1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of GAS, the GNU Assembler.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* Intel 80386 machine specific gas.
24 Bugs & suggestions are completely welcome. This is free software.
25 Please help us make it better. */
31 #include "dwarf2dbg.h"
32 #include "opcode/i386.h"
34 #ifndef REGISTER_WARNINGS
35 #define REGISTER_WARNINGS 1
38 #ifndef INFER_ADDR_PREFIX
39 #define INFER_ADDR_PREFIX 1
42 #ifndef SCALE1_WHEN_NO_INDEX
43 /* Specifying a scale factor besides 1 when there is no index is
44 futile. eg. `mov (%ebx,2),%al' does exactly the same as
45 `mov (%ebx),%al'. To slavishly follow what the programmer
46 specified, set SCALE1_WHEN_NO_INDEX to 0. */
47 #define SCALE1_WHEN_NO_INDEX 1
53 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
54 static int fits_in_signed_byte PARAMS ((offsetT));
55 static int fits_in_unsigned_byte PARAMS ((offsetT));
56 static int fits_in_unsigned_word PARAMS ((offsetT));
57 static int fits_in_signed_word PARAMS ((offsetT));
58 static int smallest_imm_type PARAMS ((offsetT));
59 static offsetT offset_in_range PARAMS ((offsetT, int));
60 static int add_prefix PARAMS ((unsigned int));
61 static void set_16bit_code_flag PARAMS ((int));
62 static void set_16bit_gcc_code_flag PARAMS ((int));
63 static void set_intel_syntax PARAMS ((int));
64 static void set_cpu_arch PARAMS ((int));
67 static bfd_reloc_code_real_type reloc
68 PARAMS ((int, int, bfd_reloc_code_real_type));
71 /* 'md_assemble ()' gathers together information and puts it into a
78 const reg_entry *regs;
83 /* TM holds the template for the insn were currently assembling. */
86 /* SUFFIX holds the instruction mnemonic suffix if given.
87 (e.g. 'l' for 'movl') */
90 /* OPERANDS gives the number of given operands. */
91 unsigned int operands;
93 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
94 of given register, displacement, memory operands and immediate
96 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
98 /* TYPES [i] is the type (see above #defines) which tells us how to
99 use OP[i] for the corresponding operand. */
100 unsigned int types[MAX_OPERANDS];
102 /* Displacement expression, immediate expression, or register for each
104 union i386_op op[MAX_OPERANDS];
106 /* Relocation type for operand */
108 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
110 int disp_reloc[MAX_OPERANDS];
113 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
114 the base index byte below. */
115 const reg_entry *base_reg;
116 const reg_entry *index_reg;
117 unsigned int log2_scale_factor;
119 /* SEG gives the seg_entries of this insn. They are zero unless
120 explicit segment overrides are given. */
121 const seg_entry *seg[2];
123 /* PREFIX holds all the given prefix opcodes (usually null).
124 PREFIXES is the number of prefix opcodes. */
125 unsigned int prefixes;
126 unsigned char prefix[MAX_PREFIXES];
128 /* RM and SIB are the modrm byte and the sib byte where the
129 addressing modes of this insn are encoded. */
135 typedef struct _i386_insn i386_insn;
137 /* List of chars besides those in app.c:symbol_chars that can start an
138 operand. Used to prevent the scrubber eating vital white-space. */
140 const char extra_symbol_chars[] = "*%-(@";
142 const char extra_symbol_chars[] = "*%-(";
145 /* This array holds the chars that always start a comment. If the
146 pre-processor is disabled, these aren't very useful. */
147 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
148 /* Putting '/' here makes it impossible to use the divide operator.
149 However, we need it for compatibility with SVR4 systems. */
150 const char comment_chars[] = "#/";
151 #define PREFIX_SEPARATOR '\\'
153 const char comment_chars[] = "#";
154 #define PREFIX_SEPARATOR '/'
157 /* This array holds the chars that only start a comment at the beginning of
158 a line. If the line seems to have the form '# 123 filename'
159 .line and .file directives will appear in the pre-processed output.
160 Note that input_file.c hand checks for '#' at the beginning of the
161 first line of the input file. This is because the compiler outputs
162 #NO_APP at the beginning of its output.
163 Also note that comments started like this one will always work if
164 '/' isn't otherwise defined. */
165 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
166 const char line_comment_chars[] = "";
168 const char line_comment_chars[] = "/";
171 const char line_separator_chars[] = ";";
173 /* Chars that can be used to separate mant from exp in floating point
175 const char EXP_CHARS[] = "eE";
177 /* Chars that mean this number is a floating point constant
180 const char FLT_CHARS[] = "fFdDxX";
182 /* Tables for lexical analysis. */
183 static char mnemonic_chars[256];
184 static char register_chars[256];
185 static char operand_chars[256];
186 static char identifier_chars[256];
187 static char digit_chars[256];
189 /* Lexical macros. */
190 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
191 #define is_operand_char(x) (operand_chars[(unsigned char) x])
192 #define is_register_char(x) (register_chars[(unsigned char) x])
193 #define is_space_char(x) ((x) == ' ')
194 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
195 #define is_digit_char(x) (digit_chars[(unsigned char) x])
197 /* All non-digit non-letter charcters that may occur in an operand. */
198 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
200 /* md_assemble() always leaves the strings it's passed unaltered. To
201 effect this we maintain a stack of saved characters that we've smashed
202 with '\0's (indicating end of strings for various sub-fields of the
203 assembler instruction). */
204 static char save_stack[32];
205 static char *save_stack_p;
206 #define END_STRING_AND_SAVE(s) \
207 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
208 #define RESTORE_END_STRING(s) \
209 do { *(s) = *--save_stack_p; } while (0)
211 /* The instruction we're assembling. */
214 /* Possible templates for current insn. */
215 static const templates *current_templates;
217 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
218 static expressionS disp_expressions[2], im_expressions[2];
220 /* Current operand we are working on. */
221 static int this_operand;
223 /* 1 if we're writing 16-bit code,
225 static int flag_16bit_code;
227 /* 1 for intel syntax,
229 static int intel_syntax = 0;
231 /* 1 if register prefix % not required. */
232 static int allow_naked_reg = 0;
234 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
235 leave, push, and pop instructions so that gcc has the same stack
236 frame as in 32 bit mode. */
237 static char stackop_size = '\0';
239 /* Non-zero to quieten some warnings. */
240 static int quiet_warnings = 0;
243 static const char *cpu_arch_name = NULL;
245 /* CPU feature flags. */
246 static unsigned int cpu_arch_flags = 0;
248 /* Interface to relax_segment.
249 There are 2 relax states for 386 jump insns: one for conditional &
250 one for unconditional jumps. This is because these two types of
251 jumps add different sizes to frags when we're figuring out what
252 sort of jump to choose to reach a given label. */
256 #define UNCOND_JUMP 2
260 #define SMALL16 (SMALL|CODE16)
262 #define BIG16 (BIG|CODE16)
266 #define INLINE __inline__
272 #define ENCODE_RELAX_STATE(type,size) \
273 ((relax_substateT)((type<<2) | (size)))
274 #define SIZE_FROM_RELAX_STATE(s) \
275 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
277 /* This table is used by relax_frag to promote short jumps to long
278 ones where necessary. SMALL (short) jumps may be promoted to BIG
279 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
280 don't allow a short jump in a 32 bit code segment to be promoted to
281 a 16 bit offset jump because it's slower (requires data size
282 prefix), and doesn't work, unless the destination is in the bottom
283 64k of the code segment (The top 16 bits of eip are zeroed). */
285 const relax_typeS md_relax_table[] =
288 1) most positive reach of this state,
289 2) most negative reach of this state,
290 3) how many bytes this mode will add to the size of the current frag
291 4) which index into the table to try if we can't fit into this one. */
297 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
298 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
299 /* dword conditionals adds 4 bytes to frag:
300 1 extra opcode byte, 3 extra displacement bytes. */
302 /* word conditionals add 2 bytes to frag:
303 1 extra opcode byte, 1 extra displacement byte. */
306 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
307 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
308 /* dword jmp adds 3 bytes to frag:
309 0 extra opcode bytes, 3 extra displacement bytes. */
311 /* word jmp adds 1 byte to frag:
312 0 extra opcode bytes, 1 extra displacement byte. */
317 static const arch_entry cpu_arch[] = {
319 {"i186", Cpu086|Cpu186 },
320 {"i286", Cpu086|Cpu186|Cpu286 },
321 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
322 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
323 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
324 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
325 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
326 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
327 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX|Cpu3dnow },
328 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|Cpu3dnow },
333 i386_align_code (fragP, count)
337 /* Various efficient no-op patterns for aligning code labels.
338 Note: Don't try to assemble the instructions in the comments.
339 0L and 0w are not legal. */
340 static const char f32_1[] =
342 static const char f32_2[] =
343 {0x89,0xf6}; /* movl %esi,%esi */
344 static const char f32_3[] =
345 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
346 static const char f32_4[] =
347 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
348 static const char f32_5[] =
350 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
351 static const char f32_6[] =
352 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
353 static const char f32_7[] =
354 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
355 static const char f32_8[] =
357 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
358 static const char f32_9[] =
359 {0x89,0xf6, /* movl %esi,%esi */
360 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
361 static const char f32_10[] =
362 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
363 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
364 static const char f32_11[] =
365 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
366 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
367 static const char f32_12[] =
368 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
369 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
370 static const char f32_13[] =
371 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
372 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
373 static const char f32_14[] =
374 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
375 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
376 static const char f32_15[] =
377 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
378 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
379 static const char f16_3[] =
380 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
381 static const char f16_4[] =
382 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
383 static const char f16_5[] =
385 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
386 static const char f16_6[] =
387 {0x89,0xf6, /* mov %si,%si */
388 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
389 static const char f16_7[] =
390 {0x8d,0x74,0x00, /* lea 0(%si),%si */
391 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
392 static const char f16_8[] =
393 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
394 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
395 static const char *const f32_patt[] = {
396 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
397 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
399 static const char *const f16_patt[] = {
400 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
401 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
404 if (count > 0 && count <= 15)
408 memcpy (fragP->fr_literal + fragP->fr_fix,
409 f16_patt[count - 1], count);
411 /* Adjust jump offset. */
412 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
415 memcpy (fragP->fr_literal + fragP->fr_fix,
416 f32_patt[count - 1], count);
417 fragP->fr_var = count;
421 static char *output_invalid PARAMS ((int c));
422 static int i386_operand PARAMS ((char *operand_string));
423 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
424 static const reg_entry *parse_register PARAMS ((char *reg_string,
428 static void s_bss PARAMS ((int));
431 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
433 static INLINE unsigned int
434 mode_from_disp_size (t)
437 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32)) ? 2 : 0;
441 fits_in_signed_byte (num)
444 return (num >= -128) && (num <= 127);
448 fits_in_unsigned_byte (num)
451 return (num & 0xff) == num;
455 fits_in_unsigned_word (num)
458 return (num & 0xffff) == num;
462 fits_in_signed_word (num)
465 return (-32768 <= num) && (num <= 32767);
469 smallest_imm_type (num)
472 if (cpu_arch_flags != 0
473 && cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486))
475 /* This code is disabled on the 486 because all the Imm1 forms
476 in the opcode table are slower on the i486. They're the
477 versions with the implicitly specified single-position
478 displacement, which has another syntax if you really want to
481 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
483 return (fits_in_signed_byte (num)
484 ? (Imm8S | Imm8 | Imm16 | Imm32)
485 : fits_in_unsigned_byte (num)
486 ? (Imm8 | Imm16 | Imm32)
487 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
493 offset_in_range (val, size)
501 case 1: mask = ((addressT) 1 << 8) - 1; break;
502 case 2: mask = ((addressT) 1 << 16) - 1; break;
503 case 4: mask = ((addressT) 2 << 31) - 1; break;
507 /* If BFD64, sign extend val. */
508 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
509 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
511 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
513 char buf1[40], buf2[40];
515 sprint_value (buf1, val);
516 sprint_value (buf2, val & mask);
517 as_warn (_("%s shortened to %s"), buf1, buf2);
522 /* Returns 0 if attempting to add a prefix where one from the same
523 class already exists, 1 if non rep/repne added, 2 if rep/repne
537 case CS_PREFIX_OPCODE:
538 case DS_PREFIX_OPCODE:
539 case ES_PREFIX_OPCODE:
540 case FS_PREFIX_OPCODE:
541 case GS_PREFIX_OPCODE:
542 case SS_PREFIX_OPCODE:
546 case REPNE_PREFIX_OPCODE:
547 case REPE_PREFIX_OPCODE:
550 case LOCK_PREFIX_OPCODE:
558 case ADDR_PREFIX_OPCODE:
