1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
35 #include "gdb_assert.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
47 static void target_info (char *, int);
49 static void default_terminal_info (char *, int);
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60 static int return_zero (void);
62 static int return_one (void);
64 static int return_minus_one (void);
66 void target_ignore (void);
68 static void target_command (char *, int);
70 static struct target_ops *find_default_run_target (char *);
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 static void init_dummy_target (void);
95 static struct target_ops debug_target;
97 static void debug_to_open (char *, int);
99 static void debug_to_prepare_to_store (struct regcache *);
101 static void debug_to_files_info (struct target_ops *);
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
123 static int debug_to_stopped_by_watchpoint (void);
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
135 static void debug_to_terminal_init (void);
137 static void debug_to_terminal_inferior (void);
139 static void debug_to_terminal_ours_for_output (void);
141 static void debug_to_terminal_save_ours (void);
143 static void debug_to_terminal_ours (void);
145 static void debug_to_terminal_info (char *, int);
147 static void debug_to_load (char *, int);
149 static int debug_to_can_run (void);
151 static void debug_to_stop (ptid_t);
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
162 /* The initial current target, so that there is always a semi-valid
165 static struct target_ops dummy_target;
167 /* Top of target stack. */
169 static struct target_ops *target_stack;
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
174 struct target_ops current_target;
176 /* Command list for target. */
178 static struct cmd_list_element *targetlist = NULL;
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
183 static int trust_readonly = 0;
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
188 static int show_memory_breakpoints = 0;
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
194 int may_write_registers = 1;
196 int may_write_memory = 1;
198 int may_insert_breakpoints = 1;
200 int may_insert_tracepoints = 1;
202 int may_insert_fast_tracepoints = 1;
206 /* Non-zero if we want to see trace of target level stuff. */
208 static unsigned int targetdebug = 0;
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 static void setup_target_debug (void);
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
250 /* Invalidate the target dcache. */
253 target_dcache_invalidate (void)
255 dcache_invalidate (target_dcache);
258 /* The user just typed 'target' without the name of a target. */
261 target_command (char *arg, int from_tty)
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
267 /* Default target_has_* methods for process_stratum targets. */
270 default_child_has_all_memory (struct target_ops *ops)
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
280 default_child_has_memory (struct target_ops *ops)
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
290 default_child_has_stack (struct target_ops *ops)
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
300 default_child_has_registers (struct target_ops *ops)
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
312 /* If there's no thread selected, then we can't make it run through
314 if (ptid_equal (the_ptid, null_ptid))
322 target_has_all_memory_1 (void)
324 struct target_ops *t;
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
334 target_has_memory_1 (void)
336 struct target_ops *t;
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
346 target_has_stack_1 (void)
348 struct target_ops *t;
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
358 target_has_registers_1 (void)
360 struct target_ops *t;
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
370 target_has_execution_1 (ptid_t the_ptid)
372 struct target_ops *t;
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
382 target_has_execution_current (void)
384 return target_has_execution_1 (inferior_ptid);
387 /* Add possible target architecture T to the list and add a new
388 command 'target T->to_shortname'. Set COMPLETER as the command's
389 completer if not NULL. */
392 add_target_with_completer (struct target_ops *t,
393 completer_ftype *completer)
395 struct cmd_list_element *c;
397 /* Provide default values for all "must have" methods. */
398 if (t->to_xfer_partial == NULL)
399 t->to_xfer_partial = default_xfer_partial;
401 if (t->to_has_all_memory == NULL)
402 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
404 if (t->to_has_memory == NULL)
405 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
407 if (t->to_has_stack == NULL)
408 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
410 if (t->to_has_registers == NULL)
411 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
413 if (t->to_has_execution == NULL)
414 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
418 target_struct_allocsize = DEFAULT_ALLOCSIZE;
419 target_structs = (struct target_ops **) xmalloc
420 (target_struct_allocsize * sizeof (*target_structs));
422 if (target_struct_size >= target_struct_allocsize)
424 target_struct_allocsize *= 2;
425 target_structs = (struct target_ops **)
426 xrealloc ((char *) target_structs,
427 target_struct_allocsize * sizeof (*target_structs));
429 target_structs[target_struct_size++] = t;
431 if (targetlist == NULL)
432 add_prefix_cmd ("target", class_run, target_command, _("\
433 Connect to a target machine or process.\n\
434 The first argument is the type or protocol of the target machine.\n\
435 Remaining arguments are interpreted by the target protocol. For more\n\
436 information on the arguments for a particular protocol, type\n\
437 `help target ' followed by the protocol name."),
438 &targetlist, "target ", 0, &cmdlist);
439 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
441 if (completer != NULL)
442 set_cmd_completer (c, completer);
445 /* Add a possible target architecture to the list. */
448 add_target (struct target_ops *t)
450 add_target_with_completer (t, NULL);
456 add_deprecated_target_alias (struct target_ops *t, char *alias)
458 struct cmd_list_element *c;
461 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
463 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
464 alt = xstrprintf ("target %s", t->to_shortname);
465 deprecate_cmd (c, alt);
478 struct target_ops *t;
480 for (t = current_target.beneath; t != NULL; t = t->beneath)
481 if (t->to_kill != NULL)
484 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
494 target_load (char *arg, int from_tty)
496 target_dcache_invalidate ();
497 (*current_target.to_load) (arg, from_tty);
501 target_create_inferior (char *exec_file, char *args,
502 char **env, int from_tty)
504 struct target_ops *t;
506 for (t = current_target.beneath; t != NULL; t = t->beneath)
508 if (t->to_create_inferior != NULL)
510 t->to_create_inferior (t, exec_file, args, env, from_tty);
512 fprintf_unfiltered (gdb_stdlog,
513 "target_create_inferior (%s, %s, xxx, %d)\n",
514 exec_file, args, from_tty);
519 internal_error (__FILE__, __LINE__,
520 _("could not find a target to create inferior"));
524 target_terminal_inferior (void)
526 /* A background resume (``run&'') should leave GDB in control of the
527 terminal. Use target_can_async_p, not target_is_async_p, since at
528 this point the target is not async yet. However, if sync_execution
529 is not set, we know it will become async prior to resume. */
530 if (target_can_async_p () && !sync_execution)
533 /* If GDB is resuming the inferior in the foreground, install
534 inferior's terminal modes. */
535 (*current_target.to_terminal_inferior) ();
539 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
540 struct target_ops *t)
542 errno = EIO; /* Can't read/write this location. */
543 return 0; /* No bytes handled. */
549 error (_("You can't do that when your target is `%s'"),
550 current_target.to_shortname);
556 error (_("You can't do that without a process to debug."));
560 default_terminal_info (char *args, int from_tty)
562 printf_unfiltered (_("No saved terminal information.\n"));
565 /* A default implementation for the to_get_ada_task_ptid target method.
567 This function builds the PTID by using both LWP and TID as part of
568 the PTID lwp and tid elements. The pid used is the pid of the
572 default_get_ada_task_ptid (long lwp, long tid)
574 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
577 static enum exec_direction_kind
578 default_execution_direction (void)
580 if (!target_can_execute_reverse)
582 else if (!target_can_async_p ())
585 gdb_assert_not_reached ("\
586 to_execution_direction must be implemented for reverse async");
589 /* Go through the target stack from top to bottom, copying over zero
590 entries in current_target, then filling in still empty entries. In
591 effect, we are doing class inheritance through the pushed target
594 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
595 is currently implemented, is that it discards any knowledge of
596 which target an inherited method originally belonged to.
597 Consequently, new new target methods should instead explicitly and
598 locally search the target stack for the target that can handle the
602 update_current_target (void)
604 struct target_ops *t;
606 /* First, reset current's contents. */
607 memset (¤t_target, 0, sizeof (current_target));
609 #define INHERIT(FIELD, TARGET) \
610 if (!current_target.FIELD) \
611 current_target.FIELD = (TARGET)->FIELD
613 for (t = target_stack; t; t = t->beneath)
615 INHERIT (to_shortname, t);
616 INHERIT (to_longname, t);
618 /* Do not inherit to_open. */
619 /* Do not inherit to_close. */
620 /* Do not inherit to_attach. */
621 INHERIT (to_post_attach, t);
622 INHERIT (to_attach_no_wait, t);
623 /* Do not inherit to_detach. */
624 /* Do not inherit to_disconnect. */
625 /* Do not inherit to_resume. */
626 /* Do not inherit to_wait. */
627 /* Do not inherit to_fetch_registers. */
628 /* Do not inherit to_store_registers. */
629 INHERIT (to_prepare_to_store, t);
630 INHERIT (deprecated_xfer_memory, t);
631 INHERIT (to_files_info, t);
632 INHERIT (to_insert_breakpoint, t);
633 INHERIT (to_remove_breakpoint, t);
634 INHERIT (to_can_use_hw_breakpoint, t);
635 INHERIT (to_insert_hw_breakpoint, t);
636 INHERIT (to_remove_hw_breakpoint, t);
637 /* Do not inherit to_ranged_break_num_registers. */
638 INHERIT (to_insert_watchpoint, t);
639 INHERIT (to_remove_watchpoint, t);
640 /* Do not inherit to_insert_mask_watchpoint. */
641 /* Do not inherit to_remove_mask_watchpoint. */
642 INHERIT (to_stopped_data_address, t);
643 INHERIT (to_have_steppable_watchpoint, t);
644 INHERIT (to_have_continuable_watchpoint, t);
645 INHERIT (to_stopped_by_watchpoint, t);
646 INHERIT (to_watchpoint_addr_within_range, t);
647 INHERIT (to_region_ok_for_hw_watchpoint, t);
648 INHERIT (to_can_accel_watchpoint_condition, t);
649 /* Do not inherit to_masked_watch_num_registers. */
650 INHERIT (to_terminal_init, t);
651 INHERIT (to_terminal_inferior, t);
652 INHERIT (to_terminal_ours_for_output, t);
653 INHERIT (to_terminal_ours, t);
654 INHERIT (to_terminal_save_ours, t);
655 INHERIT (to_terminal_info, t);
656 /* Do not inherit to_kill. */
657 INHERIT (to_load, t);
658 /* Do no inherit to_create_inferior. */
659 INHERIT (to_post_startup_inferior, t);
660 INHERIT (to_insert_fork_catchpoint, t);
661 INHERIT (to_remove_fork_catchpoint, t);
662 INHERIT (to_insert_vfork_catchpoint, t);
663 INHERIT (to_remove_vfork_catchpoint, t);
664 /* Do not inherit to_follow_fork. */
665 INHERIT (to_insert_exec_catchpoint, t);
666 INHERIT (to_remove_exec_catchpoint, t);
667 INHERIT (to_set_syscall_catchpoint, t);
668 INHERIT (to_has_exited, t);
669 /* Do not inherit to_mourn_inferior. */
670 INHERIT (to_can_run, t);
671 /* Do not inherit to_pass_signals. */
672 /* Do not inherit to_program_signals. */
673 /* Do not inherit to_thread_alive. */
674 /* Do not inherit to_find_new_threads. */
675 /* Do not inherit to_pid_to_str. */
676 INHERIT (to_extra_thread_info, t);
677 INHERIT (to_thread_name, t);
678 INHERIT (to_stop, t);
679 /* Do not inherit to_xfer_partial. */
680 INHERIT (to_rcmd, t);
681 INHERIT (to_pid_to_exec_file, t);
682 INHERIT (to_log_command, t);
683 INHERIT (to_stratum, t);
684 /* Do not inherit to_has_all_memory. */
685 /* Do not inherit to_has_memory. */
686 /* Do not inherit to_has_stack. */
687 /* Do not inherit to_has_registers. */
688 /* Do not inherit to_has_execution. */
689 INHERIT (to_has_thread_control, t);
690 INHERIT (to_can_async_p, t);
691 INHERIT (to_is_async_p, t);
692 INHERIT (to_async, t);
693 INHERIT (to_find_memory_regions, t);
694 INHERIT (to_make_corefile_notes, t);
695 INHERIT (to_get_bookmark, t);
696 INHERIT (to_goto_bookmark, t);
697 /* Do not inherit to_get_thread_local_address. */
698 INHERIT (to_can_execute_reverse, t);
699 INHERIT (to_execution_direction, t);
700 INHERIT (to_thread_architecture, t);
701 /* Do not inherit to_read_description. */
702 INHERIT (to_get_ada_task_ptid, t);
703 /* Do not inherit to_search_memory. */
704 INHERIT (to_supports_multi_process, t);
705 INHERIT (to_supports_enable_disable_tracepoint, t);
706 INHERIT (to_supports_string_tracing, t);
707 INHERIT (to_trace_init, t);
708 INHERIT (to_download_tracepoint, t);
709 INHERIT (to_can_download_tracepoint, t);
710 INHERIT (to_download_trace_state_variable, t);
711 INHERIT (to_enable_tracepoint, t);
712 INHERIT (to_disable_tracepoint, t);
713 INHERIT (to_trace_set_readonly_regions, t);
714 INHERIT (to_trace_start, t);
715 INHERIT (to_get_trace_status, t);
716 INHERIT (to_get_tracepoint_status, t);
717 INHERIT (to_trace_stop, t);
718 INHERIT (to_trace_find, t);
719 INHERIT (to_get_trace_state_variable_value, t);
720 INHERIT (to_save_trace_data, t);
721 INHERIT (to_upload_tracepoints, t);
722 INHERIT (to_upload_trace_state_variables, t);
723 INHERIT (to_get_raw_trace_data, t);
724 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
725 INHERIT (to_set_disconnected_tracing, t);
726 INHERIT (to_set_circular_trace_buffer, t);
727 INHERIT (to_set_trace_buffer_size, t);
728 INHERIT (to_set_trace_notes, t);
729 INHERIT (to_get_tib_address, t);
730 INHERIT (to_set_permissions, t);
731 INHERIT (to_static_tracepoint_marker_at, t);
