1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "gdb_string.h"
35 #include "gdb_assert.h"
41 #include "cli/cli-decode.h"
43 #include "python/python.h"
45 /* Prototypes for exported functions. */
47 void _initialize_values (void);
49 /* Definition of a user function. */
50 struct internal_function
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
58 internal_function_fn handler;
60 /* User data for the handler. */
64 static struct cmd_list_element *functionlist;
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
72 /* Is it modifiable? Only relevant if lval != not_lval. */
75 /* Location of value (if lval). */
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
103 /* Only used for bitfields; number of bits contained in them. */
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
114 struct value *parent;
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
120 /* Type of the value. */
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
163 struct type *enclosing_type;
165 int pointed_to_offset;
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
173 /* Register number if the value is from a register. */
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
196 /* If value is a variable, is it initialized or not. */
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
215 /* Prototypes for local functions. */
217 static void show_values (char *, int);
219 static void show_convenience (char *, int);
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
228 #define VALUE_HISTORY_CHUNK 60
230 struct value_history_chunk
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
236 /* Chain of chunks now in use. */
238 static struct value_history_chunk *value_history_chain;
240 static int value_history_count; /* Abs number of last entry stored */
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
247 static struct value *all_values;
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
254 allocate_value_lazy (struct type *type)
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
278 VALUE_REGNUM (val) = -1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
284 val->initialized = 1; /* Default to initialized. */
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
292 /* Allocate the contents of VAL if it has not been allocated yet. */
295 allocate_value_contents (struct value *val)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
301 /* Allocate a value and its contents for type TYPE. */
304 allocate_value (struct type *type)
306 struct value *val = allocate_value_lazy (type);
308 allocate_value_contents (val);
313 /* Allocate a value that has the correct length
314 for COUNT repetitions of type TYPE. */
317 allocate_repeat_value (struct type *type, int count)
319 int low_bound = current_language->string_lower_bound; /* ??? */
320 /* FIXME-type-allocation: need a way to free this type when we are
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
325 return allocate_value (array_type);
329 allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
333 struct value *v = allocate_value (type);
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
343 /* Accessor methods. */
346 value_next (struct value *value)
352 value_type (const struct value *value)
357 deprecated_set_value_type (struct value *value, struct type *type)
363 value_offset (const struct value *value)
365 return value->offset;
368 set_value_offset (struct value *value, int offset)
370 value->offset = offset;
374 value_bitpos (const struct value *value)
376 return value->bitpos;
379 set_value_bitpos (struct value *value, int bit)
385 value_bitsize (const struct value *value)
387 return value->bitsize;
390 set_value_bitsize (struct value *value, int bit)
392 value->bitsize = bit;
396 value_parent (struct value *value)
398 return value->parent;
402 value_contents_raw (struct value *value)
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
409 value_contents_all_raw (struct value *value)
411 allocate_value_contents (value);
412 return value->contents;
416 value_enclosing_type (struct value *value)
418 return value->enclosing_type;
422 require_not_optimized_out (struct value *value)
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
429 value_contents_for_printing (struct value *value)
432 value_fetch_lazy (value);
433 return value->contents;
437 value_contents_all (struct value *value)
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
445 value_lazy (struct value *value)
451 set_value_lazy (struct value *value, int val)
457 value_stack (struct value *value)
463 set_value_stack (struct value *value, int val)
469 value_contents (struct value *value)
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
477 value_contents_writeable (struct value *value)
480 value_fetch_lazy (value);
481 return value_contents_raw (value);
484 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
489 value_contents_equal (struct value *val1, struct value *val2)
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
505 value_optimized_out (struct value *value)
507 return value->optimized_out;
511 set_value_optimized_out (struct value *value, int val)
513 value->optimized_out = val;
517 value_entirely_optimized_out (const struct value *value)
519 if (!value->optimized_out)
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
524 return value->location.computed.funcs->check_all_valid (value);
528 value_bits_valid (const struct value *value, int offset, int length)
530 if (value == NULL || !value->optimized_out)
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
535 return value->location.computed.funcs->check_validity (value, offset,
540 value_embedded_offset (struct value *value)
542 return value->embedded_offset;
546 set_value_embedded_offset (struct value *value, int val)
548 value->embedded_offset = val;
552 value_pointed_to_offset (struct value *value)
554 return value->pointed_to_offset;
558 set_value_pointed_to_offset (struct value *value, int val)
560 value->pointed_to_offset = val;
564 value_computed_funcs (struct value *v)
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
568 return v->location.computed.funcs;
572 value_computed_closure (const struct value *v)
574 gdb_assert (v->lval == lval_computed);
576 return v->location.computed.closure;
580 deprecated_value_lval_hack (struct value *value)
586 value_address (struct value *value)
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
591 return value->location.address + value->offset;
595 value_raw_address (struct value *value)
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
600 return value->location.address;
604 set_value_address (struct value *value, CORE_ADDR addr)
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
611 struct internalvar **
612 deprecated_value_internalvar_hack (struct value *value)
614 return &value->location.internalvar;
618 deprecated_value_frame_id_hack (struct value *value)
620 return &value->frame_id;
624 deprecated_value_regnum_hack (struct value *value)
626 return &value->regnum;
630 deprecated_value_modifiable (struct value *value)
632 return value->modifiable;
635 deprecated_set_value_modifiable (struct value *value, int modifiable)
637 value->modifiable = modifiable;
640 /* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
649 /* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
653 value_incref (struct value *val)
655 val->reference_count++;
658 /* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
663 value_free (struct value *val)
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
672 /* If there's an associated parent value, drop our reference to
674 if (val->parent != NULL)
675 value_free (val->parent);
677 if (VALUE_LVAL (val) == lval_computed)
679 struct lval_funcs *funcs = val->location.computed.funcs;
681 if (funcs->free_closure)
682 funcs->free_closure (val);
685 xfree (val->contents);
690 /* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
693 value_free_to_mark (struct value *mark)
698 for (val = all_values; val && val != mark; val = next)
706 /* Free all the values that have been allocated (except for those released).
