1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
48 @cindex options for i386
49 @cindex options for x86-64
51 @cindex x86-64 options
53 The i386 version of @code{@value{AS}} has a few machine
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
81 @cindex @samp{--divide} option, i386
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
197 @code{avx512_4fmaps},
198 @code{avx512_4vnniw},
199 @code{avx512_vpopcntdq},
202 @code{avx512_bitalg},
213 @code{noavx512_4fmaps},
214 @code{noavx512_4vnniw},
215 @code{noavx512_vpopcntdq},
216 @code{noavx512_vbmi2},
217 @code{noavx512_vnni},
218 @code{noavx512_bitalg},
219 @code{noavx512_vp2intersect},
220 @code{noavx512_bf16},
264 Note that rather than extending a basic instruction set, the extension
265 mnemonics starting with @code{no} revoke the respective functionality.
267 When the @code{.arch} directive is used with @option{-march}, the
268 @code{.arch} directive will take precedent.
270 @cindex @samp{-mtune=} option, i386
271 @cindex @samp{-mtune=} option, x86-64
272 @item -mtune=@var{CPU}
273 This option specifies a processor to optimize for. When used in
274 conjunction with the @option{-march} option, only instructions
275 of the processor specified by the @option{-march} option will be
278 Valid @var{CPU} values are identical to the processor list of
279 @option{-march=@var{CPU}}.
281 @cindex @samp{-msse2avx} option, i386
282 @cindex @samp{-msse2avx} option, x86-64
284 This option specifies that the assembler should encode SSE instructions
287 @cindex @samp{-msse-check=} option, i386
288 @cindex @samp{-msse-check=} option, x86-64
289 @item -msse-check=@var{none}
290 @itemx -msse-check=@var{warning}
291 @itemx -msse-check=@var{error}
292 These options control if the assembler should check SSE instructions.
293 @option{-msse-check=@var{none}} will make the assembler not to check SSE
294 instructions, which is the default. @option{-msse-check=@var{warning}}
295 will make the assembler issue a warning for any SSE instruction.
296 @option{-msse-check=@var{error}} will make the assembler issue an error
297 for any SSE instruction.
299 @cindex @samp{-mavxscalar=} option, i386
300 @cindex @samp{-mavxscalar=} option, x86-64
301 @item -mavxscalar=@var{128}
302 @itemx -mavxscalar=@var{256}
303 These options control how the assembler should encode scalar AVX
304 instructions. @option{-mavxscalar=@var{128}} will encode scalar
305 AVX instructions with 128bit vector length, which is the default.
306 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
307 with 256bit vector length.
309 WARNING: Don't use this for production code - due to CPU errata the
310 resulting code may not work on certain models.
312 @cindex @samp{-mvexwig=} option, i386
313 @cindex @samp{-mvexwig=} option, x86-64
314 @item -mvexwig=@var{0}
315 @itemx -mvexwig=@var{1}
316 These options control how the assembler should encode VEX.W-ignored (WIG)
317 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
318 instructions with vex.w = 0, which is the default.
319 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
322 WARNING: Don't use this for production code - due to CPU errata the
323 resulting code may not work on certain models.
325 @cindex @samp{-mevexlig=} option, i386
326 @cindex @samp{-mevexlig=} option, x86-64
327 @item -mevexlig=@var{128}
328 @itemx -mevexlig=@var{256}
329 @itemx -mevexlig=@var{512}
330 These options control how the assembler should encode length-ignored
331 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
332 EVEX instructions with 128bit vector length, which is the default.
333 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
334 encode LIG EVEX instructions with 256bit and 512bit vector length,
337 @cindex @samp{-mevexwig=} option, i386
338 @cindex @samp{-mevexwig=} option, x86-64
339 @item -mevexwig=@var{0}
340 @itemx -mevexwig=@var{1}
341 These options control how the assembler should encode w-ignored (WIG)
342 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
343 EVEX instructions with evex.w = 0, which is the default.
344 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
347 @cindex @samp{-mmnemonic=} option, i386
348 @cindex @samp{-mmnemonic=} option, x86-64
349 @item -mmnemonic=@var{att}
350 @itemx -mmnemonic=@var{intel}
351 This option specifies instruction mnemonic for matching instructions.
352 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
355 @cindex @samp{-msyntax=} option, i386
356 @cindex @samp{-msyntax=} option, x86-64
357 @item -msyntax=@var{att}
358 @itemx -msyntax=@var{intel}
359 This option specifies instruction syntax when processing instructions.
360 The @code{.att_syntax} and @code{.intel_syntax} directives will
363 @cindex @samp{-mnaked-reg} option, i386
364 @cindex @samp{-mnaked-reg} option, x86-64
366 This option specifies that registers don't require a @samp{%} prefix.
367 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
369 @cindex @samp{-madd-bnd-prefix} option, i386
370 @cindex @samp{-madd-bnd-prefix} option, x86-64
371 @item -madd-bnd-prefix
372 This option forces the assembler to add BND prefix to all branches, even
373 if such prefix was not explicitly specified in the source code.