562 case DATA_PREFIX_OPCODE:
569 as_bad (_("same type of prefix used twice"));
574 i.prefix[q] = prefix;
579 set_16bit_code_flag (new_16bit_code_flag)
580 int new_16bit_code_flag;
582 flag_16bit_code = new_16bit_code_flag;
587 set_16bit_gcc_code_flag (new_16bit_code_flag)
588 int new_16bit_code_flag;
590 flag_16bit_code = new_16bit_code_flag;
591 stackop_size = new_16bit_code_flag ? 'l' : '\0';
595 set_intel_syntax (syntax_flag)
598 /* Find out if register prefixing is specified. */
599 int ask_naked_reg = 0;
602 if (! is_end_of_line[(unsigned char) *input_line_pointer])
604 char *string = input_line_pointer;
605 int e = get_symbol_end ();
607 if (strcmp (string, "prefix") == 0)
609 else if (strcmp (string, "noprefix") == 0)
612 as_bad (_("bad argument to syntax directive."));
613 *input_line_pointer = e;
615 demand_empty_rest_of_line ();
617 intel_syntax = syntax_flag;
619 if (ask_naked_reg == 0)
622 allow_naked_reg = (intel_syntax
623 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
625 /* Conservative default. */
630 allow_naked_reg = (ask_naked_reg < 0);
635 int dummy ATTRIBUTE_UNUSED;
639 if (! is_end_of_line[(unsigned char) *input_line_pointer])
641 char *string = input_line_pointer;
642 int e = get_symbol_end ();
645 for (i = 0; cpu_arch[i].name; i++)
647 if (strcmp (string, cpu_arch[i].name) == 0)
649 cpu_arch_name = cpu_arch[i].name;
650 cpu_arch_flags = cpu_arch[i].flags;
654 if (!cpu_arch[i].name)
655 as_bad (_("no such architecture: `%s'"), string);
657 *input_line_pointer = e;
660 as_bad (_("missing cpu architecture"));
662 demand_empty_rest_of_line ();
665 const pseudo_typeS md_pseudo_table[] =
667 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
668 {"align", s_align_bytes, 0},
670 {"align", s_align_ptwo, 0},
672 {"arch", set_cpu_arch, 0},
676 {"ffloat", float_cons, 'f'},
677 {"dfloat", float_cons, 'd'},
678 {"tfloat", float_cons, 'x'},
680 {"noopt", s_ignore, 0},
681 {"optim", s_ignore, 0},
682 {"code16gcc", set_16bit_gcc_code_flag, 1},
683 {"code16", set_16bit_code_flag, 1},
684 {"code32", set_16bit_code_flag, 0},
685 {"intel_syntax", set_intel_syntax, 1},
686 {"att_syntax", set_intel_syntax, 0},
687 {"file", dwarf2_directive_file, 0},
688 {"loc", dwarf2_directive_loc, 0},
692 /* For interface with expression (). */
693 extern char *input_line_pointer;
695 /* Hash table for instruction mnemonic lookup. */
696 static struct hash_control *op_hash;
698 /* Hash table for register lookup. */
699 static struct hash_control *reg_hash;
704 const char *hash_err;
706 /* Initialize op_hash hash table. */
707 op_hash = hash_new ();
710 register const template *optab;
711 register templates *core_optab;
713 /* Setup for loop. */
715 core_optab = (templates *) xmalloc (sizeof (templates));
716 core_optab->start = optab;
721 if (optab->name == NULL
722 || strcmp (optab->name, (optab - 1)->name) != 0)
724 /* different name --> ship out current template list;
725 add to hash table; & begin anew. */
726 core_optab->end = optab;
727 hash_err = hash_insert (op_hash,
733 as_fatal (_("Internal Error: Can't hash %s: %s"),
737 if (optab->name == NULL)
739 core_optab = (templates *) xmalloc (sizeof (templates));
740 core_optab->start = optab;
745 /* Initialize reg_hash hash table. */
746 reg_hash = hash_new ();
748 register const reg_entry *regtab;
750 for (regtab = i386_regtab;
751 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
754 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
760 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
765 for (c = 0; c < 256; c++)
770 mnemonic_chars[c] = c;
771 register_chars[c] = c;
772 operand_chars[c] = c;
774 else if (islower (c))
776 mnemonic_chars[c] = c;
777 register_chars[c] = c;
778 operand_chars[c] = c;
780 else if (isupper (c))
782 mnemonic_chars[c] = tolower (c);
783 register_chars[c] = mnemonic_chars[c];
784 operand_chars[c] = c;
787 if (isalpha (c) || isdigit (c))
788 identifier_chars[c] = c;
791 identifier_chars[c] = c;
792 operand_chars[c] = c;
797 identifier_chars['@'] = '@';
799 digit_chars['-'] = '-';
800 identifier_chars['_'] = '_';
801 identifier_chars['.'] = '.';
803 for (p = operand_special_chars; *p != '\0'; p++)
804 operand_chars[(unsigned char) *p] = *p;
807 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
808 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
810 record_alignment (text_section, 2);
811 record_alignment (data_section, 2);
812 record_alignment (bss_section, 2);
818 i386_print_statistics (file)
821 hash_print_statistics (file, "i386 opcode", op_hash);
822 hash_print_statistics (file, "i386 register", reg_hash);
827 /* Debugging routines for md_assemble. */
828 static void pi PARAMS ((char *, i386_insn *));
829 static void pte PARAMS ((template *));
830 static void pt PARAMS ((unsigned int));
831 static void pe PARAMS ((expressionS *));
832 static void ps PARAMS ((symbolS *));
839 register template *p;
842 fprintf (stdout, "%s: template ", line);
844 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
845 x->rm.mode, x->rm.reg, x->rm.regmem);
846 fprintf (stdout, " base %x index %x scale %x\n",
847 x->bi.base, x->bi.index, x->bi.scale);
848 for (i = 0; i < x->operands; i++)
850 fprintf (stdout, " #%d: ", i + 1);
852 fprintf (stdout, "\n");
854 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
855 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
856 if (x->types[i] & Imm)
858 if (x->types[i] & Disp)
868 fprintf (stdout, " %d operands ", t->operands);
869 fprintf (stdout, "opcode %x ", t->base_opcode);
870 if (t->extension_opcode != None)
871 fprintf (stdout, "ext %x ", t->extension_opcode);
872 if (t->opcode_modifier & D)
873 fprintf (stdout, "D");
874 if (t->opcode_modifier & W)
875 fprintf (stdout, "W");
876 fprintf (stdout, "\n");
877 for (i = 0; i < t->operands; i++)
879 fprintf (stdout, " #%d type ", i + 1);
880 pt (t->operand_types[i]);
881 fprintf (stdout, "\n");
889 fprintf (stdout, " operation %d\n", e->X_op);
890 fprintf (stdout, " add_number %ld (%lx)\n",
891 (long) e->X_add_number, (long) e->X_add_number);
894 fprintf (stdout, " add_symbol ");
895 ps (e->X_add_symbol);
896 fprintf (stdout, "\n");
900 fprintf (stdout, " op_symbol ");
902 fprintf (stdout, "\n");
910 fprintf (stdout, "%s type %s%s",
912 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
913 segment_name (S_GET_SEGMENT (s)));
932 { BaseIndex, "BaseIndex" },
936 { InOutPortReg, "InOutPortReg" },
937 { ShiftCount, "ShiftCount" },
938 { Control, "control reg" },
939 { Test, "test reg" },
940 { Debug, "debug reg" },
941 { FloatReg, "FReg" },
942 { FloatAcc, "FAcc" },
946 { JumpAbsolute, "Jump Absolute" },
957 register struct type_name *ty;
961 fprintf (stdout, _("Unknown"));
965 for (ty = type_names; ty->mask; ty++)
967 fprintf (stdout, "%s, ", ty->tname);
972 #endif /* DEBUG386 */
975 tc_i386_force_relocation (fixp)
979 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
980 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
985 return fixp->fx_r_type == 7;
990 static bfd_reloc_code_real_type reloc
991 PARAMS ((int, int, bfd_reloc_code_real_type));
993 static bfd_reloc_code_real_type
994 reloc (size, pcrel, other)
997 bfd_reloc_code_real_type other;
999 if (other != NO_RELOC)
1006 case 1: return BFD_RELOC_8_PCREL;
1007 case 2: return BFD_RELOC_16_PCREL;
1008 case 4: return BFD_RELOC_32_PCREL;
1010 as_bad (_("can not do %d byte pc-relative relocation"), size);
1016 case 1: return BFD_RELOC_8;
1017 case 2: return BFD_RELOC_16;
1018 case 4: return BFD_RELOC_32;
1020 as_bad (_("can not do %d byte relocation"), size);
1023 return BFD_RELOC_NONE;
1026 /* Here we decide which fixups can be adjusted to make them relative to
1027 the beginning of the section instead of the symbol. Basically we need
1028 to make sure that the dynamic relocations are done correctly, so in
1029 some cases we force the original symbol to be used. */
1032 tc_i386_fix_adjustable (fixP)
1035 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1036 /* Prevent all adjustments to global symbols, or else dynamic
1037 linking will not work correctly. */
1038 if (S_IS_EXTERNAL (fixP->fx_addsy)
1039 || S_IS_WEAK (fixP->fx_addsy))
1042 /* adjust_reloc_syms doesn't know about the GOT. */
1043 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1044 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1045 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1046 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1047 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1052 #define reloc(SIZE,PCREL,OTHER) 0
1053 #define BFD_RELOC_16 0
1054 #define BFD_RELOC_32 0
1055 #define BFD_RELOC_16_PCREL 0
1056 #define BFD_RELOC_32_PCREL 0
1057 #define BFD_RELOC_386_PLT32 0
1058 #define BFD_RELOC_386_GOT32 0
1059 #define BFD_RELOC_386_GOTOFF 0
1062 static int intel_float_operand PARAMS ((char *mnemonic));
1065 intel_float_operand (mnemonic)
1068 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1071 if (mnemonic[0] == 'f')
1077 /* This is the guts of the machine-dependent assembler. LINE points to a
1078 machine dependent instruction. This function is supposed to emit
1079 the frags/bytes it assembles to. */
1085 /* Points to template once we've found it. */
1088 /* Count the size of the instruction generated. */
1093 char mnemonic[MAX_MNEM_SIZE];
1095 /* Initialize globals. */
1096 memset (&i, '\0', sizeof (i));
1097 for (j = 0; j < MAX_OPERANDS; j++)
1098 i.disp_reloc[j] = NO_RELOC;
1099 memset (disp_expressions, '\0', sizeof (disp_expressions));
1100 memset (im_expressions, '\0', sizeof (im_expressions));
1101 save_stack_p = save_stack;
1103 /* First parse an instruction mnemonic & call i386_operand for the operands.
1104 We assume that the scrubber has arranged it so that line[0] is the valid
1105 start of a (possibly prefixed) mnemonic. */
1108 char *token_start = l;
1111 /* Non-zero if we found a prefix only acceptable with string insns. */
1112 const char *expecting_string_instruction = NULL;
1117 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1120 if (mnem_p >= mnemonic + sizeof (mnemonic))
1122 as_bad (_("no such instruction: `%s'"), token_start);
1127 if (!is_space_char (*l)
1128 && *l != END_OF_INSN
1129 && *l != PREFIX_SEPARATOR)
1131 as_bad (_("invalid character %s in mnemonic"),
1132 output_invalid (*l));
1135 if (token_start == l)
1137 if (*l == PREFIX_SEPARATOR)
1138 as_bad (_("expecting prefix; got nothing"));
1140 as_bad (_("expecting mnemonic; got nothing"));
1144 /* Look up instruction (or prefix) via hash table. */
1145 current_templates = hash_find (op_hash, mnemonic);
1147 if (*l != END_OF_INSN
1148 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1149 && current_templates
1150 && (current_templates->start->opcode_modifier & IsPrefix))
1152 /* If we are in 16-bit mode, do not allow addr16 or data16.
1153 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1154 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1155 && (((current_templates->start->opcode_modifier & Size32) != 0)
1158 as_bad (_("redundant %s prefix"),
1159 current_templates->start->name);
1162 /* Add prefix, checking for repeated prefixes. */
1163 switch (add_prefix (current_templates->start->base_opcode))
1168 expecting_string_instruction = current_templates->start->name;
1171 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1178 if (!current_templates)
1180 /* See if we can get a match by trimming off a suffix. */
1183 case WORD_MNEM_SUFFIX:
1184 case BYTE_MNEM_SUFFIX:
1185 case SHORT_MNEM_SUFFIX:
1186 case LONG_MNEM_SUFFIX:
1187 i.suffix = mnem_p[-1];
1189 current_templates = hash_find (op_hash, mnemonic);
1193 case DWORD_MNEM_SUFFIX:
1196 i.suffix = mnem_p[-1];
1198 current_templates = hash_find (op_hash, mnemonic);
1202 if (!current_templates)
1204 as_bad (_("no such instruction: `%s'"), token_start);
1209 /* Check if instruction is supported on specified architecture. */
1210 if (cpu_arch_flags != 0)
1212 if (current_templates->start->cpu_flags & ~cpu_arch_flags)
1214 as_warn (_("`%s' is not supported on `%s'"),
1215 current_templates->start->name, cpu_arch_name);
1217 else if ((Cpu386 & ~cpu_arch_flags) && !flag_16bit_code)
1219 as_warn (_("use .code16 to ensure correct addressing mode"));
1223 /* Check for rep/repne without a string instruction. */
1224 if (expecting_string_instruction
1225 && !(current_templates->start->opcode_modifier & IsString))
1227 as_bad (_("expecting string instruction after `%s'"),
1228 expecting_string_instruction);
1232 /* There may be operands to parse. */
1233 if (*l != END_OF_INSN)
1235 /* 1 if operand is pending after ','. */
1236 unsigned int expecting_operand = 0;
1238 /* Non-zero if operand parens not balanced. */
1239 unsigned int paren_not_balanced;
1243 /* Skip optional white space before operand. */
1244 if (is_space_char (*l))
1246 if (!is_operand_char (*l) && *l != END_OF_INSN)
1248 as_bad (_("invalid character %s before operand %d"),
1249 output_invalid (*l),
1253 token_start = l; /* after white space */
1254 paren_not_balanced = 0;
1255 while (paren_not_balanced || *l != ',')
1257 if (*l == END_OF_INSN)
1259 if (paren_not_balanced)
1262 as_bad (_("unbalanced parenthesis in operand %d."),
1265 as_bad (_("unbalanced brackets in operand %d."),
1270 break; /* we are done */
1272 else if (!is_operand_char (*l) && !is_space_char (*l))
1274 as_bad (_("invalid character %s in operand %d"),
1275 output_invalid (*l),
1282 ++paren_not_balanced;
1284 --paren_not_balanced;
1289 ++paren_not_balanced;
1291 --paren_not_balanced;
1295 if (l != token_start)
1296 { /* Yes, we've read in another operand. */
1297 unsigned int operand_ok;
1298 this_operand = i.operands++;
1299 if (i.operands > MAX_OPERANDS)
1301 as_bad (_("spurious operands; (%d operands/instruction max)"),
1305 /* Now parse operand adding info to 'i' as we go along. */
1306 END_STRING_AND_SAVE (l);
1310 i386_intel_operand (token_start,
1311 intel_float_operand (mnemonic));
1313 operand_ok = i386_operand (token_start);
1315 RESTORE_END_STRING (l);
1321 if (expecting_operand)
1323 expecting_operand_after_comma:
1324 as_bad (_("expecting operand after ','; got nothing"));
1329 as_bad (_("expecting operand before ','; got nothing"));
1334 /* Now *l must be either ',' or END_OF_INSN. */
1337 if (*++l == END_OF_INSN)
1339 /* Just skip it, if it's \n complain. */
1340 goto expecting_operand_after_comma;
1342 expecting_operand = 1;
1345 while (*l != END_OF_INSN);
1349 /* Now we've parsed the mnemonic into a set of templates, and have the
1352 Next, we find a template that matches the given insn,
1353 making sure the overlap of the given operands types is consistent
1354 with the template operand types. */
1356 #define MATCH(overlap, given, template) \
1357 ((overlap & ~JumpAbsolute) \
1358 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1360 /* If given types r0 and r1 are registers they must be of the same type
1361 unless the expected operand type register overlap is null.
