1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/index-cache.h"
36 #include "dwarf2/index-common.h"
37 #include "dwarf2/leb.h"
46 #include "gdb-demangle.h"
47 #include "filenames.h" /* for DOSish file names */
50 #include "complaints.h"
51 #include "dwarf2/expr.h"
52 #include "dwarf2/loc.h"
53 #include "cp-support.h"
59 #include "typeprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "namespace.h"
71 #include "gdbsupport/function-view.h"
72 #include "gdbsupport/gdb_optional.h"
73 #include "gdbsupport/underlying.h"
74 #include "gdbsupport/hash_enum.h"
75 #include "filename-seen-cache.h"
79 #include <unordered_map>
80 #include "gdbsupport/selftest.h"
81 #include "rust-lang.h"
82 #include "gdbsupport/pathstuff.h"
84 /* When == 1, print basic high level tracing messages.
85 When > 1, be more verbose.
86 This is in contrast to the low level DIE reading of dwarf_die_debug. */
87 static unsigned int dwarf_read_debug = 0;
89 /* When non-zero, dump DIEs after they are read in. */
90 static unsigned int dwarf_die_debug = 0;
92 /* When non-zero, dump line number entries as they are read in. */
93 static unsigned int dwarf_line_debug = 0;
95 /* When true, cross-check physname against demangler. */
96 static bool check_physname = false;
98 /* When true, do not reject deprecated .gdb_index sections. */
99 static bool use_deprecated_index_sections = false;
101 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
103 /* The "aclass" indices for various kinds of computed DWARF symbols. */
105 static int dwarf2_locexpr_index;
106 static int dwarf2_loclist_index;
107 static int dwarf2_locexpr_block_index;
108 static int dwarf2_loclist_block_index;
110 /* An index into a (C++) symbol name component in a symbol name as
111 recorded in the mapped_index's symbol table. For each C++ symbol
112 in the symbol table, we record one entry for the start of each
113 component in the symbol in a table of name components, and then
114 sort the table, in order to be able to binary search symbol names,
115 ignoring leading namespaces, both completion and regular look up.
116 For example, for symbol "A::B::C", we'll have an entry that points
117 to "A::B::C", another that points to "B::C", and another for "C".
118 Note that function symbols in GDB index have no parameter
119 information, just the function/method names. You can convert a
120 name_component to a "const char *" using the
121 'mapped_index::symbol_name_at(offset_type)' method. */
123 struct name_component
125 /* Offset in the symbol name where the component starts. Stored as
126 a (32-bit) offset instead of a pointer to save memory and improve
127 locality on 64-bit architectures. */
128 offset_type name_offset;
130 /* The symbol's index in the symbol and constant pool tables of a
135 /* Base class containing bits shared by both .gdb_index and
136 .debug_name indexes. */
138 struct mapped_index_base
140 mapped_index_base () = default;
141 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
143 /* The name_component table (a sorted vector). See name_component's
144 description above. */
145 std::vector<name_component> name_components;
147 /* How NAME_COMPONENTS is sorted. */
148 enum case_sensitivity name_components_casing;
150 /* Return the number of names in the symbol table. */
151 virtual size_t symbol_name_count () const = 0;
153 /* Get the name of the symbol at IDX in the symbol table. */
154 virtual const char *symbol_name_at (offset_type idx) const = 0;
156 /* Return whether the name at IDX in the symbol table should be
158 virtual bool symbol_name_slot_invalid (offset_type idx) const
163 /* Build the symbol name component sorted vector, if we haven't
165 void build_name_components ();
167 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
168 possible matches for LN_NO_PARAMS in the name component
170 std::pair<std::vector<name_component>::const_iterator,
171 std::vector<name_component>::const_iterator>
172 find_name_components_bounds (const lookup_name_info &ln_no_params,
173 enum language lang) const;
175 /* Prevent deleting/destroying via a base class pointer. */
177 ~mapped_index_base() = default;
180 /* A description of the mapped index. The file format is described in
181 a comment by the code that writes the index. */
182 struct mapped_index final : public mapped_index_base
184 /* A slot/bucket in the symbol table hash. */
185 struct symbol_table_slot
187 const offset_type name;
188 const offset_type vec;
191 /* Index data format version. */
194 /* The address table data. */
195 gdb::array_view<const gdb_byte> address_table;
197 /* The symbol table, implemented as a hash table. */
198 gdb::array_view<symbol_table_slot> symbol_table;
200 /* A pointer to the constant pool. */
201 const char *constant_pool = nullptr;
203 bool symbol_name_slot_invalid (offset_type idx) const override
205 const auto &bucket = this->symbol_table[idx];
206 return bucket.name == 0 && bucket.vec == 0;
209 /* Convenience method to get at the name of the symbol at IDX in the
211 const char *symbol_name_at (offset_type idx) const override
212 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
214 size_t symbol_name_count () const override
215 { return this->symbol_table.size (); }
218 /* A description of the mapped .debug_names.
219 Uninitialized map has CU_COUNT 0. */
220 struct mapped_debug_names final : public mapped_index_base
222 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
223 : dwarf2_per_objfile (dwarf2_per_objfile_)
226 struct dwarf2_per_objfile *dwarf2_per_objfile;
227 bfd_endian dwarf5_byte_order;
228 bool dwarf5_is_dwarf64;
229 bool augmentation_is_gdb;
231 uint32_t cu_count = 0;
232 uint32_t tu_count, bucket_count, name_count;
233 const gdb_byte *cu_table_reordered, *tu_table_reordered;
234 const uint32_t *bucket_table_reordered, *hash_table_reordered;
235 const gdb_byte *name_table_string_offs_reordered;
236 const gdb_byte *name_table_entry_offs_reordered;
237 const gdb_byte *entry_pool;
244 /* Attribute name DW_IDX_*. */
247 /* Attribute form DW_FORM_*. */
250 /* Value if FORM is DW_FORM_implicit_const. */
251 LONGEST implicit_const;
253 std::vector<attr> attr_vec;
256 std::unordered_map<ULONGEST, index_val> abbrev_map;
258 const char *namei_to_name (uint32_t namei) const;
260 /* Implementation of the mapped_index_base virtual interface, for
261 the name_components cache. */
263 const char *symbol_name_at (offset_type idx) const override
264 { return namei_to_name (idx); }
266 size_t symbol_name_count () const override
267 { return this->name_count; }
270 /* See dwarf2read.h. */
273 get_dwarf2_per_objfile (struct objfile *objfile)
275 return dwarf2_objfile_data_key.get (objfile);
278 /* Default names of the debugging sections. */
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_loclists", ".zdebug_loclists" },
290 { ".debug_macinfo", ".zdebug_macinfo" },
291 { ".debug_macro", ".zdebug_macro" },
292 { ".debug_str", ".zdebug_str" },
293 { ".debug_str_offsets", ".zdebug_str_offsets" },
294 { ".debug_line_str", ".zdebug_line_str" },
295 { ".debug_ranges", ".zdebug_ranges" },
296 { ".debug_rnglists", ".zdebug_rnglists" },
297 { ".debug_types", ".zdebug_types" },
298 { ".debug_addr", ".zdebug_addr" },
299 { ".debug_frame", ".zdebug_frame" },
300 { ".eh_frame", NULL },
301 { ".gdb_index", ".zgdb_index" },
302 { ".debug_names", ".zdebug_names" },
303 { ".debug_aranges", ".zdebug_aranges" },
307 /* List of DWO/DWP sections. */
309 static const struct dwop_section_names
311 struct dwarf2_section_names abbrev_dwo;
312 struct dwarf2_section_names info_dwo;
313 struct dwarf2_section_names line_dwo;
314 struct dwarf2_section_names loc_dwo;
315 struct dwarf2_section_names loclists_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
340 /* local data types */
342 /* The data in a compilation unit header, after target2host
343 translation, looks like this. */
344 struct comp_unit_head
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
350 sect_offset abbrev_sect_off;
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
358 enum dwarf_unit_type unit_type;
360 /* Offset to the first byte of this compilation unit header in the
361 .debug_info section, for resolving relative reference dies. */
362 sect_offset sect_off;
364 /* Offset to first die in this cu from the start of the cu.
365 This will be the first byte following the compilation unit header. */
366 cu_offset first_die_cu_offset;
369 /* 64-bit signature of this unit. For type units, it denotes the signature of
370 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
371 Also used in DWARF 5, to denote the dwo id when the unit type is
372 DW_UT_skeleton or DW_UT_split_compile. */
375 /* For types, offset in the type's DIE of the type defined by this TU. */
376 cu_offset type_cu_offset_in_tu;
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
383 /* The type to which the method is attached, i.e., its parent class. */
386 /* The index of the method in the type's function fieldlists. */
389 /* The index of the method in the fieldlist. */
392 /* The name of the DIE. */
395 /* The DIE associated with this method. */
396 struct die_info *die;
399 /* Internal state when decoding a particular compilation unit. */
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
429 /* Non-zero if base_address has been set. */
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
436 const char *producer = nullptr;
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> m_builder;
444 /* The generic symbol table building routines have separate lists for
445 file scope symbols and all all other scopes (local scopes). So
446 we need to select the right one to pass to add_symbol_to_list().
447 We do it by keeping a pointer to the correct list in list_in_scope.
449 FIXME: The original dwarf code just treated the file scope as the
450 first local scope, and all other local scopes as nested local
451 scopes, and worked fine. Check to see if we really need to
452 distinguish these in buildsym.c. */
453 struct pending **list_in_scope = nullptr;
455 /* Hash table holding all the loaded partial DIEs
456 with partial_die->offset.SECT_OFF as hash. */
457 htab_t partial_dies = nullptr;
459 /* Storage for things with the same lifetime as this read-in compilation
460 unit, including partial DIEs. */
461 auto_obstack comp_unit_obstack;
463 /* When multiple dwarf2_cu structures are living in memory, this field
464 chains them all together, so that they can be released efficiently.
465 We will probably also want a generation counter so that most-recently-used
466 compilation units are cached... */
467 struct dwarf2_per_cu_data *read_in_chain = nullptr;
469 /* Backlink to our per_cu entry. */
470 struct dwarf2_per_cu_data *per_cu;
472 /* How many compilation units ago was this CU last referenced? */
475 /* A hash table of DIE cu_offset for following references with
476 die_info->offset.sect_off as hash. */
477 htab_t die_hash = nullptr;
479 /* Full DIEs if read in. */
480 struct die_info *dies = nullptr;
482 /* A set of pointers to dwarf2_per_cu_data objects for compilation
483 units referenced by this one. Only set during full symbol processing;
484 partial symbol tables do not have dependencies. */
485 htab_t dependencies = nullptr;
487 /* Header data from the line table, during full symbol processing. */
488 struct line_header *line_header = nullptr;
489 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
490 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
491 this is the DW_TAG_compile_unit die for this CU. We'll hold on
492 to the line header as long as this DIE is being processed. See
493 process_die_scope. */
494 die_info *line_header_die_owner = nullptr;
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 std::vector<delayed_method_info> method_list;
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab = nullptr;
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
512 struct dwo_unit *dwo_unit = nullptr;
514 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 gdb::optional<ULONGEST> addr_base;
518 /* The DW_AT_rnglists_base attribute if present.
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base = 0;
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
543 /* Mark used when releasing cached dies. */
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
567 bool processing_has_namespace_info : 1;
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
593 struct stmt_list_hash
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
605 struct type_unit_group
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab.
611 This PER_CU is recognized by having no section. */
612 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
613 struct dwarf2_per_cu_data per_cu;
615 /* The TUs that share this DW_AT_stmt_list entry.
616 This is added to while parsing type units to build partial symtabs,
617 and is deleted afterwards and not used again. */
618 std::vector<signatured_type *> *tus;
620 /* The compunit symtab.
621 Type units in a group needn't all be defined in the same source file,
622 so we create an essentially anonymous symtab as the compunit symtab. */
623 struct compunit_symtab *compunit_symtab;
625 /* The data used to construct the hash key. */
626 struct stmt_list_hash hash;
628 /* The number of symtabs from the line header.
629 The value here must match line_header.num_file_names. */
630 unsigned int num_symtabs;
632 /* The symbol tables for this TU (obtained from the files listed in
634 WARNING: The order of entries here must match the order of entries
635 in the line header. After the first TU using this type_unit_group, the
636 line header for the subsequent TUs is recreated from this. This is done
637 because we need to use the same symtabs for each TU using the same
638 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
639 there's no guarantee the line header doesn't have duplicate entries. */
640 struct symtab **symtabs;
643 /* These sections are what may appear in a (real or virtual) DWO file. */
647 struct dwarf2_section_info abbrev;
648 struct dwarf2_section_info line;
649 struct dwarf2_section_info loc;
650 struct dwarf2_section_info loclists;
651 struct dwarf2_section_info macinfo;
652 struct dwarf2_section_info macro;
653 struct dwarf2_section_info str;
654 struct dwarf2_section_info str_offsets;
655 /* In the case of a virtual DWO file, these two are unused. */
656 struct dwarf2_section_info info;
657 std::vector<dwarf2_section_info> types;
660 /* CUs/TUs in DWP/DWO files. */
664 /* Backlink to the containing struct dwo_file. */
665 struct dwo_file *dwo_file;
667 /* The "id" that distinguishes this CU/TU.
668 .debug_info calls this "dwo_id", .debug_types calls this "signature".
669 Since signatures came first, we stick with it for consistency. */
672 /* The section this CU/TU lives in, in the DWO file. */
673 struct dwarf2_section_info *section;
675 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
676 sect_offset sect_off;
679 /* For types, offset in the type's DIE of the type defined by this TU. */
680 cu_offset type_offset_in_tu;
683 /* include/dwarf2.h defines the DWP section codes.
684 It defines a max value but it doesn't define a min value, which we
685 use for error checking, so provide one. */
687 enum dwp_v2_section_ids
692 /* Data for one DWO file.
694 This includes virtual DWO files (a virtual DWO file is a DWO file as it
695 appears in a DWP file). DWP files don't really have DWO files per se -
696 comdat folding of types "loses" the DWO file they came from, and from
697 a high level view DWP files appear to contain a mass of random types.
698 However, to maintain consistency with the non-DWP case we pretend DWP
699 files contain virtual DWO files, and we assign each TU with one virtual
700 DWO file (generally based on the line and abbrev section offsets -
701 a heuristic that seems to work in practice). */
705 dwo_file () = default;
706 DISABLE_COPY_AND_ASSIGN (dwo_file);
708 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
709 For virtual DWO files the name is constructed from the section offsets
710 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
711 from related CU+TUs. */
712 const char *dwo_name = nullptr;
714 /* The DW_AT_comp_dir attribute. */
715 const char *comp_dir = nullptr;
717 /* The bfd, when the file is open. Otherwise this is NULL.
718 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
719 gdb_bfd_ref_ptr dbfd;
721 /* The sections that make up this DWO file.
722 Remember that for virtual DWO files in DWP V2, these are virtual
723 sections (for lack of a better name). */
724 struct dwo_sections sections {};
726 /* The CUs in the file.
727 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
728 an extension to handle LLVM's Link Time Optimization output (where
729 multiple source files may be compiled into a single object/dwo pair). */
732 /* Table of TUs in the file.
733 Each element is a struct dwo_unit. */
737 /* These sections are what may appear in a DWP file. */
741 /* These are used by both DWP version 1 and 2. */
742 struct dwarf2_section_info str;
743 struct dwarf2_section_info cu_index;
744 struct dwarf2_section_info tu_index;
746 /* These are only used by DWP version 2 files.
747 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
748 sections are referenced by section number, and are not recorded here.
749 In DWP version 2 there is at most one copy of all these sections, each
750 section being (effectively) comprised of the concatenation of all of the
751 individual sections that exist in the version 1 format.
752 To keep the code simple we treat each of these concatenated pieces as a
753 section itself (a virtual section?). */
754 struct dwarf2_section_info abbrev;
755 struct dwarf2_section_info info;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str_offsets;
761 struct dwarf2_section_info types;
764 /* These sections are what may appear in a virtual DWO file in DWP version 1.
765 A virtual DWO file is a DWO file as it appears in a DWP file. */
767 struct virtual_v1_dwo_sections
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.section. */
777 struct dwarf2_section_info info_or_types;
780 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
781 In version 2, the sections of the DWO files are concatenated together
782 and stored in one section of that name. Thus each ELF section contains
783 several "virtual" sections. */
785 struct virtual_v2_dwo_sections
787 bfd_size_type abbrev_offset;
788 bfd_size_type abbrev_size;
790 bfd_size_type line_offset;
791 bfd_size_type line_size;
793 bfd_size_type loc_offset;
794 bfd_size_type loc_size;
796 bfd_size_type macinfo_offset;
797 bfd_size_type macinfo_size;
799 bfd_size_type macro_offset;
800 bfd_size_type macro_size;
802 bfd_size_type str_offsets_offset;
803 bfd_size_type str_offsets_size;
805 /* Each DWP hash table entry records one CU or one TU.
806 That is recorded here, and copied to dwo_unit.section. */
807 bfd_size_type info_or_types_offset;
808 bfd_size_type info_or_types_size;
811 /* Contents of DWP hash tables. */
813 struct dwp_hash_table
815 uint32_t version, nr_columns;
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table;
822 const gdb_byte *indices;
826 /* This is indexed by column number and gives the id of the section
828 #define MAX_NR_V2_DWO_SECTIONS \
829 (1 /* .debug_info or .debug_types */ \
830 + 1 /* .debug_abbrev */ \
831 + 1 /* .debug_line */ \
832 + 1 /* .debug_loc */ \
833 + 1 /* .debug_str_offsets */ \
834 + 1 /* .debug_macro or .debug_macinfo */)
835 int section_ids[MAX_NR_V2_DWO_SECTIONS];
836 const gdb_byte *offsets;
837 const gdb_byte *sizes;
842 /* Data for one DWP file. */
846 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 dbfd (std::move (abfd))
852 /* Name of the file. */
855 /* File format version. */
859 gdb_bfd_ref_ptr dbfd;
861 /* Section info for this file. */
862 struct dwp_sections sections {};
864 /* Table of CUs in the file. */
865 const struct dwp_hash_table *cus = nullptr;
867 /* Table of TUs in the file. */
868 const struct dwp_hash_table *tus = nullptr;
870 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
874 /* Table to map ELF section numbers to their sections.
875 This is only needed for the DWP V1 file format. */
876 unsigned int num_sections = 0;
877 asection **elf_sections = nullptr;
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
885 struct die_reader_specs
887 /* The bfd of die_section. */
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
906 /* The abbreviation table to use when reading the DIEs. */
907 struct abbrev_table *abbrev_table;
910 /* A subclass of die_reader_specs that holds storage and has complex
911 constructor and destructor behavior. */
913 class cutu_reader : public die_reader_specs
917 cutu_reader (struct dwarf2_per_cu_data *this_cu,
918 struct abbrev_table *abbrev_table,
919 int use_existing_cu, int keep,
922 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
923 struct dwarf2_cu *parent_cu = nullptr,
924 struct dwo_file *dwo_file = nullptr);
928 DISABLE_COPY_AND_ASSIGN (cutu_reader);
930 const gdb_byte *info_ptr = nullptr;
931 struct die_info *comp_unit_die = nullptr;
932 bool dummy_p = false;
935 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
936 int use_existing_cu, int keep);
938 struct dwarf2_per_cu_data *m_this_cu;
940 std::unique_ptr<dwarf2_cu> m_new_cu;
942 /* The ordinary abbreviation table. */
943 abbrev_table_up m_abbrev_table_holder;
945 /* The DWO abbreviation table. */
946 abbrev_table_up m_dwo_abbrev_table;
949 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
951 typedef int dir_index;
953 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
955 typedef int file_name_index;
959 file_entry () = default;
961 file_entry (const char *name_, dir_index d_index_,
962 unsigned int mod_time_, unsigned int length_)
965 mod_time (mod_time_),
969 /* Return the include directory at D_INDEX stored in LH. Returns
970 NULL if D_INDEX is out of bounds. */
971 const char *include_dir (const line_header *lh) const;
973 /* The file name. Note this is an observing pointer. The memory is
974 owned by debug_line_buffer. */
977 /* The directory index (1-based). */
978 dir_index d_index {};
980 unsigned int mod_time {};
982 unsigned int length {};
984 /* True if referenced by the Line Number Program. */
987 /* The associated symbol table, if any. */
988 struct symtab *symtab {};
991 /* The line number information for a compilation unit (found in the
992 .debug_line section) begins with a "statement program header",
993 which contains the following information. */
1000 /* Add an entry to the include directory table. */
1001 void add_include_dir (const char *include_dir);
1003 /* Add an entry to the file name table. */
1004 void add_file_name (const char *name, dir_index d_index,
1005 unsigned int mod_time, unsigned int length);
1007 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
1008 Returns NULL if INDEX is out of bounds. */
1009 const char *include_dir_at (dir_index index) const
1015 vec_index = index - 1;
1016 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
1018 return m_include_dirs[vec_index];
1021 bool is_valid_file_index (int file_index)
1024 return 0 <= file_index && file_index < file_names_size ();
1025 return 1 <= file_index && file_index <= file_names_size ();
1028 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
1029 Returns NULL if INDEX is out of bounds. */
1030 file_entry *file_name_at (file_name_index index)
1036 vec_index = index - 1;
1037 if (vec_index < 0 || vec_index >= m_file_names.size ())
1039 return &m_file_names[vec_index];
1042 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1043 this method should only be used to iterate through all file entries in an
1044 index-agnostic manner. */
1045 std::vector<file_entry> &file_names ()
1046 { return m_file_names; }
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1070 int file_names_size ()
1071 { return m_file_names.size(); }
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start {}, *statement_program_end {};
1078 /* The include_directories table. Note these are observing
1079 pointers. The memory is owned by debug_line_buffer. */
1080 std::vector<const char *> m_include_dirs;
1082 /* The file_names table. This is private because the meaning of indexes
1083 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1084 before, and is 0 in DWARF 5 and later). So the client should use
1085 file_name_at method for access. */
1086 std::vector<file_entry> m_file_names;
1089 typedef std::unique_ptr<line_header> line_header_up;
1092 file_entry::include_dir (const line_header *lh) const
1094 return lh->include_dir_at (d_index);
1097 /* When we construct a partial symbol table entry we only
1098 need this much information. */
1099 struct partial_die_info : public allocate_on_obstack
1101 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1103 /* Disable assign but still keep copy ctor, which is needed
1104 load_partial_dies. */
1105 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1107 /* Adjust the partial die before generating a symbol for it. This
1108 function may set the is_external flag or change the DIE's
1110 void fixup (struct dwarf2_cu *cu);
1112 /* Read a minimal amount of information into the minimal die
1114 const gdb_byte *read (const struct die_reader_specs *reader,
1115 const struct abbrev_info &abbrev,
1116 const gdb_byte *info_ptr);
1118 /* Offset of this DIE. */
1119 const sect_offset sect_off;
1121 /* DWARF-2 tag for this DIE. */
1122 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1124 /* Assorted flags describing the data found in this DIE. */
1125 const unsigned int has_children : 1;
1127 unsigned int is_external : 1;
1128 unsigned int is_declaration : 1;
1129 unsigned int has_type : 1;
1130 unsigned int has_specification : 1;
1131 unsigned int has_pc_info : 1;
1132 unsigned int may_be_inlined : 1;
1134 /* This DIE has been marked DW_AT_main_subprogram. */
1135 unsigned int main_subprogram : 1;
1137 /* Flag set if the SCOPE field of this structure has been
1139 unsigned int scope_set : 1;
1141 /* Flag set if the DIE has a byte_size attribute. */
1142 unsigned int has_byte_size : 1;
1144 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1145 unsigned int has_const_value : 1;
1147 /* Flag set if any of the DIE's children are template arguments. */
1148 unsigned int has_template_arguments : 1;
1150 /* Flag set if fixup has been called on this die. */
1151 unsigned int fixup_called : 1;
1153 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1154 unsigned int is_dwz : 1;
1156 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1157 unsigned int spec_is_dwz : 1;
1159 /* The name of this DIE. Normally the value of DW_AT_name, but
1160 sometimes a default name for unnamed DIEs. */
1161 const char *name = nullptr;
1163 /* The linkage name, if present. */
1164 const char *linkage_name = nullptr;
1166 /* The scope to prepend to our children. This is generally
1167 allocated on the comp_unit_obstack, so will disappear
1168 when this compilation unit leaves the cache. */
1169 const char *scope = nullptr;
1171 /* Some data associated with the partial DIE. The tag determines
1172 which field is live. */
1175 /* The location description associated with this DIE, if any. */
1176 struct dwarf_block *locdesc;
1177 /* The offset of an import, for DW_TAG_imported_unit. */
1178 sect_offset sect_off;
1181 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1182 CORE_ADDR lowpc = 0;
1183 CORE_ADDR highpc = 0;
1185 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1186 DW_AT_sibling, if any. */
1187 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1188 could return DW_AT_sibling values to its caller load_partial_dies. */
1189 const gdb_byte *sibling = nullptr;
1191 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1192 DW_AT_specification (or DW_AT_abstract_origin or
1193 DW_AT_extension). */
1194 sect_offset spec_offset {};
1196 /* Pointers to this DIE's parent, first child, and next sibling,
1198 struct partial_die_info *die_parent = nullptr;
1199 struct partial_die_info *die_child = nullptr;
1200 struct partial_die_info *die_sibling = nullptr;
1202 friend struct partial_die_info *
1203 dwarf2_cu::find_partial_die (sect_offset sect_off);
1206 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1207 partial_die_info (sect_offset sect_off)
1208 : partial_die_info (sect_off, DW_TAG_padding, 0)
1212 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1214 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1219 has_specification = 0;
1222 main_subprogram = 0;
1225 has_const_value = 0;
1226 has_template_arguments = 0;
1233 /* This data structure holds a complete die structure. */
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1249 /* True if this DIE has children. */
1250 unsigned char has_children : 1;
1253 unsigned int abbrev;
1255 /* Offset in .debug_info or .debug_types section. */
1256 sect_offset sect_off;
1258 /* The dies in a compilation unit form an n-ary tree. PARENT
1259 points to this die's parent; CHILD points to the first child of
1260 this node; and all the children of a given node are chained
1261 together via their SIBLING fields. */
1262 struct die_info *child; /* Its first child, if any. */
1263 struct die_info *sibling; /* Its next sibling, if any. */
1264 struct die_info *parent; /* Its parent, if any. */
1266 /* An array of attributes, with NUM_ATTRS elements. There may be
1267 zero, but it's not common and zero-sized arrays are not
1268 sufficiently portable C. */
1269 struct attribute attrs[1];
1272 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1273 but this would require a corresponding change in unpack_field_as_long
1275 static int bits_per_byte = 8;
1277 /* When reading a variant or variant part, we track a bit more
1278 information about the field, and store it in an object of this
1281 struct variant_field
1283 /* If we see a DW_TAG_variant, then this will be the discriminant
1285 ULONGEST discriminant_value;
1286 /* If we see a DW_TAG_variant, then this will be set if this is the
1288 bool default_branch;
1289 /* While reading a DW_TAG_variant_part, this will be set if this
1290 field is the discriminant. */
1291 bool is_discriminant;
1296 int accessibility = 0;
1298 /* Extra information to describe a variant or variant part. */
1299 struct variant_field variant {};
1300 struct field field {};
1305 const char *name = nullptr;
1306 std::vector<struct fn_field> fnfields;
1309 /* The routines that read and process dies for a C struct or C++ class
1310 pass lists of data member fields and lists of member function fields
1311 in an instance of a field_info structure, as defined below. */
1314 /* List of data member and baseclasses fields. */
1315 std::vector<struct nextfield> fields;
1316 std::vector<struct nextfield> baseclasses;
1318 /* Number of fields (including baseclasses). */
1321 /* Set if the accessibility of one of the fields is not public. */
1322 int non_public_fields = 0;
1324 /* Member function fieldlist array, contains name of possibly overloaded
1325 member function, number of overloaded member functions and a pointer
1326 to the head of the member function field chain. */
1327 std::vector<struct fnfieldlist> fnfieldlists;
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 std::vector<struct decl_field> typedef_field_list;
1333 /* Nested types defined by this class and the number of elements in this
1335 std::vector<struct decl_field> nested_types_list;
1338 /* Loaded secondary compilation units are kept in memory until they
1339 have not been referenced for the processing of this many
1340 compilation units. Set this to zero to disable caching. Cache
1341 sizes of up to at least twenty will improve startup time for
1342 typical inter-CU-reference binaries, at an obvious memory cost. */
1343 static int dwarf_max_cache_age = 5;
1345 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1348 fprintf_filtered (file, _("The upper bound on the age of cached "
1349 "DWARF compilation units is %s.\n"),
1353 /* local function prototypes */
1355 static void dwarf2_find_base_address (struct die_info *die,
1356 struct dwarf2_cu *cu);
1358 static dwarf2_psymtab *create_partial_symtab
1359 (struct dwarf2_per_cu_data *per_cu, const char *name);
1361 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1362 const gdb_byte *info_ptr,
1363 struct die_info *type_unit_die);
1365 static void dwarf2_build_psymtabs_hard
1366 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1368 static void scan_partial_symbols (struct partial_die_info *,
1369 CORE_ADDR *, CORE_ADDR *,
1370 int, struct dwarf2_cu *);
1372 static void add_partial_symbol (struct partial_die_info *,
1373 struct dwarf2_cu *);
1375 static void add_partial_namespace (struct partial_die_info *pdi,
1376 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1377 int set_addrmap, struct dwarf2_cu *cu);
1379 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1380 CORE_ADDR *highpc, int set_addrmap,
1381 struct dwarf2_cu *cu);
1383 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1384 struct dwarf2_cu *cu);
1386 static void add_partial_subprogram (struct partial_die_info *pdi,
1387 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1388 int need_pc, struct dwarf2_cu *cu);
1390 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1392 static struct partial_die_info *load_partial_dies
1393 (const struct die_reader_specs *, const gdb_byte *, int);
1395 /* A pair of partial_die_info and compilation unit. */
1396 struct cu_partial_die_info
1398 /* The compilation unit of the partial_die_info. */
1399 struct dwarf2_cu *cu;
1400 /* A partial_die_info. */
1401 struct partial_die_info *pdi;
1403 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1409 cu_partial_die_info () = delete;
1412 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1413 struct dwarf2_cu *);
1415 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1416 struct attribute *, struct attr_abbrev *,
1417 const gdb_byte *, bool *need_reprocess);
1419 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1420 struct attribute *attr);
1422 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1424 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1427 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1429 static LONGEST read_checked_initial_length_and_offset
1430 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1431 unsigned int *, unsigned int *);
1433 static LONGEST read_offset (bfd *, const gdb_byte *,
1434 const struct comp_unit_head *,
1437 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1439 static sect_offset read_abbrev_offset
1440 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1441 struct dwarf2_section_info *, sect_offset);
1443 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1445 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1447 static const char *read_indirect_string
1448 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1449 const struct comp_unit_head *, unsigned int *);
1451 static const char *read_indirect_line_string
1452 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1453 const struct comp_unit_head *, unsigned int *);
1455 static const char *read_indirect_string_at_offset
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1457 LONGEST str_offset);
1459 static const char *read_indirect_string_from_dwz
1460 (struct objfile *objfile, struct dwz_file *, LONGEST);
1462 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1466 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1467 ULONGEST str_index);
1469 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1470 ULONGEST str_index);
1472 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1474 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1475 struct dwarf2_cu *);
1477 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1480 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1481 struct dwarf2_cu *cu);
1483 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1485 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1486 struct dwarf2_cu *cu);
1488 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1490 static struct die_info *die_specification (struct die_info *die,
1491 struct dwarf2_cu **);
1493 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1494 struct dwarf2_cu *cu);
1496 static void dwarf_decode_lines (struct line_header *, const char *,
1497 struct dwarf2_cu *, dwarf2_psymtab *,
1498 CORE_ADDR, int decode_mapping);
1500 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1503 static struct symbol *new_symbol (struct die_info *, struct type *,
1504 struct dwarf2_cu *, struct symbol * = NULL);
1506 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1507 struct dwarf2_cu *);
1509 static void dwarf2_const_value_attr (const struct attribute *attr,
1512 struct obstack *obstack,
1513 struct dwarf2_cu *cu, LONGEST *value,
1514 const gdb_byte **bytes,
1515 struct dwarf2_locexpr_baton **baton);
1517 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1519 static int need_gnat_info (struct dwarf2_cu *);
1521 static struct type *die_descriptive_type (struct die_info *,
1522 struct dwarf2_cu *);
1524 static void set_descriptive_type (struct type *, struct die_info *,
1525 struct dwarf2_cu *);
1527 static struct type *die_containing_type (struct die_info *,
1528 struct dwarf2_cu *);
1530 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1531 struct dwarf2_cu *);
1533 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1535 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1537 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1539 static char *typename_concat (struct obstack *obs, const char *prefix,
1540 const char *suffix, int physname,
1541 struct dwarf2_cu *cu);
1543 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1545 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1547 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1549 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1551 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1553 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1555 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1556 struct dwarf2_cu *, dwarf2_psymtab *);
1558 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1559 values. Keep the items ordered with increasing constraints compliance. */
1562 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1563 PC_BOUNDS_NOT_PRESENT,
1565 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1566 were present but they do not form a valid range of PC addresses. */
1569 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1572 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1576 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1577 CORE_ADDR *, CORE_ADDR *,
1581 static void get_scope_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *,
1583 struct dwarf2_cu *);
1585 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1586 CORE_ADDR, struct dwarf2_cu *);
1588 static void dwarf2_add_field (struct field_info *, struct die_info *,
1589 struct dwarf2_cu *);
1591 static void dwarf2_attach_fields_to_type (struct field_info *,
1592 struct type *, struct dwarf2_cu *);
1594 static void dwarf2_add_member_fn (struct field_info *,
1595 struct die_info *, struct type *,
1596 struct dwarf2_cu *);
1598 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1600 struct dwarf2_cu *);
1602 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1604 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1606 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1608 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *);
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1662 static const char *dwarf_tag_name (unsigned int);
1664 static const char *dwarf_attr_name (unsigned int);
1666 static const char *dwarf_unit_type_name (int unit_type);
1668 static const char *dwarf_form_name (unsigned int);
1670 static const char *dwarf_bool_name (unsigned int);
1672 static const char *dwarf_type_encoding_name (unsigned int);
1674 static struct die_info *sibling_die (struct die_info *);
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1678 static void dump_die_for_error (struct die_info *);
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1713 static void read_signatured_type (struct signatured_type *);
1715 static int attr_to_dynamic_prop (const struct attribute *attr,
1716 struct die_info *die, struct dwarf2_cu *cu,
1717 struct dynamic_prop *prop, struct type *type);
1719 /* memory allocation interface */
1721 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1723 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1725 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1727 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1728 struct dwarf2_loclist_baton *baton,
1729 const struct attribute *attr);
1731 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1733 struct dwarf2_cu *cu,
1736 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1737 const gdb_byte *info_ptr,
1738 struct abbrev_info *abbrev);
1740 static hashval_t partial_die_hash (const void *item);
1742 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1744 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1745 (sect_offset sect_off, unsigned int offset_in_dwz,
1746 struct dwarf2_per_objfile *dwarf2_per_objfile);
1748 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1749 struct die_info *comp_unit_die,
1750 enum language pretend_language);
1752 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1754 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1756 static struct type *set_die_type (struct die_info *, struct type *,
1757 struct dwarf2_cu *);
1759 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1761 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1763 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1766 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1769 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1772 static void dwarf2_add_dependence (struct dwarf2_cu *,
1773 struct dwarf2_per_cu_data *);
1775 static void dwarf2_mark (struct dwarf2_cu *);
1777 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1779 static struct type *get_die_type_at_offset (sect_offset,
1780 struct dwarf2_per_cu_data *);
1782 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1784 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1785 enum language pretend_language);
1787 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1789 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1790 static struct type *dwarf2_per_cu_addr_sized_int_type
1791 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1792 static struct type *dwarf2_per_cu_int_type
1793 (struct dwarf2_per_cu_data *per_cu, int size_in_bytes,
1796 /* Class, the destructor of which frees all allocated queue entries. This
1797 will only have work to do if an error was thrown while processing the
1798 dwarf. If no error was thrown then the queue entries should have all
1799 been processed, and freed, as we went along. */
1801 class dwarf2_queue_guard
1804 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1805 : m_per_objfile (per_objfile)
1809 /* Free any entries remaining on the queue. There should only be
1810 entries left if we hit an error while processing the dwarf. */
1811 ~dwarf2_queue_guard ()
1813 /* Ensure that no memory is allocated by the queue. */
1814 std::queue<dwarf2_queue_item> empty;
1815 std::swap (m_per_objfile->queue, empty);
1818 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1821 dwarf2_per_objfile *m_per_objfile;
1824 dwarf2_queue_item::~dwarf2_queue_item ()
1826 /* Anything still marked queued is likely to be in an
1827 inconsistent state, so discard it. */
1830 if (per_cu->cu != NULL)
1831 free_one_cached_comp_unit (per_cu);
1836 /* The return type of find_file_and_directory. Note, the enclosed
1837 string pointers are only valid while this object is valid. */
1839 struct file_and_directory
1841 /* The filename. This is never NULL. */
1844 /* The compilation directory. NULL if not known. If we needed to
1845 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1846 points directly to the DW_AT_comp_dir string attribute owned by
1847 the obstack that owns the DIE. */
1848 const char *comp_dir;
1850 /* If we needed to build a new string for comp_dir, this is what
1851 owns the storage. */
1852 std::string comp_dir_storage;
1855 static file_and_directory find_file_and_directory (struct die_info *die,
1856 struct dwarf2_cu *cu);
1858 static char *file_full_name (int file, struct line_header *lh,
1859 const char *comp_dir);
1861 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1862 enum class rcuh_kind { COMPILE, TYPE };
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1866 struct comp_unit_head *header,
1867 struct dwarf2_section_info *section,
1868 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1869 rcuh_kind section_kind);
1871 static htab_up allocate_signatured_type_table (struct objfile *objfile);
1873 static htab_up allocate_dwo_unit_table (struct objfile *objfile);
1875 static struct dwo_unit *lookup_dwo_unit_in_dwp
1876 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1877 struct dwp_file *dwp_file, const char *comp_dir,
1878 ULONGEST signature, int is_debug_types);
1880 static struct dwp_file *get_dwp_file
1881 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883 static struct dwo_unit *lookup_dwo_comp_unit
1884 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1886 static struct dwo_unit *lookup_dwo_type_unit
1887 (struct signatured_type *, const char *, const char *);
1889 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1891 /* A unique pointer to a dwo_file. */
1893 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1895 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1897 static void check_producer (struct dwarf2_cu *cu);
1899 static void free_line_header_voidp (void *arg);
1901 /* Various complaints about symbol reading that don't abort the process. */
1904 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1906 complaint (_("statement list doesn't fit in .debug_line section"));
1910 dwarf2_debug_line_missing_file_complaint (void)
1912 complaint (_(".debug_line section has line data without a file"));
1916 dwarf2_debug_line_missing_end_sequence_complaint (void)
1918 complaint (_(".debug_line section has line "
1919 "program sequence without an end"));
1923 dwarf2_complex_location_expr_complaint (void)
1925 complaint (_("location expression too complex"));
1929 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1932 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1937 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1939 complaint (_("debug info runs off end of %s section"
1941 section->get_name (),
1942 section->get_file_name ());
1946 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1948 complaint (_("macro debug info contains a "
1949 "malformed macro definition:\n`%s'"),
1954 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1956 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1960 /* Hash function for line_header_hash. */
1963 line_header_hash (const struct line_header *ofs)
1965 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1968 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1971 line_header_hash_voidp (const void *item)
1973 const struct line_header *ofs = (const struct line_header *) item;
1975 return line_header_hash (ofs);
1978 /* Equality function for line_header_hash. */
1981 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1983 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1984 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1986 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1987 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1992 /* See declaration. */
1994 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1995 const dwarf2_debug_sections *names,
1997 : objfile (objfile_),
1998 can_copy (can_copy_)
2001 names = &dwarf2_elf_names;
2003 bfd *obfd = objfile->obfd;
2005 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2006 locate_sections (obfd, sec, *names);
2009 dwarf2_per_objfile::~dwarf2_per_objfile ()
2011 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2012 free_cached_comp_units ();
2014 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2015 per_cu->imported_symtabs_free ();
2017 for (signatured_type *sig_type : all_type_units)
2018 sig_type->per_cu.imported_symtabs_free ();
2020 /* Everything else should be on the objfile obstack. */
2023 /* See declaration. */
2026 dwarf2_per_objfile::free_cached_comp_units ()
2028 dwarf2_per_cu_data *per_cu = read_in_chain;
2029 dwarf2_per_cu_data **last_chain = &read_in_chain;
2030 while (per_cu != NULL)
2032 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2035 *last_chain = next_cu;
2040 /* A helper class that calls free_cached_comp_units on
2043 class free_cached_comp_units
2047 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2048 : m_per_objfile (per_objfile)
2052 ~free_cached_comp_units ()
2054 m_per_objfile->free_cached_comp_units ();
2057 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2061 dwarf2_per_objfile *m_per_objfile;
2064 /* Try to locate the sections we need for DWARF 2 debugging
2065 information and return true if we have enough to do something.
2066 NAMES points to the dwarf2 section names, or is NULL if the standard
2067 ELF names are used. CAN_COPY is true for formats where symbol
2068 interposition is possible and so symbol values must follow copy
2069 relocation rules. */
2072 dwarf2_has_info (struct objfile *objfile,
2073 const struct dwarf2_debug_sections *names,
2076 if (objfile->flags & OBJF_READNEVER)
2079 struct dwarf2_per_objfile *dwarf2_per_objfile
2080 = get_dwarf2_per_objfile (objfile);
2082 if (dwarf2_per_objfile == NULL)
2083 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2087 return (!dwarf2_per_objfile->info.is_virtual
2088 && dwarf2_per_objfile->info.s.section != NULL
2089 && !dwarf2_per_objfile->abbrev.is_virtual
2090 && dwarf2_per_objfile->abbrev.s.section != NULL);
2093 /* When loading sections, we look either for uncompressed section or for
2094 compressed section names. */
2097 section_is_p (const char *section_name,
2098 const struct dwarf2_section_names *names)
2100 if (names->normal != NULL
2101 && strcmp (section_name, names->normal) == 0)
2103 if (names->compressed != NULL
2104 && strcmp (section_name, names->compressed) == 0)
2109 /* See declaration. */
2112 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2113 const dwarf2_debug_sections &names)
2115 flagword aflag = bfd_section_flags (sectp);
2117 if ((aflag & SEC_HAS_CONTENTS) == 0)
2120 else if (elf_section_data (sectp)->this_hdr.sh_size
2121 > bfd_get_file_size (abfd))
2123 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2124 warning (_("Discarding section %s which has a section size (%s"
2125 ") larger than the file size [in module %s]"),
2126 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2127 bfd_get_filename (abfd));
2129 else if (section_is_p (sectp->name, &names.info))
2131 this->info.s.section = sectp;
2132 this->info.size = bfd_section_size (sectp);
2134 else if (section_is_p (sectp->name, &names.abbrev))
2136 this->abbrev.s.section = sectp;
2137 this->abbrev.size = bfd_section_size (sectp);
2139 else if (section_is_p (sectp->name, &names.line))
2141 this->line.s.section = sectp;
2142 this->line.size = bfd_section_size (sectp);
2144 else if (section_is_p (sectp->name, &names.loc))
2146 this->loc.s.section = sectp;
2147 this->loc.size = bfd_section_size (sectp);
2149 else if (section_is_p (sectp->name, &names.loclists))
2151 this->loclists.s.section = sectp;
2152 this->loclists.size = bfd_section_size (sectp);
2154 else if (section_is_p (sectp->name, &names.macinfo))
2156 this->macinfo.s.section = sectp;
2157 this->macinfo.size = bfd_section_size (sectp);
2159 else if (section_is_p (sectp->name, &names.macro))
2161 this->macro.s.section = sectp;
2162 this->macro.size = bfd_section_size (sectp);
2164 else if (section_is_p (sectp->name, &names.str))
2166 this->str.s.section = sectp;
2167 this->str.size = bfd_section_size (sectp);
2169 else if (section_is_p (sectp->name, &names.str_offsets))
2171 this->str_offsets.s.section = sectp;
2172 this->str_offsets.size = bfd_section_size (sectp);
2174 else if (section_is_p (sectp->name, &names.line_str))
2176 this->line_str.s.section = sectp;
2177 this->line_str.size = bfd_section_size (sectp);
2179 else if (section_is_p (sectp->name, &names.addr))
2181 this->addr.s.section = sectp;
2182 this->addr.size = bfd_section_size (sectp);
2184 else if (section_is_p (sectp->name, &names.frame))
2186 this->frame.s.section = sectp;
2187 this->frame.size = bfd_section_size (sectp);
2189 else if (section_is_p (sectp->name, &names.eh_frame))
2191 this->eh_frame.s.section = sectp;
2192 this->eh_frame.size = bfd_section_size (sectp);
2194 else if (section_is_p (sectp->name, &names.ranges))
2196 this->ranges.s.section = sectp;
2197 this->ranges.size = bfd_section_size (sectp);
2199 else if (section_is_p (sectp->name, &names.rnglists))
2201 this->rnglists.s.section = sectp;
2202 this->rnglists.size = bfd_section_size (sectp);
2204 else if (section_is_p (sectp->name, &names.types))
2206 struct dwarf2_section_info type_section;
2208 memset (&type_section, 0, sizeof (type_section));
2209 type_section.s.section = sectp;
2210 type_section.size = bfd_section_size (sectp);
2212 this->types.push_back (type_section);
2214 else if (section_is_p (sectp->name, &names.gdb_index))
2216 this->gdb_index.s.section = sectp;
2217 this->gdb_index.size = bfd_section_size (sectp);
2219 else if (section_is_p (sectp->name, &names.debug_names))
2221 this->debug_names.s.section = sectp;
2222 this->debug_names.size = bfd_section_size (sectp);
2224 else if (section_is_p (sectp->name, &names.debug_aranges))
2226 this->debug_aranges.s.section = sectp;
2227 this->debug_aranges.size = bfd_section_size (sectp);
2230 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2231 && bfd_section_vma (sectp) == 0)
2232 this->has_section_at_zero = true;
2235 /* A helper function that returns the size of a section in a safe way.
2236 If you are positive that the section has been read before using the
2237 size, then it is safe to refer to the dwarf2_section_info object's
2238 "size" field directly. In other cases, you must call this
2239 function, because for compressed sections the size field is not set
2240 correctly until the section has been read. */
2242 static bfd_size_type
2243 dwarf2_section_size (struct objfile *objfile,
2244 struct dwarf2_section_info *info)
2247 info->read (objfile);
2251 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2255 dwarf2_get_section_info (struct objfile *objfile,
2256 enum dwarf2_section_enum sect,
2257 asection **sectp, const gdb_byte **bufp,
2258 bfd_size_type *sizep)
2260 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2261 struct dwarf2_section_info *info;
2263 /* We may see an objfile without any DWARF, in which case we just
2274 case DWARF2_DEBUG_FRAME:
2275 info = &data->frame;
2277 case DWARF2_EH_FRAME:
2278 info = &data->eh_frame;
2281 gdb_assert_not_reached ("unexpected section");
2284 info->read (objfile);
2286 *sectp = info->get_bfd_section ();
2287 *bufp = info->buffer;
2288 *sizep = info->size;
2291 /* A helper function to find the sections for a .dwz file. */
2294 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2296 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2298 /* Note that we only support the standard ELF names, because .dwz
2299 is ELF-only (at the time of writing). */
2300 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2302 dwz_file->abbrev.s.section = sectp;
2303 dwz_file->abbrev.size = bfd_section_size (sectp);
2305 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2307 dwz_file->info.s.section = sectp;
2308 dwz_file->info.size = bfd_section_size (sectp);
2310 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2312 dwz_file->str.s.section = sectp;
2313 dwz_file->str.size = bfd_section_size (sectp);
2315 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2317 dwz_file->line.s.section = sectp;
2318 dwz_file->line.size = bfd_section_size (sectp);
2320 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2322 dwz_file->macro.s.section = sectp;
2323 dwz_file->macro.size = bfd_section_size (sectp);
2325 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2327 dwz_file->gdb_index.s.section = sectp;
2328 dwz_file->gdb_index.size = bfd_section_size (sectp);
2330 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2332 dwz_file->debug_names.s.section = sectp;
2333 dwz_file->debug_names.size = bfd_section_size (sectp);
2337 /* See dwarf2read.h. */
2340 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2342 const char *filename;
2343 bfd_size_type buildid_len_arg;
2347 if (dwarf2_per_objfile->dwz_file != NULL)
2348 return dwarf2_per_objfile->dwz_file.get ();
2350 bfd_set_error (bfd_error_no_error);
2351 gdb::unique_xmalloc_ptr<char> data
2352 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2353 &buildid_len_arg, &buildid));
2356 if (bfd_get_error () == bfd_error_no_error)
2358 error (_("could not read '.gnu_debugaltlink' section: %s"),
2359 bfd_errmsg (bfd_get_error ()));
2362 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2364 buildid_len = (size_t) buildid_len_arg;
2366 filename = data.get ();
2368 std::string abs_storage;
2369 if (!IS_ABSOLUTE_PATH (filename))
2371 gdb::unique_xmalloc_ptr<char> abs
2372 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2374 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2375 filename = abs_storage.c_str ();
2378 /* First try the file name given in the section. If that doesn't
2379 work, try to use the build-id instead. */
2380 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2381 if (dwz_bfd != NULL)
2383 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2384 dwz_bfd.reset (nullptr);
2387 if (dwz_bfd == NULL)
2388 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2390 if (dwz_bfd == NULL)
2391 error (_("could not find '.gnu_debugaltlink' file for %s"),
2392 objfile_name (dwarf2_per_objfile->objfile));
2394 std::unique_ptr<struct dwz_file> result
2395 (new struct dwz_file (std::move (dwz_bfd)));
2397 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2400 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2401 result->dwz_bfd.get ());
2402 dwarf2_per_objfile->dwz_file = std::move (result);
2403 return dwarf2_per_objfile->dwz_file.get ();
2406 /* DWARF quick_symbols_functions support. */
2408 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2409 unique line tables, so we maintain a separate table of all .debug_line
2410 derived entries to support the sharing.
2411 All the quick functions need is the list of file names. We discard the
2412 line_header when we're done and don't need to record it here. */
2413 struct quick_file_names
2415 /* The data used to construct the hash key. */
2416 struct stmt_list_hash hash;
2418 /* The number of entries in file_names, real_names. */
2419 unsigned int num_file_names;
2421 /* The file names from the line table, after being run through
2423 const char **file_names;
2425 /* The file names from the line table after being run through
2426 gdb_realpath. These are computed lazily. */
2427 const char **real_names;
2430 /* When using the index (and thus not using psymtabs), each CU has an
2431 object of this type. This is used to hold information needed by
2432 the various "quick" methods. */
2433 struct dwarf2_per_cu_quick_data
2435 /* The file table. This can be NULL if there was no file table
2436 or it's currently not read in.
2437 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2438 struct quick_file_names *file_names;
2440 /* The corresponding symbol table. This is NULL if symbols for this
2441 CU have not yet been read. */
2442 struct compunit_symtab *compunit_symtab;
2444 /* A temporary mark bit used when iterating over all CUs in
2445 expand_symtabs_matching. */
2446 unsigned int mark : 1;
2448 /* True if we've tried to read the file table and found there isn't one.
2449 There will be no point in trying to read it again next time. */
2450 unsigned int no_file_data : 1;
2453 /* Utility hash function for a stmt_list_hash. */
2456 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2460 if (stmt_list_hash->dwo_unit != NULL)
2461 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2462 v += to_underlying (stmt_list_hash->line_sect_off);
2466 /* Utility equality function for a stmt_list_hash. */
2469 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2470 const struct stmt_list_hash *rhs)
2472 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2474 if (lhs->dwo_unit != NULL
2475 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2478 return lhs->line_sect_off == rhs->line_sect_off;
2481 /* Hash function for a quick_file_names. */
2484 hash_file_name_entry (const void *e)
2486 const struct quick_file_names *file_data
2487 = (const struct quick_file_names *) e;
2489 return hash_stmt_list_entry (&file_data->hash);
2492 /* Equality function for a quick_file_names. */
2495 eq_file_name_entry (const void *a, const void *b)
2497 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2498 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2500 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2503 /* Delete function for a quick_file_names. */
2506 delete_file_name_entry (void *e)
2508 struct quick_file_names *file_data = (struct quick_file_names *) e;
2511 for (i = 0; i < file_data->num_file_names; ++i)
2513 xfree ((void*) file_data->file_names[i]);
2514 if (file_data->real_names)
2515 xfree ((void*) file_data->real_names[i]);
2518 /* The space for the struct itself lives on objfile_obstack,
2519 so we don't free it here. */
2522 /* Create a quick_file_names hash table. */
2525 create_quick_file_names_table (unsigned int nr_initial_entries)
2527 return htab_up (htab_create_alloc (nr_initial_entries,
2528 hash_file_name_entry, eq_file_name_entry,
2529 delete_file_name_entry, xcalloc, xfree));
2532 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2533 have to be created afterwards. You should call age_cached_comp_units after
2534 processing PER_CU->CU. dw2_setup must have been already called. */
2537 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2539 if (per_cu->is_debug_types)
2540 load_full_type_unit (per_cu);
2542 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2544 if (per_cu->cu == NULL)
2545 return; /* Dummy CU. */
2547 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2550 /* Read in the symbols for PER_CU. */
2553 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2555 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2557 /* Skip type_unit_groups, reading the type units they contain
2558 is handled elsewhere. */
2559 if (IS_TYPE_UNIT_GROUP (per_cu))
2562 /* The destructor of dwarf2_queue_guard frees any entries left on
2563 the queue. After this point we're guaranteed to leave this function
2564 with the dwarf queue empty. */
2565 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2567 if (dwarf2_per_objfile->using_index
2568 ? per_cu->v.quick->compunit_symtab == NULL
2569 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2571 queue_comp_unit (per_cu, language_minimal);
2572 load_cu (per_cu, skip_partial);
2574 /* If we just loaded a CU from a DWO, and we're working with an index
2575 that may badly handle TUs, load all the TUs in that DWO as well.