375 @cindex @samp{-mshared} option, i386
376 @cindex @samp{-mshared} option, x86-64
378 On ELF target, the assembler normally optimizes out non-PLT relocations
379 against defined non-weak global branch targets with default visibility.
380 The @samp{-mshared} option tells the assembler to generate code which
381 may go into a shared library where all non-weak global branch targets
382 with default visibility can be preempted. The resulting code is
383 slightly bigger. This option only affects the handling of branch
386 @cindex @samp{-mbig-obj} option, x86-64
388 On x86-64 PE/COFF target this option forces the use of big object file
389 format, which allows more than 32768 sections.
391 @cindex @samp{-momit-lock-prefix=} option, i386
392 @cindex @samp{-momit-lock-prefix=} option, x86-64
393 @item -momit-lock-prefix=@var{no}
394 @itemx -momit-lock-prefix=@var{yes}
395 These options control how the assembler should encode lock prefix.
396 This option is intended as a workaround for processors, that fail on
397 lock prefix. This option can only be safely used with single-core,
398 single-thread computers
399 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
400 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
401 which is the default.
403 @cindex @samp{-mfence-as-lock-add=} option, i386
404 @cindex @samp{-mfence-as-lock-add=} option, x86-64
405 @item -mfence-as-lock-add=@var{no}
406 @itemx -mfence-as-lock-add=@var{yes}
407 These options control how the assembler should encode lfence, mfence and
409 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
410 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
411 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
412 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
413 sfence as usual, which is the default.
415 @cindex @samp{-mrelax-relocations=} option, i386
416 @cindex @samp{-mrelax-relocations=} option, x86-64
417 @item -mrelax-relocations=@var{no}
418 @itemx -mrelax-relocations=@var{yes}
419 These options control whether the assembler should generate relax
420 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
421 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
422 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
423 @option{-mrelax-relocations=@var{no}} will not generate relax
424 relocations. The default can be controlled by a configure option
425 @option{--enable-x86-relax-relocations}.
427 @cindex @samp{-malign-branch-boundary=} option, i386
428 @cindex @samp{-malign-branch-boundary=} option, x86-64
429 @item -malign-branch-boundary=@var{NUM}
430 This option controls how the assembler should align branches with segment
431 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
432 no less than 16. Branches will be aligned within @var{NUM} byte
433 boundary. @option{-malign-branch-boundary=0}, which is the default,
434 doesn't align branches.
436 @cindex @samp{-malign-branch=} option, i386
437 @cindex @samp{-malign-branch=} option, x86-64
438 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
439 This option specifies types of branches to align. @var{TYPE} is
440 combination of @samp{jcc}, which aligns conditional jumps,
441 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
442 which aligns unconditional jumps, @samp{call} which aligns calls,
443 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
444 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
446 @cindex @samp{-malign-branch-prefix-size=} option, i386
447 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
448 @item -malign-branch-prefix-size=@var{NUM}
449 This option specifies the maximum number of prefixes on an instruction
450 to align branches. @var{NUM} should be between 0 and 5. The default
453 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
454 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
455 @item -mbranches-within-32B-boundaries
456 This option aligns conditional jumps, fused conditional jumps and
457 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
458 on an instruction. It is equivalent to
459 @option{-malign-branch-boundary=32}
460 @option{-malign-branch=jcc+fused+jmp}
461 @option{-malign-branch-prefix-size=5}.
462 The default doesn't align branches.
464 @cindex @samp{-mx86-used-note=} option, i386
465 @cindex @samp{-mx86-used-note=} option, x86-64
466 @item -mx86-used-note=@var{no}
467 @itemx -mx86-used-note=@var{yes}
468 These options control whether the assembler should generate
469 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
470 GNU property notes. The default can be controlled by the
471 @option{--enable-x86-used-note} configure option.
473 @cindex @samp{-mevexrcig=} option, i386
474 @cindex @samp{-mevexrcig=} option, x86-64
475 @item -mevexrcig=@var{rne}
476 @itemx -mevexrcig=@var{rd}
477 @itemx -mevexrcig=@var{ru}
478 @itemx -mevexrcig=@var{rz}
479 These options control how the assembler should encode SAE-only
480 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
481 of EVEX instruction with 00, which is the default.