732 INHERIT (to_static_tracepoint_markers_by_strid, t);
733 INHERIT (to_traceframe_info, t);
734 INHERIT (to_use_agent, t);
735 INHERIT (to_can_use_agent, t);
736 INHERIT (to_magic, t);
737 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
738 INHERIT (to_can_run_breakpoint_commands, t);
739 /* Do not inherit to_memory_map. */
740 /* Do not inherit to_flash_erase. */
741 /* Do not inherit to_flash_done. */
745 /* Clean up a target struct so it no longer has any zero pointers in
746 it. Some entries are defaulted to a method that print an error,
747 others are hard-wired to a standard recursive default. */
749 #define de_fault(field, value) \
750 if (!current_target.field) \
751 current_target.field = value
754 (void (*) (char *, int))
759 de_fault (to_post_attach,
762 de_fault (to_prepare_to_store,
763 (void (*) (struct regcache *))
765 de_fault (deprecated_xfer_memory,
766 (int (*) (CORE_ADDR, gdb_byte *, int, int,
767 struct mem_attrib *, struct target_ops *))
769 de_fault (to_files_info,
770 (void (*) (struct target_ops *))
772 de_fault (to_insert_breakpoint,
773 memory_insert_breakpoint);
774 de_fault (to_remove_breakpoint,
775 memory_remove_breakpoint);
776 de_fault (to_can_use_hw_breakpoint,
777 (int (*) (int, int, int))
779 de_fault (to_insert_hw_breakpoint,
780 (int (*) (struct gdbarch *, struct bp_target_info *))
782 de_fault (to_remove_hw_breakpoint,
783 (int (*) (struct gdbarch *, struct bp_target_info *))
785 de_fault (to_insert_watchpoint,
786 (int (*) (CORE_ADDR, int, int, struct expression *))
788 de_fault (to_remove_watchpoint,
789 (int (*) (CORE_ADDR, int, int, struct expression *))
791 de_fault (to_stopped_by_watchpoint,
794 de_fault (to_stopped_data_address,
795 (int (*) (struct target_ops *, CORE_ADDR *))
797 de_fault (to_watchpoint_addr_within_range,
798 default_watchpoint_addr_within_range);
799 de_fault (to_region_ok_for_hw_watchpoint,
800 default_region_ok_for_hw_watchpoint);
801 de_fault (to_can_accel_watchpoint_condition,
802 (int (*) (CORE_ADDR, int, int, struct expression *))
804 de_fault (to_terminal_init,
807 de_fault (to_terminal_inferior,
810 de_fault (to_terminal_ours_for_output,
813 de_fault (to_terminal_ours,
816 de_fault (to_terminal_save_ours,
819 de_fault (to_terminal_info,
820 default_terminal_info);
822 (void (*) (char *, int))
824 de_fault (to_post_startup_inferior,
827 de_fault (to_insert_fork_catchpoint,
830 de_fault (to_remove_fork_catchpoint,
833 de_fault (to_insert_vfork_catchpoint,
836 de_fault (to_remove_vfork_catchpoint,
839 de_fault (to_insert_exec_catchpoint,
842 de_fault (to_remove_exec_catchpoint,
845 de_fault (to_set_syscall_catchpoint,
846 (int (*) (int, int, int, int, int *))
848 de_fault (to_has_exited,
849 (int (*) (int, int, int *))
851 de_fault (to_can_run,
853 de_fault (to_extra_thread_info,
854 (char *(*) (struct thread_info *))
856 de_fault (to_thread_name,
857 (char *(*) (struct thread_info *))
862 current_target.to_xfer_partial = current_xfer_partial;
864 (void (*) (char *, struct ui_file *))
866 de_fault (to_pid_to_exec_file,
870 (void (*) (void (*) (enum inferior_event_type, void*), void*))
872 de_fault (to_thread_architecture,
873 default_thread_architecture);
874 current_target.to_read_description = NULL;
875 de_fault (to_get_ada_task_ptid,
876 (ptid_t (*) (long, long))
877 default_get_ada_task_ptid);
878 de_fault (to_supports_multi_process,
881 de_fault (to_supports_enable_disable_tracepoint,
884 de_fault (to_supports_string_tracing,
887 de_fault (to_trace_init,
890 de_fault (to_download_tracepoint,
891 (void (*) (struct bp_location *))
893 de_fault (to_can_download_tracepoint,
896 de_fault (to_download_trace_state_variable,
897 (void (*) (struct trace_state_variable *))
899 de_fault (to_enable_tracepoint,
900 (void (*) (struct bp_location *))
902 de_fault (to_disable_tracepoint,
903 (void (*) (struct bp_location *))
905 de_fault (to_trace_set_readonly_regions,
908 de_fault (to_trace_start,
911 de_fault (to_get_trace_status,
912 (int (*) (struct trace_status *))
914 de_fault (to_get_tracepoint_status,
915 (void (*) (struct breakpoint *, struct uploaded_tp *))
917 de_fault (to_trace_stop,
920 de_fault (to_trace_find,
921 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
923 de_fault (to_get_trace_state_variable_value,
924 (int (*) (int, LONGEST *))
926 de_fault (to_save_trace_data,
927 (int (*) (const char *))
929 de_fault (to_upload_tracepoints,
930 (int (*) (struct uploaded_tp **))
932 de_fault (to_upload_trace_state_variables,
933 (int (*) (struct uploaded_tsv **))
935 de_fault (to_get_raw_trace_data,
936 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
938 de_fault (to_get_min_fast_tracepoint_insn_len,
941 de_fault (to_set_disconnected_tracing,
944 de_fault (to_set_circular_trace_buffer,
947 de_fault (to_set_trace_buffer_size,
950 de_fault (to_set_trace_notes,
951 (int (*) (char *, char *, char *))
953 de_fault (to_get_tib_address,
954 (int (*) (ptid_t, CORE_ADDR *))
956 de_fault (to_set_permissions,
959 de_fault (to_static_tracepoint_marker_at,
960 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
962 de_fault (to_static_tracepoint_markers_by_strid,
963 (VEC(static_tracepoint_marker_p) * (*) (const char *))
965 de_fault (to_traceframe_info,
966 (struct traceframe_info * (*) (void))
968 de_fault (to_supports_evaluation_of_breakpoint_conditions,
971 de_fault (to_can_run_breakpoint_commands,
974 de_fault (to_use_agent,
977 de_fault (to_can_use_agent,
980 de_fault (to_execution_direction, default_execution_direction);
984 /* Finally, position the target-stack beneath the squashed
985 "current_target". That way code looking for a non-inherited
986 target method can quickly and simply find it. */
987 current_target.beneath = target_stack;
990 setup_target_debug ();
993 /* Push a new target type into the stack of the existing target accessors,
994 possibly superseding some of the existing accessors.
996 Rather than allow an empty stack, we always have the dummy target at
997 the bottom stratum, so we can call the function vectors without
1001 push_target (struct target_ops *t)
1003 struct target_ops **cur;
1005 /* Check magic number. If wrong, it probably means someone changed
1006 the struct definition, but not all the places that initialize one. */
1007 if (t->to_magic != OPS_MAGIC)
1009 fprintf_unfiltered (gdb_stderr,
1010 "Magic number of %s target struct wrong\n",
1012 internal_error (__FILE__, __LINE__,
1013 _("failed internal consistency check"));
1016 /* Find the proper stratum to install this target in. */
1017 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1019 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1023 /* If there's already targets at this stratum, remove them. */
1024 /* FIXME: cagney/2003-10-15: I think this should be popping all
1025 targets to CUR, and not just those at this stratum level. */
1026 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1028 /* There's already something at this stratum level. Close it,
1029 and un-hook it from the stack. */
1030 struct target_ops *tmp = (*cur);
1032 (*cur) = (*cur)->beneath;
1033 tmp->beneath = NULL;
1037 /* We have removed all targets in our stratum, now add the new one. */
1038 t->beneath = (*cur);
1041 update_current_target ();
1044 /* Remove a target_ops vector from the stack, wherever it may be.
1045 Return how many times it was removed (0 or 1). */
1048 unpush_target (struct target_ops *t)
1050 struct target_ops **cur;
1051 struct target_ops *tmp;
1053 if (t->to_stratum == dummy_stratum)
1054 internal_error (__FILE__, __LINE__,
1055 _("Attempt to unpush the dummy target"));
1057 /* Look for the specified target. Note that we assume that a target
1058 can only occur once in the target stack. */
1060 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1066 /* If we don't find target_ops, quit. Only open targets should be
1071 /* Unchain the target. */
1073 (*cur) = (*cur)->beneath;
1074 tmp->beneath = NULL;
1076 update_current_target ();
1078 /* Finally close the target. Note we do this after unchaining, so
1079 any target method calls from within the target_close
1080 implementation don't end up in T anymore. */
1089 target_close (target_stack); /* Let it clean up. */
1090 if (unpush_target (target_stack) == 1)
1093 fprintf_unfiltered (gdb_stderr,
1094 "pop_target couldn't find target %s\n",
1095 current_target.to_shortname);
1096 internal_error (__FILE__, __LINE__,
1097 _("failed internal consistency check"));
1101 pop_all_targets_above (enum strata above_stratum)
1103 while ((int) (current_target.to_stratum) > (int) above_stratum)
1105 target_close (target_stack);
1106 if (!unpush_target (target_stack))
1108 fprintf_unfiltered (gdb_stderr,
1109 "pop_all_targets couldn't find target %s\n",
1110 target_stack->to_shortname);
1111 internal_error (__FILE__, __LINE__,
1112 _("failed internal consistency check"));
1119 pop_all_targets (void)
1121 pop_all_targets_above (dummy_stratum);
1124 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1127 target_is_pushed (struct target_ops *t)
1129 struct target_ops **cur;
1131 /* Check magic number. If wrong, it probably means someone changed
1132 the struct definition, but not all the places that initialize one. */
1133 if (t->to_magic != OPS_MAGIC)
1135 fprintf_unfiltered (gdb_stderr,
1136 "Magic number of %s target struct wrong\n",
1138 internal_error (__FILE__, __LINE__,
1139 _("failed internal consistency check"));
1142 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1149 /* Using the objfile specified in OBJFILE, find the address for the
1150 current thread's thread-local storage with offset OFFSET. */
1152 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1154 volatile CORE_ADDR addr = 0;
1155 struct target_ops *target;
1157 for (target = current_target.beneath;
1159 target = target->beneath)
1161 if (target->to_get_thread_local_address != NULL)
1166 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1168 ptid_t ptid = inferior_ptid;
1169 volatile struct gdb_exception ex;
1171 TRY_CATCH (ex, RETURN_MASK_ALL)
1175 /* Fetch the load module address for this objfile. */
1176 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1178 /* If it's 0, throw the appropriate exception. */
1180 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1181 _("TLS load module not found"));
1183 addr = target->to_get_thread_local_address (target, ptid,
1186 /* If an error occurred, print TLS related messages here. Otherwise,
1187 throw the error to some higher catcher. */
1190 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1194 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1195 error (_("Cannot find thread-local variables "
1196 "in this thread library."));
1198 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1199 if (objfile_is_library)
1200 error (_("Cannot find shared library `%s' in dynamic"
1201 " linker's load module list"), objfile->name);
1203 error (_("Cannot find executable file `%s' in dynamic"
1204 " linker's load module list"), objfile->name);
1206 case TLS_NOT_ALLOCATED_YET_ERROR:
1207 if (objfile_is_library)
1208 error (_("The inferior has not yet allocated storage for"
1209 " thread-local variables in\n"
1210 "the shared library `%s'\n"
1212 objfile->name, target_pid_to_str (ptid));
1214 error (_("The inferior has not yet allocated storage for"
1215 " thread-local variables in\n"
1216 "the executable `%s'\n"
1218 objfile->name, target_pid_to_str (ptid));
1220 case TLS_GENERIC_ERROR:
1221 if (objfile_is_library)
1222 error (_("Cannot find thread-local storage for %s, "
1223 "shared library %s:\n%s"),
1224 target_pid_to_str (ptid),
1225 objfile->name, ex.message);
1227 error (_("Cannot find thread-local storage for %s, "
1228 "executable file %s:\n%s"),
1229 target_pid_to_str (ptid),
1230 objfile->name, ex.message);
1233 throw_exception (ex);
1238 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1239 TLS is an ABI-specific thing. But we don't do that yet. */
1241 error (_("Cannot find thread-local variables on this target"));
1247 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1249 /* target_read_string -- read a null terminated string, up to LEN bytes,
1250 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1251 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1252 is responsible for freeing it. Return the number of bytes successfully
1256 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1258 int tlen, offset, i;
1262 int buffer_allocated;
1264 unsigned int nbytes_read = 0;
1266 gdb_assert (string);
1268 /* Small for testing. */
1269 buffer_allocated = 4;
1270 buffer = xmalloc (buffer_allocated);
1275 tlen = MIN (len, 4 - (memaddr & 3));
1276 offset = memaddr & 3;
1278 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1281 /* The transfer request might have crossed the boundary to an
1282 unallocated region of memory. Retry the transfer, requesting
1286 errcode = target_read_memory (memaddr, buf, 1);
1291 if (bufptr - buffer + tlen > buffer_allocated)
1295 bytes = bufptr - buffer;
1296 buffer_allocated *= 2;
1297 buffer = xrealloc (buffer, buffer_allocated);
1298 bufptr = buffer + bytes;
1301 for (i = 0; i < tlen; i++)
1303 *bufptr++ = buf[i + offset];
1304 if (buf[i + offset] == '\000')
1306 nbytes_read += i + 1;
1313 nbytes_read += tlen;
1322 struct target_section_table *
1323 target_get_section_table (struct target_ops *target)
1325 struct target_ops *t;
1328 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1330 for (t = target; t != NULL; t = t->beneath)
1331 if (t->to_get_section_table != NULL)
1332 return (*t->to_get_section_table) (t);
1337 /* Find a section containing ADDR. */
1339 struct target_section *
1340 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1342 struct target_section_table *table = target_get_section_table (target);
1343 struct target_section *secp;
1348 for (secp = table->sections; secp < table->sections_end; secp++)
1350 if (addr >= secp->addr && addr < secp->endaddr)
1356 /* Read memory from the live target, even if currently inspecting a
1357 traceframe. The return is the same as that of target_read. */
1360 target_read_live_memory (enum target_object object,
1361 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1364 struct cleanup *cleanup;
1366 /* Switch momentarily out of tfind mode so to access live memory.