2576 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2577 if (!per_cu->is_debug_types
2578 && per_cu->cu != NULL
2579 && per_cu->cu->dwo_unit != NULL
2580 && dwarf2_per_objfile->index_table != NULL
2581 && dwarf2_per_objfile->index_table->version <= 7
2582 /* DWP files aren't supported yet. */
2583 && get_dwp_file (dwarf2_per_objfile) == NULL)
2584 queue_and_load_all_dwo_tus (per_cu);
2587 process_queue (dwarf2_per_objfile);
2589 /* Age the cache, releasing compilation units that have not
2590 been used recently. */
2591 age_cached_comp_units (dwarf2_per_objfile);
2594 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2595 the objfile from which this CU came. Returns the resulting symbol
2598 static struct compunit_symtab *
2599 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2601 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2603 gdb_assert (dwarf2_per_objfile->using_index);
2604 if (!per_cu->v.quick->compunit_symtab)
2606 free_cached_comp_units freer (dwarf2_per_objfile);
2607 scoped_restore decrementer = increment_reading_symtab ();
2608 dw2_do_instantiate_symtab (per_cu, skip_partial);
2609 process_cu_includes (dwarf2_per_objfile);
2612 return per_cu->v.quick->compunit_symtab;
2615 /* See declaration. */
2617 dwarf2_per_cu_data *
2618 dwarf2_per_objfile::get_cutu (int index)
2620 if (index >= this->all_comp_units.size ())
2622 index -= this->all_comp_units.size ();
2623 gdb_assert (index < this->all_type_units.size ());
2624 return &this->all_type_units[index]->per_cu;
2627 return this->all_comp_units[index];
2630 /* See declaration. */
2632 dwarf2_per_cu_data *
2633 dwarf2_per_objfile::get_cu (int index)
2635 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2637 return this->all_comp_units[index];
2640 /* See declaration. */
2643 dwarf2_per_objfile::get_tu (int index)
2645 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2647 return this->all_type_units[index];
2650 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2651 objfile_obstack, and constructed with the specified field
2654 static dwarf2_per_cu_data *
2655 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2656 struct dwarf2_section_info *section,
2658 sect_offset sect_off, ULONGEST length)
2660 struct objfile *objfile = dwarf2_per_objfile->objfile;
2661 dwarf2_per_cu_data *the_cu
2662 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2663 struct dwarf2_per_cu_data);
2664 the_cu->sect_off = sect_off;
2665 the_cu->length = length;
2666 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2667 the_cu->section = section;
2668 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2669 struct dwarf2_per_cu_quick_data);
2670 the_cu->is_dwz = is_dwz;
2674 /* A helper for create_cus_from_index that handles a given list of
2678 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2679 const gdb_byte *cu_list, offset_type n_elements,
2680 struct dwarf2_section_info *section,
2683 for (offset_type i = 0; i < n_elements; i += 2)
2685 gdb_static_assert (sizeof (ULONGEST) >= 8);
2687 sect_offset sect_off
2688 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2689 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2692 dwarf2_per_cu_data *per_cu
2693 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2695 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2699 /* Read the CU list from the mapped index, and use it to create all
2700 the CU objects for this objfile. */
2703 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2704 const gdb_byte *cu_list, offset_type cu_list_elements,
2705 const gdb_byte *dwz_list, offset_type dwz_elements)
2707 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2708 dwarf2_per_objfile->all_comp_units.reserve
2709 ((cu_list_elements + dwz_elements) / 2);
2711 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2712 &dwarf2_per_objfile->info, 0);
2714 if (dwz_elements == 0)
2717 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2718 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2722 /* Create the signatured type hash table from the index. */
2725 create_signatured_type_table_from_index
2726 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2727 struct dwarf2_section_info *section,
2728 const gdb_byte *bytes,
2729 offset_type elements)
2731 struct objfile *objfile = dwarf2_per_objfile->objfile;
2733 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2734 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2736 htab_up sig_types_hash = allocate_signatured_type_table (objfile);
2738 for (offset_type i = 0; i < elements; i += 3)
2740 struct signatured_type *sig_type;
2743 cu_offset type_offset_in_tu;
2745 gdb_static_assert (sizeof (ULONGEST) >= 8);
2746 sect_offset sect_off
2747 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2749 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2751 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2754 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2755 struct signatured_type);
2756 sig_type->signature = signature;
2757 sig_type->type_offset_in_tu = type_offset_in_tu;
2758 sig_type->per_cu.is_debug_types = 1;
2759 sig_type->per_cu.section = section;
2760 sig_type->per_cu.sect_off = sect_off;
2761 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2762 sig_type->per_cu.v.quick
2763 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2764 struct dwarf2_per_cu_quick_data);
2766 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2769 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2772 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2775 /* Create the signatured type hash table from .debug_names. */
2778 create_signatured_type_table_from_debug_names
2779 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2780 const mapped_debug_names &map,
2781 struct dwarf2_section_info *section,
2782 struct dwarf2_section_info *abbrev_section)
2784 struct objfile *objfile = dwarf2_per_objfile->objfile;
2786 section->read (objfile);
2787 abbrev_section->read (objfile);
2789 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2790 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2792 htab_up sig_types_hash = allocate_signatured_type_table (objfile);
2794 for (uint32_t i = 0; i < map.tu_count; ++i)
2796 struct signatured_type *sig_type;
2799 sect_offset sect_off
2800 = (sect_offset) (extract_unsigned_integer
2801 (map.tu_table_reordered + i * map.offset_size,
2803 map.dwarf5_byte_order));
2805 comp_unit_head cu_header;
2806 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2808 section->buffer + to_underlying (sect_off),
2811 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct signatured_type);
2813 sig_type->signature = cu_header.signature;
2814 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2815 sig_type->per_cu.is_debug_types = 1;
2816 sig_type->per_cu.section = section;
2817 sig_type->per_cu.sect_off = sect_off;
2818 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2819 sig_type->per_cu.v.quick
2820 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_quick_data);
2823 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2826 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2829 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2832 /* Read the address map data from the mapped index, and use it to
2833 populate the objfile's psymtabs_addrmap. */
2836 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2837 struct mapped_index *index)
2839 struct objfile *objfile = dwarf2_per_objfile->objfile;
2840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2841 const gdb_byte *iter, *end;
2842 struct addrmap *mutable_map;
2845 auto_obstack temp_obstack;
2847 mutable_map = addrmap_create_mutable (&temp_obstack);
2849 iter = index->address_table.data ();
2850 end = iter + index->address_table.size ();
2852 baseaddr = objfile->text_section_offset ();
2856 ULONGEST hi, lo, cu_index;
2857 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2859 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2861 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2866 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2867 hex_string (lo), hex_string (hi));
2871 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2873 complaint (_(".gdb_index address table has invalid CU number %u"),
2874 (unsigned) cu_index);
2878 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2879 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2880 addrmap_set_empty (mutable_map, lo, hi - 1,
2881 dwarf2_per_objfile->get_cu (cu_index));
2884 objfile->partial_symtabs->psymtabs_addrmap
2885 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2888 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2889 populate the objfile's psymtabs_addrmap. */
2892 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2893 struct dwarf2_section_info *section)
2895 struct objfile *objfile = dwarf2_per_objfile->objfile;
2896 bfd *abfd = objfile->obfd;
2897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2898 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2900 auto_obstack temp_obstack;
2901 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2903 std::unordered_map<sect_offset,
2904 dwarf2_per_cu_data *,
2905 gdb::hash_enum<sect_offset>>
2906 debug_info_offset_to_per_cu;
2907 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2909 const auto insertpair
2910 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2911 if (!insertpair.second)
2913 warning (_("Section .debug_aranges in %s has duplicate "
2914 "debug_info_offset %s, ignoring .debug_aranges."),
2915 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2920 section->read (objfile);
2922 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2924 const gdb_byte *addr = section->buffer;
2926 while (addr < section->buffer + section->size)
2928 const gdb_byte *const entry_addr = addr;
2929 unsigned int bytes_read;
2931 const LONGEST entry_length = read_initial_length (abfd, addr,
2935 const gdb_byte *const entry_end = addr + entry_length;
2936 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2937 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2938 if (addr + entry_length > section->buffer + section->size)
2940 warning (_("Section .debug_aranges in %s entry at offset %s "
2941 "length %s exceeds section length %s, "
2942 "ignoring .debug_aranges."),
2943 objfile_name (objfile),
2944 plongest (entry_addr - section->buffer),
2945 plongest (bytes_read + entry_length),
2946 pulongest (section->size));
2950 /* The version number. */
2951 const uint16_t version = read_2_bytes (abfd, addr);
2955 warning (_("Section .debug_aranges in %s entry at offset %s "
2956 "has unsupported version %d, ignoring .debug_aranges."),
2957 objfile_name (objfile),
2958 plongest (entry_addr - section->buffer), version);
2962 const uint64_t debug_info_offset
2963 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2964 addr += offset_size;
2965 const auto per_cu_it
2966 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2967 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2969 warning (_("Section .debug_aranges in %s entry at offset %s "
2970 "debug_info_offset %s does not exists, "
2971 "ignoring .debug_aranges."),
2972 objfile_name (objfile),
2973 plongest (entry_addr - section->buffer),
2974 pulongest (debug_info_offset));
2977 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2979 const uint8_t address_size = *addr++;
2980 if (address_size < 1 || address_size > 8)
2982 warning (_("Section .debug_aranges in %s entry at offset %s "
2983 "address_size %u is invalid, ignoring .debug_aranges."),
2984 objfile_name (objfile),
2985 plongest (entry_addr - section->buffer), address_size);
2989 const uint8_t segment_selector_size = *addr++;
2990 if (segment_selector_size != 0)
2992 warning (_("Section .debug_aranges in %s entry at offset %s "
2993 "segment_selector_size %u is not supported, "
2994 "ignoring .debug_aranges."),
2995 objfile_name (objfile),
2996 plongest (entry_addr - section->buffer),
2997 segment_selector_size);
3001 /* Must pad to an alignment boundary that is twice the address
3002 size. It is undocumented by the DWARF standard but GCC does
3004 for (size_t padding = ((-(addr - section->buffer))
3005 & (2 * address_size - 1));
3006 padding > 0; padding--)
3009 warning (_("Section .debug_aranges in %s entry at offset %s "
3010 "padding is not zero, ignoring .debug_aranges."),
3011 objfile_name (objfile),
3012 plongest (entry_addr - section->buffer));
3018 if (addr + 2 * address_size > entry_end)
3020 warning (_("Section .debug_aranges in %s entry at offset %s "
3021 "address list is not properly terminated, "
3022 "ignoring .debug_aranges."),
3023 objfile_name (objfile),
3024 plongest (entry_addr - section->buffer));
3027 ULONGEST start = extract_unsigned_integer (addr, address_size,
3029 addr += address_size;
3030 ULONGEST length = extract_unsigned_integer (addr, address_size,
3032 addr += address_size;
3033 if (start == 0 && length == 0)
3035 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3037 /* Symbol was eliminated due to a COMDAT group. */
3040 ULONGEST end = start + length;
3041 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3043 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3045 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3049 objfile->partial_symtabs->psymtabs_addrmap
3050 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3053 /* Find a slot in the mapped index INDEX for the object named NAME.
3054 If NAME is found, set *VEC_OUT to point to the CU vector in the
3055 constant pool and return true. If NAME cannot be found, return
3059 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3060 offset_type **vec_out)
3063 offset_type slot, step;
3064 int (*cmp) (const char *, const char *);
3066 gdb::unique_xmalloc_ptr<char> without_params;
3067 if (current_language->la_language == language_cplus
3068 || current_language->la_language == language_fortran
3069 || current_language->la_language == language_d)
3071 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3074 if (strchr (name, '(') != NULL)
3076 without_params = cp_remove_params (name);
3078 if (without_params != NULL)
3079 name = without_params.get ();
3083 /* Index version 4 did not support case insensitive searches. But the
3084 indices for case insensitive languages are built in lowercase, therefore
3085 simulate our NAME being searched is also lowercased. */
3086 hash = mapped_index_string_hash ((index->version == 4
3087 && case_sensitivity == case_sensitive_off
3088 ? 5 : index->version),
3091 slot = hash & (index->symbol_table.size () - 1);
3092 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3093 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3099 const auto &bucket = index->symbol_table[slot];
3100 if (bucket.name == 0 && bucket.vec == 0)
3103 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3104 if (!cmp (name, str))
3106 *vec_out = (offset_type *) (index->constant_pool
3107 + MAYBE_SWAP (bucket.vec));
3111 slot = (slot + step) & (index->symbol_table.size () - 1);
3115 /* A helper function that reads the .gdb_index from BUFFER and fills
3116 in MAP. FILENAME is the name of the file containing the data;
3117 it is used for error reporting. DEPRECATED_OK is true if it is
3118 ok to use deprecated sections.
3120 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3121 out parameters that are filled in with information about the CU and
3122 TU lists in the section.
3124 Returns true if all went well, false otherwise. */
3127 read_gdb_index_from_buffer (struct objfile *objfile,
3128 const char *filename,
3130 gdb::array_view<const gdb_byte> buffer,
3131 struct mapped_index *map,
3132 const gdb_byte **cu_list,
3133 offset_type *cu_list_elements,
3134 const gdb_byte **types_list,
3135 offset_type *types_list_elements)
3137 const gdb_byte *addr = &buffer[0];
3139 /* Version check. */
3140 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3141 /* Versions earlier than 3 emitted every copy of a psymbol. This
3142 causes the index to behave very poorly for certain requests. Version 3
3143 contained incomplete addrmap. So, it seems better to just ignore such
3147 static int warning_printed = 0;
3148 if (!warning_printed)
3150 warning (_("Skipping obsolete .gdb_index section in %s."),
3152 warning_printed = 1;
3156 /* Index version 4 uses a different hash function than index version
3159 Versions earlier than 6 did not emit psymbols for inlined
3160 functions. Using these files will cause GDB not to be able to
3161 set breakpoints on inlined functions by name, so we ignore these
3162 indices unless the user has done
3163 "set use-deprecated-index-sections on". */
3164 if (version < 6 && !deprecated_ok)
3166 static int warning_printed = 0;
3167 if (!warning_printed)
3170 Skipping deprecated .gdb_index section in %s.\n\
3171 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3172 to use the section anyway."),
3174 warning_printed = 1;
3178 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3179 of the TU (for symbols coming from TUs),
3180 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3181 Plus gold-generated indices can have duplicate entries for global symbols,
3182 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3183 These are just performance bugs, and we can't distinguish gdb-generated
3184 indices from gold-generated ones, so issue no warning here. */
3186 /* Indexes with higher version than the one supported by GDB may be no
3187 longer backward compatible. */
3191 map->version = version;
3193 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3196 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3197 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3201 *types_list = addr + MAYBE_SWAP (metadata[i]);
3202 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3203 - MAYBE_SWAP (metadata[i]))
3207 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3208 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3210 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3213 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3214 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3216 = gdb::array_view<mapped_index::symbol_table_slot>
3217 ((mapped_index::symbol_table_slot *) symbol_table,
3218 (mapped_index::symbol_table_slot *) symbol_table_end);
3221 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3226 /* Callback types for dwarf2_read_gdb_index. */
3228 typedef gdb::function_view
3229 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3230 get_gdb_index_contents_ftype;
3231 typedef gdb::function_view
3232 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3233 get_gdb_index_contents_dwz_ftype;
3235 /* Read .gdb_index. If everything went ok, initialize the "quick"
3236 elements of all the CUs and return 1. Otherwise, return 0. */
3239 dwarf2_read_gdb_index
3240 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3241 get_gdb_index_contents_ftype get_gdb_index_contents,
3242 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3244 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3245 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3246 struct dwz_file *dwz;
3247 struct objfile *objfile = dwarf2_per_objfile->objfile;
3249 gdb::array_view<const gdb_byte> main_index_contents
3250 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3252 if (main_index_contents.empty ())
3255 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3256 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3257 use_deprecated_index_sections,
3258 main_index_contents, map.get (), &cu_list,
3259 &cu_list_elements, &types_list,
3260 &types_list_elements))
3263 /* Don't use the index if it's empty. */
3264 if (map->symbol_table.empty ())
3267 /* If there is a .dwz file, read it so we can get its CU list as
3269 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3272 struct mapped_index dwz_map;
3273 const gdb_byte *dwz_types_ignore;
3274 offset_type dwz_types_elements_ignore;
3276 gdb::array_view<const gdb_byte> dwz_index_content
3277 = get_gdb_index_contents_dwz (objfile, dwz);
3279 if (dwz_index_content.empty ())
3282 if (!read_gdb_index_from_buffer (objfile,
3283 bfd_get_filename (dwz->dwz_bfd.get ()),
3284 1, dwz_index_content, &dwz_map,
3285 &dwz_list, &dwz_list_elements,
3287 &dwz_types_elements_ignore))
3289 warning (_("could not read '.gdb_index' section from %s; skipping"),
3290 bfd_get_filename (dwz->dwz_bfd.get ()));
3295 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3296 dwz_list, dwz_list_elements);
3298 if (types_list_elements)
3300 /* We can only handle a single .debug_types when we have an
3302 if (dwarf2_per_objfile->types.size () != 1)
3305 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3307 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3308 types_list, types_list_elements);
3311 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3313 dwarf2_per_objfile->index_table = std::move (map);
3314 dwarf2_per_objfile->using_index = 1;
3315 dwarf2_per_objfile->quick_file_names_table =
3316 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3321 /* die_reader_func for dw2_get_file_names. */
3324 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3325 const gdb_byte *info_ptr,
3326 struct die_info *comp_unit_die)
3328 struct dwarf2_cu *cu = reader->cu;
3329 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3330 struct dwarf2_per_objfile *dwarf2_per_objfile
3331 = cu->per_cu->dwarf2_per_objfile;
3332 struct objfile *objfile = dwarf2_per_objfile->objfile;
3333 struct dwarf2_per_cu_data *lh_cu;
3334 struct attribute *attr;
3336 struct quick_file_names *qfn;
3338 gdb_assert (! this_cu->is_debug_types);
3340 /* Our callers never want to match partial units -- instead they
3341 will match the enclosing full CU. */
3342 if (comp_unit_die->tag == DW_TAG_partial_unit)
3344 this_cu->v.quick->no_file_data = 1;
3352 sect_offset line_offset {};
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3355 if (attr != nullptr)
3357 struct quick_file_names find_entry;
3359 line_offset = (sect_offset) DW_UNSND (attr);
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_sect_off = line_offset;
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3366 &find_entry, INSERT);
3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3373 lh = dwarf_decode_line_header (line_offset, cu);
3377 lh_cu->v.quick->no_file_data = 1;
3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_sect_off = line_offset;
3384 gdb_assert (slot != NULL);
3387 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3390 if (strcmp (fnd.name, "<unknown>") != 0)
3393 qfn->num_file_names = offset + lh->file_names_size ();
3395 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3397 qfn->file_names[0] = xstrdup (fnd.name);
3398 for (int i = 0; i < lh->file_names_size (); ++i)
3399 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3400 qfn->real_names = NULL;
3402 lh_cu->v.quick->file_names = qfn;
3405 /* A helper for the "quick" functions which attempts to read the line
3406 table for THIS_CU. */
3408 static struct quick_file_names *
3409 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3411 /* This should never be called for TUs. */
3412 gdb_assert (! this_cu->is_debug_types);
3413 /* Nor type unit groups. */
3414 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3416 if (this_cu->v.quick->file_names != NULL)
3417 return this_cu->v.quick->file_names;
3418 /* If we know there is no line data, no point in looking again. */
3419 if (this_cu->v.quick->no_file_data)
3422 cutu_reader reader (this_cu);
3423 if (!reader.dummy_p)
3424 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3426 if (this_cu->v.quick->no_file_data)
3428 return this_cu->v.quick->file_names;
3431 /* A helper for the "quick" functions which computes and caches the
3432 real path for a given file name from the line table. */
3435 dw2_get_real_path (struct objfile *objfile,
3436 struct quick_file_names *qfn, int index)
3438 if (qfn->real_names == NULL)
3439 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3440 qfn->num_file_names, const char *);
3442 if (qfn->real_names[index] == NULL)
3443 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3445 return qfn->real_names[index];
3448 static struct symtab *
3449 dw2_find_last_source_symtab (struct objfile *objfile)
3451 struct dwarf2_per_objfile *dwarf2_per_objfile
3452 = get_dwarf2_per_objfile (objfile);
3453 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3454 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3459 return compunit_primary_filetab (cust);
3462 /* Traversal function for dw2_forget_cached_source_info. */
3465 dw2_free_cached_file_names (void **slot, void *info)
3467 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3469 if (file_data->real_names)
3473 for (i = 0; i < file_data->num_file_names; ++i)
3475 xfree ((void*) file_data->real_names[i]);
3476 file_data->real_names[i] = NULL;
3484 dw2_forget_cached_source_info (struct objfile *objfile)
3486 struct dwarf2_per_objfile *dwarf2_per_objfile
3487 = get_dwarf2_per_objfile (objfile);
3489 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3490 dw2_free_cached_file_names, NULL);
3493 /* Helper function for dw2_map_symtabs_matching_filename that expands
3494 the symtabs and calls the iterator. */
3497 dw2_map_expand_apply (struct objfile *objfile,
3498 struct dwarf2_per_cu_data *per_cu,
3499 const char *name, const char *real_path,
3500 gdb::function_view<bool (symtab *)> callback)
3502 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3504 /* Don't visit already-expanded CUs. */
3505 if (per_cu->v.quick->compunit_symtab)
3508 /* This may expand more than one symtab, and we want to iterate over
3510 dw2_instantiate_symtab (per_cu, false);
3512 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3513 last_made, callback);
3516 /* Implementation of the map_symtabs_matching_filename method. */
3519 dw2_map_symtabs_matching_filename
3520 (struct objfile *objfile, const char *name, const char *real_path,
3521 gdb::function_view<bool (symtab *)> callback)
3523 const char *name_basename = lbasename (name);
3524 struct dwarf2_per_objfile *dwarf2_per_objfile
3525 = get_dwarf2_per_objfile (objfile);
3527 /* The rule is CUs specify all the files, including those used by
3528 any TU, so there's no need to scan TUs here. */
3530 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3532 /* We only need to look at symtabs not already expanded. */
3533 if (per_cu->v.quick->compunit_symtab)
3536 quick_file_names *file_data = dw2_get_file_names (per_cu);
3537 if (file_data == NULL)
3540 for (int j = 0; j < file_data->num_file_names; ++j)
3542 const char *this_name = file_data->file_names[j];
3543 const char *this_real_name;
3545 if (compare_filenames_for_search (this_name, name))
3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3568 if (real_path != NULL)
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
3572 if (this_real_name != NULL
3573 && FILENAME_CMP (real_path, this_real_name) == 0)
3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3587 /* Struct used to manage iterating over all CUs looking for a symbol. */
3589 struct dw2_symtab_iterator
3591 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3592 struct dwarf2_per_objfile *dwarf2_per_objfile;
3593 /* If set, only look for symbols that match that block. Valid values are
3594 GLOBAL_BLOCK and STATIC_BLOCK. */
3595 gdb::optional<block_enum> block_index;
3596 /* The kind of symbol we're looking for. */
3598 /* The list of CUs from the index entry of the symbol,
3599 or NULL if not found. */
3601 /* The next element in VEC to look at. */
3603 /* The number of elements in VEC, or zero if there is no match. */
3605 /* Have we seen a global version of the symbol?
3606 If so we can ignore all further global instances.
3607 This is to work around gold/15646, inefficient gold-generated
3612 /* Initialize the index symtab iterator ITER. */
3615 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3616 struct dwarf2_per_objfile *dwarf2_per_objfile,
3617 gdb::optional<block_enum> block_index,
3621 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3622 iter->block_index = block_index;
3623 iter->domain = domain;
3625 iter->global_seen = 0;
3627 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3629 /* index is NULL if OBJF_READNOW. */
3630 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3631 iter->length = MAYBE_SWAP (*iter->vec);
3639 /* Return the next matching CU or NULL if there are no more. */
3641 static struct dwarf2_per_cu_data *
3642 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3644 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3646 for ( ; iter->next < iter->length; ++iter->next)
3648 offset_type cu_index_and_attrs =
3649 MAYBE_SWAP (iter->vec[iter->next + 1]);
3650 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3651 gdb_index_symbol_kind symbol_kind =
3652 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3653 /* Only check the symbol attributes if they're present.
3654 Indices prior to version 7 don't record them,
3655 and indices >= 7 may elide them for certain symbols
3656 (gold does this). */
3658 (dwarf2_per_objfile->index_table->version >= 7
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3661 /* Don't crash on bad data. */
3662 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3663 + dwarf2_per_objfile->all_type_units.size ()))
3665 complaint (_(".gdb_index entry has bad CU index"
3667 objfile_name (dwarf2_per_objfile->objfile));
3671 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3673 /* Skip if already read in. */
3674 if (per_cu->v.quick->compunit_symtab)
3677 /* Check static vs global. */
3680 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3682 if (iter->block_index.has_value ())
3684 bool want_static = *iter->block_index == STATIC_BLOCK;
3686 if (is_static != want_static)
3690 /* Work around gold/15646. */
3691 if (!is_static && iter->global_seen)
3694 iter->global_seen = 1;
3697 /* Only check the symbol's kind if it has one. */
3700 switch (iter->domain)
3703 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3704 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3705 /* Some types are also in VAR_DOMAIN. */
3706 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3710 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3714 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3718 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3733 static struct compunit_symtab *
3734 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3735 const char *name, domain_enum domain)
3737 struct compunit_symtab *stab_best = NULL;
3738 struct dwarf2_per_objfile *dwarf2_per_objfile
3739 = get_dwarf2_per_objfile (objfile);
3741 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3743 struct dw2_symtab_iterator iter;
3744 struct dwarf2_per_cu_data *per_cu;
3746 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3750 struct symbol *sym, *with_opaque = NULL;
3751 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3752 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3753 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3755 sym = block_find_symbol (block, name, domain,
3756 block_find_non_opaque_type_preferred,
3759 /* Some caution must be observed with overloaded functions
3760 and methods, since the index will not contain any overload
3761 information (but NAME might contain it). */
3764 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3766 if (with_opaque != NULL
3767 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3770 /* Keep looking through other CUs. */
3777 dw2_print_stats (struct objfile *objfile)
3779 struct dwarf2_per_objfile *dwarf2_per_objfile
3780 = get_dwarf2_per_objfile (objfile);
3781 int total = (dwarf2_per_objfile->all_comp_units.size ()
3782 + dwarf2_per_objfile->all_type_units.size ());
3785 for (int i = 0; i < total; ++i)
3787 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3789 if (!per_cu->v.quick->compunit_symtab)
3792 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3793 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3796 /* This dumps minimal information about the index.
3797 It is called via "mt print objfiles".
3798 One use is to verify .gdb_index has been loaded by the
3799 gdb.dwarf2/gdb-index.exp testcase. */
3802 dw2_dump (struct objfile *objfile)
3804 struct dwarf2_per_objfile *dwarf2_per_objfile
3805 = get_dwarf2_per_objfile (objfile);
3807 gdb_assert (dwarf2_per_objfile->using_index);
3808 printf_filtered (".gdb_index:");
3809 if (dwarf2_per_objfile->index_table != NULL)
3811 printf_filtered (" version %d\n",
3812 dwarf2_per_objfile->index_table->version);
3815 printf_filtered (" faked for \"readnow\"\n");
3816 printf_filtered ("\n");
3820 dw2_expand_symtabs_for_function (struct objfile *objfile,
3821 const char *func_name)
3823 struct dwarf2_per_objfile *dwarf2_per_objfile
3824 = get_dwarf2_per_objfile (objfile);
3826 struct dw2_symtab_iterator iter;
3827 struct dwarf2_per_cu_data *per_cu;
3829 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3831 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3832 dw2_instantiate_symtab (per_cu, false);
3837 dw2_expand_all_symtabs (struct objfile *objfile)
3839 struct dwarf2_per_objfile *dwarf2_per_objfile
3840 = get_dwarf2_per_objfile (objfile);
3841 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3842 + dwarf2_per_objfile->all_type_units.size ());
3844 for (int i = 0; i < total_units; ++i)
3846 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3848 /* We don't want to directly expand a partial CU, because if we
3849 read it with the wrong language, then assertion failures can
3850 be triggered later on. See PR symtab/23010. So, tell
3851 dw2_instantiate_symtab to skip partial CUs -- any important
3852 partial CU will be read via DW_TAG_imported_unit anyway. */
3853 dw2_instantiate_symtab (per_cu, true);
3858 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3859 const char *fullname)
3861 struct dwarf2_per_objfile *dwarf2_per_objfile
3862 = get_dwarf2_per_objfile (objfile);
3864 /* We don't need to consider type units here.
3865 This is only called for examining code, e.g. expand_line_sal.
3866 There can be an order of magnitude (or more) more type units
3867 than comp units, and we avoid them if we can. */
3869 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3871 /* We only need to look at symtabs not already expanded. */
3872 if (per_cu->v.quick->compunit_symtab)
3875 quick_file_names *file_data = dw2_get_file_names (per_cu);
3876 if (file_data == NULL)
3879 for (int j = 0; j < file_data->num_file_names; ++j)
3881 const char *this_fullname = file_data->file_names[j];
3883 if (filename_cmp (this_fullname, fullname) == 0)
3885 dw2_instantiate_symtab (per_cu, false);
3893 dw2_map_matching_symbols
3894 (struct objfile *objfile,
3895 const lookup_name_info &name, domain_enum domain,
3897 gdb::function_view<symbol_found_callback_ftype> callback,
3898 symbol_compare_ftype *ordered_compare)
3900 /* Currently unimplemented; used for Ada. The function can be called if the
3901 current language is Ada for a non-Ada objfile using GNU index. As Ada
3902 does not look for non-Ada symbols this function should just return. */
3905 /* Starting from a search name, return the string that finds the upper
3906 bound of all strings that start with SEARCH_NAME in a sorted name
3907 list. Returns the empty string to indicate that the upper bound is
3908 the end of the list. */
3911 make_sort_after_prefix_name (const char *search_name)
3913 /* When looking to complete "func", we find the upper bound of all
3914 symbols that start with "func" by looking for where we'd insert
3915 the closest string that would follow "func" in lexicographical
3916 order. Usually, that's "func"-with-last-character-incremented,
3917 i.e. "fund". Mind non-ASCII characters, though. Usually those
3918 will be UTF-8 multi-byte sequences, but we can't be certain.
3919 Especially mind the 0xff character, which is a valid character in
3920 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3921 rule out compilers allowing it in identifiers. Note that
3922 conveniently, strcmp/strcasecmp are specified to compare
3923 characters interpreted as unsigned char. So what we do is treat
3924 the whole string as a base 256 number composed of a sequence of
3925 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3926 to 0, and carries 1 to the following more-significant position.
3927 If the very first character in SEARCH_NAME ends up incremented
3928 and carries/overflows, then the upper bound is the end of the
3929 list. The string after the empty string is also the empty
3932 Some examples of this operation:
3934 SEARCH_NAME => "+1" RESULT
3938 "\xff" "a" "\xff" => "\xff" "b"
3943 Then, with these symbols for example:
3949 completing "func" looks for symbols between "func" and
3950 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3951 which finds "func" and "func1", but not "fund".
3955 funcÿ (Latin1 'ÿ' [0xff])
3959 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3960 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3964 ÿÿ (Latin1 'ÿ' [0xff])
3967 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3968 the end of the list.
3970 std::string after = search_name;
3971 while (!after.empty () && (unsigned char) after.back () == 0xff)
3973 if (!after.empty ())
3974 after.back () = (unsigned char) after.back () + 1;
3978 /* See declaration. */
3980 std::pair<std::vector<name_component>::const_iterator,
3981 std::vector<name_component>::const_iterator>
3982 mapped_index_base::find_name_components_bounds
3983 (const lookup_name_info &lookup_name_without_params, language lang) const
3986 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3988 const char *lang_name
3989 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3991 /* Comparison function object for lower_bound that matches against a
3992 given symbol name. */
3993 auto lookup_compare_lower = [&] (const name_component &elem,
3996 const char *elem_qualified = this->symbol_name_at (elem.idx);
3997 const char *elem_name = elem_qualified + elem.name_offset;
3998 return name_cmp (elem_name, name) < 0;
4001 /* Comparison function object for upper_bound that matches against a
4002 given symbol name. */
4003 auto lookup_compare_upper = [&] (const char *name,
4004 const name_component &elem)
4006 const char *elem_qualified = this->symbol_name_at (elem.idx);
4007 const char *elem_name = elem_qualified + elem.name_offset;
4008 return name_cmp (name, elem_name) < 0;
4011 auto begin = this->name_components.begin ();
4012 auto end = this->name_components.end ();
4014 /* Find the lower bound. */
4017 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4020 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4023 /* Find the upper bound. */
4026 if (lookup_name_without_params.completion_mode ())
4028 /* In completion mode, we want UPPER to point past all
4029 symbols names that have the same prefix. I.e., with
4030 these symbols, and completing "func":
4032 function << lower bound
4034 other_function << upper bound
4036 We find the upper bound by looking for the insertion
4037 point of "func"-with-last-character-incremented,
4039 std::string after = make_sort_after_prefix_name (lang_name);
4042 return std::lower_bound (lower, end, after.c_str (),
4043 lookup_compare_lower);
4046 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4049 return {lower, upper};
4052 /* See declaration. */
4055 mapped_index_base::build_name_components ()
4057 if (!this->name_components.empty ())
4060 this->name_components_casing = case_sensitivity;
4062 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4064 /* The code below only knows how to break apart components of C++
4065 symbol names (and other languages that use '::' as
4066 namespace/module separator) and Ada symbol names. */
4067 auto count = this->symbol_name_count ();
4068 for (offset_type idx = 0; idx < count; idx++)
4070 if (this->symbol_name_slot_invalid (idx))
4073 const char *name = this->symbol_name_at (idx);
4075 /* Add each name component to the name component table. */
4076 unsigned int previous_len = 0;
4078 if (strstr (name, "::") != nullptr)
4080 for (unsigned int current_len = cp_find_first_component (name);
4081 name[current_len] != '\0';
4082 current_len += cp_find_first_component (name + current_len))
4084 gdb_assert (name[current_len] == ':');
4085 this->name_components.push_back ({previous_len, idx});
4086 /* Skip the '::'. */
4088 previous_len = current_len;
4093 /* Handle the Ada encoded (aka mangled) form here. */
4094 for (const char *iter = strstr (name, "__");
4096 iter = strstr (iter, "__"))
4098 this->name_components.push_back ({previous_len, idx});
4100 previous_len = iter - name;
4104 this->name_components.push_back ({previous_len, idx});
4107 /* Sort name_components elements by name. */
4108 auto name_comp_compare = [&] (const name_component &left,
4109 const name_component &right)
4111 const char *left_qualified = this->symbol_name_at (left.idx);
4112 const char *right_qualified = this->symbol_name_at (right.idx);
4114 const char *left_name = left_qualified + left.name_offset;
4115 const char *right_name = right_qualified + right.name_offset;
4117 return name_cmp (left_name, right_name) < 0;
4120 std::sort (this->name_components.begin (),
4121 this->name_components.end (),
4125 /* Helper for dw2_expand_symtabs_matching that works with a
4126 mapped_index_base instead of the containing objfile. This is split
4127 to a separate function in order to be able to unit test the
4128 name_components matching using a mock mapped_index_base. For each
4129 symbol name that matches, calls MATCH_CALLBACK, passing it the
4130 symbol's index in the mapped_index_base symbol table. */
4133 dw2_expand_symtabs_matching_symbol
4134 (mapped_index_base &index,
4135 const lookup_name_info &lookup_name_in,
4136 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4137 enum search_domain kind,
4138 gdb::function_view<bool (offset_type)> match_callback)
4140 lookup_name_info lookup_name_without_params
4141 = lookup_name_in.make_ignore_params ();
4143 /* Build the symbol name component sorted vector, if we haven't
4145 index.build_name_components ();
4147 /* The same symbol may appear more than once in the range though.
4148 E.g., if we're looking for symbols that complete "w", and we have
4149 a symbol named "w1::w2", we'll find the two name components for
4150 that same symbol in the range. To be sure we only call the
4151 callback once per symbol, we first collect the symbol name
4152 indexes that matched in a temporary vector and ignore
4154 std::vector<offset_type> matches;
4156 struct name_and_matcher
4158 symbol_name_matcher_ftype *matcher;
4159 const std::string &name;
4161 bool operator== (const name_and_matcher &other) const
4163 return matcher == other.matcher && name == other.name;
4167 /* A vector holding all the different symbol name matchers, for all
4169 std::vector<name_and_matcher> matchers;
4171 for (int i = 0; i < nr_languages; i++)
4173 enum language lang_e = (enum language) i;
4175 const language_defn *lang = language_def (lang_e);
4176 symbol_name_matcher_ftype *name_matcher
4177 = get_symbol_name_matcher (lang, lookup_name_without_params);
4179 name_and_matcher key {
4181 lookup_name_without_params.language_lookup_name (lang_e)
4184 /* Don't insert the same comparison routine more than once.
4185 Note that we do this linear walk. This is not a problem in
4186 practice because the number of supported languages is
4188 if (std::find (matchers.begin (), matchers.end (), key)
4191 matchers.push_back (std::move (key));
4194 = index.find_name_components_bounds (lookup_name_without_params,
4197 /* Now for each symbol name in range, check to see if we have a name
4198 match, and if so, call the MATCH_CALLBACK callback. */
4200 for (; bounds.first != bounds.second; ++bounds.first)
4202 const char *qualified = index.symbol_name_at (bounds.first->idx);
4204 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4205 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4208 matches.push_back (bounds.first->idx);
4212 std::sort (matches.begin (), matches.end ());
4214 /* Finally call the callback, once per match. */
4216 for (offset_type idx : matches)
4220 if (!match_callback (idx))
4226 /* Above we use a type wider than idx's for 'prev', since 0 and
4227 (offset_type)-1 are both possible values. */
4228 static_assert (sizeof (prev) > sizeof (offset_type), "");
4233 namespace selftests { namespace dw2_expand_symtabs_matching {
4235 /* A mock .gdb_index/.debug_names-like name index table, enough to
4236 exercise dw2_expand_symtabs_matching_symbol, which works with the
4237 mapped_index_base interface. Builds an index from the symbol list
4238 passed as parameter to the constructor. */
4239 class mock_mapped_index : public mapped_index_base
4242 mock_mapped_index (gdb::array_view<const char *> symbols)
4243 : m_symbol_table (symbols)
4246 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4248 /* Return the number of names in the symbol table. */
4249 size_t symbol_name_count () const override
4251 return m_symbol_table.size ();
4254 /* Get the name of the symbol at IDX in the symbol table. */
4255 const char *symbol_name_at (offset_type idx) const override
4257 return m_symbol_table[idx];
4261 gdb::array_view<const char *> m_symbol_table;
4264 /* Convenience function that converts a NULL pointer to a "<null>"
4265 string, to pass to print routines. */
4268 string_or_null (const char *str)
4270 return str != NULL ? str : "<null>";
4273 /* Check if a lookup_name_info built from
4274 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4275 index. EXPECTED_LIST is the list of expected matches, in expected
4276 matching order. If no match expected, then an empty list is
4277 specified. Returns true on success. On failure prints a warning
4278 indicating the file:line that failed, and returns false. */
4281 check_match (const char *file, int line,
4282 mock_mapped_index &mock_index,
4283 const char *name, symbol_name_match_type match_type,
4284 bool completion_mode,
4285 std::initializer_list<const char *> expected_list)
4287 lookup_name_info lookup_name (name, match_type, completion_mode);
4289 bool matched = true;
4291 auto mismatch = [&] (const char *expected_str,
4294 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4295 "expected=\"%s\", got=\"%s\"\n"),
4297 (match_type == symbol_name_match_type::FULL
4299 name, string_or_null (expected_str), string_or_null (got));
4303 auto expected_it = expected_list.begin ();
4304 auto expected_end = expected_list.end ();
4306 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4308 [&] (offset_type idx)
4310 const char *matched_name = mock_index.symbol_name_at (idx);
4311 const char *expected_str
4312 = expected_it == expected_end ? NULL : *expected_it++;
4314 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4315 mismatch (expected_str, matched_name);
4319 const char *expected_str
4320 = expected_it == expected_end ? NULL : *expected_it++;
4321 if (expected_str != NULL)
4322 mismatch (expected_str, NULL);
4327 /* The symbols added to the mock mapped_index for testing (in
4329 static const char *test_symbols[] = {
4338 "ns2::tmpl<int>::foo2",
4339 "(anonymous namespace)::A::B::C",
4341 /* These are used to check that the increment-last-char in the
4342 matching algorithm for completion doesn't match "t1_fund" when
4343 completing "t1_func". */
4349 /* A UTF-8 name with multi-byte sequences to make sure that
4350 cp-name-parser understands this as a single identifier ("função"
4351 is "function" in PT). */
4354 /* \377 (0xff) is Latin1 'ÿ'. */
4357 /* \377 (0xff) is Latin1 'ÿ'. */
4361 /* A name with all sorts of complications. Starts with "z" to make
4362 it easier for the completion tests below. */
4363 #define Z_SYM_NAME \
4364 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4365 "::tuple<(anonymous namespace)::ui*, " \
4366 "std::default_delete<(anonymous namespace)::ui>, void>"
4371 /* Returns true if the mapped_index_base::find_name_component_bounds
4372 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4373 in completion mode. */
4376 check_find_bounds_finds (mapped_index_base &index,
4377 const char *search_name,
4378 gdb::array_view<const char *> expected_syms)
4380 lookup_name_info lookup_name (search_name,
4381 symbol_name_match_type::FULL, true);
4383 auto bounds = index.find_name_components_bounds (lookup_name,
4386 size_t distance = std::distance (bounds.first, bounds.second);
4387 if (distance != expected_syms.size ())
4390 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4392 auto nc_elem = bounds.first + exp_elem;
4393 const char *qualified = index.symbol_name_at (nc_elem->idx);
4394 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4401 /* Test the lower-level mapped_index::find_name_component_bounds
4405 test_mapped_index_find_name_component_bounds ()
4407 mock_mapped_index mock_index (test_symbols);
4409 mock_index.build_name_components ();
4411 /* Test the lower-level mapped_index::find_name_component_bounds
4412 method in completion mode. */
4414 static const char *expected_syms[] = {
4419 SELF_CHECK (check_find_bounds_finds (mock_index,
4420 "t1_func", expected_syms));
4423 /* Check that the increment-last-char in the name matching algorithm
4424 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4426 static const char *expected_syms1[] = {
4430 SELF_CHECK (check_find_bounds_finds (mock_index,
4431 "\377", expected_syms1));
4433 static const char *expected_syms2[] = {
4436 SELF_CHECK (check_find_bounds_finds (mock_index,
4437 "\377\377", expected_syms2));
4441 /* Test dw2_expand_symtabs_matching_symbol. */
4444 test_dw2_expand_symtabs_matching_symbol ()
4446 mock_mapped_index mock_index (test_symbols);
4448 /* We let all tests run until the end even if some fails, for debug
4450 bool any_mismatch = false;
4452 /* Create the expected symbols list (an initializer_list). Needed
4453 because lists have commas, and we need to pass them to CHECK,
4454 which is a macro. */
4455 #define EXPECT(...) { __VA_ARGS__ }
4457 /* Wrapper for check_match that passes down the current
4458 __FILE__/__LINE__. */
4459 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4460 any_mismatch |= !check_match (__FILE__, __LINE__, \
4462 NAME, MATCH_TYPE, COMPLETION_MODE, \
4465 /* Identity checks. */
4466 for (const char *sym : test_symbols)
4468 /* Should be able to match all existing symbols. */
4469 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4472 /* Should be able to match all existing symbols with
4474 std::string with_params = std::string (sym) + "(int)";
4475 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4478 /* Should be able to match all existing symbols with
4479 parameters and qualifiers. */
4480 with_params = std::string (sym) + " ( int ) const";
4481 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4484 /* This should really find sym, but cp-name-parser.y doesn't
4485 know about lvalue/rvalue qualifiers yet. */
4486 with_params = std::string (sym) + " ( int ) &&";
4487 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4491 /* Check that the name matching algorithm for completion doesn't get
4492 confused with Latin1 'ÿ' / 0xff. */
4494 static const char str[] = "\377";
4495 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4496 EXPECT ("\377", "\377\377123"));
4499 /* Check that the increment-last-char in the matching algorithm for
4500 completion doesn't match "t1_fund" when completing "t1_func". */
4502 static const char str[] = "t1_func";
4503 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4504 EXPECT ("t1_func", "t1_func1"));
4507 /* Check that completion mode works at each prefix of the expected
4510 static const char str[] = "function(int)";
4511 size_t len = strlen (str);
4514 for (size_t i = 1; i < len; i++)
4516 lookup.assign (str, i);
4517 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4518 EXPECT ("function"));
4522 /* While "w" is a prefix of both components, the match function
4523 should still only be called once. */
4525 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4527 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4531 /* Same, with a "complicated" symbol. */
4533 static const char str[] = Z_SYM_NAME;
4534 size_t len = strlen (str);
4537 for (size_t i = 1; i < len; i++)
4539 lookup.assign (str, i);
4540 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4541 EXPECT (Z_SYM_NAME));
4545 /* In FULL mode, an incomplete symbol doesn't match. */
4547 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4551 /* A complete symbol with parameters matches any overload, since the
4552 index has no overload info. */
4554 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4555 EXPECT ("std::zfunction", "std::zfunction2"));
4556 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4557 EXPECT ("std::zfunction", "std::zfunction2"));
4558 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4559 EXPECT ("std::zfunction", "std::zfunction2"));
4562 /* Check that whitespace is ignored appropriately. A symbol with a
4563 template argument list. */
4565 static const char expected[] = "ns::foo<int>";
4566 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4568 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4572 /* Check that whitespace is ignored appropriately. A symbol with a
4573 template argument list that includes a pointer. */
4575 static const char expected[] = "ns::foo<char*>";
4576 /* Try both completion and non-completion modes. */
4577 static const bool completion_mode[2] = {false, true};
4578 for (size_t i = 0; i < 2; i++)
4580 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4581 completion_mode[i], EXPECT (expected));
4582 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4583 completion_mode[i], EXPECT (expected));
4585 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4586 completion_mode[i], EXPECT (expected));
4587 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4588 completion_mode[i], EXPECT (expected));
4593 /* Check method qualifiers are ignored. */
4594 static const char expected[] = "ns::foo<char*>";
4595 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4596 symbol_name_match_type::FULL, true, EXPECT (expected));
4597 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4598 symbol_name_match_type::FULL, true, EXPECT (expected));
4599 CHECK_MATCH ("foo < char * > ( int ) const",
4600 symbol_name_match_type::WILD, true, EXPECT (expected));
4601 CHECK_MATCH ("foo < char * > ( int ) &&",
4602 symbol_name_match_type::WILD, true, EXPECT (expected));
4605 /* Test lookup names that don't match anything. */
4607 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4610 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4614 /* Some wild matching tests, exercising "(anonymous namespace)",
4615 which should not be confused with a parameter list. */
4617 static const char *syms[] = {
4621 "A :: B :: C ( int )",
4626 for (const char *s : syms)
4628 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4629 EXPECT ("(anonymous namespace)::A::B::C"));
4634 static const char expected[] = "ns2::tmpl<int>::foo2";
4635 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4637 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4641 SELF_CHECK (!any_mismatch);
4650 test_mapped_index_find_name_component_bounds ();
4651 test_dw2_expand_symtabs_matching_symbol ();
4654 }} // namespace selftests::dw2_expand_symtabs_matching
4656 #endif /* GDB_SELF_TEST */
4658 /* If FILE_MATCHER is NULL or if PER_CU has
4659 dwarf2_per_cu_quick_data::MARK set (see
4660 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4661 EXPANSION_NOTIFY on it. */
4664 dw2_expand_symtabs_matching_one
4665 (struct dwarf2_per_cu_data *per_cu,
4666 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4667 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4669 if (file_matcher == NULL || per_cu->v.quick->mark)
4671 bool symtab_was_null
4672 = (per_cu->v.quick->compunit_symtab == NULL);
4674 dw2_instantiate_symtab (per_cu, false);
4676 if (expansion_notify != NULL
4678 && per_cu->v.quick->compunit_symtab != NULL)
4679 expansion_notify (per_cu->v.quick->compunit_symtab);
4683 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4684 matched, to expand corresponding CUs that were marked. IDX is the
4685 index of the symbol name that matched. */
4688 dw2_expand_marked_cus
4689 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4690 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4691 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4694 offset_type *vec, vec_len, vec_idx;
4695 bool global_seen = false;
4696 mapped_index &index = *dwarf2_per_objfile->index_table;
4698 vec = (offset_type *) (index.constant_pool
4699 + MAYBE_SWAP (index.symbol_table[idx].vec));
4700 vec_len = MAYBE_SWAP (vec[0]);
4701 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4703 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4704 /* This value is only valid for index versions >= 7. */
4705 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4706 gdb_index_symbol_kind symbol_kind =
4707 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4708 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4709 /* Only check the symbol attributes if they're present.
4710 Indices prior to version 7 don't record them,
4711 and indices >= 7 may elide them for certain symbols
4712 (gold does this). */
4715 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4717 /* Work around gold/15646. */
4720 if (!is_static && global_seen)
4726 /* Only check the symbol's kind if it has one. */
4731 case VARIABLES_DOMAIN:
4732 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4735 case FUNCTIONS_DOMAIN:
4736 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4740 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4743 case MODULES_DOMAIN:
4744 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4752 /* Don't crash on bad data. */
4753 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4754 + dwarf2_per_objfile->all_type_units.size ()))
4756 complaint (_(".gdb_index entry has bad CU index"
4758 objfile_name (dwarf2_per_objfile->objfile));
4762 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4763 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4768 /* If FILE_MATCHER is non-NULL, set all the
4769 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4770 that match FILE_MATCHER. */
4773 dw_expand_symtabs_matching_file_matcher
4774 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4775 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4777 if (file_matcher == NULL)
4780 objfile *const objfile = dwarf2_per_objfile->objfile;
4782 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4784 NULL, xcalloc, xfree));
4785 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4787 NULL, xcalloc, xfree));
4789 /* The rule is CUs specify all the files, including those used by
4790 any TU, so there's no need to scan TUs here. */
4792 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4796 per_cu->v.quick->mark = 0;
4798 /* We only need to look at symtabs not already expanded. */
4799 if (per_cu->v.quick->compunit_symtab)
4802 quick_file_names *file_data = dw2_get_file_names (per_cu);
4803 if (file_data == NULL)
4806 if (htab_find (visited_not_found.get (), file_data) != NULL)
4808 else if (htab_find (visited_found.get (), file_data) != NULL)
4810 per_cu->v.quick->mark = 1;
4814 for (int j = 0; j < file_data->num_file_names; ++j)
4816 const char *this_real_name;
4818 if (file_matcher (file_data->file_names[j], false))
4820 per_cu->v.quick->mark = 1;
4824 /* Before we invoke realpath, which can get expensive when many
4825 files are involved, do a quick comparison of the basenames. */
4826 if (!basenames_may_differ
4827 && !file_matcher (lbasename (file_data->file_names[j]),
4831 this_real_name = dw2_get_real_path (objfile, file_data, j);
4832 if (file_matcher (this_real_name, false))
4834 per_cu->v.quick->mark = 1;
4839 void **slot = htab_find_slot (per_cu->v.quick->mark
4840 ? visited_found.get ()
4841 : visited_not_found.get (),
4848 dw2_expand_symtabs_matching
4849 (struct objfile *objfile,
4850 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4851 const lookup_name_info &lookup_name,
4852 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4853 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4854 enum search_domain kind)
4856 struct dwarf2_per_objfile *dwarf2_per_objfile
4857 = get_dwarf2_per_objfile (objfile);
4859 /* index_table is NULL if OBJF_READNOW. */
4860 if (!dwarf2_per_objfile->index_table)
4863 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4865 mapped_index &index = *dwarf2_per_objfile->index_table;
4867 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4869 kind, [&] (offset_type idx)
4871 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4872 expansion_notify, kind);
4877 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4880 static struct compunit_symtab *
4881 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4886 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4887 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4890 if (cust->includes == NULL)
4893 for (i = 0; cust->includes[i]; ++i)
4895 struct compunit_symtab *s = cust->includes[i];
4897 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4905 static struct compunit_symtab *
4906 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4907 struct bound_minimal_symbol msymbol,
4909 struct obj_section *section,
4912 struct dwarf2_per_cu_data *data;
4913 struct compunit_symtab *result;
4915 if (!objfile->partial_symtabs->psymtabs_addrmap)
4918 CORE_ADDR baseaddr = objfile->text_section_offset ();
4919 data = (struct dwarf2_per_cu_data *) addrmap_find
4920 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4924 if (warn_if_readin && data->v.quick->compunit_symtab)
4925 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4926 paddress (get_objfile_arch (objfile), pc));
4929 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4932 gdb_assert (result != NULL);
4937 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4938 void *data, int need_fullname)
4940 struct dwarf2_per_objfile *dwarf2_per_objfile
4941 = get_dwarf2_per_objfile (objfile);
4943 if (!dwarf2_per_objfile->filenames_cache)
4945 dwarf2_per_objfile->filenames_cache.emplace ();
4947 htab_up visited (htab_create_alloc (10,
4948 htab_hash_pointer, htab_eq_pointer,
4949 NULL, xcalloc, xfree));
4951 /* The rule is CUs specify all the files, including those used
4952 by any TU, so there's no need to scan TUs here. We can
4953 ignore file names coming from already-expanded CUs. */
4955 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4957 if (per_cu->v.quick->compunit_symtab)
4959 void **slot = htab_find_slot (visited.get (),
4960 per_cu->v.quick->file_names,
4963 *slot = per_cu->v.quick->file_names;
4967 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4969 /* We only need to look at symtabs not already expanded. */
4970 if (per_cu->v.quick->compunit_symtab)
4973 quick_file_names *file_data = dw2_get_file_names (per_cu);
4974 if (file_data == NULL)
4977 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4980 /* Already visited. */
4985 for (int j = 0; j < file_data->num_file_names; ++j)
4987 const char *filename = file_data->file_names[j];
4988 dwarf2_per_objfile->filenames_cache->seen (filename);
4993 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4995 gdb::unique_xmalloc_ptr<char> this_real_name;
4998 this_real_name = gdb_realpath (filename);
4999 (*fun) (filename, this_real_name.get (), data);
5004 dw2_has_symbols (struct objfile *objfile)
5009 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5012 dw2_find_last_source_symtab,
5013 dw2_forget_cached_source_info,
5014 dw2_map_symtabs_matching_filename,
5018 dw2_expand_symtabs_for_function,
5019 dw2_expand_all_symtabs,
5020 dw2_expand_symtabs_with_fullname,
5021 dw2_map_matching_symbols,
5022 dw2_expand_symtabs_matching,
5023 dw2_find_pc_sect_compunit_symtab,
5025 dw2_map_symbol_filenames
5028 /* DWARF-5 debug_names reader. */
5030 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5031 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5033 /* A helper function that reads the .debug_names section in SECTION
5034 and fills in MAP. FILENAME is the name of the file containing the
5035 section; it is used for error reporting.