482 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
483 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
484 with 01, 10 and 11 RC bits, respectively.
486 @cindex @samp{-mamd64} option, x86-64
487 @cindex @samp{-mintel64} option, x86-64
490 This option specifies that the assembler should accept only AMD64 or
491 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
494 @cindex @samp{-O0} option, i386
495 @cindex @samp{-O0} option, x86-64
496 @cindex @samp{-O} option, i386
497 @cindex @samp{-O} option, x86-64
498 @cindex @samp{-O1} option, i386
499 @cindex @samp{-O1} option, x86-64
500 @cindex @samp{-O2} option, i386
501 @cindex @samp{-O2} option, x86-64
502 @cindex @samp{-Os} option, i386
503 @cindex @samp{-Os} option, x86-64
504 @item -O0 | -O | -O1 | -O2 | -Os
505 Optimize instruction encoding with smaller instruction size. @samp{-O}
506 and @samp{-O1} encode 64-bit register load instructions with 64-bit
507 immediate as 32-bit register load instructions with 31-bit or 32-bits
508 immediates, encode 64-bit register clearing instructions with 32-bit
509 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
510 register clearing instructions with 128-bit VEX vector register
511 clearing instructions, encode 128-bit/256-bit EVEX vector
512 register load/store instructions with VEX vector register load/store
513 instructions, and encode 128-bit/256-bit EVEX packed integer logical
514 instructions with 128-bit/256-bit VEX packed integer logical.
516 @samp{-O2} includes @samp{-O1} optimization plus encodes
517 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
518 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
519 instructions with commutative source operands will also have their
520 source operands swapped if this allows using the 2-byte VEX prefix form
521 instead of the 3-byte one. Certain forms of AND as well as OR with the
522 same (register) operand specified twice will also be changed to TEST.
524 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
525 and 64-bit register tests with immediate as 8-bit register test with
526 immediate. @samp{-O0} turns off this optimization.
531 @node i386-Directives
532 @section x86 specific Directives
534 @cindex machine directives, x86
535 @cindex x86 machine directives
538 @cindex @code{lcomm} directive, COFF
539 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
540 Reserve @var{length} (an absolute expression) bytes for a local common
541 denoted by @var{symbol}. The section and value of @var{symbol} are
542 those of the new local common. The addresses are allocated in the bss
543 section, so that at run-time the bytes start off zeroed. Since
544 @var{symbol} is not declared global, it is normally not visible to
545 @code{@value{LD}}. The optional third parameter, @var{alignment},
546 specifies the desired alignment of the symbol in the bss section.
548 This directive is only available for COFF based x86 targets.
550 @cindex @code{largecomm} directive, ELF
551 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
552 This directive behaves in the same way as the @code{comm} directive
553 except that the data is placed into the @var{.lbss} section instead of
554 the @var{.bss} section @ref{Comm}.
556 The directive is intended to be used for data which requires a large
557 amount of space, and it is only available for ELF based x86_64
560 @cindex @code{value} directive
561 @item .value @var{expression} [, @var{expression}]
562 This directive behaves in the same way as the @code{.short} directive,
563 taking a series of comma separated expressions and storing them as
564 two-byte wide values into the current section.
566 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
571 @section i386 Syntactical Considerations
573 * i386-Variations:: AT&T Syntax versus Intel Syntax
574 * i386-Chars:: Special Characters
577 @node i386-Variations
578 @subsection AT&T Syntax versus Intel Syntax
580 @cindex i386 intel_syntax pseudo op
581 @cindex intel_syntax pseudo op, i386
582 @cindex i386 att_syntax pseudo op
583 @cindex att_syntax pseudo op, i386
584 @cindex i386 syntax compatibility
585 @cindex syntax compatibility, i386
586 @cindex x86-64 intel_syntax pseudo op
587 @cindex intel_syntax pseudo op, x86-64
588 @cindex x86-64 att_syntax pseudo op
589 @cindex att_syntax pseudo op, x86-64
590 @cindex x86-64 syntax compatibility
591 @cindex syntax compatibility, x86-64
593 @code{@value{AS}} now supports assembly using Intel assembler syntax.