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
711 free_all_values (void)
716 for (val = all_values; val; val = next)
725 /* Remove VAL from the chain all_values
726 so it will not be freed automatically. */
729 release_value (struct value *val)
733 if (all_values == val)
735 all_values = val->next;
739 for (v = all_values; v; v = v->next)
749 /* Release all values up to mark */
751 value_release_to_mark (struct value *mark)
756 for (val = next = all_values; next; next = next->next)
757 if (next->next == mark)
759 all_values = next->next;
767 /* Return a copy of the value ARG.
768 It contains the same contents, for same memory address,
769 but it's a different block of storage. */
772 value_copy (struct value *arg)
774 struct type *encl_type = value_enclosing_type (arg);
777 if (value_lazy (arg))
778 val = allocate_value_lazy (encl_type);
780 val = allocate_value (encl_type);
781 val->type = arg->type;
782 VALUE_LVAL (val) = VALUE_LVAL (arg);
783 val->location = arg->location;
784 val->offset = arg->offset;
785 val->bitpos = arg->bitpos;
786 val->bitsize = arg->bitsize;
787 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
788 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
789 val->lazy = arg->lazy;
790 val->optimized_out = arg->optimized_out;
791 val->embedded_offset = value_embedded_offset (arg);
792 val->pointed_to_offset = arg->pointed_to_offset;
793 val->modifiable = arg->modifiable;
794 if (!value_lazy (val))
796 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
797 TYPE_LENGTH (value_enclosing_type (arg)));
800 val->parent = arg->parent;
802 value_incref (val->parent);
803 if (VALUE_LVAL (val) == lval_computed)
805 struct lval_funcs *funcs = val->location.computed.funcs;
807 if (funcs->copy_closure)
808 val->location.computed.closure = funcs->copy_closure (val);
814 set_value_component_location (struct value *component,
815 const struct value *whole)
817 if (whole->lval == lval_internalvar)
818 VALUE_LVAL (component) = lval_internalvar_component;
820 VALUE_LVAL (component) = whole->lval;
822 component->location = whole->location;
823 if (whole->lval == lval_computed)
825 struct lval_funcs *funcs = whole->location.computed.funcs;
827 if (funcs->copy_closure)
828 component->location.computed.closure = funcs->copy_closure (whole);
833 /* Access to the value history. */
835 /* Record a new value in the value history.
836 Returns the absolute history index of the entry.
837 Result of -1 indicates the value was not saved; otherwise it is the
838 value history index of this new item. */
841 record_latest_value (struct value *val)
845 /* We don't want this value to have anything to do with the inferior anymore.
846 In particular, "set $1 = 50" should not affect the variable from which
847 the value was taken, and fast watchpoints should be able to assume that
848 a value on the value history never changes. */
849 if (value_lazy (val))
850 value_fetch_lazy (val);
851 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
852 from. This is a bit dubious, because then *&$1 does not just return $1
853 but the current contents of that location. c'est la vie... */
857 /* Here we treat value_history_count as origin-zero
858 and applying to the value being stored now. */
860 i = value_history_count % VALUE_HISTORY_CHUNK;
863 struct value_history_chunk *new
864 = (struct value_history_chunk *)
866 xmalloc (sizeof (struct value_history_chunk));
867 memset (new->values, 0, sizeof new->values);
868 new->next = value_history_chain;
869 value_history_chain = new;
872 value_history_chain->values[i] = val;
874 /* Now we regard value_history_count as origin-one
875 and applying to the value just stored. */
877 return ++value_history_count;
880 /* Return a copy of the value in the history with sequence number NUM. */
883 access_value_history (int num)
885 struct value_history_chunk *chunk;
890 absnum += value_history_count;
895 error (_("The history is empty."));
897 error (_("There is only one value in the history."));
899 error (_("History does not go back to $$%d."), -num);
901 if (absnum > value_history_count)
902 error (_("History has not yet reached $%d."), absnum);
906 /* Now absnum is always absolute and origin zero. */
908 chunk = value_history_chain;
909 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
913 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
917 show_values (char *num_exp, int from_tty)
925 /* "show values +" should print from the stored position.
926 "show values <exp>" should print around value number <exp>. */
927 if (num_exp[0] != '+' || num_exp[1] != '\0')
928 num = parse_and_eval_long (num_exp) - 5;
932 /* "show values" means print the last 10 values. */
933 num = value_history_count - 9;
939 for (i = num; i < num + 10 && i <= value_history_count; i++)
941 struct value_print_options opts;
943 val = access_value_history (i);
944 printf_filtered (("$%d = "), i);
945 get_user_print_options (&opts);
946 value_print (val, gdb_stdout, &opts);
947 printf_filtered (("\n"));
950 /* The next "show values +" should start after what we just printed. */
953 /* Hitting just return after this command should do the same thing as
954 "show values +". If num_exp is null, this is unnecessary, since
955 "show values +" is not useful after "show values". */
956 if (from_tty && num_exp)
963 /* Internal variables. These are variables within the debugger
964 that hold values assigned by debugger commands.
965 The user refers to them with a '$' prefix
966 that does not appear in the variable names stored internally. */
970 struct internalvar *next;
973 /* We support various different kinds of content of an internal variable.