1367 Note that this must not clear global state, such as the frame
1368 cache, which must still remain valid for the previous traceframe.
1369 We may be _building_ the frame cache at this point. */
1370 cleanup = make_cleanup_restore_traceframe_number ();
1371 set_traceframe_number (-1);
1373 ret = target_read (current_target.beneath, object, NULL,
1374 myaddr, memaddr, len);
1376 do_cleanups (cleanup);
1380 /* Using the set of read-only target sections of OPS, read live
1381 read-only memory. Note that the actual reads start from the
1382 top-most target again.
1384 For interface/parameters/return description see target.h,
1388 memory_xfer_live_readonly_partial (struct target_ops *ops,
1389 enum target_object object,
1390 gdb_byte *readbuf, ULONGEST memaddr,
1393 struct target_section *secp;
1394 struct target_section_table *table;
1396 secp = target_section_by_addr (ops, memaddr);
1398 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1401 struct target_section *p;
1402 ULONGEST memend = memaddr + len;
1404 table = target_get_section_table (ops);
1406 for (p = table->sections; p < table->sections_end; p++)
1408 if (memaddr >= p->addr)
1410 if (memend <= p->endaddr)
1412 /* Entire transfer is within this section. */
1413 return target_read_live_memory (object, memaddr,
1416 else if (memaddr >= p->endaddr)
1418 /* This section ends before the transfer starts. */
1423 /* This section overlaps the transfer. Just do half. */
1424 len = p->endaddr - memaddr;
1425 return target_read_live_memory (object, memaddr,
1435 /* Perform a partial memory transfer.
1436 For docs see target.h, to_xfer_partial. */
1439 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1440 void *readbuf, const void *writebuf, ULONGEST memaddr,
1445 struct mem_region *region;
1446 struct inferior *inf;
1448 /* For accesses to unmapped overlay sections, read directly from
1449 files. Must do this first, as MEMADDR may need adjustment. */
1450 if (readbuf != NULL && overlay_debugging)
1452 struct obj_section *section = find_pc_overlay (memaddr);
1454 if (pc_in_unmapped_range (memaddr, section))
1456 struct target_section_table *table
1457 = target_get_section_table (ops);
1458 const char *section_name = section->the_bfd_section->name;
1460 memaddr = overlay_mapped_address (memaddr, section);
1461 return section_table_xfer_memory_partial (readbuf, writebuf,
1464 table->sections_end,
1469 /* Try the executable files, if "trust-readonly-sections" is set. */
1470 if (readbuf != NULL && trust_readonly)
1472 struct target_section *secp;
1473 struct target_section_table *table;
1475 secp = target_section_by_addr (ops, memaddr);
1477 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1480 table = target_get_section_table (ops);
1481 return section_table_xfer_memory_partial (readbuf, writebuf,
1484 table->sections_end,
1489 /* If reading unavailable memory in the context of traceframes, and
1490 this address falls within a read-only section, fallback to
1491 reading from live memory. */
1492 if (readbuf != NULL && get_traceframe_number () != -1)
1494 VEC(mem_range_s) *available;
1496 /* If we fail to get the set of available memory, then the
1497 target does not support querying traceframe info, and so we
1498 attempt reading from the traceframe anyway (assuming the
1499 target implements the old QTro packet then). */
1500 if (traceframe_available_memory (&available, memaddr, len))
1502 struct cleanup *old_chain;
1504 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1506 if (VEC_empty (mem_range_s, available)
1507 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1509 /* Don't read into the traceframe's available
1511 if (!VEC_empty (mem_range_s, available))
1513 LONGEST oldlen = len;
1515 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1516 gdb_assert (len <= oldlen);
1519 do_cleanups (old_chain);
1521 /* This goes through the topmost target again. */
1522 res = memory_xfer_live_readonly_partial (ops, object,
1523 readbuf, memaddr, len);
1527 /* No use trying further, we know some memory starting
1528 at MEMADDR isn't available. */
1532 /* Don't try to read more than how much is available, in
1533 case the target implements the deprecated QTro packet to
1534 cater for older GDBs (the target's knowledge of read-only
1535 sections may be outdated by now). */
1536 len = VEC_index (mem_range_s, available, 0)->length;
1538 do_cleanups (old_chain);
1542 /* Try GDB's internal data cache. */
1543 region = lookup_mem_region (memaddr);
1544 /* region->hi == 0 means there's no upper bound. */
1545 if (memaddr + len < region->hi || region->hi == 0)
1548 reg_len = region->hi - memaddr;
1550 switch (region->attrib.mode)
1553 if (writebuf != NULL)
1558 if (readbuf != NULL)
1563 /* We only support writing to flash during "load" for now. */
1564 if (writebuf != NULL)
1565 error (_("Writing to flash memory forbidden in this context"));
1572 if (!ptid_equal (inferior_ptid, null_ptid))
1573 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1578 /* The dcache reads whole cache lines; that doesn't play well
1579 with reading from a trace buffer, because reading outside of
1580 the collected memory range fails. */
1581 && get_traceframe_number () == -1
1582 && (region->attrib.cache
1583 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1585 if (readbuf != NULL)
1586 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1589 /* FIXME drow/2006-08-09: If we're going to preserve const
1590 correctness dcache_xfer_memory should take readbuf and
1592 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1601 /* If none of those methods found the memory we wanted, fall back
1602 to a target partial transfer. Normally a single call to
1603 to_xfer_partial is enough; if it doesn't recognize an object
1604 it will call the to_xfer_partial of the next target down.
1605 But for memory this won't do. Memory is the only target
1606 object which can be read from more than one valid target.
1607 A core file, for instance, could have some of memory but
1608 delegate other bits to the target below it. So, we must
1609 manually try all targets. */
1613 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1614 readbuf, writebuf, memaddr, reg_len);
1618 /* We want to continue past core files to executables, but not
1619 past a running target's memory. */
1620 if (ops->to_has_all_memory (ops))
1625 while (ops != NULL);
1627 /* Make sure the cache gets updated no matter what - if we are writing
1628 to the stack. Even if this write is not tagged as such, we still need
1629 to update the cache. */
1634 && !region->attrib.cache
1635 && stack_cache_enabled_p
1636 && object != TARGET_OBJECT_STACK_MEMORY)
1638 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1641 /* If we still haven't got anything, return the last error. We
1646 /* Perform a partial memory transfer. For docs see target.h,
1650 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1651 void *readbuf, const void *writebuf, ULONGEST memaddr,
1656 /* Zero length requests are ok and require no work. */
1660 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1661 breakpoint insns, thus hiding out from higher layers whether
1662 there are software breakpoints inserted in the code stream. */
1663 if (readbuf != NULL)
1665 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1667 if (res > 0 && !show_memory_breakpoints)
1668 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1673 struct cleanup *old_chain;
1675 buf = xmalloc (len);
1676 old_chain = make_cleanup (xfree, buf);
1677 memcpy (buf, writebuf, len);
1679 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1680 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1682 do_cleanups (old_chain);
1689 restore_show_memory_breakpoints (void *arg)
1691 show_memory_breakpoints = (uintptr_t) arg;
1695 make_show_memory_breakpoints_cleanup (int show)
1697 int current = show_memory_breakpoints;
1699 show_memory_breakpoints = show;
1700 return make_cleanup (restore_show_memory_breakpoints,
1701 (void *) (uintptr_t) current);
1704 /* For docs see target.h, to_xfer_partial. */
1707 target_xfer_partial (struct target_ops *ops,
1708 enum target_object object, const char *annex,
1709 void *readbuf, const void *writebuf,
1710 ULONGEST offset, LONGEST len)
1714 gdb_assert (ops->to_xfer_partial != NULL);
1716 if (writebuf && !may_write_memory)
1717 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1718 core_addr_to_string_nz (offset), plongest (len));
1720 /* If this is a memory transfer, let the memory-specific code
1721 have a look at it instead. Memory transfers are more
1723 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1724 retval = memory_xfer_partial (ops, object, readbuf,
1725 writebuf, offset, len);
1728 enum target_object raw_object = object;
1730 /* If this is a raw memory transfer, request the normal
1731 memory object from other layers. */
1732 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1733 raw_object = TARGET_OBJECT_MEMORY;
1735 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1736 writebuf, offset, len);
1741 const unsigned char *myaddr = NULL;
1743 fprintf_unfiltered (gdb_stdlog,
1744 "%s:target_xfer_partial "
1745 "(%d, %s, %s, %s, %s, %s) = %s",
1748 (annex ? annex : "(null)"),
1749 host_address_to_string (readbuf),
1750 host_address_to_string (writebuf),
1751 core_addr_to_string_nz (offset),
1752 plongest (len), plongest (retval));
1758 if (retval > 0 && myaddr != NULL)
1762 fputs_unfiltered (", bytes =", gdb_stdlog);
1763 for (i = 0; i < retval; i++)
1765 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1767 if (targetdebug < 2 && i > 0)
1769 fprintf_unfiltered (gdb_stdlog, " ...");
1772 fprintf_unfiltered (gdb_stdlog, "\n");
1775 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1779 fputc_unfiltered ('\n', gdb_stdlog);
1784 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1785 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1786 if any error occurs.
1788 If an error occurs, no guarantee is made about the contents of the data at
1789 MYADDR. In particular, the caller should not depend upon partial reads
1790 filling the buffer with good data. There is no way for the caller to know
1791 how much good data might have been transfered anyway. Callers that can
1792 deal with partial reads should call target_read (which will retry until
1793 it makes no progress, and then return how much was transferred). */
1796 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1798 /* Dispatch to the topmost target, not the flattened current_target.
1799 Memory accesses check target->to_has_(all_)memory, and the
1800 flattened target doesn't inherit those. */
1801 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1802 myaddr, memaddr, len) == len)
1808 /* Like target_read_memory, but specify explicitly that this is a read from
1809 the target's stack. This may trigger different cache behavior. */
1812 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1814 /* Dispatch to the topmost target, not the flattened current_target.
1815 Memory accesses check target->to_has_(all_)memory, and the
1816 flattened target doesn't inherit those. */
1818 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1819 myaddr, memaddr, len) == len)
1825 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1826 Returns either 0 for success or an errno value if any error occurs.
1827 If an error occurs, no guarantee is made about how much data got written.
1828 Callers that can deal with partial writes should call target_write. */
1831 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1833 /* Dispatch to the topmost target, not the flattened current_target.
1834 Memory accesses check target->to_has_(all_)memory, and the
1835 flattened target doesn't inherit those. */
1836 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1837 myaddr, memaddr, len) == len)
1843 /* Write LEN bytes from MYADDR to target raw memory at address
1844 MEMADDR. Returns either 0 for success or an errno value if any
1845 error occurs. If an error occurs, no guarantee is made about how
1846 much data got written. Callers that can deal with partial writes
1847 should call target_write. */
1850 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1852 /* Dispatch to the topmost target, not the flattened current_target.