594 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
595 back to the usual AT&T mode for compatibility with the output of
596 @code{@value{GCC}}. Either of these directives may have an optional
597 argument, @code{prefix}, or @code{noprefix} specifying whether registers
598 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
599 different from Intel syntax. We mention these differences because
600 almost all 80386 documents use Intel syntax. Notable differences
601 between the two syntaxes are:
603 @cindex immediate operands, i386
604 @cindex i386 immediate operands
605 @cindex register operands, i386
606 @cindex i386 register operands
607 @cindex jump/call operands, i386
608 @cindex i386 jump/call operands
609 @cindex operand delimiters, i386
611 @cindex immediate operands, x86-64
612 @cindex x86-64 immediate operands
613 @cindex register operands, x86-64
614 @cindex x86-64 register operands
615 @cindex jump/call operands, x86-64
616 @cindex x86-64 jump/call operands
617 @cindex operand delimiters, x86-64
620 AT&T immediate operands are preceded by @samp{$}; Intel immediate
621 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
622 AT&T register operands are preceded by @samp{%}; Intel register operands
623 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
624 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
626 @cindex i386 source, destination operands
627 @cindex source, destination operands; i386
628 @cindex x86-64 source, destination operands
629 @cindex source, destination operands; x86-64
631 AT&T and Intel syntax use the opposite order for source and destination
632 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
633 @samp{source, dest} convention is maintained for compatibility with
634 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
635 instructions with 2 immediate operands, such as the @samp{enter}
636 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
638 @cindex mnemonic suffixes, i386
639 @cindex sizes operands, i386
640 @cindex i386 size suffixes
641 @cindex mnemonic suffixes, x86-64
642 @cindex sizes operands, x86-64
643 @cindex x86-64 size suffixes
645 In AT&T syntax the size of memory operands is determined from the last
646 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
647 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
648 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
649 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
650 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
651 no other way to disambiguate an instruction. Intel syntax accomplishes this by
652 prefixing memory operands (@emph{not} the instruction mnemonics) with
653 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
654 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
655 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
656 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
657 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
659 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
660 instruction with the 64-bit displacement or immediate operand.
662 @cindex return instructions, i386
663 @cindex i386 jump, call, return
664 @cindex return instructions, x86-64
665 @cindex x86-64 jump, call, return
667 Immediate form long jumps and calls are
668 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
670 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
672 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
673 @samp{ret far @var{stack-adjust}}.
675 @cindex sections, i386
676 @cindex i386 sections
677 @cindex sections, x86-64
678 @cindex x86-64 sections
680 The AT&T assembler does not provide support for multiple section
681 programs. Unix style systems expect all programs to be single sections.
685 @subsection Special Characters
687 @cindex line comment character, i386
688 @cindex i386 line comment character
689 The presence of a @samp{#} appearing anywhere on a line indicates the
690 start of a comment that extends to the end of that line.
692 If a @samp{#} appears as the first character of a line then the whole
693 line is treated as a comment, but in this case the line can also be a
694 logical line number directive (@pxref{Comments}) or a preprocessor
695 control command (@pxref{Preprocessing}).
697 If the @option{--divide} command-line option has not been specified
698 then the @samp{/} character appearing anywhere on a line also
699 introduces a line comment.
701 @cindex line separator, i386
702 @cindex statement separator, i386
703 @cindex i386 line separator
704 The @samp{;} character can be used to separate statements on the same
708 @section i386-Mnemonics
709 @subsection Instruction Naming
711 @cindex i386 instruction naming
712 @cindex instruction naming, i386
713 @cindex x86-64 instruction naming
714 @cindex instruction naming, x86-64
716 Instruction mnemonics are suffixed with one character modifiers which
717 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
718 and @samp{q} specify byte, word, long and quadruple word operands. If
719 no suffix is specified by an instruction then @code{@value{AS}} tries to
720 fill in the missing suffix based on the destination register operand
721 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
722 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
723 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
724 assembler which assumes that a missing mnemonic suffix implies long
725 operand size. (This incompatibility does not affect compiler output
726 since compilers always explicitly specify the mnemonic suffix.)
728 When there is no sizing suffix and no (suitable) register operands to
729 deduce the size of memory operands, with a few exceptions and where long
730 operand size is possible in the first place, operand size will default
731 to long in 32- and 64-bit modes. Similarly it will default to short in
732 16-bit mode. Noteworthy exceptions are
736 Instructions with an implicit on-stack operand as well as branches,
737 which default to quad in 64-bit mode.
740 Sign- and zero-extending moves, which default to byte size source
744 Floating point insns with integer operands, which default to short (for
745 perhaps historical reasons).
