, gdbarch);
2581 /* Hook in the default unwinders. */
2582 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2583 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2584 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2590 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2592 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2594 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2595 tdep->bytes_per_address);
2596 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2600 _initialize_hppa_tdep (void)
2602 struct cmd_list_element *c;
2603 void break_at_finish_command (char *arg, int from_tty);
2604 void tbreak_at_finish_command (char *arg, int from_tty);
2605 void break_at_finish_at_depth_command (char *arg, int from_tty);
2607 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2609 hppa_objfile_priv_data = register_objfile_data ();
2611 add_cmd ("unwind", class_maintenance, unwind_command,
2612 "Print unwind table entry at given address.",
2613 &maintenanceprintlist);
2615 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2616 break_at_finish_command,
2617 concat ("Set breakpoint at procedure exit. \n\
2618 Argument may be function name, or \"*\" and an address.\n\
2619 If function is specified, break at end of code for that function.\n\
2620 If an address is specified, break at the end of the function that contains \n\
2621 that exact address.\n",
2622 "With no arg, uses current execution address of selected stack frame.\n\
2623 This is useful for breaking on return to a stack frame.\n\
2625 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2627 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2628 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2629 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2630 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2631 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2633 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2634 tbreak_at_finish_command,
2635 "Set temporary breakpoint at procedure exit. Either there should\n\
2636 be no argument or the argument must be a depth.\n"), NULL);
2637 set_cmd_completer (c, location_completer);
2640 deprecate_cmd (add_com ("bx", class_breakpoint,
2641 break_at_finish_at_depth_command,
2642 "Set breakpoint at procedure exit. Either there should\n\
2643 be no argument or the argument must be a depth.\n"), NULL);
2645 /* Debug this files internals. */
2646 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2647 Set whether hppa target specific debugging information should be displayed.", "\
2648 Show whether hppa target specific debugging information is displayed.", "\
2649 This flag controls whether hppa target specific debugging information is\n\
2650 displayed. This information is particularly useful for debugging frame\n\
2651 unwinding problems.", "hppa debug flag is %s.",
2652 NULL, NULL, &setdebuglist, &showdebuglist);