974 enum internalvar_kind specifies the kind, and union internalvar_data
975 provides the data associated with this particular kind. */
977 enum internalvar_kind
979 /* The internal variable is empty. */
982 /* The value of the internal variable is provided directly as
983 a GDB value object. */
986 /* A fresh value is computed via a call-back routine on every
987 access to the internal variable. */
988 INTERNALVAR_MAKE_VALUE,
990 /* The internal variable holds a GDB internal convenience function. */
991 INTERNALVAR_FUNCTION,
993 /* The variable holds an integer value. */
996 /* The variable holds a pointer value. */
999 /* The variable holds a GDB-provided string. */
1004 union internalvar_data
1006 /* A value object used with INTERNALVAR_VALUE. */
1007 struct value *value;
1009 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1010 internalvar_make_value make_value;
1012 /* The internal function used with INTERNALVAR_FUNCTION. */
1015 struct internal_function *function;
1016 /* True if this is the canonical name for the function. */
1020 /* An integer value used with INTERNALVAR_INTEGER. */
1023 /* If type is non-NULL, it will be used as the type to generate
1024 a value for this internal variable. If type is NULL, a default
1025 integer type for the architecture is used. */
1030 /* A pointer value used with INTERNALVAR_POINTER. */
1037 /* A string value used with INTERNALVAR_STRING. */
1042 static struct internalvar *internalvars;
1044 /* If the variable does not already exist create it and give it the value given.
1045 If no value is given then the default is zero. */
1047 init_if_undefined_command (char* args, int from_tty)
1049 struct internalvar* intvar;
1051 /* Parse the expression - this is taken from set_command(). */
1052 struct expression *expr = parse_expression (args);
1053 register struct cleanup *old_chain =
1054 make_cleanup (free_current_contents, &expr);
1056 /* Validate the expression.
1057 Was the expression an assignment?
1058 Or even an expression at all? */
1059 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1060 error (_("Init-if-undefined requires an assignment expression."));
1062 /* Extract the variable from the parsed expression.
1063 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1064 if (expr->elts[1].opcode != OP_INTERNALVAR)
1065 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1066 intvar = expr->elts[2].internalvar;
1068 /* Only evaluate the expression if the lvalue is void.
1069 This may still fail if the expresssion is invalid. */
1070 if (intvar->kind == INTERNALVAR_VOID)
1071 evaluate_expression (expr);
1073 do_cleanups (old_chain);
1077 /* Look up an internal variable with name NAME. NAME should not
1078 normally include a dollar sign.
1080 If the specified internal variable does not exist,
1081 the return value is NULL. */
1083 struct internalvar *
1084 lookup_only_internalvar (const char *name)
1086 struct internalvar *var;
1088 for (var = internalvars; var; var = var->next)
1089 if (strcmp (var->name, name) == 0)
1096 /* Create an internal variable with name NAME and with a void value.
1097 NAME should not normally include a dollar sign. */
1099 struct internalvar *
1100 create_internalvar (const char *name)
1102 struct internalvar *var;
1104 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1105 var->name = concat (name, (char *)NULL);
1106 var->kind = INTERNALVAR_VOID;
1107 var->next = internalvars;
1112 /* Create an internal variable with name NAME and register FUN as the
1113 function that value_of_internalvar uses to create a value whenever
1114 this variable is referenced. NAME should not normally include a
1117 struct internalvar *
1118 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1120 struct internalvar *var = create_internalvar (name);
1122 var->kind = INTERNALVAR_MAKE_VALUE;
1123 var->u.make_value = fun;
1127 /* Look up an internal variable with name NAME. NAME should not
1128 normally include a dollar sign.
1130 If the specified internal variable does not exist,
1131 one is created, with a void value. */
1133 struct internalvar *
1134 lookup_internalvar (const char *name)
1136 struct internalvar *var;
1138 var = lookup_only_internalvar (name);
1142 return create_internalvar (name);
1145 /* Return current value of internal variable VAR. For variables that
1146 are not inherently typed, use a value type appropriate for GDBARCH. */
1149 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1155 case INTERNALVAR_VOID:
1156 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1159 case INTERNALVAR_FUNCTION:
1160 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1163 case INTERNALVAR_INTEGER:
1164 if (!var->u.integer.type)
1165 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1166 var->u.integer.val);
1168 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1171 case INTERNALVAR_POINTER:
1172 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1175 case INTERNALVAR_STRING:
1176 val = value_cstring (var->u.string, strlen (var->u.string),
1177 builtin_type (gdbarch)->builtin_char);
1180 case INTERNALVAR_VALUE:
1181 val = value_copy (var->u.value);
1182 if (value_lazy (val))
1183 value_fetch_lazy (val);
1186 case INTERNALVAR_MAKE_VALUE:
1187 val = (*var->u.make_value) (gdbarch, var);
1191 internal_error (__FILE__, __LINE__, "bad kind");
1194 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1195 on this value go back to affect the original internal variable.
1197 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1198 no underlying modifyable state in the internal variable.
1200 Likewise, if the variable's value is a computed lvalue, we want
1201 references to it to produce another computed lvalue, where
1202 references and assignments actually operate through the
1203 computed value's functions.