1853 Memory accesses check target->to_has_(all_)memory, and the
1854 flattened target doesn't inherit those. */
1855 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1856 myaddr, memaddr, len) == len)
1862 /* Fetch the target's memory map. */
1865 target_memory_map (void)
1867 VEC(mem_region_s) *result;
1868 struct mem_region *last_one, *this_one;
1870 struct target_ops *t;
1873 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1875 for (t = current_target.beneath; t != NULL; t = t->beneath)
1876 if (t->to_memory_map != NULL)
1882 result = t->to_memory_map (t);
1886 qsort (VEC_address (mem_region_s, result),
1887 VEC_length (mem_region_s, result),
1888 sizeof (struct mem_region), mem_region_cmp);
1890 /* Check that regions do not overlap. Simultaneously assign
1891 a numbering for the "mem" commands to use to refer to
1894 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1896 this_one->number = ix;
1898 if (last_one && last_one->hi > this_one->lo)
1900 warning (_("Overlapping regions in memory map: ignoring"));
1901 VEC_free (mem_region_s, result);
1904 last_one = this_one;
1911 target_flash_erase (ULONGEST address, LONGEST length)
1913 struct target_ops *t;
1915 for (t = current_target.beneath; t != NULL; t = t->beneath)
1916 if (t->to_flash_erase != NULL)
1919 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1920 hex_string (address), phex (length, 0));
1921 t->to_flash_erase (t, address, length);
1929 target_flash_done (void)
1931 struct target_ops *t;
1933 for (t = current_target.beneath; t != NULL; t = t->beneath)
1934 if (t->to_flash_done != NULL)
1937 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1938 t->to_flash_done (t);
1946 show_trust_readonly (struct ui_file *file, int from_tty,
1947 struct cmd_list_element *c, const char *value)
1949 fprintf_filtered (file,
1950 _("Mode for reading from readonly sections is %s.\n"),
1954 /* More generic transfers. */
1957 default_xfer_partial (struct target_ops *ops, enum target_object object,
1958 const char *annex, gdb_byte *readbuf,
1959 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1961 if (object == TARGET_OBJECT_MEMORY
1962 && ops->deprecated_xfer_memory != NULL)
1963 /* If available, fall back to the target's
1964 "deprecated_xfer_memory" method. */
1969 if (writebuf != NULL)
1971 void *buffer = xmalloc (len);
1972 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1974 memcpy (buffer, writebuf, len);
1975 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1976 1/*write*/, NULL, ops);
1977 do_cleanups (cleanup);
1979 if (readbuf != NULL)
1980 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1981 0/*read*/, NULL, ops);
1984 else if (xfered == 0 && errno == 0)
1985 /* "deprecated_xfer_memory" uses 0, cross checked against
1986 ERRNO as one indication of an error. */
1991 else if (ops->beneath != NULL)
1992 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1993 readbuf, writebuf, offset, len);
1998 /* The xfer_partial handler for the topmost target. Unlike the default,
1999 it does not need to handle memory specially; it just passes all
2000 requests down the stack. */
2003 current_xfer_partial (struct target_ops *ops, enum target_object object,
2004 const char *annex, gdb_byte *readbuf,
2005 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2007 if (ops->beneath != NULL)
2008 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2009 readbuf, writebuf, offset, len);
2014 /* Target vector read/write partial wrapper functions. */
2017 target_read_partial (struct target_ops *ops,
2018 enum target_object object,
2019 const char *annex, gdb_byte *buf,
2020 ULONGEST offset, LONGEST len)
2022 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2026 target_write_partial (struct target_ops *ops,
2027 enum target_object object,
2028 const char *annex, const gdb_byte *buf,
2029 ULONGEST offset, LONGEST len)
2031 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2034 /* Wrappers to perform the full transfer. */
2036 /* For docs on target_read see target.h. */
2039 target_read (struct target_ops *ops,
2040 enum target_object object,
2041 const char *annex, gdb_byte *buf,
2042 ULONGEST offset, LONGEST len)
2046 while (xfered < len)
2048 LONGEST xfer = target_read_partial (ops, object, annex,
2049 (gdb_byte *) buf + xfered,
2050 offset + xfered, len - xfered);
2052 /* Call an observer, notifying them of the xfer progress? */
2063 /* Assuming that the entire [begin, end) range of memory cannot be
2064 read, try to read whatever subrange is possible to read.
2066 The function returns, in RESULT, either zero or one memory block.
2067 If there's a readable subrange at the beginning, it is completely
2068 read and returned. Any further readable subrange will not be read.
2069 Otherwise, if there's a readable subrange at the end, it will be
2070 completely read and returned. Any readable subranges before it
2071 (obviously, not starting at the beginning), will be ignored. In
2072 other cases -- either no readable subrange, or readable subrange(s)
2073 that is neither at the beginning, or end, nothing is returned.
2075 The purpose of this function is to handle a read across a boundary
2076 of accessible memory in a case when memory map is not available.
2077 The above restrictions are fine for this case, but will give
2078 incorrect results if the memory is 'patchy'. However, supporting
2079 'patchy' memory would require trying to read every single byte,
2080 and it seems unacceptable solution. Explicit memory map is
2081 recommended for this case -- and target_read_memory_robust will
2082 take care of reading multiple ranges then. */
2085 read_whatever_is_readable (struct target_ops *ops,
2086 ULONGEST begin, ULONGEST end,
2087 VEC(memory_read_result_s) **result)
2089 gdb_byte *buf = xmalloc (end - begin);
2090 ULONGEST current_begin = begin;
2091 ULONGEST current_end = end;
2093 memory_read_result_s r;
2095 /* If we previously failed to read 1 byte, nothing can be done here. */
2096 if (end - begin <= 1)
2102 /* Check that either first or the last byte is readable, and give up
2103 if not. This heuristic is meant to permit reading accessible memory
2104 at the boundary of accessible region. */
2105 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2106 buf, begin, 1) == 1)
2111 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2112 buf + (end-begin) - 1, end - 1, 1) == 1)
2123 /* Loop invariant is that the [current_begin, current_end) was previously
2124 found to be not readable as a whole.
2126 Note loop condition -- if the range has 1 byte, we can't divide the range
2127 so there's no point trying further. */
2128 while (current_end - current_begin > 1)
2130 ULONGEST first_half_begin, first_half_end;
2131 ULONGEST second_half_begin, second_half_end;
2133 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2137 first_half_begin = current_begin;
2138 first_half_end = middle;
2139 second_half_begin = middle;
2140 second_half_end = current_end;
2144 first_half_begin = middle;
2145 first_half_end = current_end;
2146 second_half_begin = current_begin;
2147 second_half_end = middle;
2150 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2151 buf + (first_half_begin - begin),
2153 first_half_end - first_half_begin);
2155 if (xfer == first_half_end - first_half_begin)
2157 /* This half reads up fine. So, the error must be in the
2159 current_begin = second_half_begin;
2160 current_end = second_half_end;
2164 /* This half is not readable. Because we've tried one byte, we
2165 know some part of this half if actually redable. Go to the next
2166 iteration to divide again and try to read.
2168 We don't handle the other half, because this function only tries
2169 to read a single readable subrange. */
2170 current_begin = first_half_begin;
2171 current_end = first_half_end;
2177 /* The [begin, current_begin) range has been read. */
2179 r.end = current_begin;
2184 /* The [current_end, end) range has been read. */
2185 LONGEST rlen = end - current_end;
2187 r.data = xmalloc (rlen);
2188 memcpy (r.data, buf + current_end - begin, rlen);
2189 r.begin = current_end;
2193 VEC_safe_push(memory_read_result_s, (*result), &r);
2197 free_memory_read_result_vector (void *x)
2199 VEC(memory_read_result_s) *v = x;
2200 memory_read_result_s *current;
2203 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2205 xfree (current->data);
2207 VEC_free (memory_read_result_s, v);
2210 VEC(memory_read_result_s) *
2211 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2213 VEC(memory_read_result_s) *result = 0;
2216 while (xfered < len)
2218 struct mem_region *region = lookup_mem_region (offset + xfered);
2221 /* If there is no explicit region, a fake one should be created. */
2222 gdb_assert (region);
2224 if (region->hi == 0)
2225 rlen = len - xfered;
2227 rlen = region->hi - offset;
2229 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2231 /* Cannot read this region. Note that we can end up here only
2232 if the region is explicitly marked inaccessible, or
2233 'inaccessible-by-default' is in effect. */
2238 LONGEST to_read = min (len - xfered, rlen);
2239 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2241 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2242 (gdb_byte *) buffer,
2243 offset + xfered, to_read);
2244 /* Call an observer, notifying them of the xfer progress? */
2247 /* Got an error reading full chunk. See if maybe we can read
2250 read_whatever_is_readable (ops, offset + xfered,
2251 offset + xfered + to_read, &result);
2256 struct memory_read_result r;
2258 r.begin = offset + xfered;
2259 r.end = r.begin + xfer;
2260 VEC_safe_push (memory_read_result_s, result, &r);
2270 /* An alternative to target_write with progress callbacks. */
2273 target_write_with_progress (struct target_ops *ops,
2274 enum target_object object,
2275 const char *annex, const gdb_byte *buf,
2276 ULONGEST offset, LONGEST len,
2277 void (*progress) (ULONGEST, void *), void *baton)
2281 /* Give the progress callback a chance to set up. */
2283 (*progress) (0, baton);
2285 while (xfered < len)
2287 LONGEST xfer = target_write_partial (ops, object, annex,
2288 (gdb_byte *) buf + xfered,
2289 offset + xfered, len - xfered);
2297 (*progress) (xfer, baton);
2305 /* For docs on target_write see target.h. */
2308 target_write (struct target_ops *ops,
2309 enum target_object object,
2310 const char *annex, const gdb_byte *buf,
2311 ULONGEST offset, LONGEST len)
2313 return target_write_with_progress (ops, object, annex, buf, offset, len,
2317 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2318 the size of the transferred data. PADDING additional bytes are
2319 available in *BUF_P. This is a helper function for
2320 target_read_alloc; see the declaration of that function for more
2324 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2325 const char *annex, gdb_byte **buf_p, int padding)
2327 size_t buf_alloc, buf_pos;
2331 /* This function does not have a length parameter; it reads the
2332 entire OBJECT). Also, it doesn't support objects fetched partly
2333 from one target and partly from another (in a different stratum,
2334 e.g. a core file and an executable). Both reasons make it
2335 unsuitable for reading memory. */
2336 gdb_assert (object != TARGET_OBJECT_MEMORY);
2338 /* Start by reading up to 4K at a time. The target will throttle
2339 this number down if necessary. */
2341 buf = xmalloc (buf_alloc);
2345 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2346 buf_pos, buf_alloc - buf_pos - padding);
2349 /* An error occurred. */
2355 /* Read all there was. */
2365 /* If the buffer is filling up, expand it. */
2366 if (buf_alloc < buf_pos * 2)
2369 buf = xrealloc (buf, buf_alloc);
2376 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2377 the size of the transferred data. See the declaration in "target.h"
2378 function for more information about the return value. */
2381 target_read_alloc (struct target_ops *ops, enum target_object object,
2382 const char *annex, gdb_byte **buf_p)
2384 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2387 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2388 returned as a string, allocated using xmalloc. If an error occurs
2389 or the transfer is unsupported, NULL is returned. Empty objects
2390 are returned as allocated but empty strings. A warning is issued
2391 if the result contains any embedded NUL bytes. */
2394 target_read_stralloc (struct target_ops *ops, enum target_object object,
2399 LONGEST i, transferred;
2401 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2402 bufstr = (char *) buffer;
2404 if (transferred < 0)
2407 if (transferred == 0)
2408 return xstrdup ("");
2410 bufstr[transferred] = 0;
2412 /* Check for embedded NUL bytes; but allow trailing NULs. */
2413 for (i = strlen (bufstr); i < transferred; i++)
2416 warning (_("target object %d, annex %s, "
2417 "contained unexpected null characters"),
2418 (int) object, annex ? annex : "(none)");
2425 /* Memory transfer methods. */
2428 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2431 /* This method is used to read from an alternate, non-current
2432 target. This read must bypass the overlay support (as symbols
2433 don't match this target), and GDB's internal cache (wrong cache
2434 for this target). */
2435 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2437 memory_error (EIO, addr);
2441 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2442 int len, enum bfd_endian byte_order)
2444 gdb_byte buf[sizeof (ULONGEST)];
2446 gdb_assert (len <= sizeof (buf));
2447 get_target_memory (ops, addr, buf, len);
2448 return extract_unsigned_integer (buf, len, byte_order);
2452 target_insert_breakpoint (struct gdbarch *gdbarch,
2453 struct bp_target_info *bp_tgt)
2455 if (!may_insert_breakpoints)
2457 warning (_("May not insert breakpoints"));
2461 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2465 target_remove_breakpoint (struct gdbarch *gdbarch,
2466 struct bp_target_info *bp_tgt)
2468 /* This is kind of a weird case to handle, but the permission might
2469 have been changed after breakpoints were inserted - in which case
2470 we should just take the user literally and assume that any
2471 breakpoints should be left in place. */
2472 if (!may_insert_breakpoints)
2474 warning (_("May not remove breakpoints"));
2478 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2482 target_info (char *args, int from_tty)
2484 struct target_ops *t;
2485 int has_all_mem = 0;
2487 if (symfile_objfile != NULL)
2488 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2490 for (t = target_stack; t != NULL; t = t->beneath)
2492 if (!(*t->to_has_memory) (t))
2495 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2498 printf_unfiltered (_("\tWhile running this, "
2499 "GDB does not access memory from...\n"));
2500 printf_unfiltered ("%s:\n", t->to_longname);
2501 (t->to_files_info) (t);
2502 has_all_mem = (*t->to_has_all_memory) (t);
2506 /* This function is called before any new inferior is created, e.g.
2507 by running a program, attaching, or connecting to a target.