5037 Returns true if all went well, false otherwise. */
5040 read_debug_names_from_section (struct objfile *objfile,
5041 const char *filename,
5042 struct dwarf2_section_info *section,
5043 mapped_debug_names &map)
5045 if (section->empty ())
5048 /* Older elfutils strip versions could keep the section in the main
5049 executable while splitting it for the separate debug info file. */
5050 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5053 section->read (objfile);
5055 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5057 const gdb_byte *addr = section->buffer;
5059 bfd *const abfd = section->get_bfd_owner ();
5061 unsigned int bytes_read;
5062 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5065 map.dwarf5_is_dwarf64 = bytes_read != 4;
5066 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5067 if (bytes_read + length != section->size)
5069 /* There may be multiple per-CU indices. */
5070 warning (_("Section .debug_names in %s length %s does not match "
5071 "section length %s, ignoring .debug_names."),
5072 filename, plongest (bytes_read + length),
5073 pulongest (section->size));
5077 /* The version number. */
5078 uint16_t version = read_2_bytes (abfd, addr);
5082 warning (_("Section .debug_names in %s has unsupported version %d, "
5083 "ignoring .debug_names."),
5089 uint16_t padding = read_2_bytes (abfd, addr);
5093 warning (_("Section .debug_names in %s has unsupported padding %d, "
5094 "ignoring .debug_names."),
5099 /* comp_unit_count - The number of CUs in the CU list. */
5100 map.cu_count = read_4_bytes (abfd, addr);
5103 /* local_type_unit_count - The number of TUs in the local TU
5105 map.tu_count = read_4_bytes (abfd, addr);
5108 /* foreign_type_unit_count - The number of TUs in the foreign TU
5110 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5112 if (foreign_tu_count != 0)
5114 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5115 "ignoring .debug_names."),
5116 filename, static_cast<unsigned long> (foreign_tu_count));
5120 /* bucket_count - The number of hash buckets in the hash lookup
5122 map.bucket_count = read_4_bytes (abfd, addr);
5125 /* name_count - The number of unique names in the index. */
5126 map.name_count = read_4_bytes (abfd, addr);
5129 /* abbrev_table_size - The size in bytes of the abbreviations
5131 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5134 /* augmentation_string_size - The size in bytes of the augmentation
5135 string. This value is rounded up to a multiple of 4. */
5136 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5138 map.augmentation_is_gdb = ((augmentation_string_size
5139 == sizeof (dwarf5_augmentation))
5140 && memcmp (addr, dwarf5_augmentation,
5141 sizeof (dwarf5_augmentation)) == 0);
5142 augmentation_string_size += (-augmentation_string_size) & 3;
5143 addr += augmentation_string_size;
5146 map.cu_table_reordered = addr;
5147 addr += map.cu_count * map.offset_size;
5149 /* List of Local TUs */
5150 map.tu_table_reordered = addr;
5151 addr += map.tu_count * map.offset_size;
5153 /* Hash Lookup Table */
5154 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5155 addr += map.bucket_count * 4;
5156 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5157 addr += map.name_count * 4;
5160 map.name_table_string_offs_reordered = addr;
5161 addr += map.name_count * map.offset_size;
5162 map.name_table_entry_offs_reordered = addr;
5163 addr += map.name_count * map.offset_size;
5165 const gdb_byte *abbrev_table_start = addr;
5168 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5173 const auto insertpair
5174 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5175 if (!insertpair.second)
5177 warning (_("Section .debug_names in %s has duplicate index %s, "
5178 "ignoring .debug_names."),
5179 filename, pulongest (index_num));
5182 mapped_debug_names::index_val &indexval = insertpair.first->second;
5183 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5188 mapped_debug_names::index_val::attr attr;
5189 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5191 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5193 if (attr.form == DW_FORM_implicit_const)
5195 attr.implicit_const = read_signed_leb128 (abfd, addr,
5199 if (attr.dw_idx == 0 && attr.form == 0)
5201 indexval.attr_vec.push_back (std::move (attr));
5204 if (addr != abbrev_table_start + abbrev_table_size)
5206 warning (_("Section .debug_names in %s has abbreviation_table "
5207 "of size %s vs. written as %u, ignoring .debug_names."),
5208 filename, plongest (addr - abbrev_table_start),
5212 map.entry_pool = addr;
5217 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5221 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5222 const mapped_debug_names &map,
5223 dwarf2_section_info §ion,
5226 sect_offset sect_off_prev;
5227 for (uint32_t i = 0; i <= map.cu_count; ++i)
5229 sect_offset sect_off_next;
5230 if (i < map.cu_count)
5233 = (sect_offset) (extract_unsigned_integer
5234 (map.cu_table_reordered + i * map.offset_size,
5236 map.dwarf5_byte_order));
5239 sect_off_next = (sect_offset) section.size;
5242 const ULONGEST length = sect_off_next - sect_off_prev;
5243 dwarf2_per_cu_data *per_cu
5244 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5245 sect_off_prev, length);
5246 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5248 sect_off_prev = sect_off_next;
5252 /* Read the CU list from the mapped index, and use it to create all
5253 the CU objects for this dwarf2_per_objfile. */
5256 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5257 const mapped_debug_names &map,
5258 const mapped_debug_names &dwz_map)
5260 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5261 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5263 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5264 dwarf2_per_objfile->info,
5265 false /* is_dwz */);
5267 if (dwz_map.cu_count == 0)
5270 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5271 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5275 /* Read .debug_names. If everything went ok, initialize the "quick"
5276 elements of all the CUs and return true. Otherwise, return false. */
5279 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5281 std::unique_ptr<mapped_debug_names> map
5282 (new mapped_debug_names (dwarf2_per_objfile));
5283 mapped_debug_names dwz_map (dwarf2_per_objfile);
5284 struct objfile *objfile = dwarf2_per_objfile->objfile;
5286 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5287 &dwarf2_per_objfile->debug_names,
5291 /* Don't use the index if it's empty. */
5292 if (map->name_count == 0)
5295 /* If there is a .dwz file, read it so we can get its CU list as
5297 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5300 if (!read_debug_names_from_section (objfile,
5301 bfd_get_filename (dwz->dwz_bfd.get ()),
5302 &dwz->debug_names, dwz_map))
5304 warning (_("could not read '.debug_names' section from %s; skipping"),
5305 bfd_get_filename (dwz->dwz_bfd.get ()));
5310 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5312 if (map->tu_count != 0)
5314 /* We can only handle a single .debug_types when we have an
5316 if (dwarf2_per_objfile->types.size () != 1)
5319 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5321 create_signatured_type_table_from_debug_names
5322 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5325 create_addrmap_from_aranges (dwarf2_per_objfile,
5326 &dwarf2_per_objfile->debug_aranges);
5328 dwarf2_per_objfile->debug_names_table = std::move (map);
5329 dwarf2_per_objfile->using_index = 1;
5330 dwarf2_per_objfile->quick_file_names_table =
5331 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5336 /* Type used to manage iterating over all CUs looking for a symbol for
5339 class dw2_debug_names_iterator
5342 dw2_debug_names_iterator (const mapped_debug_names &map,
5343 gdb::optional<block_enum> block_index,
5346 : m_map (map), m_block_index (block_index), m_domain (domain),
5347 m_addr (find_vec_in_debug_names (map, name))
5350 dw2_debug_names_iterator (const mapped_debug_names &map,
5351 search_domain search, uint32_t namei)
5354 m_addr (find_vec_in_debug_names (map, namei))
5357 dw2_debug_names_iterator (const mapped_debug_names &map,
5358 block_enum block_index, domain_enum domain,
5360 : m_map (map), m_block_index (block_index), m_domain (domain),
5361 m_addr (find_vec_in_debug_names (map, namei))
5364 /* Return the next matching CU or NULL if there are no more. */
5365 dwarf2_per_cu_data *next ();
5368 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5370 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5373 /* The internalized form of .debug_names. */
5374 const mapped_debug_names &m_map;
5376 /* If set, only look for symbols that match that block. Valid values are
5377 GLOBAL_BLOCK and STATIC_BLOCK. */
5378 const gdb::optional<block_enum> m_block_index;
5380 /* The kind of symbol we're looking for. */
5381 const domain_enum m_domain = UNDEF_DOMAIN;
5382 const search_domain m_search = ALL_DOMAIN;
5384 /* The list of CUs from the index entry of the symbol, or NULL if
5386 const gdb_byte *m_addr;
5390 mapped_debug_names::namei_to_name (uint32_t namei) const
5392 const ULONGEST namei_string_offs
5393 = extract_unsigned_integer ((name_table_string_offs_reordered
5394 + namei * offset_size),
5397 return read_indirect_string_at_offset
5398 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5401 /* Find a slot in .debug_names for the object named NAME. If NAME is
5402 found, return pointer to its pool data. If NAME cannot be found,
5406 dw2_debug_names_iterator::find_vec_in_debug_names
5407 (const mapped_debug_names &map, const char *name)
5409 int (*cmp) (const char *, const char *);
5411 gdb::unique_xmalloc_ptr<char> without_params;
5412 if (current_language->la_language == language_cplus
5413 || current_language->la_language == language_fortran
5414 || current_language->la_language == language_d)
5416 /* NAME is already canonical. Drop any qualifiers as
5417 .debug_names does not contain any. */
5419 if (strchr (name, '(') != NULL)
5421 without_params = cp_remove_params (name);
5422 if (without_params != NULL)
5423 name = without_params.get ();
5427 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5429 const uint32_t full_hash = dwarf5_djb_hash (name);
5431 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5432 (map.bucket_table_reordered
5433 + (full_hash % map.bucket_count)), 4,
5434 map.dwarf5_byte_order);
5438 if (namei >= map.name_count)
5440 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5442 namei, map.name_count,
5443 objfile_name (map.dwarf2_per_objfile->objfile));
5449 const uint32_t namei_full_hash
5450 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5451 (map.hash_table_reordered + namei), 4,
5452 map.dwarf5_byte_order);
5453 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5456 if (full_hash == namei_full_hash)
5458 const char *const namei_string = map.namei_to_name (namei);
5460 #if 0 /* An expensive sanity check. */
5461 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5463 complaint (_("Wrong .debug_names hash for string at index %u "
5465 namei, objfile_name (dwarf2_per_objfile->objfile));
5470 if (cmp (namei_string, name) == 0)
5472 const ULONGEST namei_entry_offs
5473 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5474 + namei * map.offset_size),
5475 map.offset_size, map.dwarf5_byte_order);
5476 return map.entry_pool + namei_entry_offs;
5481 if (namei >= map.name_count)
5487 dw2_debug_names_iterator::find_vec_in_debug_names
5488 (const mapped_debug_names &map, uint32_t namei)
5490 if (namei >= map.name_count)
5492 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5494 namei, map.name_count,
5495 objfile_name (map.dwarf2_per_objfile->objfile));
5499 const ULONGEST namei_entry_offs
5500 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5501 + namei * map.offset_size),
5502 map.offset_size, map.dwarf5_byte_order);
5503 return map.entry_pool + namei_entry_offs;
5506 /* See dw2_debug_names_iterator. */
5508 dwarf2_per_cu_data *
5509 dw2_debug_names_iterator::next ()
5514 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5515 struct objfile *objfile = dwarf2_per_objfile->objfile;
5516 bfd *const abfd = objfile->obfd;
5520 unsigned int bytes_read;
5521 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5522 m_addr += bytes_read;
5526 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5527 if (indexval_it == m_map.abbrev_map.cend ())
5529 complaint (_("Wrong .debug_names undefined abbrev code %s "
5531 pulongest (abbrev), objfile_name (objfile));
5534 const mapped_debug_names::index_val &indexval = indexval_it->second;
5535 enum class symbol_linkage {
5539 } symbol_linkage_ = symbol_linkage::unknown;
5540 dwarf2_per_cu_data *per_cu = NULL;
5541 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5546 case DW_FORM_implicit_const:
5547 ull = attr.implicit_const;
5549 case DW_FORM_flag_present:
5553 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5554 m_addr += bytes_read;
5557 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5558 dwarf_form_name (attr.form),
5559 objfile_name (objfile));
5562 switch (attr.dw_idx)
5564 case DW_IDX_compile_unit:
5565 /* Don't crash on bad data. */
5566 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5568 complaint (_(".debug_names entry has bad CU index %s"
5571 objfile_name (dwarf2_per_objfile->objfile));
5574 per_cu = dwarf2_per_objfile->get_cutu (ull);
5576 case DW_IDX_type_unit:
5577 /* Don't crash on bad data. */
5578 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5580 complaint (_(".debug_names entry has bad TU index %s"
5583 objfile_name (dwarf2_per_objfile->objfile));
5586 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5588 case DW_IDX_GNU_internal:
5589 if (!m_map.augmentation_is_gdb)
5591 symbol_linkage_ = symbol_linkage::static_;
5593 case DW_IDX_GNU_external:
5594 if (!m_map.augmentation_is_gdb)
5596 symbol_linkage_ = symbol_linkage::extern_;
5601 /* Skip if already read in. */
5602 if (per_cu->v.quick->compunit_symtab)
5605 /* Check static vs global. */
5606 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5608 const bool want_static = *m_block_index == STATIC_BLOCK;
5609 const bool symbol_is_static =
5610 symbol_linkage_ == symbol_linkage::static_;
5611 if (want_static != symbol_is_static)
5615 /* Match dw2_symtab_iter_next, symbol_kind
5616 and debug_names::psymbol_tag. */
5620 switch (indexval.dwarf_tag)
5622 case DW_TAG_variable:
5623 case DW_TAG_subprogram:
5624 /* Some types are also in VAR_DOMAIN. */
5625 case DW_TAG_typedef:
5626 case DW_TAG_structure_type:
5633 switch (indexval.dwarf_tag)
5635 case DW_TAG_typedef:
5636 case DW_TAG_structure_type:
5643 switch (indexval.dwarf_tag)
5646 case DW_TAG_variable:
5653 switch (indexval.dwarf_tag)
5665 /* Match dw2_expand_symtabs_matching, symbol_kind and
5666 debug_names::psymbol_tag. */
5669 case VARIABLES_DOMAIN:
5670 switch (indexval.dwarf_tag)
5672 case DW_TAG_variable:
5678 case FUNCTIONS_DOMAIN:
5679 switch (indexval.dwarf_tag)
5681 case DW_TAG_subprogram:
5688 switch (indexval.dwarf_tag)
5690 case DW_TAG_typedef:
5691 case DW_TAG_structure_type:
5697 case MODULES_DOMAIN:
5698 switch (indexval.dwarf_tag)
5712 static struct compunit_symtab *
5713 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5714 const char *name, domain_enum domain)
5716 struct dwarf2_per_objfile *dwarf2_per_objfile
5717 = get_dwarf2_per_objfile (objfile);
5719 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5722 /* index is NULL if OBJF_READNOW. */
5725 const auto &map = *mapp;
5727 dw2_debug_names_iterator iter (map, block_index, domain, name);
5729 struct compunit_symtab *stab_best = NULL;
5730 struct dwarf2_per_cu_data *per_cu;
5731 while ((per_cu = iter.next ()) != NULL)
5733 struct symbol *sym, *with_opaque = NULL;
5734 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5735 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5736 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5738 sym = block_find_symbol (block, name, domain,
5739 block_find_non_opaque_type_preferred,
5742 /* Some caution must be observed with overloaded functions and
5743 methods, since the index will not contain any overload
5744 information (but NAME might contain it). */
5747 && strcmp_iw (sym->search_name (), name) == 0)
5749 if (with_opaque != NULL
5750 && strcmp_iw (with_opaque->search_name (), name) == 0)
5753 /* Keep looking through other CUs. */
5759 /* This dumps minimal information about .debug_names. It is called
5760 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5761 uses this to verify that .debug_names has been loaded. */
5764 dw2_debug_names_dump (struct objfile *objfile)
5766 struct dwarf2_per_objfile *dwarf2_per_objfile
5767 = get_dwarf2_per_objfile (objfile);
5769 gdb_assert (dwarf2_per_objfile->using_index);
5770 printf_filtered (".debug_names:");
5771 if (dwarf2_per_objfile->debug_names_table)
5772 printf_filtered (" exists\n");
5774 printf_filtered (" faked for \"readnow\"\n");
5775 printf_filtered ("\n");
5779 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5780 const char *func_name)
5782 struct dwarf2_per_objfile *dwarf2_per_objfile
5783 = get_dwarf2_per_objfile (objfile);
5785 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5786 if (dwarf2_per_objfile->debug_names_table)
5788 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5790 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5792 struct dwarf2_per_cu_data *per_cu;
5793 while ((per_cu = iter.next ()) != NULL)
5794 dw2_instantiate_symtab (per_cu, false);
5799 dw2_debug_names_map_matching_symbols
5800 (struct objfile *objfile,
5801 const lookup_name_info &name, domain_enum domain,
5803 gdb::function_view<symbol_found_callback_ftype> callback,
5804 symbol_compare_ftype *ordered_compare)
5806 struct dwarf2_per_objfile *dwarf2_per_objfile
5807 = get_dwarf2_per_objfile (objfile);
5809 /* debug_names_table is NULL if OBJF_READNOW. */
5810 if (!dwarf2_per_objfile->debug_names_table)
5813 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5814 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5816 const char *match_name = name.ada ().lookup_name ().c_str ();
5817 auto matcher = [&] (const char *symname)
5819 if (ordered_compare == nullptr)
5821 return ordered_compare (symname, match_name) == 0;
5824 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5825 [&] (offset_type namei)
5827 /* The name was matched, now expand corresponding CUs that were
5829 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5831 struct dwarf2_per_cu_data *per_cu;
5832 while ((per_cu = iter.next ()) != NULL)
5833 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5837 /* It's a shame we couldn't do this inside the
5838 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5839 that have already been expanded. Instead, this loop matches what
5840 the psymtab code does. */
5841 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5843 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5844 if (cust != nullptr)
5846 const struct block *block
5847 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5848 if (!iterate_over_symbols_terminated (block, name,
5856 dw2_debug_names_expand_symtabs_matching
5857 (struct objfile *objfile,
5858 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5859 const lookup_name_info &lookup_name,
5860 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5861 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5862 enum search_domain kind)
5864 struct dwarf2_per_objfile *dwarf2_per_objfile
5865 = get_dwarf2_per_objfile (objfile);
5867 /* debug_names_table is NULL if OBJF_READNOW. */
5868 if (!dwarf2_per_objfile->debug_names_table)
5871 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5873 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5875 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5877 kind, [&] (offset_type namei)
5879 /* The name was matched, now expand corresponding CUs that were
5881 dw2_debug_names_iterator iter (map, kind, namei);
5883 struct dwarf2_per_cu_data *per_cu;
5884 while ((per_cu = iter.next ()) != NULL)
5885 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5891 const struct quick_symbol_functions dwarf2_debug_names_functions =
5894 dw2_find_last_source_symtab,
5895 dw2_forget_cached_source_info,
5896 dw2_map_symtabs_matching_filename,
5897 dw2_debug_names_lookup_symbol,
5899 dw2_debug_names_dump,
5900 dw2_debug_names_expand_symtabs_for_function,
5901 dw2_expand_all_symtabs,
5902 dw2_expand_symtabs_with_fullname,
5903 dw2_debug_names_map_matching_symbols,
5904 dw2_debug_names_expand_symtabs_matching,
5905 dw2_find_pc_sect_compunit_symtab,
5907 dw2_map_symbol_filenames
5910 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5911 to either a dwarf2_per_objfile or dwz_file object. */
5913 template <typename T>
5914 static gdb::array_view<const gdb_byte>
5915 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5917 dwarf2_section_info *section = §ion_owner->gdb_index;
5919 if (section->empty ())
5922 /* Older elfutils strip versions could keep the section in the main
5923 executable while splitting it for the separate debug info file. */
5924 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5927 section->read (obj);
5929 /* dwarf2_section_info::size is a bfd_size_type, while
5930 gdb::array_view works with size_t. On 32-bit hosts, with
5931 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5932 is 32-bit. So we need an explicit narrowing conversion here.
5933 This is fine, because it's impossible to allocate or mmap an
5934 array/buffer larger than what size_t can represent. */
5935 return gdb::make_array_view (section->buffer, section->size);
5938 /* Lookup the index cache for the contents of the index associated to
5941 static gdb::array_view<const gdb_byte>
5942 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5944 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5945 if (build_id == nullptr)
5948 return global_index_cache.lookup_gdb_index (build_id,
5949 &dwarf2_obj->index_cache_res);
5952 /* Same as the above, but for DWZ. */
5954 static gdb::array_view<const gdb_byte>
5955 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5957 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5958 if (build_id == nullptr)
5961 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5964 /* See symfile.h. */
5967 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5969 struct dwarf2_per_objfile *dwarf2_per_objfile
5970 = get_dwarf2_per_objfile (objfile);
5972 /* If we're about to read full symbols, don't bother with the
5973 indices. In this case we also don't care if some other debug
5974 format is making psymtabs, because they are all about to be
5976 if ((objfile->flags & OBJF_READNOW))
5978 dwarf2_per_objfile->using_index = 1;
5979 create_all_comp_units (dwarf2_per_objfile);
5980 create_all_type_units (dwarf2_per_objfile);
5981 dwarf2_per_objfile->quick_file_names_table
5982 = create_quick_file_names_table
5983 (dwarf2_per_objfile->all_comp_units.size ());
5985 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5986 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5988 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5990 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5991 struct dwarf2_per_cu_quick_data);
5994 /* Return 1 so that gdb sees the "quick" functions. However,
5995 these functions will be no-ops because we will have expanded
5997 *index_kind = dw_index_kind::GDB_INDEX;
6001 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6003 *index_kind = dw_index_kind::DEBUG_NAMES;
6007 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6008 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6009 get_gdb_index_contents_from_section<dwz_file>))
6011 *index_kind = dw_index_kind::GDB_INDEX;
6015 /* ... otherwise, try to find the index in the index cache. */
6016 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6017 get_gdb_index_contents_from_cache,
6018 get_gdb_index_contents_from_cache_dwz))
6020 global_index_cache.hit ();
6021 *index_kind = dw_index_kind::GDB_INDEX;
6025 global_index_cache.miss ();
6031 /* Build a partial symbol table. */
6034 dwarf2_build_psymtabs (struct objfile *objfile)
6036 struct dwarf2_per_objfile *dwarf2_per_objfile
6037 = get_dwarf2_per_objfile (objfile);
6039 init_psymbol_list (objfile, 1024);
6043 /* This isn't really ideal: all the data we allocate on the
6044 objfile's obstack is still uselessly kept around. However,
6045 freeing it seems unsafe. */
6046 psymtab_discarder psymtabs (objfile);
6047 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6050 /* (maybe) store an index in the cache. */
6051 global_index_cache.store (dwarf2_per_objfile);
6053 catch (const gdb_exception_error &except)
6055 exception_print (gdb_stderr, except);
6059 /* Return the total length of the CU described by HEADER. */
6062 get_cu_length (const struct comp_unit_head *header)
6064 return header->initial_length_size + header->length;
6067 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6070 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6072 sect_offset bottom = cu_header->sect_off;
6073 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6075 return sect_off >= bottom && sect_off < top;
6078 /* Find the base address of the compilation unit for range lists and
6079 location lists. It will normally be specified by DW_AT_low_pc.
6080 In DWARF-3 draft 4, the base address could be overridden by
6081 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6082 compilation units with discontinuous ranges. */
6085 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6087 struct attribute *attr;
6090 cu->base_address = 0;
6092 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6093 if (attr != nullptr)
6095 cu->base_address = attr->value_as_address ();
6100 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6101 if (attr != nullptr)
6103 cu->base_address = attr->value_as_address ();
6109 /* Read in the comp unit header information from the debug_info at info_ptr.
6110 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6111 NOTE: This leaves members offset, first_die_offset to be filled in
6114 static const gdb_byte *
6115 read_comp_unit_head (struct comp_unit_head *cu_header,
6116 const gdb_byte *info_ptr,
6117 struct dwarf2_section_info *section,
6118 rcuh_kind section_kind)
6121 unsigned int bytes_read;
6122 const char *filename = section->get_file_name ();
6123 bfd *abfd = section->get_bfd_owner ();
6125 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6126 cu_header->initial_length_size = bytes_read;
6127 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6128 info_ptr += bytes_read;
6129 cu_header->version = read_2_bytes (abfd, info_ptr);
6130 if (cu_header->version < 2 || cu_header->version > 5)
6131 error (_("Dwarf Error: wrong version in compilation unit header "
6132 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6133 cu_header->version, filename);
6135 if (cu_header->version < 5)
6136 switch (section_kind)
6138 case rcuh_kind::COMPILE:
6139 cu_header->unit_type = DW_UT_compile;
6141 case rcuh_kind::TYPE:
6142 cu_header->unit_type = DW_UT_type;
6145 internal_error (__FILE__, __LINE__,
6146 _("read_comp_unit_head: invalid section_kind"));
6150 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6151 (read_1_byte (abfd, info_ptr));
6153 switch (cu_header->unit_type)
6157 case DW_UT_skeleton:
6158 case DW_UT_split_compile:
6159 if (section_kind != rcuh_kind::COMPILE)
6160 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6161 "(is %s, should be %s) [in module %s]"),
6162 dwarf_unit_type_name (cu_header->unit_type),
6163 dwarf_unit_type_name (DW_UT_type), filename);
6166 case DW_UT_split_type:
6167 section_kind = rcuh_kind::TYPE;
6170 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6171 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6172 "[in module %s]"), cu_header->unit_type,
6173 dwarf_unit_type_name (DW_UT_compile),
6174 dwarf_unit_type_name (DW_UT_skeleton),
6175 dwarf_unit_type_name (DW_UT_split_compile),
6176 dwarf_unit_type_name (DW_UT_type),
6177 dwarf_unit_type_name (DW_UT_split_type), filename);
6180 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6183 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6186 info_ptr += bytes_read;
6187 if (cu_header->version < 5)
6189 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6192 signed_addr = bfd_get_sign_extend_vma (abfd);
6193 if (signed_addr < 0)
6194 internal_error (__FILE__, __LINE__,
6195 _("read_comp_unit_head: dwarf from non elf file"));
6196 cu_header->signed_addr_p = signed_addr;
6198 bool header_has_signature = section_kind == rcuh_kind::TYPE
6199 || cu_header->unit_type == DW_UT_skeleton
6200 || cu_header->unit_type == DW_UT_split_compile;
6202 if (header_has_signature)
6204 cu_header->signature = read_8_bytes (abfd, info_ptr);
6208 if (section_kind == rcuh_kind::TYPE)
6210 LONGEST type_offset;
6211 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6212 info_ptr += bytes_read;
6213 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6214 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6215 error (_("Dwarf Error: Too big type_offset in compilation unit "
6216 "header (is %s) [in module %s]"), plongest (type_offset),
6223 /* Helper function that returns the proper abbrev section for
6226 static struct dwarf2_section_info *
6227 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6229 struct dwarf2_section_info *abbrev;
6230 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6232 if (this_cu->is_dwz)
6233 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6235 abbrev = &dwarf2_per_objfile->abbrev;
6240 /* Subroutine of read_and_check_comp_unit_head and
6241 read_and_check_type_unit_head to simplify them.
6242 Perform various error checking on the header. */
6245 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6246 struct comp_unit_head *header,
6247 struct dwarf2_section_info *section,
6248 struct dwarf2_section_info *abbrev_section)
6250 const char *filename = section->get_file_name ();
6252 if (to_underlying (header->abbrev_sect_off)
6253 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6254 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6255 "(offset %s + 6) [in module %s]"),
6256 sect_offset_str (header->abbrev_sect_off),
6257 sect_offset_str (header->sect_off),
6260 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6261 avoid potential 32-bit overflow. */
6262 if (((ULONGEST) header->sect_off + get_cu_length (header))
6264 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6265 "(offset %s + 0) [in module %s]"),
6266 header->length, sect_offset_str (header->sect_off),
6270 /* Read in a CU/TU header and perform some basic error checking.
6271 The contents of the header are stored in HEADER.
6272 The result is a pointer to the start of the first DIE. */
6274 static const gdb_byte *
6275 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6276 struct comp_unit_head *header,
6277 struct dwarf2_section_info *section,
6278 struct dwarf2_section_info *abbrev_section,
6279 const gdb_byte *info_ptr,
6280 rcuh_kind section_kind)
6282 const gdb_byte *beg_of_comp_unit = info_ptr;
6284 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6286 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6288 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6290 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6296 /* Fetch the abbreviation table offset from a comp or type unit header. */
6299 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6300 struct dwarf2_section_info *section,
6301 sect_offset sect_off)
6303 bfd *abfd = section->get_bfd_owner ();
6304 const gdb_byte *info_ptr;
6305 unsigned int initial_length_size, offset_size;
6308 section->read (dwarf2_per_objfile->objfile);
6309 info_ptr = section->buffer + to_underlying (sect_off);
6310 read_initial_length (abfd, info_ptr, &initial_length_size);
6311 offset_size = initial_length_size == 4 ? 4 : 8;
6312 info_ptr += initial_length_size;
6314 version = read_2_bytes (abfd, info_ptr);
6318 /* Skip unit type and address size. */
6322 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6325 /* Allocate a new partial symtab for file named NAME and mark this new
6326 partial symtab as being an include of PST. */
6329 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6330 struct objfile *objfile)
6332 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
6334 if (!IS_ABSOLUTE_PATH (subpst->filename))
6336 /* It shares objfile->objfile_obstack. */
6337 subpst->dirname = pst->dirname;
6340 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6341 subpst->dependencies[0] = pst;
6342 subpst->number_of_dependencies = 1;
6344 /* No private part is necessary for include psymtabs. This property
6345 can be used to differentiate between such include psymtabs and
6346 the regular ones. */
6347 subpst->per_cu_data = nullptr;
6350 /* Read the Line Number Program data and extract the list of files
6351 included by the source file represented by PST. Build an include
6352 partial symtab for each of these included files. */
6355 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6356 struct die_info *die,
6357 dwarf2_psymtab *pst)
6360 struct attribute *attr;
6362 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6363 if (attr != nullptr)
6364 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6366 return; /* No linetable, so no includes. */
6368 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6369 that we pass in the raw text_low here; that is ok because we're
6370 only decoding the line table to make include partial symtabs, and
6371 so the addresses aren't really used. */
6372 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6373 pst->raw_text_low (), 1);
6377 hash_signatured_type (const void *item)
6379 const struct signatured_type *sig_type
6380 = (const struct signatured_type *) item;
6382 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6383 return sig_type->signature;
6387 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6389 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6390 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6392 return lhs->signature == rhs->signature;
6395 /* Allocate a hash table for signatured types. */
6398 allocate_signatured_type_table (struct objfile *objfile)
6400 return htab_up (htab_create_alloc (41,
6401 hash_signatured_type,
6403 NULL, xcalloc, xfree));
6406 /* A helper function to add a signatured type CU to a table. */
6409 add_signatured_type_cu_to_table (void **slot, void *datum)
6411 struct signatured_type *sigt = (struct signatured_type *) *slot;
6412 std::vector<signatured_type *> *all_type_units
6413 = (std::vector<signatured_type *> *) datum;
6415 all_type_units->push_back (sigt);
6420 /* A helper for create_debug_types_hash_table. Read types from SECTION
6421 and fill them into TYPES_HTAB. It will process only type units,
6422 therefore DW_UT_type. */
6425 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6426 struct dwo_file *dwo_file,
6427 dwarf2_section_info *section, htab_up &types_htab,
6428 rcuh_kind section_kind)
6430 struct objfile *objfile = dwarf2_per_objfile->objfile;
6431 struct dwarf2_section_info *abbrev_section;
6433 const gdb_byte *info_ptr, *end_ptr;
6435 abbrev_section = (dwo_file != NULL
6436 ? &dwo_file->sections.abbrev
6437 : &dwarf2_per_objfile->abbrev);
6439 if (dwarf_read_debug)
6440 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6441 section->get_name (),
6442 abbrev_section->get_file_name ());
6444 section->read (objfile);
6445 info_ptr = section->buffer;
6447 if (info_ptr == NULL)
6450 /* We can't set abfd until now because the section may be empty or
6451 not present, in which case the bfd is unknown. */
6452 abfd = section->get_bfd_owner ();
6454 /* We don't use cutu_reader here because we don't need to read
6455 any dies: the signature is in the header. */
6457 end_ptr = info_ptr + section->size;
6458 while (info_ptr < end_ptr)
6460 struct signatured_type *sig_type;
6461 struct dwo_unit *dwo_tu;
6463 const gdb_byte *ptr = info_ptr;
6464 struct comp_unit_head header;
6465 unsigned int length;
6467 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6469 /* Initialize it due to a false compiler warning. */
6470 header.signature = -1;
6471 header.type_cu_offset_in_tu = (cu_offset) -1;
6473 /* We need to read the type's signature in order to build the hash
6474 table, but we don't need anything else just yet. */
6476 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6477 abbrev_section, ptr, section_kind);
6479 length = get_cu_length (&header);
6481 /* Skip dummy type units. */
6482 if (ptr >= info_ptr + length
6483 || peek_abbrev_code (abfd, ptr) == 0
6484 || header.unit_type != DW_UT_type)
6490 if (types_htab == NULL)
6493 types_htab = allocate_dwo_unit_table (objfile);
6495 types_htab = allocate_signatured_type_table (objfile);
6501 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6503 dwo_tu->dwo_file = dwo_file;
6504 dwo_tu->signature = header.signature;
6505 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6506 dwo_tu->section = section;
6507 dwo_tu->sect_off = sect_off;
6508 dwo_tu->length = length;
6512 /* N.B.: type_offset is not usable if this type uses a DWO file.
6513 The real type_offset is in the DWO file. */
6515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6516 struct signatured_type);
6517 sig_type->signature = header.signature;
6518 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6519 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6520 sig_type->per_cu.is_debug_types = 1;
6521 sig_type->per_cu.section = section;
6522 sig_type->per_cu.sect_off = sect_off;
6523 sig_type->per_cu.length = length;
6526 slot = htab_find_slot (types_htab.get (),
6527 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6529 gdb_assert (slot != NULL);
6532 sect_offset dup_sect_off;
6536 const struct dwo_unit *dup_tu
6537 = (const struct dwo_unit *) *slot;
6539 dup_sect_off = dup_tu->sect_off;
6543 const struct signatured_type *dup_tu
6544 = (const struct signatured_type *) *slot;
6546 dup_sect_off = dup_tu->per_cu.sect_off;
6549 complaint (_("debug type entry at offset %s is duplicate to"
6550 " the entry at offset %s, signature %s"),
6551 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6552 hex_string (header.signature));
6554 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6556 if (dwarf_read_debug > 1)
6557 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6558 sect_offset_str (sect_off),
6559 hex_string (header.signature));
6565 /* Create the hash table of all entries in the .debug_types
6566 (or .debug_types.dwo) section(s).
6567 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6568 otherwise it is NULL.
6570 The result is a pointer to the hash table or NULL if there are no types.
6572 Note: This function processes DWO files only, not DWP files. */
6575 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6576 struct dwo_file *dwo_file,
6577 gdb::array_view<dwarf2_section_info> type_sections,
6578 htab_up &types_htab)
6580 for (dwarf2_section_info §ion : type_sections)
6581 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, §ion,
6582 types_htab, rcuh_kind::TYPE);
6585 /* Create the hash table of all entries in the .debug_types section,
6586 and initialize all_type_units.
6587 The result is zero if there is an error (e.g. missing .debug_types section),
6588 otherwise non-zero. */
6591 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6595 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6596 &dwarf2_per_objfile->info, types_htab,
6597 rcuh_kind::COMPILE);
6598 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6599 dwarf2_per_objfile->types, types_htab);
6600 if (types_htab == NULL)
6602 dwarf2_per_objfile->signatured_types = NULL;
6606 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6608 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6609 dwarf2_per_objfile->all_type_units.reserve
6610 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6612 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6613 add_signatured_type_cu_to_table,
6614 &dwarf2_per_objfile->all_type_units);
6619 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6620 If SLOT is non-NULL, it is the entry to use in the hash table.
6621 Otherwise we find one. */
6623 static struct signatured_type *
6624 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6627 struct objfile *objfile = dwarf2_per_objfile->objfile;
6629 if (dwarf2_per_objfile->all_type_units.size ()
6630 == dwarf2_per_objfile->all_type_units.capacity ())
6631 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6633 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6634 struct signatured_type);
6636 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6637 sig_type->signature = sig;
6638 sig_type->per_cu.is_debug_types = 1;
6639 if (dwarf2_per_objfile->using_index)
6641 sig_type->per_cu.v.quick =
6642 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6643 struct dwarf2_per_cu_quick_data);
6648 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6651 gdb_assert (*slot == NULL);
6653 /* The rest of sig_type must be filled in by the caller. */
6657 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6658 Fill in SIG_ENTRY with DWO_ENTRY. */
6661 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6662 struct signatured_type *sig_entry,
6663 struct dwo_unit *dwo_entry)
6665 /* Make sure we're not clobbering something we don't expect to. */
6666 gdb_assert (! sig_entry->per_cu.queued);
6667 gdb_assert (sig_entry->per_cu.cu == NULL);
6668 if (dwarf2_per_objfile->using_index)
6670 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6671 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6674 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6675 gdb_assert (sig_entry->signature == dwo_entry->signature);
6676 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6677 gdb_assert (sig_entry->type_unit_group == NULL);
6678 gdb_assert (sig_entry->dwo_unit == NULL);
6680 sig_entry->per_cu.section = dwo_entry->section;
6681 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6682 sig_entry->per_cu.length = dwo_entry->length;
6683 sig_entry->per_cu.reading_dwo_directly = 1;
6684 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6685 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6686 sig_entry->dwo_unit = dwo_entry;
6689 /* Subroutine of lookup_signatured_type.
6690 If we haven't read the TU yet, create the signatured_type data structure
6691 for a TU to be read in directly from a DWO file, bypassing the stub.
6692 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6693 using .gdb_index, then when reading a CU we want to stay in the DWO file
6694 containing that CU. Otherwise we could end up reading several other DWO
6695 files (due to comdat folding) to process the transitive closure of all the
6696 mentioned TUs, and that can be slow. The current DWO file will have every
6697 type signature that it needs.
6698 We only do this for .gdb_index because in the psymtab case we already have
6699 to read all the DWOs to build the type unit groups. */
6701 static struct signatured_type *
6702 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6704 struct dwarf2_per_objfile *dwarf2_per_objfile
6705 = cu->per_cu->dwarf2_per_objfile;
6706 struct objfile *objfile = dwarf2_per_objfile->objfile;
6707 struct dwo_file *dwo_file;
6708 struct dwo_unit find_dwo_entry, *dwo_entry;
6709 struct signatured_type find_sig_entry, *sig_entry;
6712 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6714 /* If TU skeletons have been removed then we may not have read in any
6716 if (dwarf2_per_objfile->signatured_types == NULL)
6718 dwarf2_per_objfile->signatured_types
6719 = allocate_signatured_type_table (objfile);
6722 /* We only ever need to read in one copy of a signatured type.
6723 Use the global signatured_types array to do our own comdat-folding
6724 of types. If this is the first time we're reading this TU, and
6725 the TU has an entry in .gdb_index, replace the recorded data from
6726 .gdb_index with this TU. */
6728 find_sig_entry.signature = sig;
6729 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6730 &find_sig_entry, INSERT);
6731 sig_entry = (struct signatured_type *) *slot;
6733 /* We can get here with the TU already read, *or* in the process of being
6734 read. Don't reassign the global entry to point to this DWO if that's
6735 the case. Also note that if the TU is already being read, it may not
6736 have come from a DWO, the program may be a mix of Fission-compiled
6737 code and non-Fission-compiled code. */
6739 /* Have we already tried to read this TU?
6740 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6741 needn't exist in the global table yet). */
6742 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6745 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6746 dwo_unit of the TU itself. */
6747 dwo_file = cu->dwo_unit->dwo_file;
6749 /* Ok, this is the first time we're reading this TU. */
6750 if (dwo_file->tus == NULL)
6752 find_dwo_entry.signature = sig;
6753 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6755 if (dwo_entry == NULL)
6758 /* If the global table doesn't have an entry for this TU, add one. */
6759 if (sig_entry == NULL)
6760 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6762 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6763 sig_entry->per_cu.tu_read = 1;
6767 /* Subroutine of lookup_signatured_type.
6768 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6769 then try the DWP file. If the TU stub (skeleton) has been removed then
6770 it won't be in .gdb_index. */
6772 static struct signatured_type *
6773 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6775 struct dwarf2_per_objfile *dwarf2_per_objfile
6776 = cu->per_cu->dwarf2_per_objfile;
6777 struct objfile *objfile = dwarf2_per_objfile->objfile;
6778 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6779 struct dwo_unit *dwo_entry;
6780 struct signatured_type find_sig_entry, *sig_entry;
6783 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6784 gdb_assert (dwp_file != NULL);
6786 /* If TU skeletons have been removed then we may not have read in any
6788 if (dwarf2_per_objfile->signatured_types == NULL)
6790 dwarf2_per_objfile->signatured_types
6791 = allocate_signatured_type_table (objfile);
6794 find_sig_entry.signature = sig;
6795 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6796 &find_sig_entry, INSERT);
6797 sig_entry = (struct signatured_type *) *slot;
6799 /* Have we already tried to read this TU?
6800 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6801 needn't exist in the global table yet). */
6802 if (sig_entry != NULL)
6805 if (dwp_file->tus == NULL)
6807 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6808 sig, 1 /* is_debug_types */);
6809 if (dwo_entry == NULL)
6812 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6813 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6818 /* Lookup a signature based type for DW_FORM_ref_sig8.
6819 Returns NULL if signature SIG is not present in the table.
6820 It is up to the caller to complain about this. */
6822 static struct signatured_type *
6823 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6825 struct dwarf2_per_objfile *dwarf2_per_objfile
6826 = cu->per_cu->dwarf2_per_objfile;
6829 && dwarf2_per_objfile->using_index)
6831 /* We're in a DWO/DWP file, and we're using .gdb_index.
6832 These cases require special processing. */
6833 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6834 return lookup_dwo_signatured_type (cu, sig);
6836 return lookup_dwp_signatured_type (cu, sig);
6840 struct signatured_type find_entry, *entry;
6842 if (dwarf2_per_objfile->signatured_types == NULL)
6844 find_entry.signature = sig;
6845 entry = ((struct signatured_type *)
6846 htab_find (dwarf2_per_objfile->signatured_types.get (),
6852 /* Return the address base of the compile unit, which, if exists, is stored
6853 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6854 static gdb::optional<ULONGEST>
6855 lookup_addr_base (struct die_info *comp_unit_die)
6857 struct attribute *attr;
6858 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6859 if (attr == nullptr)
6860 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6861 if (attr == nullptr)
6862 return gdb::optional<ULONGEST> ();
6863 return DW_UNSND (attr);
6866 /* Return range lists base of the compile unit, which, if exists, is stored
6867 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6869 lookup_ranges_base (struct die_info *comp_unit_die)
6871 struct attribute *attr;
6872 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6873 if (attr == nullptr)
6874 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6875 if (attr == nullptr)
6877 return DW_UNSND (attr);
6880 /* Low level DIE reading support. */
6882 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6885 init_cu_die_reader (struct die_reader_specs *reader,
6886 struct dwarf2_cu *cu,
6887 struct dwarf2_section_info *section,
6888 struct dwo_file *dwo_file,
6889 struct abbrev_table *abbrev_table)
6891 gdb_assert (section->readin && section->buffer != NULL);
6892 reader->abfd = section->get_bfd_owner ();
6894 reader->dwo_file = dwo_file;
6895 reader->die_section = section;
6896 reader->buffer = section->buffer;
6897 reader->buffer_end = section->buffer + section->size;
6898 reader->abbrev_table = abbrev_table;
6901 /* Subroutine of cutu_reader to simplify it.
6902 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6903 There's just a lot of work to do, and cutu_reader is big enough
6906 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6907 from it to the DIE in the DWO. If NULL we are skipping the stub.
6908 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6909 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6910 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6911 STUB_COMP_DIR may be non-NULL.
6912 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6913 are filled in with the info of the DIE from the DWO file.
6914 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6915 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6916 kept around for at least as long as *RESULT_READER.
6918 The result is non-zero if a valid (non-dummy) DIE was found. */
6921 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6922 struct dwo_unit *dwo_unit,
6923 struct die_info *stub_comp_unit_die,
6924 const char *stub_comp_dir,
6925 struct die_reader_specs *result_reader,
6926 const gdb_byte **result_info_ptr,
6927 struct die_info **result_comp_unit_die,
6928 abbrev_table_up *result_dwo_abbrev_table)
6930 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6931 struct objfile *objfile = dwarf2_per_objfile->objfile;
6932 struct dwarf2_cu *cu = this_cu->cu;
6934 const gdb_byte *begin_info_ptr, *info_ptr;
6935 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6936 int i,num_extra_attrs;
6937 struct dwarf2_section_info *dwo_abbrev_section;
6938 struct die_info *comp_unit_die;
6940 /* At most one of these may be provided. */
6941 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6943 /* These attributes aren't processed until later:
6944 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6945 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6946 referenced later. However, these attributes are found in the stub
6947 which we won't have later. In order to not impose this complication
6948 on the rest of the code, we read them here and copy them to the
6957 if (stub_comp_unit_die != NULL)
6959 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6961 if (! this_cu->is_debug_types)
6962 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6963 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6964 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6965 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6966 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6968 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6970 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6971 here (if needed). We need the value before we can process
6973 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6975 else if (stub_comp_dir != NULL)
6977 /* Reconstruct the comp_dir attribute to simplify the code below. */
6978 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6979 comp_dir->name = DW_AT_comp_dir;
6980 comp_dir->form = DW_FORM_string;
6981 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6982 DW_STRING (comp_dir) = stub_comp_dir;
6985 /* Set up for reading the DWO CU/TU. */
6986 cu->dwo_unit = dwo_unit;
6987 dwarf2_section_info *section = dwo_unit->section;
6988 section->read (objfile);
6989 abfd = section->get_bfd_owner ();
6990 begin_info_ptr = info_ptr = (section->buffer
6991 + to_underlying (dwo_unit->sect_off));
6992 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6994 if (this_cu->is_debug_types)
6996 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6998 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6999 &cu->header, section,
7001 info_ptr, rcuh_kind::TYPE);
7002 /* This is not an assert because it can be caused by bad debug info. */
7003 if (sig_type->signature != cu->header.signature)
7005 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7006 " TU at offset %s [in module %s]"),
7007 hex_string (sig_type->signature),
7008 hex_string (cu->header.signature),
7009 sect_offset_str (dwo_unit->sect_off),
7010 bfd_get_filename (abfd));
7012 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7013 /* For DWOs coming from DWP files, we don't know the CU length
7014 nor the type's offset in the TU until now. */
7015 dwo_unit->length = get_cu_length (&cu->header);
7016 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7018 /* Establish the type offset that can be used to lookup the type.
7019 For DWO files, we don't know it until now. */
7020 sig_type->type_offset_in_section
7021 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7025 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7026 &cu->header, section,
7028 info_ptr, rcuh_kind::COMPILE);
7029 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7030 /* For DWOs coming from DWP files, we don't know the CU length
7032 dwo_unit->length = get_cu_length (&cu->header);
7035 *result_dwo_abbrev_table
7036 = abbrev_table::read (objfile, dwo_abbrev_section,
7037 cu->header.abbrev_sect_off);
7038 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7039 result_dwo_abbrev_table->get ());
7041 /* Read in the die, but leave space to copy over the attributes
7042 from the stub. This has the benefit of simplifying the rest of
7043 the code - all the work to maintain the illusion of a single
7044 DW_TAG_{compile,type}_unit DIE is done here. */
7045 num_extra_attrs = ((stmt_list != NULL)
7049 + (comp_dir != NULL));
7050 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7053 /* Copy over the attributes from the stub to the DIE we just read in. */
7054 comp_unit_die = *result_comp_unit_die;
7055 i = comp_unit_die->num_attrs;
7056 if (stmt_list != NULL)
7057 comp_unit_die->attrs[i++] = *stmt_list;
7059 comp_unit_die->attrs[i++] = *low_pc;
7060 if (high_pc != NULL)
7061 comp_unit_die->attrs[i++] = *high_pc;
7063 comp_unit_die->attrs[i++] = *ranges;
7064 if (comp_dir != NULL)
7065 comp_unit_die->attrs[i++] = *comp_dir;
7066 comp_unit_die->num_attrs += num_extra_attrs;
7068 if (dwarf_die_debug)
7070 fprintf_unfiltered (gdb_stdlog,
7071 "Read die from %s@0x%x of %s:\n",
7072 section->get_name (),
7073 (unsigned) (begin_info_ptr - section->buffer),
7074 bfd_get_filename (abfd));
7075 dump_die (comp_unit_die, dwarf_die_debug);
7078 /* Skip dummy compilation units. */
7079 if (info_ptr >= begin_info_ptr + dwo_unit->length
7080 || peek_abbrev_code (abfd, info_ptr) == 0)
7083 *result_info_ptr = info_ptr;
7087 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7088 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7089 signature is part of the header. */
7090 static gdb::optional<ULONGEST>
7091 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7093 if (cu->header.version >= 5)
7094 return cu->header.signature;
7095 struct attribute *attr;
7096 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7097 if (attr == nullptr)
7098 return gdb::optional<ULONGEST> ();
7099 return DW_UNSND (attr);
7102 /* Subroutine of cutu_reader to simplify it.
7103 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7104 Returns NULL if the specified DWO unit cannot be found. */
7106 static struct dwo_unit *
7107 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7108 struct die_info *comp_unit_die,
7109 const char *dwo_name)
7111 struct dwarf2_cu *cu = this_cu->cu;
7112 struct dwo_unit *dwo_unit;
7113 const char *comp_dir;
7115 gdb_assert (cu != NULL);
7117 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7118 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7119 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7121 if (this_cu->is_debug_types)
7123 struct signatured_type *sig_type;
7125 /* Since this_cu is the first member of struct signatured_type,
7126 we can go from a pointer to one to a pointer to the other. */
7127 sig_type = (struct signatured_type *) this_cu;
7128 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7132 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7133 if (!signature.has_value ())
7134 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7136 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7137 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7144 /* Subroutine of cutu_reader to simplify it.
7145 See it for a description of the parameters.
7146 Read a TU directly from a DWO file, bypassing the stub. */
7149 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7150 int use_existing_cu, int keep)
7152 struct signatured_type *sig_type;
7153 struct die_reader_specs reader;
7155 /* Verify we can do the following downcast, and that we have the
7157 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7158 sig_type = (struct signatured_type *) this_cu;
7159 gdb_assert (sig_type->dwo_unit != NULL);
7161 if (use_existing_cu && this_cu->cu != NULL)
7163 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7164 /* There's no need to do the rereading_dwo_cu handling that
7165 cutu_reader does since we don't read the stub. */
7169 /* If !use_existing_cu, this_cu->cu must be NULL. */
7170 gdb_assert (this_cu->cu == NULL);
7171 m_new_cu.reset (new dwarf2_cu (this_cu));
7174 /* A future optimization, if needed, would be to use an existing
7175 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7176 could share abbrev tables. */
7178 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7179 NULL /* stub_comp_unit_die */,
7180 sig_type->dwo_unit->dwo_file->comp_dir,
7183 &m_dwo_abbrev_table) == 0)
7190 /* Initialize a CU (or TU) and read its DIEs.
7191 If the CU defers to a DWO file, read the DWO file as well.
7193 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7194 Otherwise the table specified in the comp unit header is read in and used.
7195 This is an optimization for when we already have the abbrev table.
7197 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7198 Otherwise, a new CU is allocated with xmalloc.
7200 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7201 read_in_chain. Otherwise the dwarf2_cu data is freed at the
7204 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7205 struct abbrev_table *abbrev_table,
7206 int use_existing_cu, int keep,
7208 : die_reader_specs {},
7209 m_this_cu (this_cu),
7212 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7213 struct objfile *objfile = dwarf2_per_objfile->objfile;
7214 struct dwarf2_section_info *section = this_cu->section;
7215 bfd *abfd = section->get_bfd_owner ();
7216 struct dwarf2_cu *cu;
7217 const gdb_byte *begin_info_ptr;
7218 struct signatured_type *sig_type = NULL;
7219 struct dwarf2_section_info *abbrev_section;
7220 /* Non-zero if CU currently points to a DWO file and we need to
7221 reread it. When this happens we need to reread the skeleton die
7222 before we can reread the DWO file (this only applies to CUs, not TUs). */
7223 int rereading_dwo_cu = 0;
7225 if (dwarf_die_debug)
7226 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7227 this_cu->is_debug_types ? "type" : "comp",
7228 sect_offset_str (this_cu->sect_off));
7230 if (use_existing_cu)
7233 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7234 file (instead of going through the stub), short-circuit all of this. */
7235 if (this_cu->reading_dwo_directly)
7237 /* Narrow down the scope of possibilities to have to understand. */
7238 gdb_assert (this_cu->is_debug_types);
7239 gdb_assert (abbrev_table == NULL);
7240 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep);
7244 /* This is cheap if the section is already read in. */
7245 section->read (objfile);
7247 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7249 abbrev_section = get_abbrev_section_for_cu (this_cu);
7251 if (use_existing_cu && this_cu->cu != NULL)
7254 /* If this CU is from a DWO file we need to start over, we need to
7255 refetch the attributes from the skeleton CU.
7256 This could be optimized by retrieving those attributes from when we
7257 were here the first time: the previous comp_unit_die was stored in
7258 comp_unit_obstack. But there's no data yet that we need this
7260 if (cu->dwo_unit != NULL)
7261 rereading_dwo_cu = 1;
7265 /* If !use_existing_cu, this_cu->cu must be NULL. */
7266 gdb_assert (this_cu->cu == NULL);
7267 m_new_cu.reset (new dwarf2_cu (this_cu));
7268 cu = m_new_cu.get ();
7271 /* Get the header. */
7272 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7274 /* We already have the header, there's no need to read it in again. */
7275 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7279 if (this_cu->is_debug_types)
7281 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7282 &cu->header, section,
7283 abbrev_section, info_ptr,
7286 /* Since per_cu is the first member of struct signatured_type,
7287 we can go from a pointer to one to a pointer to the other. */
7288 sig_type = (struct signatured_type *) this_cu;
7289 gdb_assert (sig_type->signature == cu->header.signature);
7290 gdb_assert (sig_type->type_offset_in_tu
7291 == cu->header.type_cu_offset_in_tu);
7292 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7294 /* LENGTH has not been set yet for type units if we're
7295 using .gdb_index. */
7296 this_cu->length = get_cu_length (&cu->header);
7298 /* Establish the type offset that can be used to lookup the type. */
7299 sig_type->type_offset_in_section =
7300 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7302 this_cu->dwarf_version = cu->header.version;
7306 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7307 &cu->header, section,
7310 rcuh_kind::COMPILE);
7312 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7313 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7314 this_cu->dwarf_version = cu->header.version;
7318 /* Skip dummy compilation units. */
7319 if (info_ptr >= begin_info_ptr + this_cu->length
7320 || peek_abbrev_code (abfd, info_ptr) == 0)
7326 /* If we don't have them yet, read the abbrevs for this compilation unit.
7327 And if we need to read them now, make sure they're freed when we're
7329 if (abbrev_table != NULL)
7330 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7333 m_abbrev_table_holder
7334 = abbrev_table::read (objfile, abbrev_section,
7335 cu->header.abbrev_sect_off);
7336 abbrev_table = m_abbrev_table_holder.get ();
7339 /* Read the top level CU/TU die. */
7340 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7341 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7343 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7349 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7350 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7351 table from the DWO file and pass the ownership over to us. It will be
7352 referenced from READER, so we must make sure to free it after we're done
7355 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7356 DWO CU, that this test will fail (the attribute will not be present). */
7357 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7358 if (dwo_name != nullptr)
7360 struct dwo_unit *dwo_unit;
7361 struct die_info *dwo_comp_unit_die;
7363 if (comp_unit_die->has_children)
7365 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7366 " has children (offset %s) [in module %s]"),
7367 sect_offset_str (this_cu->sect_off),
7368 bfd_get_filename (abfd));
7370 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
7371 if (dwo_unit != NULL)
7373 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7374 comp_unit_die, NULL,
7377 &m_dwo_abbrev_table) == 0)
7383 comp_unit_die = dwo_comp_unit_die;
7387 /* Yikes, we couldn't find the rest of the DIE, we only have
7388 the stub. A complaint has already been logged. There's
7389 not much more we can do except pass on the stub DIE to
7390 die_reader_func. We don't want to throw an error on bad
7396 cutu_reader::~cutu_reader ()
7398 /* Done, clean up. */
7399 if (m_new_cu != NULL && m_keep && !dummy_p)
7401 struct dwarf2_per_objfile *dwarf2_per_objfile
7402 = m_this_cu->dwarf2_per_objfile;
7403 /* Link this CU into read_in_chain. */
7404 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7405 dwarf2_per_objfile->read_in_chain = m_this_cu;
7406 /* The chain owns it now. */
7407 m_new_cu.release ();
7411 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7412 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7413 assumed to have already done the lookup to find the DWO file).
7415 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7416 THIS_CU->is_debug_types, but nothing else.
7418 We fill in THIS_CU->length.
7420 THIS_CU->cu is always freed when done.
7421 This is done in order to not leave THIS_CU->cu in a state where we have
7422 to care whether it refers to the "main" CU or the DWO CU.
7424 When parent_cu is passed, it is used to provide a default value for
7425 str_offsets_base and addr_base from the parent. */
7427 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7428 struct dwarf2_cu *parent_cu,
7429 struct dwo_file *dwo_file)
7430 : die_reader_specs {},
7433 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7434 struct objfile *objfile = dwarf2_per_objfile->objfile;
7435 struct dwarf2_section_info *section = this_cu->section;
7436 bfd *abfd = section->get_bfd_owner ();
7437 struct dwarf2_section_info *abbrev_section;
7438 const gdb_byte *begin_info_ptr, *info_ptr;
7440 if (dwarf_die_debug)
7441 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7442 this_cu->is_debug_types ? "type" : "comp",
7443 sect_offset_str (this_cu->sect_off));
7445 gdb_assert (this_cu->cu == NULL);
7447 abbrev_section = (dwo_file != NULL
7448 ? &dwo_file->sections.abbrev
7449 : get_abbrev_section_for_cu (this_cu));
7451 /* This is cheap if the section is already read in. */
7452 section->read (objfile);
7454 m_new_cu.reset (new dwarf2_cu (this_cu));
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7458 &m_new_cu->header, section,
7459 abbrev_section, info_ptr,
7460 (this_cu->is_debug_types
7462 : rcuh_kind::COMPILE));
7464 if (parent_cu != nullptr)
7466 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7467 m_new_cu->addr_base = parent_cu->addr_base;
7469 this_cu->length = get_cu_length (&m_new_cu->header);
7471 /* Skip dummy compilation units. */
7472 if (info_ptr >= begin_info_ptr + this_cu->length
7473 || peek_abbrev_code (abfd, info_ptr) == 0)
7479 m_abbrev_table_holder
7480 = abbrev_table::read (objfile, abbrev_section,
7481 m_new_cu->header.abbrev_sect_off);
7483 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7484 m_abbrev_table_holder.get ());
7485 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7489 /* Type Unit Groups.
7491 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7492 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7493 so that all types coming from the same compilation (.o file) are grouped
7494 together. A future step could be to put the types in the same symtab as
7495 the CU the types ultimately came from. */
7498 hash_type_unit_group (const void *item)
7500 const struct type_unit_group *tu_group
7501 = (const struct type_unit_group *) item;
7503 return hash_stmt_list_entry (&tu_group->hash);
7507 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7509 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7510 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7512 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7515 /* Allocate a hash table for type unit groups. */
7518 allocate_type_unit_groups_table (struct objfile *objfile)
7520 return htab_up (htab_create_alloc (3,
7521 hash_type_unit_group,
7523 NULL, xcalloc, xfree));
7526 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7527 partial symtabs. We combine several TUs per psymtab to not let the size
7528 of any one psymtab grow too big. */
7529 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7530 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7532 /* Helper routine for get_type_unit_group.
7533 Create the type_unit_group object used to hold one or more TUs. */
7535 static struct type_unit_group *
7536 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7538 struct dwarf2_per_objfile *dwarf2_per_objfile
7539 = cu->per_cu->dwarf2_per_objfile;
7540 struct objfile *objfile = dwarf2_per_objfile->objfile;
7541 struct dwarf2_per_cu_data *per_cu;
7542 struct type_unit_group *tu_group;
7544 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7545 struct type_unit_group);
7546 per_cu = &tu_group->per_cu;
7547 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7549 if (dwarf2_per_objfile->using_index)
7551 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7552 struct dwarf2_per_cu_quick_data);
7556 unsigned int line_offset = to_underlying (line_offset_struct);
7557 dwarf2_psymtab *pst;
7560 /* Give the symtab a useful name for debug purposes. */
7561 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7562 name = string_printf ("<type_units_%d>",
7563 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7565 name = string_printf ("<type_units_at_0x%x>", line_offset);
7567 pst = create_partial_symtab (per_cu, name.c_str ());
7568 pst->anonymous = true;
7571 tu_group->hash.dwo_unit = cu->dwo_unit;
7572 tu_group->hash.line_sect_off = line_offset_struct;
7577 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7578 STMT_LIST is a DW_AT_stmt_list attribute. */
7580 static struct type_unit_group *
7581 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7583 struct dwarf2_per_objfile *dwarf2_per_objfile
7584 = cu->per_cu->dwarf2_per_objfile;
7585 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7586 struct type_unit_group *tu_group;
7588 unsigned int line_offset;
7589 struct type_unit_group type_unit_group_for_lookup;
7591 if (dwarf2_per_objfile->type_unit_groups == NULL)
7593 dwarf2_per_objfile->type_unit_groups =
7594 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7597 /* Do we need to create a new group, or can we use an existing one? */
7601 line_offset = DW_UNSND (stmt_list);
7602 ++tu_stats->nr_symtab_sharers;
7606 /* Ugh, no stmt_list. Rare, but we have to handle it.
7607 We can do various things here like create one group per TU or
7608 spread them over multiple groups to split up the expansion work.
7609 To avoid worst case scenarios (too many groups or too large groups)
7610 we, umm, group them in bunches. */
7611 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7612 | (tu_stats->nr_stmt_less_type_units
7613 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7614 ++tu_stats->nr_stmt_less_type_units;
7617 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7618 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7619 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7620 &type_unit_group_for_lookup, INSERT);
7623 tu_group = (struct type_unit_group *) *slot;
7624 gdb_assert (tu_group != NULL);
7628 sect_offset line_offset_struct = (sect_offset) line_offset;
7629 tu_group = create_type_unit_group (cu, line_offset_struct);
7631 ++tu_stats->nr_symtabs;
7637 /* Partial symbol tables. */
7639 /* Create a psymtab named NAME and assign it to PER_CU.
7641 The caller must fill in the following details:
7642 dirname, textlow, texthigh. */
7644 static dwarf2_psymtab *
7645 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7647 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7648 dwarf2_psymtab *pst;
7650 pst = new dwarf2_psymtab (name, objfile, 0);
7652 pst->psymtabs_addrmap_supported = true;
7654 /* This is the glue that links PST into GDB's symbol API. */
7655 pst->per_cu_data = per_cu;
7656 per_cu->v.psymtab = pst;
7661 /* DIE reader function for process_psymtab_comp_unit. */
7664 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7665 const gdb_byte *info_ptr,
7666 struct die_info *comp_unit_die,
7667 int want_partial_unit,
7668 enum language pretend_language)
7670 struct dwarf2_cu *cu = reader->cu;
7671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7673 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7675 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7676 dwarf2_psymtab *pst;
7677 enum pc_bounds_kind cu_bounds_kind;
7678 const char *filename;
7680 if (comp_unit_die->tag == DW_TAG_partial_unit && !want_partial_unit)
7683 gdb_assert (! per_cu->is_debug_types);
7685 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7687 /* Allocate a new partial symbol table structure. */
7688 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7689 if (filename == NULL)
7692 pst = create_partial_symtab (per_cu, filename);
7694 /* This must be done before calling dwarf2_build_include_psymtabs. */
7695 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7697 baseaddr = objfile->text_section_offset ();
7699 dwarf2_find_base_address (comp_unit_die, cu);
7701 /* Possibly set the default values of LOWPC and HIGHPC from
7703 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7704 &best_highpc, cu, pst);
7705 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7708 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7711 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7713 /* Store the contiguous range if it is not empty; it can be
7714 empty for CUs with no code. */
7715 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7719 /* Check if comp unit has_children.
7720 If so, read the rest of the partial symbols from this comp unit.
7721 If not, there's no more debug_info for this comp unit. */
7722 if (comp_unit_die->has_children)
7724 struct partial_die_info *first_die;
7725 CORE_ADDR lowpc, highpc;
7727 lowpc = ((CORE_ADDR) -1);
7728 highpc = ((CORE_ADDR) 0);
7730 first_die = load_partial_dies (reader, info_ptr, 1);
7732 scan_partial_symbols (first_die, &lowpc, &highpc,
7733 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7735 /* If we didn't find a lowpc, set it to highpc to avoid
7736 complaints from `maint check'. */
7737 if (lowpc == ((CORE_ADDR) -1))
7740 /* If the compilation unit didn't have an explicit address range,
7741 then use the information extracted from its child dies. */
7742 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7745 best_highpc = highpc;
7748 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7749 best_lowpc + baseaddr)
7751 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7752 best_highpc + baseaddr)
7755 end_psymtab_common (objfile, pst);
7757 if (!cu->per_cu->imported_symtabs_empty ())
7760 int len = cu->per_cu->imported_symtabs_size ();
7762 /* Fill in 'dependencies' here; we fill in 'users' in a
7764 pst->number_of_dependencies = len;
7766 = objfile->partial_symtabs->allocate_dependencies (len);
7767 for (i = 0; i < len; ++i)
7769 pst->dependencies[i]
7770 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7773 cu->per_cu->imported_symtabs_free ();
7776 /* Get the list of files included in the current compilation unit,
7777 and build a psymtab for each of them. */
7778 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7780 if (dwarf_read_debug)
7781 fprintf_unfiltered (gdb_stdlog,
7782 "Psymtab for %s unit @%s: %s - %s"
7783 ", %d global, %d static syms\n",
7784 per_cu->is_debug_types ? "type" : "comp",
7785 sect_offset_str (per_cu->sect_off),
7786 paddress (gdbarch, pst->text_low (objfile)),
7787 paddress (gdbarch, pst->text_high (objfile)),
7788 pst->n_global_syms, pst->n_static_syms);
7791 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7792 Process compilation unit THIS_CU for a psymtab. */
7795 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7796 int want_partial_unit,
7797 enum language pretend_language)
7799 /* If this compilation unit was already read in, free the
7800 cached copy in order to read it in again. This is
7801 necessary because we skipped some symbols when we first
7802 read in the compilation unit (see load_partial_dies).