1205 This means that internal variables with computed values
1206 behave a little differently from other internal variables:
1207 assignments to them don't just replace the previous value
1208 altogether. At the moment, this seems like the behavior we
1211 if (var->kind != INTERNALVAR_MAKE_VALUE
1212 && val->lval != lval_computed)
1214 VALUE_LVAL (val) = lval_internalvar;
1215 VALUE_INTERNALVAR (val) = var;
1222 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1226 case INTERNALVAR_INTEGER:
1227 *result = var->u.integer.val;
1236 get_internalvar_function (struct internalvar *var,
1237 struct internal_function **result)
1241 case INTERNALVAR_FUNCTION:
1242 *result = var->u.fn.function;
1251 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1252 int bitsize, struct value *newval)
1258 case INTERNALVAR_VALUE:
1259 addr = value_contents_writeable (var->u.value);
1262 modify_field (value_type (var->u.value), addr + offset,
1263 value_as_long (newval), bitpos, bitsize);
1265 memcpy (addr + offset, value_contents (newval),
1266 TYPE_LENGTH (value_type (newval)));
1270 /* We can never get a component of any other kind. */
1271 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1276 set_internalvar (struct internalvar *var, struct value *val)
1278 enum internalvar_kind new_kind;
1279 union internalvar_data new_data = { 0 };
1281 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1282 error (_("Cannot overwrite convenience function %s"), var->name);
1284 /* Prepare new contents. */
1285 switch (TYPE_CODE (check_typedef (value_type (val))))
1287 case TYPE_CODE_VOID:
1288 new_kind = INTERNALVAR_VOID;
1291 case TYPE_CODE_INTERNAL_FUNCTION:
1292 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1293 new_kind = INTERNALVAR_FUNCTION;
1294 get_internalvar_function (VALUE_INTERNALVAR (val),
1295 &new_data.fn.function);
1296 /* Copies created here are never canonical. */
1300 new_kind = INTERNALVAR_INTEGER;
1301 new_data.integer.type = value_type (val);
1302 new_data.integer.val = value_as_long (val);
1306 new_kind = INTERNALVAR_POINTER;
1307 new_data.pointer.type = value_type (val);
1308 new_data.pointer.val = value_as_address (val);
1312 new_kind = INTERNALVAR_VALUE;
1313 new_data.value = value_copy (val);
1314 new_data.value->modifiable = 1;
1316 /* Force the value to be fetched from the target now, to avoid problems
1317 later when this internalvar is referenced and the target is gone or
1319 if (value_lazy (new_data.value))
1320 value_fetch_lazy (new_data.value);
1322 /* Release the value from the value chain to prevent it from being
1323 deleted by free_all_values. From here on this function should not
1324 call error () until new_data is installed into the var->u to avoid
1326 release_value (new_data.value);
1330 /* Clean up old contents. */
1331 clear_internalvar (var);
1334 var->kind = new_kind;
1336 /* End code which must not call error(). */
1340 set_internalvar_integer (struct internalvar *var, LONGEST l)
1342 /* Clean up old contents. */
1343 clear_internalvar (var);
1345 var->kind = INTERNALVAR_INTEGER;
1346 var->u.integer.type = NULL;
1347 var->u.integer.val = l;
1351 set_internalvar_string (struct internalvar *var, const char *string)
1353 /* Clean up old contents. */
1354 clear_internalvar (var);
1356 var->kind = INTERNALVAR_STRING;
1357 var->u.string = xstrdup (string);
1361 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1363 /* Clean up old contents. */
1364 clear_internalvar (var);
1366 var->kind = INTERNALVAR_FUNCTION;
1367 var->u.fn.function = f;
1368 var->u.fn.canonical = 1;
1369 /* Variables installed here are always the canonical version. */
1373 clear_internalvar (struct internalvar *var)
1375 /* Clean up old contents. */
1378 case INTERNALVAR_VALUE:
1379 value_free (var->u.value);
1382 case INTERNALVAR_STRING:
1383 xfree (var->u.string);
1390 /* Reset to void kind. */
1391 var->kind = INTERNALVAR_VOID;
1395 internalvar_name (struct internalvar *var)
1400 static struct internal_function *
1401 create_internal_function (const char *name,
1402 internal_function_fn handler, void *cookie)
1404 struct internal_function *ifn = XNEW (struct internal_function);
1406 ifn->name = xstrdup (name);
1407 ifn->handler = handler;
1408 ifn->cookie = cookie;
1413 value_internal_function_name (struct value *val)
1415 struct internal_function *ifn;
1418 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1419 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1420 gdb_assert (result);
1426 call_internal_function (struct gdbarch *gdbarch,
1427 const struct language_defn *language,
1428 struct value *func, int argc, struct value **argv)
1430 struct internal_function *ifn;
1433 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1434 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1435 gdb_assert (result);
1437 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1440 /* The 'function' command. This does nothing -- it is just a
1441 placeholder to let "help function NAME" work. This is also used as
1442 the implementation of the sub-command that is created when
1443 registering an internal function. */
1445 function_command (char *command, int from_tty)
1450 /* Clean up if an internal function's command is destroyed. */
1452 function_destroyer (struct cmd_list_element *self, void *ignore)
1458 /* Add a new internal function. NAME is the name of the function; DOC
1459 is a documentation string describing the function. HANDLER is
1460 called when the function is invoked. COOKIE is an arbitrary
1461 pointer which is passed to HANDLER and is intended for "user
1464 add_internal_function (const char *name, const char *doc,
1465 internal_function_fn handler, void *cookie)
1467 struct cmd_list_element *cmd;
1468 struct internal_function *ifn;
1469 struct internalvar *var = lookup_internalvar (name);
1471 ifn = create_internal_function (name, handler, cookie);
1472 set_internalvar_function (var, ifn);
1474 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1476 cmd->destroyer = function_destroyer;
1479 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1480 prevent cycles / duplicates. */
1483 preserve_one_value (struct value *value, struct objfile *objfile,
1484 htab_t copied_types)
1486 if (TYPE_OBJFILE (value->type) == objfile)
1487 value->type = copy_type_recursive (objfile, value->type, copied_types);
1489 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1490 value->enclosing_type = copy_type_recursive (objfile,
1491 value->enclosing_type,
1495 /* Likewise for internal variable VAR. */
1498 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1499 htab_t copied_types)
1503 case INTERNALVAR_INTEGER:
1504 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1506 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1509 case INTERNALVAR_POINTER:
1510 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1512 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1515 case INTERNALVAR_VALUE:
1516 preserve_one_value (var->u.value, objfile, copied_types);
1521 /* Update the internal variables and value history when OBJFILE is
1522 discarded; we must copy the types out of the objfile. New global types
1523 will be created for every convenience variable which currently points to
1524 this objfile's types, and the convenience variables will be adjusted to
1525 use the new global types. */
1528 preserve_values (struct objfile *objfile)
1530 htab_t copied_types;
1531 struct value_history_chunk *cur;
1532 struct internalvar *var;
1535 /* Create the hash table. We allocate on the objfile's obstack, since
1536 it is soon to be deleted. */
1537 copied_types = create_copied_types_hash (objfile);
1539 for (cur = value_history_chain; cur; cur = cur->next)
1540 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1542 preserve_one_value (cur->values[i], objfile, copied_types);
1544 for (var = internalvars; var; var = var->next)
1545 preserve_one_internalvar (var, objfile, copied_types);
1547 preserve_python_values (objfile, copied_types);
1549 htab_delete (copied_types);
1553 show_convenience (char *ignore, int from_tty)
1555 struct gdbarch *gdbarch = get_current_arch ();
1556 struct internalvar *var;
1558 struct value_print_options opts;
1560 get_user_print_options (&opts);
1561 for (var = internalvars; var; var = var->next)
1567 printf_filtered (("$%s = "), var->name);
1568 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1570 printf_filtered (("\n"));
1573 printf_unfiltered (_("\
1574 No debugger convenience variables now defined.\n\
1575 Convenience variables have names starting with \"$\";\n\
1576 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1579 /* Extract a value as a C number (either long or double).