2508 It cleans up any state from previous invocations which might
2509 change between runs. This is a subset of what target_preopen
2510 resets (things which might change between targets). */
2513 target_pre_inferior (int from_tty)
2515 /* Clear out solib state. Otherwise the solib state of the previous
2516 inferior might have survived and is entirely wrong for the new
2517 target. This has been observed on GNU/Linux using glibc 2.3. How
2529 Cannot access memory at address 0xdeadbeef
2532 /* In some OSs, the shared library list is the same/global/shared
2533 across inferiors. If code is shared between processes, so are
2534 memory regions and features. */
2535 if (!gdbarch_has_global_solist (target_gdbarch ()))
2537 no_shared_libraries (NULL, from_tty);
2539 invalidate_target_mem_regions ();
2541 target_clear_description ();
2544 agent_capability_invalidate ();
2547 /* Callback for iterate_over_inferiors. Gets rid of the given
2551 dispose_inferior (struct inferior *inf, void *args)
2553 struct thread_info *thread;
2555 thread = any_thread_of_process (inf->pid);
2558 switch_to_thread (thread->ptid);
2560 /* Core inferiors actually should be detached, not killed. */
2561 if (target_has_execution)
2564 target_detach (NULL, 0);
2570 /* This is to be called by the open routine before it does
2574 target_preopen (int from_tty)
2578 if (have_inferiors ())
2581 || !have_live_inferiors ()
2582 || query (_("A program is being debugged already. Kill it? ")))
2583 iterate_over_inferiors (dispose_inferior, NULL);
2585 error (_("Program not killed."));
2588 /* Calling target_kill may remove the target from the stack. But if
2589 it doesn't (which seems like a win for UDI), remove it now. */
2590 /* Leave the exec target, though. The user may be switching from a
2591 live process to a core of the same program. */
2592 pop_all_targets_above (file_stratum);
2594 target_pre_inferior (from_tty);
2597 /* Detach a target after doing deferred register stores. */
2600 target_detach (char *args, int from_tty)
2602 struct target_ops* t;
2604 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2605 /* Don't remove global breakpoints here. They're removed on
2606 disconnection from the target. */
2609 /* If we're in breakpoints-always-inserted mode, have to remove
2610 them before detaching. */
2611 remove_breakpoints_pid (PIDGET (inferior_ptid));
2613 prepare_for_detach ();
2615 for (t = current_target.beneath; t != NULL; t = t->beneath)
2617 if (t->to_detach != NULL)
2619 t->to_detach (t, args, from_tty);
2621 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2627 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2631 target_disconnect (char *args, int from_tty)
2633 struct target_ops *t;
2635 /* If we're in breakpoints-always-inserted mode or if breakpoints
2636 are global across processes, we have to remove them before
2638 remove_breakpoints ();
2640 for (t = current_target.beneath; t != NULL; t = t->beneath)
2641 if (t->to_disconnect != NULL)
2644 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2646 t->to_disconnect (t, args, from_tty);
2654 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2656 struct target_ops *t;
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2660 if (t->to_wait != NULL)
2662 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2666 char *status_string;
2667 char *options_string;
2669 status_string = target_waitstatus_to_string (status);
2670 options_string = target_options_to_string (options);
2671 fprintf_unfiltered (gdb_stdlog,
2672 "target_wait (%d, status, options={%s})"
2674 PIDGET (ptid), options_string,
2675 PIDGET (retval), status_string);
2676 xfree (status_string);
2677 xfree (options_string);
2688 target_pid_to_str (ptid_t ptid)
2690 struct target_ops *t;
2692 for (t = current_target.beneath; t != NULL; t = t->beneath)
2694 if (t->to_pid_to_str != NULL)
2695 return (*t->to_pid_to_str) (t, ptid);
2698 return normal_pid_to_str (ptid);
2702 target_thread_name (struct thread_info *info)
2704 struct target_ops *t;
2706 for (t = current_target.beneath; t != NULL; t = t->beneath)
2708 if (t->to_thread_name != NULL)
2709 return (*t->to_thread_name) (info);
2716 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2718 struct target_ops *t;
2720 target_dcache_invalidate ();
2722 for (t = current_target.beneath; t != NULL; t = t->beneath)
2724 if (t->to_resume != NULL)
2726 t->to_resume (t, ptid, step, signal);
2728 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2730 step ? "step" : "continue",
2731 gdb_signal_to_name (signal));
2733 registers_changed_ptid (ptid);
2734 set_executing (ptid, 1);
2735 set_running (ptid, 1);
2736 clear_inline_frame_state (ptid);
2745 target_pass_signals (int numsigs, unsigned char *pass_signals)
2747 struct target_ops *t;
2749 for (t = current_target.beneath; t != NULL; t = t->beneath)
2751 if (t->to_pass_signals != NULL)
2757 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2760 for (i = 0; i < numsigs; i++)
2761 if (pass_signals[i])
2762 fprintf_unfiltered (gdb_stdlog, " %s",
2763 gdb_signal_to_name (i));
2765 fprintf_unfiltered (gdb_stdlog, " })\n");
2768 (*t->to_pass_signals) (numsigs, pass_signals);
2775 target_program_signals (int numsigs, unsigned char *program_signals)
2777 struct target_ops *t;
2779 for (t = current_target.beneath; t != NULL; t = t->beneath)
2781 if (t->to_program_signals != NULL)
2787 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2790 for (i = 0; i < numsigs; i++)
2791 if (program_signals[i])
2792 fprintf_unfiltered (gdb_stdlog, " %s",
2793 gdb_signal_to_name (i));
2795 fprintf_unfiltered (gdb_stdlog, " })\n");
2798 (*t->to_program_signals) (numsigs, program_signals);
2804 /* Look through the list of possible targets for a target that can
2808 target_follow_fork (int follow_child)
2810 struct target_ops *t;
2812 for (t = current_target.beneath; t != NULL; t = t->beneath)
2814 if (t->to_follow_fork != NULL)
2816 int retval = t->to_follow_fork (t, follow_child);
2819 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2820 follow_child, retval);
2825 /* Some target returned a fork event, but did not know how to follow it. */
2826 internal_error (__FILE__, __LINE__,
2827 _("could not find a target to follow fork"));
2831 target_mourn_inferior (void)
2833 struct target_ops *t;
2835 for (t = current_target.beneath; t != NULL; t = t->beneath)
2837 if (t->to_mourn_inferior != NULL)
2839 t->to_mourn_inferior (t);
2841 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2843 /* We no longer need to keep handles on any of the object files.
2844 Make sure to release them to avoid unnecessarily locking any
2845 of them while we're not actually debugging. */
2846 bfd_cache_close_all ();
2852 internal_error (__FILE__, __LINE__,
2853 _("could not find a target to follow mourn inferior"));
2856 /* Look for a target which can describe architectural features, starting
2857 from TARGET. If we find one, return its description. */
2859 const struct target_desc *
2860 target_read_description (struct target_ops *target)
2862 struct target_ops *t;
2864 for (t = target; t != NULL; t = t->beneath)
2865 if (t->to_read_description != NULL)
2867 const struct target_desc *tdesc;
2869 tdesc = t->to_read_description (t);
2877 /* The default implementation of to_search_memory.
2878 This implements a basic search of memory, reading target memory and
2879 performing the search here (as opposed to performing the search in on the
2880 target side with, for example, gdbserver). */
2883 simple_search_memory (struct target_ops *ops,
2884 CORE_ADDR start_addr, ULONGEST search_space_len,
2885 const gdb_byte *pattern, ULONGEST pattern_len,
2886 CORE_ADDR *found_addrp)
2888 /* NOTE: also defined in find.c testcase. */
2889 #define SEARCH_CHUNK_SIZE 16000
2890 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2891 /* Buffer to hold memory contents for searching. */
2892 gdb_byte *search_buf;
2893 unsigned search_buf_size;
2894 struct cleanup *old_cleanups;
2896 search_buf_size = chunk_size + pattern_len - 1;
2898 /* No point in trying to allocate a buffer larger than the search space. */
2899 if (search_space_len < search_buf_size)
2900 search_buf_size = search_space_len;
2902 search_buf = malloc (search_buf_size);
2903 if (search_buf == NULL)
2904 error (_("Unable to allocate memory to perform the search."));
2905 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2907 /* Prime the search buffer. */
2909 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2910 search_buf, start_addr, search_buf_size) != search_buf_size)
2912 warning (_("Unable to access %s bytes of target "
2913 "memory at %s, halting search."),
2914 pulongest (search_buf_size), hex_string (start_addr));
2915 do_cleanups (old_cleanups);
2919 /* Perform the search.
2921 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2922 When we've scanned N bytes we copy the trailing bytes to the start and
2923 read in another N bytes. */
2925 while (search_space_len >= pattern_len)
2927 gdb_byte *found_ptr;
2928 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2930 found_ptr = memmem (search_buf, nr_search_bytes,
2931 pattern, pattern_len);
2933 if (found_ptr != NULL)
2935 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2937 *found_addrp = found_addr;
2938 do_cleanups (old_cleanups);
2942 /* Not found in this chunk, skip to next chunk. */
2944 /* Don't let search_space_len wrap here, it's unsigned. */
2945 if (search_space_len >= chunk_size)
2946 search_space_len -= chunk_size;
2948 search_space_len = 0;
2950 if (search_space_len >= pattern_len)
2952 unsigned keep_len = search_buf_size - chunk_size;
2953 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2956 /* Copy the trailing part of the previous iteration to the front
2957 of the buffer for the next iteration. */
2958 gdb_assert (keep_len == pattern_len - 1);
2959 memcpy (search_buf, search_buf + chunk_size, keep_len);
2961 nr_to_read = min (search_space_len - keep_len, chunk_size);
2963 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2964 search_buf + keep_len, read_addr,
2965 nr_to_read) != nr_to_read)
2967 warning (_("Unable to access %s bytes of target "
2968 "memory at %s, halting search."),
2969 plongest (nr_to_read),
2970 hex_string (read_addr));
2971 do_cleanups (old_cleanups);
2975 start_addr += chunk_size;
2981 do_cleanups (old_cleanups);
2985 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2986 sequence of bytes in PATTERN with length PATTERN_LEN.
2988 The result is 1 if found, 0 if not found, and -1 if there was an error
2989 requiring halting of the search (e.g. memory read error).
2990 If the pattern is found the address is recorded in FOUND_ADDRP. */
2993 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2994 const gdb_byte *pattern, ULONGEST pattern_len,
2995 CORE_ADDR *found_addrp)
2997 struct target_ops *t;
3000 /* We don't use INHERIT to set current_target.to_search_memory,
3001 so we have to scan the target stack and handle targetdebug
3005 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3006 hex_string (start_addr));
3008 for (t = current_target.beneath; t != NULL; t = t->beneath)
3009 if (t->to_search_memory != NULL)
3014 found = t->to_search_memory (t, start_addr, search_space_len,
3015 pattern, pattern_len, found_addrp);
3019 /* If a special version of to_search_memory isn't available, use the
3021 found = simple_search_memory (current_target.beneath,
3022 start_addr, search_space_len,
3023 pattern, pattern_len, found_addrp);
3027 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3032 /* Look through the currently pushed targets. If none of them will
3033 be able to restart the currently running process, issue an error
3037 target_require_runnable (void)
3039 struct target_ops *t;
3041 for (t = target_stack; t != NULL; t = t->beneath)
3043 /* If this target knows how to create a new program, then
3044 assume we will still be able to after killing the current
3045 one. Either killing and mourning will not pop T, or else
3046 find_default_run_target will find it again. */
3047 if (t->to_create_inferior != NULL)
3050 /* Do not worry about thread_stratum targets that can not
3051 create inferiors. Assume they will be pushed again if
3052 necessary, and continue to the process_stratum. */
3053 if (t->to_stratum == thread_stratum
3054 || t->to_stratum == arch_stratum)
3057 error (_("The \"%s\" target does not support \"run\". "
3058 "Try \"help target\" or \"continue\"."),
3062 /* This function is only called if the target is running. In that
3063 case there should have been a process_stratum target and it
3064 should either know how to create inferiors, or not... */
3065 internal_error (__FILE__, __LINE__, _("No targets found"));
3068 /* Look through the list of possible targets for a target that can
3069 execute a run or attach command without any other data. This is
3070 used to locate the default process stratum.