1362 Note that Acc in a template matches every size of reg. */
1363 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1364 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1365 ((g0) & Reg) == ((g1) & Reg) || \
1366 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1369 register unsigned int overlap0, overlap1;
1370 unsigned int overlap2;
1371 unsigned int found_reverse_match;
1374 /* All intel opcodes have reversed operands except for "bound" and
1375 "enter". We also don't reverse intersegment "jmp" and "call"
1376 instructions with 2 immediate operands so that the immediate segment
1377 precedes the offset, as it does when in AT&T mode. "enter" and the
1378 intersegment "jmp" and "call" instructions are the only ones that
1379 have two immediate operands. */
1380 if (intel_syntax && i.operands > 1
1381 && (strcmp (mnemonic, "bound") != 0)
1382 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1384 union i386_op temp_op;
1385 unsigned int temp_type;
1389 if (i.operands == 2)
1394 else if (i.operands == 3)
1399 temp_type = i.types[xchg2];
1400 i.types[xchg2] = i.types[xchg1];
1401 i.types[xchg1] = temp_type;
1402 temp_op = i.op[xchg2];
1403 i.op[xchg2] = i.op[xchg1];
1404 i.op[xchg1] = temp_op;
1406 if (i.mem_operands == 2)
1408 const seg_entry *temp_seg;
1409 temp_seg = i.seg[0];
1410 i.seg[0] = i.seg[1];
1411 i.seg[1] = temp_seg;
1417 /* Try to ensure constant immediates are represented in the smallest
1419 char guess_suffix = 0;
1423 guess_suffix = i.suffix;
1424 else if (i.reg_operands)
1426 /* Figure out a suffix from the last register operand specified.
1427 We can't do this properly yet, ie. excluding InOutPortReg,
1428 but the following works for instructions with immediates.
1429 In any case, we can't set i.suffix yet. */
1430 for (op = i.operands; --op >= 0;)
1431 if (i.types[op] & Reg)
1433 if (i.types[op] & Reg8)
1434 guess_suffix = BYTE_MNEM_SUFFIX;
1435 else if (i.types[op] & Reg16)
1436 guess_suffix = WORD_MNEM_SUFFIX;
1440 else if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
1441 guess_suffix = WORD_MNEM_SUFFIX;
1443 for (op = i.operands; --op >= 0;)
1444 if ((i.types[op] & Imm)
1445 && i.op[op].imms->X_op == O_constant)
1447 /* If a suffix is given, this operand may be shortened. */
1448 switch (guess_suffix)
1450 case WORD_MNEM_SUFFIX:
1451 i.types[op] |= Imm16;
1453 case BYTE_MNEM_SUFFIX:
1454 i.types[op] |= Imm16 | Imm8 | Imm8S;
1458 /* If this operand is at most 16 bits, convert it to a
1459 signed 16 bit number before trying to see whether it will
1460 fit in an even smaller size. This allows a 16-bit operand
1461 such as $0xffe0 to be recognised as within Imm8S range. */
1462 if ((i.types[op] & Imm16)
1463 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1465 i.op[op].imms->X_add_number =
1466 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1468 i.types[op] |= smallest_imm_type ((long) i.op[op].imms->X_add_number);
1472 if (i.disp_operands)
1474 /* Try to use the smallest displacement type too. */
1477 for (op = i.operands; --op >= 0;)
1478 if ((i.types[op] & Disp)
1479 && i.op[op].imms->X_op == O_constant)
1481 offsetT disp = i.op[op].disps->X_add_number;
1483 if (i.types[op] & Disp16)
1485 /* We know this operand is at most 16 bits, so
1486 convert to a signed 16 bit number before trying
1487 to see whether it will fit in an even smaller
1490 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1492 if (fits_in_signed_byte (disp))
1493 i.types[op] |= Disp8;
1500 found_reverse_match = 0;
1501 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1503 : (i.suffix == WORD_MNEM_SUFFIX
1505 : (i.suffix == SHORT_MNEM_SUFFIX
1507 : (i.suffix == LONG_MNEM_SUFFIX
1509 : (i.suffix == DWORD_MNEM_SUFFIX
1511 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1513 for (t = current_templates->start;
1514 t < current_templates->end;
1517 /* Must have right number of operands. */
1518 if (i.operands != t->operands)
1521 /* Check the suffix, except for some instructions in intel mode. */
1522 if ((t->opcode_modifier & suffix_check)
1524 && (t->opcode_modifier & IgnoreSize))
1526 && t->base_opcode == 0xd9
1527 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1528 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1531 else if (!t->operands)
1532 /* 0 operands always matches. */
1535 overlap0 = i.types[0] & t->operand_types[0];
1536 switch (t->operands)
1539 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1544 overlap1 = i.types[1] & t->operand_types[1];
1545 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1546 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1547 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1548 t->operand_types[0],
1549 overlap1, i.types[1],
1550 t->operand_types[1]))
1552 /* Check if other direction is valid ... */
1553 if ((t->opcode_modifier & (D|FloatD)) == 0)
1556 /* Try reversing direction of operands. */
1557 overlap0 = i.types[0] & t->operand_types[1];
1558 overlap1 = i.types[1] & t->operand_types[0];
1559 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1560 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1561 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1562 t->operand_types[1],
1563 overlap1, i.types[1],
1564 t->operand_types[0]))
1566 /* Does not match either direction. */
1569 /* found_reverse_match holds which of D or FloatDR
1571 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1574 /* Found a forward 2 operand match here. */
1575 if (t->operands == 3)
1577 /* Here we make use of the fact that there are no
1578 reverse match 3 operand instructions, and all 3
1579 operand instructions only need to be checked for
1580 register consistency between operands 2 and 3. */
1581 overlap2 = i.types[2] & t->operand_types[2];
1582 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1583 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1584 t->operand_types[1],
1585 overlap2, i.types[2],
1586 t->operand_types[2]))
1590 /* Found either forward/reverse 2 or 3 operand match here:
1591 slip through to break. */
1593 /* We've found a match; break out of loop. */
1596 if (t == current_templates->end)
1598 /* We found no match. */
1599 as_bad (_("suffix or operands invalid for `%s'"),
1600 current_templates->start->name);
1604 if (!quiet_warnings)
1607 && ((i.types[0] & JumpAbsolute)
1608 != (t->operand_types[0] & JumpAbsolute)))
1610 as_warn (_("indirect %s without `*'"), t->name);
1613 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1614 == (IsPrefix|IgnoreSize))
1616 /* Warn them that a data or address size prefix doesn't
1617 affect assembly of the next line of code. */
1618 as_warn (_("stand-alone `%s' prefix"), t->name);
1622 /* Copy the template we found. */
1624 if (found_reverse_match)
1626 /* If we found a reverse match we must alter the opcode
1627 direction bit. found_reverse_match holds bits to change
1628 (different for int & float insns). */
1630 i.tm.base_opcode ^= found_reverse_match;
1632 i.tm.operand_types[0] = t->operand_types[1];
1633 i.tm.operand_types[1] = t->operand_types[0];
1636 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1639 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1640 i.tm.base_opcode ^= FloatR;
1642 if (i.tm.opcode_modifier & FWait)
1643 if (! add_prefix (FWAIT_OPCODE))
1646 /* Check string instruction segment overrides. */
1647 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1649 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1650 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1652 if (i.seg[0] != NULL && i.seg[0] != &es)
1654 as_bad (_("`%s' operand %d must use `%%es' segment"),
1659 /* There's only ever one segment override allowed per instruction.
1660 This instruction possibly has a legal segment override on the
1661 second operand, so copy the segment to where non-string
1662 instructions store it, allowing common code. */
1663 i.seg[0] = i.seg[1];
1665 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1667 if (i.seg[1] != NULL && i.seg[1] != &es)
1669 as_bad (_("`%s' operand %d must use `%%es' segment"),
1677 /* If matched instruction specifies an explicit instruction mnemonic
1679 if (i.tm.opcode_modifier & (Size16 | Size32))
1681 if (i.tm.opcode_modifier & Size16)
1682 i.suffix = WORD_MNEM_SUFFIX;
1684 i.suffix = LONG_MNEM_SUFFIX;
1686 else if (i.reg_operands)
1688 /* If there's no instruction mnemonic suffix we try to invent one
1689 based on register operands. */
1692 /* We take i.suffix from the last register operand specified,
1693 Destination register type is more significant than source
1696 for (op = i.operands; --op >= 0;)
1697 if ((i.types[op] & Reg)
1698 && !(i.tm.operand_types[op] & InOutPortReg))
1700 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1701 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1706 else if (i.suffix == BYTE_MNEM_SUFFIX)
1709 for (op = i.operands; --op >= 0;)
1711 /* If this is an eight bit register, it's OK. If it's
1712 the 16 or 32 bit version of an eight bit register,
1713 we will just use the low portion, and that's OK too. */
1714 if (i.types[op] & Reg8)
1717 /* movzx and movsx should not generate this warning. */
1719 && (i.tm.base_opcode == 0xfb7
1720 || i.tm.base_opcode == 0xfb6
1721 || i.tm.base_opcode == 0xfbe
1722 || i.tm.base_opcode == 0xfbf))
1725 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1727 /* Check that the template allows eight bit regs
1728 This kills insns such as `orb $1,%edx', which
1729 maybe should be allowed. */
1730 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1734 #if REGISTER_WARNINGS
1736 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1737 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1738 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1739 i.op[op].regs->reg_name,
1744 /* Any other register is bad. */
1745 if (i.types[op] & (Reg | RegMMX | RegXMM
1747 | Control | Debug | Test
1748 | FloatReg | FloatAcc))
1750 as_bad (_("`%%%s' not allowed with `%s%c'"),
1751 i.op[op].regs->reg_name,
1758 else if (i.suffix == LONG_MNEM_SUFFIX)
1762 for (op = i.operands; --op >= 0;)
1763 /* Reject eight bit registers, except where the template
1764 requires them. (eg. movzb) */
1765 if ((i.types[op] & Reg8) != 0
1766 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
1768 as_bad (_("`%%%s' not allowed with `%s%c'"),
1769 i.op[op].regs->reg_name,
1774 #if REGISTER_WARNINGS
1775 /* Warn if the e prefix on a general reg is missing. */
1776 else if (!quiet_warnings
1777 && (i.types[op] & Reg16) != 0
1778 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1780 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1781 (i.op[op].regs + 8)->reg_name,
1782 i.op[op].regs->reg_name,
1787 else if (i.suffix == WORD_MNEM_SUFFIX)
1790 for (op = i.operands; --op >= 0;)
1791 /* Reject eight bit registers, except where the template
1792 requires them. (eg. movzb) */
1793 if ((i.types[op] & Reg8) != 0
1794 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1796 as_bad (_("`%%%s' not allowed with `%s%c'"),
1797 i.op[op].regs->reg_name,
1802 #if REGISTER_WARNINGS
1803 /* Warn if the e prefix on a general reg is present. */
1804 else if (!quiet_warnings
1805 && (i.types[op] & Reg32) != 0
1806 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
1808 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1809 (i.op[op].regs - 8)->reg_name,
1810 i.op[op].regs->reg_name,
1815 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
1816 /* Do nothing if the instruction is going to ignore the prefix. */
1821 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
1823 i.suffix = stackop_size;
1826 /* Make still unresolved immediate matches conform to size of immediate
1827 given in i.suffix. Note: overlap2 cannot be an immediate! */
1828 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
1829 && overlap0 != Imm8 && overlap0 != Imm8S
1830 && overlap0 != Imm16 && overlap0 != Imm32)
1834 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1835 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
1837 else if (overlap0 == (Imm16 | Imm32))
1840 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1844 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1848 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
1849 && overlap1 != Imm8 && overlap1 != Imm8S
1850 && overlap1 != Imm16 && overlap1 != Imm32)
1854 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1855 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
1857 else if (overlap1 == (Imm16 | Imm32))
1860 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1864 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1868 assert ((overlap2 & Imm) == 0);
1870 i.types[0] = overlap0;
1871 if (overlap0 & ImplicitRegister)
1873 if (overlap0 & Imm1)
1874 i.imm_operands = 0; /* kludge for shift insns. */
1876 i.types[1] = overlap1;
1877 if (overlap1 & ImplicitRegister)
1880 i.types[2] = overlap2;
1881 if (overlap2 & ImplicitRegister)
1884 /* Finalize opcode. First, we change the opcode based on the operand
1885 size given by i.suffix: We need not change things for byte insns. */
1887 if (!i.suffix && (i.tm.opcode_modifier & W))
1889 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
1893 /* For movzx and movsx, need to check the register type. */
1895 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
1896 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
1898 unsigned int prefix = DATA_PREFIX_OPCODE;
1900 if ((i.op[1].regs->reg_type & Reg16) != 0)
1901 if (!add_prefix (prefix))
1905 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
1907 /* It's not a byte, select word/dword operation. */
1908 if (i.tm.opcode_modifier & W)
1910 if (i.tm.opcode_modifier & ShortForm)
1911 i.tm.base_opcode |= 8;
1913 i.tm.base_opcode |= 1;
1915 /* Now select between word & dword operations via the operand
1916 size prefix, except for instructions that will ignore this
1918 if (((intel_syntax && (i.suffix == DWORD_MNEM_SUFFIX))
1919 || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
1920 && !(i.tm.opcode_modifier & IgnoreSize))
1922 unsigned int prefix = DATA_PREFIX_OPCODE;
1923 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
1924 prefix = ADDR_PREFIX_OPCODE;
1926 if (! add_prefix (prefix))
1929 /* Size floating point instruction. */
1930 if (i.suffix == LONG_MNEM_SUFFIX
1931 || (intel_syntax && i.suffix == DWORD_MNEM_SUFFIX))
1933 if (i.tm.opcode_modifier & FloatMF)
1934 i.tm.base_opcode ^= 4;
1938 if (i.tm.opcode_modifier & ImmExt)
1940 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1941 opcode suffix which is coded in the same place as an 8-bit
1942 immediate field would be. Here we fake an 8-bit immediate
1943 operand from the opcode suffix stored in tm.extension_opcode. */
1947 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1949 exp = &im_expressions[i.imm_operands++];
1950 i.op[i.operands].imms = exp;
1951 i.types[i.operands++] = Imm8;
1952 exp->X_op = O_constant;
1953 exp->X_add_number = i.tm.extension_opcode;
1954 i.tm.extension_opcode = None;
1957 /* For insns with operands there are more diddles to do to the opcode. */
1960 /* Default segment register this instruction will use
1961 for memory accesses. 0 means unknown.