1580 Knows how to convert fixed values to double, or
1581 floating values to long.
1582 Does not deallocate the value. */
1585 value_as_long (struct value *val)
1587 /* This coerces arrays and functions, which is necessary (e.g.
1588 in disassemble_command). It also dereferences references, which
1589 I suspect is the most logical thing to do. */
1590 val = coerce_array (val);
1591 return unpack_long (value_type (val), value_contents (val));
1595 value_as_double (struct value *val)
1600 foo = unpack_double (value_type (val), value_contents (val), &inv);
1602 error (_("Invalid floating value found in program."));
1606 /* Extract a value as a C pointer. Does not deallocate the value.
1607 Note that val's type may not actually be a pointer; value_as_long
1608 handles all the cases. */
1610 value_as_address (struct value *val)
1612 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1614 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1615 whether we want this to be true eventually. */
1617 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1618 non-address (e.g. argument to "signal", "info break", etc.), or
1619 for pointers to char, in which the low bits *are* significant. */
1620 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1623 /* There are several targets (IA-64, PowerPC, and others) which
1624 don't represent pointers to functions as simply the address of
1625 the function's entry point. For example, on the IA-64, a
1626 function pointer points to a two-word descriptor, generated by
1627 the linker, which contains the function's entry point, and the
1628 value the IA-64 "global pointer" register should have --- to
1629 support position-independent code. The linker generates
1630 descriptors only for those functions whose addresses are taken.
1632 On such targets, it's difficult for GDB to convert an arbitrary
1633 function address into a function pointer; it has to either find
1634 an existing descriptor for that function, or call malloc and
1635 build its own. On some targets, it is impossible for GDB to
1636 build a descriptor at all: the descriptor must contain a jump
1637 instruction; data memory cannot be executed; and code memory
1640 Upon entry to this function, if VAL is a value of type `function'
1641 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1642 value_address (val) is the address of the function. This is what
1643 you'll get if you evaluate an expression like `main'. The call
1644 to COERCE_ARRAY below actually does all the usual unary
1645 conversions, which includes converting values of type `function'
1646 to `pointer to function'. This is the challenging conversion
1647 discussed above. Then, `unpack_long' will convert that pointer
1648 back into an address.
1650 So, suppose the user types `disassemble foo' on an architecture
1651 with a strange function pointer representation, on which GDB
1652 cannot build its own descriptors, and suppose further that `foo'
1653 has no linker-built descriptor. The address->pointer conversion
1654 will signal an error and prevent the command from running, even
1655 though the next step would have been to convert the pointer
1656 directly back into the same address.
1658 The following shortcut avoids this whole mess. If VAL is a
1659 function, just return its address directly. */
1660 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1661 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1662 return value_address (val);
1664 val = coerce_array (val);
1666 /* Some architectures (e.g. Harvard), map instruction and data
1667 addresses onto a single large unified address space. For
1668 instance: An architecture may consider a large integer in the
1669 range 0x10000000 .. 0x1000ffff to already represent a data
1670 addresses (hence not need a pointer to address conversion) while
1671 a small integer would still need to be converted integer to
1672 pointer to address. Just assume such architectures handle all
1673 integer conversions in a single function. */
1677 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1678 must admonish GDB hackers to make sure its behavior matches the
1679 compiler's, whenever possible.
1681 In general, I think GDB should evaluate expressions the same way
1682 the compiler does. When the user copies an expression out of
1683 their source code and hands it to a `print' command, they should
1684 get the same value the compiler would have computed. Any
1685 deviation from this rule can cause major confusion and annoyance,
1686 and needs to be justified carefully. In other words, GDB doesn't
1687 really have the freedom to do these conversions in clever and
1690 AndrewC pointed out that users aren't complaining about how GDB
1691 casts integers to pointers; they are complaining that they can't
1692 take an address from a disassembly listing and give it to `x/i'.
1693 This is certainly important.
1695 Adding an architecture method like integer_to_address() certainly
1696 makes it possible for GDB to "get it right" in all circumstances
1697 --- the target has complete control over how things get done, so
1698 people can Do The Right Thing for their target without breaking
1699 anyone else. The standard doesn't specify how integers get
1700 converted to pointers; usually, the ABI doesn't either, but
1701 ABI-specific code is a more reasonable place to handle it. */
1703 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1704 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1705 && gdbarch_integer_to_address_p (gdbarch))
1706 return gdbarch_integer_to_address (gdbarch, value_type (val),
1707 value_contents (val));
1709 return unpack_long (value_type (val), value_contents (val));
1713 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1714 as a long, or as a double, assuming the raw data is described
1715 by type TYPE. Knows how to convert different sizes of values
1716 and can convert between fixed and floating point. We don't assume
1717 any alignment for the raw data. Return value is in host byte order.