748 CRC32 with a 64-bit destination, which defaults to a quad source
753 Almost all instructions have the same names in AT&T and Intel format.
754 There are a few exceptions. The sign extend and zero extend
755 instructions need two sizes to specify them. They need a size to
756 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
757 is accomplished by using two instruction mnemonic suffixes in AT&T
758 syntax. Base names for sign extend and zero extend are
759 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
760 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
761 are tacked on to this base name, the @emph{from} suffix before the
762 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
763 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
764 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
765 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
766 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
769 @cindex encoding options, i386
770 @cindex encoding options, x86-64
772 Different encoding options can be specified via pseudo prefixes:
776 @samp{@{disp8@}} -- prefer 8-bit displacement.
779 @samp{@{disp32@}} -- prefer 32-bit displacement.
782 @samp{@{load@}} -- prefer load-form instruction.
785 @samp{@{store@}} -- prefer store-form instruction.
788 @samp{@{vex@}} -- encode with VEX prefix.
791 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
794 @samp{@{evex@}} -- encode with EVEX prefix.
797 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
798 instructions (x86-64 only). Note that this differs from the @samp{rex}
799 prefix which generates REX prefix unconditionally.
802 @samp{@{nooptimize@}} -- disable instruction size optimization.
805 @cindex conversion instructions, i386
806 @cindex i386 conversion instructions
807 @cindex conversion instructions, x86-64
808 @cindex x86-64 conversion instructions
809 The Intel-syntax conversion instructions
813 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
816 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
819 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
822 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
825 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
829 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
830 @samp{%rdx:%rax} (x86-64 only),
834 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
835 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
838 @cindex jump instructions, i386
839 @cindex call instructions, i386
840 @cindex jump instructions, x86-64
841 @cindex call instructions, x86-64
842 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
843 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
846 @subsection AT&T Mnemonic versus Intel Mnemonic
848 @cindex i386 mnemonic compatibility
849 @cindex mnemonic compatibility, i386
851 @code{@value{AS}} supports assembly using Intel mnemonic.
852 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
853 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
854 syntax for compatibility with the output of @code{@value{GCC}}.
855 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
856 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
857 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
858 assembler with different mnemonics from those in Intel IA32 specification.
859 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
862 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
863 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
864 destination register with both AT&T and Intel mnemonics.
868 @section Register Naming
870 @cindex i386 registers
871 @cindex registers, i386
872 @cindex x86-64 registers
873 @cindex registers, x86-64
874 Register operands are always prefixed with @samp{%}. The 80386 registers
879 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
880 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
881 frame pointer), and @samp{%esp} (the stack pointer).
884 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
885 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
888 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
889 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
890 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
891 @samp{%cx}, and @samp{%dx})
894 the 6 section registers @samp{%cs} (code section), @samp{%ds}
895 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
899 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
900 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
903 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
904 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
907 the 2 test registers @samp{%tr6} and @samp{%tr7}.
910 the 8 floating point register stack @samp{%st} or equivalently
911 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
912 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
913 These registers are overloaded by 8 MMX registers @samp{%mm0},
914 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
915 @samp{%mm6} and @samp{%mm7}.
918 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
919 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
922 The AMD x86-64 architecture extends the register set by:
926 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
927 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
928 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
932 the 8 extended registers @samp{%r8}--@samp{%r15}.
935 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
938 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
941 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
944 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
947 the 8 debug registers: @samp{%db8}--@samp{%db15}.
950 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
953 With the AVX extensions more registers were made available:
958 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
959 available in 32-bit mode). The bottom 128 bits are overlaid with the
960 @samp{xmm0}--@samp{xmm15} registers.
964 The AVX2 extensions made in 64-bit mode more registers available:
969 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
970 registers @samp{%ymm16}--@samp{%ymm31}.
974 The AVX512 extensions added the following registers:
979 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
980 available in 32-bit mode). The bottom 128 bits are overlaid with the
981 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
982 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
985 the 8 mask registers @samp{%k0}--@samp{%k7}.
990 @section Instruction Prefixes
992 @cindex i386 instruction prefixes
993 @cindex instruction prefixes, i386
994 @cindex prefixes, i386
995 Instruction prefixes are used to modify the following instruction. They
996 are used to repeat string instructions, to provide section overrides, to
997 perform bus lock operations, and to change operand and address sizes.
998 (Most instructions that normally operate on 32-bit operands will use
999 16-bit operands if the instruction has an ``operand size'' prefix.)
1000 Instruction prefixes are best written on the same line as the instruction
1001 they act upon. For example, the @samp{scas} (scan string) instruction is
1005 repne scas %es:(%edi),%al
1008 You may also place prefixes on the lines immediately preceding the
1009 instruction, but this circumvents checks that @code{@value{AS}} does
1010 with prefixes, and will not work with all prefixes.
1012 Here is a list of instruction prefixes:
1014 @cindex section override prefixes, i386
1017 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1018 @samp{fs}, @samp{gs}. These are automatically added by specifying
1019 using the @var{section}:@var{memory-operand} form for memory references.