1962 This is only for optimizing out unnecessary segment overrides. */
1963 const seg_entry *default_seg = 0;
1965 /* The imul $imm, %reg instruction is converted into
1966 imul $imm, %reg, %reg, and the clr %reg instruction
1967 is converted into xor %reg, %reg. */
1968 if (i.tm.opcode_modifier & regKludge)
1970 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
1971 /* Pretend we saw the extra register operand. */
1972 assert (i.op[first_reg_op + 1].regs == 0);
1973 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
1974 i.types[first_reg_op + 1] = i.types[first_reg_op];
1978 if (i.tm.opcode_modifier & ShortForm)
1980 /* The register or float register operand is in operand 0 or 1. */
1981 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
1982 /* Register goes in low 3 bits of opcode. */
1983 i.tm.base_opcode |= i.op[op].regs->reg_num;
1984 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1986 /* Warn about some common errors, but press on regardless.
1987 The first case can be generated by gcc (<= 2.8.1). */
1988 if (i.operands == 2)
1990 /* Reversed arguments on faddp, fsubp, etc. */
1991 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
1992 i.op[1].regs->reg_name,
1993 i.op[0].regs->reg_name);
1997 /* Extraneous `l' suffix on fp insn. */
1998 as_warn (_("translating to `%s %%%s'"), i.tm.name,
1999 i.op[0].regs->reg_name);
2003 else if (i.tm.opcode_modifier & Modrm)
2005 /* The opcode is completed (modulo i.tm.extension_opcode which
2006 must be put into the modrm byte).
2007 Now, we make the modrm & index base bytes based on all the
2008 info we've collected. */
2010 /* i.reg_operands MUST be the number of real register operands;
2011 implicit registers do not count. */
2012 if (i.reg_operands == 2)
2014 unsigned int source, dest;
2015 source = ((i.types[0]
2016 & (Reg | RegMMX | RegXMM
2018 | Control | Debug | Test))
2023 /* One of the register operands will be encoded in the
2024 i.tm.reg field, the other in the combined i.tm.mode
2025 and i.tm.regmem fields. If no form of this
2026 instruction supports a memory destination operand,
2027 then we assume the source operand may sometimes be
2028 a memory operand and so we need to store the
2029 destination in the i.rm.reg field. */
2030 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2032 i.rm.reg = i.op[dest].regs->reg_num;
2033 i.rm.regmem = i.op[source].regs->reg_num;
2037 i.rm.reg = i.op[source].regs->reg_num;
2038 i.rm.regmem = i.op[dest].regs->reg_num;
2042 { /* If it's not 2 reg operands... */
2045 unsigned int fake_zero_displacement = 0;
2046 unsigned int op = ((i.types[0] & AnyMem)
2048 : (i.types[1] & AnyMem) ? 1 : 2);
2055 if (! i.disp_operands)
2056 fake_zero_displacement = 1;
2059 /* Operand is just <disp> */
2060 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2062 i.rm.regmem = NO_BASE_REGISTER_16;
2063 i.types[op] &= ~Disp;
2064 i.types[op] |= Disp16;
2068 i.rm.regmem = NO_BASE_REGISTER;
2069 i.types[op] &= ~Disp;
2070 i.types[op] |= Disp32;
2073 else /* ! i.base_reg && i.index_reg */
2075 i.sib.index = i.index_reg->reg_num;
2076 i.sib.base = NO_BASE_REGISTER;
2077 i.sib.scale = i.log2_scale_factor;
2078 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2079 i.types[op] &= ~Disp;
2080 i.types[op] |= Disp32; /* Must be 32 bit. */
2083 else if (i.base_reg->reg_type & Reg16)
2085 switch (i.base_reg->reg_num)
2090 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2091 i.rm.regmem = i.index_reg->reg_num - 6;
2098 if ((i.types[op] & Disp) == 0)
2100 /* fake (%bp) into 0(%bp) */
2101 i.types[op] |= Disp8;
2102 fake_zero_displacement = 1;
2105 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2106 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2108 default: /* (%si) -> 4 or (%di) -> 5 */
2109 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2111 i.rm.mode = mode_from_disp_size (i.types[op]);
2113 else /* i.base_reg and 32 bit mode */
2115 i.rm.regmem = i.base_reg->reg_num;
2116 i.sib.base = i.base_reg->reg_num;
2117 if (i.base_reg->reg_num == EBP_REG_NUM)
2120 if (i.disp_operands == 0)
2122 fake_zero_displacement = 1;
2123 i.types[op] |= Disp8;
2126 else if (i.base_reg->reg_num == ESP_REG_NUM)
2130 i.sib.scale = i.log2_scale_factor;
2133 /* <disp>(%esp) becomes two byte modrm
2134 with no index register. We've already
2135 stored the code for esp in i.rm.regmem
2136 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2137 base register besides %esp will not use
2138 the extra modrm byte. */
2139 i.sib.index = NO_INDEX_REGISTER;
2140 #if ! SCALE1_WHEN_NO_INDEX
2141 /* Another case where we force the second
2143 if (i.log2_scale_factor)
2144 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2149 i.sib.index = i.index_reg->reg_num;
2150 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2152 i.rm.mode = mode_from_disp_size (i.types[op]);
2155 if (fake_zero_displacement)
2157 /* Fakes a zero displacement assuming that i.types[op]
2158 holds the correct displacement size. */
2161 assert (i.op[op].disps == 0);
2162 exp = &disp_expressions[i.disp_operands++];
2163 i.op[op].disps = exp;
2164 exp->X_op = O_constant;
2165 exp->X_add_number = 0;
2166 exp->X_add_symbol = (symbolS *) 0;
2167 exp->X_op_symbol = (symbolS *) 0;
2171 /* Fill in i.rm.reg or i.rm.regmem field with register
2172 operand (if any) based on i.tm.extension_opcode.
2173 Again, we must be careful to make sure that
2174 segment/control/debug/test/MMX registers are coded
2175 into the i.rm.reg field. */
2180 & (Reg | RegMMX | RegXMM
2182 | Control | Debug | Test))
2185 & (Reg | RegMMX | RegXMM
2187 | Control | Debug | Test))
2190 /* If there is an extension opcode to put here, the
2191 register number must be put into the regmem field. */
2192 if (i.tm.extension_opcode != None)
2193 i.rm.regmem = i.op[op].regs->reg_num;
2195 i.rm.reg = i.op[op].regs->reg_num;
2197 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2198 we must set it to 3 to indicate this is a register
2199 operand in the regmem field. */
2200 if (!i.mem_operands)
2204 /* Fill in i.rm.reg field with extension opcode (if any). */
2205 if (i.tm.extension_opcode != None)
2206 i.rm.reg = i.tm.extension_opcode;
2209 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2211 if (i.tm.base_opcode == POP_SEG_SHORT
2212 && i.op[0].regs->reg_num == 1)
2214 as_bad (_("you can't `pop %%cs'"));
2217 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2219 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2223 else if ((i.tm.opcode_modifier & IsString) != 0)
2225 /* For the string instructions that allow a segment override
2226 on one of their operands, the default segment is ds. */
2230 /* If a segment was explicitly specified,
2231 and the specified segment is not the default,
2232 use an opcode prefix to select it.
2233 If we never figured out what the default segment is,
2234 then default_seg will be zero at this point,
2235 and the specified segment prefix will always be used. */
2236 if ((i.seg[0]) && (i.seg[0] != default_seg))
2238 if (! add_prefix (i.seg[0]->seg_prefix))
2242 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2244 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2245 as_warn (_("translating to `%sp'"), i.tm.name);
2249 /* Handle conversion of 'int $3' --> special int3 insn. */
2250 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2252 i.tm.base_opcode = INT3_OPCODE;
2256 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2257 && i.op[0].disps->X_op == O_constant)
2259 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2260 the absolute address given by the constant. Since ix86 jumps and
2261 calls are pc relative, we need to generate a reloc. */
2262 i.op[0].disps->X_add_symbol = &abs_symbol;
2263 i.op[0].disps->X_op = O_symbol;
2266 /* We are ready to output the insn. */
2271 if (i.tm.opcode_modifier & Jump)
2278 if (flag_16bit_code)
2282 if (i.prefix[DATA_PREFIX])
2293 if (i.prefixes != 0 && !intel_syntax)
2294 as_warn (_("skipping prefixes on this instruction"));
2296 /* It's always a symbol; End frag & setup for relax.
2297 Make sure there is enough room in this frag for the largest
2298 instruction we may generate in md_convert_frag. This is 2
2299 bytes for the opcode and room for the prefix and largest
2301 frag_grow (prefix + 2 + size);
2302 insn_size += prefix + 1;
2303 /* Prefix and 1 opcode byte go in fr_fix. */
2304 p = frag_more (prefix + 1);
2306 *p++ = DATA_PREFIX_OPCODE;
2307 *p = i.tm.base_opcode;
2308 /* 1 possible extra opcode + displacement go in var part.
2309 Pass reloc in fr_var. */
2310 frag_var (rs_machine_dependent,
2313 ((unsigned char) *p == JUMP_PC_RELATIVE
2314 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2315 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2316 i.op[0].disps->X_add_symbol,
2317 i.op[0].disps->X_add_number,
2320 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2324 if (i.tm.opcode_modifier & JumpByte)
2326 /* This is a loop or jecxz type instruction. */
2328 if (i.prefix[ADDR_PREFIX])
2331 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2340 if (flag_16bit_code)
2343 if (i.prefix[DATA_PREFIX])
2346 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2356 if (i.prefixes != 0 && !intel_syntax)
2357 as_warn (_("skipping prefixes on this instruction"));
2359 if (fits_in_unsigned_byte (i.tm.base_opcode))
2361 insn_size += 1 + size;
2362 p = frag_more (1 + size);
2366 /* Opcode can be at most two bytes. */
2367 insn_size += 2 + size;
2368 p = frag_more (2 + size);
2369 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2371 *p++ = i.tm.base_opcode & 0xff;
2373 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2374 i.op[0].disps, 1, reloc (size, 1, i.disp_reloc[0]));
2376 else if (i.tm.opcode_modifier & JumpInterSegment)
2383 if (flag_16bit_code)
2387 if (i.prefix[DATA_PREFIX])
2398 if (i.prefixes != 0 && !intel_syntax)
2399 as_warn (_("skipping prefixes on this instruction"));
2401 /* 1 opcode; 2 segment; offset */
2402 insn_size += prefix + 1 + 2 + size;
2403 p = frag_more (prefix + 1 + 2 + size);
2405 *p++ = DATA_PREFIX_OPCODE;
2406 *p++ = i.tm.base_opcode;
2407 if (i.op[1].imms->X_op == O_constant)
2409 offsetT n = i.op[1].imms->X_add_number;
2412 && !fits_in_unsigned_word (n)
2413 && !fits_in_signed_word (n))
2415 as_bad (_("16-bit jump out of range"));
2418 md_number_to_chars (p, n, size);
2421 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2422 i.op[1].imms, 0, reloc (size, 0, i.disp_reloc[0]));
2423 if (i.op[0].imms->X_op != O_constant)
2424 as_bad (_("can't handle non absolute segment in `%s'"),
2426 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2430 /* Output normal instructions here. */
2433 /* The prefix bytes. */
2435 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2442 md_number_to_chars (p, (valueT) *q, 1);
2446 /* Now the opcode; be careful about word order here! */
2447 if (fits_in_unsigned_byte (i.tm.base_opcode))
2450 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2452 else if (fits_in_unsigned_word (i.tm.base_opcode))
2456 /* Put out high byte first: can't use md_number_to_chars! */
2457 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2458 *p = i.tm.base_opcode & 0xff;
2461 { /* Opcode is either 3 or 4 bytes. */
2462 if (i.tm.base_opcode & 0xff000000)
2466 *p++ = (i.tm.base_opcode >> 24) & 0xff;
2473 *p++ = (i.tm.base_opcode >> 16) & 0xff;
2474 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2475 *p = (i.tm.base_opcode) & 0xff;
2478 /* Now the modrm byte and sib byte (if present). */
2479 if (i.tm.opcode_modifier & Modrm)
2483 md_number_to_chars (p,
2484 (valueT) (i.rm.regmem << 0
2488 /* If i.rm.regmem == ESP (4)
2489 && i.rm.mode != (Register mode)
2491 ==> need second modrm byte. */
2492 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2494 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2498 md_number_to_chars (p,
2499 (valueT) (i.sib.base << 0
2501 | i.sib.scale << 6),
2506 if (i.disp_operands)
2508 register unsigned int n;
2510 for (n = 0; n < i.operands; n++)
2512 if (i.types[n] & Disp)
2514 if (i.op[n].disps->X_op == O_constant)
2520 if (i.types[n] & (Disp8 | Disp16))
2523 if (i.types[n] & Disp8)
2526 val = offset_in_range (i.op[n].disps->X_add_number,
2529 p = frag_more (size);
2530 md_number_to_chars (p, val, size);
2536 if (i.types[n] & Disp16)
2540 p = frag_more (size);
2541 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2543 reloc (size, 0, i.disp_reloc[n]));
2549 /* Output immediate. */
2552 register unsigned int n;
2554 for (n = 0; n < i.operands; n++)
2556 if (i.types[n] & Imm)
2558 if (i.op[n].imms->X_op == O_constant)
2564 if (i.types[n] & (Imm8 | Imm8S | Imm16))
2567 if (i.types[n] & (Imm8 | Imm8S))
2570 val = offset_in_range (i.op[n].imms->X_add_number,
2573 p = frag_more (size);
2574 md_number_to_chars (p, val, size);
2578 /* Not absolute_section.