7803 This problem could be avoided, but the benefit is unclear. */
7804 if (this_cu->cu != NULL)
7805 free_one_cached_comp_unit (this_cu);
7807 cutu_reader reader (this_cu, NULL, 0, 0, false);
7813 else if (this_cu->is_debug_types)
7814 build_type_psymtabs_reader (&reader, reader.info_ptr,
7815 reader.comp_unit_die);
7817 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7818 reader.comp_unit_die,
7822 /* Age out any secondary CUs. */
7823 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7826 /* Reader function for build_type_psymtabs. */
7829 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7830 const gdb_byte *info_ptr,
7831 struct die_info *type_unit_die)
7833 struct dwarf2_per_objfile *dwarf2_per_objfile
7834 = reader->cu->per_cu->dwarf2_per_objfile;
7835 struct objfile *objfile = dwarf2_per_objfile->objfile;
7836 struct dwarf2_cu *cu = reader->cu;
7837 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7838 struct signatured_type *sig_type;
7839 struct type_unit_group *tu_group;
7840 struct attribute *attr;
7841 struct partial_die_info *first_die;
7842 CORE_ADDR lowpc, highpc;
7843 dwarf2_psymtab *pst;
7845 gdb_assert (per_cu->is_debug_types);
7846 sig_type = (struct signatured_type *) per_cu;
7848 if (! type_unit_die->has_children)
7851 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7852 tu_group = get_type_unit_group (cu, attr);
7854 if (tu_group->tus == nullptr)
7855 tu_group->tus = new std::vector<signatured_type *>;
7856 tu_group->tus->push_back (sig_type);
7858 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7859 pst = create_partial_symtab (per_cu, "");
7860 pst->anonymous = true;
7862 first_die = load_partial_dies (reader, info_ptr, 1);
7864 lowpc = (CORE_ADDR) -1;
7865 highpc = (CORE_ADDR) 0;
7866 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7868 end_psymtab_common (objfile, pst);
7871 /* Struct used to sort TUs by their abbreviation table offset. */
7873 struct tu_abbrev_offset
7875 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7876 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7879 signatured_type *sig_type;
7880 sect_offset abbrev_offset;
7883 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7886 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7887 const struct tu_abbrev_offset &b)
7889 return a.abbrev_offset < b.abbrev_offset;
7892 /* Efficiently read all the type units.
7893 This does the bulk of the work for build_type_psymtabs.
7895 The efficiency is because we sort TUs by the abbrev table they use and
7896 only read each abbrev table once. In one program there are 200K TUs
7897 sharing 8K abbrev tables.
7899 The main purpose of this function is to support building the
7900 dwarf2_per_objfile->type_unit_groups table.
7901 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7902 can collapse the search space by grouping them by stmt_list.
7903 The savings can be significant, in the same program from above the 200K TUs
7904 share 8K stmt_list tables.
7906 FUNC is expected to call get_type_unit_group, which will create the
7907 struct type_unit_group if necessary and add it to
7908 dwarf2_per_objfile->type_unit_groups. */
7911 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7913 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7914 abbrev_table_up abbrev_table;
7915 sect_offset abbrev_offset;
7917 /* It's up to the caller to not call us multiple times. */
7918 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7920 if (dwarf2_per_objfile->all_type_units.empty ())
7923 /* TUs typically share abbrev tables, and there can be way more TUs than
7924 abbrev tables. Sort by abbrev table to reduce the number of times we
7925 read each abbrev table in.
7926 Alternatives are to punt or to maintain a cache of abbrev tables.
7927 This is simpler and efficient enough for now.
7929 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7930 symtab to use). Typically TUs with the same abbrev offset have the same
7931 stmt_list value too so in practice this should work well.
7933 The basic algorithm here is:
7935 sort TUs by abbrev table
7936 for each TU with same abbrev table:
7937 read abbrev table if first user
7938 read TU top level DIE
7939 [IWBN if DWO skeletons had DW_AT_stmt_list]
7942 if (dwarf_read_debug)
7943 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7945 /* Sort in a separate table to maintain the order of all_type_units
7946 for .gdb_index: TU indices directly index all_type_units. */
7947 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7948 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7950 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7951 sorted_by_abbrev.emplace_back
7952 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7953 sig_type->per_cu.section,
7954 sig_type->per_cu.sect_off));
7956 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7957 sort_tu_by_abbrev_offset);
7959 abbrev_offset = (sect_offset) ~(unsigned) 0;
7961 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7963 /* Switch to the next abbrev table if necessary. */
7964 if (abbrev_table == NULL
7965 || tu.abbrev_offset != abbrev_offset)
7967 abbrev_offset = tu.abbrev_offset;
7969 abbrev_table::read (dwarf2_per_objfile->objfile,
7970 &dwarf2_per_objfile->abbrev,
7972 ++tu_stats->nr_uniq_abbrev_tables;
7975 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7977 if (!reader.dummy_p)
7978 build_type_psymtabs_reader (&reader, reader.info_ptr,
7979 reader.comp_unit_die);
7983 /* Print collected type unit statistics. */
7986 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7988 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7990 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7991 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7992 dwarf2_per_objfile->all_type_units.size ());
7993 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7994 tu_stats->nr_uniq_abbrev_tables);
7995 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7996 tu_stats->nr_symtabs);
7997 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7998 tu_stats->nr_symtab_sharers);
7999 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8000 tu_stats->nr_stmt_less_type_units);
8001 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8002 tu_stats->nr_all_type_units_reallocs);
8005 /* Traversal function for build_type_psymtabs. */
8008 build_type_psymtab_dependencies (void **slot, void *info)
8010 struct dwarf2_per_objfile *dwarf2_per_objfile
8011 = (struct dwarf2_per_objfile *) info;
8012 struct objfile *objfile = dwarf2_per_objfile->objfile;
8013 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8014 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8015 dwarf2_psymtab *pst = per_cu->v.psymtab;
8016 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8019 gdb_assert (len > 0);
8020 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8022 pst->number_of_dependencies = len;
8023 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8024 for (i = 0; i < len; ++i)
8026 struct signatured_type *iter = tu_group->tus->at (i);
8027 gdb_assert (iter->per_cu.is_debug_types);
8028 pst->dependencies[i] = iter->per_cu.v.psymtab;
8029 iter->type_unit_group = tu_group;
8032 delete tu_group->tus;
8033 tu_group->tus = nullptr;
8038 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8039 Build partial symbol tables for the .debug_types comp-units. */
8042 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8044 if (! create_all_type_units (dwarf2_per_objfile))
8047 build_type_psymtabs_1 (dwarf2_per_objfile);
8050 /* Traversal function for process_skeletonless_type_unit.
8051 Read a TU in a DWO file and build partial symbols for it. */
8054 process_skeletonless_type_unit (void **slot, void *info)
8056 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8057 struct dwarf2_per_objfile *dwarf2_per_objfile
8058 = (struct dwarf2_per_objfile *) info;
8059 struct signatured_type find_entry, *entry;
8061 /* If this TU doesn't exist in the global table, add it and read it in. */
8063 if (dwarf2_per_objfile->signatured_types == NULL)
8065 dwarf2_per_objfile->signatured_types
8066 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8069 find_entry.signature = dwo_unit->signature;
8070 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
8071 &find_entry, INSERT);
8072 /* If we've already seen this type there's nothing to do. What's happening
8073 is we're doing our own version of comdat-folding here. */
8077 /* This does the job that create_all_type_units would have done for
8079 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8080 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8083 /* This does the job that build_type_psymtabs_1 would have done. */
8084 cutu_reader reader (&entry->per_cu, NULL, 0, 0, false);
8085 if (!reader.dummy_p)
8086 build_type_psymtabs_reader (&reader, reader.info_ptr,
8087 reader.comp_unit_die);
8092 /* Traversal function for process_skeletonless_type_units. */
8095 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8097 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8099 if (dwo_file->tus != NULL)
8100 htab_traverse_noresize (dwo_file->tus.get (),
8101 process_skeletonless_type_unit, info);
8106 /* Scan all TUs of DWO files, verifying we've processed them.
8107 This is needed in case a TU was emitted without its skeleton.
8108 Note: This can't be done until we know what all the DWO files are. */
8111 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8113 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8114 if (get_dwp_file (dwarf2_per_objfile) == NULL
8115 && dwarf2_per_objfile->dwo_files != NULL)
8117 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8118 process_dwo_file_for_skeletonless_type_units,
8119 dwarf2_per_objfile);
8123 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8126 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8128 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8130 dwarf2_psymtab *pst = per_cu->v.psymtab;
8135 for (int j = 0; j < pst->number_of_dependencies; ++j)
8137 /* Set the 'user' field only if it is not already set. */
8138 if (pst->dependencies[j]->user == NULL)
8139 pst->dependencies[j]->user = pst;
8144 /* Build the partial symbol table by doing a quick pass through the
8145 .debug_info and .debug_abbrev sections. */
8148 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8150 struct objfile *objfile = dwarf2_per_objfile->objfile;
8152 if (dwarf_read_debug)
8154 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8155 objfile_name (objfile));
8158 dwarf2_per_objfile->reading_partial_symbols = 1;
8160 dwarf2_per_objfile->info.read (objfile);
8162 /* Any cached compilation units will be linked by the per-objfile
8163 read_in_chain. Make sure to free them when we're done. */
8164 free_cached_comp_units freer (dwarf2_per_objfile);
8166 build_type_psymtabs (dwarf2_per_objfile);
8168 create_all_comp_units (dwarf2_per_objfile);
8170 /* Create a temporary address map on a temporary obstack. We later
8171 copy this to the final obstack. */
8172 auto_obstack temp_obstack;
8174 scoped_restore save_psymtabs_addrmap
8175 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8176 addrmap_create_mutable (&temp_obstack));
8178 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8179 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8181 /* This has to wait until we read the CUs, we need the list of DWOs. */
8182 process_skeletonless_type_units (dwarf2_per_objfile);
8184 /* Now that all TUs have been processed we can fill in the dependencies. */
8185 if (dwarf2_per_objfile->type_unit_groups != NULL)
8187 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
8188 build_type_psymtab_dependencies, dwarf2_per_objfile);
8191 if (dwarf_read_debug)
8192 print_tu_stats (dwarf2_per_objfile);
8194 set_partial_user (dwarf2_per_objfile);
8196 objfile->partial_symtabs->psymtabs_addrmap
8197 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8198 objfile->partial_symtabs->obstack ());
8199 /* At this point we want to keep the address map. */
8200 save_psymtabs_addrmap.release ();
8202 if (dwarf_read_debug)
8203 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8204 objfile_name (objfile));
8207 /* Load the partial DIEs for a secondary CU into memory.
8208 This is also used when rereading a primary CU with load_all_dies. */
8211 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8213 cutu_reader reader (this_cu, NULL, 1, 1, false);
8215 if (!reader.dummy_p)
8217 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8220 /* Check if comp unit has_children.
8221 If so, read the rest of the partial symbols from this comp unit.
8222 If not, there's no more debug_info for this comp unit. */
8223 if (reader.comp_unit_die->has_children)
8224 load_partial_dies (&reader, reader.info_ptr, 0);
8229 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8230 struct dwarf2_section_info *section,
8231 struct dwarf2_section_info *abbrev_section,
8232 unsigned int is_dwz)
8234 const gdb_byte *info_ptr;
8235 struct objfile *objfile = dwarf2_per_objfile->objfile;
8237 if (dwarf_read_debug)
8238 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8239 section->get_name (),
8240 section->get_file_name ());
8242 section->read (objfile);
8244 info_ptr = section->buffer;
8246 while (info_ptr < section->buffer + section->size)
8248 struct dwarf2_per_cu_data *this_cu;
8250 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8252 comp_unit_head cu_header;
8253 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8254 abbrev_section, info_ptr,
8255 rcuh_kind::COMPILE);
8257 /* Save the compilation unit for later lookup. */
8258 if (cu_header.unit_type != DW_UT_type)
8260 this_cu = XOBNEW (&objfile->objfile_obstack,
8261 struct dwarf2_per_cu_data);
8262 memset (this_cu, 0, sizeof (*this_cu));
8266 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8267 struct signatured_type);
8268 memset (sig_type, 0, sizeof (*sig_type));
8269 sig_type->signature = cu_header.signature;
8270 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8271 this_cu = &sig_type->per_cu;
8273 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8274 this_cu->sect_off = sect_off;
8275 this_cu->length = cu_header.length + cu_header.initial_length_size;
8276 this_cu->is_dwz = is_dwz;
8277 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8278 this_cu->section = section;
8280 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8282 info_ptr = info_ptr + this_cu->length;
8286 /* Create a list of all compilation units in OBJFILE.
8287 This is only done for -readnow and building partial symtabs. */
8290 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8292 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8293 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8294 &dwarf2_per_objfile->abbrev, 0);
8296 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8298 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8302 /* Process all loaded DIEs for compilation unit CU, starting at
8303 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8304 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8305 DW_AT_ranges). See the comments of add_partial_subprogram on how
8306 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8309 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8310 CORE_ADDR *highpc, int set_addrmap,
8311 struct dwarf2_cu *cu)
8313 struct partial_die_info *pdi;
8315 /* Now, march along the PDI's, descending into ones which have
8316 interesting children but skipping the children of the other ones,
8317 until we reach the end of the compilation unit. */
8325 /* Anonymous namespaces or modules have no name but have interesting
8326 children, so we need to look at them. Ditto for anonymous
8329 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8330 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8331 || pdi->tag == DW_TAG_imported_unit
8332 || pdi->tag == DW_TAG_inlined_subroutine)
8336 case DW_TAG_subprogram:
8337 case DW_TAG_inlined_subroutine:
8338 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8340 case DW_TAG_constant:
8341 case DW_TAG_variable:
8342 case DW_TAG_typedef:
8343 case DW_TAG_union_type:
8344 if (!pdi->is_declaration)
8346 add_partial_symbol (pdi, cu);
8349 case DW_TAG_class_type:
8350 case DW_TAG_interface_type:
8351 case DW_TAG_structure_type:
8352 if (!pdi->is_declaration)
8354 add_partial_symbol (pdi, cu);
8356 if ((cu->language == language_rust
8357 || cu->language == language_cplus) && pdi->has_children)
8358 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8361 case DW_TAG_enumeration_type:
8362 if (!pdi->is_declaration)
8363 add_partial_enumeration (pdi, cu);
8365 case DW_TAG_base_type:
8366 case DW_TAG_subrange_type:
8367 /* File scope base type definitions are added to the partial
8369 add_partial_symbol (pdi, cu);
8371 case DW_TAG_namespace:
8372 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8375 if (!pdi->is_declaration)
8376 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8378 case DW_TAG_imported_unit:
8380 struct dwarf2_per_cu_data *per_cu;
8382 /* For now we don't handle imported units in type units. */
8383 if (cu->per_cu->is_debug_types)
8385 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8386 " supported in type units [in module %s]"),
8387 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8390 per_cu = dwarf2_find_containing_comp_unit
8391 (pdi->d.sect_off, pdi->is_dwz,
8392 cu->per_cu->dwarf2_per_objfile);
8394 /* Go read the partial unit, if needed. */
8395 if (per_cu->v.psymtab == NULL)
8396 process_psymtab_comp_unit (per_cu, 1, cu->language);
8398 cu->per_cu->imported_symtabs_push (per_cu);
8401 case DW_TAG_imported_declaration:
8402 add_partial_symbol (pdi, cu);
8409 /* If the die has a sibling, skip to the sibling. */
8411 pdi = pdi->die_sibling;
8415 /* Functions used to compute the fully scoped name of a partial DIE.
8417 Normally, this is simple. For C++, the parent DIE's fully scoped
8418 name is concatenated with "::" and the partial DIE's name.
8419 Enumerators are an exception; they use the scope of their parent
8420 enumeration type, i.e. the name of the enumeration type is not
8421 prepended to the enumerator.
8423 There are two complexities. One is DW_AT_specification; in this
8424 case "parent" means the parent of the target of the specification,
8425 instead of the direct parent of the DIE. The other is compilers
8426 which do not emit DW_TAG_namespace; in this case we try to guess
8427 the fully qualified name of structure types from their members'
8428 linkage names. This must be done using the DIE's children rather
8429 than the children of any DW_AT_specification target. We only need
8430 to do this for structures at the top level, i.e. if the target of
8431 any DW_AT_specification (if any; otherwise the DIE itself) does not
8434 /* Compute the scope prefix associated with PDI's parent, in
8435 compilation unit CU. The result will be allocated on CU's
8436 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8437 field. NULL is returned if no prefix is necessary. */
8439 partial_die_parent_scope (struct partial_die_info *pdi,
8440 struct dwarf2_cu *cu)
8442 const char *grandparent_scope;
8443 struct partial_die_info *parent, *real_pdi;
8445 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8446 then this means the parent of the specification DIE. */
8449 while (real_pdi->has_specification)
8451 auto res = find_partial_die (real_pdi->spec_offset,
8452 real_pdi->spec_is_dwz, cu);
8457 parent = real_pdi->die_parent;
8461 if (parent->scope_set)
8462 return parent->scope;
8466 grandparent_scope = partial_die_parent_scope (parent, cu);
8468 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8469 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8470 Work around this problem here. */
8471 if (cu->language == language_cplus
8472 && parent->tag == DW_TAG_namespace
8473 && strcmp (parent->name, "::") == 0
8474 && grandparent_scope == NULL)
8476 parent->scope = NULL;
8477 parent->scope_set = 1;
8481 /* Nested subroutines in Fortran get a prefix. */
8482 if (pdi->tag == DW_TAG_enumerator)
8483 /* Enumerators should not get the name of the enumeration as a prefix. */
8484 parent->scope = grandparent_scope;
8485 else if (parent->tag == DW_TAG_namespace
8486 || parent->tag == DW_TAG_module
8487 || parent->tag == DW_TAG_structure_type
8488 || parent->tag == DW_TAG_class_type
8489 || parent->tag == DW_TAG_interface_type
8490 || parent->tag == DW_TAG_union_type
8491 || parent->tag == DW_TAG_enumeration_type
8492 || (cu->language == language_fortran
8493 && parent->tag == DW_TAG_subprogram
8494 && pdi->tag == DW_TAG_subprogram))
8496 if (grandparent_scope == NULL)
8497 parent->scope = parent->name;
8499 parent->scope = typename_concat (&cu->comp_unit_obstack,
8501 parent->name, 0, cu);
8505 /* FIXME drow/2004-04-01: What should we be doing with
8506 function-local names? For partial symbols, we should probably be
8508 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8509 dwarf_tag_name (parent->tag),
8510 sect_offset_str (pdi->sect_off));
8511 parent->scope = grandparent_scope;
8514 parent->scope_set = 1;
8515 return parent->scope;
8518 /* Return the fully scoped name associated with PDI, from compilation unit
8519 CU. The result will be allocated with malloc. */
8521 static gdb::unique_xmalloc_ptr<char>
8522 partial_die_full_name (struct partial_die_info *pdi,
8523 struct dwarf2_cu *cu)
8525 const char *parent_scope;
8527 /* If this is a template instantiation, we can not work out the
8528 template arguments from partial DIEs. So, unfortunately, we have
8529 to go through the full DIEs. At least any work we do building
8530 types here will be reused if full symbols are loaded later. */
8531 if (pdi->has_template_arguments)
8535 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8537 struct die_info *die;
8538 struct attribute attr;
8539 struct dwarf2_cu *ref_cu = cu;
8541 /* DW_FORM_ref_addr is using section offset. */
8542 attr.name = (enum dwarf_attribute) 0;
8543 attr.form = DW_FORM_ref_addr;
8544 attr.u.unsnd = to_underlying (pdi->sect_off);
8545 die = follow_die_ref (NULL, &attr, &ref_cu);
8547 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8551 parent_scope = partial_die_parent_scope (pdi, cu);
8552 if (parent_scope == NULL)
8555 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8560 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8562 struct dwarf2_per_objfile *dwarf2_per_objfile
8563 = cu->per_cu->dwarf2_per_objfile;
8564 struct objfile *objfile = dwarf2_per_objfile->objfile;
8565 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8567 const char *actual_name = NULL;
8570 baseaddr = objfile->text_section_offset ();
8572 gdb::unique_xmalloc_ptr<char> built_actual_name
8573 = partial_die_full_name (pdi, cu);
8574 if (built_actual_name != NULL)
8575 actual_name = built_actual_name.get ();
8577 if (actual_name == NULL)
8578 actual_name = pdi->name;
8582 case DW_TAG_inlined_subroutine:
8583 case DW_TAG_subprogram:
8584 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8586 if (pdi->is_external
8587 || cu->language == language_ada
8588 || (cu->language == language_fortran
8589 && pdi->die_parent != NULL
8590 && pdi->die_parent->tag == DW_TAG_subprogram))
8592 /* Normally, only "external" DIEs are part of the global scope.
8593 But in Ada and Fortran, we want to be able to access nested
8594 procedures globally. So all Ada and Fortran subprograms are
8595 stored in the global scope. */
8596 add_psymbol_to_list (actual_name,
8597 built_actual_name != NULL,
8598 VAR_DOMAIN, LOC_BLOCK,
8599 SECT_OFF_TEXT (objfile),
8600 psymbol_placement::GLOBAL,
8602 cu->language, objfile);
8606 add_psymbol_to_list (actual_name,
8607 built_actual_name != NULL,
8608 VAR_DOMAIN, LOC_BLOCK,
8609 SECT_OFF_TEXT (objfile),
8610 psymbol_placement::STATIC,
8611 addr, cu->language, objfile);
8614 if (pdi->main_subprogram && actual_name != NULL)
8615 set_objfile_main_name (objfile, actual_name, cu->language);
8617 case DW_TAG_constant:
8618 add_psymbol_to_list (actual_name,
8619 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8620 -1, (pdi->is_external
8621 ? psymbol_placement::GLOBAL
8622 : psymbol_placement::STATIC),
8623 0, cu->language, objfile);
8625 case DW_TAG_variable:
8627 addr = decode_locdesc (pdi->d.locdesc, cu);
8631 && !dwarf2_per_objfile->has_section_at_zero)
8633 /* A global or static variable may also have been stripped
8634 out by the linker if unused, in which case its address
8635 will be nullified; do not add such variables into partial
8636 symbol table then. */
8638 else if (pdi->is_external)
8641 Don't enter into the minimal symbol tables as there is
8642 a minimal symbol table entry from the ELF symbols already.
8643 Enter into partial symbol table if it has a location
8644 descriptor or a type.
8645 If the location descriptor is missing, new_symbol will create
8646 a LOC_UNRESOLVED symbol, the address of the variable will then
8647 be determined from the minimal symbol table whenever the variable
8649 The address for the partial symbol table entry is not
8650 used by GDB, but it comes in handy for debugging partial symbol
8653 if (pdi->d.locdesc || pdi->has_type)
8654 add_psymbol_to_list (actual_name,
8655 built_actual_name != NULL,
8656 VAR_DOMAIN, LOC_STATIC,
8657 SECT_OFF_TEXT (objfile),
8658 psymbol_placement::GLOBAL,
8659 addr, cu->language, objfile);
8663 int has_loc = pdi->d.locdesc != NULL;
8665 /* Static Variable. Skip symbols whose value we cannot know (those
8666 without location descriptors or constant values). */
8667 if (!has_loc && !pdi->has_const_value)
8670 add_psymbol_to_list (actual_name,
8671 built_actual_name != NULL,
8672 VAR_DOMAIN, LOC_STATIC,
8673 SECT_OFF_TEXT (objfile),
8674 psymbol_placement::STATIC,
8676 cu->language, objfile);
8679 case DW_TAG_typedef:
8680 case DW_TAG_base_type:
8681 case DW_TAG_subrange_type:
8682 add_psymbol_to_list (actual_name,
8683 built_actual_name != NULL,
8684 VAR_DOMAIN, LOC_TYPEDEF, -1,
8685 psymbol_placement::STATIC,
8686 0, cu->language, objfile);
8688 case DW_TAG_imported_declaration:
8689 case DW_TAG_namespace:
8690 add_psymbol_to_list (actual_name,
8691 built_actual_name != NULL,
8692 VAR_DOMAIN, LOC_TYPEDEF, -1,
8693 psymbol_placement::GLOBAL,
8694 0, cu->language, objfile);
8697 /* With Fortran 77 there might be a "BLOCK DATA" module
8698 available without any name. If so, we skip the module as it
8699 doesn't bring any value. */
8700 if (actual_name != nullptr)
8701 add_psymbol_to_list (actual_name,
8702 built_actual_name != NULL,
8703 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8704 psymbol_placement::GLOBAL,
8705 0, cu->language, objfile);
8707 case DW_TAG_class_type:
8708 case DW_TAG_interface_type:
8709 case DW_TAG_structure_type:
8710 case DW_TAG_union_type:
8711 case DW_TAG_enumeration_type:
8712 /* Skip external references. The DWARF standard says in the section
8713 about "Structure, Union, and Class Type Entries": "An incomplete
8714 structure, union or class type is represented by a structure,
8715 union or class entry that does not have a byte size attribute
8716 and that has a DW_AT_declaration attribute." */
8717 if (!pdi->has_byte_size && pdi->is_declaration)
8720 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8721 static vs. global. */
8722 add_psymbol_to_list (actual_name,
8723 built_actual_name != NULL,
8724 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8725 cu->language == language_cplus
8726 ? psymbol_placement::GLOBAL
8727 : psymbol_placement::STATIC,
8728 0, cu->language, objfile);
8731 case DW_TAG_enumerator:
8732 add_psymbol_to_list (actual_name,
8733 built_actual_name != NULL,
8734 VAR_DOMAIN, LOC_CONST, -1,
8735 cu->language == language_cplus
8736 ? psymbol_placement::GLOBAL
8737 : psymbol_placement::STATIC,
8738 0, cu->language, objfile);
8745 /* Read a partial die corresponding to a namespace; also, add a symbol
8746 corresponding to that namespace to the symbol table. NAMESPACE is
8747 the name of the enclosing namespace. */
8750 add_partial_namespace (struct partial_die_info *pdi,
8751 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8752 int set_addrmap, struct dwarf2_cu *cu)
8754 /* Add a symbol for the namespace. */
8756 add_partial_symbol (pdi, cu);
8758 /* Now scan partial symbols in that namespace. */
8760 if (pdi->has_children)
8761 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8764 /* Read a partial die corresponding to a Fortran module. */
8767 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8768 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8770 /* Add a symbol for the namespace. */
8772 add_partial_symbol (pdi, cu);
8774 /* Now scan partial symbols in that module. */
8776 if (pdi->has_children)
8777 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8780 /* Read a partial die corresponding to a subprogram or an inlined
8781 subprogram and create a partial symbol for that subprogram.
8782 When the CU language allows it, this routine also defines a partial
8783 symbol for each nested subprogram that this subprogram contains.
8784 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8785 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8787 PDI may also be a lexical block, in which case we simply search
8788 recursively for subprograms defined inside that lexical block.
8789 Again, this is only performed when the CU language allows this
8790 type of definitions. */
8793 add_partial_subprogram (struct partial_die_info *pdi,
8794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8795 int set_addrmap, struct dwarf2_cu *cu)
8797 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8799 if (pdi->has_pc_info)
8801 if (pdi->lowpc < *lowpc)
8802 *lowpc = pdi->lowpc;
8803 if (pdi->highpc > *highpc)
8804 *highpc = pdi->highpc;
8807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8808 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8810 CORE_ADDR this_highpc;
8811 CORE_ADDR this_lowpc;
8813 baseaddr = objfile->text_section_offset ();
8815 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8816 pdi->lowpc + baseaddr)
8819 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8820 pdi->highpc + baseaddr)
8822 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8823 this_lowpc, this_highpc - 1,
8824 cu->per_cu->v.psymtab);
8828 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8830 if (!pdi->is_declaration)
8831 /* Ignore subprogram DIEs that do not have a name, they are
8832 illegal. Do not emit a complaint at this point, we will
8833 do so when we convert this psymtab into a symtab. */
8835 add_partial_symbol (pdi, cu);
8839 if (! pdi->has_children)
8842 if (cu->language == language_ada || cu->language == language_fortran)
8844 pdi = pdi->die_child;
8848 if (pdi->tag == DW_TAG_subprogram
8849 || pdi->tag == DW_TAG_inlined_subroutine
8850 || pdi->tag == DW_TAG_lexical_block)
8851 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8852 pdi = pdi->die_sibling;
8857 /* Read a partial die corresponding to an enumeration type. */
8860 add_partial_enumeration (struct partial_die_info *enum_pdi,
8861 struct dwarf2_cu *cu)
8863 struct partial_die_info *pdi;
8865 if (enum_pdi->name != NULL)
8866 add_partial_symbol (enum_pdi, cu);
8868 pdi = enum_pdi->die_child;
8871 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8872 complaint (_("malformed enumerator DIE ignored"));
8874 add_partial_symbol (pdi, cu);
8875 pdi = pdi->die_sibling;
8879 /* Return the initial uleb128 in the die at INFO_PTR. */
8882 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8884 unsigned int bytes_read;
8886 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8889 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8890 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8892 Return the corresponding abbrev, or NULL if the number is zero (indicating
8893 an empty DIE). In either case *BYTES_READ will be set to the length of
8894 the initial number. */
8896 static struct abbrev_info *
8897 peek_die_abbrev (const die_reader_specs &reader,
8898 const gdb_byte *info_ptr, unsigned int *bytes_read)
8900 dwarf2_cu *cu = reader.cu;
8901 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8902 unsigned int abbrev_number
8903 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8905 if (abbrev_number == 0)
8908 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8911 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8912 " at offset %s [in module %s]"),
8913 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8914 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8920 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8921 Returns a pointer to the end of a series of DIEs, terminated by an empty
8922 DIE. Any children of the skipped DIEs will also be skipped. */
8924 static const gdb_byte *
8925 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8929 unsigned int bytes_read;
8930 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8933 return info_ptr + bytes_read;
8935 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8939 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8940 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8941 abbrev corresponding to that skipped uleb128 should be passed in
8942 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8945 static const gdb_byte *
8946 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8947 struct abbrev_info *abbrev)
8949 unsigned int bytes_read;
8950 struct attribute attr;
8951 bfd *abfd = reader->abfd;
8952 struct dwarf2_cu *cu = reader->cu;
8953 const gdb_byte *buffer = reader->buffer;
8954 const gdb_byte *buffer_end = reader->buffer_end;
8955 unsigned int form, i;
8957 for (i = 0; i < abbrev->num_attrs; i++)
8959 /* The only abbrev we care about is DW_AT_sibling. */
8960 if (abbrev->attrs[i].name == DW_AT_sibling)
8963 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8965 if (attr.form == DW_FORM_ref_addr)
8966 complaint (_("ignoring absolute DW_AT_sibling"));
8969 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8970 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8972 if (sibling_ptr < info_ptr)
8973 complaint (_("DW_AT_sibling points backwards"));
8974 else if (sibling_ptr > reader->buffer_end)
8975 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8981 /* If it isn't DW_AT_sibling, skip this attribute. */
8982 form = abbrev->attrs[i].form;
8986 case DW_FORM_ref_addr:
8987 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8988 and later it is offset sized. */
8989 if (cu->header.version == 2)
8990 info_ptr += cu->header.addr_size;
8992 info_ptr += cu->header.offset_size;
8994 case DW_FORM_GNU_ref_alt:
8995 info_ptr += cu->header.offset_size;
8998 info_ptr += cu->header.addr_size;
9006 case DW_FORM_flag_present:
9007 case DW_FORM_implicit_const:
9024 case DW_FORM_ref_sig8:
9027 case DW_FORM_data16:
9030 case DW_FORM_string:
9031 read_direct_string (abfd, info_ptr, &bytes_read);
9032 info_ptr += bytes_read;
9034 case DW_FORM_sec_offset:
9036 case DW_FORM_GNU_strp_alt:
9037 info_ptr += cu->header.offset_size;
9039 case DW_FORM_exprloc:
9041 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9042 info_ptr += bytes_read;
9044 case DW_FORM_block1:
9045 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9047 case DW_FORM_block2:
9048 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9050 case DW_FORM_block4:
9051 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9057 case DW_FORM_ref_udata:
9058 case DW_FORM_GNU_addr_index:
9059 case DW_FORM_GNU_str_index:
9060 case DW_FORM_rnglistx:
9061 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9063 case DW_FORM_indirect:
9064 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9065 info_ptr += bytes_read;
9066 /* We need to continue parsing from here, so just go back to
9068 goto skip_attribute;
9071 error (_("Dwarf Error: Cannot handle %s "
9072 "in DWARF reader [in module %s]"),
9073 dwarf_form_name (form),
9074 bfd_get_filename (abfd));
9078 if (abbrev->has_children)
9079 return skip_children (reader, info_ptr);
9084 /* Locate ORIG_PDI's sibling.
9085 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9087 static const gdb_byte *
9088 locate_pdi_sibling (const struct die_reader_specs *reader,
9089 struct partial_die_info *orig_pdi,
9090 const gdb_byte *info_ptr)
9092 /* Do we know the sibling already? */
9094 if (orig_pdi->sibling)
9095 return orig_pdi->sibling;
9097 /* Are there any children to deal with? */
9099 if (!orig_pdi->has_children)
9102 /* Skip the children the long way. */
9104 return skip_children (reader, info_ptr);
9107 /* Expand this partial symbol table into a full symbol table. SELF is
9111 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9113 struct dwarf2_per_objfile *dwarf2_per_objfile
9114 = get_dwarf2_per_objfile (objfile);
9116 gdb_assert (!readin);
9117 /* If this psymtab is constructed from a debug-only objfile, the
9118 has_section_at_zero flag will not necessarily be correct. We
9119 can get the correct value for this flag by looking at the data
9120 associated with the (presumably stripped) associated objfile. */
9121 if (objfile->separate_debug_objfile_backlink)
9123 struct dwarf2_per_objfile *dpo_backlink
9124 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9126 dwarf2_per_objfile->has_section_at_zero
9127 = dpo_backlink->has_section_at_zero;
9130 dwarf2_per_objfile->reading_partial_symbols = 0;
9132 expand_psymtab (objfile);
9134 process_cu_includes (dwarf2_per_objfile);
9137 /* Reading in full CUs. */
9139 /* Add PER_CU to the queue. */
9142 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9143 enum language pretend_language)
9146 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
9149 /* If PER_CU is not yet queued, add it to the queue.
9150 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9152 The result is non-zero if PER_CU was queued, otherwise the result is zero
9153 meaning either PER_CU is already queued or it is already loaded.
9155 N.B. There is an invariant here that if a CU is queued then it is loaded.
9156 The caller is required to load PER_CU if we return non-zero. */
9159 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9160 struct dwarf2_per_cu_data *per_cu,
9161 enum language pretend_language)
9163 /* We may arrive here during partial symbol reading, if we need full
9164 DIEs to process an unusual case (e.g. template arguments). Do
9165 not queue PER_CU, just tell our caller to load its DIEs. */
9166 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9168 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9173 /* Mark the dependence relation so that we don't flush PER_CU
9175 if (dependent_cu != NULL)
9176 dwarf2_add_dependence (dependent_cu, per_cu);
9178 /* If it's already on the queue, we have nothing to do. */
9182 /* If the compilation unit is already loaded, just mark it as
9184 if (per_cu->cu != NULL)
9186 per_cu->cu->last_used = 0;
9190 /* Add it to the queue. */
9191 queue_comp_unit (per_cu, pretend_language);
9196 /* Process the queue. */
9199 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9201 if (dwarf_read_debug)
9203 fprintf_unfiltered (gdb_stdlog,
9204 "Expanding one or more symtabs of objfile %s ...\n",
9205 objfile_name (dwarf2_per_objfile->objfile));
9208 /* The queue starts out with one item, but following a DIE reference
9209 may load a new CU, adding it to the end of the queue. */
9210 while (!dwarf2_per_objfile->queue.empty ())
9212 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
9214 if ((dwarf2_per_objfile->using_index
9215 ? !item.per_cu->v.quick->compunit_symtab
9216 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
9217 /* Skip dummy CUs. */
9218 && item.per_cu->cu != NULL)
9220 struct dwarf2_per_cu_data *per_cu = item.per_cu;
9221 unsigned int debug_print_threshold;
9224 if (per_cu->is_debug_types)
9226 struct signatured_type *sig_type =
9227 (struct signatured_type *) per_cu;
9229 sprintf (buf, "TU %s at offset %s",
9230 hex_string (sig_type->signature),
9231 sect_offset_str (per_cu->sect_off));
9232 /* There can be 100s of TUs.
9233 Only print them in verbose mode. */
9234 debug_print_threshold = 2;
9238 sprintf (buf, "CU at offset %s",
9239 sect_offset_str (per_cu->sect_off));
9240 debug_print_threshold = 1;
9243 if (dwarf_read_debug >= debug_print_threshold)
9244 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9246 if (per_cu->is_debug_types)
9247 process_full_type_unit (per_cu, item.pretend_language);
9249 process_full_comp_unit (per_cu, item.pretend_language);
9251 if (dwarf_read_debug >= debug_print_threshold)
9252 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9255 item.per_cu->queued = 0;
9256 dwarf2_per_objfile->queue.pop ();
9259 if (dwarf_read_debug)
9261 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9262 objfile_name (dwarf2_per_objfile->objfile));
9266 /* Read in full symbols for PST, and anything it depends on. */
9269 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9271 struct dwarf2_per_cu_data *per_cu;
9276 read_dependencies (objfile);
9278 per_cu = per_cu_data;
9282 /* It's an include file, no symbols to read for it.
9283 Everything is in the parent symtab. */
9288 dw2_do_instantiate_symtab (per_cu, false);
9291 /* Trivial hash function for die_info: the hash value of a DIE
9292 is its offset in .debug_info for this objfile. */
9295 die_hash (const void *item)
9297 const struct die_info *die = (const struct die_info *) item;
9299 return to_underlying (die->sect_off);
9302 /* Trivial comparison function for die_info structures: two DIEs
9303 are equal if they have the same offset. */
9306 die_eq (const void *item_lhs, const void *item_rhs)
9308 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9309 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9311 return die_lhs->sect_off == die_rhs->sect_off;
9314 /* Load the DIEs associated with PER_CU into memory. */
9317 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9319 enum language pretend_language)
9321 gdb_assert (! this_cu->is_debug_types);
9323 cutu_reader reader (this_cu, NULL, 1, 1, skip_partial);
9327 struct dwarf2_cu *cu = reader.cu;
9328 const gdb_byte *info_ptr = reader.info_ptr;
9330 gdb_assert (cu->die_hash == NULL);
9332 htab_create_alloc_ex (cu->header.length / 12,
9336 &cu->comp_unit_obstack,
9337 hashtab_obstack_allocate,
9338 dummy_obstack_deallocate);
9340 if (reader.comp_unit_die->has_children)
9341 reader.comp_unit_die->child
9342 = read_die_and_siblings (&reader, reader.info_ptr,
9343 &info_ptr, reader.comp_unit_die);
9344 cu->dies = reader.comp_unit_die;
9345 /* comp_unit_die is not stored in die_hash, no need. */
9347 /* We try not to read any attributes in this function, because not
9348 all CUs needed for references have been loaded yet, and symbol
9349 table processing isn't initialized. But we have to set the CU language,
9350 or we won't be able to build types correctly.
9351 Similarly, if we do not read the producer, we can not apply
9352 producer-specific interpretation. */
9353 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9356 /* Add a DIE to the delayed physname list. */
9359 add_to_method_list (struct type *type, int fnfield_index, int index,
9360 const char *name, struct die_info *die,
9361 struct dwarf2_cu *cu)
9363 struct delayed_method_info mi;
9365 mi.fnfield_index = fnfield_index;
9369 cu->method_list.push_back (mi);
9372 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9373 "const" / "volatile". If so, decrements LEN by the length of the
9374 modifier and return true. Otherwise return false. */
9378 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9380 size_t mod_len = sizeof (mod) - 1;
9381 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9389 /* Compute the physnames of any methods on the CU's method list.
9391 The computation of method physnames is delayed in order to avoid the
9392 (bad) condition that one of the method's formal parameters is of an as yet
9396 compute_delayed_physnames (struct dwarf2_cu *cu)
9398 /* Only C++ delays computing physnames. */
9399 if (cu->method_list.empty ())
9401 gdb_assert (cu->language == language_cplus);
9403 for (const delayed_method_info &mi : cu->method_list)
9405 const char *physname;
9406 struct fn_fieldlist *fn_flp
9407 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9408 physname = dwarf2_physname (mi.name, mi.die, cu);
9409 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9410 = physname ? physname : "";
9412 /* Since there's no tag to indicate whether a method is a
9413 const/volatile overload, extract that information out of the
9415 if (physname != NULL)
9417 size_t len = strlen (physname);
9421 if (physname[len] == ')') /* shortcut */
9423 else if (check_modifier (physname, len, " const"))
9424 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9425 else if (check_modifier (physname, len, " volatile"))
9426 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9433 /* The list is no longer needed. */
9434 cu->method_list.clear ();
9437 /* Go objects should be embedded in a DW_TAG_module DIE,
9438 and it's not clear if/how imported objects will appear.
9439 To keep Go support simple until that's worked out,
9440 go back through what we've read and create something usable.
9441 We could do this while processing each DIE, and feels kinda cleaner,
9442 but that way is more invasive.
9443 This is to, for example, allow the user to type "p var" or "b main"
9444 without having to specify the package name, and allow lookups
9445 of module.object to work in contexts that use the expression
9449 fixup_go_packaging (struct dwarf2_cu *cu)
9451 gdb::unique_xmalloc_ptr<char> package_name;
9452 struct pending *list;
9455 for (list = *cu->get_builder ()->get_global_symbols ();
9459 for (i = 0; i < list->nsyms; ++i)
9461 struct symbol *sym = list->symbol[i];
9463 if (sym->language () == language_go
9464 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9466 gdb::unique_xmalloc_ptr<char> this_package_name
9467 (go_symbol_package_name (sym));
9469 if (this_package_name == NULL)
9471 if (package_name == NULL)
9472 package_name = std::move (this_package_name);
9475 struct objfile *objfile
9476 = cu->per_cu->dwarf2_per_objfile->objfile;
9477 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9478 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9479 (symbol_symtab (sym) != NULL
9480 ? symtab_to_filename_for_display
9481 (symbol_symtab (sym))
9482 : objfile_name (objfile)),
9483 this_package_name.get (), package_name.get ());
9489 if (package_name != NULL)
9491 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9492 const char *saved_package_name
9493 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9494 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9495 saved_package_name);
9498 sym = allocate_symbol (objfile);
9499 sym->set_language (language_go, &objfile->objfile_obstack);
9500 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9501 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9502 e.g., "main" finds the "main" module and not C's main(). */
9503 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9504 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9505 SYMBOL_TYPE (sym) = type;
9507 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9511 /* Allocate a fully-qualified name consisting of the two parts on the
9515 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9517 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9520 /* A helper that allocates a struct discriminant_info to attach to a
9523 static struct discriminant_info *
9524 alloc_discriminant_info (struct type *type, int discriminant_index,
9527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9528 gdb_assert (discriminant_index == -1
9529 || (discriminant_index >= 0
9530 && discriminant_index < TYPE_NFIELDS (type)));
9531 gdb_assert (default_index == -1
9532 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9534 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9536 struct discriminant_info *disc
9537 = ((struct discriminant_info *)
9539 offsetof (struct discriminant_info, discriminants)
9540 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9541 disc->default_index = default_index;
9542 disc->discriminant_index = discriminant_index;
9544 struct dynamic_prop prop;
9545 prop.kind = PROP_UNDEFINED;
9546 prop.data.baton = disc;
9548 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9553 /* Some versions of rustc emitted enums in an unusual way.
9555 Ordinary enums were emitted as unions. The first element of each
9556 structure in the union was named "RUST$ENUM$DISR". This element
9557 held the discriminant.
9559 These versions of Rust also implemented the "non-zero"
9560 optimization. When the enum had two values, and one is empty and
9561 the other holds a pointer that cannot be zero, the pointer is used
9562 as the discriminant, with a zero value meaning the empty variant.
9563 Here, the union's first member is of the form
9564 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9565 where the fieldnos are the indices of the fields that should be
9566 traversed in order to find the field (which may be several fields deep)
9567 and the variantname is the name of the variant of the case when the
9570 This function recognizes whether TYPE is of one of these forms,
9571 and, if so, smashes it to be a variant type. */
9574 quirk_rust_enum (struct type *type, struct objfile *objfile)
9576 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9578 /* We don't need to deal with empty enums. */
9579 if (TYPE_NFIELDS (type) == 0)
9582 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9583 if (TYPE_NFIELDS (type) == 1
9584 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9586 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9588 /* Decode the field name to find the offset of the
9590 ULONGEST bit_offset = 0;
9591 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9592 while (name[0] >= '0' && name[0] <= '9')
9595 unsigned long index = strtoul (name, &tail, 10);
9598 || index >= TYPE_NFIELDS (field_type)
9599 || (TYPE_FIELD_LOC_KIND (field_type, index)
9600 != FIELD_LOC_KIND_BITPOS))
9602 complaint (_("Could not parse Rust enum encoding string \"%s\""
9604 TYPE_FIELD_NAME (type, 0),
9605 objfile_name (objfile));
9610 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9611 field_type = TYPE_FIELD_TYPE (field_type, index);
9614 /* Make a union to hold the variants. */
9615 struct type *union_type = alloc_type (objfile);
9616 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9617 TYPE_NFIELDS (union_type) = 3;
9618 TYPE_FIELDS (union_type)
9619 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9620 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9621 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9623 /* Put the discriminant must at index 0. */
9624 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9625 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9626 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9627 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9629 /* The order of fields doesn't really matter, so put the real
9630 field at index 1 and the data-less field at index 2. */
9631 struct discriminant_info *disc
9632 = alloc_discriminant_info (union_type, 0, 1);
9633 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9634 TYPE_FIELD_NAME (union_type, 1)
9635 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9636 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9637 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9638 TYPE_FIELD_NAME (union_type, 1));
9640 const char *dataless_name
9641 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9643 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9645 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9646 /* NAME points into the original discriminant name, which
9647 already has the correct lifetime. */
9648 TYPE_FIELD_NAME (union_type, 2) = name;
9649 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9650 disc->discriminants[2] = 0;
9652 /* Smash this type to be a structure type. We have to do this
9653 because the type has already been recorded. */
9654 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9655 TYPE_NFIELDS (type) = 1;
9657 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9659 /* Install the variant part. */
9660 TYPE_FIELD_TYPE (type, 0) = union_type;
9661 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9662 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9664 /* A union with a single anonymous field is probably an old-style
9666 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9668 /* Smash this type to be a structure type. We have to do this
9669 because the type has already been recorded. */
9670 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9672 /* Make a union to hold the variants. */
9673 struct type *union_type = alloc_type (objfile);
9674 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9675 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9676 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9677 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9678 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9680 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9681 const char *variant_name
9682 = rust_last_path_segment (TYPE_NAME (field_type));
9683 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9684 TYPE_NAME (field_type)
9685 = rust_fully_qualify (&objfile->objfile_obstack,
9686 TYPE_NAME (type), variant_name);
9688 /* Install the union in the outer struct type. */
9689 TYPE_NFIELDS (type) = 1;
9691 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9692 TYPE_FIELD_TYPE (type, 0) = union_type;
9693 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9694 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9696 alloc_discriminant_info (union_type, -1, 0);
9700 struct type *disr_type = nullptr;
9701 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9703 disr_type = TYPE_FIELD_TYPE (type, i);
9705 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9707 /* All fields of a true enum will be structs. */
9710 else if (TYPE_NFIELDS (disr_type) == 0)
9712 /* Could be data-less variant, so keep going. */
9713 disr_type = nullptr;
9715 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9716 "RUST$ENUM$DISR") != 0)
9718 /* Not a Rust enum. */
9728 /* If we got here without a discriminant, then it's probably
9730 if (disr_type == nullptr)
9733 /* Smash this type to be a structure type. We have to do this
9734 because the type has already been recorded. */
9735 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9737 /* Make a union to hold the variants. */
9738 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9739 struct type *union_type = alloc_type (objfile);
9740 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9741 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9742 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9743 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9744 TYPE_FIELDS (union_type)
9745 = (struct field *) TYPE_ZALLOC (union_type,
9746 (TYPE_NFIELDS (union_type)
9747 * sizeof (struct field)));
9749 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9750 TYPE_NFIELDS (type) * sizeof (struct field));
9752 /* Install the discriminant at index 0 in the union. */
9753 TYPE_FIELD (union_type, 0) = *disr_field;
9754 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9755 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9757 /* Install the union in the outer struct type. */
9758 TYPE_FIELD_TYPE (type, 0) = union_type;
9759 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9760 TYPE_NFIELDS (type) = 1;
9762 /* Set the size and offset of the union type. */
9763 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9765 /* We need a way to find the correct discriminant given a
9766 variant name. For convenience we build a map here. */
9767 struct type *enum_type = FIELD_TYPE (*disr_field);
9768 std::unordered_map<std::string, ULONGEST> discriminant_map;
9769 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9771 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9774 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9775 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9779 int n_fields = TYPE_NFIELDS (union_type);
9780 struct discriminant_info *disc
9781 = alloc_discriminant_info (union_type, 0, -1);
9782 /* Skip the discriminant here. */
9783 for (int i = 1; i < n_fields; ++i)
9785 /* Find the final word in the name of this variant's type.
9786 That name can be used to look up the correct
9788 const char *variant_name
9789 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9792 auto iter = discriminant_map.find (variant_name);
9793 if (iter != discriminant_map.end ())
9794 disc->discriminants[i] = iter->second;
9796 /* Remove the discriminant field, if it exists. */
9797 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9798 if (TYPE_NFIELDS (sub_type) > 0)
9800 --TYPE_NFIELDS (sub_type);
9801 ++TYPE_FIELDS (sub_type);
9803 TYPE_FIELD_NAME (union_type, i) = variant_name;
9804 TYPE_NAME (sub_type)
9805 = rust_fully_qualify (&objfile->objfile_obstack,
9806 TYPE_NAME (type), variant_name);
9811 /* Rewrite some Rust unions to be structures with variants parts. */
9814 rust_union_quirks (struct dwarf2_cu *cu)
9816 gdb_assert (cu->language == language_rust);
9817 for (type *type_ : cu->rust_unions)
9818 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9819 /* We don't need this any more. */
9820 cu->rust_unions.clear ();
9823 /* Return the symtab for PER_CU. This works properly regardless of
9824 whether we're using the index or psymtabs. */
9826 static struct compunit_symtab *
9827 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9829 return (per_cu->dwarf2_per_objfile->using_index
9830 ? per_cu->v.quick->compunit_symtab
9831 : per_cu->v.psymtab->compunit_symtab);
9834 /* A helper function for computing the list of all symbol tables
9835 included by PER_CU. */
9838 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9839 htab_t all_children, htab_t all_type_symtabs,
9840 struct dwarf2_per_cu_data *per_cu,
9841 struct compunit_symtab *immediate_parent)
9844 struct compunit_symtab *cust;
9846 slot = htab_find_slot (all_children, per_cu, INSERT);
9849 /* This inclusion and its children have been processed. */
9854 /* Only add a CU if it has a symbol table. */
9855 cust = get_compunit_symtab (per_cu);
9858 /* If this is a type unit only add its symbol table if we haven't
9859 seen it yet (type unit per_cu's can share symtabs). */
9860 if (per_cu->is_debug_types)
9862 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9866 result->push_back (cust);
9867 if (cust->user == NULL)
9868 cust->user = immediate_parent;
9873 result->push_back (cust);
9874 if (cust->user == NULL)
9875 cust->user = immediate_parent;
9879 if (!per_cu->imported_symtabs_empty ())
9880 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9882 recursively_compute_inclusions (result, all_children,
9883 all_type_symtabs, ptr, cust);
9887 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9891 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9893 gdb_assert (! per_cu->is_debug_types);
9895 if (!per_cu->imported_symtabs_empty ())
9898 std::vector<compunit_symtab *> result_symtabs;
9899 htab_t all_children, all_type_symtabs;
9900 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9902 /* If we don't have a symtab, we can just skip this case. */
9906 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9907 NULL, xcalloc, xfree);
9908 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9909 NULL, xcalloc, xfree);
9911 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9913 recursively_compute_inclusions (&result_symtabs, all_children,
9914 all_type_symtabs, ptr, cust);
9917 /* Now we have a transitive closure of all the included symtabs. */
9918 len = result_symtabs.size ();
9920 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9921 struct compunit_symtab *, len + 1);
9922 memcpy (cust->includes, result_symtabs.data (),
9923 len * sizeof (compunit_symtab *));
9924 cust->includes[len] = NULL;
9926 htab_delete (all_children);
9927 htab_delete (all_type_symtabs);
9931 /* Compute the 'includes' field for the symtabs of all the CUs we just
9935 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9937 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9939 if (! iter->is_debug_types)
9940 compute_compunit_symtab_includes (iter);
9943 dwarf2_per_objfile->just_read_cus.clear ();
9946 /* Generate full symbol information for PER_CU, whose DIEs have
9947 already been loaded into memory. */
9950 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9951 enum language pretend_language)
9953 struct dwarf2_cu *cu = per_cu->cu;
9954 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9955 struct objfile *objfile = dwarf2_per_objfile->objfile;
9956 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9957 CORE_ADDR lowpc, highpc;
9958 struct compunit_symtab *cust;
9960 struct block *static_block;
9963 baseaddr = objfile->text_section_offset ();
9965 /* Clear the list here in case something was left over. */
9966 cu->method_list.clear ();
9968 cu->language = pretend_language;
9969 cu->language_defn = language_def (cu->language);
9971 /* Do line number decoding in read_file_scope () */
9972 process_die (cu->dies, cu);
9974 /* For now fudge the Go package. */
9975 if (cu->language == language_go)
9976 fixup_go_packaging (cu);
9978 /* Now that we have processed all the DIEs in the CU, all the types
9979 should be complete, and it should now be safe to compute all of the
9981 compute_delayed_physnames (cu);
9983 if (cu->language == language_rust)
9984 rust_union_quirks (cu);
9986 /* Some compilers don't define a DW_AT_high_pc attribute for the
9987 compilation unit. If the DW_AT_high_pc is missing, synthesize
9988 it, by scanning the DIE's below the compilation unit. */
9989 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9991 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9992 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9994 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9995 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9996 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9997 addrmap to help ensure it has an accurate map of pc values belonging to
9999 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10001 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10002 SECT_OFF_TEXT (objfile),
10007 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10009 /* Set symtab language to language from DW_AT_language. If the
10010 compilation is from a C file generated by language preprocessors, do
10011 not set the language if it was already deduced by start_subfile. */
10012 if (!(cu->language == language_c
10013 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10014 COMPUNIT_FILETABS (cust)->language = cu->language;
10016 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10017 produce DW_AT_location with location lists but it can be possibly
10018 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10019 there were bugs in prologue debug info, fixed later in GCC-4.5
10020 by "unwind info for epilogues" patch (which is not directly related).
10022 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10023 needed, it would be wrong due to missing DW_AT_producer there.
10025 Still one can confuse GDB by using non-standard GCC compilation
10026 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10028 if (cu->has_loclist && gcc_4_minor >= 5)
10029 cust->locations_valid = 1;
10031 if (gcc_4_minor >= 5)
10032 cust->epilogue_unwind_valid = 1;
10034 cust->call_site_htab = cu->call_site_htab;
10037 if (dwarf2_per_objfile->using_index)
10038 per_cu->v.quick->compunit_symtab = cust;
10041 dwarf2_psymtab *pst = per_cu->v.psymtab;
10042 pst->compunit_symtab = cust;
10043 pst->readin = true;
10046 /* Push it for inclusion processing later. */
10047 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10049 /* Not needed any more. */
10050 cu->reset_builder ();
10053 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10054 already been loaded into memory. */
10057 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10058 enum language pretend_language)
10060 struct dwarf2_cu *cu = per_cu->cu;
10061 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10062 struct objfile *objfile = dwarf2_per_objfile->objfile;
10063 struct compunit_symtab *cust;
10064 struct signatured_type *sig_type;
10066 gdb_assert (per_cu->is_debug_types);
10067 sig_type = (struct signatured_type *) per_cu;
10069 /* Clear the list here in case something was left over. */
10070 cu->method_list.clear ();
10072 cu->language = pretend_language;
10073 cu->language_defn = language_def (cu->language);
10075 /* The symbol tables are set up in read_type_unit_scope. */
10076 process_die (cu->dies, cu);
10078 /* For now fudge the Go package. */
10079 if (cu->language == language_go)
10080 fixup_go_packaging (cu);
10082 /* Now that we have processed all the DIEs in the CU, all the types
10083 should be complete, and it should now be safe to compute all of the
10085 compute_delayed_physnames (cu);
10087 if (cu->language == language_rust)
10088 rust_union_quirks (cu);
10090 /* TUs share symbol tables.