1021 @cindex size prefixes, i386
1023 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1024 change 32-bit operands/addresses into 16-bit operands/addresses,
1025 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1026 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1027 @emph{must} appear on the same line of code as the instruction they
1028 modify. For example, in a 16-bit @code{.code16} section, you might
1035 @cindex bus lock prefixes, i386
1036 @cindex inhibiting interrupts, i386
1038 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1039 the instruction it precedes. (This is only valid with certain
1040 instructions; see a 80386 manual for details).
1042 @cindex coprocessor wait, i386
1044 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1045 complete the current instruction. This should never be needed for the
1046 80386/80387 combination.
1048 @cindex repeat prefixes, i386
1050 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1051 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1052 times if the current address size is 16-bits).
1053 @cindex REX prefixes, i386
1055 The @samp{rex} family of prefixes is used by x86-64 to encode
1056 extensions to i386 instruction set. The @samp{rex} prefix has four
1057 bits --- an operand size overwrite (@code{64}) used to change operand size
1058 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1061 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1062 instruction emits @samp{rex} prefix with all the bits set. By omitting
1063 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1064 prefixes as well. Normally, there is no need to write the prefixes
1065 explicitly, since gas will automatically generate them based on the
1066 instruction operands.
1070 @section Memory References
1072 @cindex i386 memory references
1073 @cindex memory references, i386
1074 @cindex x86-64 memory references
1075 @cindex memory references, x86-64
1076 An Intel syntax indirect memory reference of the form
1079 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1083 is translated into the AT&T syntax
1086 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1090 where @var{base} and @var{index} are the optional 32-bit base and
1091 index registers, @var{disp} is the optional displacement, and
1092 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1093 to calculate the address of the operand. If no @var{scale} is
1094 specified, @var{scale} is taken to be 1. @var{section} specifies the
1095 optional section register for the memory operand, and may override the
1096 default section register (see a 80386 manual for section register
1097 defaults). Note that section overrides in AT&T syntax @emph{must}
1098 be preceded by a @samp{%}. If you specify a section override which
1099 coincides with the default section register, @code{@value{AS}} does @emph{not}
1100 output any section register override prefixes to assemble the given
1101 instruction. Thus, section overrides can be specified to emphasize which
1102 section register is used for a given memory operand.
1104 Here are some examples of Intel and AT&T style memory references:
1107 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1108 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1109 missing, and the default section is used (@samp{%ss} for addressing with
1110 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1112 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1113 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1114 @samp{foo}. All other fields are missing. The section register here
1115 defaults to @samp{%ds}.
1117 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1118 This uses the value pointed to by @samp{foo} as a memory operand.
1119 Note that @var{base} and @var{index} are both missing, but there is only
1120 @emph{one} @samp{,}. This is a syntactic exception.
1122 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1123 This selects the contents of the variable @samp{foo} with section
1124 register @var{section} being @samp{%gs}.
1127 Absolute (as opposed to PC relative) call and jump operands must be
1128 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1129 always chooses PC relative addressing for jump/call labels.
1131 Any instruction that has a memory operand, but no register operand,
1132 @emph{must} specify its size (byte, word, long, or quadruple) with an
1133 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1136 The x86-64 architecture adds an RIP (instruction pointer relative)
1137 addressing. This addressing mode is specified by using @samp{rip} as a
1138 base register. Only constant offsets are valid. For example:
1141 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1142 Points to the address 1234 bytes past the end of the current
1145 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1146 Points to the @code{symbol} in RIP relative way, this is shorter than
1147 the default absolute addressing.
1150 Other addressing modes remain unchanged in x86-64 architecture, except
1151 registers used are 64-bit instead of 32-bit.
1154 @section Handling of Jump Instructions
1156 @cindex jump optimization, i386
1157 @cindex i386 jump optimization
1158 @cindex jump optimization, x86-64
1159 @cindex x86-64 jump optimization
1160 Jump instructions are always optimized to use the smallest possible
1161 displacements. This is accomplished by using byte (8-bit) displacement
1162 jumps whenever the target is sufficiently close. If a byte displacement
1163 is insufficient a long displacement is used. We do not support
1164 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1165 instruction with the @samp{data16} instruction prefix), since the 80386
1166 insists upon masking @samp{%eip} to 16 bits after the word displacement
1167 is added. (See also @pxref{i386-Arch})
1169 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1170 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1171 displacements, so that if you use these instructions (@code{@value{GCC}} does
1172 not use them) you may get an error message (and incorrect code). The AT&T
1173 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1184 @section Floating Point
1186 @cindex i386 floating point
1187 @cindex floating point, i386
1188 @cindex x86-64 floating point
1189 @cindex floating point, x86-64
1190 All 80387 floating point types except packed BCD are supported.
1191 (BCD support may be added without much difficulty). These data
1192 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1193 double (64-bit), and extended (80-bit) precision floating point.