2579 Need a 32-bit fixup (don't support 8bit
2580 non-absolute imms). Try to support other
2582 #ifdef BFD_ASSEMBLER
2583 enum bfd_reloc_code_real reloc_type;
2589 if (i.types[n] & Imm16)
2591 else if (i.types[n] & (Imm8 | Imm8S))
2595 p = frag_more (size);
2596 reloc_type = reloc (size, 0, i.disp_reloc[0]);
2597 #ifdef BFD_ASSEMBLER
2598 if (reloc_type == BFD_RELOC_32
2600 && GOT_symbol == i.op[n].imms->X_add_symbol
2601 && (i.op[n].imms->X_op == O_symbol
2602 || (i.op[n].imms->X_op == O_add
2603 && ((symbol_get_value_expression
2604 (i.op[n].imms->X_op_symbol)->X_op)
2607 reloc_type = BFD_RELOC_386_GOTPC;
2608 i.op[n].imms->X_add_number += 3;
2611 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2612 i.op[n].imms, 0, reloc_type);
2619 dwarf2_emit_insn (insn_size);
2626 #endif /* DEBUG386 */
2630 static int i386_immediate PARAMS ((char *));
2633 i386_immediate (imm_start)
2636 char *save_input_line_pointer;
2640 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
2642 as_bad (_("only 1 or 2 immediate operands are allowed"));
2646 exp = &im_expressions[i.imm_operands++];
2647 i.op[this_operand].imms = exp;
2649 if (is_space_char (*imm_start))
2652 save_input_line_pointer = input_line_pointer;
2653 input_line_pointer = imm_start;
2657 /* We can have operands of the form
2658 <symbol>@GOTOFF+<nnn>
2659 Take the easy way out here and copy everything
2660 into a temporary buffer... */
2663 cp = strchr (input_line_pointer, '@');
2670 /* GOT relocations are not supported in 16 bit mode. */
2671 if (flag_16bit_code)
2672 as_bad (_("GOT relocations not supported in 16 bit mode"));
2674 if (GOT_symbol == NULL)
2675 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2677 if (strncmp (cp + 1, "PLT", 3) == 0)
2679 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2682 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2684 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2687 else if (strncmp (cp + 1, "GOT", 3) == 0)
2689 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2693 as_bad (_("bad reloc specifier in expression"));
2695 /* Replace the relocation token with ' ', so that errors like
2696 foo@GOTOFF1 will be detected. */
2697 first = cp - input_line_pointer;
2698 tmpbuf = (char *) alloca (strlen (input_line_pointer));
2699 memcpy (tmpbuf, input_line_pointer, first);
2700 tmpbuf[first] = ' ';
2701 strcpy (tmpbuf + first + 1, cp + 1 + len);
2702 input_line_pointer = tmpbuf;
2707 exp_seg = expression (exp);
2710 if (*input_line_pointer)
2711 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
2713 input_line_pointer = save_input_line_pointer;
2715 if (exp->X_op == O_absent || exp->X_op == O_big)
2717 /* Missing or bad expr becomes absolute 0. */
2718 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
2720 exp->X_op = O_constant;
2721 exp->X_add_number = 0;
2722 exp->X_add_symbol = (symbolS *) 0;
2723 exp->X_op_symbol = (symbolS *) 0;
2726 if (exp->X_op == O_constant)
2728 /* Size it properly later. */
2729 i.types[this_operand] |= Imm32;
2731 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
2733 #ifdef BFD_ASSEMBLER
2734 && OUTPUT_FLAVOR == bfd_target_aout_flavour
2736 && exp_seg != text_section
2737 && exp_seg != data_section
2738 && exp_seg != bss_section
2739 && exp_seg != undefined_section
2740 #ifdef BFD_ASSEMBLER
2741 && !bfd_is_com_section (exp_seg)
2745 #ifdef BFD_ASSEMBLER
2746 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
2748 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
2755 /* This is an address. The size of the address will be
2756 determined later, depending on destination register,
2757 suffix, or the default for the section. We exclude
2758 Imm8S here so that `push $foo' and other instructions
2759 with an Imm8S form will use Imm16 or Imm32. */
2760 i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
2766 static int i386_scale PARAMS ((char *));
2772 if (!isdigit (*scale))
2779 i.log2_scale_factor = 0;
2782 i.log2_scale_factor = 1;
2785 i.log2_scale_factor = 2;
2788 i.log2_scale_factor = 3;
2792 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
2796 if (i.log2_scale_factor != 0 && ! i.index_reg)
2798 as_warn (_("scale factor of %d without an index register"),
2799 1 << i.log2_scale_factor);
2800 #if SCALE1_WHEN_NO_INDEX
2801 i.log2_scale_factor = 0;
2807 static int i386_displacement PARAMS ((char *, char *));
2810 i386_displacement (disp_start, disp_end)
2814 register expressionS *exp;
2816 char *save_input_line_pointer;
2817 int bigdisp = Disp32;
2819 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2821 i.types[this_operand] |= bigdisp;
2823 exp = &disp_expressions[i.disp_operands];
2824 i.op[this_operand].disps = exp;
2826 save_input_line_pointer = input_line_pointer;
2827 input_line_pointer = disp_start;
2828 END_STRING_AND_SAVE (disp_end);
2830 #ifndef GCC_ASM_O_HACK
2831 #define GCC_ASM_O_HACK 0
2834 END_STRING_AND_SAVE (disp_end + 1);
2835 if ((i.types[this_operand] & BaseIndex) != 0
2836 && displacement_string_end[-1] == '+')
2838 /* This hack is to avoid a warning when using the "o"
2839 constraint within gcc asm statements.
2842 #define _set_tssldt_desc(n,addr,limit,type) \
2843 __asm__ __volatile__ ( \
2845 "movw %w1,2+%0\n\t" \
2847 "movb %b1,4+%0\n\t" \
2848 "movb %4,5+%0\n\t" \
2849 "movb $0,6+%0\n\t" \
2850 "movb %h1,7+%0\n\t" \
2852 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
2854 This works great except that the output assembler ends
2855 up looking a bit weird if it turns out that there is
2856 no offset. You end up producing code that looks like:
2869 So here we provide the missing zero. */
2871 *displacement_string_end = '0';
2876 /* We can have operands of the form
2877 <symbol>@GOTOFF+<nnn>
2878 Take the easy way out here and copy everything
2879 into a temporary buffer... */
2882 cp = strchr (input_line_pointer, '@');
2889 /* GOT relocations are not supported in 16 bit mode. */
2890 if (flag_16bit_code)
2891 as_bad (_("GOT relocations not supported in 16 bit mode"));
2893 if (GOT_symbol == NULL)
2894 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2896 if (strncmp (cp + 1, "PLT", 3) == 0)
2898 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2901 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2903 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2906 else if (strncmp (cp + 1, "GOT", 3) == 0)
2908 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2912 as_bad (_("bad reloc specifier in expression"));
2914 /* Replace the relocation token with ' ', so that errors like
2915 foo@GOTOFF1 will be detected. */
2916 first = cp - input_line_pointer;
2917 tmpbuf = (char *) alloca (strlen (input_line_pointer));
2918 memcpy (tmpbuf, input_line_pointer, first);
2919 tmpbuf[first] = ' ';
2920 strcpy (tmpbuf + first + 1, cp + 1 + len);
2921 input_line_pointer = tmpbuf;
2926 exp_seg = expression (exp);
2928 #ifdef BFD_ASSEMBLER
2929 /* We do this to make sure that the section symbol is in
2930 the symbol table. We will ultimately change the relocation
2931 to be relative to the beginning of the section. */
2932 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
2934 if (S_IS_LOCAL(exp->X_add_symbol)
2935 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
2936 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
2937 assert (exp->X_op == O_symbol);
2938 exp->X_op = O_subtract;
2939 exp->X_op_symbol = GOT_symbol;
2940 i.disp_reloc[this_operand] = BFD_RELOC_32;
2945 if (*input_line_pointer)
2946 as_bad (_("ignoring junk `%s' after expression"),
2947 input_line_pointer);
2949 RESTORE_END_STRING (disp_end + 1);
2951 RESTORE_END_STRING (disp_end);
2952 input_line_pointer = save_input_line_pointer;
2954 if (exp->X_op == O_absent || exp->X_op == O_big)
2956 /* Missing or bad expr becomes absolute 0. */
2957 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2959 exp->X_op = O_constant;
2960 exp->X_add_number = 0;
2961 exp->X_add_symbol = (symbolS *) 0;
2962 exp->X_op_symbol = (symbolS *) 0;
2965 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
2966 if (exp->X_op != O_constant
2967 #ifdef BFD_ASSEMBLER
2968 && OUTPUT_FLAVOR == bfd_target_aout_flavour
2970 && exp_seg != text_section
2971 && exp_seg != data_section
2972 && exp_seg != bss_section
2973 && exp_seg != undefined_section)
2975 #ifdef BFD_ASSEMBLER
2976 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
2978 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
2986 static int i386_index_check PARAMS((const char *));
2988 /* Make sure the memory operand we've been dealt is valid.
2989 Return 1 on success, 0 on a failure. */
2992 i386_index_check (operand_string)
2993 const char *operand_string;
2995 #if INFER_ADDR_PREFIX
3000 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)
3001 /* 16 bit mode checks. */
3003 && ((i.base_reg->reg_type & (Reg16|BaseIndex))
3004 != (Reg16|BaseIndex)))
3006 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3007 != (Reg16|BaseIndex))
3009 && i.base_reg->reg_num < 6
3010 && i.index_reg->reg_num >= 6
3011 && i.log2_scale_factor == 0))))
3012 /* 32 bit mode checks. */
3014 && (i.base_reg->reg_type & Reg32) == 0)
3016 && ((i.index_reg->reg_type & (Reg32|BaseIndex))
3017 != (Reg32|BaseIndex)))))
3019 #if INFER_ADDR_PREFIX
3020 if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3022 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3024 /* Change the size of any displacement too. At most one of