10091 If this is the first TU to use this symtab, complete the construction
10092 of it with end_expandable_symtab. Otherwise, complete the addition of
10093 this TU's symbols to the existing symtab. */
10094 if (sig_type->type_unit_group->compunit_symtab == NULL)
10096 buildsym_compunit *builder = cu->get_builder ();
10097 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10098 sig_type->type_unit_group->compunit_symtab = cust;
10102 /* Set symtab language to language from DW_AT_language. If the
10103 compilation is from a C file generated by language preprocessors,
10104 do not set the language if it was already deduced by
10106 if (!(cu->language == language_c
10107 && COMPUNIT_FILETABS (cust)->language != language_c))
10108 COMPUNIT_FILETABS (cust)->language = cu->language;
10113 cu->get_builder ()->augment_type_symtab ();
10114 cust = sig_type->type_unit_group->compunit_symtab;
10117 if (dwarf2_per_objfile->using_index)
10118 per_cu->v.quick->compunit_symtab = cust;
10121 dwarf2_psymtab *pst = per_cu->v.psymtab;
10122 pst->compunit_symtab = cust;
10123 pst->readin = true;
10126 /* Not needed any more. */
10127 cu->reset_builder ();
10130 /* Process an imported unit DIE. */
10133 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10135 struct attribute *attr;
10137 /* For now we don't handle imported units in type units. */
10138 if (cu->per_cu->is_debug_types)
10140 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10141 " supported in type units [in module %s]"),
10142 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10145 attr = dwarf2_attr (die, DW_AT_import, cu);
10148 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10149 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10150 dwarf2_per_cu_data *per_cu
10151 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10152 cu->per_cu->dwarf2_per_objfile);
10154 /* If necessary, add it to the queue and load its DIEs. */
10155 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10156 load_full_comp_unit (per_cu, false, cu->language);
10158 cu->per_cu->imported_symtabs_push (per_cu);
10162 /* RAII object that represents a process_die scope: i.e.,
10163 starts/finishes processing a DIE. */
10164 class process_die_scope
10167 process_die_scope (die_info *die, dwarf2_cu *cu)
10168 : m_die (die), m_cu (cu)
10170 /* We should only be processing DIEs not already in process. */
10171 gdb_assert (!m_die->in_process);
10172 m_die->in_process = true;
10175 ~process_die_scope ()
10177 m_die->in_process = false;
10179 /* If we're done processing the DIE for the CU that owns the line
10180 header, we don't need the line header anymore. */
10181 if (m_cu->line_header_die_owner == m_die)
10183 delete m_cu->line_header;
10184 m_cu->line_header = NULL;
10185 m_cu->line_header_die_owner = NULL;
10194 /* Process a die and its children. */
10197 process_die (struct die_info *die, struct dwarf2_cu *cu)
10199 process_die_scope scope (die, cu);
10203 case DW_TAG_padding:
10205 case DW_TAG_compile_unit:
10206 case DW_TAG_partial_unit:
10207 read_file_scope (die, cu);
10209 case DW_TAG_type_unit:
10210 read_type_unit_scope (die, cu);
10212 case DW_TAG_subprogram:
10213 /* Nested subprograms in Fortran get a prefix. */
10214 if (cu->language == language_fortran
10215 && die->parent != NULL
10216 && die->parent->tag == DW_TAG_subprogram)
10217 cu->processing_has_namespace_info = true;
10218 /* Fall through. */
10219 case DW_TAG_inlined_subroutine:
10220 read_func_scope (die, cu);
10222 case DW_TAG_lexical_block:
10223 case DW_TAG_try_block:
10224 case DW_TAG_catch_block:
10225 read_lexical_block_scope (die, cu);
10227 case DW_TAG_call_site:
10228 case DW_TAG_GNU_call_site:
10229 read_call_site_scope (die, cu);
10231 case DW_TAG_class_type:
10232 case DW_TAG_interface_type:
10233 case DW_TAG_structure_type:
10234 case DW_TAG_union_type:
10235 process_structure_scope (die, cu);
10237 case DW_TAG_enumeration_type:
10238 process_enumeration_scope (die, cu);
10241 /* These dies have a type, but processing them does not create
10242 a symbol or recurse to process the children. Therefore we can
10243 read them on-demand through read_type_die. */
10244 case DW_TAG_subroutine_type:
10245 case DW_TAG_set_type:
10246 case DW_TAG_array_type:
10247 case DW_TAG_pointer_type:
10248 case DW_TAG_ptr_to_member_type:
10249 case DW_TAG_reference_type:
10250 case DW_TAG_rvalue_reference_type:
10251 case DW_TAG_string_type:
10254 case DW_TAG_base_type:
10255 case DW_TAG_subrange_type:
10256 case DW_TAG_typedef:
10257 /* Add a typedef symbol for the type definition, if it has a
10259 new_symbol (die, read_type_die (die, cu), cu);
10261 case DW_TAG_common_block:
10262 read_common_block (die, cu);
10264 case DW_TAG_common_inclusion:
10266 case DW_TAG_namespace:
10267 cu->processing_has_namespace_info = true;
10268 read_namespace (die, cu);
10270 case DW_TAG_module:
10271 cu->processing_has_namespace_info = true;
10272 read_module (die, cu);
10274 case DW_TAG_imported_declaration:
10275 cu->processing_has_namespace_info = true;
10276 if (read_namespace_alias (die, cu))
10278 /* The declaration is not a global namespace alias. */
10279 /* Fall through. */
10280 case DW_TAG_imported_module:
10281 cu->processing_has_namespace_info = true;
10282 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10283 || cu->language != language_fortran))
10284 complaint (_("Tag '%s' has unexpected children"),
10285 dwarf_tag_name (die->tag));
10286 read_import_statement (die, cu);
10289 case DW_TAG_imported_unit:
10290 process_imported_unit_die (die, cu);
10293 case DW_TAG_variable:
10294 read_variable (die, cu);
10298 new_symbol (die, NULL, cu);
10303 /* DWARF name computation. */
10305 /* A helper function for dwarf2_compute_name which determines whether DIE
10306 needs to have the name of the scope prepended to the name listed in the
10310 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10312 struct attribute *attr;
10316 case DW_TAG_namespace:
10317 case DW_TAG_typedef:
10318 case DW_TAG_class_type:
10319 case DW_TAG_interface_type:
10320 case DW_TAG_structure_type:
10321 case DW_TAG_union_type:
10322 case DW_TAG_enumeration_type:
10323 case DW_TAG_enumerator:
10324 case DW_TAG_subprogram:
10325 case DW_TAG_inlined_subroutine:
10326 case DW_TAG_member:
10327 case DW_TAG_imported_declaration:
10330 case DW_TAG_variable:
10331 case DW_TAG_constant:
10332 /* We only need to prefix "globally" visible variables. These include
10333 any variable marked with DW_AT_external or any variable that
10334 lives in a namespace. [Variables in anonymous namespaces
10335 require prefixing, but they are not DW_AT_external.] */
10337 if (dwarf2_attr (die, DW_AT_specification, cu))
10339 struct dwarf2_cu *spec_cu = cu;
10341 return die_needs_namespace (die_specification (die, &spec_cu),
10345 attr = dwarf2_attr (die, DW_AT_external, cu);
10346 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10347 && die->parent->tag != DW_TAG_module)
10349 /* A variable in a lexical block of some kind does not need a
10350 namespace, even though in C++ such variables may be external
10351 and have a mangled name. */
10352 if (die->parent->tag == DW_TAG_lexical_block
10353 || die->parent->tag == DW_TAG_try_block
10354 || die->parent->tag == DW_TAG_catch_block
10355 || die->parent->tag == DW_TAG_subprogram)
10364 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10365 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10366 defined for the given DIE. */
10368 static struct attribute *
10369 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10371 struct attribute *attr;
10373 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10375 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10380 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10381 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10382 defined for the given DIE. */
10384 static const char *
10385 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10387 const char *linkage_name;
10389 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10390 if (linkage_name == NULL)
10391 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10393 return linkage_name;
10396 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10397 compute the physname for the object, which include a method's:
10398 - formal parameters (C++),
10399 - receiver type (Go),
10401 The term "physname" is a bit confusing.
10402 For C++, for example, it is the demangled name.
10403 For Go, for example, it's the mangled name.
10405 For Ada, return the DIE's linkage name rather than the fully qualified
10406 name. PHYSNAME is ignored..
10408 The result is allocated on the objfile_obstack and canonicalized. */
10410 static const char *
10411 dwarf2_compute_name (const char *name,
10412 struct die_info *die, struct dwarf2_cu *cu,
10415 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10418 name = dwarf2_name (die, cu);
10420 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10421 but otherwise compute it by typename_concat inside GDB.
10422 FIXME: Actually this is not really true, or at least not always true.
10423 It's all very confusing. compute_and_set_names doesn't try to demangle
10424 Fortran names because there is no mangling standard. So new_symbol
10425 will set the demangled name to the result of dwarf2_full_name, and it is
10426 the demangled name that GDB uses if it exists. */
10427 if (cu->language == language_ada
10428 || (cu->language == language_fortran && physname))
10430 /* For Ada unit, we prefer the linkage name over the name, as
10431 the former contains the exported name, which the user expects
10432 to be able to reference. Ideally, we want the user to be able
10433 to reference this entity using either natural or linkage name,
10434 but we haven't started looking at this enhancement yet. */
10435 const char *linkage_name = dw2_linkage_name (die, cu);
10437 if (linkage_name != NULL)
10438 return linkage_name;
10441 /* These are the only languages we know how to qualify names in. */
10443 && (cu->language == language_cplus
10444 || cu->language == language_fortran || cu->language == language_d
10445 || cu->language == language_rust))
10447 if (die_needs_namespace (die, cu))
10449 const char *prefix;
10450 const char *canonical_name = NULL;
10454 prefix = determine_prefix (die, cu);
10455 if (*prefix != '\0')
10457 gdb::unique_xmalloc_ptr<char> prefixed_name
10458 (typename_concat (NULL, prefix, name, physname, cu));
10460 buf.puts (prefixed_name.get ());
10465 /* Template parameters may be specified in the DIE's DW_AT_name, or
10466 as children with DW_TAG_template_type_param or
10467 DW_TAG_value_type_param. If the latter, add them to the name
10468 here. If the name already has template parameters, then
10469 skip this step; some versions of GCC emit both, and
10470 it is more efficient to use the pre-computed name.
10472 Something to keep in mind about this process: it is very
10473 unlikely, or in some cases downright impossible, to produce
10474 something that will match the mangled name of a function.
10475 If the definition of the function has the same debug info,
10476 we should be able to match up with it anyway. But fallbacks
10477 using the minimal symbol, for instance to find a method
10478 implemented in a stripped copy of libstdc++, will not work.
10479 If we do not have debug info for the definition, we will have to
10480 match them up some other way.
10482 When we do name matching there is a related problem with function
10483 templates; two instantiated function templates are allowed to
10484 differ only by their return types, which we do not add here. */
10486 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10488 struct attribute *attr;
10489 struct die_info *child;
10492 die->building_fullname = 1;
10494 for (child = die->child; child != NULL; child = child->sibling)
10498 const gdb_byte *bytes;
10499 struct dwarf2_locexpr_baton *baton;
10502 if (child->tag != DW_TAG_template_type_param
10503 && child->tag != DW_TAG_template_value_param)
10514 attr = dwarf2_attr (child, DW_AT_type, cu);
10517 complaint (_("template parameter missing DW_AT_type"));
10518 buf.puts ("UNKNOWN_TYPE");
10521 type = die_type (child, cu);
10523 if (child->tag == DW_TAG_template_type_param)
10525 c_print_type (type, "", &buf, -1, 0, cu->language,
10526 &type_print_raw_options);
10530 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10533 complaint (_("template parameter missing "
10534 "DW_AT_const_value"));
10535 buf.puts ("UNKNOWN_VALUE");
10539 dwarf2_const_value_attr (attr, type, name,
10540 &cu->comp_unit_obstack, cu,
10541 &value, &bytes, &baton);
10543 if (TYPE_NOSIGN (type))
10544 /* GDB prints characters as NUMBER 'CHAR'. If that's
10545 changed, this can use value_print instead. */
10546 c_printchar (value, type, &buf);
10549 struct value_print_options opts;
10552 v = dwarf2_evaluate_loc_desc (type, NULL,
10556 else if (bytes != NULL)
10558 v = allocate_value (type);
10559 memcpy (value_contents_writeable (v), bytes,
10560 TYPE_LENGTH (type));
10563 v = value_from_longest (type, value);
10565 /* Specify decimal so that we do not depend on
10567 get_formatted_print_options (&opts, 'd');
10569 value_print (v, &buf, &opts);
10574 die->building_fullname = 0;
10578 /* Close the argument list, with a space if necessary
10579 (nested templates). */
10580 if (!buf.empty () && buf.string ().back () == '>')
10587 /* For C++ methods, append formal parameter type
10588 information, if PHYSNAME. */
10590 if (physname && die->tag == DW_TAG_subprogram
10591 && cu->language == language_cplus)
10593 struct type *type = read_type_die (die, cu);
10595 c_type_print_args (type, &buf, 1, cu->language,
10596 &type_print_raw_options);
10598 if (cu->language == language_cplus)
10600 /* Assume that an artificial first parameter is
10601 "this", but do not crash if it is not. RealView
10602 marks unnamed (and thus unused) parameters as
10603 artificial; there is no way to differentiate
10605 if (TYPE_NFIELDS (type) > 0
10606 && TYPE_FIELD_ARTIFICIAL (type, 0)
10607 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10608 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10610 buf.puts (" const");
10614 const std::string &intermediate_name = buf.string ();
10616 if (cu->language == language_cplus)
10618 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10619 &objfile->per_bfd->storage_obstack);
10621 /* If we only computed INTERMEDIATE_NAME, or if
10622 INTERMEDIATE_NAME is already canonical, then we need to
10623 copy it to the appropriate obstack. */
10624 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10625 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10626 intermediate_name);
10628 name = canonical_name;
10635 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10636 If scope qualifiers are appropriate they will be added. The result
10637 will be allocated on the storage_obstack, or NULL if the DIE does
10638 not have a name. NAME may either be from a previous call to
10639 dwarf2_name or NULL.
10641 The output string will be canonicalized (if C++). */
10643 static const char *
10644 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10646 return dwarf2_compute_name (name, die, cu, 0);
10649 /* Construct a physname for the given DIE in CU. NAME may either be
10650 from a previous call to dwarf2_name or NULL. The result will be
10651 allocated on the objfile_objstack or NULL if the DIE does not have a
10654 The output string will be canonicalized (if C++). */
10656 static const char *
10657 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10660 const char *retval, *mangled = NULL, *canon = NULL;
10663 /* In this case dwarf2_compute_name is just a shortcut not building anything
10665 if (!die_needs_namespace (die, cu))
10666 return dwarf2_compute_name (name, die, cu, 1);
10668 mangled = dw2_linkage_name (die, cu);
10670 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10671 See https://github.com/rust-lang/rust/issues/32925. */
10672 if (cu->language == language_rust && mangled != NULL
10673 && strchr (mangled, '{') != NULL)
10676 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10678 gdb::unique_xmalloc_ptr<char> demangled;
10679 if (mangled != NULL)
10682 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10684 /* Do nothing (do not demangle the symbol name). */
10686 else if (cu->language == language_go)
10688 /* This is a lie, but we already lie to the caller new_symbol.
10689 new_symbol assumes we return the mangled name.
10690 This just undoes that lie until things are cleaned up. */
10694 /* Use DMGL_RET_DROP for C++ template functions to suppress
10695 their return type. It is easier for GDB users to search
10696 for such functions as `name(params)' than `long name(params)'.
10697 In such case the minimal symbol names do not match the full
10698 symbol names but for template functions there is never a need
10699 to look up their definition from their declaration so
10700 the only disadvantage remains the minimal symbol variant
10701 `long name(params)' does not have the proper inferior type. */
10702 demangled.reset (gdb_demangle (mangled,
10703 (DMGL_PARAMS | DMGL_ANSI
10704 | DMGL_RET_DROP)));
10707 canon = demangled.get ();
10715 if (canon == NULL || check_physname)
10717 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10719 if (canon != NULL && strcmp (physname, canon) != 0)
10721 /* It may not mean a bug in GDB. The compiler could also
10722 compute DW_AT_linkage_name incorrectly. But in such case
10723 GDB would need to be bug-to-bug compatible. */
10725 complaint (_("Computed physname <%s> does not match demangled <%s> "
10726 "(from linkage <%s>) - DIE at %s [in module %s]"),
10727 physname, canon, mangled, sect_offset_str (die->sect_off),
10728 objfile_name (objfile));
10730 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10731 is available here - over computed PHYSNAME. It is safer
10732 against both buggy GDB and buggy compilers. */
10746 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10751 /* Inspect DIE in CU for a namespace alias. If one exists, record
10752 a new symbol for it.
10754 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10757 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10759 struct attribute *attr;
10761 /* If the die does not have a name, this is not a namespace
10763 attr = dwarf2_attr (die, DW_AT_name, cu);
10767 struct die_info *d = die;
10768 struct dwarf2_cu *imported_cu = cu;
10770 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10771 keep inspecting DIEs until we hit the underlying import. */
10772 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10773 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10775 attr = dwarf2_attr (d, DW_AT_import, cu);
10779 d = follow_die_ref (d, attr, &imported_cu);
10780 if (d->tag != DW_TAG_imported_declaration)
10784 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10786 complaint (_("DIE at %s has too many recursively imported "
10787 "declarations"), sect_offset_str (d->sect_off));
10794 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10796 type = get_die_type_at_offset (sect_off, cu->per_cu);
10797 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10799 /* This declaration is a global namespace alias. Add
10800 a symbol for it whose type is the aliased namespace. */
10801 new_symbol (die, type, cu);
10810 /* Return the using directives repository (global or local?) to use in the
10811 current context for CU.
10813 For Ada, imported declarations can materialize renamings, which *may* be
10814 global. However it is impossible (for now?) in DWARF to distinguish
10815 "external" imported declarations and "static" ones. As all imported
10816 declarations seem to be static in all other languages, make them all CU-wide
10817 global only in Ada. */
10819 static struct using_direct **
10820 using_directives (struct dwarf2_cu *cu)
10822 if (cu->language == language_ada
10823 && cu->get_builder ()->outermost_context_p ())
10824 return cu->get_builder ()->get_global_using_directives ();
10826 return cu->get_builder ()->get_local_using_directives ();
10829 /* Read the import statement specified by the given die and record it. */
10832 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10834 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10835 struct attribute *import_attr;
10836 struct die_info *imported_die, *child_die;
10837 struct dwarf2_cu *imported_cu;
10838 const char *imported_name;
10839 const char *imported_name_prefix;
10840 const char *canonical_name;
10841 const char *import_alias;
10842 const char *imported_declaration = NULL;
10843 const char *import_prefix;
10844 std::vector<const char *> excludes;
10846 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10847 if (import_attr == NULL)
10849 complaint (_("Tag '%s' has no DW_AT_import"),
10850 dwarf_tag_name (die->tag));
10855 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10856 imported_name = dwarf2_name (imported_die, imported_cu);
10857 if (imported_name == NULL)
10859 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10861 The import in the following code:
10875 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10876 <52> DW_AT_decl_file : 1
10877 <53> DW_AT_decl_line : 6
10878 <54> DW_AT_import : <0x75>
10879 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10880 <59> DW_AT_name : B
10881 <5b> DW_AT_decl_file : 1
10882 <5c> DW_AT_decl_line : 2
10883 <5d> DW_AT_type : <0x6e>
10885 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10886 <76> DW_AT_byte_size : 4
10887 <77> DW_AT_encoding : 5 (signed)
10889 imports the wrong die ( 0x75 instead of 0x58 ).
10890 This case will be ignored until the gcc bug is fixed. */
10894 /* Figure out the local name after import. */
10895 import_alias = dwarf2_name (die, cu);
10897 /* Figure out where the statement is being imported to. */
10898 import_prefix = determine_prefix (die, cu);
10900 /* Figure out what the scope of the imported die is and prepend it
10901 to the name of the imported die. */
10902 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10904 if (imported_die->tag != DW_TAG_namespace
10905 && imported_die->tag != DW_TAG_module)
10907 imported_declaration = imported_name;
10908 canonical_name = imported_name_prefix;
10910 else if (strlen (imported_name_prefix) > 0)
10911 canonical_name = obconcat (&objfile->objfile_obstack,
10912 imported_name_prefix,
10913 (cu->language == language_d ? "." : "::"),
10914 imported_name, (char *) NULL);
10916 canonical_name = imported_name;
10918 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10919 for (child_die = die->child; child_die && child_die->tag;
10920 child_die = sibling_die (child_die))
10922 /* DWARF-4: A Fortran use statement with a “rename list” may be
10923 represented by an imported module entry with an import attribute
10924 referring to the module and owned entries corresponding to those
10925 entities that are renamed as part of being imported. */
10927 if (child_die->tag != DW_TAG_imported_declaration)
10929 complaint (_("child DW_TAG_imported_declaration expected "
10930 "- DIE at %s [in module %s]"),
10931 sect_offset_str (child_die->sect_off),
10932 objfile_name (objfile));
10936 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10937 if (import_attr == NULL)
10939 complaint (_("Tag '%s' has no DW_AT_import"),
10940 dwarf_tag_name (child_die->tag));
10945 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10947 imported_name = dwarf2_name (imported_die, imported_cu);
10948 if (imported_name == NULL)
10950 complaint (_("child DW_TAG_imported_declaration has unknown "
10951 "imported name - DIE at %s [in module %s]"),
10952 sect_offset_str (child_die->sect_off),
10953 objfile_name (objfile));
10957 excludes.push_back (imported_name);
10959 process_die (child_die, cu);
10962 add_using_directive (using_directives (cu),
10966 imported_declaration,
10969 &objfile->objfile_obstack);
10972 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10973 types, but gives them a size of zero. Starting with version 14,
10974 ICC is compatible with GCC. */
10977 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10979 if (!cu->checked_producer)
10980 check_producer (cu);
10982 return cu->producer_is_icc_lt_14;
10985 /* ICC generates a DW_AT_type for C void functions. This was observed on
10986 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10987 which says that void functions should not have a DW_AT_type. */
10990 producer_is_icc (struct dwarf2_cu *cu)
10992 if (!cu->checked_producer)
10993 check_producer (cu);
10995 return cu->producer_is_icc;
10998 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10999 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11000 this, it was first present in GCC release 4.3.0. */
11003 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11005 if (!cu->checked_producer)
11006 check_producer (cu);
11008 return cu->producer_is_gcc_lt_4_3;
11011 static file_and_directory
11012 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11014 file_and_directory res;
11016 /* Find the filename. Do not use dwarf2_name here, since the filename
11017 is not a source language identifier. */
11018 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11019 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11021 if (res.comp_dir == NULL
11022 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11023 && IS_ABSOLUTE_PATH (res.name))
11025 res.comp_dir_storage = ldirname (res.name);
11026 if (!res.comp_dir_storage.empty ())
11027 res.comp_dir = res.comp_dir_storage.c_str ();
11029 if (res.comp_dir != NULL)
11031 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11032 directory, get rid of it. */
11033 const char *cp = strchr (res.comp_dir, ':');
11035 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11036 res.comp_dir = cp + 1;
11039 if (res.name == NULL)
11040 res.name = "<unknown>";
11045 /* Handle DW_AT_stmt_list for a compilation unit.
11046 DIE is the DW_TAG_compile_unit die for CU.
11047 COMP_DIR is the compilation directory. LOWPC is passed to
11048 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11051 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11052 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11054 struct dwarf2_per_objfile *dwarf2_per_objfile
11055 = cu->per_cu->dwarf2_per_objfile;
11056 struct attribute *attr;
11057 struct line_header line_header_local;
11058 hashval_t line_header_local_hash;
11060 int decode_mapping;
11062 gdb_assert (! cu->per_cu->is_debug_types);
11064 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11068 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11070 /* The line header hash table is only created if needed (it exists to
11071 prevent redundant reading of the line table for partial_units).
11072 If we're given a partial_unit, we'll need it. If we're given a
11073 compile_unit, then use the line header hash table if it's already
11074 created, but don't create one just yet. */
11076 if (dwarf2_per_objfile->line_header_hash == NULL
11077 && die->tag == DW_TAG_partial_unit)
11079 dwarf2_per_objfile->line_header_hash
11080 .reset (htab_create_alloc (127, line_header_hash_voidp,
11081 line_header_eq_voidp,
11082 free_line_header_voidp,
11086 line_header_local.sect_off = line_offset;
11087 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11088 line_header_local_hash = line_header_hash (&line_header_local);
11089 if (dwarf2_per_objfile->line_header_hash != NULL)
11091 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
11092 &line_header_local,
11093 line_header_local_hash, NO_INSERT);
11095 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11096 is not present in *SLOT (since if there is something in *SLOT then
11097 it will be for a partial_unit). */
11098 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11100 gdb_assert (*slot != NULL);
11101 cu->line_header = (struct line_header *) *slot;
11106 /* dwarf_decode_line_header does not yet provide sufficient information.
11107 We always have to call also dwarf_decode_lines for it. */
11108 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11112 cu->line_header = lh.release ();
11113 cu->line_header_die_owner = die;
11115 if (dwarf2_per_objfile->line_header_hash == NULL)
11119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
11120 &line_header_local,
11121 line_header_local_hash, INSERT);
11122 gdb_assert (slot != NULL);
11124 if (slot != NULL && *slot == NULL)
11126 /* This newly decoded line number information unit will be owned
11127 by line_header_hash hash table. */
11128 *slot = cu->line_header;
11129 cu->line_header_die_owner = NULL;
11133 /* We cannot free any current entry in (*slot) as that struct line_header
11134 may be already used by multiple CUs. Create only temporary decoded
11135 line_header for this CU - it may happen at most once for each line
11136 number information unit. And if we're not using line_header_hash
11137 then this is what we want as well. */
11138 gdb_assert (die->tag != DW_TAG_partial_unit);
11140 decode_mapping = (die->tag != DW_TAG_partial_unit);
11141 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11146 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11149 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11151 struct dwarf2_per_objfile *dwarf2_per_objfile
11152 = cu->per_cu->dwarf2_per_objfile;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
11154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11155 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11156 CORE_ADDR highpc = ((CORE_ADDR) 0);
11157 struct attribute *attr;
11158 struct die_info *child_die;
11159 CORE_ADDR baseaddr;
11161 prepare_one_comp_unit (cu, die, cu->language);
11162 baseaddr = objfile->text_section_offset ();
11164 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11166 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11167 from finish_block. */
11168 if (lowpc == ((CORE_ADDR) -1))
11170 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11172 file_and_directory fnd = find_file_and_directory (die, cu);
11174 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11175 standardised yet. As a workaround for the language detection we fall
11176 back to the DW_AT_producer string. */
11177 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11178 cu->language = language_opencl;
11180 /* Similar hack for Go. */
11181 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11182 set_cu_language (DW_LANG_Go, cu);
11184 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11186 /* Decode line number information if present. We do this before
11187 processing child DIEs, so that the line header table is available
11188 for DW_AT_decl_file. */
11189 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11191 /* Process all dies in compilation unit. */
11192 if (die->child != NULL)
11194 child_die = die->child;
11195 while (child_die && child_die->tag)
11197 process_die (child_die, cu);
11198 child_die = sibling_die (child_die);
11202 /* Decode macro information, if present. Dwarf 2 macro information
11203 refers to information in the line number info statement program
11204 header, so we can only read it if we've read the header
11206 attr = dwarf2_attr (die, DW_AT_macros, cu);
11208 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11209 if (attr && cu->line_header)
11211 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11212 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11214 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11218 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11219 if (attr && cu->line_header)
11221 unsigned int macro_offset = DW_UNSND (attr);
11223 dwarf_decode_macros (cu, macro_offset, 0);
11229 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11231 struct type_unit_group *tu_group;
11233 struct attribute *attr;
11235 struct signatured_type *sig_type;
11237 gdb_assert (per_cu->is_debug_types);
11238 sig_type = (struct signatured_type *) per_cu;
11240 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11242 /* If we're using .gdb_index (includes -readnow) then
11243 per_cu->type_unit_group may not have been set up yet. */
11244 if (sig_type->type_unit_group == NULL)
11245 sig_type->type_unit_group = get_type_unit_group (this, attr);
11246 tu_group = sig_type->type_unit_group;
11248 /* If we've already processed this stmt_list there's no real need to
11249 do it again, we could fake it and just recreate the part we need
11250 (file name,index -> symtab mapping). If data shows this optimization
11251 is useful we can do it then. */
11252 first_time = tu_group->compunit_symtab == NULL;
11254 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11259 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11260 lh = dwarf_decode_line_header (line_offset, this);
11265 start_symtab ("", NULL, 0);
11268 gdb_assert (tu_group->symtabs == NULL);
11269 gdb_assert (m_builder == nullptr);
11270 struct compunit_symtab *cust = tu_group->compunit_symtab;
11271 m_builder.reset (new struct buildsym_compunit
11272 (COMPUNIT_OBJFILE (cust), "",
11273 COMPUNIT_DIRNAME (cust),
11274 compunit_language (cust),
11280 line_header = lh.release ();
11281 line_header_die_owner = die;
11285 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11287 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11288 still initializing it, and our caller (a few levels up)
11289 process_full_type_unit still needs to know if this is the first
11292 tu_group->num_symtabs = line_header->file_names_size ();
11293 tu_group->symtabs = XNEWVEC (struct symtab *,
11294 line_header->file_names_size ());
11296 auto &file_names = line_header->file_names ();
11297 for (i = 0; i < file_names.size (); ++i)
11299 file_entry &fe = file_names[i];
11300 dwarf2_start_subfile (this, fe.name,
11301 fe.include_dir (line_header));
11302 buildsym_compunit *b = get_builder ();
11303 if (b->get_current_subfile ()->symtab == NULL)
11305 /* NOTE: start_subfile will recognize when it's been
11306 passed a file it has already seen. So we can't
11307 assume there's a simple mapping from
11308 cu->line_header->file_names to subfiles, plus
11309 cu->line_header->file_names may contain dups. */
11310 b->get_current_subfile ()->symtab
11311 = allocate_symtab (cust, b->get_current_subfile ()->name);
11314 fe.symtab = b->get_current_subfile ()->symtab;
11315 tu_group->symtabs[i] = fe.symtab;
11320 gdb_assert (m_builder == nullptr);
11321 struct compunit_symtab *cust = tu_group->compunit_symtab;
11322 m_builder.reset (new struct buildsym_compunit
11323 (COMPUNIT_OBJFILE (cust), "",
11324 COMPUNIT_DIRNAME (cust),
11325 compunit_language (cust),
11328 auto &file_names = line_header->file_names ();
11329 for (i = 0; i < file_names.size (); ++i)
11331 file_entry &fe = file_names[i];
11332 fe.symtab = tu_group->symtabs[i];
11336 /* The main symtab is allocated last. Type units don't have DW_AT_name
11337 so they don't have a "real" (so to speak) symtab anyway.
11338 There is later code that will assign the main symtab to all symbols
11339 that don't have one. We need to handle the case of a symbol with a
11340 missing symtab (DW_AT_decl_file) anyway. */
11343 /* Process DW_TAG_type_unit.
11344 For TUs we want to skip the first top level sibling if it's not the
11345 actual type being defined by this TU. In this case the first top
11346 level sibling is there to provide context only. */
11349 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11351 struct die_info *child_die;
11353 prepare_one_comp_unit (cu, die, language_minimal);
11355 /* Initialize (or reinitialize) the machinery for building symtabs.
11356 We do this before processing child DIEs, so that the line header table
11357 is available for DW_AT_decl_file. */
11358 cu->setup_type_unit_groups (die);
11360 if (die->child != NULL)
11362 child_die = die->child;
11363 while (child_die && child_die->tag)
11365 process_die (child_die, cu);
11366 child_die = sibling_die (child_die);
11373 http://gcc.gnu.org/wiki/DebugFission
11374 http://gcc.gnu.org/wiki/DebugFissionDWP
11376 To simplify handling of both DWO files ("object" files with the DWARF info)
11377 and DWP files (a file with the DWOs packaged up into one file), we treat
11378 DWP files as having a collection of virtual DWO files. */
11381 hash_dwo_file (const void *item)
11383 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11386 hash = htab_hash_string (dwo_file->dwo_name);
11387 if (dwo_file->comp_dir != NULL)
11388 hash += htab_hash_string (dwo_file->comp_dir);
11393 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11395 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11396 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11398 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11400 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11401 return lhs->comp_dir == rhs->comp_dir;
11402 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11405 /* Allocate a hash table for DWO files. */
11408 allocate_dwo_file_hash_table (struct objfile *objfile)
11410 auto delete_dwo_file = [] (void *item)
11412 struct dwo_file *dwo_file = (struct dwo_file *) item;
11417 return htab_up (htab_create_alloc (41,
11424 /* Lookup DWO file DWO_NAME. */
11427 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11428 const char *dwo_name,
11429 const char *comp_dir)
11431 struct dwo_file find_entry;
11434 if (dwarf2_per_objfile->dwo_files == NULL)
11435 dwarf2_per_objfile->dwo_files
11436 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11438 find_entry.dwo_name = dwo_name;
11439 find_entry.comp_dir = comp_dir;
11440 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11447 hash_dwo_unit (const void *item)
11449 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11451 /* This drops the top 32 bits of the id, but is ok for a hash. */
11452 return dwo_unit->signature;
11456 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11458 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11459 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11461 /* The signature is assumed to be unique within the DWO file.
11462 So while object file CU dwo_id's always have the value zero,
11463 that's OK, assuming each object file DWO file has only one CU,
11464 and that's the rule for now. */
11465 return lhs->signature == rhs->signature;
11468 /* Allocate a hash table for DWO CUs,TUs.
11469 There is one of these tables for each of CUs,TUs for each DWO file. */
11472 allocate_dwo_unit_table (struct objfile *objfile)
11474 /* Start out with a pretty small number.
11475 Generally DWO files contain only one CU and maybe some TUs. */
11476 return htab_up (htab_create_alloc (3,
11479 NULL, xcalloc, xfree));
11482 /* die_reader_func for create_dwo_cu. */
11485 create_dwo_cu_reader (const struct die_reader_specs *reader,
11486 const gdb_byte *info_ptr,
11487 struct die_info *comp_unit_die,
11488 struct dwo_file *dwo_file,
11489 struct dwo_unit *dwo_unit)
11491 struct dwarf2_cu *cu = reader->cu;
11492 sect_offset sect_off = cu->per_cu->sect_off;
11493 struct dwarf2_section_info *section = cu->per_cu->section;
11495 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11496 if (!signature.has_value ())
11498 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11499 " its dwo_id [in module %s]"),
11500 sect_offset_str (sect_off), dwo_file->dwo_name);
11504 dwo_unit->dwo_file = dwo_file;
11505 dwo_unit->signature = *signature;
11506 dwo_unit->section = section;
11507 dwo_unit->sect_off = sect_off;
11508 dwo_unit->length = cu->per_cu->length;
11510 if (dwarf_read_debug)
11511 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11512 sect_offset_str (sect_off),
11513 hex_string (dwo_unit->signature));
11516 /* Create the dwo_units for the CUs in a DWO_FILE.
11517 Note: This function processes DWO files only, not DWP files. */
11520 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11521 dwarf2_cu *cu, struct dwo_file &dwo_file,
11522 dwarf2_section_info §ion, htab_up &cus_htab)
11524 struct objfile *objfile = dwarf2_per_objfile->objfile;
11525 const gdb_byte *info_ptr, *end_ptr;
11527 section.read (objfile);
11528 info_ptr = section.buffer;
11530 if (info_ptr == NULL)
11533 if (dwarf_read_debug)
11535 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11536 section.get_name (),
11537 section.get_file_name ());
11540 end_ptr = info_ptr + section.size;
11541 while (info_ptr < end_ptr)
11543 struct dwarf2_per_cu_data per_cu;
11544 struct dwo_unit read_unit {};
11545 struct dwo_unit *dwo_unit;
11547 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11549 memset (&per_cu, 0, sizeof (per_cu));
11550 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11551 per_cu.is_debug_types = 0;
11552 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11553 per_cu.section = §ion;
11555 cutu_reader reader (&per_cu, cu, &dwo_file);
11556 if (!reader.dummy_p)
11557 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11558 &dwo_file, &read_unit);
11559 info_ptr += per_cu.length;
11561 // If the unit could not be parsed, skip it.
11562 if (read_unit.dwo_file == NULL)
11565 if (cus_htab == NULL)
11566 cus_htab = allocate_dwo_unit_table (objfile);
11568 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11569 *dwo_unit = read_unit;
11570 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11571 gdb_assert (slot != NULL);
11574 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11575 sect_offset dup_sect_off = dup_cu->sect_off;
11577 complaint (_("debug cu entry at offset %s is duplicate to"
11578 " the entry at offset %s, signature %s"),
11579 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11580 hex_string (dwo_unit->signature));
11582 *slot = (void *)dwo_unit;
11586 /* DWP file .debug_{cu,tu}_index section format:
11587 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11591 Both index sections have the same format, and serve to map a 64-bit
11592 signature to a set of section numbers. Each section begins with a header,
11593 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11594 indexes, and a pool of 32-bit section numbers. The index sections will be
11595 aligned at 8-byte boundaries in the file.
11597 The index section header consists of:
11599 V, 32 bit version number
11601 N, 32 bit number of compilation units or type units in the index
11602 M, 32 bit number of slots in the hash table
11604 Numbers are recorded using the byte order of the application binary.
11606 The hash table begins at offset 16 in the section, and consists of an array
11607 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11608 order of the application binary). Unused slots in the hash table are 0.
11609 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11611 The parallel table begins immediately after the hash table
11612 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11613 array of 32-bit indexes (using the byte order of the application binary),
11614 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11615 table contains a 32-bit index into the pool of section numbers. For unused
11616 hash table slots, the corresponding entry in the parallel table will be 0.
11618 The pool of section numbers begins immediately following the hash table
11619 (at offset 16 + 12 * M from the beginning of the section). The pool of
11620 section numbers consists of an array of 32-bit words (using the byte order
11621 of the application binary). Each item in the array is indexed starting
11622 from 0. The hash table entry provides the index of the first section
11623 number in the set. Additional section numbers in the set follow, and the
11624 set is terminated by a 0 entry (section number 0 is not used in ELF).
11626 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11627 section must be the first entry in the set, and the .debug_abbrev.dwo must
11628 be the second entry. Other members of the set may follow in any order.
11634 DWP Version 2 combines all the .debug_info, etc. sections into one,
11635 and the entries in the index tables are now offsets into these sections.
11636 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11639 Index Section Contents:
11641 Hash Table of Signatures dwp_hash_table.hash_table
11642 Parallel Table of Indices dwp_hash_table.unit_table
11643 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11644 Table of Section Sizes dwp_hash_table.v2.sizes
11646 The index section header consists of:
11648 V, 32 bit version number
11649 L, 32 bit number of columns in the table of section offsets
11650 N, 32 bit number of compilation units or type units in the index
11651 M, 32 bit number of slots in the hash table
11653 Numbers are recorded using the byte order of the application binary.
11655 The hash table has the same format as version 1.
11656 The parallel table of indices has the same format as version 1,
11657 except that the entries are origin-1 indices into the table of sections
11658 offsets and the table of section sizes.
11660 The table of offsets begins immediately following the parallel table
11661 (at offset 16 + 12 * M from the beginning of the section). The table is
11662 a two-dimensional array of 32-bit words (using the byte order of the
11663 application binary), with L columns and N+1 rows, in row-major order.
11664 Each row in the array is indexed starting from 0. The first row provides
11665 a key to the remaining rows: each column in this row provides an identifier
11666 for a debug section, and the offsets in the same column of subsequent rows
11667 refer to that section. The section identifiers are:
11669 DW_SECT_INFO 1 .debug_info.dwo
11670 DW_SECT_TYPES 2 .debug_types.dwo
11671 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11672 DW_SECT_LINE 4 .debug_line.dwo
11673 DW_SECT_LOC 5 .debug_loc.dwo
11674 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11675 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11676 DW_SECT_MACRO 8 .debug_macro.dwo
11678 The offsets provided by the CU and TU index sections are the base offsets
11679 for the contributions made by each CU or TU to the corresponding section
11680 in the package file. Each CU and TU header contains an abbrev_offset
11681 field, used to find the abbreviations table for that CU or TU within the
11682 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11683 be interpreted as relative to the base offset given in the index section.
11684 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11685 should be interpreted as relative to the base offset for .debug_line.dwo,
11686 and offsets into other debug sections obtained from DWARF attributes should
11687 also be interpreted as relative to the corresponding base offset.
11689 The table of sizes begins immediately following the table of offsets.
11690 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11691 with L columns and N rows, in row-major order. Each row in the array is
11692 indexed starting from 1 (row 0 is shared by the two tables).
11696 Hash table lookup is handled the same in version 1 and 2:
11698 We assume that N and M will not exceed 2^32 - 1.
11699 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11701 Given a 64-bit compilation unit signature or a type signature S, an entry
11702 in the hash table is located as follows:
11704 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11705 the low-order k bits all set to 1.
11707 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11709 3) If the hash table entry at index H matches the signature, use that
11710 entry. If the hash table entry at index H is unused (all zeroes),
11711 terminate the search: the signature is not present in the table.
11713 4) Let H = (H + H') modulo M. Repeat at Step 3.
11715 Because M > N and H' and M are relatively prime, the search is guaranteed
11716 to stop at an unused slot or find the match. */
11718 /* Create a hash table to map DWO IDs to their CU/TU entry in
11719 .debug_{info,types}.dwo in DWP_FILE.
11720 Returns NULL if there isn't one.
11721 Note: This function processes DWP files only, not DWO files. */
11723 static struct dwp_hash_table *
11724 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11725 struct dwp_file *dwp_file, int is_debug_types)
11727 struct objfile *objfile = dwarf2_per_objfile->objfile;
11728 bfd *dbfd = dwp_file->dbfd.get ();
11729 const gdb_byte *index_ptr, *index_end;
11730 struct dwarf2_section_info *index;
11731 uint32_t version, nr_columns, nr_units, nr_slots;
11732 struct dwp_hash_table *htab;
11734 if (is_debug_types)
11735 index = &dwp_file->sections.tu_index;
11737 index = &dwp_file->sections.cu_index;
11739 if (index->empty ())
11741 index->read (objfile);
11743 index_ptr = index->buffer;
11744 index_end = index_ptr + index->size;
11746 version = read_4_bytes (dbfd, index_ptr);
11749 nr_columns = read_4_bytes (dbfd, index_ptr);
11753 nr_units = read_4_bytes (dbfd, index_ptr);
11755 nr_slots = read_4_bytes (dbfd, index_ptr);
11758 if (version != 1 && version != 2)
11760 error (_("Dwarf Error: unsupported DWP file version (%s)"
11761 " [in module %s]"),
11762 pulongest (version), dwp_file->name);
11764 if (nr_slots != (nr_slots & -nr_slots))
11766 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11767 " is not power of 2 [in module %s]"),
11768 pulongest (nr_slots), dwp_file->name);
11771 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11772 htab->version = version;
11773 htab->nr_columns = nr_columns;
11774 htab->nr_units = nr_units;
11775 htab->nr_slots = nr_slots;
11776 htab->hash_table = index_ptr;
11777 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11779 /* Exit early if the table is empty. */
11780 if (nr_slots == 0 || nr_units == 0
11781 || (version == 2 && nr_columns == 0))
11783 /* All must be zero. */
11784 if (nr_slots != 0 || nr_units != 0
11785 || (version == 2 && nr_columns != 0))
11787 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11788 " all zero [in modules %s]"),
11796 htab->section_pool.v1.indices =
11797 htab->unit_table + sizeof (uint32_t) * nr_slots;
11798 /* It's harder to decide whether the section is too small in v1.
11799 V1 is deprecated anyway so we punt. */
11803 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11804 int *ids = htab->section_pool.v2.section_ids;
11805 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11806 /* Reverse map for error checking. */
11807 int ids_seen[DW_SECT_MAX + 1];
11810 if (nr_columns < 2)
11812 error (_("Dwarf Error: bad DWP hash table, too few columns"
11813 " in section table [in module %s]"),
11816 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11818 error (_("Dwarf Error: bad DWP hash table, too many columns"
11819 " in section table [in module %s]"),
11822 memset (ids, 255, sizeof_ids);
11823 memset (ids_seen, 255, sizeof (ids_seen));
11824 for (i = 0; i < nr_columns; ++i)
11826 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11828 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11830 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11831 " in section table [in module %s]"),
11832 id, dwp_file->name);
11834 if (ids_seen[id] != -1)
11836 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11837 " id %d in section table [in module %s]"),
11838 id, dwp_file->name);
11843 /* Must have exactly one info or types section. */
11844 if (((ids_seen[DW_SECT_INFO] != -1)
11845 + (ids_seen[DW_SECT_TYPES] != -1))
11848 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11849 " DWO info/types section [in module %s]"),
11852 /* Must have an abbrev section. */
11853 if (ids_seen[DW_SECT_ABBREV] == -1)
11855 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11856 " section [in module %s]"),
11859 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11860 htab->section_pool.v2.sizes =
11861 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11862 * nr_units * nr_columns);
11863 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11864 * nr_units * nr_columns))
11867 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11868 " [in module %s]"),
11876 /* Update SECTIONS with the data from SECTP.
11878 This function is like the other "locate" section routines that are
11879 passed to bfd_map_over_sections, but in this context the sections to
11880 read comes from the DWP V1 hash table, not the full ELF section table.
11882 The result is non-zero for success, or zero if an error was found. */
11885 locate_v1_virtual_dwo_sections (asection *sectp,
11886 struct virtual_v1_dwo_sections *sections)
11888 const struct dwop_section_names *names = &dwop_section_names;
11890 if (section_is_p (sectp->name, &names->abbrev_dwo))
11892 /* There can be only one. */
11893 if (sections->abbrev.s.section != NULL)
11895 sections->abbrev.s.section = sectp;
11896 sections->abbrev.size = bfd_section_size (sectp);
11898 else if (section_is_p (sectp->name, &names->info_dwo)
11899 || section_is_p (sectp->name, &names->types_dwo))
11901 /* There can be only one. */
11902 if (sections->info_or_types.s.section != NULL)
11904 sections->info_or_types.s.section = sectp;
11905 sections->info_or_types.size = bfd_section_size (sectp);
11907 else if (section_is_p (sectp->name, &names->line_dwo))
11909 /* There can be only one. */
11910 if (sections->line.s.section != NULL)
11912 sections->line.s.section = sectp;
11913 sections->line.size = bfd_section_size (sectp);
11915 else if (section_is_p (sectp->name, &names->loc_dwo))
11917 /* There can be only one. */
11918 if (sections->loc.s.section != NULL)
11920 sections->loc.s.section = sectp;
11921 sections->loc.size = bfd_section_size (sectp);
11923 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11925 /* There can be only one. */
11926 if (sections->macinfo.s.section != NULL)
11928 sections->macinfo.s.section = sectp;
11929 sections->macinfo.size = bfd_section_size (sectp);
11931 else if (section_is_p (sectp->name, &names->macro_dwo))
11933 /* There can be only one. */
11934 if (sections->macro.s.section != NULL)
11936 sections->macro.s.section = sectp;
11937 sections->macro.size = bfd_section_size (sectp);
11939 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11941 /* There can be only one. */
11942 if (sections->str_offsets.s.section != NULL)
11944 sections->str_offsets.s.section = sectp;
11945 sections->str_offsets.size = bfd_section_size (sectp);
11949 /* No other kind of section is valid. */
11956 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11957 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11958 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11959 This is for DWP version 1 files. */
11961 static struct dwo_unit *
11962 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11963 struct dwp_file *dwp_file,
11964 uint32_t unit_index,
11965 const char *comp_dir,
11966 ULONGEST signature, int is_debug_types)
11968 struct objfile *objfile = dwarf2_per_objfile->objfile;
11969 const struct dwp_hash_table *dwp_htab =
11970 is_debug_types ? dwp_file->tus : dwp_file->cus;
11971 bfd *dbfd = dwp_file->dbfd.get ();
11972 const char *kind = is_debug_types ? "TU" : "CU";
11973 struct dwo_file *dwo_file;
11974 struct dwo_unit *dwo_unit;
11975 struct virtual_v1_dwo_sections sections;
11976 void **dwo_file_slot;
11979 gdb_assert (dwp_file->version == 1);
11981 if (dwarf_read_debug)
11983 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11985 pulongest (unit_index), hex_string (signature),
11989 /* Fetch the sections of this DWO unit.
11990 Put a limit on the number of sections we look for so that bad data
11991 doesn't cause us to loop forever. */
11993 #define MAX_NR_V1_DWO_SECTIONS \
11994 (1 /* .debug_info or .debug_types */ \
11995 + 1 /* .debug_abbrev */ \
11996 + 1 /* .debug_line */ \
11997 + 1 /* .debug_loc */ \
11998 + 1 /* .debug_str_offsets */ \
11999 + 1 /* .debug_macro or .debug_macinfo */ \
12000 + 1 /* trailing zero */)
12002 memset (§ions, 0, sizeof (sections));
12004 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12007 uint32_t section_nr =
12008 read_4_bytes (dbfd,
12009 dwp_htab->section_pool.v1.indices
12010 + (unit_index + i) * sizeof (uint32_t));
12012 if (section_nr == 0)
12014 if (section_nr >= dwp_file->num_sections)
12016 error (_("Dwarf Error: bad DWP hash table, section number too large"
12017 " [in module %s]"),
12021 sectp = dwp_file->elf_sections[section_nr];
12022 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12024 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12025 " [in module %s]"),
12031 || sections.info_or_types.empty ()
12032 || sections.abbrev.empty ())
12034 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12035 " [in module %s]"),
12038 if (i == MAX_NR_V1_DWO_SECTIONS)
12040 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12041 " [in module %s]"),
12045 /* It's easier for the rest of the code if we fake a struct dwo_file and
12046 have dwo_unit "live" in that. At least for now.
12048 The DWP file can be made up of a random collection of CUs and TUs.
12049 However, for each CU + set of TUs that came from the same original DWO
12050 file, we can combine them back into a virtual DWO file to save space
12051 (fewer struct dwo_file objects to allocate). Remember that for really
12052 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12054 std::string virtual_dwo_name =
12055 string_printf ("virtual-dwo/%d-%d-%d-%d",
12056 sections.abbrev.get_id (),
12057 sections.line.get_id (),
12058 sections.loc.get_id (),
12059 sections.str_offsets.get_id ());
12060 /* Can we use an existing virtual DWO file? */
12061 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12062 virtual_dwo_name.c_str (),
12064 /* Create one if necessary. */
12065 if (*dwo_file_slot == NULL)
12067 if (dwarf_read_debug)
12069 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12070 virtual_dwo_name.c_str ());
12072 dwo_file = new struct dwo_file;
12073 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12075 dwo_file->comp_dir = comp_dir;
12076 dwo_file->sections.abbrev = sections.abbrev;
12077 dwo_file->sections.line = sections.line;
12078 dwo_file->sections.loc = sections.loc;
12079 dwo_file->sections.macinfo = sections.macinfo;
12080 dwo_file->sections.macro = sections.macro;
12081 dwo_file->sections.str_offsets = sections.str_offsets;
12082 /* The "str" section is global to the entire DWP file. */
12083 dwo_file->sections.str = dwp_file->sections.str;
12084 /* The info or types section is assigned below to dwo_unit,
12085 there's no need to record it in dwo_file.
12086 Also, we can't simply record type sections in dwo_file because
12087 we record a pointer into the vector in dwo_unit. As we collect more
12088 types we'll grow the vector and eventually have to reallocate space
12089 for it, invalidating all copies of pointers into the previous
12091 *dwo_file_slot = dwo_file;
12095 if (dwarf_read_debug)
12097 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12098 virtual_dwo_name.c_str ());
12100 dwo_file = (struct dwo_file *) *dwo_file_slot;
12103 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12104 dwo_unit->dwo_file = dwo_file;
12105 dwo_unit->signature = signature;
12106 dwo_unit->section =
12107 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12108 *dwo_unit->section = sections.info_or_types;
12109 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12114 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12115 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12116 piece within that section used by a TU/CU, return a virtual section
12117 of just that piece. */
12119 static struct dwarf2_section_info
12120 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12121 struct dwarf2_section_info *section,
12122 bfd_size_type offset, bfd_size_type size)
12124 struct dwarf2_section_info result;
12127 gdb_assert (section != NULL);
12128 gdb_assert (!section->is_virtual);
12130 memset (&result, 0, sizeof (result));
12131 result.s.containing_section = section;
12132 result.is_virtual = true;
12137 sectp = section->get_bfd_section ();
12139 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12140 bounds of the real section. This is a pretty-rare event, so just
12141 flag an error (easier) instead of a warning and trying to cope. */
12143 || offset + size > bfd_section_size (sectp))
12145 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12146 " in section %s [in module %s]"),
12147 sectp ? bfd_section_name (sectp) : "<unknown>",
12148 objfile_name (dwarf2_per_objfile->objfile));
12151 result.virtual_offset = offset;
12152 result.size = size;
12156 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12157 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12158 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12159 This is for DWP version 2 files. */
12161 static struct dwo_unit *
12162 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12163 struct dwp_file *dwp_file,
12164 uint32_t unit_index,
12165 const char *comp_dir,
12166 ULONGEST signature, int is_debug_types)
12168 struct objfile *objfile = dwarf2_per_objfile->objfile;
12169 const struct dwp_hash_table *dwp_htab =
12170 is_debug_types ? dwp_file->tus : dwp_file->cus;
12171 bfd *dbfd = dwp_file->dbfd.get ();
12172 const char *kind = is_debug_types ? "TU" : "CU";
12173 struct dwo_file *dwo_file;
12174 struct dwo_unit *dwo_unit;
12175 struct virtual_v2_dwo_sections sections;
12176 void **dwo_file_slot;
12179 gdb_assert (dwp_file->version == 2);
12181 if (dwarf_read_debug)
12183 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12185 pulongest (unit_index), hex_string (signature),
12189 /* Fetch the section offsets of this DWO unit. */
12191 memset (§ions, 0, sizeof (sections));
12193 for (i = 0; i < dwp_htab->nr_columns; ++i)
12195 uint32_t offset = read_4_bytes (dbfd,
12196 dwp_htab->section_pool.v2.offsets
12197 + (((unit_index - 1) * dwp_htab->nr_columns
12199 * sizeof (uint32_t)));
12200 uint32_t size = read_4_bytes (dbfd,
12201 dwp_htab->section_pool.v2.sizes
12202 + (((unit_index - 1) * dwp_htab->nr_columns
12204 * sizeof (uint32_t)));
12206 switch (dwp_htab->section_pool.v2.section_ids[i])
12209 case DW_SECT_TYPES:
12210 sections.info_or_types_offset = offset;
12211 sections.info_or_types_size = size;
12213 case DW_SECT_ABBREV:
12214 sections.abbrev_offset = offset;
12215 sections.abbrev_size = size;
12218 sections.line_offset = offset;
12219 sections.line_size = size;
12222 sections.loc_offset = offset;
12223 sections.loc_size = size;
12225 case DW_SECT_STR_OFFSETS:
12226 sections.str_offsets_offset = offset;
12227 sections.str_offsets_size = size;
12229 case DW_SECT_MACINFO:
12230 sections.macinfo_offset = offset;
12231 sections.macinfo_size = size;
12233 case DW_SECT_MACRO:
12234 sections.macro_offset = offset;
12235 sections.macro_size = size;
12240 /* It's easier for the rest of the code if we fake a struct dwo_file and
12241 have dwo_unit "live" in that. At least for now.
12243 The DWP file can be made up of a random collection of CUs and TUs.
12244 However, for each CU + set of TUs that came from the same original DWO
12245 file, we can combine them back into a virtual DWO file to save space
12246 (fewer struct dwo_file objects to allocate). Remember that for really
12247 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12249 std::string virtual_dwo_name =
12250 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12251 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12252 (long) (sections.line_size ? sections.line_offset : 0),
12253 (long) (sections.loc_size ? sections.loc_offset : 0),
12254 (long) (sections.str_offsets_size
12255 ? sections.str_offsets_offset : 0));
12256 /* Can we use an existing virtual DWO file? */
12257 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12258 virtual_dwo_name.c_str (),
12260 /* Create one if necessary. */
12261 if (*dwo_file_slot == NULL)
12263 if (dwarf_read_debug)
12265 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12266 virtual_dwo_name.c_str ());
12268 dwo_file = new struct dwo_file;
12269 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12271 dwo_file->comp_dir = comp_dir;
12272 dwo_file->sections.abbrev =
12273 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12274 sections.abbrev_offset, sections.abbrev_size);
12275 dwo_file->sections.line =
12276 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12277 sections.line_offset, sections.line_size);
12278 dwo_file->sections.loc =
12279 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12280 sections.loc_offset, sections.loc_size);
12281 dwo_file->sections.macinfo =
12282 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12283 sections.macinfo_offset, sections.macinfo_size);
12284 dwo_file->sections.macro =
12285 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12286 sections.macro_offset, sections.macro_size);
12287 dwo_file->sections.str_offsets =
12288 create_dwp_v2_section (dwarf2_per_objfile,
12289 &dwp_file->sections.str_offsets,
12290 sections.str_offsets_offset,
12291 sections.str_offsets_size);
12292 /* The "str" section is global to the entire DWP file. */
12293 dwo_file->sections.str = dwp_file->sections.str;
12294 /* The info or types section is assigned below to dwo_unit,
12295 there's no need to record it in dwo_file.
12296 Also, we can't simply record type sections in dwo_file because
12297 we record a pointer into the vector in dwo_unit. As we collect more
12298 types we'll grow the vector and eventually have to reallocate space
12299 for it, invalidating all copies of pointers into the previous
12301 *dwo_file_slot = dwo_file;
12305 if (dwarf_read_debug)
12307 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12308 virtual_dwo_name.c_str ());
12310 dwo_file = (struct dwo_file *) *dwo_file_slot;
12313 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12314 dwo_unit->dwo_file = dwo_file;
12315 dwo_unit->signature = signature;
12316 dwo_unit->section =
12317 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12318 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12320 ? &dwp_file->sections.types
12321 : &dwp_file->sections.info,
12322 sections.info_or_types_offset,
12323 sections.info_or_types_size);
12324 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12329 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12330 Returns NULL if the signature isn't found. */
12332 static struct dwo_unit *
12333 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12334 struct dwp_file *dwp_file, const char *comp_dir,
12335 ULONGEST signature, int is_debug_types)
12337 const struct dwp_hash_table *dwp_htab =
12338 is_debug_types ? dwp_file->tus : dwp_file->cus;
12339 bfd *dbfd = dwp_file->dbfd.get ();
12340 uint32_t mask = dwp_htab->nr_slots - 1;
12341 uint32_t hash = signature & mask;
12342 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12345 struct dwo_unit find_dwo_cu;
12347 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12348 find_dwo_cu.signature = signature;
12349 slot = htab_find_slot (is_debug_types
12350 ? dwp_file->loaded_tus.get ()
12351 : dwp_file->loaded_cus.get (),
12352 &find_dwo_cu, INSERT);
12355 return (struct dwo_unit *) *slot;
12357 /* Use a for loop so that we don't loop forever on bad debug info. */
12358 for (i = 0; i < dwp_htab->nr_slots; ++i)
12360 ULONGEST signature_in_table;
12362 signature_in_table =
12363 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12364 if (signature_in_table == signature)
12366 uint32_t unit_index =
12367 read_4_bytes (dbfd,
12368 dwp_htab->unit_table + hash * sizeof (uint32_t));
12370 if (dwp_file->version == 1)
12372 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12373 dwp_file, unit_index,
12374 comp_dir, signature,
12379 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12380 dwp_file, unit_index,
12381 comp_dir, signature,
12384 return (struct dwo_unit *) *slot;
12386 if (signature_in_table == 0)
12388 hash = (hash + hash2) & mask;
12391 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12392 " [in module %s]"),
12396 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12397 Open the file specified by FILE_NAME and hand it off to BFD for
12398 preliminary analysis. Return a newly initialized bfd *, which
12399 includes a canonicalized copy of FILE_NAME.
12400 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12401 SEARCH_CWD is true if the current directory is to be searched.
12402 It will be searched before debug-file-directory.
12403 If successful, the file is added to the bfd include table of the
12404 objfile's bfd (see gdb_bfd_record_inclusion).
12405 If unable to find/open the file, return NULL.
12406 NOTE: This function is derived from symfile_bfd_open. */
12408 static gdb_bfd_ref_ptr
12409 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12410 const char *file_name, int is_dwp, int search_cwd)
12413 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12414 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12415 to debug_file_directory. */
12416 const char *search_path;
12417 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12419 gdb::unique_xmalloc_ptr<char> search_path_holder;
12422 if (*debug_file_directory != '\0')
12424 search_path_holder.reset (concat (".", dirname_separator_string,
12425 debug_file_directory,
12427 search_path = search_path_holder.get ();
12433 search_path = debug_file_directory;
12435 openp_flags flags = OPF_RETURN_REALPATH;
12437 flags |= OPF_SEARCH_IN_PATH;
12439 gdb::unique_xmalloc_ptr<char> absolute_name;
12440 desc = openp (search_path, flags, file_name,
12441 O_RDONLY | O_BINARY, &absolute_name);
12445 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12447 if (sym_bfd == NULL)
12449 bfd_set_cacheable (sym_bfd.get (), 1);
12451 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12454 /* Success. Record the bfd as having been included by the objfile's bfd.