3072 If DO_MESG is not NULL, the result is always valid (error() is
3073 called for errors); else, return NULL on error. */
3075 static struct target_ops *
3076 find_default_run_target (char *do_mesg)
3078 struct target_ops **t;
3079 struct target_ops *runable = NULL;
3084 for (t = target_structs; t < target_structs + target_struct_size;
3087 if ((*t)->to_can_run && target_can_run (*t))
3097 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3106 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3108 struct target_ops *t;
3110 t = find_default_run_target ("attach");
3111 (t->to_attach) (t, args, from_tty);
3116 find_default_create_inferior (struct target_ops *ops,
3117 char *exec_file, char *allargs, char **env,
3120 struct target_ops *t;
3122 t = find_default_run_target ("run");
3123 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3128 find_default_can_async_p (void)
3130 struct target_ops *t;
3132 /* This may be called before the target is pushed on the stack;
3133 look for the default process stratum. If there's none, gdb isn't
3134 configured with a native debugger, and target remote isn't
3136 t = find_default_run_target (NULL);
3137 if (t && t->to_can_async_p)
3138 return (t->to_can_async_p) ();
3143 find_default_is_async_p (void)
3145 struct target_ops *t;
3147 /* This may be called before the target is pushed on the stack;
3148 look for the default process stratum. If there's none, gdb isn't
3149 configured with a native debugger, and target remote isn't
3151 t = find_default_run_target (NULL);
3152 if (t && t->to_is_async_p)
3153 return (t->to_is_async_p) ();
3158 find_default_supports_non_stop (void)
3160 struct target_ops *t;
3162 t = find_default_run_target (NULL);
3163 if (t && t->to_supports_non_stop)
3164 return (t->to_supports_non_stop) ();
3169 target_supports_non_stop (void)
3171 struct target_ops *t;
3173 for (t = ¤t_target; t != NULL; t = t->beneath)
3174 if (t->to_supports_non_stop)
3175 return t->to_supports_non_stop ();
3180 /* Implement the "info proc" command. */
3183 target_info_proc (char *args, enum info_proc_what what)
3185 struct target_ops *t;
3187 /* If we're already connected to something that can get us OS
3188 related data, use it. Otherwise, try using the native
3190 if (current_target.to_stratum >= process_stratum)
3191 t = current_target.beneath;
3193 t = find_default_run_target (NULL);
3195 for (; t != NULL; t = t->beneath)
3197 if (t->to_info_proc != NULL)
3199 t->to_info_proc (t, args, what);
3202 fprintf_unfiltered (gdb_stdlog,
3203 "target_info_proc (\"%s\", %d)\n", args, what);
3213 find_default_supports_disable_randomization (void)
3215 struct target_ops *t;
3217 t = find_default_run_target (NULL);
3218 if (t && t->to_supports_disable_randomization)
3219 return (t->to_supports_disable_randomization) ();
3224 target_supports_disable_randomization (void)
3226 struct target_ops *t;
3228 for (t = ¤t_target; t != NULL; t = t->beneath)
3229 if (t->to_supports_disable_randomization)
3230 return t->to_supports_disable_randomization ();
3236 target_get_osdata (const char *type)
3238 struct target_ops *t;
3240 /* If we're already connected to something that can get us OS
3241 related data, use it. Otherwise, try using the native
3243 if (current_target.to_stratum >= process_stratum)
3244 t = current_target.beneath;
3246 t = find_default_run_target ("get OS data");
3251 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3254 /* Determine the current address space of thread PTID. */
3256 struct address_space *
3257 target_thread_address_space (ptid_t ptid)
3259 struct address_space *aspace;
3260 struct inferior *inf;
3261 struct target_ops *t;
3263 for (t = current_target.beneath; t != NULL; t = t->beneath)
3265 if (t->to_thread_address_space != NULL)
3267 aspace = t->to_thread_address_space (t, ptid);
3268 gdb_assert (aspace);
3271 fprintf_unfiltered (gdb_stdlog,
3272 "target_thread_address_space (%s) = %d\n",
3273 target_pid_to_str (ptid),
3274 address_space_num (aspace));
3279 /* Fall-back to the "main" address space of the inferior. */
3280 inf = find_inferior_pid (ptid_get_pid (ptid));
3282 if (inf == NULL || inf->aspace == NULL)
3283 internal_error (__FILE__, __LINE__,
3284 _("Can't determine the current "
3285 "address space of thread %s\n"),
3286 target_pid_to_str (ptid));
3292 /* Target file operations. */
3294 static struct target_ops *
3295 default_fileio_target (void)
3297 /* If we're already connected to something that can perform
3298 file I/O, use it. Otherwise, try using the native target. */
3299 if (current_target.to_stratum >= process_stratum)
3300 return current_target.beneath;
3302 return find_default_run_target ("file I/O");
3305 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3306 target file descriptor, or -1 if an error occurs (and set
3309 target_fileio_open (const char *filename, int flags, int mode,
3312 struct target_ops *t;
3314 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3316 if (t->to_fileio_open != NULL)
3318 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3321 fprintf_unfiltered (gdb_stdlog,
3322 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3323 filename, flags, mode,
3324 fd, fd != -1 ? 0 : *target_errno);
3329 *target_errno = FILEIO_ENOSYS;
3333 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3334 Return the number of bytes written, or -1 if an error occurs
3335 (and set *TARGET_ERRNO). */
3337 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3338 ULONGEST offset, int *target_errno)
3340 struct target_ops *t;
3342 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3344 if (t->to_fileio_pwrite != NULL)
3346 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3350 fprintf_unfiltered (gdb_stdlog,
3351 "target_fileio_pwrite (%d,...,%d,%s) "
3353 fd, len, pulongest (offset),
3354 ret, ret != -1 ? 0 : *target_errno);
3359 *target_errno = FILEIO_ENOSYS;
3363 /* Read up to LEN bytes FD on the target into READ_BUF.
3364 Return the number of bytes read, or -1 if an error occurs
3365 (and set *TARGET_ERRNO). */
3367 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3368 ULONGEST offset, int *target_errno)
3370 struct target_ops *t;
3372 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3374 if (t->to_fileio_pread != NULL)
3376 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3380 fprintf_unfiltered (gdb_stdlog,
3381 "target_fileio_pread (%d,...,%d,%s) "
3383 fd, len, pulongest (offset),
3384 ret, ret != -1 ? 0 : *target_errno);
3389 *target_errno = FILEIO_ENOSYS;
3393 /* Close FD on the target. Return 0, or -1 if an error occurs
3394 (and set *TARGET_ERRNO). */
3396 target_fileio_close (int fd, int *target_errno)
3398 struct target_ops *t;
3400 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3402 if (t->to_fileio_close != NULL)
3404 int ret = t->to_fileio_close (fd, target_errno);
3407 fprintf_unfiltered (gdb_stdlog,
3408 "target_fileio_close (%d) = %d (%d)\n",
3409 fd, ret, ret != -1 ? 0 : *target_errno);
3414 *target_errno = FILEIO_ENOSYS;
3418 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3419 occurs (and set *TARGET_ERRNO). */
3421 target_fileio_unlink (const char *filename, int *target_errno)
3423 struct target_ops *t;
3425 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3427 if (t->to_fileio_unlink != NULL)
3429 int ret = t->to_fileio_unlink (filename, target_errno);
3432 fprintf_unfiltered (gdb_stdlog,
3433 "target_fileio_unlink (%s) = %d (%d)\n",
3434 filename, ret, ret != -1 ? 0 : *target_errno);
3439 *target_errno = FILEIO_ENOSYS;
3443 /* Read value of symbolic link FILENAME on the target. Return a
3444 null-terminated string allocated via xmalloc, or NULL if an error
3445 occurs (and set *TARGET_ERRNO). */
3447 target_fileio_readlink (const char *filename, int *target_errno)
3449 struct target_ops *t;
3451 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3453 if (t->to_fileio_readlink != NULL)
3455 char *ret = t->to_fileio_readlink (filename, target_errno);
3458 fprintf_unfiltered (gdb_stdlog,
3459 "target_fileio_readlink (%s) = %s (%d)\n",
3460 filename, ret? ret : "(nil)",
3461 ret? 0 : *target_errno);
3466 *target_errno = FILEIO_ENOSYS;
3471 target_fileio_close_cleanup (void *opaque)
3473 int fd = *(int *) opaque;
3476 target_fileio_close (fd, &target_errno);
3479 /* Read target file FILENAME. Store the result in *BUF_P and
3480 return the size of the transferred data. PADDING additional bytes are
3481 available in *BUF_P. This is a helper function for
3482 target_fileio_read_alloc; see the declaration of that function for more
3486 target_fileio_read_alloc_1 (const char *filename,
3487 gdb_byte **buf_p, int padding)
3489 struct cleanup *close_cleanup;
3490 size_t buf_alloc, buf_pos;
3496 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3500 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3502 /* Start by reading up to 4K at a time. The target will throttle
3503 this number down if necessary. */
3505 buf = xmalloc (buf_alloc);
3509 n = target_fileio_pread (fd, &buf[buf_pos],
3510 buf_alloc - buf_pos - padding, buf_pos,
3514 /* An error occurred. */
3515 do_cleanups (close_cleanup);
3521 /* Read all there was. */
3522 do_cleanups (close_cleanup);
3532 /* If the buffer is filling up, expand it. */
3533 if (buf_alloc < buf_pos * 2)
3536 buf = xrealloc (buf, buf_alloc);
3543 /* Read target file FILENAME. Store the result in *BUF_P and return
3544 the size of the transferred data. See the declaration in "target.h"
3545 function for more information about the return value. */
3548 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3550 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3553 /* Read target file FILENAME. The result is NUL-terminated and
3554 returned as a string, allocated using xmalloc. If an error occurs
3555 or the transfer is unsupported, NULL is returned. Empty objects
3556 are returned as allocated but empty strings. A warning is issued
3557 if the result contains any embedded NUL bytes. */
3560 target_fileio_read_stralloc (const char *filename)
3564 LONGEST i, transferred;
3566 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3567 bufstr = (char *) buffer;
3569 if (transferred < 0)
3572 if (transferred == 0)
3573 return xstrdup ("");
3575 bufstr[transferred] = 0;
3577 /* Check for embedded NUL bytes; but allow trailing NULs. */
3578 for (i = strlen (bufstr); i < transferred; i++)
3581 warning (_("target file %s "
3582 "contained unexpected null characters"),
3592 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3594 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3598 default_watchpoint_addr_within_range (struct target_ops *target,
3600 CORE_ADDR start, int length)
3602 return addr >= start && addr < start + length;
3605 static struct gdbarch *
3606 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3608 return target_gdbarch ();
3624 return_minus_one (void)
3629 /* Find a single runnable target in the stack and return it. If for
3630 some reason there is more than one, return NULL. */
3633 find_run_target (void)
3635 struct target_ops **t;
3636 struct target_ops *runable = NULL;
3641 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3643 if ((*t)->to_can_run && target_can_run (*t))
3650 return (count == 1 ? runable : NULL);
3654 * Find the next target down the stack from the specified target.
3658 find_target_beneath (struct target_ops *t)
3664 /* The inferior process has died. Long live the inferior! */
3667 generic_mourn_inferior (void)
3671 ptid = inferior_ptid;
3672 inferior_ptid = null_ptid;
3674 /* Mark breakpoints uninserted in case something tries to delete a
3675 breakpoint while we delete the inferior's threads (which would
3676 fail, since the inferior is long gone). */
3677 mark_breakpoints_out ();
3679 if (!ptid_equal (ptid, null_ptid))
3681 int pid = ptid_get_pid (ptid);
3682 exit_inferior (pid);
3685 /* Note this wipes step-resume breakpoints, so needs to be done
3686 after exit_inferior, which ends up referencing the step-resume
3687 breakpoints through clear_thread_inferior_resources. */
3688 breakpoint_init_inferior (inf_exited);
3690 registers_changed ();
3692 reopen_exec_file ();
3693 reinit_frame_cache ();
3695 if (deprecated_detach_hook)
3696 deprecated_detach_hook ();
3699 /* Convert a normal process ID to a string. Returns the string in a
3703 normal_pid_to_str (ptid_t ptid)
3705 static char buf[32];
3707 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3712 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3714 return normal_pid_to_str (ptid);
3717 /* Error-catcher for target_find_memory_regions. */
3719 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3721 error (_("Command not implemented for this target."));
3725 /* Error-catcher for target_make_corefile_notes. */
3727 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3729 error (_("Command not implemented for this target."));
3733 /* Error-catcher for target_get_bookmark. */
3735 dummy_get_bookmark (char *ignore1, int ignore2)
3741 /* Error-catcher for target_goto_bookmark. */
3743 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3748 /* Set up the handful of non-empty slots needed by the dummy target
3752 init_dummy_target (void)
3754 dummy_target.to_shortname = "None";
3755 dummy_target.to_longname = "None";
3756 dummy_target.to_doc = "";
3757 dummy_target.to_attach = find_default_attach;
3758 dummy_target.to_detach =
3759 (void (*)(struct target_ops *, char *, int))target_ignore;
3760 dummy_target.to_create_inferior = find_default_create_inferior;
3761 dummy_target.to_can_async_p = find_default_can_async_p;
3762 dummy_target.to_is_async_p = find_default_is_async_p;
3763 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3764 dummy_target.to_supports_disable_randomization
3765 = find_default_supports_disable_randomization;
3766 dummy_target.to_pid_to_str = dummy_pid_to_str;
3767 dummy_target.to_stratum = dummy_stratum;
3768 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3769 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3770 dummy_target.to_get_bookmark = dummy_get_bookmark;
3771 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3772 dummy_target.to_xfer_partial = default_xfer_partial;
3773 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3774 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3775 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3776 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3777 dummy_target.to_has_execution
3778 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3779 dummy_target.to_stopped_by_watchpoint = return_zero;
3780 dummy_target.to_stopped_data_address =
3781 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3782 dummy_target.to_magic = OPS_MAGIC;
3786 debug_to_open (char *args, int from_tty)
3788 debug_target.to_open (args, from_tty);
3790 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3794 target_close (struct target_ops *targ)
3796 if (targ->to_xclose != NULL)
3797 targ->to_xclose (targ);
3798 else if (targ->to_close != NULL)
3802 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3806 target_attach (char *args, int from_tty)
3808 struct target_ops *t;
3810 for (t = current_target.beneath; t != NULL; t = t->beneath)
3812 if (t->to_attach != NULL)
3814 t->to_attach (t, args, from_tty);
3816 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3822 internal_error (__FILE__, __LINE__,
3823 _("could not find a target to attach"));
3827 target_thread_alive (ptid_t ptid)
3829 struct target_ops *t;
3831 for (t = current_target.beneath; t != NULL; t = t->beneath)
3833 if (t->to_thread_alive != NULL)
3837 retval = t->to_thread_alive (t, ptid);
3839 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3840 PIDGET (ptid), retval);
3850 target_find_new_threads (void)
3852 struct target_ops *t;
3854 for (t = current_target.beneath; t != NULL; t = t->beneath)
3856 if (t->to_find_new_threads != NULL)
3858 t->to_find_new_threads (t);
3860 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3868 target_stop (ptid_t ptid)
3872 warning (_("May not interrupt or stop the target, ignoring attempt"));
3876 (*current_target.to_stop) (ptid);
3880 debug_to_post_attach (int pid)
3882 debug_target.to_post_attach (pid);
3884 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3887 /* Return a pretty printed form of target_waitstatus.