3025 Disp16 or Disp32 is set.
3026 FIXME. There doesn't seem to be any real need for separate
3027 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3028 Removing them would probably clean up the code quite a lot. */
3029 if (i.types[this_operand] & (Disp16|Disp32))
3030 i.types[this_operand] ^= (Disp16|Disp32);
3035 as_bad (_("`%s' is not a valid base/index expression"),
3039 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3041 flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
3047 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3051 i386_operand (operand_string)
3052 char *operand_string;
3056 char *op_string = operand_string;
3058 if (is_space_char (*op_string))
3061 /* We check for an absolute prefix (differentiating,
3062 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3063 if (*op_string == ABSOLUTE_PREFIX)
3066 if (is_space_char (*op_string))
3068 i.types[this_operand] |= JumpAbsolute;
3071 /* Check if operand is a register. */
3072 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3073 && (r = parse_register (op_string, &end_op)) != NULL)
3075 /* Check for a segment override by searching for ':' after a
3076 segment register. */
3078 if (is_space_char (*op_string))
3080 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3085 i.seg[i.mem_operands] = &es;
3088 i.seg[i.mem_operands] = &cs;
3091 i.seg[i.mem_operands] = &ss;
3094 i.seg[i.mem_operands] = &ds;
3097 i.seg[i.mem_operands] = &fs;
3100 i.seg[i.mem_operands] = &gs;
3104 /* Skip the ':' and whitespace. */
3106 if (is_space_char (*op_string))
3109 if (!is_digit_char (*op_string)
3110 && !is_identifier_char (*op_string)
3111 && *op_string != '('
3112 && *op_string != ABSOLUTE_PREFIX)
3114 as_bad (_("bad memory operand `%s'"), op_string);
3117 /* Handle case of %es:*foo. */
3118 if (*op_string == ABSOLUTE_PREFIX)
3121 if (is_space_char (*op_string))
3123 i.types[this_operand] |= JumpAbsolute;
3125 goto do_memory_reference;
3129 as_bad (_("junk `%s' after register"), op_string);
3132 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3133 i.op[this_operand].regs = r;
3136 else if (*op_string == REGISTER_PREFIX)
3138 as_bad (_("bad register name `%s'"), op_string);
3141 else if (*op_string == IMMEDIATE_PREFIX)
3144 if (i.types[this_operand] & JumpAbsolute)
3146 as_bad (_("immediate operand illegal with absolute jump"));
3149 if (!i386_immediate (op_string))
3152 else if (is_digit_char (*op_string)
3153 || is_identifier_char (*op_string)
3154 || *op_string == '(' )
3156 /* This is a memory reference of some sort. */
3159 /* Start and end of displacement string expression (if found). */
3160 char *displacement_string_start;
3161 char *displacement_string_end;
3163 do_memory_reference:
3164 if ((i.mem_operands == 1
3165 && (current_templates->start->opcode_modifier & IsString) == 0)
3166 || i.mem_operands == 2)
3168 as_bad (_("too many memory references for `%s'"),
3169 current_templates->start->name);
3173 /* Check for base index form. We detect the base index form by
3174 looking for an ')' at the end of the operand, searching
3175 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3177 base_string = op_string + strlen (op_string);
3180 if (is_space_char (*base_string))
3183 /* If we only have a displacement, set-up for it to be parsed later. */
3184 displacement_string_start = op_string;
3185 displacement_string_end = base_string + 1;
3187 if (*base_string == ')')
3190 unsigned int parens_balanced = 1;
3191 /* We've already checked that the number of left & right ()'s are
3192 equal, so this loop will not be infinite. */
3196 if (*base_string == ')')
3198 if (*base_string == '(')
3201 while (parens_balanced);
3203 temp_string = base_string;
3205 /* Skip past '(' and whitespace. */
3207 if (is_space_char (*base_string))
3210 if (*base_string == ','
3211 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3212 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3214 displacement_string_end = temp_string;
3216 i.types[this_operand] |= BaseIndex;
3220 base_string = end_op;
3221 if (is_space_char (*base_string))
3225 /* There may be an index reg or scale factor here. */
3226 if (*base_string == ',')
3229 if (is_space_char (*base_string))
3232 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3233 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3235 base_string = end_op;
3236 if (is_space_char (*base_string))
3238 if (*base_string == ',')
3241 if (is_space_char (*base_string))
3244 else if (*base_string != ')' )
3246 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3251 else if (*base_string == REGISTER_PREFIX)
3253 as_bad (_("bad register name `%s'"), base_string);
3257 /* Check for scale factor. */
3258 if (isdigit ((unsigned char) *base_string))
3260 if (!i386_scale (base_string))
3264 if (is_space_char (*base_string))
3266 if (*base_string != ')')
3268 as_bad (_("expecting `)' after scale factor in `%s'"),
3273 else if (!i.index_reg)
3275 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3280 else if (*base_string != ')')
3282 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3287 else if (*base_string == REGISTER_PREFIX)
3289 as_bad (_("bad register name `%s'"), base_string);
3294 /* If there's an expression beginning the operand, parse it,
3295 assuming displacement_string_start and
3296 displacement_string_end are meaningful. */
3297 if (displacement_string_start != displacement_string_end)
3299 if (!i386_displacement (displacement_string_start,
3300 displacement_string_end))
3304 /* Special case for (%dx) while doing input/output op. */
3306 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3308 && i.log2_scale_factor == 0
3309 && i.seg[i.mem_operands] == 0
3310 && (i.types[this_operand] & Disp) == 0)
3312 i.types[this_operand] = InOutPortReg;
3316 if (i386_index_check (operand_string) == 0)
3322 /* It's not a memory operand; argh! */
3323 as_bad (_("invalid char %s beginning operand %d `%s'"),
3324 output_invalid (*op_string),
3329 return 1; /* Normal return. */
3332 /* md_estimate_size_before_relax()
3334 Called just before relax() for rs_machine_dependent frags. The x86
3335 assembler uses these frags to handle variable size jump
3338 Any symbol that is now undefined will not become defined.
3339 Return the correct fr_subtype in the frag.
3340 Return the initial "guess for variable size of frag" to caller.
3341 The guess is actually the growth beyond the fixed part. Whatever
3342 we do to grow the fixed or variable part contributes to our
3346 md_estimate_size_before_relax (fragP, segment)
3347 register fragS *fragP;
3348 register segT segment;
3350 /* We've already got fragP->fr_subtype right; all we have to do is
3351 check for un-relaxable symbols. On an ELF system, we can't relax
3352 an externally visible symbol, because it may be overridden by a
3354 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3355 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3356 || S_IS_EXTERNAL (fragP->fr_symbol)
3357 || S_IS_WEAK (fragP->fr_symbol)
3361 /* Symbol is undefined in this segment, or we need to keep a
3362 reloc so that weak symbols can be overridden. */
3363 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3364 #ifdef BFD_ASSEMBLER
3365 enum bfd_reloc_code_real reloc_type;
3369 unsigned char *opcode;
3372 if (fragP->fr_var != NO_RELOC)
3373 reloc_type = fragP->fr_var;
3375 reloc_type = BFD_RELOC_16_PCREL;
3377 reloc_type = BFD_RELOC_32_PCREL;
3379 old_fr_fix = fragP->fr_fix;
3380 opcode = (unsigned char *) fragP->fr_opcode;
3384 case JUMP_PC_RELATIVE:
3385 /* Make jmp (0xeb) a dword displacement jump. */
3387 fragP->fr_fix += size;
3388 fix_new (fragP, old_fr_fix, size,
3390 fragP->fr_offset, 1,
3395 /* This changes the byte-displacement jump 0x7N
3396 to the dword-displacement jump 0x0f,0x8N. */
3397 opcode[1] = opcode[0] + 0x10;
3398 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3399 /* We've added an opcode byte. */
3400 fragP->fr_fix += 1 + size;
3401 fix_new (fragP, old_fr_fix + 1, size,
3403 fragP->fr_offset, 1,
3408 return fragP->fr_fix - old_fr_fix;
3410 /* Guess a short jump. */
3414 /* Called after relax() is finished.
3416 In: Address of frag.
3417 fr_type == rs_machine_dependent.
3418 fr_subtype is what the address relaxed to.
3420 Out: Any fixSs and constants are set up.
3421 Caller will turn frag into a ".space 0". */
3423 #ifndef BFD_ASSEMBLER
3425 md_convert_frag (headers, sec, fragP)
3426 object_headers *headers ATTRIBUTE_UNUSED;
3427 segT sec ATTRIBUTE_UNUSED;
3428 register fragS *fragP;
3431 md_convert_frag (abfd, sec, fragP)
3432 bfd *abfd ATTRIBUTE_UNUSED;
3433 segT sec ATTRIBUTE_UNUSED;
3434 register fragS *fragP;
3437 register unsigned char *opcode;
3438 unsigned char *where_to_put_displacement = NULL;
3439 offsetT target_address;
3440 offsetT opcode_address;
3441 unsigned int extension = 0;
3442 offsetT displacement_from_opcode_start;
3444 opcode = (unsigned char *) fragP->fr_opcode;
3446 /* Address we want to reach in file space. */
3447 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3448 #ifdef BFD_ASSEMBLER
3449 /* Not needed otherwise? */
3450 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
3453 /* Address opcode resides at in file space. */
3454 opcode_address = fragP->fr_address + fragP->fr_fix;
3456 /* Displacement from opcode start to fill into instruction. */
3457 displacement_from_opcode_start = target_address - opcode_address;
3459 switch (fragP->fr_subtype)
3461 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3462 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3463 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3464 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3465 /* Don't have to change opcode. */
3466 extension = 1; /* 1 opcode + 1 displacement */
3467 where_to_put_displacement = &opcode[1];
3470 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3471 extension = 5; /* 2 opcode + 4 displacement */
3472 opcode[1] = opcode[0] + 0x10;
3473 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3474 where_to_put_displacement = &opcode[2];
3477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3478 extension = 4; /* 1 opcode + 4 displacement */
3480 where_to_put_displacement = &opcode[1];
3483 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3484 extension = 3; /* 2 opcode + 2 displacement */
3485 opcode[1] = opcode[0] + 0x10;
3486 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3487 where_to_put_displacement = &opcode[2];
3490 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
3491 extension = 2; /* 1 opcode + 2 displacement */
3493 where_to_put_displacement = &opcode[1];
3497 BAD_CASE (fragP->fr_subtype);
3500 /* Now put displacement after opcode. */
3501 md_number_to_chars ((char *) where_to_put_displacement,
3502 (valueT) (displacement_from_opcode_start - extension),
3503 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
3504 fragP->fr_fix += extension;
3507 /* Size of byte displacement jmp. */
3508 int md_short_jump_size = 2;
3510 /* Size of dword displacement jmp. */
3511 int md_long_jump_size = 5;
3513 /* Size of relocation record. */
3514 const int md_reloc_size = 8;
3517 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3519 addressT from_addr, to_addr;
3520 fragS *frag ATTRIBUTE_UNUSED;
3521 symbolS *to_symbol ATTRIBUTE_UNUSED;
3525 offset = to_addr - (from_addr + 2);
3526 /* Opcode for byte-disp jump. */
3527 md_number_to_chars (ptr, (valueT) 0xeb, 1);
3528 md_number_to_chars (ptr + 1, (valueT) offset, 1);
3532 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3534 addressT from_addr, to_addr;
3535 fragS *frag ATTRIBUTE_UNUSED;
3536 symbolS *to_symbol ATTRIBUTE_UNUSED;
3540 offset = to_addr - (from_addr + 5);
3541 md_number_to_chars (ptr, (valueT) 0xe9, 1);
3542 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3545 /* Apply a fixup (fixS) to segment data, once it has been determined
3546 by our caller that we have all the info we need to fix it up.
3548 On the 386, immediates, displacements, and data pointers are all in
3549 the same (little-endian) format, so we don't need to care about which
3553 md_apply_fix3 (fixP, valp, seg)
3554 /* The fix we're to put in. */
3557 /* Pointer to the value of the bits. */
3560 /* Segment fix is from. */
3561 segT seg ATTRIBUTE_UNUSED;
3563 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
3564 valueT value = *valp;
3566 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
3569 switch (fixP->fx_r_type)
3575 fixP->fx_r_type = BFD_RELOC_32_PCREL;
3578 fixP->fx_r_type = BFD_RELOC_16_PCREL;
3581 fixP->fx_r_type = BFD_RELOC_8_PCREL;
3586 /* This is a hack. There should be a better way to handle this.
3587 This covers for the fact that bfd_install_relocation will
3588 subtract the current location (for partial_inplace, PC relative
3589 relocations); see more below. */
3590 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
3591 || fixP->fx_r_type == BFD_RELOC_16_PCREL
3592 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
3596 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3598 || OUTPUT_FLAVOR == bfd_target_coff_flavour
3601 value += fixP->fx_where + fixP->fx_frag->fr_address;
3603 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3604 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
3606 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
3609 || (symbol_section_p (fixP->fx_addsy)
3610 && fseg != absolute_section))
3611 && ! S_IS_EXTERNAL (fixP->fx_addsy)
3612 && ! S_IS_WEAK (fixP->fx_addsy)
3613 && S_IS_DEFINED (fixP->fx_addsy)
3614 && ! S_IS_COMMON (fixP->fx_addsy))
3616 /* Yes, we add the values in twice. This is because
3617 bfd_perform_relocation subtracts them out again. I think
3618 bfd_perform_relocation is broken, but I don't dare change
3620 value += fixP->fx_where + fixP->fx_frag->fr_address;
3624 #if defined (OBJ_COFF) && defined (TE_PE)
3625 /* For some reason, the PE format does not store a section
3626 address offset for a PC relative symbol. */
3627 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
3628 value += md_pcrel_from (fixP);
3632 /* Fix a few things - the dynamic linker expects certain values here,
3633 and we must not dissappoint it. */
3634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3635 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3637 switch (fixP->fx_r_type)
3639 case BFD_RELOC_386_PLT32:
3640 /* Make the jump instruction point to the address of the operand. At
3641 runtime we merely add the offset to the actual PLT entry. */
3644 case BFD_RELOC_386_GOTPC:
3646 /* This is tough to explain. We end up with this one if we have
3647 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
3648 * here is to obtain the absolute address of the GOT, and it is strongly
3649 * preferable from a performance point of view to avoid using a runtime
3650 * relocation for this. The actual sequence of instructions often look
3656 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3658 * The call and pop essentially return the absolute address of
3659 * the label .L66 and store it in %ebx. The linker itself will
3660 * ultimately change the first operand of the addl so that %ebx points to
3661 * the GOT, but to keep things simple, the .o file must have this operand
3662 * set so that it generates not the absolute address of .L66, but the
3663 * absolute address of itself. This allows the linker itself simply
3664 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
3665 * added in, and the addend of the relocation is stored in the operand
3666 * field for the instruction itself.
3668 * Our job here is to fix the operand so that it would add the correct
3669 * offset so that %ebx would point to itself. The thing that is tricky is
3670 * that .-.L66 will point to the beginning of the instruction, so we need
3671 * to further modify the operand so that it will point to itself.