12455 This is important because things like demangled_names_hash lives in the
12456 objfile's per_bfd space and may have references to things like symbol
12457 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12463 /* Try to open DWO file FILE_NAME.
12464 COMP_DIR is the DW_AT_comp_dir attribute.
12465 The result is the bfd handle of the file.
12466 If there is a problem finding or opening the file, return NULL.
12467 Upon success, the canonicalized path of the file is stored in the bfd,
12468 same as symfile_bfd_open. */
12470 static gdb_bfd_ref_ptr
12471 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12472 const char *file_name, const char *comp_dir)
12474 if (IS_ABSOLUTE_PATH (file_name))
12475 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12476 0 /*is_dwp*/, 0 /*search_cwd*/);
12478 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12480 if (comp_dir != NULL)
12482 gdb::unique_xmalloc_ptr<char> path_to_try
12483 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12485 /* NOTE: If comp_dir is a relative path, this will also try the
12486 search path, which seems useful. */
12487 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12488 path_to_try.get (),
12490 1 /*search_cwd*/));
12495 /* That didn't work, try debug-file-directory, which, despite its name,
12496 is a list of paths. */
12498 if (*debug_file_directory == '\0')
12501 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12502 0 /*is_dwp*/, 1 /*search_cwd*/);
12505 /* This function is mapped across the sections and remembers the offset and
12506 size of each of the DWO debugging sections we are interested in. */
12509 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12511 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12512 const struct dwop_section_names *names = &dwop_section_names;
12514 if (section_is_p (sectp->name, &names->abbrev_dwo))
12516 dwo_sections->abbrev.s.section = sectp;
12517 dwo_sections->abbrev.size = bfd_section_size (sectp);
12519 else if (section_is_p (sectp->name, &names->info_dwo))
12521 dwo_sections->info.s.section = sectp;
12522 dwo_sections->info.size = bfd_section_size (sectp);
12524 else if (section_is_p (sectp->name, &names->line_dwo))
12526 dwo_sections->line.s.section = sectp;
12527 dwo_sections->line.size = bfd_section_size (sectp);
12529 else if (section_is_p (sectp->name, &names->loc_dwo))
12531 dwo_sections->loc.s.section = sectp;
12532 dwo_sections->loc.size = bfd_section_size (sectp);
12534 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12536 dwo_sections->macinfo.s.section = sectp;
12537 dwo_sections->macinfo.size = bfd_section_size (sectp);
12539 else if (section_is_p (sectp->name, &names->macro_dwo))
12541 dwo_sections->macro.s.section = sectp;
12542 dwo_sections->macro.size = bfd_section_size (sectp);
12544 else if (section_is_p (sectp->name, &names->str_dwo))
12546 dwo_sections->str.s.section = sectp;
12547 dwo_sections->str.size = bfd_section_size (sectp);
12549 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12551 dwo_sections->str_offsets.s.section = sectp;
12552 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12554 else if (section_is_p (sectp->name, &names->types_dwo))
12556 struct dwarf2_section_info type_section;
12558 memset (&type_section, 0, sizeof (type_section));
12559 type_section.s.section = sectp;
12560 type_section.size = bfd_section_size (sectp);
12561 dwo_sections->types.push_back (type_section);
12565 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12566 by PER_CU. This is for the non-DWP case.
12567 The result is NULL if DWO_NAME can't be found. */
12569 static struct dwo_file *
12570 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12571 const char *dwo_name, const char *comp_dir)
12573 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12575 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12578 if (dwarf_read_debug)
12579 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12583 dwo_file_up dwo_file (new struct dwo_file);
12584 dwo_file->dwo_name = dwo_name;
12585 dwo_file->comp_dir = comp_dir;
12586 dwo_file->dbfd = std::move (dbfd);
12588 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12589 &dwo_file->sections);
12591 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12592 dwo_file->sections.info, dwo_file->cus);
12594 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12595 dwo_file->sections.types, dwo_file->tus);
12597 if (dwarf_read_debug)
12598 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12600 return dwo_file.release ();
12603 /* This function is mapped across the sections and remembers the offset and
12604 size of each of the DWP debugging sections common to version 1 and 2 that
12605 we are interested in. */
12608 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12609 void *dwp_file_ptr)
12611 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12612 const struct dwop_section_names *names = &dwop_section_names;
12613 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12615 /* Record the ELF section number for later lookup: this is what the
12616 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12617 gdb_assert (elf_section_nr < dwp_file->num_sections);
12618 dwp_file->elf_sections[elf_section_nr] = sectp;
12620 /* Look for specific sections that we need. */
12621 if (section_is_p (sectp->name, &names->str_dwo))
12623 dwp_file->sections.str.s.section = sectp;
12624 dwp_file->sections.str.size = bfd_section_size (sectp);
12626 else if (section_is_p (sectp->name, &names->cu_index))
12628 dwp_file->sections.cu_index.s.section = sectp;
12629 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12631 else if (section_is_p (sectp->name, &names->tu_index))
12633 dwp_file->sections.tu_index.s.section = sectp;
12634 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12638 /* This function is mapped across the sections and remembers the offset and
12639 size of each of the DWP version 2 debugging sections that we are interested
12640 in. This is split into a separate function because we don't know if we
12641 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12644 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12646 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12647 const struct dwop_section_names *names = &dwop_section_names;
12648 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12650 /* Record the ELF section number for later lookup: this is what the
12651 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12652 gdb_assert (elf_section_nr < dwp_file->num_sections);
12653 dwp_file->elf_sections[elf_section_nr] = sectp;
12655 /* Look for specific sections that we need. */
12656 if (section_is_p (sectp->name, &names->abbrev_dwo))
12658 dwp_file->sections.abbrev.s.section = sectp;
12659 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12661 else if (section_is_p (sectp->name, &names->info_dwo))
12663 dwp_file->sections.info.s.section = sectp;
12664 dwp_file->sections.info.size = bfd_section_size (sectp);
12666 else if (section_is_p (sectp->name, &names->line_dwo))
12668 dwp_file->sections.line.s.section = sectp;
12669 dwp_file->sections.line.size = bfd_section_size (sectp);
12671 else if (section_is_p (sectp->name, &names->loc_dwo))
12673 dwp_file->sections.loc.s.section = sectp;
12674 dwp_file->sections.loc.size = bfd_section_size (sectp);
12676 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12678 dwp_file->sections.macinfo.s.section = sectp;
12679 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12681 else if (section_is_p (sectp->name, &names->macro_dwo))
12683 dwp_file->sections.macro.s.section = sectp;
12684 dwp_file->sections.macro.size = bfd_section_size (sectp);
12686 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12688 dwp_file->sections.str_offsets.s.section = sectp;
12689 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12691 else if (section_is_p (sectp->name, &names->types_dwo))
12693 dwp_file->sections.types.s.section = sectp;
12694 dwp_file->sections.types.size = bfd_section_size (sectp);
12698 /* Hash function for dwp_file loaded CUs/TUs. */
12701 hash_dwp_loaded_cutus (const void *item)
12703 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12705 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12706 return dwo_unit->signature;
12709 /* Equality function for dwp_file loaded CUs/TUs. */
12712 eq_dwp_loaded_cutus (const void *a, const void *b)
12714 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12715 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12717 return dua->signature == dub->signature;
12720 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12723 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
12725 return htab_up (htab_create_alloc (3,
12726 hash_dwp_loaded_cutus,
12727 eq_dwp_loaded_cutus,
12728 NULL, xcalloc, xfree));
12731 /* Try to open DWP file FILE_NAME.
12732 The result is the bfd handle of the file.
12733 If there is a problem finding or opening the file, return NULL.
12734 Upon success, the canonicalized path of the file is stored in the bfd,
12735 same as symfile_bfd_open. */
12737 static gdb_bfd_ref_ptr
12738 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12739 const char *file_name)
12741 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12743 1 /*search_cwd*/));
12747 /* Work around upstream bug 15652.
12748 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12749 [Whether that's a "bug" is debatable, but it is getting in our way.]
12750 We have no real idea where the dwp file is, because gdb's realpath-ing
12751 of the executable's path may have discarded the needed info.
12752 [IWBN if the dwp file name was recorded in the executable, akin to
12753 .gnu_debuglink, but that doesn't exist yet.]
12754 Strip the directory from FILE_NAME and search again. */
12755 if (*debug_file_directory != '\0')
12757 /* Don't implicitly search the current directory here.
12758 If the user wants to search "." to handle this case,
12759 it must be added to debug-file-directory. */
12760 return try_open_dwop_file (dwarf2_per_objfile,
12761 lbasename (file_name), 1 /*is_dwp*/,
12768 /* Initialize the use of the DWP file for the current objfile.
12769 By convention the name of the DWP file is ${objfile}.dwp.
12770 The result is NULL if it can't be found. */
12772 static std::unique_ptr<struct dwp_file>
12773 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12775 struct objfile *objfile = dwarf2_per_objfile->objfile;
12777 /* Try to find first .dwp for the binary file before any symbolic links
12780 /* If the objfile is a debug file, find the name of the real binary
12781 file and get the name of dwp file from there. */
12782 std::string dwp_name;
12783 if (objfile->separate_debug_objfile_backlink != NULL)
12785 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12786 const char *backlink_basename = lbasename (backlink->original_name);
12788 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12791 dwp_name = objfile->original_name;
12793 dwp_name += ".dwp";
12795 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12797 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12799 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12800 dwp_name = objfile_name (objfile);
12801 dwp_name += ".dwp";
12802 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12807 if (dwarf_read_debug)
12808 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12809 return std::unique_ptr<dwp_file> ();
12812 const char *name = bfd_get_filename (dbfd.get ());
12813 std::unique_ptr<struct dwp_file> dwp_file
12814 (new struct dwp_file (name, std::move (dbfd)));
12816 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12817 dwp_file->elf_sections =
12818 OBSTACK_CALLOC (&objfile->objfile_obstack,
12819 dwp_file->num_sections, asection *);
12821 bfd_map_over_sections (dwp_file->dbfd.get (),
12822 dwarf2_locate_common_dwp_sections,
12825 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12828 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12831 /* The DWP file version is stored in the hash table. Oh well. */
12832 if (dwp_file->cus && dwp_file->tus
12833 && dwp_file->cus->version != dwp_file->tus->version)
12835 /* Technically speaking, we should try to limp along, but this is
12836 pretty bizarre. We use pulongest here because that's the established
12837 portability solution (e.g, we cannot use %u for uint32_t). */
12838 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12839 " TU version %s [in DWP file %s]"),
12840 pulongest (dwp_file->cus->version),
12841 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12845 dwp_file->version = dwp_file->cus->version;
12846 else if (dwp_file->tus)
12847 dwp_file->version = dwp_file->tus->version;
12849 dwp_file->version = 2;
12851 if (dwp_file->version == 2)
12852 bfd_map_over_sections (dwp_file->dbfd.get (),
12853 dwarf2_locate_v2_dwp_sections,
12856 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
12857 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
12859 if (dwarf_read_debug)
12861 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12862 fprintf_unfiltered (gdb_stdlog,
12863 " %s CUs, %s TUs\n",
12864 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12865 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12871 /* Wrapper around open_and_init_dwp_file, only open it once. */
12873 static struct dwp_file *
12874 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12876 if (! dwarf2_per_objfile->dwp_checked)
12878 dwarf2_per_objfile->dwp_file
12879 = open_and_init_dwp_file (dwarf2_per_objfile);
12880 dwarf2_per_objfile->dwp_checked = 1;
12882 return dwarf2_per_objfile->dwp_file.get ();
12885 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12886 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12887 or in the DWP file for the objfile, referenced by THIS_UNIT.
12888 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12889 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12891 This is called, for example, when wanting to read a variable with a
12892 complex location. Therefore we don't want to do file i/o for every call.
12893 Therefore we don't want to look for a DWO file on every call.
12894 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12895 then we check if we've already seen DWO_NAME, and only THEN do we check
12898 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12899 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12901 static struct dwo_unit *
12902 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12903 const char *dwo_name, const char *comp_dir,
12904 ULONGEST signature, int is_debug_types)
12906 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12907 struct objfile *objfile = dwarf2_per_objfile->objfile;
12908 const char *kind = is_debug_types ? "TU" : "CU";
12909 void **dwo_file_slot;
12910 struct dwo_file *dwo_file;
12911 struct dwp_file *dwp_file;
12913 /* First see if there's a DWP file.
12914 If we have a DWP file but didn't find the DWO inside it, don't
12915 look for the original DWO file. It makes gdb behave differently
12916 depending on whether one is debugging in the build tree. */
12918 dwp_file = get_dwp_file (dwarf2_per_objfile);
12919 if (dwp_file != NULL)
12921 const struct dwp_hash_table *dwp_htab =
12922 is_debug_types ? dwp_file->tus : dwp_file->cus;
12924 if (dwp_htab != NULL)
12926 struct dwo_unit *dwo_cutu =
12927 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12928 signature, is_debug_types);
12930 if (dwo_cutu != NULL)
12932 if (dwarf_read_debug)
12934 fprintf_unfiltered (gdb_stdlog,
12935 "Virtual DWO %s %s found: @%s\n",
12936 kind, hex_string (signature),
12937 host_address_to_string (dwo_cutu));
12945 /* No DWP file, look for the DWO file. */
12947 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12948 dwo_name, comp_dir);
12949 if (*dwo_file_slot == NULL)
12951 /* Read in the file and build a table of the CUs/TUs it contains. */
12952 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12954 /* NOTE: This will be NULL if unable to open the file. */
12955 dwo_file = (struct dwo_file *) *dwo_file_slot;
12957 if (dwo_file != NULL)
12959 struct dwo_unit *dwo_cutu = NULL;
12961 if (is_debug_types && dwo_file->tus)
12963 struct dwo_unit find_dwo_cutu;
12965 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12966 find_dwo_cutu.signature = signature;
12968 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12971 else if (!is_debug_types && dwo_file->cus)
12973 struct dwo_unit find_dwo_cutu;
12975 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12976 find_dwo_cutu.signature = signature;
12977 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12981 if (dwo_cutu != NULL)
12983 if (dwarf_read_debug)
12985 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12986 kind, dwo_name, hex_string (signature),
12987 host_address_to_string (dwo_cutu));
12994 /* We didn't find it. This could mean a dwo_id mismatch, or
12995 someone deleted the DWO/DWP file, or the search path isn't set up
12996 correctly to find the file. */
12998 if (dwarf_read_debug)
13000 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13001 kind, dwo_name, hex_string (signature));
13004 /* This is a warning and not a complaint because it can be caused by
13005 pilot error (e.g., user accidentally deleting the DWO). */
13007 /* Print the name of the DWP file if we looked there, helps the user
13008 better diagnose the problem. */
13009 std::string dwp_text;
13011 if (dwp_file != NULL)
13012 dwp_text = string_printf (" [in DWP file %s]",
13013 lbasename (dwp_file->name));
13015 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13016 " [in module %s]"),
13017 kind, dwo_name, hex_string (signature),
13019 this_unit->is_debug_types ? "TU" : "CU",
13020 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13025 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13026 See lookup_dwo_cutu_unit for details. */
13028 static struct dwo_unit *
13029 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13030 const char *dwo_name, const char *comp_dir,
13031 ULONGEST signature)
13033 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13036 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13037 See lookup_dwo_cutu_unit for details. */
13039 static struct dwo_unit *
13040 lookup_dwo_type_unit (struct signatured_type *this_tu,
13041 const char *dwo_name, const char *comp_dir)
13043 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13046 /* Traversal function for queue_and_load_all_dwo_tus. */
13049 queue_and_load_dwo_tu (void **slot, void *info)
13051 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13052 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13053 ULONGEST signature = dwo_unit->signature;
13054 struct signatured_type *sig_type =
13055 lookup_dwo_signatured_type (per_cu->cu, signature);
13057 if (sig_type != NULL)
13059 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13061 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13062 a real dependency of PER_CU on SIG_TYPE. That is detected later
13063 while processing PER_CU. */
13064 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13065 load_full_type_unit (sig_cu);
13066 per_cu->imported_symtabs_push (sig_cu);
13072 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13073 The DWO may have the only definition of the type, though it may not be
13074 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13075 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13078 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13080 struct dwo_unit *dwo_unit;
13081 struct dwo_file *dwo_file;
13083 gdb_assert (!per_cu->is_debug_types);
13084 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13085 gdb_assert (per_cu->cu != NULL);
13087 dwo_unit = per_cu->cu->dwo_unit;
13088 gdb_assert (dwo_unit != NULL);
13090 dwo_file = dwo_unit->dwo_file;
13091 if (dwo_file->tus != NULL)
13092 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
13096 /* Read in various DIEs. */
13098 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13099 Inherit only the children of the DW_AT_abstract_origin DIE not being
13100 already referenced by DW_AT_abstract_origin from the children of the
13104 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13106 struct die_info *child_die;
13107 sect_offset *offsetp;
13108 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13109 struct die_info *origin_die;
13110 /* Iterator of the ORIGIN_DIE children. */
13111 struct die_info *origin_child_die;
13112 struct attribute *attr;
13113 struct dwarf2_cu *origin_cu;
13114 struct pending **origin_previous_list_in_scope;
13116 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13120 /* Note that following die references may follow to a die in a
13124 origin_die = follow_die_ref (die, attr, &origin_cu);
13126 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13128 origin_previous_list_in_scope = origin_cu->list_in_scope;
13129 origin_cu->list_in_scope = cu->list_in_scope;
13131 if (die->tag != origin_die->tag
13132 && !(die->tag == DW_TAG_inlined_subroutine
13133 && origin_die->tag == DW_TAG_subprogram))
13134 complaint (_("DIE %s and its abstract origin %s have different tags"),
13135 sect_offset_str (die->sect_off),
13136 sect_offset_str (origin_die->sect_off));
13138 std::vector<sect_offset> offsets;
13140 for (child_die = die->child;
13141 child_die && child_die->tag;
13142 child_die = sibling_die (child_die))
13144 struct die_info *child_origin_die;
13145 struct dwarf2_cu *child_origin_cu;
13147 /* We are trying to process concrete instance entries:
13148 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13149 it's not relevant to our analysis here. i.e. detecting DIEs that are
13150 present in the abstract instance but not referenced in the concrete
13152 if (child_die->tag == DW_TAG_call_site
13153 || child_die->tag == DW_TAG_GNU_call_site)
13156 /* For each CHILD_DIE, find the corresponding child of
13157 ORIGIN_DIE. If there is more than one layer of
13158 DW_AT_abstract_origin, follow them all; there shouldn't be,
13159 but GCC versions at least through 4.4 generate this (GCC PR
13161 child_origin_die = child_die;
13162 child_origin_cu = cu;
13165 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13169 child_origin_die = follow_die_ref (child_origin_die, attr,
13173 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13174 counterpart may exist. */
13175 if (child_origin_die != child_die)
13177 if (child_die->tag != child_origin_die->tag
13178 && !(child_die->tag == DW_TAG_inlined_subroutine
13179 && child_origin_die->tag == DW_TAG_subprogram))
13180 complaint (_("Child DIE %s and its abstract origin %s have "
13182 sect_offset_str (child_die->sect_off),
13183 sect_offset_str (child_origin_die->sect_off));
13184 if (child_origin_die->parent != origin_die)
13185 complaint (_("Child DIE %s and its abstract origin %s have "
13186 "different parents"),
13187 sect_offset_str (child_die->sect_off),
13188 sect_offset_str (child_origin_die->sect_off));
13190 offsets.push_back (child_origin_die->sect_off);
13193 std::sort (offsets.begin (), offsets.end ());
13194 sect_offset *offsets_end = offsets.data () + offsets.size ();
13195 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13196 if (offsetp[-1] == *offsetp)
13197 complaint (_("Multiple children of DIE %s refer "
13198 "to DIE %s as their abstract origin"),
13199 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13201 offsetp = offsets.data ();
13202 origin_child_die = origin_die->child;
13203 while (origin_child_die && origin_child_die->tag)
13205 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13206 while (offsetp < offsets_end
13207 && *offsetp < origin_child_die->sect_off)
13209 if (offsetp >= offsets_end
13210 || *offsetp > origin_child_die->sect_off)
13212 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13213 Check whether we're already processing ORIGIN_CHILD_DIE.
13214 This can happen with mutually referenced abstract_origins.
13216 if (!origin_child_die->in_process)
13217 process_die (origin_child_die, origin_cu);
13219 origin_child_die = sibling_die (origin_child_die);
13221 origin_cu->list_in_scope = origin_previous_list_in_scope;
13223 if (cu != origin_cu)
13224 compute_delayed_physnames (origin_cu);
13228 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13232 struct context_stack *newobj;
13235 struct die_info *child_die;
13236 struct attribute *attr, *call_line, *call_file;
13238 CORE_ADDR baseaddr;
13239 struct block *block;
13240 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13241 std::vector<struct symbol *> template_args;
13242 struct template_symbol *templ_func = NULL;
13246 /* If we do not have call site information, we can't show the
13247 caller of this inlined function. That's too confusing, so
13248 only use the scope for local variables. */
13249 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13250 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13251 if (call_line == NULL || call_file == NULL)
13253 read_lexical_block_scope (die, cu);
13258 baseaddr = objfile->text_section_offset ();
13260 name = dwarf2_name (die, cu);
13262 /* Ignore functions with missing or empty names. These are actually
13263 illegal according to the DWARF standard. */
13266 complaint (_("missing name for subprogram DIE at %s"),
13267 sect_offset_str (die->sect_off));
13271 /* Ignore functions with missing or invalid low and high pc attributes. */
13272 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13273 <= PC_BOUNDS_INVALID)
13275 attr = dwarf2_attr (die, DW_AT_external, cu);
13276 if (!attr || !DW_UNSND (attr))
13277 complaint (_("cannot get low and high bounds "
13278 "for subprogram DIE at %s"),
13279 sect_offset_str (die->sect_off));
13283 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13284 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13286 /* If we have any template arguments, then we must allocate a
13287 different sort of symbol. */
13288 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13290 if (child_die->tag == DW_TAG_template_type_param
13291 || child_die->tag == DW_TAG_template_value_param)
13293 templ_func = allocate_template_symbol (objfile);
13294 templ_func->subclass = SYMBOL_TEMPLATE;
13299 newobj = cu->get_builder ()->push_context (0, lowpc);
13300 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13301 (struct symbol *) templ_func);
13303 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13304 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13307 /* If there is a location expression for DW_AT_frame_base, record
13309 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13310 if (attr != nullptr)
13311 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13313 /* If there is a location for the static link, record it. */
13314 newobj->static_link = NULL;
13315 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13316 if (attr != nullptr)
13318 newobj->static_link
13319 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13320 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13321 dwarf2_per_cu_addr_type (cu->per_cu));
13324 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13326 if (die->child != NULL)
13328 child_die = die->child;
13329 while (child_die && child_die->tag)
13331 if (child_die->tag == DW_TAG_template_type_param
13332 || child_die->tag == DW_TAG_template_value_param)
13334 struct symbol *arg = new_symbol (child_die, NULL, cu);
13337 template_args.push_back (arg);
13340 process_die (child_die, cu);
13341 child_die = sibling_die (child_die);
13345 inherit_abstract_dies (die, cu);
13347 /* If we have a DW_AT_specification, we might need to import using
13348 directives from the context of the specification DIE. See the
13349 comment in determine_prefix. */
13350 if (cu->language == language_cplus
13351 && dwarf2_attr (die, DW_AT_specification, cu))
13353 struct dwarf2_cu *spec_cu = cu;
13354 struct die_info *spec_die = die_specification (die, &spec_cu);
13358 child_die = spec_die->child;
13359 while (child_die && child_die->tag)
13361 if (child_die->tag == DW_TAG_imported_module)
13362 process_die (child_die, spec_cu);
13363 child_die = sibling_die (child_die);
13366 /* In some cases, GCC generates specification DIEs that
13367 themselves contain DW_AT_specification attributes. */
13368 spec_die = die_specification (spec_die, &spec_cu);
13372 struct context_stack cstk = cu->get_builder ()->pop_context ();
13373 /* Make a block for the local symbols within. */
13374 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13375 cstk.static_link, lowpc, highpc);
13377 /* For C++, set the block's scope. */
13378 if ((cu->language == language_cplus
13379 || cu->language == language_fortran
13380 || cu->language == language_d
13381 || cu->language == language_rust)
13382 && cu->processing_has_namespace_info)
13383 block_set_scope (block, determine_prefix (die, cu),
13384 &objfile->objfile_obstack);
13386 /* If we have address ranges, record them. */
13387 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13389 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13391 /* Attach template arguments to function. */
13392 if (!template_args.empty ())
13394 gdb_assert (templ_func != NULL);
13396 templ_func->n_template_arguments = template_args.size ();
13397 templ_func->template_arguments
13398 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13399 templ_func->n_template_arguments);
13400 memcpy (templ_func->template_arguments,
13401 template_args.data (),
13402 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13404 /* Make sure that the symtab is set on the new symbols. Even
13405 though they don't appear in this symtab directly, other parts
13406 of gdb assume that symbols do, and this is reasonably
13408 for (symbol *sym : template_args)
13409 symbol_set_symtab (sym, symbol_symtab (templ_func));
13412 /* In C++, we can have functions nested inside functions (e.g., when
13413 a function declares a class that has methods). This means that
13414 when we finish processing a function scope, we may need to go
13415 back to building a containing block's symbol lists. */
13416 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13417 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13419 /* If we've finished processing a top-level function, subsequent
13420 symbols go in the file symbol list. */
13421 if (cu->get_builder ()->outermost_context_p ())
13422 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13425 /* Process all the DIES contained within a lexical block scope. Start
13426 a new scope, process the dies, and then close the scope. */
13429 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13433 CORE_ADDR lowpc, highpc;
13434 struct die_info *child_die;
13435 CORE_ADDR baseaddr;
13437 baseaddr = objfile->text_section_offset ();
13439 /* Ignore blocks with missing or invalid low and high pc attributes. */
13440 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13441 as multiple lexical blocks? Handling children in a sane way would
13442 be nasty. Might be easier to properly extend generic blocks to
13443 describe ranges. */
13444 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13446 case PC_BOUNDS_NOT_PRESENT:
13447 /* DW_TAG_lexical_block has no attributes, process its children as if
13448 there was no wrapping by that DW_TAG_lexical_block.
13449 GCC does no longer produces such DWARF since GCC r224161. */
13450 for (child_die = die->child;
13451 child_die != NULL && child_die->tag;
13452 child_die = sibling_die (child_die))
13453 process_die (child_die, cu);
13455 case PC_BOUNDS_INVALID:
13458 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13459 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13461 cu->get_builder ()->push_context (0, lowpc);
13462 if (die->child != NULL)
13464 child_die = die->child;
13465 while (child_die && child_die->tag)
13467 process_die (child_die, cu);
13468 child_die = sibling_die (child_die);
13471 inherit_abstract_dies (die, cu);
13472 struct context_stack cstk = cu->get_builder ()->pop_context ();
13474 if (*cu->get_builder ()->get_local_symbols () != NULL
13475 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13477 struct block *block
13478 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13479 cstk.start_addr, highpc);
13481 /* Note that recording ranges after traversing children, as we
13482 do here, means that recording a parent's ranges entails
13483 walking across all its children's ranges as they appear in
13484 the address map, which is quadratic behavior.
13486 It would be nicer to record the parent's ranges before
13487 traversing its children, simply overriding whatever you find
13488 there. But since we don't even decide whether to create a
13489 block until after we've traversed its children, that's hard
13491 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13493 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13494 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13497 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13500 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13504 CORE_ADDR pc, baseaddr;
13505 struct attribute *attr;
13506 struct call_site *call_site, call_site_local;
13509 struct die_info *child_die;
13511 baseaddr = objfile->text_section_offset ();
13513 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13516 /* This was a pre-DWARF-5 GNU extension alias
13517 for DW_AT_call_return_pc. */
13518 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13522 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13523 "DIE %s [in module %s]"),
13524 sect_offset_str (die->sect_off), objfile_name (objfile));
13527 pc = attr->value_as_address () + baseaddr;
13528 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13530 if (cu->call_site_htab == NULL)
13531 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13532 NULL, &objfile->objfile_obstack,
13533 hashtab_obstack_allocate, NULL);
13534 call_site_local.pc = pc;
13535 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13538 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13539 "DIE %s [in module %s]"),
13540 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13541 objfile_name (objfile));
13545 /* Count parameters at the caller. */
13548 for (child_die = die->child; child_die && child_die->tag;
13549 child_die = sibling_die (child_die))
13551 if (child_die->tag != DW_TAG_call_site_parameter
13552 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13554 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13555 "DW_TAG_call_site child DIE %s [in module %s]"),
13556 child_die->tag, sect_offset_str (child_die->sect_off),
13557 objfile_name (objfile));
13565 = ((struct call_site *)
13566 obstack_alloc (&objfile->objfile_obstack,
13567 sizeof (*call_site)
13568 + (sizeof (*call_site->parameter) * (nparams - 1))));
13570 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13571 call_site->pc = pc;
13573 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13574 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13576 struct die_info *func_die;
13578 /* Skip also over DW_TAG_inlined_subroutine. */
13579 for (func_die = die->parent;
13580 func_die && func_die->tag != DW_TAG_subprogram
13581 && func_die->tag != DW_TAG_subroutine_type;
13582 func_die = func_die->parent);
13584 /* DW_AT_call_all_calls is a superset
13585 of DW_AT_call_all_tail_calls. */
13587 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13588 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13589 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13590 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13592 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13593 not complete. But keep CALL_SITE for look ups via call_site_htab,
13594 both the initial caller containing the real return address PC and
13595 the final callee containing the current PC of a chain of tail
13596 calls do not need to have the tail call list complete. But any
13597 function candidate for a virtual tail call frame searched via
13598 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13599 determined unambiguously. */
13603 struct type *func_type = NULL;
13606 func_type = get_die_type (func_die, cu);
13607 if (func_type != NULL)
13609 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13611 /* Enlist this call site to the function. */
13612 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13613 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13616 complaint (_("Cannot find function owning DW_TAG_call_site "
13617 "DIE %s [in module %s]"),
13618 sect_offset_str (die->sect_off), objfile_name (objfile));
13622 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13624 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13626 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13629 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13630 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13632 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13633 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13634 /* Keep NULL DWARF_BLOCK. */;
13635 else if (attr->form_is_block ())
13637 struct dwarf2_locexpr_baton *dlbaton;
13639 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13640 dlbaton->data = DW_BLOCK (attr)->data;
13641 dlbaton->size = DW_BLOCK (attr)->size;
13642 dlbaton->per_cu = cu->per_cu;
13644 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13646 else if (attr->form_is_ref ())
13648 struct dwarf2_cu *target_cu = cu;
13649 struct die_info *target_die;
13651 target_die = follow_die_ref (die, attr, &target_cu);
13652 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13653 if (die_is_declaration (target_die, target_cu))
13655 const char *target_physname;
13657 /* Prefer the mangled name; otherwise compute the demangled one. */
13658 target_physname = dw2_linkage_name (target_die, target_cu);
13659 if (target_physname == NULL)
13660 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13661 if (target_physname == NULL)
13662 complaint (_("DW_AT_call_target target DIE has invalid "
13663 "physname, for referencing DIE %s [in module %s]"),
13664 sect_offset_str (die->sect_off), objfile_name (objfile));
13666 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13672 /* DW_AT_entry_pc should be preferred. */
13673 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13674 <= PC_BOUNDS_INVALID)
13675 complaint (_("DW_AT_call_target target DIE has invalid "
13676 "low pc, for referencing DIE %s [in module %s]"),
13677 sect_offset_str (die->sect_off), objfile_name (objfile));
13680 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13681 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13686 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13687 "block nor reference, for DIE %s [in module %s]"),
13688 sect_offset_str (die->sect_off), objfile_name (objfile));
13690 call_site->per_cu = cu->per_cu;
13692 for (child_die = die->child;
13693 child_die && child_die->tag;
13694 child_die = sibling_die (child_die))
13696 struct call_site_parameter *parameter;
13697 struct attribute *loc, *origin;
13699 if (child_die->tag != DW_TAG_call_site_parameter
13700 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13702 /* Already printed the complaint above. */
13706 gdb_assert (call_site->parameter_count < nparams);
13707 parameter = &call_site->parameter[call_site->parameter_count];
13709 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13710 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13711 register is contained in DW_AT_call_value. */
13713 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13714 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13715 if (origin == NULL)
13717 /* This was a pre-DWARF-5 GNU extension alias
13718 for DW_AT_call_parameter. */
13719 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13721 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13723 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13725 sect_offset sect_off
13726 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13727 if (!offset_in_cu_p (&cu->header, sect_off))
13729 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13730 binding can be done only inside one CU. Such referenced DIE
13731 therefore cannot be even moved to DW_TAG_partial_unit. */
13732 complaint (_("DW_AT_call_parameter offset is not in CU for "
13733 "DW_TAG_call_site child DIE %s [in module %s]"),
13734 sect_offset_str (child_die->sect_off),
13735 objfile_name (objfile));
13738 parameter->u.param_cu_off
13739 = (cu_offset) (sect_off - cu->header.sect_off);
13741 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13743 complaint (_("No DW_FORM_block* DW_AT_location for "
13744 "DW_TAG_call_site child DIE %s [in module %s]"),
13745 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13750 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13751 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13752 if (parameter->u.dwarf_reg != -1)
13753 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13754 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13755 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13756 ¶meter->u.fb_offset))
13757 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13760 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13761 "for DW_FORM_block* DW_AT_location is supported for "
13762 "DW_TAG_call_site child DIE %s "
13764 sect_offset_str (child_die->sect_off),
13765 objfile_name (objfile));
13770 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13772 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13773 if (attr == NULL || !attr->form_is_block ())
13775 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13776 "DW_TAG_call_site child DIE %s [in module %s]"),
13777 sect_offset_str (child_die->sect_off),
13778 objfile_name (objfile));
13781 parameter->value = DW_BLOCK (attr)->data;
13782 parameter->value_size = DW_BLOCK (attr)->size;
13784 /* Parameters are not pre-cleared by memset above. */
13785 parameter->data_value = NULL;
13786 parameter->data_value_size = 0;
13787 call_site->parameter_count++;
13789 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13791 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13792 if (attr != nullptr)
13794 if (!attr->form_is_block ())
13795 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13796 "DW_TAG_call_site child DIE %s [in module %s]"),
13797 sect_offset_str (child_die->sect_off),
13798 objfile_name (objfile));
13801 parameter->data_value = DW_BLOCK (attr)->data;
13802 parameter->data_value_size = DW_BLOCK (attr)->size;
13808 /* Helper function for read_variable. If DIE represents a virtual
13809 table, then return the type of the concrete object that is
13810 associated with the virtual table. Otherwise, return NULL. */
13812 static struct type *
13813 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13815 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13819 /* Find the type DIE. */
13820 struct die_info *type_die = NULL;
13821 struct dwarf2_cu *type_cu = cu;
13823 if (attr->form_is_ref ())
13824 type_die = follow_die_ref (die, attr, &type_cu);
13825 if (type_die == NULL)
13828 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13830 return die_containing_type (type_die, type_cu);
13833 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13836 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13838 struct rust_vtable_symbol *storage = NULL;
13840 if (cu->language == language_rust)
13842 struct type *containing_type = rust_containing_type (die, cu);
13844 if (containing_type != NULL)
13846 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13848 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13849 initialize_objfile_symbol (storage);
13850 storage->concrete_type = containing_type;
13851 storage->subclass = SYMBOL_RUST_VTABLE;
13855 struct symbol *res = new_symbol (die, NULL, cu, storage);
13856 struct attribute *abstract_origin
13857 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13858 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13859 if (res == NULL && loc && abstract_origin)
13861 /* We have a variable without a name, but with a location and an abstract
13862 origin. This may be a concrete instance of an abstract variable
13863 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13865 struct dwarf2_cu *origin_cu = cu;
13866 struct die_info *origin_die
13867 = follow_die_ref (die, abstract_origin, &origin_cu);
13868 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13869 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13873 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13874 reading .debug_rnglists.
13875 Callback's type should be:
13876 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13877 Return true if the attributes are present and valid, otherwise,
13880 template <typename Callback>
13882 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13883 Callback &&callback)
13885 struct dwarf2_per_objfile *dwarf2_per_objfile
13886 = cu->per_cu->dwarf2_per_objfile;
13887 struct objfile *objfile = dwarf2_per_objfile->objfile;
13888 bfd *obfd = objfile->obfd;
13889 /* Base address selection entry. */
13892 const gdb_byte *buffer;
13893 CORE_ADDR baseaddr;
13894 bool overflow = false;
13896 found_base = cu->base_known;
13897 base = cu->base_address;
13899 dwarf2_per_objfile->rnglists.read (objfile);
13900 if (offset >= dwarf2_per_objfile->rnglists.size)
13902 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13906 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13908 baseaddr = objfile->text_section_offset ();
13912 /* Initialize it due to a false compiler warning. */
13913 CORE_ADDR range_beginning = 0, range_end = 0;
13914 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13915 + dwarf2_per_objfile->rnglists.size);
13916 unsigned int bytes_read;
13918 if (buffer == buf_end)
13923 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13926 case DW_RLE_end_of_list:
13928 case DW_RLE_base_address:
13929 if (buffer + cu->header.addr_size > buf_end)
13934 base = read_address (obfd, buffer, cu, &bytes_read);
13936 buffer += bytes_read;
13938 case DW_RLE_start_length:
13939 if (buffer + cu->header.addr_size > buf_end)
13944 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13945 buffer += bytes_read;
13946 range_end = (range_beginning
13947 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13948 buffer += bytes_read;
13949 if (buffer > buf_end)
13955 case DW_RLE_offset_pair:
13956 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13957 buffer += bytes_read;
13958 if (buffer > buf_end)
13963 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13964 buffer += bytes_read;
13965 if (buffer > buf_end)
13971 case DW_RLE_start_end:
13972 if (buffer + 2 * cu->header.addr_size > buf_end)
13977 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13978 buffer += bytes_read;
13979 range_end = read_address (obfd, buffer, cu, &bytes_read);
13980 buffer += bytes_read;
13983 complaint (_("Invalid .debug_rnglists data (no base address)"));
13986 if (rlet == DW_RLE_end_of_list || overflow)
13988 if (rlet == DW_RLE_base_address)
13993 /* We have no valid base address for the ranges
13995 complaint (_("Invalid .debug_rnglists data (no base address)"));
13999 if (range_beginning > range_end)
14001 /* Inverted range entries are invalid. */
14002 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14006 /* Empty range entries have no effect. */
14007 if (range_beginning == range_end)
14010 range_beginning += base;
14013 /* A not-uncommon case of bad debug info.
14014 Don't pollute the addrmap with bad data. */
14015 if (range_beginning + baseaddr == 0
14016 && !dwarf2_per_objfile->has_section_at_zero)
14018 complaint (_(".debug_rnglists entry has start address of zero"
14019 " [in module %s]"), objfile_name (objfile));
14023 callback (range_beginning, range_end);
14028 complaint (_("Offset %d is not terminated "
14029 "for DW_AT_ranges attribute"),
14037 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14038 Callback's type should be:
14039 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14040 Return 1 if the attributes are present and valid, otherwise, return 0. */
14042 template <typename Callback>
14044 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14045 Callback &&callback)
14047 struct dwarf2_per_objfile *dwarf2_per_objfile
14048 = cu->per_cu->dwarf2_per_objfile;
14049 struct objfile *objfile = dwarf2_per_objfile->objfile;
14050 struct comp_unit_head *cu_header = &cu->header;
14051 bfd *obfd = objfile->obfd;
14052 unsigned int addr_size = cu_header->addr_size;
14053 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14054 /* Base address selection entry. */
14057 unsigned int dummy;
14058 const gdb_byte *buffer;
14059 CORE_ADDR baseaddr;
14061 if (cu_header->version >= 5)
14062 return dwarf2_rnglists_process (offset, cu, callback);
14064 found_base = cu->base_known;
14065 base = cu->base_address;
14067 dwarf2_per_objfile->ranges.read (objfile);
14068 if (offset >= dwarf2_per_objfile->ranges.size)
14070 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14074 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14076 baseaddr = objfile->text_section_offset ();
14080 CORE_ADDR range_beginning, range_end;
14082 range_beginning = read_address (obfd, buffer, cu, &dummy);
14083 buffer += addr_size;
14084 range_end = read_address (obfd, buffer, cu, &dummy);
14085 buffer += addr_size;
14086 offset += 2 * addr_size;
14088 /* An end of list marker is a pair of zero addresses. */
14089 if (range_beginning == 0 && range_end == 0)
14090 /* Found the end of list entry. */
14093 /* Each base address selection entry is a pair of 2 values.
14094 The first is the largest possible address, the second is
14095 the base address. Check for a base address here. */
14096 if ((range_beginning & mask) == mask)
14098 /* If we found the largest possible address, then we already
14099 have the base address in range_end. */
14107 /* We have no valid base address for the ranges
14109 complaint (_("Invalid .debug_ranges data (no base address)"));
14113 if (range_beginning > range_end)
14115 /* Inverted range entries are invalid. */
14116 complaint (_("Invalid .debug_ranges data (inverted range)"));
14120 /* Empty range entries have no effect. */
14121 if (range_beginning == range_end)
14124 range_beginning += base;
14127 /* A not-uncommon case of bad debug info.
14128 Don't pollute the addrmap with bad data. */
14129 if (range_beginning + baseaddr == 0
14130 && !dwarf2_per_objfile->has_section_at_zero)
14132 complaint (_(".debug_ranges entry has start address of zero"
14133 " [in module %s]"), objfile_name (objfile));
14137 callback (range_beginning, range_end);
14143 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14144 Return 1 if the attributes are present and valid, otherwise, return 0.
14145 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14148 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14149 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14150 dwarf2_psymtab *ranges_pst)
14152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14154 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14157 CORE_ADDR high = 0;
14160 retval = dwarf2_ranges_process (offset, cu,
14161 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14163 if (ranges_pst != NULL)
14168 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14169 range_beginning + baseaddr)
14171 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14172 range_end + baseaddr)
14174 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14175 lowpc, highpc - 1, ranges_pst);
14178 /* FIXME: This is recording everything as a low-high
14179 segment of consecutive addresses. We should have a
14180 data structure for discontiguous block ranges
14184 low = range_beginning;
14190 if (range_beginning < low)
14191 low = range_beginning;
14192 if (range_end > high)
14200 /* If the first entry is an end-of-list marker, the range
14201 describes an empty scope, i.e. no instructions. */
14207 *high_return = high;
14211 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14212 definition for the return value. *LOWPC and *HIGHPC are set iff
14213 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14215 static enum pc_bounds_kind
14216 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14217 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14218 dwarf2_psymtab *pst)
14220 struct dwarf2_per_objfile *dwarf2_per_objfile
14221 = cu->per_cu->dwarf2_per_objfile;
14222 struct attribute *attr;
14223 struct attribute *attr_high;
14225 CORE_ADDR high = 0;
14226 enum pc_bounds_kind ret;
14228 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14231 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14232 if (attr != nullptr)
14234 low = attr->value_as_address ();
14235 high = attr_high->value_as_address ();
14236 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14240 /* Found high w/o low attribute. */
14241 return PC_BOUNDS_INVALID;
14243 /* Found consecutive range of addresses. */
14244 ret = PC_BOUNDS_HIGH_LOW;
14248 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14251 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14252 We take advantage of the fact that DW_AT_ranges does not appear
14253 in DW_TAG_compile_unit of DWO files. */
14254 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14255 unsigned int ranges_offset = (DW_UNSND (attr)
14256 + (need_ranges_base
14260 /* Value of the DW_AT_ranges attribute is the offset in the
14261 .debug_ranges section. */
14262 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14263 return PC_BOUNDS_INVALID;
14264 /* Found discontinuous range of addresses. */
14265 ret = PC_BOUNDS_RANGES;
14268 return PC_BOUNDS_NOT_PRESENT;
14271 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14273 return PC_BOUNDS_INVALID;
14275 /* When using the GNU linker, .gnu.linkonce. sections are used to
14276 eliminate duplicate copies of functions and vtables and such.
14277 The linker will arbitrarily choose one and discard the others.
14278 The AT_*_pc values for such functions refer to local labels in
14279 these sections. If the section from that file was discarded, the
14280 labels are not in the output, so the relocs get a value of 0.
14281 If this is a discarded function, mark the pc bounds as invalid,
14282 so that GDB will ignore it. */
14283 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14284 return PC_BOUNDS_INVALID;
14292 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14293 its low and high PC addresses. Do nothing if these addresses could not
14294 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14295 and HIGHPC to the high address if greater than HIGHPC. */
14298 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14299 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14300 struct dwarf2_cu *cu)
14302 CORE_ADDR low, high;
14303 struct die_info *child = die->child;
14305 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14307 *lowpc = std::min (*lowpc, low);
14308 *highpc = std::max (*highpc, high);
14311 /* If the language does not allow nested subprograms (either inside
14312 subprograms or lexical blocks), we're done. */
14313 if (cu->language != language_ada)
14316 /* Check all the children of the given DIE. If it contains nested
14317 subprograms, then check their pc bounds. Likewise, we need to
14318 check lexical blocks as well, as they may also contain subprogram
14320 while (child && child->tag)
14322 if (child->tag == DW_TAG_subprogram
14323 || child->tag == DW_TAG_lexical_block)
14324 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14325 child = sibling_die (child);
14329 /* Get the low and high pc's represented by the scope DIE, and store
14330 them in *LOWPC and *HIGHPC. If the correct values can't be
14331 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14334 get_scope_pc_bounds (struct die_info *die,
14335 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14336 struct dwarf2_cu *cu)
14338 CORE_ADDR best_low = (CORE_ADDR) -1;
14339 CORE_ADDR best_high = (CORE_ADDR) 0;
14340 CORE_ADDR current_low, current_high;
14342 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14343 >= PC_BOUNDS_RANGES)
14345 best_low = current_low;
14346 best_high = current_high;
14350 struct die_info *child = die->child;
14352 while (child && child->tag)
14354 switch (child->tag) {
14355 case DW_TAG_subprogram:
14356 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14358 case DW_TAG_namespace:
14359 case DW_TAG_module:
14360 /* FIXME: carlton/2004-01-16: Should we do this for
14361 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14362 that current GCC's always emit the DIEs corresponding
14363 to definitions of methods of classes as children of a
14364 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14365 the DIEs giving the declarations, which could be
14366 anywhere). But I don't see any reason why the
14367 standards says that they have to be there. */
14368 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14370 if (current_low != ((CORE_ADDR) -1))
14372 best_low = std::min (best_low, current_low);
14373 best_high = std::max (best_high, current_high);
14381 child = sibling_die (child);
14386 *highpc = best_high;
14389 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14393 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14394 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14396 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14397 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14398 struct attribute *attr;
14399 struct attribute *attr_high;
14401 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14404 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14405 if (attr != nullptr)
14407 CORE_ADDR low = attr->value_as_address ();
14408 CORE_ADDR high = attr_high->value_as_address ();
14410 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14413 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14414 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14415 cu->get_builder ()->record_block_range (block, low, high - 1);
14419 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14420 if (attr != nullptr)
14422 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14423 We take advantage of the fact that DW_AT_ranges does not appear
14424 in DW_TAG_compile_unit of DWO files. */
14425 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14427 /* The value of the DW_AT_ranges attribute is the offset of the
14428 address range list in the .debug_ranges section. */
14429 unsigned long offset = (DW_UNSND (attr)
14430 + (need_ranges_base ? cu->ranges_base : 0));
14432 std::vector<blockrange> blockvec;
14433 dwarf2_ranges_process (offset, cu,
14434 [&] (CORE_ADDR start, CORE_ADDR end)
14438 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14439 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14440 cu->get_builder ()->record_block_range (block, start, end - 1);
14441 blockvec.emplace_back (start, end);
14444 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14448 /* Check whether the producer field indicates either of GCC < 4.6, or the
14449 Intel C/C++ compiler, and cache the result in CU. */
14452 check_producer (struct dwarf2_cu *cu)
14456 if (cu->producer == NULL)
14458 /* For unknown compilers expect their behavior is DWARF version
14461 GCC started to support .debug_types sections by -gdwarf-4 since
14462 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14463 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14464 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14465 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14467 else if (producer_is_gcc (cu->producer, &major, &minor))
14469 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14470 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14472 else if (producer_is_icc (cu->producer, &major, &minor))
14474 cu->producer_is_icc = true;
14475 cu->producer_is_icc_lt_14 = major < 14;
14477 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14478 cu->producer_is_codewarrior = true;
14481 /* For other non-GCC compilers, expect their behavior is DWARF version
14485 cu->checked_producer = true;
14488 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14489 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14490 during 4.6.0 experimental. */
14493 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14495 if (!cu->checked_producer)
14496 check_producer (cu);
14498 return cu->producer_is_gxx_lt_4_6;
14502 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14503 with incorrect is_stmt attributes. */
14506 producer_is_codewarrior (struct dwarf2_cu *cu)
14508 if (!cu->checked_producer)
14509 check_producer (cu);
14511 return cu->producer_is_codewarrior;
14514 /* Return the default accessibility type if it is not overridden by
14515 DW_AT_accessibility. */
14517 static enum dwarf_access_attribute
14518 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14520 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14522 /* The default DWARF 2 accessibility for members is public, the default
14523 accessibility for inheritance is private. */
14525 if (die->tag != DW_TAG_inheritance)
14526 return DW_ACCESS_public;
14528 return DW_ACCESS_private;
14532 /* DWARF 3+ defines the default accessibility a different way. The same
14533 rules apply now for DW_TAG_inheritance as for the members and it only
14534 depends on the container kind. */
14536 if (die->parent->tag == DW_TAG_class_type)
14537 return DW_ACCESS_private;
14539 return DW_ACCESS_public;
14543 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14544 offset. If the attribute was not found return 0, otherwise return
14545 1. If it was found but could not properly be handled, set *OFFSET
14549 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14552 struct attribute *attr;
14554 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14559 /* Note that we do not check for a section offset first here.
14560 This is because DW_AT_data_member_location is new in DWARF 4,
14561 so if we see it, we can assume that a constant form is really
14562 a constant and not a section offset. */
14563 if (attr->form_is_constant ())
14564 *offset = dwarf2_get_attr_constant_value (attr, 0);
14565 else if (attr->form_is_section_offset ())
14566 dwarf2_complex_location_expr_complaint ();
14567 else if (attr->form_is_block ())
14568 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14570 dwarf2_complex_location_expr_complaint ();
14578 /* Add an aggregate field to the field list. */
14581 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14582 struct dwarf2_cu *cu)
14584 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14585 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14586 struct nextfield *new_field;
14587 struct attribute *attr;
14589 const char *fieldname = "";
14591 if (die->tag == DW_TAG_inheritance)
14593 fip->baseclasses.emplace_back ();
14594 new_field = &fip->baseclasses.back ();
14598 fip->fields.emplace_back ();
14599 new_field = &fip->fields.back ();
14604 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14605 if (attr != nullptr)
14606 new_field->accessibility = DW_UNSND (attr);
14608 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14609 if (new_field->accessibility != DW_ACCESS_public)
14610 fip->non_public_fields = 1;
14612 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14613 if (attr != nullptr)
14614 new_field->virtuality = DW_UNSND (attr);
14616 new_field->virtuality = DW_VIRTUALITY_none;
14618 fp = &new_field->field;
14620 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14624 /* Data member other than a C++ static data member. */
14626 /* Get type of field. */
14627 fp->type = die_type (die, cu);
14629 SET_FIELD_BITPOS (*fp, 0);
14631 /* Get bit size of field (zero if none). */
14632 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14633 if (attr != nullptr)
14635 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14639 FIELD_BITSIZE (*fp) = 0;
14642 /* Get bit offset of field. */
14643 if (handle_data_member_location (die, cu, &offset))
14644 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14645 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14646 if (attr != nullptr)
14648 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14650 /* For big endian bits, the DW_AT_bit_offset gives the
14651 additional bit offset from the MSB of the containing
14652 anonymous object to the MSB of the field. We don't
14653 have to do anything special since we don't need to
14654 know the size of the anonymous object. */
14655 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14659 /* For little endian bits, compute the bit offset to the
14660 MSB of the anonymous object, subtract off the number of
14661 bits from the MSB of the field to the MSB of the
14662 object, and then subtract off the number of bits of
14663 the field itself. The result is the bit offset of
14664 the LSB of the field. */
14665 int anonymous_size;
14666 int bit_offset = DW_UNSND (attr);
14668 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14669 if (attr != nullptr)
14671 /* The size of the anonymous object containing
14672 the bit field is explicit, so use the
14673 indicated size (in bytes). */
14674 anonymous_size = DW_UNSND (attr);
14678 /* The size of the anonymous object containing
14679 the bit field must be inferred from the type
14680 attribute of the data member containing the
14682 anonymous_size = TYPE_LENGTH (fp->type);
14684 SET_FIELD_BITPOS (*fp,
14685 (FIELD_BITPOS (*fp)
14686 + anonymous_size * bits_per_byte
14687 - bit_offset - FIELD_BITSIZE (*fp)));
14690 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14692 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14693 + dwarf2_get_attr_constant_value (attr, 0)));
14695 /* Get name of field. */
14696 fieldname = dwarf2_name (die, cu);
14697 if (fieldname == NULL)
14700 /* The name is already allocated along with this objfile, so we don't
14701 need to duplicate it for the type. */
14702 fp->name = fieldname;
14704 /* Change accessibility for artificial fields (e.g. virtual table
14705 pointer or virtual base class pointer) to private. */
14706 if (dwarf2_attr (die, DW_AT_artificial, cu))
14708 FIELD_ARTIFICIAL (*fp) = 1;
14709 new_field->accessibility = DW_ACCESS_private;
14710 fip->non_public_fields = 1;
14713 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14715 /* C++ static member. */
14717 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14718 is a declaration, but all versions of G++ as of this writing
14719 (so through at least 3.2.1) incorrectly generate
14720 DW_TAG_variable tags. */
14722 const char *physname;
14724 /* Get name of field. */
14725 fieldname = dwarf2_name (die, cu);
14726 if (fieldname == NULL)
14729 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14731 /* Only create a symbol if this is an external value.
14732 new_symbol checks this and puts the value in the global symbol
14733 table, which we want. If it is not external, new_symbol
14734 will try to put the value in cu->list_in_scope which is wrong. */
14735 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14737 /* A static const member, not much different than an enum as far as
14738 we're concerned, except that we can support more types. */
14739 new_symbol (die, NULL, cu);
14742 /* Get physical name. */
14743 physname = dwarf2_physname (fieldname, die, cu);
14745 /* The name is already allocated along with this objfile, so we don't
14746 need to duplicate it for the type. */
14747 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14748 FIELD_TYPE (*fp) = die_type (die, cu);
14749 FIELD_NAME (*fp) = fieldname;
14751 else if (die->tag == DW_TAG_inheritance)
14755 /* C++ base class field. */
14756 if (handle_data_member_location (die, cu, &offset))
14757 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14758 FIELD_BITSIZE (*fp) = 0;
14759 FIELD_TYPE (*fp) = die_type (die, cu);
14760 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14762 else if (die->tag == DW_TAG_variant_part)
14764 /* process_structure_scope will treat this DIE as a union. */
14765 process_structure_scope (die, cu);
14767 /* The variant part is relative to the start of the enclosing
14769 SET_FIELD_BITPOS (*fp, 0);
14770 fp->type = get_die_type (die, cu);
14771 fp->artificial = 1;
14772 fp->name = "<<variant>>";
14774 /* Normally a DW_TAG_variant_part won't have a size, but our
14775 representation requires one, so set it to the maximum of the
14776 child sizes, being sure to account for the offset at which
14777 each child is seen. */
14778 if (TYPE_LENGTH (fp->type) == 0)
14781 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14783 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14784 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14788 TYPE_LENGTH (fp->type) = max;
14792 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14795 /* Can the type given by DIE define another type? */
14798 type_can_define_types (const struct die_info *die)
14802 case DW_TAG_typedef:
14803 case DW_TAG_class_type:
14804 case DW_TAG_structure_type:
14805 case DW_TAG_union_type:
14806 case DW_TAG_enumeration_type:
14814 /* Add a type definition defined in the scope of the FIP's class. */
14817 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14818 struct dwarf2_cu *cu)
14820 struct decl_field fp;
14821 memset (&fp, 0, sizeof (fp));
14823 gdb_assert (type_can_define_types (die));
14825 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14826 fp.name = dwarf2_name (die, cu);
14827 fp.type = read_type_die (die, cu);
14829 /* Save accessibility. */
14830 enum dwarf_access_attribute accessibility;
14831 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14833 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14835 accessibility = dwarf2_default_access_attribute (die, cu);
14836 switch (accessibility)
14838 case DW_ACCESS_public:
14839 /* The assumed value if neither private nor protected. */
14841 case DW_ACCESS_private:
14844 case DW_ACCESS_protected:
14845 fp.is_protected = 1;
14848 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14851 if (die->tag == DW_TAG_typedef)
14852 fip->typedef_field_list.push_back (fp);
14854 fip->nested_types_list.push_back (fp);
14857 /* Create the vector of fields, and attach it to the type. */
14860 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14861 struct dwarf2_cu *cu)
14863 int nfields = fip->nfields;
14865 /* Record the field count, allocate space for the array of fields,
14866 and create blank accessibility bitfields if necessary. */
14867 TYPE_NFIELDS (type) = nfields;
14868 TYPE_FIELDS (type) = (struct field *)
14869 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14871 if (fip->non_public_fields && cu->language != language_ada)
14873 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14875 TYPE_FIELD_PRIVATE_BITS (type) =
14876 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14877 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14879 TYPE_FIELD_PROTECTED_BITS (type) =
14880 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14881 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14883 TYPE_FIELD_IGNORE_BITS (type) =
14884 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14885 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14888 /* If the type has baseclasses, allocate and clear a bit vector for
14889 TYPE_FIELD_VIRTUAL_BITS. */
14890 if (!fip->baseclasses.empty () && cu->language != language_ada)
14892 int num_bytes = B_BYTES (fip->baseclasses.size ());
14893 unsigned char *pointer;
14895 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14896 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14897 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14898 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14899 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14902 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14904 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14906 for (int index = 0; index < nfields; ++index)
14908 struct nextfield &field = fip->fields[index];
14910 if (field.variant.is_discriminant)
14911 di->discriminant_index = index;
14912 else if (field.variant.default_branch)
14913 di->default_index = index;
14915 di->discriminants[index] = field.variant.discriminant_value;
14919 /* Copy the saved-up fields into the field vector. */
14920 for (int i = 0; i < nfields; ++i)
14922 struct nextfield &field
14923 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14924 : fip->fields[i - fip->baseclasses.size ()]);
14926 TYPE_FIELD (type, i) = field.field;
14927 switch (field.accessibility)
14929 case DW_ACCESS_private:
14930 if (cu->language != language_ada)
14931 SET_TYPE_FIELD_PRIVATE (type, i);
14934 case DW_ACCESS_protected:
14935 if (cu->language != language_ada)
14936 SET_TYPE_FIELD_PROTECTED (type, i);
14939 case DW_ACCESS_public:
14943 /* Unknown accessibility. Complain and treat it as public. */
14945 complaint (_("unsupported accessibility %d"),
14946 field.accessibility);
14950 if (i < fip->baseclasses.size ())
14952 switch (field.virtuality)
14954 case DW_VIRTUALITY_virtual:
14955 case DW_VIRTUALITY_pure_virtual:
14956 if (cu->language == language_ada)
14957 error (_("unexpected virtuality in component of Ada type"));
14958 SET_TYPE_FIELD_VIRTUAL (type, i);
14965 /* Return true if this member function is a constructor, false
14969 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14971 const char *fieldname;
14972 const char *type_name;
14975 if (die->parent == NULL)
14978 if (die->parent->tag != DW_TAG_structure_type
14979 && die->parent->tag != DW_TAG_union_type
14980 && die->parent->tag != DW_TAG_class_type)
14983 fieldname = dwarf2_name (die, cu);
14984 type_name = dwarf2_name (die->parent, cu);
14985 if (fieldname == NULL || type_name == NULL)
14988 len = strlen (fieldname);
14989 return (strncmp (fieldname, type_name, len) == 0
14990 && (type_name[len] == '\0' || type_name[len] == '<'));
14993 /* Check if the given VALUE is a recognized enum
14994 dwarf_defaulted_attribute constant according to DWARF5 spec,
14998 is_valid_DW_AT_defaulted (ULONGEST value)
15002 case DW_DEFAULTED_no:
15003 case DW_DEFAULTED_in_class:
15004 case DW_DEFAULTED_out_of_class:
15008 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15012 /* Add a member function to the proper fieldlist. */
15015 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15016 struct type *type, struct dwarf2_cu *cu)
15018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15019 struct attribute *attr;
15021 struct fnfieldlist *flp = nullptr;
15022 struct fn_field *fnp;
15023 const char *fieldname;
15024 struct type *this_type;
15025 enum dwarf_access_attribute accessibility;
15027 if (cu->language == language_ada)
15028 error (_("unexpected member function in Ada type"));
15030 /* Get name of member function. */
15031 fieldname = dwarf2_name (die, cu);
15032 if (fieldname == NULL)
15035 /* Look up member function name in fieldlist. */
15036 for (i = 0; i < fip->fnfieldlists.size (); i++)
15038 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15040 flp = &fip->fnfieldlists[i];
15045 /* Create a new fnfieldlist if necessary. */
15046 if (flp == nullptr)
15048 fip->fnfieldlists.emplace_back ();
15049 flp = &fip->fnfieldlists.back ();
15050 flp->name = fieldname;
15051 i = fip->fnfieldlists.size () - 1;
15054 /* Create a new member function field and add it to the vector of
15056 flp->fnfields.emplace_back ();
15057 fnp = &flp->fnfields.back ();
15059 /* Delay processing of the physname until later. */
15060 if (cu->language == language_cplus)
15061 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15065 const char *physname = dwarf2_physname (fieldname, die, cu);
15066 fnp->physname = physname ? physname : "";
15069 fnp->type = alloc_type (objfile);
15070 this_type = read_type_die (die, cu);
15071 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15073 int nparams = TYPE_NFIELDS (this_type);
15075 /* TYPE is the domain of this method, and THIS_TYPE is the type
15076 of the method itself (TYPE_CODE_METHOD). */
15077 smash_to_method_type (fnp->type, type,
15078 TYPE_TARGET_TYPE (this_type),
15079 TYPE_FIELDS (this_type),
15080 TYPE_NFIELDS (this_type),
15081 TYPE_VARARGS (this_type));
15083 /* Handle static member functions.