3888 Space for the result is malloc'd, caller must free. */
3891 target_waitstatus_to_string (const struct target_waitstatus *ws)
3893 const char *kind_str = "status->kind = ";
3897 case TARGET_WAITKIND_EXITED:
3898 return xstrprintf ("%sexited, status = %d",
3899 kind_str, ws->value.integer);
3900 case TARGET_WAITKIND_STOPPED:
3901 return xstrprintf ("%sstopped, signal = %s",
3902 kind_str, gdb_signal_to_name (ws->value.sig));
3903 case TARGET_WAITKIND_SIGNALLED:
3904 return xstrprintf ("%ssignalled, signal = %s",
3905 kind_str, gdb_signal_to_name (ws->value.sig));
3906 case TARGET_WAITKIND_LOADED:
3907 return xstrprintf ("%sloaded", kind_str);
3908 case TARGET_WAITKIND_FORKED:
3909 return xstrprintf ("%sforked", kind_str);
3910 case TARGET_WAITKIND_VFORKED:
3911 return xstrprintf ("%svforked", kind_str);
3912 case TARGET_WAITKIND_EXECD:
3913 return xstrprintf ("%sexecd", kind_str);
3914 case TARGET_WAITKIND_VFORK_DONE:
3915 return xstrprintf ("%svfork-done", kind_str);
3916 case TARGET_WAITKIND_SYSCALL_ENTRY:
3917 return xstrprintf ("%sentered syscall", kind_str);
3918 case TARGET_WAITKIND_SYSCALL_RETURN:
3919 return xstrprintf ("%sexited syscall", kind_str);
3920 case TARGET_WAITKIND_SPURIOUS:
3921 return xstrprintf ("%sspurious", kind_str);
3922 case TARGET_WAITKIND_IGNORE:
3923 return xstrprintf ("%signore", kind_str);
3924 case TARGET_WAITKIND_NO_HISTORY:
3925 return xstrprintf ("%sno-history", kind_str);
3926 case TARGET_WAITKIND_NO_RESUMED:
3927 return xstrprintf ("%sno-resumed", kind_str);
3929 return xstrprintf ("%sunknown???", kind_str);
3933 /* Concatenate ELEM to LIST, a comma separate list, and return the
3934 result. The LIST incoming argument is released. */
3937 str_comma_list_concat_elem (char *list, const char *elem)
3940 return xstrdup (elem);
3942 return reconcat (list, list, ", ", elem, (char *) NULL);
3945 /* Helper for target_options_to_string. If OPT is present in
3946 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3947 Returns the new resulting string. OPT is removed from
3951 do_option (int *target_options, char *ret,
3952 int opt, char *opt_str)
3954 if ((*target_options & opt) != 0)
3956 ret = str_comma_list_concat_elem (ret, opt_str);
3957 *target_options &= ~opt;
3964 target_options_to_string (int target_options)
3968 #define DO_TARG_OPTION(OPT) \
3969 ret = do_option (&target_options, ret, OPT, #OPT)
3971 DO_TARG_OPTION (TARGET_WNOHANG);
3973 if (target_options != 0)
3974 ret = str_comma_list_concat_elem (ret, "unknown???");
3982 debug_print_register (const char * func,
3983 struct regcache *regcache, int regno)
3985 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3987 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3988 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3989 && gdbarch_register_name (gdbarch, regno) != NULL
3990 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3991 fprintf_unfiltered (gdb_stdlog, "(%s)",
3992 gdbarch_register_name (gdbarch, regno));
3994 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3995 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3998 int i, size = register_size (gdbarch, regno);
3999 gdb_byte buf[MAX_REGISTER_SIZE];
4001 regcache_raw_collect (regcache, regno, buf);
4002 fprintf_unfiltered (gdb_stdlog, " = ");
4003 for (i = 0; i < size; i++)
4005 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4007 if (size <= sizeof (LONGEST))
4009 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
4011 fprintf_unfiltered (gdb_stdlog, " %s %s",
4012 core_addr_to_string_nz (val), plongest (val));
4015 fprintf_unfiltered (gdb_stdlog, "\n");
4019 target_fetch_registers (struct regcache *regcache, int regno)
4021 struct target_ops *t;
4023 for (t = current_target.beneath; t != NULL; t = t->beneath)
4025 if (t->to_fetch_registers != NULL)
4027 t->to_fetch_registers (t, regcache, regno);
4029 debug_print_register ("target_fetch_registers", regcache, regno);
4036 target_store_registers (struct regcache *regcache, int regno)
4038 struct target_ops *t;
4040 if (!may_write_registers)
4041 error (_("Writing to registers is not allowed (regno %d)"), regno);
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4045 if (t->to_store_registers != NULL)
4047 t->to_store_registers (t, regcache, regno);
4050 debug_print_register ("target_store_registers", regcache, regno);
4060 target_core_of_thread (ptid_t ptid)
4062 struct target_ops *t;
4064 for (t = current_target.beneath; t != NULL; t = t->beneath)
4066 if (t->to_core_of_thread != NULL)
4068 int retval = t->to_core_of_thread (t, ptid);
4071 fprintf_unfiltered (gdb_stdlog,
4072 "target_core_of_thread (%d) = %d\n",
4073 PIDGET (ptid), retval);
4082 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4084 struct target_ops *t;
4086 for (t = current_target.beneath; t != NULL; t = t->beneath)
4088 if (t->to_verify_memory != NULL)
4090 int retval = t->to_verify_memory (t, data, memaddr, size);
4093 fprintf_unfiltered (gdb_stdlog,
4094 "target_verify_memory (%s, %s) = %d\n",
4095 paddress (target_gdbarch (), memaddr),
4105 /* The documentation for this function is in its prototype declaration in
4109 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4111 struct target_ops *t;
4113 for (t = current_target.beneath; t != NULL; t = t->beneath)
4114 if (t->to_insert_mask_watchpoint != NULL)
4118 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4121 fprintf_unfiltered (gdb_stdlog, "\
4122 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4123 core_addr_to_string (addr),
4124 core_addr_to_string (mask), rw, ret);
4132 /* The documentation for this function is in its prototype declaration in
4136 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4138 struct target_ops *t;
4140 for (t = current_target.beneath; t != NULL; t = t->beneath)
4141 if (t->to_remove_mask_watchpoint != NULL)
4145 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4148 fprintf_unfiltered (gdb_stdlog, "\
4149 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4150 core_addr_to_string (addr),
4151 core_addr_to_string (mask), rw, ret);
4159 /* The documentation for this function is in its prototype declaration
4163 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4165 struct target_ops *t;
4167 for (t = current_target.beneath; t != NULL; t = t->beneath)
4168 if (t->to_masked_watch_num_registers != NULL)
4169 return t->to_masked_watch_num_registers (t, addr, mask);
4174 /* The documentation for this function is in its prototype declaration
4178 target_ranged_break_num_registers (void)
4180 struct target_ops *t;
4182 for (t = current_target.beneath; t != NULL; t = t->beneath)
4183 if (t->to_ranged_break_num_registers != NULL)
4184 return t->to_ranged_break_num_registers (t);
4192 target_supports_btrace (void)
4194 struct target_ops *t;
4196 for (t = current_target.beneath; t != NULL; t = t->beneath)
4197 if (t->to_supports_btrace != NULL)
4198 return t->to_supports_btrace ();
4205 struct btrace_target_info *
4206 target_enable_btrace (ptid_t ptid)
4208 struct target_ops *t;
4210 for (t = current_target.beneath; t != NULL; t = t->beneath)
4211 if (t->to_enable_btrace != NULL)
4212 return t->to_enable_btrace (ptid);
4221 target_disable_btrace (struct btrace_target_info *btinfo)
4223 struct target_ops *t;
4225 for (t = current_target.beneath; t != NULL; t = t->beneath)
4226 if (t->to_disable_btrace != NULL)
4227 return t->to_disable_btrace (btinfo);
4235 target_teardown_btrace (struct btrace_target_info *btinfo)
4237 struct target_ops *t;
4239 for (t = current_target.beneath; t != NULL; t = t->beneath)
4240 if (t->to_teardown_btrace != NULL)
4241 return t->to_teardown_btrace (btinfo);
4248 VEC (btrace_block_s) *
4249 target_read_btrace (struct btrace_target_info *btinfo,
4250 enum btrace_read_type type)
4252 struct target_ops *t;
4254 for (t = current_target.beneath; t != NULL; t = t->beneath)
4255 if (t->to_read_btrace != NULL)
4256 return t->to_read_btrace (btinfo, type);
4265 target_stop_recording (void)
4267 struct target_ops *t;
4269 for (t = current_target.beneath; t != NULL; t = t->beneath)
4270 if (t->to_stop_recording != NULL)
4272 t->to_stop_recording ();
4276 /* This is optional. */
4282 target_info_record (void)
4284 struct target_ops *t;
4286 for (t = current_target.beneath; t != NULL; t = t->beneath)
4287 if (t->to_info_record != NULL)
4289 t->to_info_record ();
4299 target_save_record (char *filename)
4301 struct target_ops *t;
4303 for (t = current_target.beneath; t != NULL; t = t->beneath)
4304 if (t->to_save_record != NULL)
4306 t->to_save_record (filename);
4316 target_supports_delete_record (void)
4318 struct target_ops *t;
4320 for (t = current_target.beneath; t != NULL; t = t->beneath)
4321 if (t->to_delete_record != NULL)
4330 target_delete_record (void)
4332 struct target_ops *t;
4334 for (t = current_target.beneath; t != NULL; t = t->beneath)
4335 if (t->to_delete_record != NULL)
4337 t->to_delete_record ();
4347 target_record_is_replaying (void)
4349 struct target_ops *t;
4351 for (t = current_target.beneath; t != NULL; t = t->beneath)
4352 if (t->to_record_is_replaying != NULL)
4353 return t->to_record_is_replaying ();
4361 target_goto_record_begin (void)
4363 struct target_ops *t;
4365 for (t = current_target.beneath; t != NULL; t = t->beneath)
4366 if (t->to_goto_record_begin != NULL)
4368 t->to_goto_record_begin ();
4378 target_goto_record_end (void)
4380 struct target_ops *t;
4382 for (t = current_target.beneath; t != NULL; t = t->beneath)
4383 if (t->to_goto_record_end != NULL)
4385 t->to_goto_record_end ();
4395 target_goto_record (ULONGEST insn)
4397 struct target_ops *t;
4399 for (t = current_target.beneath; t != NULL; t = t->beneath)
4400 if (t->to_goto_record != NULL)
4402 t->to_goto_record (insn);
4412 target_insn_history (int size, int flags)
4414 struct target_ops *t;
4416 for (t = current_target.beneath; t != NULL; t = t->beneath)
4417 if (t->to_insn_history != NULL)
4419 t->to_insn_history (size, flags);
4429 target_insn_history_from (ULONGEST from, int size, int flags)
4431 struct target_ops *t;
4433 for (t = current_target.beneath; t != NULL; t = t->beneath)
4434 if (t->to_insn_history_from != NULL)
4436 t->to_insn_history_from (from, size, flags);
4446 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4448 struct target_ops *t;
4450 for (t = current_target.beneath; t != NULL; t = t->beneath)
4451 if (t->to_insn_history_range != NULL)
4453 t->to_insn_history_range (begin, end, flags);
4463 target_call_history (int size, int flags)
4465 struct target_ops *t;
4467 for (t = current_target.beneath; t != NULL; t = t->beneath)
4468 if (t->to_call_history != NULL)
4470 t->to_call_history (size, flags);
4480 target_call_history_from (ULONGEST begin, int size, int flags)
4482 struct target_ops *t;
4484 for (t = current_target.beneath; t != NULL; t = t->beneath)
4485 if (t->to_call_history_from != NULL)
4487 t->to_call_history_from (begin, size, flags);
4497 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4499 struct target_ops *t;
4501 for (t = current_target.beneath; t != NULL; t = t->beneath)
4502 if (t->to_call_history_range != NULL)
4504 t->to_call_history_range (begin, end, flags);
4512 debug_to_prepare_to_store (struct regcache *regcache)
4514 debug_target.to_prepare_to_store (regcache);
4516 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4520 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4521 int write, struct mem_attrib *attrib,
4522 struct target_ops *target)
4526 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4529 fprintf_unfiltered (gdb_stdlog,
4530 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4531 paddress (target_gdbarch (), memaddr), len,
4532 write ? "write" : "read", retval);
4538 fputs_unfiltered (", bytes =", gdb_stdlog);
4539 for (i = 0; i < retval; i++)
4541 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4543 if (targetdebug < 2 && i > 0)
4545 fprintf_unfiltered (gdb_stdlog, " ...");
4548 fprintf_unfiltered (gdb_stdlog, "\n");
4551 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4555 fputc_unfiltered ('\n', gdb_stdlog);
4561 debug_to_files_info (struct target_ops *target)
4563 debug_target.to_files_info (target);
4565 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4569 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4570 struct bp_target_info *bp_tgt)
4574 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4576 fprintf_unfiltered (gdb_stdlog,
4577 "target_insert_breakpoint (%s, xxx) = %ld\n",
4578 core_addr_to_string (bp_tgt->placed_address),
4579 (unsigned long) retval);
4584 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4585 struct bp_target_info *bp_tgt)
4589 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4591 fprintf_unfiltered (gdb_stdlog,
4592 "target_remove_breakpoint (%s, xxx) = %ld\n",
4593 core_addr_to_string (bp_tgt->placed_address),
4594 (unsigned long) retval);
4599 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4603 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4605 fprintf_unfiltered (gdb_stdlog,
4606 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4607 (unsigned long) type,
4608 (unsigned long) cnt,
4609 (unsigned long) from_tty,
4610 (unsigned long) retval);
4615 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4619 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4621 fprintf_unfiltered (gdb_stdlog,
4622 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4623 core_addr_to_string (addr), (unsigned long) len,
4624 core_addr_to_string (retval));
4629 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4630 struct expression *cond)
4634 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4637 fprintf_unfiltered (gdb_stdlog,
4638 "target_can_accel_watchpoint_condition "
4639 "(%s, %d, %d, %s) = %ld\n",
4640 core_addr_to_string (addr), len, rw,
4641 host_address_to_string (cond), (unsigned long) retval);
4646 debug_to_stopped_by_watchpoint (void)
4650 retval = debug_target.to_stopped_by_watchpoint ();
4652 fprintf_unfiltered (gdb_stdlog,
4653 "target_stopped_by_watchpoint () = %ld\n",
4654 (unsigned long) retval);
4659 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4663 retval = debug_target.to_stopped_data_address (target, addr);
4665 fprintf_unfiltered (gdb_stdlog,
4666 "target_stopped_data_address ([%s]) = %ld\n",
4667 core_addr_to_string (*addr),
4668 (unsigned long)retval);
4673 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4675 CORE_ADDR start, int length)
4679 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4682 fprintf_filtered (gdb_stdlog,
4683 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4684 core_addr_to_string (addr), core_addr_to_string (start),
4690 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4691 struct bp_target_info *bp_tgt)
4695 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4697 fprintf_unfiltered (gdb_stdlog,
4698 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4699 core_addr_to_string (bp_tgt->placed_address),