3672 * There are other cases where you have something like:
3674 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3676 * and here no correction would be required. Internally in the assembler
3677 * we treat operands of this form as not being pcrel since the '.' is
3678 * explicitly mentioned, and I wonder whether it would simplify matters
3679 * to do it this way. Who knows. In earlier versions of the PIC patches,
3680 * the pcrel_adjust field was used to store the correction, but since the
3681 * expression is not pcrel, I felt it would be confusing to do it this
3686 case BFD_RELOC_386_GOT32:
3687 value = 0; /* Fully resolved at runtime. No addend. */
3689 case BFD_RELOC_386_GOTOFF:
3692 case BFD_RELOC_VTABLE_INHERIT:
3693 case BFD_RELOC_VTABLE_ENTRY:
3700 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
3702 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3703 md_number_to_chars (p, value, fixP->fx_size);
3708 #define MAX_LITTLENUMS 6
3710 /* Turn the string pointed to by litP into a floating point constant
3711 of type TYPE, and emit the appropriate bytes. The number of
3712 LITTLENUMS emitted is stored in *SIZEP. An error message is
3713 returned, or NULL on OK. */
3716 md_atof (type, litP, sizeP)
3722 LITTLENUM_TYPE words[MAX_LITTLENUMS];
3723 LITTLENUM_TYPE *wordP;
3745 return _("Bad call to md_atof ()");
3747 t = atof_ieee (input_line_pointer, type, words);
3749 input_line_pointer = t;
3751 *sizeP = prec * sizeof (LITTLENUM_TYPE);
3752 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
3753 the bigendian 386. */
3754 for (wordP = words + prec - 1; prec--;)
3756 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
3757 litP += sizeof (LITTLENUM_TYPE);
3762 char output_invalid_buf[8];
3769 sprintf (output_invalid_buf, "'%c'", c);
3771 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
3772 return output_invalid_buf;
3775 /* REG_STRING starts *before* REGISTER_PREFIX. */
3777 static const reg_entry *
3778 parse_register (reg_string, end_op)
3782 char *s = reg_string;
3784 char reg_name_given[MAX_REG_NAME_SIZE + 1];
3787 /* Skip possible REGISTER_PREFIX and possible whitespace. */
3788 if (*s == REGISTER_PREFIX)
3791 if (is_space_char (*s))
3795 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
3797 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
3798 return (const reg_entry *) NULL;
3802 /* For naked regs, make sure that we are not dealing with an identifier.
3803 This prevents confusing an identifier like `eax_var' with register
3805 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
3806 return (const reg_entry *) NULL;
3810 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
3812 /* Handle floating point regs, allowing spaces in the (i) part. */
3813 if (r == i386_regtab /* %st is first entry of table */)
3815 if (is_space_char (*s))
3820 if (is_space_char (*s))
3822 if (*s >= '0' && *s <= '7')
3824 r = &i386_float_regtab[*s - '0'];
3826 if (is_space_char (*s))
3834 /* We have "%st(" then garbage. */
3835 return (const reg_entry *) NULL;
3842 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3843 const char *md_shortopts = "kVQ:sq";
3845 const char *md_shortopts = "q";
3847 struct option md_longopts[] = {
3848 {NULL, no_argument, NULL, 0}
3850 size_t md_longopts_size = sizeof (md_longopts);
3853 md_parse_option (c, arg)
3855 char *arg ATTRIBUTE_UNUSED;
3863 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3864 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
3865 should be emitted or not. FIXME: Not implemented. */
3869 /* -V: SVR4 argument to print version ID. */
3871 print_version_id ();
3874 /* -k: Ignore for FreeBSD compatibility. */
3879 /* -s: On i386 Solaris, this tells the native assembler to use
3880 .stab instead of .stab.excl. We always use .stab anyhow. */
3891 md_show_usage (stream)
3894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3895 fprintf (stream, _("\
3897 -V print assembler version number\n\
3899 -q quieten some warnings\n\
3902 fprintf (stream, _("\
3903 -q quieten some warnings\n"));
3907 #ifdef BFD_ASSEMBLER
3908 #if ((defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_COFF)) \
3909 || (defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_AOUT)) \
3910 || (defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)))
3912 /* Pick the target format to use. */
3915 i386_target_format ()
3917 switch (OUTPUT_FLAVOR)
3919 #ifdef OBJ_MAYBE_AOUT
3920 case bfd_target_aout_flavour:
3921 return AOUT_TARGET_FORMAT;
3923 #ifdef OBJ_MAYBE_COFF
3924 case bfd_target_coff_flavour:
3927 #ifdef OBJ_MAYBE_ELF
3928 case bfd_target_elf_flavour:
3929 return "elf32-i386";
3937 #endif /* OBJ_MAYBE_ more than one */
3938 #endif /* BFD_ASSEMBLER */
3941 md_undefined_symbol (name)
3944 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
3945 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
3946 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
3947 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
3951 if (symbol_find (name))
3952 as_bad (_("GOT already in symbol table"));
3953 GOT_symbol = symbol_new (name, undefined_section,
3954 (valueT) 0, &zero_address_frag);
3961 /* Round up a section size to the appropriate boundary. */
3964 md_section_align (segment, size)
3965 segT segment ATTRIBUTE_UNUSED;
3968 #ifdef BFD_ASSEMBLER
3969 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3970 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
3972 /* For a.out, force the section size to be aligned. If we don't do
3973 this, BFD will align it for us, but it will not write out the
3974 final bytes of the section. This may be a bug in BFD, but it is
3975 easier to fix it here since that is how the other a.out targets
3979 align = bfd_get_section_alignment (stdoutput, segment);
3980 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
3988 /* On the i386, PC-relative offsets are relative to the start of the
3989 next instruction. That is, the address of the offset, plus its
3990 size, since the offset is always the last part of the insn. */
3993 md_pcrel_from (fixP)
3996 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4003 int ignore ATTRIBUTE_UNUSED;
4007 temp = get_absolute_expression ();
4008 subseg_set (bss_section, (subsegT) temp);
4009 demand_empty_rest_of_line ();
4014 #ifdef BFD_ASSEMBLER
4017 i386_validate_fix (fixp)
4020 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4022 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4028 tc_gen_reloc (section, fixp)
4029 asection *section ATTRIBUTE_UNUSED;
4033 bfd_reloc_code_real_type code;
4035 switch (fixp->fx_r_type)
4037 case BFD_RELOC_386_PLT32:
4038 case BFD_RELOC_386_GOT32:
4039 case BFD_RELOC_386_GOTOFF:
4040 case BFD_RELOC_386_GOTPC:
4042 case BFD_RELOC_VTABLE_ENTRY:
4043 case BFD_RELOC_VTABLE_INHERIT:
4044 code = fixp->fx_r_type;
4049 switch (fixp->fx_size)
4052 as_bad (_("can not do %d byte pc-relative relocation"),
4054 code = BFD_RELOC_32_PCREL;
4056 case 1: code = BFD_RELOC_8_PCREL; break;
4057 case 2: code = BFD_RELOC_16_PCREL; break;
4058 case 4: code = BFD_RELOC_32_PCREL; break;
4063 switch (fixp->fx_size)
4066 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4067 code = BFD_RELOC_32;
4069 case 1: code = BFD_RELOC_8; break;
4070 case 2: code = BFD_RELOC_16; break;
4071 case 4: code = BFD_RELOC_32; break;
4077 if (code == BFD_RELOC_32
4079 && fixp->fx_addsy == GOT_symbol)
4080 code = BFD_RELOC_386_GOTPC;
4082 rel = (arelent *) xmalloc (sizeof (arelent));
4083 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4084 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4086 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4087 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4088 vtable entry to be used in the relocation's section offset. */
4089 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4090 rel->address = fixp->fx_offset;
4093 rel->addend = fixp->fx_addnumber;
4097 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4098 if (rel->howto == NULL)
4100 as_bad_where (fixp->fx_file, fixp->fx_line,
4101 _("cannot represent relocation type %s"),
4102 bfd_get_reloc_code_name (code));
4103 /* Set howto to a garbage value so that we can keep going. */
4104 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4105 assert (rel->howto != NULL);
4111 #else /* ! BFD_ASSEMBLER */
4113 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4115 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4118 relax_addressT segment_address_in_file;
4120 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4121 Out: GNU LD relocation length code: 0, 1, or 2. */
4123 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4126 know (fixP->fx_addsy != NULL);
4128 md_number_to_chars (where,
4129 (valueT) (fixP->fx_frag->fr_address
4130 + fixP->fx_where - segment_address_in_file),
4133 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4134 ? S_GET_TYPE (fixP->fx_addsy)
4135 : fixP->fx_addsy->sy_number);
4137 where[6] = (r_symbolnum >> 16) & 0x0ff;
4138 where[5] = (r_symbolnum >> 8) & 0x0ff;
4139 where[4] = r_symbolnum & 0x0ff;
4140 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4141 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4142 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4145 #endif /* OBJ_AOUT or OBJ_BOUT. */
4147 #if defined (I386COFF)
4150 tc_coff_fix2rtype (fixP)
4153 if (fixP->fx_r_type == R_IMAGEBASE)
4156 return (fixP->fx_pcrel ?
4157 (fixP->fx_size == 1 ? R_PCRBYTE :
4158 fixP->fx_size == 2 ? R_PCRWORD :
4160 (fixP->fx_size == 1 ? R_RELBYTE :
4161 fixP->fx_size == 2 ? R_RELWORD :
4166 tc_coff_sizemachdep (frag)
4170 return (frag->fr_next->fr_address - frag->fr_address);
4175 #endif /* I386COFF */
4177 #endif /* ! BFD_ASSEMBLER */
4179 /* Parse operands using Intel syntax. This implements a recursive descent
4180 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4183 FIXME: We do not recognize the full operand grammar defined in the MASM
4184 documentation. In particular, all the structure/union and
4185 high-level macro operands are missing.
4187 Uppercase words are terminals, lower case words are non-terminals.
4188 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4189 bars '|' denote choices. Most grammar productions are implemented in
4190 functions called 'intel_<production>'.
4192 Initial production is 'expr'.
4198 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4200 constant digits [[ radixOverride ]]
4202 dataType BYTE | WORD | DWORD | QWORD | XWORD
4235 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4236 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4238 hexdigit a | b | c | d | e | f
4239 | A | B | C | D | E | F
4249 register specialRegister
4253 segmentRegister CS | DS | ES | FS | GS | SS
4255 specialRegister CR0 | CR2 | CR3
4256 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4257 | TR3 | TR4 | TR5 | TR6 | TR7
4259 We simplify the grammar in obvious places (e.g., register parsing is
4260 done by calling parse_register) and eliminate immediate left recursion
4261 to implement a recursive-descent parser.