1719 If you want functions and arrays to be coerced to pointers, and
1720 references to be dereferenced, call value_as_long() instead.
1722 C++: It is assumed that the front-end has taken care of
1723 all matters concerning pointers to members. A pointer
1724 to member which reaches here is considered to be equivalent
1725 to an INT (or some size). After all, it is only an offset. */
1728 unpack_long (struct type *type, const gdb_byte *valaddr)
1730 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1731 enum type_code code = TYPE_CODE (type);
1732 int len = TYPE_LENGTH (type);
1733 int nosign = TYPE_UNSIGNED (type);
1737 case TYPE_CODE_TYPEDEF:
1738 return unpack_long (check_typedef (type), valaddr);
1739 case TYPE_CODE_ENUM:
1740 case TYPE_CODE_FLAGS:
1741 case TYPE_CODE_BOOL:
1743 case TYPE_CODE_CHAR:
1744 case TYPE_CODE_RANGE:
1745 case TYPE_CODE_MEMBERPTR:
1747 return extract_unsigned_integer (valaddr, len, byte_order);
1749 return extract_signed_integer (valaddr, len, byte_order);
1752 return extract_typed_floating (valaddr, type);
1754 case TYPE_CODE_DECFLOAT:
1755 /* libdecnumber has a function to convert from decimal to integer, but
1756 it doesn't work when the decimal number has a fractional part. */
1757 return decimal_to_doublest (valaddr, len, byte_order);
1761 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1762 whether we want this to be true eventually. */
1763 return extract_typed_address (valaddr, type);
1766 error (_("Value can't be converted to integer."));
1768 return 0; /* Placate lint. */
1771 /* Return a double value from the specified type and address.
1772 INVP points to an int which is set to 0 for valid value,
1773 1 for invalid value (bad float format). In either case,
1774 the returned double is OK to use. Argument is in target
1775 format, result is in host format. */
1778 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1780 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1781 enum type_code code;
1785 *invp = 0; /* Assume valid. */
1786 CHECK_TYPEDEF (type);
1787 code = TYPE_CODE (type);
1788 len = TYPE_LENGTH (type);
1789 nosign = TYPE_UNSIGNED (type);
1790 if (code == TYPE_CODE_FLT)
1792 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1793 floating-point value was valid (using the macro
1794 INVALID_FLOAT). That test/macro have been removed.
1796 It turns out that only the VAX defined this macro and then
1797 only in a non-portable way. Fixing the portability problem
1798 wouldn't help since the VAX floating-point code is also badly
1799 bit-rotten. The target needs to add definitions for the
1800 methods gdbarch_float_format and gdbarch_double_format - these
1801 exactly describe the target floating-point format. The
1802 problem here is that the corresponding floatformat_vax_f and
1803 floatformat_vax_d values these methods should be set to are
1804 also not defined either. Oops!
1806 Hopefully someone will add both the missing floatformat
1807 definitions and the new cases for floatformat_is_valid (). */
1809 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1815 return extract_typed_floating (valaddr, type);
1817 else if (code == TYPE_CODE_DECFLOAT)
1818 return decimal_to_doublest (valaddr, len, byte_order);
1821 /* Unsigned -- be sure we compensate for signed LONGEST. */
1822 return (ULONGEST) unpack_long (type, valaddr);
1826 /* Signed -- we are OK with unpack_long. */
1827 return unpack_long (type, valaddr);
1831 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1832 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1833 We don't assume any alignment for the raw data. Return value is in
1836 If you want functions and arrays to be coerced to pointers, and
1837 references to be dereferenced, call value_as_address() instead.
1839 C++: It is assumed that the front-end has taken care of
1840 all matters concerning pointers to members. A pointer
1841 to member which reaches here is considered to be equivalent
1842 to an INT (or some size). After all, it is only an offset. */
1845 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1847 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1848 whether we want this to be true eventually. */
1849 return unpack_long (type, valaddr);
1853 /* Get the value of the FIELDNO'th field (which must be static) of
1854 TYPE. Return NULL if the field doesn't exist or has been
1858 value_static_field (struct type *type, int fieldno)
1860 struct value *retval;
1862 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1864 case FIELD_LOC_KIND_PHYSADDR:
1865 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1866 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1868 case FIELD_LOC_KIND_PHYSNAME:
1870 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1871 /*TYPE_FIELD_NAME (type, fieldno);*/
1872 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1876 /* With some compilers, e.g. HP aCC, static data members are
1877 reported as non-debuggable symbols */
1878 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1885 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1886 SYMBOL_VALUE_ADDRESS (msym));
1891 /* SYM should never have a SYMBOL_CLASS which will require
1892 read_var_value to use the FRAME parameter. */
1893 if (symbol_read_needs_frame (sym))
1894 warning (_("static field's value depends on the current "
1895 "frame - bad debug info?"));
1896 retval = read_var_value (sym, NULL);
1898 if (retval && VALUE_LVAL (retval) == lval_memory)
1899 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1900 value_address (retval));
1910 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1911 You have to be careful here, since the size of the data area for the value
1912 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1913 than the old enclosing type, you have to allocate more space for the data.
1914 The return value is a pointer to the new version of this value structure. */
1917 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1919 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1921 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1923 val->enclosing_type = new_encl_type;
1927 /* Given a value ARG1 (offset by OFFSET bytes)
1928 of a struct or union type ARG_TYPE,
1929 extract and return the value of one of its (non-static) fields.