1194 Each supported type has an instruction mnemonic suffix and a constructor
1195 associated with it. Instruction mnemonic suffixes specify the operand's
1196 data type. Constructors build these data types into memory.
1198 @cindex @code{float} directive, i386
1199 @cindex @code{single} directive, i386
1200 @cindex @code{double} directive, i386
1201 @cindex @code{tfloat} directive, i386
1202 @cindex @code{float} directive, x86-64
1203 @cindex @code{single} directive, x86-64
1204 @cindex @code{double} directive, x86-64
1205 @cindex @code{tfloat} directive, x86-64
1208 Floating point constructors are @samp{.float} or @samp{.single},
1209 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1210 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1211 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1212 only supports this format via the @samp{fldt} (load 80-bit real to stack
1213 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1215 @cindex @code{word} directive, i386
1216 @cindex @code{long} directive, i386
1217 @cindex @code{int} directive, i386
1218 @cindex @code{quad} directive, i386
1219 @cindex @code{word} directive, x86-64
1220 @cindex @code{long} directive, x86-64
1221 @cindex @code{int} directive, x86-64
1222 @cindex @code{quad} directive, x86-64
1224 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1225 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1226 corresponding instruction mnemonic suffixes are @samp{s} (single),
1227 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1228 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1229 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1230 stack) instructions.
1233 Register to register operations should not use instruction mnemonic suffixes.
1234 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1235 wrote @samp{fst %st, %st(1)}, since all register to register operations
1236 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1237 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1238 then stores the result in the 4 byte location @samp{mem})
1241 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1244 @cindex 3DNow!, i386
1247 @cindex 3DNow!, x86-64
1248 @cindex SIMD, x86-64
1250 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1251 instructions for integer data), available on Intel's Pentium MMX
1252 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1253 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1254 instruction set (SIMD instructions for 32-bit floating point data)
1255 available on AMD's K6-2 processor and possibly others in the future.
1257 Currently, @code{@value{AS}} does not support Intel's floating point
1260 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1261 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1262 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1263 floating point values. The MMX registers cannot be used at the same time
1264 as the floating point stack.
1266 See Intel and AMD documentation, keeping in mind that the operand order in
1267 instructions is reversed from the Intel syntax.
1270 @section AMD's Lightweight Profiling Instructions
1275 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1276 instruction set, available on AMD's Family 15h (Orochi) processors.
1278 LWP enables applications to collect and manage performance data, and
1279 react to performance events. The collection of performance data
1280 requires no context switches. LWP runs in the context of a thread and
1281 so several counters can be used independently across multiple threads.
1282 LWP can be used in both 64-bit and legacy 32-bit modes.
1284 For detailed information on the LWP instruction set, see the
1285 @cite{AMD Lightweight Profiling Specification} available at
1286 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1289 @section Bit Manipulation Instructions
1294 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1296 BMI instructions provide several instructions implementing individual
1297 bit manipulation operations such as isolation, masking, setting, or
1300 @c Need to add a specification citation here when available.
1303 @section AMD's Trailing Bit Manipulation Instructions
1308 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1309 instruction set, available on AMD's BDVER2 processors (Trinity and
1312 TBM instructions provide instructions implementing individual bit
1313 manipulation operations such as isolating, masking, setting, resetting,
1314 complementing, and operations on trailing zeros and ones.
1316 @c Need to add a specification citation here when available.
1319 @section Writing 16-bit Code
1321 @cindex i386 16-bit code
1322 @cindex 16-bit code, i386
1323 @cindex real-mode code, i386
1324 @cindex @code{code16gcc} directive, i386
1325 @cindex @code{code16} directive, i386
1326 @cindex @code{code32} directive, i386
1327 @cindex @code{code64} directive, i386
1328 @cindex @code{code64} directive, x86-64
1329 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1330 or 64-bit x86-64 code depending on the default configuration,
1331 it also supports writing code to run in real mode or in 16-bit protected
1332 mode code segments. To do this, put a @samp{.code16} or
1333 @samp{.code16gcc} directive before the assembly language instructions to
1334 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1335 32-bit code with the @samp{.code32} directive or 64-bit code with the
1336 @samp{.code64} directive.