15084 Dwarf2 has no clean way to discern C++ static and non-static
15085 member functions. G++ helps GDB by marking the first
15086 parameter for non-static member functions (which is the this
15087 pointer) as artificial. We obtain this information from
15088 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15089 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15090 fnp->voffset = VOFFSET_STATIC;
15093 complaint (_("member function type missing for '%s'"),
15094 dwarf2_full_name (fieldname, die, cu));
15096 /* Get fcontext from DW_AT_containing_type if present. */
15097 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15098 fnp->fcontext = die_containing_type (die, cu);
15100 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15101 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15103 /* Get accessibility. */
15104 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15105 if (attr != nullptr)
15106 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15108 accessibility = dwarf2_default_access_attribute (die, cu);
15109 switch (accessibility)
15111 case DW_ACCESS_private:
15112 fnp->is_private = 1;
15114 case DW_ACCESS_protected:
15115 fnp->is_protected = 1;
15119 /* Check for artificial methods. */
15120 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15121 if (attr && DW_UNSND (attr) != 0)
15122 fnp->is_artificial = 1;
15124 /* Check for defaulted methods. */
15125 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15126 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15127 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15129 /* Check for deleted methods. */
15130 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15131 if (attr != nullptr && DW_UNSND (attr) != 0)
15132 fnp->is_deleted = 1;
15134 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15136 /* Get index in virtual function table if it is a virtual member
15137 function. For older versions of GCC, this is an offset in the
15138 appropriate virtual table, as specified by DW_AT_containing_type.
15139 For everyone else, it is an expression to be evaluated relative
15140 to the object address. */
15142 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15143 if (attr != nullptr)
15145 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15147 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15149 /* Old-style GCC. */
15150 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15152 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15153 || (DW_BLOCK (attr)->size > 1
15154 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15155 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15157 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15158 if ((fnp->voffset % cu->header.addr_size) != 0)
15159 dwarf2_complex_location_expr_complaint ();
15161 fnp->voffset /= cu->header.addr_size;
15165 dwarf2_complex_location_expr_complaint ();
15167 if (!fnp->fcontext)
15169 /* If there is no `this' field and no DW_AT_containing_type,
15170 we cannot actually find a base class context for the
15172 if (TYPE_NFIELDS (this_type) == 0
15173 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15175 complaint (_("cannot determine context for virtual member "
15176 "function \"%s\" (offset %s)"),
15177 fieldname, sect_offset_str (die->sect_off));
15182 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15186 else if (attr->form_is_section_offset ())
15188 dwarf2_complex_location_expr_complaint ();
15192 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15198 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15199 if (attr && DW_UNSND (attr))
15201 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15202 complaint (_("Member function \"%s\" (offset %s) is virtual "
15203 "but the vtable offset is not specified"),
15204 fieldname, sect_offset_str (die->sect_off));
15205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15206 TYPE_CPLUS_DYNAMIC (type) = 1;
15211 /* Create the vector of member function fields, and attach it to the type. */
15214 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15215 struct dwarf2_cu *cu)
15217 if (cu->language == language_ada)
15218 error (_("unexpected member functions in Ada type"));
15220 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15221 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15223 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15225 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15227 struct fnfieldlist &nf = fip->fnfieldlists[i];
15228 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15230 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15231 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15232 fn_flp->fn_fields = (struct fn_field *)
15233 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15235 for (int k = 0; k < nf.fnfields.size (); ++k)
15236 fn_flp->fn_fields[k] = nf.fnfields[k];
15239 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15242 /* Returns non-zero if NAME is the name of a vtable member in CU's
15243 language, zero otherwise. */
15245 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15247 static const char vptr[] = "_vptr";
15249 /* Look for the C++ form of the vtable. */
15250 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15256 /* GCC outputs unnamed structures that are really pointers to member
15257 functions, with the ABI-specified layout. If TYPE describes
15258 such a structure, smash it into a member function type.
15260 GCC shouldn't do this; it should just output pointer to member DIEs.
15261 This is GCC PR debug/28767. */
15264 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15266 struct type *pfn_type, *self_type, *new_type;
15268 /* Check for a structure with no name and two children. */
15269 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15272 /* Check for __pfn and __delta members. */
15273 if (TYPE_FIELD_NAME (type, 0) == NULL
15274 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15275 || TYPE_FIELD_NAME (type, 1) == NULL
15276 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15279 /* Find the type of the method. */
15280 pfn_type = TYPE_FIELD_TYPE (type, 0);
15281 if (pfn_type == NULL
15282 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15283 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15286 /* Look for the "this" argument. */
15287 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15288 if (TYPE_NFIELDS (pfn_type) == 0
15289 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15290 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15293 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15294 new_type = alloc_type (objfile);
15295 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15296 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15297 TYPE_VARARGS (pfn_type));
15298 smash_to_methodptr_type (type, new_type);
15301 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15302 appropriate error checking and issuing complaints if there is a
15306 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15308 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15310 if (attr == nullptr)
15313 if (!attr->form_is_constant ())
15315 complaint (_("DW_AT_alignment must have constant form"
15316 " - DIE at %s [in module %s]"),
15317 sect_offset_str (die->sect_off),
15318 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15323 if (attr->form == DW_FORM_sdata)
15325 LONGEST val = DW_SND (attr);
15328 complaint (_("DW_AT_alignment value must not be negative"
15329 " - DIE at %s [in module %s]"),
15330 sect_offset_str (die->sect_off),
15331 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15337 align = DW_UNSND (attr);
15341 complaint (_("DW_AT_alignment value must not be zero"
15342 " - DIE at %s [in module %s]"),
15343 sect_offset_str (die->sect_off),
15344 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15347 if ((align & (align - 1)) != 0)
15349 complaint (_("DW_AT_alignment value must be a power of 2"
15350 " - DIE at %s [in module %s]"),
15351 sect_offset_str (die->sect_off),
15352 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15359 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15360 the alignment for TYPE. */
15363 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15366 if (!set_type_align (type, get_alignment (cu, die)))
15367 complaint (_("DW_AT_alignment value too large"
15368 " - DIE at %s [in module %s]"),
15369 sect_offset_str (die->sect_off),
15370 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15373 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15374 constant for a type, according to DWARF5 spec, Table 5.5. */
15377 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15382 case DW_CC_pass_by_reference:
15383 case DW_CC_pass_by_value:
15387 complaint (_("unrecognized DW_AT_calling_convention value "
15388 "(%s) for a type"), pulongest (value));
15393 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15394 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15395 also according to GNU-specific values (see include/dwarf2.h). */
15398 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15403 case DW_CC_program:
15407 case DW_CC_GNU_renesas_sh:
15408 case DW_CC_GNU_borland_fastcall_i386:
15409 case DW_CC_GDB_IBM_OpenCL:
15413 complaint (_("unrecognized DW_AT_calling_convention value "
15414 "(%s) for a subroutine"), pulongest (value));
15419 /* Called when we find the DIE that starts a structure or union scope
15420 (definition) to create a type for the structure or union. Fill in
15421 the type's name and general properties; the members will not be
15422 processed until process_structure_scope. A symbol table entry for
15423 the type will also not be done until process_structure_scope (assuming
15424 the type has a name).
15426 NOTE: we need to call these functions regardless of whether or not the
15427 DIE has a DW_AT_name attribute, since it might be an anonymous
15428 structure or union. This gets the type entered into our set of
15429 user defined types. */
15431 static struct type *
15432 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15434 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15436 struct attribute *attr;
15439 /* If the definition of this type lives in .debug_types, read that type.
15440 Don't follow DW_AT_specification though, that will take us back up
15441 the chain and we want to go down. */
15442 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15443 if (attr != nullptr)
15445 type = get_DW_AT_signature_type (die, attr, cu);
15447 /* The type's CU may not be the same as CU.
15448 Ensure TYPE is recorded with CU in die_type_hash. */
15449 return set_die_type (die, type, cu);
15452 type = alloc_type (objfile);
15453 INIT_CPLUS_SPECIFIC (type);
15455 name = dwarf2_name (die, cu);
15458 if (cu->language == language_cplus
15459 || cu->language == language_d
15460 || cu->language == language_rust)
15462 const char *full_name = dwarf2_full_name (name, die, cu);
15464 /* dwarf2_full_name might have already finished building the DIE's
15465 type. If so, there is no need to continue. */
15466 if (get_die_type (die, cu) != NULL)
15467 return get_die_type (die, cu);
15469 TYPE_NAME (type) = full_name;
15473 /* The name is already allocated along with this objfile, so
15474 we don't need to duplicate it for the type. */
15475 TYPE_NAME (type) = name;
15479 if (die->tag == DW_TAG_structure_type)
15481 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15483 else if (die->tag == DW_TAG_union_type)
15485 TYPE_CODE (type) = TYPE_CODE_UNION;
15487 else if (die->tag == DW_TAG_variant_part)
15489 TYPE_CODE (type) = TYPE_CODE_UNION;
15490 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15494 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15497 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15498 TYPE_DECLARED_CLASS (type) = 1;
15500 /* Store the calling convention in the type if it's available in
15501 the die. Otherwise the calling convention remains set to
15502 the default value DW_CC_normal. */
15503 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15504 if (attr != nullptr
15505 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15507 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15508 TYPE_CPLUS_CALLING_CONVENTION (type)
15509 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15512 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15513 if (attr != nullptr)
15515 if (attr->form_is_constant ())
15516 TYPE_LENGTH (type) = DW_UNSND (attr);
15519 /* For the moment, dynamic type sizes are not supported
15520 by GDB's struct type. The actual size is determined
15521 on-demand when resolving the type of a given object,
15522 so set the type's length to zero for now. Otherwise,
15523 we record an expression as the length, and that expression
15524 could lead to a very large value, which could eventually
15525 lead to us trying to allocate that much memory when creating
15526 a value of that type. */
15527 TYPE_LENGTH (type) = 0;
15532 TYPE_LENGTH (type) = 0;
15535 maybe_set_alignment (cu, die, type);
15537 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15539 /* ICC<14 does not output the required DW_AT_declaration on
15540 incomplete types, but gives them a size of zero. */
15541 TYPE_STUB (type) = 1;
15544 TYPE_STUB_SUPPORTED (type) = 1;
15546 if (die_is_declaration (die, cu))
15547 TYPE_STUB (type) = 1;
15548 else if (attr == NULL && die->child == NULL
15549 && producer_is_realview (cu->producer))
15550 /* RealView does not output the required DW_AT_declaration
15551 on incomplete types. */
15552 TYPE_STUB (type) = 1;
15554 /* We need to add the type field to the die immediately so we don't
15555 infinitely recurse when dealing with pointers to the structure
15556 type within the structure itself. */
15557 set_die_type (die, type, cu);
15559 /* set_die_type should be already done. */
15560 set_descriptive_type (type, die, cu);
15565 /* A helper for process_structure_scope that handles a single member
15569 handle_struct_member_die (struct die_info *child_die, struct type *type,
15570 struct field_info *fi,
15571 std::vector<struct symbol *> *template_args,
15572 struct dwarf2_cu *cu)
15574 if (child_die->tag == DW_TAG_member
15575 || child_die->tag == DW_TAG_variable
15576 || child_die->tag == DW_TAG_variant_part)
15578 /* NOTE: carlton/2002-11-05: A C++ static data member
15579 should be a DW_TAG_member that is a declaration, but
15580 all versions of G++ as of this writing (so through at
15581 least 3.2.1) incorrectly generate DW_TAG_variable
15582 tags for them instead. */
15583 dwarf2_add_field (fi, child_die, cu);
15585 else if (child_die->tag == DW_TAG_subprogram)
15587 /* Rust doesn't have member functions in the C++ sense.
15588 However, it does emit ordinary functions as children
15589 of a struct DIE. */
15590 if (cu->language == language_rust)
15591 read_func_scope (child_die, cu);
15594 /* C++ member function. */
15595 dwarf2_add_member_fn (fi, child_die, type, cu);
15598 else if (child_die->tag == DW_TAG_inheritance)
15600 /* C++ base class field. */
15601 dwarf2_add_field (fi, child_die, cu);
15603 else if (type_can_define_types (child_die))
15604 dwarf2_add_type_defn (fi, child_die, cu);
15605 else if (child_die->tag == DW_TAG_template_type_param
15606 || child_die->tag == DW_TAG_template_value_param)
15608 struct symbol *arg = new_symbol (child_die, NULL, cu);
15611 template_args->push_back (arg);
15613 else if (child_die->tag == DW_TAG_variant)
15615 /* In a variant we want to get the discriminant and also add a
15616 field for our sole member child. */
15617 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15619 for (die_info *variant_child = child_die->child;
15620 variant_child != NULL;
15621 variant_child = sibling_die (variant_child))
15623 if (variant_child->tag == DW_TAG_member)
15625 handle_struct_member_die (variant_child, type, fi,
15626 template_args, cu);
15627 /* Only handle the one. */
15632 /* We don't handle this but we might as well report it if we see
15634 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15635 complaint (_("DW_AT_discr_list is not supported yet"
15636 " - DIE at %s [in module %s]"),
15637 sect_offset_str (child_die->sect_off),
15638 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15640 /* The first field was just added, so we can stash the
15641 discriminant there. */
15642 gdb_assert (!fi->fields.empty ());
15644 fi->fields.back ().variant.default_branch = true;
15646 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15650 /* Finish creating a structure or union type, including filling in
15651 its members and creating a symbol for it. */
15654 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15656 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15657 struct die_info *child_die;
15660 type = get_die_type (die, cu);
15662 type = read_structure_type (die, cu);
15664 /* When reading a DW_TAG_variant_part, we need to notice when we
15665 read the discriminant member, so we can record it later in the
15666 discriminant_info. */
15667 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15668 sect_offset discr_offset {};
15669 bool has_template_parameters = false;
15671 if (is_variant_part)
15673 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15676 /* Maybe it's a univariant form, an extension we support.
15677 In this case arrange not to check the offset. */
15678 is_variant_part = false;
15680 else if (discr->form_is_ref ())
15682 struct dwarf2_cu *target_cu = cu;
15683 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15685 discr_offset = target_die->sect_off;
15689 complaint (_("DW_AT_discr does not have DIE reference form"
15690 " - DIE at %s [in module %s]"),
15691 sect_offset_str (die->sect_off),
15692 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15693 is_variant_part = false;
15697 if (die->child != NULL && ! die_is_declaration (die, cu))
15699 struct field_info fi;
15700 std::vector<struct symbol *> template_args;
15702 child_die = die->child;
15704 while (child_die && child_die->tag)
15706 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15708 if (is_variant_part && discr_offset == child_die->sect_off)
15709 fi.fields.back ().variant.is_discriminant = true;
15711 child_die = sibling_die (child_die);
15714 /* Attach template arguments to type. */
15715 if (!template_args.empty ())
15717 has_template_parameters = true;
15718 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15719 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15720 TYPE_TEMPLATE_ARGUMENTS (type)
15721 = XOBNEWVEC (&objfile->objfile_obstack,
15723 TYPE_N_TEMPLATE_ARGUMENTS (type));
15724 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15725 template_args.data (),
15726 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15727 * sizeof (struct symbol *)));
15730 /* Attach fields and member functions to the type. */
15732 dwarf2_attach_fields_to_type (&fi, type, cu);
15733 if (!fi.fnfieldlists.empty ())
15735 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15737 /* Get the type which refers to the base class (possibly this
15738 class itself) which contains the vtable pointer for the current
15739 class from the DW_AT_containing_type attribute. This use of
15740 DW_AT_containing_type is a GNU extension. */
15742 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15744 struct type *t = die_containing_type (die, cu);
15746 set_type_vptr_basetype (type, t);
15751 /* Our own class provides vtbl ptr. */
15752 for (i = TYPE_NFIELDS (t) - 1;
15753 i >= TYPE_N_BASECLASSES (t);
15756 const char *fieldname = TYPE_FIELD_NAME (t, i);
15758 if (is_vtable_name (fieldname, cu))
15760 set_type_vptr_fieldno (type, i);
15765 /* Complain if virtual function table field not found. */
15766 if (i < TYPE_N_BASECLASSES (t))
15767 complaint (_("virtual function table pointer "
15768 "not found when defining class '%s'"),
15769 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15773 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15776 else if (cu->producer
15777 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15779 /* The IBM XLC compiler does not provide direct indication
15780 of the containing type, but the vtable pointer is
15781 always named __vfp. */
15785 for (i = TYPE_NFIELDS (type) - 1;
15786 i >= TYPE_N_BASECLASSES (type);
15789 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15791 set_type_vptr_fieldno (type, i);
15792 set_type_vptr_basetype (type, type);
15799 /* Copy fi.typedef_field_list linked list elements content into the
15800 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15801 if (!fi.typedef_field_list.empty ())
15803 int count = fi.typedef_field_list.size ();
15805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15806 TYPE_TYPEDEF_FIELD_ARRAY (type)
15807 = ((struct decl_field *)
15809 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15810 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15812 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15813 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15816 /* Copy fi.nested_types_list linked list elements content into the
15817 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15818 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15820 int count = fi.nested_types_list.size ();
15822 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15823 TYPE_NESTED_TYPES_ARRAY (type)
15824 = ((struct decl_field *)
15825 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15826 TYPE_NESTED_TYPES_COUNT (type) = count;
15828 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15829 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15833 quirk_gcc_member_function_pointer (type, objfile);
15834 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15835 cu->rust_unions.push_back (type);
15837 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15838 snapshots) has been known to create a die giving a declaration
15839 for a class that has, as a child, a die giving a definition for a
15840 nested class. So we have to process our children even if the
15841 current die is a declaration. Normally, of course, a declaration
15842 won't have any children at all. */
15844 child_die = die->child;
15846 while (child_die != NULL && child_die->tag)
15848 if (child_die->tag == DW_TAG_member
15849 || child_die->tag == DW_TAG_variable
15850 || child_die->tag == DW_TAG_inheritance
15851 || child_die->tag == DW_TAG_template_value_param
15852 || child_die->tag == DW_TAG_template_type_param)
15857 process_die (child_die, cu);
15859 child_die = sibling_die (child_die);
15862 /* Do not consider external references. According to the DWARF standard,
15863 these DIEs are identified by the fact that they have no byte_size
15864 attribute, and a declaration attribute. */
15865 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15866 || !die_is_declaration (die, cu))
15868 struct symbol *sym = new_symbol (die, type, cu);
15870 if (has_template_parameters)
15872 struct symtab *symtab;
15873 if (sym != nullptr)
15874 symtab = symbol_symtab (sym);
15875 else if (cu->line_header != nullptr)
15877 /* Any related symtab will do. */
15879 = cu->line_header->file_names ()[0].symtab;
15884 complaint (_("could not find suitable "
15885 "symtab for template parameter"
15886 " - DIE at %s [in module %s]"),
15887 sect_offset_str (die->sect_off),
15888 objfile_name (objfile));
15891 if (symtab != nullptr)
15893 /* Make sure that the symtab is set on the new symbols.
15894 Even though they don't appear in this symtab directly,
15895 other parts of gdb assume that symbols do, and this is
15896 reasonably true. */
15897 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15898 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15904 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15905 update TYPE using some information only available in DIE's children. */
15908 update_enumeration_type_from_children (struct die_info *die,
15910 struct dwarf2_cu *cu)
15912 struct die_info *child_die;
15913 int unsigned_enum = 1;
15917 auto_obstack obstack;
15919 for (child_die = die->child;
15920 child_die != NULL && child_die->tag;
15921 child_die = sibling_die (child_die))
15923 struct attribute *attr;
15925 const gdb_byte *bytes;
15926 struct dwarf2_locexpr_baton *baton;
15929 if (child_die->tag != DW_TAG_enumerator)
15932 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15936 name = dwarf2_name (child_die, cu);
15938 name = "<anonymous enumerator>";
15940 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15941 &value, &bytes, &baton);
15947 else if ((mask & value) != 0)
15952 /* If we already know that the enum type is neither unsigned, nor
15953 a flag type, no need to look at the rest of the enumerates. */
15954 if (!unsigned_enum && !flag_enum)
15959 TYPE_UNSIGNED (type) = 1;
15961 TYPE_FLAG_ENUM (type) = 1;
15964 /* Given a DW_AT_enumeration_type die, set its type. We do not
15965 complete the type's fields yet, or create any symbols. */
15967 static struct type *
15968 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15972 struct attribute *attr;
15975 /* If the definition of this type lives in .debug_types, read that type.
15976 Don't follow DW_AT_specification though, that will take us back up
15977 the chain and we want to go down. */
15978 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15979 if (attr != nullptr)
15981 type = get_DW_AT_signature_type (die, attr, cu);
15983 /* The type's CU may not be the same as CU.
15984 Ensure TYPE is recorded with CU in die_type_hash. */
15985 return set_die_type (die, type, cu);
15988 type = alloc_type (objfile);
15990 TYPE_CODE (type) = TYPE_CODE_ENUM;
15991 name = dwarf2_full_name (NULL, die, cu);
15993 TYPE_NAME (type) = name;
15995 attr = dwarf2_attr (die, DW_AT_type, cu);
15998 struct type *underlying_type = die_type (die, cu);
16000 TYPE_TARGET_TYPE (type) = underlying_type;
16003 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16004 if (attr != nullptr)
16006 TYPE_LENGTH (type) = DW_UNSND (attr);
16010 TYPE_LENGTH (type) = 0;
16013 maybe_set_alignment (cu, die, type);
16015 /* The enumeration DIE can be incomplete. In Ada, any type can be
16016 declared as private in the package spec, and then defined only
16017 inside the package body. Such types are known as Taft Amendment
16018 Types. When another package uses such a type, an incomplete DIE
16019 may be generated by the compiler. */
16020 if (die_is_declaration (die, cu))
16021 TYPE_STUB (type) = 1;
16023 /* Finish the creation of this type by using the enum's children.
16024 We must call this even when the underlying type has been provided
16025 so that we can determine if we're looking at a "flag" enum. */
16026 update_enumeration_type_from_children (die, type, cu);
16028 /* If this type has an underlying type that is not a stub, then we
16029 may use its attributes. We always use the "unsigned" attribute
16030 in this situation, because ordinarily we guess whether the type
16031 is unsigned -- but the guess can be wrong and the underlying type
16032 can tell us the reality. However, we defer to a local size
16033 attribute if one exists, because this lets the compiler override
16034 the underlying type if needed. */
16035 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16037 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16038 if (TYPE_LENGTH (type) == 0)
16039 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16040 if (TYPE_RAW_ALIGN (type) == 0
16041 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16042 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16045 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16047 return set_die_type (die, type, cu);
16050 /* Given a pointer to a die which begins an enumeration, process all
16051 the dies that define the members of the enumeration, and create the
16052 symbol for the enumeration type.
16054 NOTE: We reverse the order of the element list. */
16057 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16059 struct type *this_type;
16061 this_type = get_die_type (die, cu);
16062 if (this_type == NULL)
16063 this_type = read_enumeration_type (die, cu);
16065 if (die->child != NULL)
16067 struct die_info *child_die;
16068 struct symbol *sym;
16069 std::vector<struct field> fields;
16072 child_die = die->child;
16073 while (child_die && child_die->tag)
16075 if (child_die->tag != DW_TAG_enumerator)
16077 process_die (child_die, cu);
16081 name = dwarf2_name (child_die, cu);
16084 sym = new_symbol (child_die, this_type, cu);
16086 fields.emplace_back ();
16087 struct field &field = fields.back ();
16089 FIELD_NAME (field) = sym->linkage_name ();
16090 FIELD_TYPE (field) = NULL;
16091 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
16092 FIELD_BITSIZE (field) = 0;
16096 child_die = sibling_die (child_die);
16099 if (!fields.empty ())
16101 TYPE_NFIELDS (this_type) = fields.size ();
16102 TYPE_FIELDS (this_type) = (struct field *)
16103 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
16104 memcpy (TYPE_FIELDS (this_type), fields.data (),
16105 sizeof (struct field) * fields.size ());
16109 /* If we are reading an enum from a .debug_types unit, and the enum
16110 is a declaration, and the enum is not the signatured type in the
16111 unit, then we do not want to add a symbol for it. Adding a
16112 symbol would in some cases obscure the true definition of the
16113 enum, giving users an incomplete type when the definition is
16114 actually available. Note that we do not want to do this for all
16115 enums which are just declarations, because C++0x allows forward
16116 enum declarations. */
16117 if (cu->per_cu->is_debug_types
16118 && die_is_declaration (die, cu))
16120 struct signatured_type *sig_type;
16122 sig_type = (struct signatured_type *) cu->per_cu;
16123 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16124 if (sig_type->type_offset_in_section != die->sect_off)
16128 new_symbol (die, this_type, cu);
16131 /* Extract all information from a DW_TAG_array_type DIE and put it in
16132 the DIE's type field. For now, this only handles one dimensional
16135 static struct type *
16136 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16138 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16139 struct die_info *child_die;
16141 struct type *element_type, *range_type, *index_type;
16142 struct attribute *attr;
16144 struct dynamic_prop *byte_stride_prop = NULL;
16145 unsigned int bit_stride = 0;
16147 element_type = die_type (die, cu);
16149 /* The die_type call above may have already set the type for this DIE. */
16150 type = get_die_type (die, cu);
16154 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16158 struct type *prop_type
16159 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16162 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16163 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16167 complaint (_("unable to read array DW_AT_byte_stride "
16168 " - DIE at %s [in module %s]"),
16169 sect_offset_str (die->sect_off),
16170 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16171 /* Ignore this attribute. We will likely not be able to print
16172 arrays of this type correctly, but there is little we can do
16173 to help if we cannot read the attribute's value. */
16174 byte_stride_prop = NULL;
16178 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16180 bit_stride = DW_UNSND (attr);
16182 /* Irix 6.2 native cc creates array types without children for
16183 arrays with unspecified length. */
16184 if (die->child == NULL)
16186 index_type = objfile_type (objfile)->builtin_int;
16187 range_type = create_static_range_type (NULL, index_type, 0, -1);
16188 type = create_array_type_with_stride (NULL, element_type, range_type,
16189 byte_stride_prop, bit_stride);
16190 return set_die_type (die, type, cu);
16193 std::vector<struct type *> range_types;
16194 child_die = die->child;
16195 while (child_die && child_die->tag)
16197 if (child_die->tag == DW_TAG_subrange_type)
16199 struct type *child_type = read_type_die (child_die, cu);
16201 if (child_type != NULL)
16203 /* The range type was succesfully read. Save it for the
16204 array type creation. */
16205 range_types.push_back (child_type);
16208 child_die = sibling_die (child_die);
16211 /* Dwarf2 dimensions are output from left to right, create the
16212 necessary array types in backwards order. */
16214 type = element_type;
16216 if (read_array_order (die, cu) == DW_ORD_col_major)
16220 while (i < range_types.size ())
16221 type = create_array_type_with_stride (NULL, type, range_types[i++],
16222 byte_stride_prop, bit_stride);
16226 size_t ndim = range_types.size ();
16228 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16229 byte_stride_prop, bit_stride);
16232 /* Understand Dwarf2 support for vector types (like they occur on
16233 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16234 array type. This is not part of the Dwarf2/3 standard yet, but a
16235 custom vendor extension. The main difference between a regular
16236 array and the vector variant is that vectors are passed by value
16238 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16239 if (attr != nullptr)
16240 make_vector_type (type);
16242 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16243 implementation may choose to implement triple vectors using this
16245 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16246 if (attr != nullptr)
16248 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16249 TYPE_LENGTH (type) = DW_UNSND (attr);
16251 complaint (_("DW_AT_byte_size for array type smaller "
16252 "than the total size of elements"));
16255 name = dwarf2_name (die, cu);
16257 TYPE_NAME (type) = name;
16259 maybe_set_alignment (cu, die, type);
16261 /* Install the type in the die. */
16262 set_die_type (die, type, cu);
16264 /* set_die_type should be already done. */
16265 set_descriptive_type (type, die, cu);
16270 static enum dwarf_array_dim_ordering
16271 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16273 struct attribute *attr;
16275 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16277 if (attr != nullptr)
16278 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16280 /* GNU F77 is a special case, as at 08/2004 array type info is the
16281 opposite order to the dwarf2 specification, but data is still
16282 laid out as per normal fortran.
16284 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16285 version checking. */
16287 if (cu->language == language_fortran
16288 && cu->producer && strstr (cu->producer, "GNU F77"))
16290 return DW_ORD_row_major;
16293 switch (cu->language_defn->la_array_ordering)
16295 case array_column_major:
16296 return DW_ORD_col_major;
16297 case array_row_major:
16299 return DW_ORD_row_major;
16303 /* Extract all information from a DW_TAG_set_type DIE and put it in
16304 the DIE's type field. */
16306 static struct type *
16307 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16309 struct type *domain_type, *set_type;
16310 struct attribute *attr;
16312 domain_type = die_type (die, cu);
16314 /* The die_type call above may have already set the type for this DIE. */
16315 set_type = get_die_type (die, cu);
16319 set_type = create_set_type (NULL, domain_type);
16321 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16322 if (attr != nullptr)
16323 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16325 maybe_set_alignment (cu, die, set_type);
16327 return set_die_type (die, set_type, cu);
16330 /* A helper for read_common_block that creates a locexpr baton.
16331 SYM is the symbol which we are marking as computed.
16332 COMMON_DIE is the DIE for the common block.
16333 COMMON_LOC is the location expression attribute for the common
16335 MEMBER_LOC is the location expression attribute for the particular
16336 member of the common block that we are processing.
16337 CU is the CU from which the above come. */
16340 mark_common_block_symbol_computed (struct symbol *sym,
16341 struct die_info *common_die,
16342 struct attribute *common_loc,
16343 struct attribute *member_loc,
16344 struct dwarf2_cu *cu)
16346 struct dwarf2_per_objfile *dwarf2_per_objfile
16347 = cu->per_cu->dwarf2_per_objfile;
16348 struct objfile *objfile = dwarf2_per_objfile->objfile;
16349 struct dwarf2_locexpr_baton *baton;
16351 unsigned int cu_off;
16352 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16353 LONGEST offset = 0;
16355 gdb_assert (common_loc && member_loc);
16356 gdb_assert (common_loc->form_is_block ());
16357 gdb_assert (member_loc->form_is_block ()
16358 || member_loc->form_is_constant ());
16360 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16361 baton->per_cu = cu->per_cu;
16362 gdb_assert (baton->per_cu);
16364 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16366 if (member_loc->form_is_constant ())
16368 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16369 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16372 baton->size += DW_BLOCK (member_loc)->size;
16374 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16377 *ptr++ = DW_OP_call4;
16378 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16379 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16382 if (member_loc->form_is_constant ())
16384 *ptr++ = DW_OP_addr;
16385 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16386 ptr += cu->header.addr_size;
16390 /* We have to copy the data here, because DW_OP_call4 will only
16391 use a DW_AT_location attribute. */
16392 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16393 ptr += DW_BLOCK (member_loc)->size;
16396 *ptr++ = DW_OP_plus;
16397 gdb_assert (ptr - baton->data == baton->size);
16399 SYMBOL_LOCATION_BATON (sym) = baton;
16400 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16403 /* Create appropriate locally-scoped variables for all the
16404 DW_TAG_common_block entries. Also create a struct common_block
16405 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16406 is used to separate the common blocks name namespace from regular
16410 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16412 struct attribute *attr;
16414 attr = dwarf2_attr (die, DW_AT_location, cu);
16415 if (attr != nullptr)
16417 /* Support the .debug_loc offsets. */
16418 if (attr->form_is_block ())
16422 else if (attr->form_is_section_offset ())
16424 dwarf2_complex_location_expr_complaint ();
16429 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16430 "common block member");
16435 if (die->child != NULL)
16437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16438 struct die_info *child_die;
16439 size_t n_entries = 0, size;
16440 struct common_block *common_block;
16441 struct symbol *sym;
16443 for (child_die = die->child;
16444 child_die && child_die->tag;
16445 child_die = sibling_die (child_die))
16448 size = (sizeof (struct common_block)
16449 + (n_entries - 1) * sizeof (struct symbol *));
16451 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16453 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16454 common_block->n_entries = 0;
16456 for (child_die = die->child;
16457 child_die && child_die->tag;
16458 child_die = sibling_die (child_die))
16460 /* Create the symbol in the DW_TAG_common_block block in the current
16462 sym = new_symbol (child_die, NULL, cu);
16465 struct attribute *member_loc;
16467 common_block->contents[common_block->n_entries++] = sym;
16469 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16473 /* GDB has handled this for a long time, but it is
16474 not specified by DWARF. It seems to have been
16475 emitted by gfortran at least as recently as:
16476 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16477 complaint (_("Variable in common block has "
16478 "DW_AT_data_member_location "
16479 "- DIE at %s [in module %s]"),
16480 sect_offset_str (child_die->sect_off),
16481 objfile_name (objfile));
16483 if (member_loc->form_is_section_offset ())
16484 dwarf2_complex_location_expr_complaint ();
16485 else if (member_loc->form_is_constant ()
16486 || member_loc->form_is_block ())
16488 if (attr != nullptr)
16489 mark_common_block_symbol_computed (sym, die, attr,
16493 dwarf2_complex_location_expr_complaint ();
16498 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16499 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16503 /* Create a type for a C++ namespace. */
16505 static struct type *
16506 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16508 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16509 const char *previous_prefix, *name;
16513 /* For extensions, reuse the type of the original namespace. */
16514 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16516 struct die_info *ext_die;
16517 struct dwarf2_cu *ext_cu = cu;
16519 ext_die = dwarf2_extension (die, &ext_cu);
16520 type = read_type_die (ext_die, ext_cu);
16522 /* EXT_CU may not be the same as CU.
16523 Ensure TYPE is recorded with CU in die_type_hash. */
16524 return set_die_type (die, type, cu);
16527 name = namespace_name (die, &is_anonymous, cu);
16529 /* Now build the name of the current namespace. */
16531 previous_prefix = determine_prefix (die, cu);
16532 if (previous_prefix[0] != '\0')
16533 name = typename_concat (&objfile->objfile_obstack,
16534 previous_prefix, name, 0, cu);
16536 /* Create the type. */
16537 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16539 return set_die_type (die, type, cu);
16542 /* Read a namespace scope. */
16545 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16547 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16550 /* Add a symbol associated to this if we haven't seen the namespace
16551 before. Also, add a using directive if it's an anonymous
16554 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16558 type = read_type_die (die, cu);
16559 new_symbol (die, type, cu);
16561 namespace_name (die, &is_anonymous, cu);
16564 const char *previous_prefix = determine_prefix (die, cu);
16566 std::vector<const char *> excludes;
16567 add_using_directive (using_directives (cu),
16568 previous_prefix, TYPE_NAME (type), NULL,
16569 NULL, excludes, 0, &objfile->objfile_obstack);
16573 if (die->child != NULL)
16575 struct die_info *child_die = die->child;
16577 while (child_die && child_die->tag)
16579 process_die (child_die, cu);
16580 child_die = sibling_die (child_die);
16585 /* Read a Fortran module as type. This DIE can be only a declaration used for
16586 imported module. Still we need that type as local Fortran "use ... only"
16587 declaration imports depend on the created type in determine_prefix. */
16589 static struct type *
16590 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16593 const char *module_name;
16596 module_name = dwarf2_name (die, cu);
16597 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16599 return set_die_type (die, type, cu);
16602 /* Read a Fortran module. */
16605 read_module (struct die_info *die, struct dwarf2_cu *cu)
16607 struct die_info *child_die = die->child;
16610 type = read_type_die (die, cu);
16611 new_symbol (die, type, cu);
16613 while (child_die && child_die->tag)
16615 process_die (child_die, cu);
16616 child_die = sibling_die (child_die);
16620 /* Return the name of the namespace represented by DIE. Set
16621 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16624 static const char *
16625 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16627 struct die_info *current_die;
16628 const char *name = NULL;
16630 /* Loop through the extensions until we find a name. */
16632 for (current_die = die;
16633 current_die != NULL;
16634 current_die = dwarf2_extension (die, &cu))
16636 /* We don't use dwarf2_name here so that we can detect the absence
16637 of a name -> anonymous namespace. */
16638 name = dwarf2_string_attr (die, DW_AT_name, cu);
16644 /* Is it an anonymous namespace? */
16646 *is_anonymous = (name == NULL);
16648 name = CP_ANONYMOUS_NAMESPACE_STR;
16653 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16654 the user defined type vector. */
16656 static struct type *
16657 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16659 struct gdbarch *gdbarch
16660 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16661 struct comp_unit_head *cu_header = &cu->header;
16663 struct attribute *attr_byte_size;
16664 struct attribute *attr_address_class;
16665 int byte_size, addr_class;
16666 struct type *target_type;
16668 target_type = die_type (die, cu);
16670 /* The die_type call above may have already set the type for this DIE. */
16671 type = get_die_type (die, cu);
16675 type = lookup_pointer_type (target_type);
16677 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16678 if (attr_byte_size)
16679 byte_size = DW_UNSND (attr_byte_size);
16681 byte_size = cu_header->addr_size;
16683 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16684 if (attr_address_class)
16685 addr_class = DW_UNSND (attr_address_class);
16687 addr_class = DW_ADDR_none;
16689 ULONGEST alignment = get_alignment (cu, die);
16691 /* If the pointer size, alignment, or address class is different
16692 than the default, create a type variant marked as such and set
16693 the length accordingly. */
16694 if (TYPE_LENGTH (type) != byte_size
16695 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16696 && alignment != TYPE_RAW_ALIGN (type))
16697 || addr_class != DW_ADDR_none)
16699 if (gdbarch_address_class_type_flags_p (gdbarch))
16703 type_flags = gdbarch_address_class_type_flags
16704 (gdbarch, byte_size, addr_class);
16705 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16707 type = make_type_with_address_space (type, type_flags);
16709 else if (TYPE_LENGTH (type) != byte_size)
16711 complaint (_("invalid pointer size %d"), byte_size);
16713 else if (TYPE_RAW_ALIGN (type) != alignment)
16715 complaint (_("Invalid DW_AT_alignment"
16716 " - DIE at %s [in module %s]"),
16717 sect_offset_str (die->sect_off),
16718 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16722 /* Should we also complain about unhandled address classes? */
16726 TYPE_LENGTH (type) = byte_size;
16727 set_type_align (type, alignment);
16728 return set_die_type (die, type, cu);
16731 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16732 the user defined type vector. */
16734 static struct type *
16735 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16738 struct type *to_type;
16739 struct type *domain;
16741 to_type = die_type (die, cu);
16742 domain = die_containing_type (die, cu);
16744 /* The calls above may have already set the type for this DIE. */
16745 type = get_die_type (die, cu);
16749 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16750 type = lookup_methodptr_type (to_type);
16751 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16753 struct type *new_type
16754 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16756 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16757 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16758 TYPE_VARARGS (to_type));
16759 type = lookup_methodptr_type (new_type);
16762 type = lookup_memberptr_type (to_type, domain);
16764 return set_die_type (die, type, cu);
16767 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16768 the user defined type vector. */
16770 static struct type *
16771 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16772 enum type_code refcode)
16774 struct comp_unit_head *cu_header = &cu->header;
16775 struct type *type, *target_type;
16776 struct attribute *attr;
16778 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16780 target_type = die_type (die, cu);
16782 /* The die_type call above may have already set the type for this DIE. */
16783 type = get_die_type (die, cu);
16787 type = lookup_reference_type (target_type, refcode);
16788 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16789 if (attr != nullptr)
16791 TYPE_LENGTH (type) = DW_UNSND (attr);
16795 TYPE_LENGTH (type) = cu_header->addr_size;
16797 maybe_set_alignment (cu, die, type);
16798 return set_die_type (die, type, cu);
16801 /* Add the given cv-qualifiers to the element type of the array. GCC
16802 outputs DWARF type qualifiers that apply to an array, not the
16803 element type. But GDB relies on the array element type to carry
16804 the cv-qualifiers. This mimics section 6.7.3 of the C99
16807 static struct type *
16808 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16809 struct type *base_type, int cnst, int voltl)
16811 struct type *el_type, *inner_array;
16813 base_type = copy_type (base_type);
16814 inner_array = base_type;
16816 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16818 TYPE_TARGET_TYPE (inner_array) =
16819 copy_type (TYPE_TARGET_TYPE (inner_array));
16820 inner_array = TYPE_TARGET_TYPE (inner_array);
16823 el_type = TYPE_TARGET_TYPE (inner_array);
16824 cnst |= TYPE_CONST (el_type);
16825 voltl |= TYPE_VOLATILE (el_type);
16826 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16828 return set_die_type (die, base_type, cu);
16831 static struct type *
16832 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16834 struct type *base_type, *cv_type;
16836 base_type = die_type (die, cu);
16838 /* The die_type call above may have already set the type for this DIE. */
16839 cv_type = get_die_type (die, cu);
16843 /* In case the const qualifier is applied to an array type, the element type
16844 is so qualified, not the array type (section 6.7.3 of C99). */
16845 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16846 return add_array_cv_type (die, cu, base_type, 1, 0);
16848 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16849 return set_die_type (die, cv_type, cu);
16852 static struct type *
16853 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16855 struct type *base_type, *cv_type;
16857 base_type = die_type (die, cu);
16859 /* The die_type call above may have already set the type for this DIE. */
16860 cv_type = get_die_type (die, cu);
16864 /* In case the volatile qualifier is applied to an array type, the
16865 element type is so qualified, not the array type (section 6.7.3
16867 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16868 return add_array_cv_type (die, cu, base_type, 0, 1);
16870 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16871 return set_die_type (die, cv_type, cu);
16874 /* Handle DW_TAG_restrict_type. */
16876 static struct type *
16877 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16879 struct type *base_type, *cv_type;
16881 base_type = die_type (die, cu);
16883 /* The die_type call above may have already set the type for this DIE. */
16884 cv_type = get_die_type (die, cu);
16888 cv_type = make_restrict_type (base_type);
16889 return set_die_type (die, cv_type, cu);
16892 /* Handle DW_TAG_atomic_type. */
16894 static struct type *
16895 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16897 struct type *base_type, *cv_type;
16899 base_type = die_type (die, cu);
16901 /* The die_type call above may have already set the type for this DIE. */
16902 cv_type = get_die_type (die, cu);
16906 cv_type = make_atomic_type (base_type);
16907 return set_die_type (die, cv_type, cu);
16910 /* Extract all information from a DW_TAG_string_type DIE and add to
16911 the user defined type vector. It isn't really a user defined type,
16912 but it behaves like one, with other DIE's using an AT_user_def_type
16913 attribute to reference it. */
16915 static struct type *
16916 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16918 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16919 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16920 struct type *type, *range_type, *index_type, *char_type;
16921 struct attribute *attr;
16922 struct dynamic_prop prop;
16923 bool length_is_constant = true;
16926 /* There are a couple of places where bit sizes might be made use of
16927 when parsing a DW_TAG_string_type, however, no producer that we know
16928 of make use of these. Handling bit sizes that are a multiple of the
16929 byte size is easy enough, but what about other bit sizes? Lets deal
16930 with that problem when we have to. Warn about these attributes being
16931 unsupported, then parse the type and ignore them like we always
16933 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16934 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16936 static bool warning_printed = false;
16937 if (!warning_printed)
16939 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16940 "currently supported on DW_TAG_string_type."));
16941 warning_printed = true;
16945 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16946 if (attr != nullptr && !attr->form_is_constant ())
16948 /* The string length describes the location at which the length of
16949 the string can be found. The size of the length field can be
16950 specified with one of the attributes below. */
16951 struct type *prop_type;
16952 struct attribute *len
16953 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16954 if (len == nullptr)
16955 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16956 if (len != nullptr && len->form_is_constant ())
16958 /* Pass 0 as the default as we know this attribute is constant
16959 and the default value will not be returned. */
16960 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16961 prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true);
16965 /* If the size is not specified then we assume it is the size of
16966 an address on this target. */
16967 prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true);
16970 /* Convert the attribute into a dynamic property. */
16971 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16974 length_is_constant = false;
16976 else if (attr != nullptr)
16978 /* This DW_AT_string_length just contains the length with no
16979 indirection. There's no need to create a dynamic property in this
16980 case. Pass 0 for the default value as we know it will not be
16981 returned in this case. */
16982 length = dwarf2_get_attr_constant_value (attr, 0);
16984 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16986 /* We don't currently support non-constant byte sizes for strings. */
16987 length = dwarf2_get_attr_constant_value (attr, 1);
16991 /* Use 1 as a fallback length if we have nothing else. */
16995 index_type = objfile_type (objfile)->builtin_int;
16996 if (length_is_constant)
16997 range_type = create_static_range_type (NULL, index_type, 1, length);
17000 struct dynamic_prop low_bound;
17002 low_bound.kind = PROP_CONST;
17003 low_bound.data.const_val = 1;
17004 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17006 char_type = language_string_char_type (cu->language_defn, gdbarch);
17007 type = create_string_type (NULL, char_type, range_type);
17009 return set_die_type (die, type, cu);
17012 /* Assuming that DIE corresponds to a function, returns nonzero
17013 if the function is prototyped. */
17016 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17018 struct attribute *attr;
17020 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17021 if (attr && (DW_UNSND (attr) != 0))
17024 /* The DWARF standard implies that the DW_AT_prototyped attribute
17025 is only meaningful for C, but the concept also extends to other
17026 languages that allow unprototyped functions (Eg: Objective C).
17027 For all other languages, assume that functions are always
17029 if (cu->language != language_c
17030 && cu->language != language_objc
17031 && cu->language != language_opencl)
17034 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17035 prototyped and unprototyped functions; default to prototyped,
17036 since that is more common in modern code (and RealView warns
17037 about unprototyped functions). */
17038 if (producer_is_realview (cu->producer))
17044 /* Handle DIES due to C code like:
17048 int (*funcp)(int a, long l);
17052 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17054 static struct type *
17055 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17058 struct type *type; /* Type that this function returns. */
17059 struct type *ftype; /* Function that returns above type. */
17060 struct attribute *attr;
17062 type = die_type (die, cu);
17064 /* The die_type call above may have already set the type for this DIE. */
17065 ftype = get_die_type (die, cu);
17069 ftype = lookup_function_type (type);
17071 if (prototyped_function_p (die, cu))
17072 TYPE_PROTOTYPED (ftype) = 1;
17074 /* Store the calling convention in the type if it's available in
17075 the subroutine die. Otherwise set the calling convention to
17076 the default value DW_CC_normal. */
17077 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17078 if (attr != nullptr
17079 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17080 TYPE_CALLING_CONVENTION (ftype)
17081 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17082 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17083 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17085 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17087 /* Record whether the function returns normally to its caller or not
17088 if the DWARF producer set that information. */
17089 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17090 if (attr && (DW_UNSND (attr) != 0))
17091 TYPE_NO_RETURN (ftype) = 1;
17093 /* We need to add the subroutine type to the die immediately so
17094 we don't infinitely recurse when dealing with parameters
17095 declared as the same subroutine type. */
17096 set_die_type (die, ftype, cu);
17098 if (die->child != NULL)
17100 struct type *void_type = objfile_type (objfile)->builtin_void;
17101 struct die_info *child_die;
17102 int nparams, iparams;
17104 /* Count the number of parameters.
17105 FIXME: GDB currently ignores vararg functions, but knows about
17106 vararg member functions. */
17108 child_die = die->child;
17109 while (child_die && child_die->tag)
17111 if (child_die->tag == DW_TAG_formal_parameter)
17113 else if (child_die->tag == DW_TAG_unspecified_parameters)
17114 TYPE_VARARGS (ftype) = 1;
17115 child_die = sibling_die (child_die);
17118 /* Allocate storage for parameters and fill them in. */
17119 TYPE_NFIELDS (ftype) = nparams;
17120 TYPE_FIELDS (ftype) = (struct field *)
17121 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17123 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17124 even if we error out during the parameters reading below. */
17125 for (iparams = 0; iparams < nparams; iparams++)
17126 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17129 child_die = die->child;
17130 while (child_die && child_die->tag)
17132 if (child_die->tag == DW_TAG_formal_parameter)
17134 struct type *arg_type;
17136 /* DWARF version 2 has no clean way to discern C++
17137 static and non-static member functions. G++ helps
17138 GDB by marking the first parameter for non-static
17139 member functions (which is the this pointer) as
17140 artificial. We pass this information to
17141 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17143 DWARF version 3 added DW_AT_object_pointer, which GCC
17144 4.5 does not yet generate. */
17145 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17146 if (attr != nullptr)
17147 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17149 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17150 arg_type = die_type (child_die, cu);
17152 /* RealView does not mark THIS as const, which the testsuite
17153 expects. GCC marks THIS as const in method definitions,
17154 but not in the class specifications (GCC PR 43053). */
17155 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17156 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17159 struct dwarf2_cu *arg_cu = cu;
17160 const char *name = dwarf2_name (child_die, cu);
17162 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17163 if (attr != nullptr)
17165 /* If the compiler emits this, use it. */
17166 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17169 else if (name && strcmp (name, "this") == 0)
17170 /* Function definitions will have the argument names. */
17172 else if (name == NULL && iparams == 0)
17173 /* Declarations may not have the names, so like
17174 elsewhere in GDB, assume an artificial first
17175 argument is "this". */
17179 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17183 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17186 child_die = sibling_die (child_die);
17193 static struct type *
17194 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17196 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17197 const char *name = NULL;
17198 struct type *this_type, *target_type;
17200 name = dwarf2_full_name (NULL, die, cu);
17201 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17202 TYPE_TARGET_STUB (this_type) = 1;
17203 set_die_type (die, this_type, cu);
17204 target_type = die_type (die, cu);
17205 if (target_type != this_type)
17206 TYPE_TARGET_TYPE (this_type) = target_type;
17209 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17210 spec and cause infinite loops in GDB. */
17211 complaint (_("Self-referential DW_TAG_typedef "
17212 "- DIE at %s [in module %s]"),
17213 sect_offset_str (die->sect_off), objfile_name (objfile));
17214 TYPE_TARGET_TYPE (this_type) = NULL;
17219 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17220 (which may be different from NAME) to the architecture back-end to allow
17221 it to guess the correct format if necessary. */
17223 static struct type *
17224 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17225 const char *name_hint, enum bfd_endian byte_order)
17227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17228 const struct floatformat **format;
17231 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17233 type = init_float_type (objfile, bits, name, format, byte_order);
17235 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17240 /* Allocate an integer type of size BITS and name NAME. */
17242 static struct type *
17243 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17244 int bits, int unsigned_p, const char *name)
17248 /* Versions of Intel's C Compiler generate an integer type called "void"
17249 instead of using DW_TAG_unspecified_type. This has been seen on
17250 at least versions 14, 17, and 18. */
17251 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17252 && strcmp (name, "void") == 0)
17253 type = objfile_type (objfile)->builtin_void;
17255 type = init_integer_type (objfile, bits, unsigned_p, name);
17260 /* Initialise and return a floating point type of size BITS suitable for
17261 use as a component of a complex number. The NAME_HINT is passed through
17262 when initialising the floating point type and is the name of the complex
17265 As DWARF doesn't currently provide an explicit name for the components
17266 of a complex number, but it can be helpful to have these components
17267 named, we try to select a suitable name based on the size of the
17269 static struct type *
17270 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17271 struct objfile *objfile,
17272 int bits, const char *name_hint,
17273 enum bfd_endian byte_order)
17275 gdbarch *gdbarch = get_objfile_arch (objfile);
17276 struct type *tt = nullptr;
17278 /* Try to find a suitable floating point builtin type of size BITS.
17279 We're going to use the name of this type as the name for the complex
17280 target type that we are about to create. */
17281 switch (cu->language)
17283 case language_fortran:
17287 tt = builtin_f_type (gdbarch)->builtin_real;
17290 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17292 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17294 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17302 tt = builtin_type (gdbarch)->builtin_float;
17305 tt = builtin_type (gdbarch)->builtin_double;
17307 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17309 tt = builtin_type (gdbarch)->builtin_long_double;
17315 /* If the type we found doesn't match the size we were looking for, then
17316 pretend we didn't find a type at all, the complex target type we
17317 create will then be nameless. */
17318 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17321 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17322 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17325 /* Find a representation of a given base type and install
17326 it in the TYPE field of the die. */
17328 static struct type *
17329 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17331 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17333 struct attribute *attr;
17334 int encoding = 0, bits = 0;
17338 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17339 if (attr != nullptr)
17340 encoding = DW_UNSND (attr);
17341 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17342 if (attr != nullptr)
17343 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17344 name = dwarf2_name (die, cu);
17346 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17348 arch = get_objfile_arch (objfile);
17349 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17351 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17354 int endianity = DW_UNSND (attr);
17359 byte_order = BFD_ENDIAN_BIG;
17361 case DW_END_little:
17362 byte_order = BFD_ENDIAN_LITTLE;
17365 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17372 case DW_ATE_address:
17373 /* Turn DW_ATE_address into a void * pointer. */
17374 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17375 type = init_pointer_type (objfile, bits, name, type);
17377 case DW_ATE_boolean:
17378 type = init_boolean_type (objfile, bits, 1, name);
17380 case DW_ATE_complex_float:
17381 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17383 type = init_complex_type (objfile, name, type);
17385 case DW_ATE_decimal_float:
17386 type = init_decfloat_type (objfile, bits, name);
17389 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17391 case DW_ATE_signed:
17392 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17394 case DW_ATE_unsigned:
17395 if (cu->language == language_fortran
17397 && startswith (name, "character("))
17398 type = init_character_type (objfile, bits, 1, name);
17400 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17402 case DW_ATE_signed_char:
17403 if (cu->language == language_ada || cu->language == language_m2
17404 || cu->language == language_pascal
17405 || cu->language == language_fortran)
17406 type = init_character_type (objfile, bits, 0, name);
17408 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17410 case DW_ATE_unsigned_char:
17411 if (cu->language == language_ada || cu->language == language_m2
17412 || cu->language == language_pascal
17413 || cu->language == language_fortran
17414 || cu->language == language_rust)
17415 type = init_character_type (objfile, bits, 1, name);
17417 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17422 type = builtin_type (arch)->builtin_char16;
17423 else if (bits == 32)
17424 type = builtin_type (arch)->builtin_char32;
17427 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17429 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17431 return set_die_type (die, type, cu);
17436 complaint (_("unsupported DW_AT_encoding: '%s'"),
17437 dwarf_type_encoding_name (encoding));
17438 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17442 if (name && strcmp (name, "char") == 0)
17443 TYPE_NOSIGN (type) = 1;
17445 maybe_set_alignment (cu, die, type);
17447 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17449 return set_die_type (die, type, cu);
17452 /* Parse dwarf attribute if it's a block, reference or constant and put the
17453 resulting value of the attribute into struct bound_prop.