4301 /* Parsing structure for the intel syntax parser. Used to implement the
4302 semantic actions for the operand grammar. */
4303 struct intel_parser_s
4305 char *op_string; /* The string being parsed. */
4306 int got_a_float; /* Whether the operand is a float. */
4307 int op_modifier; /* Operand modifier. */
4308 int is_mem; /* 1 if operand is memory reference. */
4309 const reg_entry *reg; /* Last register reference found. */
4310 char *disp; /* Displacement string being built. */
4313 static struct intel_parser_s intel_parser;
4315 /* Token structure for parsing intel syntax. */
4318 int code; /* Token code. */
4319 const reg_entry *reg; /* Register entry for register tokens. */
4320 char *str; /* String representation. */
4323 static struct intel_token cur_token, prev_token;
4325 /* Token codes for the intel parser. */
4339 /* Prototypes for intel parser functions. */
4340 static int intel_match_token PARAMS ((int code));
4341 static void intel_get_token PARAMS ((void));
4342 static void intel_putback_token PARAMS ((void));
4343 static int intel_expr PARAMS ((void));
4344 static int intel_e05 PARAMS ((void));
4345 static int intel_e05_1 PARAMS ((void));
4346 static int intel_e06 PARAMS ((void));
4347 static int intel_e06_1 PARAMS ((void));
4348 static int intel_e09 PARAMS ((void));
4349 static int intel_e09_1 PARAMS ((void));
4350 static int intel_e10 PARAMS ((void));
4351 static int intel_e10_1 PARAMS ((void));
4352 static int intel_e11 PARAMS ((void));
4355 i386_intel_operand (operand_string, got_a_float)
4356 char *operand_string;
4362 /* Initialize token holders. */
4363 cur_token.code = prev_token.code = T_NIL;
4364 cur_token.reg = prev_token.reg = NULL;
4365 cur_token.str = prev_token.str = NULL;
4367 /* Initialize parser structure. */
4368 p = intel_parser.op_string = (char *)malloc (strlen (operand_string) + 1);
4371 strcpy (intel_parser.op_string, operand_string);
4372 intel_parser.got_a_float = got_a_float;
4373 intel_parser.op_modifier = -1;
4374 intel_parser.is_mem = 0;
4375 intel_parser.reg = NULL;
4376 intel_parser.disp = (char *)malloc (strlen (operand_string) + 1);
4377 if (intel_parser.disp == NULL)
4379 intel_parser.disp[0] = '\0';
4381 /* Read the first token and start the parser. */
4383 ret = intel_expr ();
4387 /* If we found a memory reference, hand it over to i386_displacement
4388 to fill in the rest of the operand fields. */
4389 if (intel_parser.is_mem)
4391 if ((i.mem_operands == 1
4392 && (current_templates->start->opcode_modifier & IsString) == 0)
4393 || i.mem_operands == 2)
4395 as_bad (_("too many memory references for '%s'"),
4396 current_templates->start->name);
4401 char *s = intel_parser.disp;
4404 /* Add the displacement expression. */
4406 ret = i386_displacement (s, s + strlen (s))
4407 && i386_index_check (s);
4411 /* Constant and OFFSET expressions are handled by i386_immediate. */
4412 else if (intel_parser.op_modifier == OFFSET_FLAT
4413 || intel_parser.reg == NULL)
4414 ret = i386_immediate (intel_parser.disp);
4418 free (intel_parser.disp);
4428 /* expr SHORT e05 */
4429 if (cur_token.code == T_SHORT)
4431 intel_parser.op_modifier = SHORT;
4432 intel_match_token (T_SHORT);
4434 return (intel_e05 ());
4439 return intel_e05 ();
4449 return (intel_e06 () && intel_e05_1 ());
4455 /* e05' addOp e06 e05' */
4456 if (cur_token.code == '+' || cur_token.code == '-')
4458 strcat (intel_parser.disp, cur_token.str);
4459 intel_match_token (cur_token.code);
4461 return (intel_e06 () && intel_e05_1 ());
4476 return (intel_e09 () && intel_e06_1 ());
4482 /* e06' mulOp e09 e06' */
4483 if (cur_token.code == '*' || cur_token.code == '/')
4485 strcat (intel_parser.disp, cur_token.str);
4486 intel_match_token (cur_token.code);
4488 return (intel_e09 () && intel_e06_1 ());
4496 /* e09 OFFSET e10 e09'
4505 /* e09 OFFSET e10 e09' */
4506 if (cur_token.code == T_OFFSET)
4508 intel_parser.is_mem = 0;
4509 intel_parser.op_modifier = OFFSET_FLAT;
4510 intel_match_token (T_OFFSET);
4512 return (intel_e10 () && intel_e09_1 ());
4517 return (intel_e10 () && intel_e09_1 ());
4523 /* e09' PTR e10 e09' */
4524 if (cur_token.code == T_PTR)
4526 if (prev_token.code == T_BYTE)
4527 i.suffix = BYTE_MNEM_SUFFIX;
4529 else if (prev_token.code == T_WORD)
4531 if (intel_parser.got_a_float == 2) /* "fi..." */
4532 i.suffix = SHORT_MNEM_SUFFIX;
4534 i.suffix = WORD_MNEM_SUFFIX;
4537 else if (prev_token.code == T_DWORD)
4539 if (intel_parser.got_a_float == 1) /* "f..." */
4540 i.suffix = SHORT_MNEM_SUFFIX;
4542 i.suffix = LONG_MNEM_SUFFIX;
4545 else if (prev_token.code == T_QWORD)
4546 i.suffix = DWORD_MNEM_SUFFIX;
4548 else if (prev_token.code == T_XWORD)
4549 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
4553 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
4557 intel_match_token (T_PTR);
4559 return (intel_e10 () && intel_e09_1 ());
4562 /* e09 : e10 e09' */
4563 else if (cur_token.code == ':')
4565 intel_parser.is_mem = 1;
4567 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
4582 return (intel_e11 () && intel_e10_1 ());
4588 /* e10' [ expr ] e10' */
4589 if (cur_token.code == '[')
4591 intel_match_token ('[');
4592 intel_parser.is_mem = 1;
4594 /* Add a '+' to the displacement string if necessary. */
4595 if (*intel_parser.disp != '\0')
4596 strcat (intel_parser.disp, "+");
4598 return (intel_expr () && intel_match_token (']') && intel_e10_1 ());
4622 if (cur_token.code == '(')
4624 intel_match_token ('(');
4625 strcat (intel_parser.disp, "(");
4627 if (intel_expr () && intel_match_token (')'))
4629 strcat (intel_parser.disp, ")");
4637 else if (cur_token.code == '[')
4639 intel_match_token ('[');
4640 intel_parser.is_mem = 1;
4642 /* Operands for jump/call inside brackets denote absolute addresses. */
4643 if (current_templates->start->opcode_modifier & Jump
4644 || current_templates->start->opcode_modifier & JumpDword
4645 || current_templates->start->opcode_modifier & JumpByte
4646 || current_templates->start->opcode_modifier & JumpInterSegment)
4647 i.types[this_operand] |= JumpAbsolute;
4649 /* Add a '+' to the displacement string if necessary. */
4650 if (*intel_parser.disp != '\0')
4651 strcat (intel_parser.disp, "+");
4653 return (intel_expr () && intel_match_token (']'));
4661 else if (cur_token.code == T_BYTE
4662 || cur_token.code == T_WORD
4663 || cur_token.code == T_DWORD
4664 || cur_token.code == T_QWORD
4665 || cur_token.code == T_XWORD)
4667 intel_match_token (cur_token.code);
4674 else if (cur_token.code == '$' || cur_token.code == '.')
4676 strcat (intel_parser.disp, cur_token.str);
4677 intel_match_token (cur_token.code);
4678 intel_parser.is_mem = 1;
4684 else if (cur_token.code == T_REG)
4686 const reg_entry *reg = intel_parser.reg = cur_token.reg;
4688 intel_match_token (T_REG);
4690 /* Check for segment change. */
4691 if (cur_token.code == ':')
4693 if (reg->reg_type & (SReg2 | SReg3))
4695 switch (reg->reg_num)
4698 i.seg[i.mem_operands] = &es;
4701 i.seg[i.mem_operands] = &cs;
4704 i.seg[i.mem_operands] = &ss;
4707 i.seg[i.mem_operands] = &ds;
4710 i.seg[i.mem_operands] = &fs;
4713 i.seg[i.mem_operands] = &gs;
4719 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
4724 /* Not a segment register. Check for register scaling. */
4725 else if (cur_token.code == '*')
4727 if (!intel_parser.is_mem)
4729 as_bad (_("Register scaling only allowed in memory operands."));
4733 /* What follows must be a valid scale. */
4734 if (intel_match_token ('*')
4735 && strchr ("01248", *cur_token.str))
4738 i.types[this_operand] |= BaseIndex;
4740 /* Set the scale after setting the register (otherwise,
4741 i386_scale will complain) */
4742 i386_scale (cur_token.str);
4743 intel_match_token (T_CONST);
4747 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4753 /* No scaling. If this is a memory operand, the register is either a
4754 base register (first occurrence) or an index register (second
4756 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
4758 if (i.base_reg && i.index_reg)
4760 as_bad (_("Too many register references in memory operand.\n"));
4764 if (i.base_reg == NULL)
4769 i.types[this_operand] |= BaseIndex;
4772 /* Offset modifier. Add the register to the displacement string to be
4773 parsed as an immediate expression after we're done. */
4774 else if (intel_parser.op_modifier == OFFSET_FLAT)
4775 strcat (intel_parser.disp, reg->reg_name);
4777 /* It's neither base nor index nor offset. */
4780 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
4781 i.op[this_operand].regs = reg;
4785 /* Since registers are not part of the displacement string (except
4786 when we're parsing offset operands), we may need to remove any
4787 preceding '+' from the displacement string. */
4788 if (*intel_parser.disp != '\0'
4789 && intel_parser.op_modifier != OFFSET_FLAT)
4791 char *s = intel_parser.disp;
4792 s += strlen (s) - 1;
4801 else if (cur_token.code == T_ID)
4803 /* Add the identifier to the displacement string. */
4804 strcat (intel_parser.disp, cur_token.str);
4805 intel_match_token (T_ID);
4807 /* The identifier represents a memory reference only if it's not
4808 preceded by an offset modifier. */
4809 if (intel_parser.op_modifier != OFFSET_FLAT
4810 && intel_parser.op_modifier != FLAT)
4811 intel_parser.is_mem = 1;
4817 else if (cur_token.code == T_CONST
4818 || cur_token.code == '-'
4819 || cur_token.code == '+')
4823 /* Allow constants that start with `+' or `-'. */
4824 if (cur_token.code == '-' || cur_token.code == '+')
4826 strcat (intel_parser.disp, cur_token.str);
4827 intel_match_token (cur_token.code);
4828 if (cur_token.code != T_CONST)
4830 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
4836 save_str = (char *)malloc (strlen (cur_token.str) + 1);
4837 if (save_str == NULL)
4839 strcpy (save_str, cur_token.str);
4841 /* Get the next token to check for register scaling. */
4842 intel_match_token (cur_token.code);
4844 /* Check if this constant is a scaling factor for an index register. */
4845 if (cur_token.code == '*')
4847 if (intel_match_token ('*') && cur_token.code == T_REG)
4849 if (!intel_parser.is_mem)
4851 as_bad (_("Register scaling only allowed in memory operands."));
4855 /* The constant is followed by `* reg', so it must be
4857 if (strchr ("01248", *save_str))
4859 i.index_reg = cur_token.reg;
4860 i.types[this_operand] |= BaseIndex;
4862 /* Set the scale after setting the register (otherwise,
4863 i386_scale will complain) */
4864 i386_scale (save_str);
4865 intel_match_token (T_REG);
4867 /* Since registers are not part of the displacement
4868 string, we may need to remove any preceding '+' from
4869 the displacement string. */
4870 if (*intel_parser.disp != '\0')
4872 char *s = intel_parser.disp;
4873 s += strlen (s) - 1;
4886 /* The constant was not used for register scaling. Since we have
4887 already consumed the token following `*' we now need to put it
4888 back in the stream. */
4890 intel_putback_token ();
4893 /* Add the constant to the displacement string. */
4894 strcat (intel_parser.disp, save_str);
4900 as_bad (_("Unrecognized token '%s'"), cur_token.str);
4904 /* Match the given token against cur_token. If they match, read the next
4905 token from the operand string. */
4907 intel_match_token (code)
4910 if (cur_token.code == code)
4917 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
4922 /* Read a new token from intel_parser.op_string and store it in cur_token. */
4927 const reg_entry *reg;
4928 struct intel_token new_token;
4930 new_token.code = T_NIL;
4931 new_token.reg = NULL;
4932 new_token.str = NULL;
4934 /* Free the memory allocated to the previous token and move
4935 cur_token to prev_token. */
4937 free (prev_token.str);
4939 prev_token = cur_token;
4941 /* Skip whitespace. */
4942 while (is_space_char (*intel_parser.op_string))
4943 intel_parser.op_string++;
4945 /* Return an empty token if we find nothing else on the line. */
4946 if (*intel_parser.op_string == '\0')
4948 cur_token = new_token;
4952 /* The new token cannot be larger than the remainder of the operand
4954 new_token.str = (char *)malloc (strlen (intel_parser.op_string) + 1);
4955 if (new_token.str == NULL)
4957 new_token.str[0] = '\0';
4959 if (strchr ("0123456789", *intel_parser.op_string))
4961 char *p = new_token.str;
4962 char *q = intel_parser.op_string;
4963 new_token.code = T_CONST;
4965 /* Allow any kind of identifier char to encompass floating point and
4966 hexadecimal numbers. */
4967 while (is_identifier_char (*q))
4971 /* Recognize special symbol names [0-9][bf]. */
4972 if (strlen (intel_parser.op_string) == 2
4973 && (intel_parser.op_string[1] == 'b'
4974 || intel_parser.op_string[1] == 'f'))
4975 new_token.code = T_ID;
4978 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
4980 new_token.code = *intel_parser.op_string;
4981 new_token.str[0] = *intel_parser.op_string;
4982 new_token.str[1] = '\0';
4985 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
4986 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
4988 new_token.code = T_REG;
4989 new_token.reg = reg;
4991 if (*intel_parser.op_string == REGISTER_PREFIX)
4993 new_token.str[0] = REGISTER_PREFIX;
4994 new_token.str[1] = '\0';
4997 strcat (new_token.str, reg->reg_name);
5000 else if (is_identifier_char (*intel_parser.op_string))
5002 char *p = new_token.str;
5003 char *q = intel_parser.op_string;
5005 /* A '.' or '$' followed by an identifier char is an identifier.
5006 Otherwise, it's operator '.' followed by an expression. */
5007 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5009 new_token.code = *q;
5010 new_token.str[0] = *q;
5011 new_token.str[1] = '\0';
5015 while (is_identifier_char (*q) || *q == '@')
5019 if (strcasecmp (new_token.str, "BYTE") == 0)
5020 new_token.code = T_BYTE;
5022 else if (strcasecmp (new_token.str, "WORD") == 0)
5023 new_token.code = T_WORD;
5025 else if (strcasecmp (new_token.str, "DWORD") == 0)
5026 new_token.code = T_DWORD;
5028 else if (strcasecmp (new_token.str, "QWORD") == 0)
5029 new_token.code = T_QWORD;
5031 else if (strcasecmp (new_token.str, "XWORD") == 0)
5032 new_token.code = T_XWORD;
5034 else if (strcasecmp (new_token.str, "PTR") == 0)
5035 new_token.code = T_PTR;
5037 else if (strcasecmp (new_token.str, "SHORT") == 0)
5038 new_token.code = T_SHORT;
5040 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5042 new_token.code = T_OFFSET;
5044 /* ??? This is not mentioned in the MASM grammar but gcc
5045 makes use of it with -mintel-syntax. OFFSET may be
5046 followed by FLAT: */
5047 if (strncasecmp (q, " FLAT:", 6) == 0)
5048 strcat (new_token.str, " FLAT:");
5051 /* ??? This is not mentioned in the MASM grammar. */
5052 else if (strcasecmp (new_token.str, "FLAT") == 0)
5053 new_token.code = T_OFFSET;
5056 new_token.code = T_ID;
5061 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5063 intel_parser.op_string += strlen (new_token.str);
5064 cur_token = new_token;
5067 /* Put cur_token back into the token stream and make cur_token point to
5070 intel_putback_token ()
5072 intel_parser.op_string -= strlen (cur_token.str);
5073 free (cur_token.str);
5074 cur_token = prev_token;
5076 /* Forget prev_token. */
5077 prev_token.code = T_NIL;
5078 prev_token.reg = NULL;
5079 prev_token.str = NULL;