1338 @samp{.code16gcc} provides experimental support for generating 16-bit
1339 code from gcc, and differs from @samp{.code16} in that @samp{call},
1340 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1341 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1342 default to 32-bit size. This is so that the stack pointer is
1343 manipulated in the same way over function calls, allowing access to
1344 function parameters at the same stack offsets as in 32-bit mode.
1345 @samp{.code16gcc} also automatically adds address size prefixes where
1346 necessary to use the 32-bit addressing modes that gcc generates.
1348 The code which @code{@value{AS}} generates in 16-bit mode will not
1349 necessarily run on a 16-bit pre-80386 processor. To write code that
1350 runs on such a processor, you must refrain from using @emph{any} 32-bit
1351 constructs which require @code{@value{AS}} to output address or operand
1354 Note that writing 16-bit code instructions by explicitly specifying a
1355 prefix or an instruction mnemonic suffix within a 32-bit code section
1356 generates different machine instructions than those generated for a
1357 16-bit code segment. In a 32-bit code section, the following code
1358 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1359 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1365 The same code in a 16-bit code section would generate the machine
1366 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1367 is correct since the processor default operand size is assumed to be 16
1368 bits in a 16-bit code section.
1371 @section Specifying CPU Architecture
1373 @cindex arch directive, i386
1374 @cindex i386 arch directive
1375 @cindex arch directive, x86-64
1376 @cindex x86-64 arch directive
1378 @code{@value{AS}} may be told to assemble for a particular CPU
1379 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1380 directive enables a warning when gas detects an instruction that is not
1381 supported on the CPU specified. The choices for @var{cpu_type} are:
1383 @multitable @columnfractions .20 .20 .20 .20
1384 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1385 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1386 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1387 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1388 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1389 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1390 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1391 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1392 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1393 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1394 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1395 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1396 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1397 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1398 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1399 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1400 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1401 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1402 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1403 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1404 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1405 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1406 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1407 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1408 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1409 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1410 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1411 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1412 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1413 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1414 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1415 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1416 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1417 @item @samp{.mcommit}
1420 Apart from the warning, there are only two other effects on
1421 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1422 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1423 will automatically use a two byte opcode sequence. The larger three
1424 byte opcode sequence is used on the 486 (and when no architecture is
1425 specified) because it executes faster on the 486. Note that you can
1426 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1427 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1428 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1429 conditional jumps will be promoted when necessary to a two instruction
1430 sequence consisting of a conditional jump of the opposite sense around
1431 an unconditional jump to the target.
1433 Following the CPU architecture (but not a sub-architecture, which are those
1434 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1435 control automatic promotion of conditional jumps. @samp{jumps} is the
1436 default, and enables jump promotion; All external jumps will be of the long
1437 variety, and file-local jumps will be promoted as necessary.
1438 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1439 byte offset jumps, and warns about file-local conditional jumps that
1440 @code{@value{AS}} promotes.
1441 Unconditional jumps are treated as for @samp{jumps}.
1450 @section AMD64 ISA vs. Intel64 ISA
1452 There are some discrepancies between AMD64 and Intel64 ISAs.
1455 @item For @samp{movsxd} with 16-bit destination register, AMD64
1456 supports 32-bit source operand and Intel64 supports 16-bit source
1459 @item For far branches (with explicit memory operand), both ISAs support
1460 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1461 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1462 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1465 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1466 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1467 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1473 @section AT&T Syntax bugs
1475 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1476 assemblers, generate floating point instructions with reversed source
1477 and destination registers in certain cases. Unfortunately, gcc and
1478 possibly many other programs use this reversed syntax, so we're stuck
1487 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1488 than the expected @samp{%st(3) - %st}. This happens with all the
1489 non-commutative arithmetic floating point operations with two register
1490 operands where the source register is @samp{%st} and the destination
1491 register is @samp{%st(i)}.
1496 @cindex i386 @code{mul}, @code{imul} instructions
1497 @cindex @code{mul} instruction, i386
1498 @cindex @code{imul} instruction, i386
1499 @cindex @code{mul} instruction, x86-64
1500 @cindex @code{imul} instruction, x86-64
1501 There is some trickery concerning the @samp{mul} and @samp{imul}
1502 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1503 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1504 for @samp{imul}) can be output only in the one operand form. Thus,
1505 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1506 the expanding multiply would clobber the @samp{%edx} register, and this
1507 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1508 64-bit product in @samp{%edx:%eax}.
1510 We have added a two operand form of @samp{imul} when the first operand
1511 is an immediate mode expression and the second operand is a register.
1512 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1513 example, can be done with @samp{imul $69, %eax} rather than @samp{imul