1930 FIELDNO says which field. */
1933 value_primitive_field (struct value *arg1, int offset,
1934 int fieldno, struct type *arg_type)
1939 CHECK_TYPEDEF (arg_type);
1940 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1942 /* Call check_typedef on our type to make sure that, if TYPE
1943 is a TYPE_CODE_TYPEDEF, its length is set to the length
1944 of the target type instead of zero. However, we do not
1945 replace the typedef type by the target type, because we want
1946 to keep the typedef in order to be able to print the type
1947 description correctly. */
1948 check_typedef (type);
1950 /* Handle packed fields */
1952 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1954 /* Create a new value for the bitfield, with bitpos and bitsize
1955 set. If possible, arrange offset and bitpos so that we can
1956 do a single aligned read of the size of the containing type.
1957 Otherwise, adjust offset to the byte containing the first
1958 bit. Assume that the address, offset, and embedded offset
1959 are sufficiently aligned. */
1960 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1961 int container_bitsize = TYPE_LENGTH (type) * 8;
1963 v = allocate_value_lazy (type);
1964 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1965 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1966 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1967 v->bitpos = bitpos % container_bitsize;
1969 v->bitpos = bitpos % 8;
1970 v->offset = value_embedded_offset (arg1)
1971 + (bitpos - v->bitpos) / 8;
1973 value_incref (v->parent);
1974 if (!value_lazy (arg1))
1975 value_fetch_lazy (v);
1977 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1979 /* This field is actually a base subobject, so preserve the
1980 entire object's contents for later references to virtual
1983 /* Lazy register values with offsets are not supported. */
1984 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1985 value_fetch_lazy (arg1);
1987 if (value_lazy (arg1))
1988 v = allocate_value_lazy (value_enclosing_type (arg1));
1991 v = allocate_value (value_enclosing_type (arg1));
1992 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1993 TYPE_LENGTH (value_enclosing_type (arg1)));
1996 v->offset = value_offset (arg1);
1997 v->embedded_offset = (offset + value_embedded_offset (arg1)
1998 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2002 /* Plain old data member */
2003 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2005 /* Lazy register values with offsets are not supported. */
2006 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2007 value_fetch_lazy (arg1);
2009 if (value_lazy (arg1))
2010 v = allocate_value_lazy (type);
2013 v = allocate_value (type);
2014 memcpy (value_contents_raw (v),
2015 value_contents_raw (arg1) + offset,
2016 TYPE_LENGTH (type));
2018 v->offset = (value_offset (arg1) + offset
2019 + value_embedded_offset (arg1));
2021 set_value_component_location (v, arg1);
2022 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2023 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2027 /* Given a value ARG1 of a struct or union type,
2028 extract and return the value of one of its (non-static) fields.
2029 FIELDNO says which field. */
2032 value_field (struct value *arg1, int fieldno)
2034 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2037 /* Return a non-virtual function as a value.
2038 F is the list of member functions which contains the desired method.
2039 J is an index into F which provides the desired method.
2041 We only use the symbol for its address, so be happy with either a
2042 full symbol or a minimal symbol.
2046 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
2050 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2051 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2053 struct minimal_symbol *msym;
2055 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2062 gdb_assert (sym == NULL);
2063 msym = lookup_minimal_symbol (physname, NULL, NULL);
2068 v = allocate_value (ftype);
2071 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2075 /* The minimal symbol might point to a function descriptor;
2076 resolve it to the actual code address instead. */
2077 struct objfile *objfile = msymbol_objfile (msym);
2078 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2080 set_value_address (v,
2081 gdbarch_convert_from_func_ptr_addr
2082 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target));
2087 if (type != value_type (*arg1p))
2088 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2089 value_addr (*arg1p)));
2091 /* Move the `this' pointer according to the offset.
2092 VALUE_OFFSET (*arg1p) += offset;
2100 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2101 object at VALADDR. The bitfield starts at BITPOS bits and contains
2104 Extracting bits depends on endianness of the machine. Compute the
2105 number of least significant bits to discard. For big endian machines,
2106 we compute the total number of bits in the anonymous object, subtract
2107 off the bit count from the MSB of the object to the MSB of the
2108 bitfield, then the size of the bitfield, which leaves the LSB discard
2109 count. For little endian machines, the discard count is simply the
2110 number of bits from the LSB of the anonymous object to the LSB of the
2113 If the field is signed, we also do sign extension. */
2116 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2117 int bitpos, int bitsize)
2119 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2125 /* Read the minimum number of bytes required; there may not be
2126 enough bytes to read an entire ULONGEST. */
2127 CHECK_TYPEDEF (field_type);
2129 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2131 bytes_read = TYPE_LENGTH (field_type);
2133 val = extract_unsigned_integer (valaddr + bitpos / 8,
2134 bytes_read, byte_order);
2136 /* Extract bits. See comment above. */
2138 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2139 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2141 lsbcount = (bitpos % 8);
2144 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2145 If the field is signed, and is negative, then sign extend. */
2147 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2149 valmask = (((ULONGEST) 1) << bitsize) - 1;
2151 if (!TYPE_UNSIGNED (field_type))
2153 if (val & (valmask ^ (valmask >> 1)))
2162 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2163 VALADDR. See unpack_bits_as_long for more details. */
2166 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2168 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2169 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2170 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2172 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2175 /* Modify the value of a bitfield. ADDR points to a block of memory in
2176 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2177 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2178 indicate which bits (in target bit order) comprise the bitfield.