4700 (unsigned long) retval);
4705 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4706 struct bp_target_info *bp_tgt)
4710 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4712 fprintf_unfiltered (gdb_stdlog,
4713 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4714 core_addr_to_string (bp_tgt->placed_address),
4715 (unsigned long) retval);
4720 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4721 struct expression *cond)
4725 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4727 fprintf_unfiltered (gdb_stdlog,
4728 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4729 core_addr_to_string (addr), len, type,
4730 host_address_to_string (cond), (unsigned long) retval);
4735 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4736 struct expression *cond)
4740 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4742 fprintf_unfiltered (gdb_stdlog,
4743 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4744 core_addr_to_string (addr), len, type,
4745 host_address_to_string (cond), (unsigned long) retval);
4750 debug_to_terminal_init (void)
4752 debug_target.to_terminal_init ();
4754 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4758 debug_to_terminal_inferior (void)
4760 debug_target.to_terminal_inferior ();
4762 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4766 debug_to_terminal_ours_for_output (void)
4768 debug_target.to_terminal_ours_for_output ();
4770 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4774 debug_to_terminal_ours (void)
4776 debug_target.to_terminal_ours ();
4778 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4782 debug_to_terminal_save_ours (void)
4784 debug_target.to_terminal_save_ours ();
4786 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4790 debug_to_terminal_info (char *arg, int from_tty)
4792 debug_target.to_terminal_info (arg, from_tty);
4794 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4799 debug_to_load (char *args, int from_tty)
4801 debug_target.to_load (args, from_tty);
4803 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4807 debug_to_post_startup_inferior (ptid_t ptid)
4809 debug_target.to_post_startup_inferior (ptid);
4811 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4816 debug_to_insert_fork_catchpoint (int pid)
4820 retval = debug_target.to_insert_fork_catchpoint (pid);
4822 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4829 debug_to_remove_fork_catchpoint (int pid)
4833 retval = debug_target.to_remove_fork_catchpoint (pid);
4835 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4842 debug_to_insert_vfork_catchpoint (int pid)
4846 retval = debug_target.to_insert_vfork_catchpoint (pid);
4848 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4855 debug_to_remove_vfork_catchpoint (int pid)
4859 retval = debug_target.to_remove_vfork_catchpoint (pid);
4861 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4868 debug_to_insert_exec_catchpoint (int pid)
4872 retval = debug_target.to_insert_exec_catchpoint (pid);
4874 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4881 debug_to_remove_exec_catchpoint (int pid)
4885 retval = debug_target.to_remove_exec_catchpoint (pid);
4887 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4894 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4898 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4900 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4901 pid, wait_status, *exit_status, has_exited);
4907 debug_to_can_run (void)
4911 retval = debug_target.to_can_run ();
4913 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4918 static struct gdbarch *
4919 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4921 struct gdbarch *retval;
4923 retval = debug_target.to_thread_architecture (ops, ptid);
4925 fprintf_unfiltered (gdb_stdlog,
4926 "target_thread_architecture (%s) = %s [%s]\n",
4927 target_pid_to_str (ptid),
4928 host_address_to_string (retval),
4929 gdbarch_bfd_arch_info (retval)->printable_name);
4934 debug_to_stop (ptid_t ptid)
4936 debug_target.to_stop (ptid);
4938 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4939 target_pid_to_str (ptid));
4943 debug_to_rcmd (char *command,
4944 struct ui_file *outbuf)
4946 debug_target.to_rcmd (command, outbuf);
4947 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4951 debug_to_pid_to_exec_file (int pid)
4955 exec_file = debug_target.to_pid_to_exec_file (pid);
4957 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4964 setup_target_debug (void)
4966 memcpy (&debug_target, ¤t_target, sizeof debug_target);
4968 current_target.to_open = debug_to_open;
4969 current_target.to_post_attach = debug_to_post_attach;
4970 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4971 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4972 current_target.to_files_info = debug_to_files_info;
4973 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4974 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4975 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4976 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4977 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4978 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4979 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4980 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4981 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4982 current_target.to_watchpoint_addr_within_range
4983 = debug_to_watchpoint_addr_within_range;
4984 current_target.to_region_ok_for_hw_watchpoint
4985 = debug_to_region_ok_for_hw_watchpoint;
4986 current_target.to_can_accel_watchpoint_condition
4987 = debug_to_can_accel_watchpoint_condition;
4988 current_target.to_terminal_init = debug_to_terminal_init;
4989 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4990 current_target.to_terminal_ours_for_output
4991 = debug_to_terminal_ours_for_output;
4992 current_target.to_terminal_ours = debug_to_terminal_ours;
4993 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4994 current_target.to_terminal_info = debug_to_terminal_info;
4995 current_target.to_load = debug_to_load;
4996 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4997 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4998 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4999 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
5000 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
5001 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
5002 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
5003 current_target.to_has_exited = debug_to_has_exited;
5004 current_target.to_can_run = debug_to_can_run;
5005 current_target.to_stop = debug_to_stop;
5006 current_target.to_rcmd = debug_to_rcmd;
5007 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
5008 current_target.to_thread_architecture = debug_to_thread_architecture;
5012 static char targ_desc[] =
5013 "Names of targets and files being debugged.\nShows the entire \
5014 stack of targets currently in use (including the exec-file,\n\
5015 core-file, and process, if any), as well as the symbol file name.";
5018 do_monitor_command (char *cmd,
5021 if ((current_target.to_rcmd
5022 == (void (*) (char *, struct ui_file *)) tcomplain)
5023 || (current_target.to_rcmd == debug_to_rcmd
5024 && (debug_target.to_rcmd
5025 == (void (*) (char *, struct ui_file *)) tcomplain)))
5026 error (_("\"monitor\" command not supported by this target."));
5027 target_rcmd (cmd, gdb_stdtarg);
5030 /* Print the name of each layers of our target stack. */
5033 maintenance_print_target_stack (char *cmd, int from_tty)
5035 struct target_ops *t;
5037 printf_filtered (_("The current target stack is:\n"));
5039 for (t = target_stack; t != NULL; t = t->beneath)
5041 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5045 /* Controls if async mode is permitted. */
5046 int target_async_permitted = 0;
5048 /* The set command writes to this variable. If the inferior is
5049 executing, linux_nat_async_permitted is *not* updated. */
5050 static int target_async_permitted_1 = 0;
5053 set_target_async_command (char *args, int from_tty,
5054 struct cmd_list_element *c)
5056 if (have_live_inferiors ())
5058 target_async_permitted_1 = target_async_permitted;
5059 error (_("Cannot change this setting while the inferior is running."));
5062 target_async_permitted = target_async_permitted_1;
5066 show_target_async_command (struct ui_file *file, int from_tty,
5067 struct cmd_list_element *c,
5070 fprintf_filtered (file,
5071 _("Controlling the inferior in "
5072 "asynchronous mode is %s.\n"), value);
5075 /* Temporary copies of permission settings. */
5077 static int may_write_registers_1 = 1;
5078 static int may_write_memory_1 = 1;
5079 static int may_insert_breakpoints_1 = 1;
5080 static int may_insert_tracepoints_1 = 1;
5081 static int may_insert_fast_tracepoints_1 = 1;
5082 static int may_stop_1 = 1;
5084 /* Make the user-set values match the real values again. */
5087 update_target_permissions (void)
5089 may_write_registers_1 = may_write_registers;
5090 may_write_memory_1 = may_write_memory;
5091 may_insert_breakpoints_1 = may_insert_breakpoints;
5092 may_insert_tracepoints_1 = may_insert_tracepoints;
5093 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5094 may_stop_1 = may_stop;
5097 /* The one function handles (most of) the permission flags in the same
5101 set_target_permissions (char *args, int from_tty,
5102 struct cmd_list_element *c)
5104 if (target_has_execution)
5106 update_target_permissions ();
5107 error (_("Cannot change this setting while the inferior is running."));
5110 /* Make the real values match the user-changed values. */
5111 may_write_registers = may_write_registers_1;
5112 may_insert_breakpoints = may_insert_breakpoints_1;
5113 may_insert_tracepoints = may_insert_tracepoints_1;
5114 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5115 may_stop = may_stop_1;
5116 update_observer_mode ();
5119 /* Set memory write permission independently of observer mode. */
5122 set_write_memory_permission (char *args, int from_tty,
5123 struct cmd_list_element *c)
5125 /* Make the real values match the user-changed values. */
5126 may_write_memory = may_write_memory_1;
5127 update_observer_mode ();
5132 initialize_targets (void)
5134 init_dummy_target ();
5135 push_target (&dummy_target);
5137 add_info ("target", target_info, targ_desc);
5138 add_info ("files", target_info, targ_desc);
5140 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5141 Set target debugging."), _("\
5142 Show target debugging."), _("\
5143 When non-zero, target debugging is enabled. Higher numbers are more\n\
5144 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5148 &setdebuglist, &showdebuglist);
5150 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5151 &trust_readonly, _("\
5152 Set mode for reading from readonly sections."), _("\
5153 Show mode for reading from readonly sections."), _("\
5154 When this mode is on, memory reads from readonly sections (such as .text)\n\
5155 will be read from the object file instead of from the target. This will\n\
5156 result in significant performance improvement for remote targets."),
5158 show_trust_readonly,
5159 &setlist, &showlist);
5161 add_com ("monitor", class_obscure, do_monitor_command,
5162 _("Send a command to the remote monitor (remote targets only)."));
5164 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5165 _("Print the name of each layer of the internal target stack."),
5166 &maintenanceprintlist);
5168 add_setshow_boolean_cmd ("target-async", no_class,
5169 &target_async_permitted_1, _("\
5170 Set whether gdb controls the inferior in asynchronous mode."), _("\
5171 Show whether gdb controls the inferior in asynchronous mode."), _("\
5172 Tells gdb whether to control the inferior in asynchronous mode."),
5173 set_target_async_command,
5174 show_target_async_command,
5178 add_setshow_boolean_cmd ("stack-cache", class_support,
5179 &stack_cache_enabled_p_1, _("\
5180 Set cache use for stack access."), _("\
5181 Show cache use for stack access."), _("\
5182 When on, use the data cache for all stack access, regardless of any\n\
5183 configured memory regions. This improves remote performance significantly.\n\
5184 By default, caching for stack access is on."),
5185 set_stack_cache_enabled_p,
5186 show_stack_cache_enabled_p,
5187 &setlist, &showlist);
5189 add_setshow_boolean_cmd ("may-write-registers", class_support,
5190 &may_write_registers_1, _("\
5191 Set permission to write into registers."), _("\
5192 Show permission to write into registers."), _("\
5193 When this permission is on, GDB may write into the target's registers.\n\
5194 Otherwise, any sort of write attempt will result in an error."),
5195 set_target_permissions, NULL,
5196 &setlist, &showlist);
5198 add_setshow_boolean_cmd ("may-write-memory", class_support,
5199 &may_write_memory_1, _("\
5200 Set permission to write into target memory."), _("\
5201 Show permission to write into target memory."), _("\
5202 When this permission is on, GDB may write into the target's memory.\n\
5203 Otherwise, any sort of write attempt will result in an error."),
5204 set_write_memory_permission, NULL,
5205 &setlist, &showlist);
5207 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5208 &may_insert_breakpoints_1, _("\
5209 Set permission to insert breakpoints in the target."), _("\
5210 Show permission to insert breakpoints in the target."), _("\
5211 When this permission is on, GDB may insert breakpoints in the program.\n\
5212 Otherwise, any sort of insertion attempt will result in an error."),
5213 set_target_permissions, NULL,
5214 &setlist, &showlist);
5216 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5217 &may_insert_tracepoints_1, _("\
5218 Set permission to insert tracepoints in the target."), _("\
5219 Show permission to insert tracepoints in the target."), _("\
5220 When this permission is on, GDB may insert tracepoints in the program.\n\
5221 Otherwise, any sort of insertion attempt will result in an error."),
5222 set_target_permissions, NULL,
5223 &setlist, &showlist);
5225 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5226 &may_insert_fast_tracepoints_1, _("\
5227 Set permission to insert fast tracepoints in the target."), _("\
5228 Show permission to insert fast tracepoints in the target."), _("\
5229 When this permission is on, GDB may insert fast tracepoints.\n\
5230 Otherwise, any sort of insertion attempt will result in an error."),
5231 set_target_permissions, NULL,
5232 &setlist, &showlist);
5234 add_setshow_boolean_cmd ("may-interrupt", class_support,
5236 Set permission to interrupt or signal the target."), _("\
5237 Show permission to interrupt or signal the target."), _("\
5238 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5239 Otherwise, any attempt to interrupt or stop will be ignored."),
5240 set_target_permissions, NULL,
5241 &setlist, &showlist);
5244 target_dcache = dcache_init ();