2179 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2180 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2183 modify_field (struct type *type, gdb_byte *addr,
2184 LONGEST fieldval, int bitpos, int bitsize)
2186 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2188 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2190 /* If a negative fieldval fits in the field in question, chop
2191 off the sign extension bits. */
2192 if ((~fieldval & ~(mask >> 1)) == 0)
2195 /* Warn if value is too big to fit in the field in question. */
2196 if (0 != (fieldval & ~mask))
2198 /* FIXME: would like to include fieldval in the message, but
2199 we don't have a sprintf_longest. */
2200 warning (_("Value does not fit in %d bits."), bitsize);
2202 /* Truncate it, otherwise adjoining fields may be corrupted. */
2206 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2208 /* Shifting for bit field depends on endianness of the target machine. */
2209 if (gdbarch_bits_big_endian (get_type_arch (type)))
2210 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2212 oword &= ~(mask << bitpos);
2213 oword |= fieldval << bitpos;
2215 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2218 /* Pack NUM into BUF using a target format of TYPE. */
2221 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2223 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2226 type = check_typedef (type);
2227 len = TYPE_LENGTH (type);
2229 switch (TYPE_CODE (type))
2232 case TYPE_CODE_CHAR:
2233 case TYPE_CODE_ENUM:
2234 case TYPE_CODE_FLAGS:
2235 case TYPE_CODE_BOOL:
2236 case TYPE_CODE_RANGE:
2237 case TYPE_CODE_MEMBERPTR:
2238 store_signed_integer (buf, len, byte_order, num);
2243 store_typed_address (buf, type, (CORE_ADDR) num);
2247 error (_("Unexpected type (%d) encountered for integer constant."),
2253 /* Pack NUM into BUF using a target format of TYPE. */
2256 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2259 enum bfd_endian byte_order;
2261 type = check_typedef (type);
2262 len = TYPE_LENGTH (type);
2263 byte_order = gdbarch_byte_order (get_type_arch (type));
2265 switch (TYPE_CODE (type))
2268 case TYPE_CODE_CHAR:
2269 case TYPE_CODE_ENUM:
2270 case TYPE_CODE_FLAGS:
2271 case TYPE_CODE_BOOL:
2272 case TYPE_CODE_RANGE:
2273 case TYPE_CODE_MEMBERPTR:
2274 store_unsigned_integer (buf, len, byte_order, num);
2279 store_typed_address (buf, type, (CORE_ADDR) num);
2284 Unexpected type (%d) encountered for unsigned integer constant."),
2290 /* Convert C numbers into newly allocated values. */
2293 value_from_longest (struct type *type, LONGEST num)
2295 struct value *val = allocate_value (type);
2297 pack_long (value_contents_raw (val), type, num);
2302 /* Convert C unsigned numbers into newly allocated values. */
2305 value_from_ulongest (struct type *type, ULONGEST num)
2307 struct value *val = allocate_value (type);
2309 pack_unsigned_long (value_contents_raw (val), type, num);
2315 /* Create a value representing a pointer of type TYPE to the address
2318 value_from_pointer (struct type *type, CORE_ADDR addr)
2320 struct value *val = allocate_value (type);
2322 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2327 /* Create a value of type TYPE whose contents come from VALADDR, if it
2328 is non-null, and whose memory address (in the inferior) is
2332 value_from_contents_and_address (struct type *type,
2333 const gdb_byte *valaddr,
2336 struct value *v = allocate_value (type);
2338 if (valaddr == NULL)
2339 set_value_lazy (v, 1);
2341 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2342 set_value_address (v, address);
2343 VALUE_LVAL (v) = lval_memory;
2348 value_from_double (struct type *type, DOUBLEST num)
2350 struct value *val = allocate_value (type);
2351 struct type *base_type = check_typedef (type);
2352 enum type_code code = TYPE_CODE (base_type);
2354 if (code == TYPE_CODE_FLT)
2356 store_typed_floating (value_contents_raw (val), base_type, num);
2359 error (_("Unexpected type encountered for floating constant."));
2365 value_from_decfloat (struct type *type, const gdb_byte *dec)
2367 struct value *val = allocate_value (type);
2369 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2374 coerce_ref (struct value *arg)
2376 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2378 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2379 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2380 unpack_pointer (value_type (arg),
2381 value_contents (arg)));
2386 coerce_array (struct value *arg)
2390 arg = coerce_ref (arg);
2391 type = check_typedef (value_type (arg));
2393 switch (TYPE_CODE (type))
2395 case TYPE_CODE_ARRAY:
2396 if (current_language->c_style_arrays)
2397 arg = value_coerce_array (arg);
2399 case TYPE_CODE_FUNC:
2400 arg = value_coerce_function (arg);
2407 /* Return true if the function returning the specified type is using
2408 the convention of returning structures in memory (passing in the
2409 address as a hidden first parameter). */
2412 using_struct_return (struct gdbarch *gdbarch,
2413 struct type *func_type, struct type *value_type)
2415 enum type_code code = TYPE_CODE (value_type);
2417 if (code == TYPE_CODE_ERROR)
2418 error (_("Function return type unknown."));
2420 if (code == TYPE_CODE_VOID)
2421 /* A void return value is never in memory. See also corresponding
2422 code in "print_return_value". */
2425 /* Probe the architecture for the return-value convention. */
2426 return (gdbarch_return_value (gdbarch, func_type, value_type,
2428 != RETURN_VALUE_REGISTER_CONVENTION);
2431 /* Set the initialized field in a value struct. */
2434 set_value_initialized (struct value *val, int status)
2436 val->initialized = status;
2439 /* Return the initialized field in a value struct. */
2442 value_initialized (struct value *val)
2444 return val->initialized;
2448 _initialize_values (void)
2450 add_cmd ("convenience", no_class, show_convenience, _("\
2451 Debugger convenience (\"$foo\") variables.\n\
2452 These variables are created when you assign them values;\n\
2453 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2455 A few convenience variables are given values automatically:\n\
2456 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2457 \"$__\" holds the contents of the last address examined with \"x\"."),
2460 add_cmd ("values", no_class, show_values,
2461 _("Elements of value history around item number IDX (or last ten)."),
2464 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2465 Initialize a convenience variable if necessary.\n\
2466 init-if-undefined VARIABLE = EXPRESSION\n\
2467 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2468 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2469 VARIABLE is already initialized."));
2471 add_prefix_cmd ("function", no_class, function_command, _("\
2472 Placeholder command for showing help on convenience functions."),
2473 &functionlist, "function ", 0, &cmdlist);