17454 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17457 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17458 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17459 struct type *default_type)
17461 struct dwarf2_property_baton *baton;
17462 struct obstack *obstack
17463 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17465 gdb_assert (default_type != NULL);
17467 if (attr == NULL || prop == NULL)
17470 if (attr->form_is_block ())
17472 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17473 baton->property_type = default_type;
17474 baton->locexpr.per_cu = cu->per_cu;
17475 baton->locexpr.size = DW_BLOCK (attr)->size;
17476 baton->locexpr.data = DW_BLOCK (attr)->data;
17477 switch (attr->name)
17479 case DW_AT_string_length:
17480 baton->locexpr.is_reference = true;
17483 baton->locexpr.is_reference = false;
17486 prop->data.baton = baton;
17487 prop->kind = PROP_LOCEXPR;
17488 gdb_assert (prop->data.baton != NULL);
17490 else if (attr->form_is_ref ())
17492 struct dwarf2_cu *target_cu = cu;
17493 struct die_info *target_die;
17494 struct attribute *target_attr;
17496 target_die = follow_die_ref (die, attr, &target_cu);
17497 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17498 if (target_attr == NULL)
17499 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17501 if (target_attr == NULL)
17504 switch (target_attr->name)
17506 case DW_AT_location:
17507 if (target_attr->form_is_section_offset ())
17509 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17510 baton->property_type = die_type (target_die, target_cu);
17511 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17512 prop->data.baton = baton;
17513 prop->kind = PROP_LOCLIST;
17514 gdb_assert (prop->data.baton != NULL);
17516 else if (target_attr->form_is_block ())
17518 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17519 baton->property_type = die_type (target_die, target_cu);
17520 baton->locexpr.per_cu = cu->per_cu;
17521 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17522 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17523 baton->locexpr.is_reference = true;
17524 prop->data.baton = baton;
17525 prop->kind = PROP_LOCEXPR;
17526 gdb_assert (prop->data.baton != NULL);
17530 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17531 "dynamic property");
17535 case DW_AT_data_member_location:
17539 if (!handle_data_member_location (target_die, target_cu,
17543 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17544 baton->property_type = read_type_die (target_die->parent,
17546 baton->offset_info.offset = offset;
17547 baton->offset_info.type = die_type (target_die, target_cu);
17548 prop->data.baton = baton;
17549 prop->kind = PROP_ADDR_OFFSET;
17554 else if (attr->form_is_constant ())
17556 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17557 prop->kind = PROP_CONST;
17561 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17562 dwarf2_name (die, cu));
17569 /* Find an integer type SIZE_IN_BYTES bytes in size and return it.
17570 UNSIGNED_P controls if the integer is unsigned or not. */
17572 static struct type *
17573 dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu,
17574 int size_in_bytes, bool unsigned_p)
17576 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17577 struct type *int_type;
17579 /* Helper macro to examine the various builtin types. */
17580 #define TRY_TYPE(F) \
17581 int_type = (unsigned_p \
17582 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17583 : objfile_type (objfile)->builtin_ ## F); \
17584 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17591 TRY_TYPE (long_long);
17595 gdb_assert_not_reached ("unable to find suitable integer type");
17598 /* Find an integer type the same size as the address size given in the
17599 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17600 is unsigned or not. */
17602 static struct type *
17603 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17606 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17607 return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p);
17610 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17611 present (which is valid) then compute the default type based on the
17612 compilation units address size. */
17614 static struct type *
17615 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17617 struct type *index_type = die_type (die, cu);
17619 /* Dwarf-2 specifications explicitly allows to create subrange types
17620 without specifying a base type.
17621 In that case, the base type must be set to the type of
17622 the lower bound, upper bound or count, in that order, if any of these
17623 three attributes references an object that has a type.
17624 If no base type is found, the Dwarf-2 specifications say that
17625 a signed integer type of size equal to the size of an address should
17627 For the following C code: `extern char gdb_int [];'
17628 GCC produces an empty range DIE.
17629 FIXME: muller/2010-05-28: Possible references to object for low bound,
17630 high bound or count are not yet handled by this code. */
17631 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17632 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17637 /* Read the given DW_AT_subrange DIE. */
17639 static struct type *
17640 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17642 struct type *base_type, *orig_base_type;
17643 struct type *range_type;
17644 struct attribute *attr;
17645 struct dynamic_prop low, high;
17646 int low_default_is_valid;
17647 int high_bound_is_count = 0;
17649 ULONGEST negative_mask;
17651 orig_base_type = read_subrange_index_type (die, cu);
17653 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17654 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17655 creating the range type, but we use the result of check_typedef
17656 when examining properties of the type. */
17657 base_type = check_typedef (orig_base_type);
17659 /* The die_type call above may have already set the type for this DIE. */
17660 range_type = get_die_type (die, cu);
17664 low.kind = PROP_CONST;
17665 high.kind = PROP_CONST;
17666 high.data.const_val = 0;
17668 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17669 omitting DW_AT_lower_bound. */
17670 switch (cu->language)
17673 case language_cplus:
17674 low.data.const_val = 0;
17675 low_default_is_valid = 1;
17677 case language_fortran:
17678 low.data.const_val = 1;
17679 low_default_is_valid = 1;
17682 case language_objc:
17683 case language_rust:
17684 low.data.const_val = 0;
17685 low_default_is_valid = (cu->header.version >= 4);
17689 case language_pascal:
17690 low.data.const_val = 1;
17691 low_default_is_valid = (cu->header.version >= 4);
17694 low.data.const_val = 0;
17695 low_default_is_valid = 0;
17699 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17700 if (attr != nullptr)
17701 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17702 else if (!low_default_is_valid)
17703 complaint (_("Missing DW_AT_lower_bound "
17704 "- DIE at %s [in module %s]"),
17705 sect_offset_str (die->sect_off),
17706 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17708 struct attribute *attr_ub, *attr_count;
17709 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17710 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17712 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17713 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17715 /* If bounds are constant do the final calculation here. */
17716 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17717 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17719 high_bound_is_count = 1;
17723 if (attr_ub != NULL)
17724 complaint (_("Unresolved DW_AT_upper_bound "
17725 "- DIE at %s [in module %s]"),
17726 sect_offset_str (die->sect_off),
17727 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17728 if (attr_count != NULL)
17729 complaint (_("Unresolved DW_AT_count "
17730 "- DIE at %s [in module %s]"),
17731 sect_offset_str (die->sect_off),
17732 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17737 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17738 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17739 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17741 /* Normally, the DWARF producers are expected to use a signed
17742 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17743 But this is unfortunately not always the case, as witnessed
17744 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17745 is used instead. To work around that ambiguity, we treat
17746 the bounds as signed, and thus sign-extend their values, when
17747 the base type is signed. */
17749 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17750 if (low.kind == PROP_CONST
17751 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17752 low.data.const_val |= negative_mask;
17753 if (high.kind == PROP_CONST
17754 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17755 high.data.const_val |= negative_mask;
17757 /* Check for bit and byte strides. */
17758 struct dynamic_prop byte_stride_prop;
17759 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17760 if (attr_byte_stride != nullptr)
17762 struct type *prop_type
17763 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17764 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17768 struct dynamic_prop bit_stride_prop;
17769 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17770 if (attr_bit_stride != nullptr)
17772 /* It only makes sense to have either a bit or byte stride. */
17773 if (attr_byte_stride != nullptr)
17775 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17776 "- DIE at %s [in module %s]"),
17777 sect_offset_str (die->sect_off),
17778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17779 attr_bit_stride = nullptr;
17783 struct type *prop_type
17784 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17785 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17790 if (attr_byte_stride != nullptr
17791 || attr_bit_stride != nullptr)
17793 bool byte_stride_p = (attr_byte_stride != nullptr);
17794 struct dynamic_prop *stride
17795 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17798 = create_range_type_with_stride (NULL, orig_base_type, &low,
17799 &high, bias, stride, byte_stride_p);
17802 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17804 if (high_bound_is_count)
17805 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17807 /* Ada expects an empty array on no boundary attributes. */
17808 if (attr == NULL && cu->language != language_ada)
17809 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17811 name = dwarf2_name (die, cu);
17813 TYPE_NAME (range_type) = name;
17815 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17816 if (attr != nullptr)
17817 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17819 maybe_set_alignment (cu, die, range_type);
17821 set_die_type (die, range_type, cu);
17823 /* set_die_type should be already done. */
17824 set_descriptive_type (range_type, die, cu);
17829 static struct type *
17830 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17834 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17836 TYPE_NAME (type) = dwarf2_name (die, cu);
17838 /* In Ada, an unspecified type is typically used when the description
17839 of the type is deferred to a different unit. When encountering
17840 such a type, we treat it as a stub, and try to resolve it later on,
17842 if (cu->language == language_ada)
17843 TYPE_STUB (type) = 1;
17845 return set_die_type (die, type, cu);
17848 /* Read a single die and all its descendents. Set the die's sibling
17849 field to NULL; set other fields in the die correctly, and set all
17850 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17851 location of the info_ptr after reading all of those dies. PARENT
17852 is the parent of the die in question. */
17854 static struct die_info *
17855 read_die_and_children (const struct die_reader_specs *reader,
17856 const gdb_byte *info_ptr,
17857 const gdb_byte **new_info_ptr,
17858 struct die_info *parent)
17860 struct die_info *die;
17861 const gdb_byte *cur_ptr;
17863 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17866 *new_info_ptr = cur_ptr;
17869 store_in_ref_table (die, reader->cu);
17871 if (die->has_children)
17872 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17876 *new_info_ptr = cur_ptr;
17879 die->sibling = NULL;
17880 die->parent = parent;
17884 /* Read a die, all of its descendents, and all of its siblings; set
17885 all of the fields of all of the dies correctly. Arguments are as
17886 in read_die_and_children. */
17888 static struct die_info *
17889 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17890 const gdb_byte *info_ptr,
17891 const gdb_byte **new_info_ptr,
17892 struct die_info *parent)
17894 struct die_info *first_die, *last_sibling;
17895 const gdb_byte *cur_ptr;
17897 cur_ptr = info_ptr;
17898 first_die = last_sibling = NULL;
17902 struct die_info *die
17903 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17907 *new_info_ptr = cur_ptr;
17914 last_sibling->sibling = die;
17916 last_sibling = die;
17920 /* Read a die, all of its descendents, and all of its siblings; set
17921 all of the fields of all of the dies correctly. Arguments are as
17922 in read_die_and_children.
17923 This the main entry point for reading a DIE and all its children. */
17925 static struct die_info *
17926 read_die_and_siblings (const struct die_reader_specs *reader,
17927 const gdb_byte *info_ptr,
17928 const gdb_byte **new_info_ptr,
17929 struct die_info *parent)
17931 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17932 new_info_ptr, parent);
17934 if (dwarf_die_debug)
17936 fprintf_unfiltered (gdb_stdlog,
17937 "Read die from %s@0x%x of %s:\n",
17938 reader->die_section->get_name (),
17939 (unsigned) (info_ptr - reader->die_section->buffer),
17940 bfd_get_filename (reader->abfd));
17941 dump_die (die, dwarf_die_debug);
17947 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17949 The caller is responsible for filling in the extra attributes
17950 and updating (*DIEP)->num_attrs.
17951 Set DIEP to point to a newly allocated die with its information,
17952 except for its child, sibling, and parent fields. */
17954 static const gdb_byte *
17955 read_full_die_1 (const struct die_reader_specs *reader,
17956 struct die_info **diep, const gdb_byte *info_ptr,
17957 int num_extra_attrs)
17959 unsigned int abbrev_number, bytes_read, i;
17960 struct abbrev_info *abbrev;
17961 struct die_info *die;
17962 struct dwarf2_cu *cu = reader->cu;
17963 bfd *abfd = reader->abfd;
17965 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17966 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17967 info_ptr += bytes_read;
17968 if (!abbrev_number)
17974 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17976 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17978 bfd_get_filename (abfd));
17980 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17981 die->sect_off = sect_off;
17982 die->tag = abbrev->tag;
17983 die->abbrev = abbrev_number;
17984 die->has_children = abbrev->has_children;
17986 /* Make the result usable.
17987 The caller needs to update num_attrs after adding the extra
17989 die->num_attrs = abbrev->num_attrs;
17991 std::vector<int> indexes_that_need_reprocess;
17992 for (i = 0; i < abbrev->num_attrs; ++i)
17994 bool need_reprocess;
17996 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17997 info_ptr, &need_reprocess);
17998 if (need_reprocess)
17999 indexes_that_need_reprocess.push_back (i);
18002 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
18003 if (attr != nullptr)
18004 cu->str_offsets_base = DW_UNSND (attr);
18006 auto maybe_addr_base = lookup_addr_base(die);
18007 if (maybe_addr_base.has_value ())
18008 cu->addr_base = *maybe_addr_base;
18009 for (int index : indexes_that_need_reprocess)
18010 read_attribute_reprocess (reader, &die->attrs[index]);
18015 /* Read a die and all its attributes.
18016 Set DIEP to point to a newly allocated die with its information,
18017 except for its child, sibling, and parent fields. */
18019 static const gdb_byte *
18020 read_full_die (const struct die_reader_specs *reader,
18021 struct die_info **diep, const gdb_byte *info_ptr)
18023 const gdb_byte *result;
18025 result = read_full_die_1 (reader, diep, info_ptr, 0);
18027 if (dwarf_die_debug)
18029 fprintf_unfiltered (gdb_stdlog,
18030 "Read die from %s@0x%x of %s:\n",
18031 reader->die_section->get_name (),
18032 (unsigned) (info_ptr - reader->die_section->buffer),
18033 bfd_get_filename (reader->abfd));
18034 dump_die (*diep, dwarf_die_debug);
18041 /* Returns nonzero if TAG represents a type that we might generate a partial
18045 is_type_tag_for_partial (int tag)
18050 /* Some types that would be reasonable to generate partial symbols for,
18051 that we don't at present. */
18052 case DW_TAG_array_type:
18053 case DW_TAG_file_type:
18054 case DW_TAG_ptr_to_member_type:
18055 case DW_TAG_set_type:
18056 case DW_TAG_string_type:
18057 case DW_TAG_subroutine_type:
18059 case DW_TAG_base_type:
18060 case DW_TAG_class_type:
18061 case DW_TAG_interface_type:
18062 case DW_TAG_enumeration_type:
18063 case DW_TAG_structure_type:
18064 case DW_TAG_subrange_type:
18065 case DW_TAG_typedef:
18066 case DW_TAG_union_type:
18073 /* Load all DIEs that are interesting for partial symbols into memory. */
18075 static struct partial_die_info *
18076 load_partial_dies (const struct die_reader_specs *reader,
18077 const gdb_byte *info_ptr, int building_psymtab)
18079 struct dwarf2_cu *cu = reader->cu;
18080 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18081 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18082 unsigned int bytes_read;
18083 unsigned int load_all = 0;
18084 int nesting_level = 1;
18089 gdb_assert (cu->per_cu != NULL);
18090 if (cu->per_cu->load_all_dies)
18094 = htab_create_alloc_ex (cu->header.length / 12,
18098 &cu->comp_unit_obstack,
18099 hashtab_obstack_allocate,
18100 dummy_obstack_deallocate);
18104 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18106 /* A NULL abbrev means the end of a series of children. */
18107 if (abbrev == NULL)
18109 if (--nesting_level == 0)
18112 info_ptr += bytes_read;
18113 last_die = parent_die;
18114 parent_die = parent_die->die_parent;
18118 /* Check for template arguments. We never save these; if
18119 they're seen, we just mark the parent, and go on our way. */
18120 if (parent_die != NULL
18121 && cu->language == language_cplus
18122 && (abbrev->tag == DW_TAG_template_type_param
18123 || abbrev->tag == DW_TAG_template_value_param))
18125 parent_die->has_template_arguments = 1;
18129 /* We don't need a partial DIE for the template argument. */
18130 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18135 /* We only recurse into c++ subprograms looking for template arguments.
18136 Skip their other children. */
18138 && cu->language == language_cplus
18139 && parent_die != NULL
18140 && parent_die->tag == DW_TAG_subprogram)
18142 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18146 /* Check whether this DIE is interesting enough to save. Normally
18147 we would not be interested in members here, but there may be
18148 later variables referencing them via DW_AT_specification (for
18149 static members). */
18151 && !is_type_tag_for_partial (abbrev->tag)
18152 && abbrev->tag != DW_TAG_constant
18153 && abbrev->tag != DW_TAG_enumerator
18154 && abbrev->tag != DW_TAG_subprogram
18155 && abbrev->tag != DW_TAG_inlined_subroutine
18156 && abbrev->tag != DW_TAG_lexical_block
18157 && abbrev->tag != DW_TAG_variable
18158 && abbrev->tag != DW_TAG_namespace
18159 && abbrev->tag != DW_TAG_module
18160 && abbrev->tag != DW_TAG_member
18161 && abbrev->tag != DW_TAG_imported_unit
18162 && abbrev->tag != DW_TAG_imported_declaration)
18164 /* Otherwise we skip to the next sibling, if any. */
18165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18169 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18172 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18174 /* This two-pass algorithm for processing partial symbols has a
18175 high cost in cache pressure. Thus, handle some simple cases
18176 here which cover the majority of C partial symbols. DIEs
18177 which neither have specification tags in them, nor could have
18178 specification tags elsewhere pointing at them, can simply be
18179 processed and discarded.
18181 This segment is also optional; scan_partial_symbols and
18182 add_partial_symbol will handle these DIEs if we chain
18183 them in normally. When compilers which do not emit large
18184 quantities of duplicate debug information are more common,
18185 this code can probably be removed. */
18187 /* Any complete simple types at the top level (pretty much all
18188 of them, for a language without namespaces), can be processed
18190 if (parent_die == NULL
18191 && pdi.has_specification == 0
18192 && pdi.is_declaration == 0
18193 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18194 || pdi.tag == DW_TAG_base_type
18195 || pdi.tag == DW_TAG_subrange_type))
18197 if (building_psymtab && pdi.name != NULL)
18198 add_psymbol_to_list (pdi.name, false,
18199 VAR_DOMAIN, LOC_TYPEDEF, -1,
18200 psymbol_placement::STATIC,
18201 0, cu->language, objfile);
18202 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18206 /* The exception for DW_TAG_typedef with has_children above is
18207 a workaround of GCC PR debug/47510. In the case of this complaint
18208 type_name_or_error will error on such types later.
18210 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18211 it could not find the child DIEs referenced later, this is checked
18212 above. In correct DWARF DW_TAG_typedef should have no children. */
18214 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18215 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18216 "- DIE at %s [in module %s]"),
18217 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18219 /* If we're at the second level, and we're an enumerator, and
18220 our parent has no specification (meaning possibly lives in a
18221 namespace elsewhere), then we can add the partial symbol now
18222 instead of queueing it. */
18223 if (pdi.tag == DW_TAG_enumerator
18224 && parent_die != NULL
18225 && parent_die->die_parent == NULL
18226 && parent_die->tag == DW_TAG_enumeration_type
18227 && parent_die->has_specification == 0)
18229 if (pdi.name == NULL)
18230 complaint (_("malformed enumerator DIE ignored"));
18231 else if (building_psymtab)
18232 add_psymbol_to_list (pdi.name, false,
18233 VAR_DOMAIN, LOC_CONST, -1,
18234 cu->language == language_cplus
18235 ? psymbol_placement::GLOBAL
18236 : psymbol_placement::STATIC,
18237 0, cu->language, objfile);
18239 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18243 struct partial_die_info *part_die
18244 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18246 /* We'll save this DIE so link it in. */
18247 part_die->die_parent = parent_die;
18248 part_die->die_sibling = NULL;
18249 part_die->die_child = NULL;
18251 if (last_die && last_die == parent_die)
18252 last_die->die_child = part_die;
18254 last_die->die_sibling = part_die;
18256 last_die = part_die;
18258 if (first_die == NULL)
18259 first_die = part_die;
18261 /* Maybe add the DIE to the hash table. Not all DIEs that we
18262 find interesting need to be in the hash table, because we
18263 also have the parent/sibling/child chains; only those that we
18264 might refer to by offset later during partial symbol reading.
18266 For now this means things that might have be the target of a
18267 DW_AT_specification, DW_AT_abstract_origin, or
18268 DW_AT_extension. DW_AT_extension will refer only to
18269 namespaces; DW_AT_abstract_origin refers to functions (and
18270 many things under the function DIE, but we do not recurse
18271 into function DIEs during partial symbol reading) and
18272 possibly variables as well; DW_AT_specification refers to
18273 declarations. Declarations ought to have the DW_AT_declaration
18274 flag. It happens that GCC forgets to put it in sometimes, but
18275 only for functions, not for types.
18277 Adding more things than necessary to the hash table is harmless
18278 except for the performance cost. Adding too few will result in
18279 wasted time in find_partial_die, when we reread the compilation
18280 unit with load_all_dies set. */
18283 || abbrev->tag == DW_TAG_constant
18284 || abbrev->tag == DW_TAG_subprogram
18285 || abbrev->tag == DW_TAG_variable
18286 || abbrev->tag == DW_TAG_namespace
18287 || part_die->is_declaration)
18291 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18292 to_underlying (part_die->sect_off),
18297 /* For some DIEs we want to follow their children (if any). For C
18298 we have no reason to follow the children of structures; for other
18299 languages we have to, so that we can get at method physnames
18300 to infer fully qualified class names, for DW_AT_specification,
18301 and for C++ template arguments. For C++, we also look one level
18302 inside functions to find template arguments (if the name of the
18303 function does not already contain the template arguments).
18305 For Ada and Fortran, we need to scan the children of subprograms
18306 and lexical blocks as well because these languages allow the
18307 definition of nested entities that could be interesting for the
18308 debugger, such as nested subprograms for instance. */
18309 if (last_die->has_children
18311 || last_die->tag == DW_TAG_namespace
18312 || last_die->tag == DW_TAG_module
18313 || last_die->tag == DW_TAG_enumeration_type
18314 || (cu->language == language_cplus
18315 && last_die->tag == DW_TAG_subprogram
18316 && (last_die->name == NULL
18317 || strchr (last_die->name, '<') == NULL))
18318 || (cu->language != language_c
18319 && (last_die->tag == DW_TAG_class_type
18320 || last_die->tag == DW_TAG_interface_type
18321 || last_die->tag == DW_TAG_structure_type
18322 || last_die->tag == DW_TAG_union_type))
18323 || ((cu->language == language_ada
18324 || cu->language == language_fortran)
18325 && (last_die->tag == DW_TAG_subprogram
18326 || last_die->tag == DW_TAG_lexical_block))))
18329 parent_die = last_die;
18333 /* Otherwise we skip to the next sibling, if any. */
18334 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18336 /* Back to the top, do it again. */
18340 partial_die_info::partial_die_info (sect_offset sect_off_,
18341 struct abbrev_info *abbrev)
18342 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18346 /* Read a minimal amount of information into the minimal die structure.
18347 INFO_PTR should point just after the initial uleb128 of a DIE. */
18350 partial_die_info::read (const struct die_reader_specs *reader,
18351 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18353 struct dwarf2_cu *cu = reader->cu;
18354 struct dwarf2_per_objfile *dwarf2_per_objfile
18355 = cu->per_cu->dwarf2_per_objfile;
18357 int has_low_pc_attr = 0;
18358 int has_high_pc_attr = 0;
18359 int high_pc_relative = 0;
18361 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
18362 for (i = 0; i < abbrev.num_attrs; ++i)
18364 bool need_reprocess;
18365 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
18366 info_ptr, &need_reprocess);
18367 /* String and address offsets that need to do the reprocessing have
18368 already been read at this point, so there is no need to wait until
18369 the loop terminates to do the reprocessing. */
18370 if (need_reprocess)
18371 read_attribute_reprocess (reader, &attr_vec[i]);
18372 attribute &attr = attr_vec[i];
18373 /* Store the data if it is of an attribute we want to keep in a
18374 partial symbol table. */
18380 case DW_TAG_compile_unit:
18381 case DW_TAG_partial_unit:
18382 case DW_TAG_type_unit:
18383 /* Compilation units have a DW_AT_name that is a filename, not
18384 a source language identifier. */
18385 case DW_TAG_enumeration_type:
18386 case DW_TAG_enumerator:
18387 /* These tags always have simple identifiers already; no need
18388 to canonicalize them. */
18389 name = DW_STRING (&attr);
18393 struct objfile *objfile = dwarf2_per_objfile->objfile;
18396 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18397 &objfile->per_bfd->storage_obstack);
18402 case DW_AT_linkage_name:
18403 case DW_AT_MIPS_linkage_name:
18404 /* Note that both forms of linkage name might appear. We
18405 assume they will be the same, and we only store the last
18407 linkage_name = DW_STRING (&attr);
18410 has_low_pc_attr = 1;
18411 lowpc = attr.value_as_address ();
18413 case DW_AT_high_pc:
18414 has_high_pc_attr = 1;
18415 highpc = attr.value_as_address ();
18416 if (cu->header.version >= 4 && attr.form_is_constant ())
18417 high_pc_relative = 1;
18419 case DW_AT_location:
18420 /* Support the .debug_loc offsets. */
18421 if (attr.form_is_block ())
18423 d.locdesc = DW_BLOCK (&attr);
18425 else if (attr.form_is_section_offset ())
18427 dwarf2_complex_location_expr_complaint ();
18431 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18432 "partial symbol information");
18435 case DW_AT_external:
18436 is_external = DW_UNSND (&attr);
18438 case DW_AT_declaration:
18439 is_declaration = DW_UNSND (&attr);
18444 case DW_AT_abstract_origin:
18445 case DW_AT_specification:
18446 case DW_AT_extension:
18447 has_specification = 1;
18448 spec_offset = dwarf2_get_ref_die_offset (&attr);
18449 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18450 || cu->per_cu->is_dwz);
18452 case DW_AT_sibling:
18453 /* Ignore absolute siblings, they might point outside of
18454 the current compile unit. */
18455 if (attr.form == DW_FORM_ref_addr)
18456 complaint (_("ignoring absolute DW_AT_sibling"));
18459 const gdb_byte *buffer = reader->buffer;
18460 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18461 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18463 if (sibling_ptr < info_ptr)
18464 complaint (_("DW_AT_sibling points backwards"));
18465 else if (sibling_ptr > reader->buffer_end)
18466 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18468 sibling = sibling_ptr;
18471 case DW_AT_byte_size:
18474 case DW_AT_const_value:
18475 has_const_value = 1;
18477 case DW_AT_calling_convention:
18478 /* DWARF doesn't provide a way to identify a program's source-level
18479 entry point. DW_AT_calling_convention attributes are only meant
18480 to describe functions' calling conventions.
18482 However, because it's a necessary piece of information in
18483 Fortran, and before DWARF 4 DW_CC_program was the only
18484 piece of debugging information whose definition refers to
18485 a 'main program' at all, several compilers marked Fortran
18486 main programs with DW_CC_program --- even when those
18487 functions use the standard calling conventions.
18489 Although DWARF now specifies a way to provide this
18490 information, we support this practice for backward
18492 if (DW_UNSND (&attr) == DW_CC_program
18493 && cu->language == language_fortran)
18494 main_subprogram = 1;
18497 if (DW_UNSND (&attr) == DW_INL_inlined
18498 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18499 may_be_inlined = 1;
18503 if (tag == DW_TAG_imported_unit)
18505 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18506 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18507 || cu->per_cu->is_dwz);
18511 case DW_AT_main_subprogram:
18512 main_subprogram = DW_UNSND (&attr);
18517 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18518 but that requires a full DIE, so instead we just
18520 int need_ranges_base = tag != DW_TAG_compile_unit;
18521 unsigned int ranges_offset = (DW_UNSND (&attr)
18522 + (need_ranges_base
18526 /* Value of the DW_AT_ranges attribute is the offset in the
18527 .debug_ranges section. */
18528 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18539 /* For Ada, if both the name and the linkage name appear, we prefer
18540 the latter. This lets "catch exception" work better, regardless
18541 of the order in which the name and linkage name were emitted.
18542 Really, though, this is just a workaround for the fact that gdb
18543 doesn't store both the name and the linkage name. */
18544 if (cu->language == language_ada && linkage_name != nullptr)
18545 name = linkage_name;
18547 if (high_pc_relative)
18550 if (has_low_pc_attr && has_high_pc_attr)
18552 /* When using the GNU linker, .gnu.linkonce. sections are used to
18553 eliminate duplicate copies of functions and vtables and such.
18554 The linker will arbitrarily choose one and discard the others.
18555 The AT_*_pc values for such functions refer to local labels in
18556 these sections. If the section from that file was discarded, the
18557 labels are not in the output, so the relocs get a value of 0.
18558 If this is a discarded function, mark the pc bounds as invalid,
18559 so that GDB will ignore it. */
18560 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18562 struct objfile *objfile = dwarf2_per_objfile->objfile;
18563 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18565 complaint (_("DW_AT_low_pc %s is zero "
18566 "for DIE at %s [in module %s]"),
18567 paddress (gdbarch, lowpc),
18568 sect_offset_str (sect_off),
18569 objfile_name (objfile));
18571 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18572 else if (lowpc >= highpc)
18574 struct objfile *objfile = dwarf2_per_objfile->objfile;
18575 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18577 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18578 "for DIE at %s [in module %s]"),
18579 paddress (gdbarch, lowpc),
18580 paddress (gdbarch, highpc),
18581 sect_offset_str (sect_off),
18582 objfile_name (objfile));
18591 /* Find a cached partial DIE at OFFSET in CU. */
18593 struct partial_die_info *
18594 dwarf2_cu::find_partial_die (sect_offset sect_off)
18596 struct partial_die_info *lookup_die = NULL;
18597 struct partial_die_info part_die (sect_off);
18599 lookup_die = ((struct partial_die_info *)
18600 htab_find_with_hash (partial_dies, &part_die,
18601 to_underlying (sect_off)));
18606 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18607 except in the case of .debug_types DIEs which do not reference
18608 outside their CU (they do however referencing other types via
18609 DW_FORM_ref_sig8). */
18611 static const struct cu_partial_die_info
18612 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18614 struct dwarf2_per_objfile *dwarf2_per_objfile
18615 = cu->per_cu->dwarf2_per_objfile;
18616 struct objfile *objfile = dwarf2_per_objfile->objfile;
18617 struct dwarf2_per_cu_data *per_cu = NULL;
18618 struct partial_die_info *pd = NULL;
18620 if (offset_in_dwz == cu->per_cu->is_dwz
18621 && offset_in_cu_p (&cu->header, sect_off))
18623 pd = cu->find_partial_die (sect_off);
18626 /* We missed recording what we needed.
18627 Load all dies and try again. */
18628 per_cu = cu->per_cu;
18632 /* TUs don't reference other CUs/TUs (except via type signatures). */
18633 if (cu->per_cu->is_debug_types)
18635 error (_("Dwarf Error: Type Unit at offset %s contains"
18636 " external reference to offset %s [in module %s].\n"),
18637 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18638 bfd_get_filename (objfile->obfd));
18640 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18641 dwarf2_per_objfile);
18643 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18644 load_partial_comp_unit (per_cu);
18646 per_cu->cu->last_used = 0;
18647 pd = per_cu->cu->find_partial_die (sect_off);
18650 /* If we didn't find it, and not all dies have been loaded,
18651 load them all and try again. */
18653 if (pd == NULL && per_cu->load_all_dies == 0)
18655 per_cu->load_all_dies = 1;
18657 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18658 THIS_CU->cu may already be in use. So we can't just free it and
18659 replace its DIEs with the ones we read in. Instead, we leave those
18660 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18661 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18663 load_partial_comp_unit (per_cu);
18665 pd = per_cu->cu->find_partial_die (sect_off);
18669 internal_error (__FILE__, __LINE__,
18670 _("could not find partial DIE %s "
18671 "in cache [from module %s]\n"),
18672 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18673 return { per_cu->cu, pd };
18676 /* See if we can figure out if the class lives in a namespace. We do
18677 this by looking for a member function; its demangled name will
18678 contain namespace info, if there is any. */
18681 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18682 struct dwarf2_cu *cu)
18684 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18685 what template types look like, because the demangler
18686 frequently doesn't give the same name as the debug info. We
18687 could fix this by only using the demangled name to get the
18688 prefix (but see comment in read_structure_type). */
18690 struct partial_die_info *real_pdi;
18691 struct partial_die_info *child_pdi;
18693 /* If this DIE (this DIE's specification, if any) has a parent, then
18694 we should not do this. We'll prepend the parent's fully qualified
18695 name when we create the partial symbol. */
18697 real_pdi = struct_pdi;
18698 while (real_pdi->has_specification)
18700 auto res = find_partial_die (real_pdi->spec_offset,
18701 real_pdi->spec_is_dwz, cu);
18702 real_pdi = res.pdi;
18706 if (real_pdi->die_parent != NULL)
18709 for (child_pdi = struct_pdi->die_child;
18711 child_pdi = child_pdi->die_sibling)
18713 if (child_pdi->tag == DW_TAG_subprogram
18714 && child_pdi->linkage_name != NULL)
18716 gdb::unique_xmalloc_ptr<char> actual_class_name
18717 (language_class_name_from_physname (cu->language_defn,
18718 child_pdi->linkage_name));
18719 if (actual_class_name != NULL)
18721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18723 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18724 actual_class_name.get ());
18732 partial_die_info::fixup (struct dwarf2_cu *cu)
18734 /* Once we've fixed up a die, there's no point in doing so again.
18735 This also avoids a memory leak if we were to call
18736 guess_partial_die_structure_name multiple times. */
18740 /* If we found a reference attribute and the DIE has no name, try
18741 to find a name in the referred to DIE. */
18743 if (name == NULL && has_specification)
18745 struct partial_die_info *spec_die;
18747 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18748 spec_die = res.pdi;
18751 spec_die->fixup (cu);
18753 if (spec_die->name)
18755 name = spec_die->name;
18757 /* Copy DW_AT_external attribute if it is set. */
18758 if (spec_die->is_external)
18759 is_external = spec_die->is_external;
18763 /* Set default names for some unnamed DIEs. */
18765 if (name == NULL && tag == DW_TAG_namespace)
18766 name = CP_ANONYMOUS_NAMESPACE_STR;
18768 /* If there is no parent die to provide a namespace, and there are
18769 children, see if we can determine the namespace from their linkage
18771 if (cu->language == language_cplus
18772 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18773 && die_parent == NULL
18775 && (tag == DW_TAG_class_type
18776 || tag == DW_TAG_structure_type
18777 || tag == DW_TAG_union_type))
18778 guess_partial_die_structure_name (this, cu);
18780 /* GCC might emit a nameless struct or union that has a linkage
18781 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18783 && (tag == DW_TAG_class_type
18784 || tag == DW_TAG_interface_type
18785 || tag == DW_TAG_structure_type
18786 || tag == DW_TAG_union_type)
18787 && linkage_name != NULL)
18789 gdb::unique_xmalloc_ptr<char> demangled
18790 (gdb_demangle (linkage_name, DMGL_TYPES));
18791 if (demangled != nullptr)
18795 /* Strip any leading namespaces/classes, keep only the base name.
18796 DW_AT_name for named DIEs does not contain the prefixes. */
18797 base = strrchr (demangled.get (), ':');
18798 if (base && base > demangled.get () && base[-1] == ':')
18801 base = demangled.get ();
18803 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18804 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18811 /* Process the attributes that had to be skipped in the first round. These
18812 attributes are the ones that need str_offsets_base or addr_base attributes.
18813 They could not have been processed in the first round, because at the time
18814 the values of str_offsets_base or addr_base may not have been known. */
18815 void read_attribute_reprocess (const struct die_reader_specs *reader,
18816 struct attribute *attr)
18818 struct dwarf2_cu *cu = reader->cu;
18819 switch (attr->form)
18821 case DW_FORM_addrx:
18822 case DW_FORM_GNU_addr_index:
18823 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18826 case DW_FORM_strx1:
18827 case DW_FORM_strx2:
18828 case DW_FORM_strx3:
18829 case DW_FORM_strx4:
18830 case DW_FORM_GNU_str_index:
18832 unsigned int str_index = DW_UNSND (attr);
18833 if (reader->dwo_file != NULL)
18835 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18836 DW_STRING_IS_CANONICAL (attr) = 0;
18840 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18841 DW_STRING_IS_CANONICAL (attr) = 0;
18846 gdb_assert_not_reached (_("Unexpected DWARF form."));
18850 /* Read an attribute value described by an attribute form. */
18852 static const gdb_byte *
18853 read_attribute_value (const struct die_reader_specs *reader,
18854 struct attribute *attr, unsigned form,
18855 LONGEST implicit_const, const gdb_byte *info_ptr,
18856 bool *need_reprocess)
18858 struct dwarf2_cu *cu = reader->cu;
18859 struct dwarf2_per_objfile *dwarf2_per_objfile
18860 = cu->per_cu->dwarf2_per_objfile;
18861 struct objfile *objfile = dwarf2_per_objfile->objfile;
18862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18863 bfd *abfd = reader->abfd;
18864 struct comp_unit_head *cu_header = &cu->header;
18865 unsigned int bytes_read;
18866 struct dwarf_block *blk;
18867 *need_reprocess = false;
18869 attr->form = (enum dwarf_form) form;
18872 case DW_FORM_ref_addr:
18873 if (cu->header.version == 2)
18874 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18876 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18877 &cu->header, &bytes_read);
18878 info_ptr += bytes_read;
18880 case DW_FORM_GNU_ref_alt:
18881 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18882 info_ptr += bytes_read;
18885 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18886 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18887 info_ptr += bytes_read;
18889 case DW_FORM_block2:
18890 blk = dwarf_alloc_block (cu);
18891 blk->size = read_2_bytes (abfd, info_ptr);
18893 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18894 info_ptr += blk->size;
18895 DW_BLOCK (attr) = blk;
18897 case DW_FORM_block4:
18898 blk = dwarf_alloc_block (cu);
18899 blk->size = read_4_bytes (abfd, info_ptr);
18901 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18902 info_ptr += blk->size;
18903 DW_BLOCK (attr) = blk;
18905 case DW_FORM_data2:
18906 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18909 case DW_FORM_data4:
18910 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18913 case DW_FORM_data8:
18914 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18917 case DW_FORM_data16:
18918 blk = dwarf_alloc_block (cu);
18920 blk->data = read_n_bytes (abfd, info_ptr, 16);
18922 DW_BLOCK (attr) = blk;
18924 case DW_FORM_sec_offset:
18925 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18926 info_ptr += bytes_read;
18928 case DW_FORM_string:
18929 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18930 DW_STRING_IS_CANONICAL (attr) = 0;
18931 info_ptr += bytes_read;
18934 if (!cu->per_cu->is_dwz)
18936 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18937 abfd, info_ptr, cu_header,
18939 DW_STRING_IS_CANONICAL (attr) = 0;
18940 info_ptr += bytes_read;
18944 case DW_FORM_line_strp:
18945 if (!cu->per_cu->is_dwz)
18947 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18949 cu_header, &bytes_read);
18950 DW_STRING_IS_CANONICAL (attr) = 0;
18951 info_ptr += bytes_read;
18955 case DW_FORM_GNU_strp_alt:
18957 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18958 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18961 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18963 DW_STRING_IS_CANONICAL (attr) = 0;
18964 info_ptr += bytes_read;
18967 case DW_FORM_exprloc:
18968 case DW_FORM_block:
18969 blk = dwarf_alloc_block (cu);
18970 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18971 info_ptr += bytes_read;
18972 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18973 info_ptr += blk->size;
18974 DW_BLOCK (attr) = blk;
18976 case DW_FORM_block1:
18977 blk = dwarf_alloc_block (cu);
18978 blk->size = read_1_byte (abfd, info_ptr);
18980 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18981 info_ptr += blk->size;
18982 DW_BLOCK (attr) = blk;
18984 case DW_FORM_data1:
18985 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18989 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18992 case DW_FORM_flag_present:
18993 DW_UNSND (attr) = 1;
18995 case DW_FORM_sdata:
18996 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18997 info_ptr += bytes_read;
18999 case DW_FORM_udata:
19000 case DW_FORM_rnglistx:
19001 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19002 info_ptr += bytes_read;
19005 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19006 + read_1_byte (abfd, info_ptr));
19010 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19011 + read_2_bytes (abfd, info_ptr));
19015 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19016 + read_4_bytes (abfd, info_ptr));
19020 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19021 + read_8_bytes (abfd, info_ptr));
19024 case DW_FORM_ref_sig8:
19025 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19028 case DW_FORM_ref_udata:
19029 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19030 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19031 info_ptr += bytes_read;
19033 case DW_FORM_indirect:
19034 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19035 info_ptr += bytes_read;
19036 if (form == DW_FORM_implicit_const)
19038 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19039 info_ptr += bytes_read;
19041 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19042 info_ptr, need_reprocess);
19044 case DW_FORM_implicit_const:
19045 DW_SND (attr) = implicit_const;
19047 case DW_FORM_addrx:
19048 case DW_FORM_GNU_addr_index:
19049 *need_reprocess = true;
19050 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19051 info_ptr += bytes_read;
19054 case DW_FORM_strx1:
19055 case DW_FORM_strx2:
19056 case DW_FORM_strx3:
19057 case DW_FORM_strx4:
19058 case DW_FORM_GNU_str_index:
19060 ULONGEST str_index;
19061 if (form == DW_FORM_strx1)
19063 str_index = read_1_byte (abfd, info_ptr);
19066 else if (form == DW_FORM_strx2)
19068 str_index = read_2_bytes (abfd, info_ptr);
19071 else if (form == DW_FORM_strx3)
19073 str_index = read_3_bytes (abfd, info_ptr);
19076 else if (form == DW_FORM_strx4)
19078 str_index = read_4_bytes (abfd, info_ptr);
19083 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19084 info_ptr += bytes_read;
19086 *need_reprocess = true;
19087 DW_UNSND (attr) = str_index;
19091 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19092 dwarf_form_name (form),
19093 bfd_get_filename (abfd));
19097 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19098 attr->form = DW_FORM_GNU_ref_alt;
19100 /* We have seen instances where the compiler tried to emit a byte
19101 size attribute of -1 which ended up being encoded as an unsigned
19102 0xffffffff. Although 0xffffffff is technically a valid size value,
19103 an object of this size seems pretty unlikely so we can relatively
19104 safely treat these cases as if the size attribute was invalid and
19105 treat them as zero by default. */
19106 if (attr->name == DW_AT_byte_size
19107 && form == DW_FORM_data4
19108 && DW_UNSND (attr) >= 0xffffffff)
19111 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19112 hex_string (DW_UNSND (attr)));
19113 DW_UNSND (attr) = 0;
19119 /* Read an attribute described by an abbreviated attribute. */
19121 static const gdb_byte *
19122 read_attribute (const struct die_reader_specs *reader,
19123 struct attribute *attr, struct attr_abbrev *abbrev,
19124 const gdb_byte *info_ptr, bool *need_reprocess)
19126 attr->name = abbrev->name;
19127 return read_attribute_value (reader, attr, abbrev->form,
19128 abbrev->implicit_const, info_ptr,
19133 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19134 unsigned int *bytes_read)
19136 struct comp_unit_head *cu_header = &cu->header;
19137 CORE_ADDR retval = 0;
19139 if (cu_header->signed_addr_p)
19141 switch (cu_header->addr_size)
19144 retval = bfd_get_signed_16 (abfd, buf);
19147 retval = bfd_get_signed_32 (abfd, buf);
19150 retval = bfd_get_signed_64 (abfd, buf);
19153 internal_error (__FILE__, __LINE__,
19154 _("read_address: bad switch, signed [in module %s]"),
19155 bfd_get_filename (abfd));
19160 switch (cu_header->addr_size)
19163 retval = bfd_get_16 (abfd, buf);
19166 retval = bfd_get_32 (abfd, buf);
19169 retval = bfd_get_64 (abfd, buf);
19172 internal_error (__FILE__, __LINE__,
19173 _("read_address: bad switch, "
19174 "unsigned [in module %s]"),
19175 bfd_get_filename (abfd));
19179 *bytes_read = cu_header->addr_size;
19183 /* Read the initial length from a section. The (draft) DWARF 3
19184 specification allows the initial length to take up either 4 bytes
19185 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19186 bytes describe the length and all offsets will be 8 bytes in length
19189 An older, non-standard 64-bit format is also handled by this
19190 function. The older format in question stores the initial length
19191 as an 8-byte quantity without an escape value. Lengths greater
19192 than 2^32 aren't very common which means that the initial 4 bytes
19193 is almost always zero. Since a length value of zero doesn't make
19194 sense for the 32-bit format, this initial zero can be considered to
19195 be an escape value which indicates the presence of the older 64-bit
19196 format. As written, the code can't detect (old format) lengths
19197 greater than 4GB. If it becomes necessary to handle lengths
19198 somewhat larger than 4GB, we could allow other small values (such
19199 as the non-sensical values of 1, 2, and 3) to also be used as
19200 escape values indicating the presence of the old format.
19202 The value returned via bytes_read should be used to increment the
19203 relevant pointer after calling read_initial_length().
19205 [ Note: read_initial_length() and read_offset() are based on the
19206 document entitled "DWARF Debugging Information Format", revision
19207 3, draft 8, dated November 19, 2001. This document was obtained
19210 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19212 This document is only a draft and is subject to change. (So beware.)
19214 Details regarding the older, non-standard 64-bit format were
19215 determined empirically by examining 64-bit ELF files produced by
19216 the SGI toolchain on an IRIX 6.5 machine.
19218 - Kevin, July 16, 2002
19222 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19224 LONGEST length = bfd_get_32 (abfd, buf);
19226 if (length == 0xffffffff)
19228 length = bfd_get_64 (abfd, buf + 4);
19231 else if (length == 0)
19233 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19234 length = bfd_get_64 (abfd, buf);
19245 /* Cover function for read_initial_length.
19246 Returns the length of the object at BUF, and stores the size of the
19247 initial length in *BYTES_READ and stores the size that offsets will be in
19249 If the initial length size is not equivalent to that specified in
19250 CU_HEADER then issue a complaint.
19251 This is useful when reading non-comp-unit headers. */
19254 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19255 const struct comp_unit_head *cu_header,
19256 unsigned int *bytes_read,
19257 unsigned int *offset_size)
19259 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19261 gdb_assert (cu_header->initial_length_size == 4
19262 || cu_header->initial_length_size == 8
19263 || cu_header->initial_length_size == 12);
19265 if (cu_header->initial_length_size != *bytes_read)
19266 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19268 *offset_size = (*bytes_read == 4) ? 4 : 8;
19272 /* Read an offset from the data stream. The size of the offset is
19273 given by cu_header->offset_size. */
19276 read_offset (bfd *abfd, const gdb_byte *buf,
19277 const struct comp_unit_head *cu_header,
19278 unsigned int *bytes_read)
19280 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19282 *bytes_read = cu_header->offset_size;
19286 /* Read an offset from the data stream. */
19289 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19291 LONGEST retval = 0;
19293 switch (offset_size)
19296 retval = bfd_get_32 (abfd, buf);
19299 retval = bfd_get_64 (abfd, buf);
19302 internal_error (__FILE__, __LINE__,
19303 _("read_offset_1: bad switch [in module %s]"),
19304 bfd_get_filename (abfd));
19310 static const gdb_byte *
19311 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19313 /* If the size of a host char is 8 bits, we can return a pointer
19314 to the buffer, otherwise we have to copy the data to a buffer
19315 allocated on the temporary obstack. */
19316 gdb_assert (HOST_CHAR_BIT == 8);
19320 static const char *
19321 read_direct_string (bfd *abfd, const gdb_byte *buf,
19322 unsigned int *bytes_read_ptr)
19324 /* If the size of a host char is 8 bits, we can return a pointer
19325 to the string, otherwise we have to copy the string to a buffer
19326 allocated on the temporary obstack. */
19327 gdb_assert (HOST_CHAR_BIT == 8);
19330 *bytes_read_ptr = 1;
19333 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19334 return (const char *) buf;
19337 /* Return pointer to string at section SECT offset STR_OFFSET with error
19338 reporting strings FORM_NAME and SECT_NAME. */
19340 static const char *
19341 read_indirect_string_at_offset_from (struct objfile *objfile,
19342 bfd *abfd, LONGEST str_offset,
19343 struct dwarf2_section_info *sect,
19344 const char *form_name,
19345 const char *sect_name)
19347 sect->read (objfile);
19348 if (sect->buffer == NULL)
19349 error (_("%s used without %s section [in module %s]"),
19350 form_name, sect_name, bfd_get_filename (abfd));
19351 if (str_offset >= sect->size)
19352 error (_("%s pointing outside of %s section [in module %s]"),
19353 form_name, sect_name, bfd_get_filename (abfd));
19354 gdb_assert (HOST_CHAR_BIT == 8);
19355 if (sect->buffer[str_offset] == '\0')
19357 return (const char *) (sect->buffer + str_offset);
19360 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19362 static const char *
19363 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19364 bfd *abfd, LONGEST str_offset)
19366 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19368 &dwarf2_per_objfile->str,
19369 "DW_FORM_strp", ".debug_str");
19372 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19374 static const char *
19375 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19376 bfd *abfd, LONGEST str_offset)
19378 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19380 &dwarf2_per_objfile->line_str,
19381 "DW_FORM_line_strp",
19382 ".debug_line_str");
19385 /* Read a string at offset STR_OFFSET in the .debug_str section from
19386 the .dwz file DWZ. Throw an error if the offset is too large. If
19387 the string consists of a single NUL byte, return NULL; otherwise
19388 return a pointer to the string. */
19390 static const char *
19391 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19392 LONGEST str_offset)
19394 dwz->str.read (objfile);
19396 if (dwz->str.buffer == NULL)
19397 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19398 "section [in module %s]"),
19399 bfd_get_filename (dwz->dwz_bfd.get ()));
19400 if (str_offset >= dwz->str.size)
19401 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19402 ".debug_str section [in module %s]"),
19403 bfd_get_filename (dwz->dwz_bfd.get ()));
19404 gdb_assert (HOST_CHAR_BIT == 8);
19405 if (dwz->str.buffer[str_offset] == '\0')
19407 return (const char *) (dwz->str.buffer + str_offset);
19410 /* Return pointer to string at .debug_str offset as read from BUF.
19411 BUF is assumed to be in a compilation unit described by CU_HEADER.
19412 Return *BYTES_READ_PTR count of bytes read from BUF. */
19414 static const char *
19415 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19416 const gdb_byte *buf,
19417 const struct comp_unit_head *cu_header,
19418 unsigned int *bytes_read_ptr)
19420 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19422 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19425 /* Return pointer to string at .debug_line_str offset as read from BUF.
19426 BUF is assumed to be in a compilation unit described by CU_HEADER.
19427 Return *BYTES_READ_PTR count of bytes read from BUF. */
19429 static const char *
19430 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19431 bfd *abfd, const gdb_byte *buf,
19432 const struct comp_unit_head *cu_header,
19433 unsigned int *bytes_read_ptr)
19435 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19437 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19441 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19442 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19443 ADDR_SIZE is the size of addresses from the CU header. */
19446 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19447 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19450 struct objfile *objfile = dwarf2_per_objfile->objfile;
19451 bfd *abfd = objfile->obfd;
19452 const gdb_byte *info_ptr;
19453 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19455 dwarf2_per_objfile->addr.read (objfile);
19456 if (dwarf2_per_objfile->addr.buffer == NULL)
19457 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19458 objfile_name (objfile));
19459 if (addr_base_or_zero + addr_index * addr_size
19460 >= dwarf2_per_objfile->addr.size)
19461 error (_("DW_FORM_addr_index pointing outside of "
19462 ".debug_addr section [in module %s]"),
19463 objfile_name (objfile));
19464 info_ptr = (dwarf2_per_objfile->addr.buffer
19465 + addr_base_or_zero + addr_index * addr_size);
19466 if (addr_size == 4)
19467 return bfd_get_32 (abfd, info_ptr);
19469 return bfd_get_64 (abfd, info_ptr);
19472 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19475 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19477 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19478 cu->addr_base, cu->header.addr_size);
19481 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19484 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19485 unsigned int *bytes_read)
19487 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19488 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19490 return read_addr_index (cu, addr_index);
19493 /* Given an index in .debug_addr, fetch the value.
19494 NOTE: This can be called during dwarf expression evaluation,
19495 long after the debug information has been read, and thus per_cu->cu
19496 may no longer exist. */
19499 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19500 unsigned int addr_index)
19502 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19503 struct dwarf2_cu *cu = per_cu->cu;
19504 gdb::optional<ULONGEST> addr_base;
19507 /* We need addr_base and addr_size.
19508 If we don't have PER_CU->cu, we have to get it.
19509 Nasty, but the alternative is storing the needed info in PER_CU,
19510 which at this point doesn't seem justified: it's not clear how frequently
19511 it would get used and it would increase the size of every PER_CU.
19512 Entry points like dwarf2_per_cu_addr_size do a similar thing
19513 so we're not in uncharted territory here.
19514 Alas we need to be a bit more complicated as addr_base is contained
19517 We don't need to read the entire CU(/TU).
19518 We just need the header and top level die.
19520 IWBN to use the aging mechanism to let us lazily later discard the CU.
19521 For now we skip this optimization. */
19525 addr_base = cu->addr_base;
19526 addr_size = cu->header.addr_size;
19530 cutu_reader reader (per_cu, NULL, 0, 0, false);
19531 addr_base = reader.cu->addr_base;
19532 addr_size = reader.cu->header.addr_size;
19535 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19539 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19540 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19543 static const char *
19544 read_str_index (struct dwarf2_cu *cu,
19545 struct dwarf2_section_info *str_section,
19546 struct dwarf2_section_info *str_offsets_section,
19547 ULONGEST str_offsets_base, ULONGEST str_index)
19549 struct dwarf2_per_objfile *dwarf2_per_objfile
19550 = cu->per_cu->dwarf2_per_objfile;
19551 struct objfile *objfile = dwarf2_per_objfile->objfile;
19552 const char *objf_name = objfile_name (objfile);
19553 bfd *abfd = objfile->obfd;
19554 const gdb_byte *info_ptr;
19555 ULONGEST str_offset;
19556 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19558 str_section->read (objfile);
19559 str_offsets_section->read (objfile);
19560 if (str_section->buffer == NULL)
19561 error (_("%s used without %s section"
19562 " in CU at offset %s [in module %s]"),
19563 form_name, str_section->get_name (),
19564 sect_offset_str (cu->header.sect_off), objf_name);
19565 if (str_offsets_section->buffer == NULL)
19566 error (_("%s used without %s section"
19567 " in CU at offset %s [in module %s]"),
19568 form_name, str_section->get_name (),
19569 sect_offset_str (cu->header.sect_off), objf_name);
19570 info_ptr = (str_offsets_section->buffer
19572 + str_index * cu->header.offset_size);
19573 if (cu->header.offset_size == 4)
19574 str_offset = bfd_get_32 (abfd, info_ptr);
19576 str_offset = bfd_get_64 (abfd, info_ptr);
19577 if (str_offset >= str_section->size)
19578 error (_("Offset from %s pointing outside of"
19579 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19580 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19581 return (const char *) (str_section->buffer + str_offset);
19584 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19586 static const char *
19587 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19589 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19590 ? reader->cu->header.addr_size : 0;
19591 return read_str_index (reader->cu,
19592 &reader->dwo_file->sections.str,
19593 &reader->dwo_file->sections.str_offsets,
19594 str_offsets_base, str_index);
19597 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19599 static const char *
19600 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19602 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19603 const char *objf_name = objfile_name (objfile);
19604 static const char form_name[] = "DW_FORM_GNU_str_index";
19605 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19607 if (!cu->str_offsets_base.has_value ())
19608 error (_("%s used in Fission stub without %s"
19609 " in CU at offset 0x%lx [in module %s]"),
19610 form_name, str_offsets_attr_name,
19611 (long) cu->header.offset_size, objf_name);
19613 return read_str_index (cu,
19614 &cu->per_cu->dwarf2_per_objfile->str,
19615 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19616 *cu->str_offsets_base, str_index);
19619 /* Return the length of an LEB128 number in BUF. */
19622 leb128_size (const gdb_byte *buf)
19624 const gdb_byte *begin = buf;
19630 if ((byte & 128) == 0)
19631 return buf - begin;
19636 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19645 cu->language = language_c;
19648 case DW_LANG_C_plus_plus:
19649 case DW_LANG_C_plus_plus_11:
19650 case DW_LANG_C_plus_plus_14:
19651 cu->language = language_cplus;
19654 cu->language = language_d;
19656 case DW_LANG_Fortran77:
19657 case DW_LANG_Fortran90:
19658 case DW_LANG_Fortran95:
19659 case DW_LANG_Fortran03:
19660 case DW_LANG_Fortran08:
19661 cu->language = language_fortran;
19664 cu->language = language_go;
19666 case DW_LANG_Mips_Assembler:
19667 cu->language = language_asm;
19669 case DW_LANG_Ada83:
19670 case DW_LANG_Ada95:
19671 cu->language = language_ada;
19673 case DW_LANG_Modula2:
19674 cu->language = language_m2;
19676 case DW_LANG_Pascal83:
19677 cu->language = language_pascal;
19680 cu->language = language_objc;
19683 case DW_LANG_Rust_old:
19684 cu->language = language_rust;
19686 case DW_LANG_Cobol74:
19687 case DW_LANG_Cobol85:
19689 cu->language = language_minimal;
19692 cu->language_defn = language_def (cu->language);
19695 /* Return the named attribute or NULL if not there. */
19697 static struct attribute *
19698 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19703 struct attribute *spec = NULL;
19705 for (i = 0; i < die->num_attrs; ++i)
19707 if (die->attrs[i].name == name)
19708 return &die->attrs[i];
19709 if (die->attrs[i].name == DW_AT_specification
19710 || die->attrs[i].name == DW_AT_abstract_origin)
19711 spec = &die->attrs[i];
19717 die = follow_die_ref (die, spec, &cu);
19723 /* Return the named attribute or NULL if not there,
19724 but do not follow DW_AT_specification, etc.
19725 This is for use in contexts where we're reading .debug_types dies.
19726 Following DW_AT_specification, DW_AT_abstract_origin will take us
19727 back up the chain, and we want to go down. */
19729 static struct attribute *
19730 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19734 for (i = 0; i < die->num_attrs; ++i)
19735 if (die->attrs[i].name == name)
19736 return &die->attrs[i];
19741 /* Return the string associated with a string-typed attribute, or NULL if it
19742 is either not found or is of an incorrect type. */
19744 static const char *
19745 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19747 struct attribute *attr;
19748 const char *str = NULL;
19750 attr = dwarf2_attr (die, name, cu);
19754 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19755 || attr->form == DW_FORM_string
19756 || attr->form == DW_FORM_strx
19757 || attr->form == DW_FORM_strx1
19758 || attr->form == DW_FORM_strx2
19759 || attr->form == DW_FORM_strx3
19760 || attr->form == DW_FORM_strx4
19761 || attr->form == DW_FORM_GNU_str_index
19762 || attr->form == DW_FORM_GNU_strp_alt)
19763 str = DW_STRING (attr);
19765 complaint (_("string type expected for attribute %s for "
19766 "DIE at %s in module %s"),
19767 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19774 /* Return the dwo name or NULL if not present. If present, it is in either
19775 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19776 static const char *
19777 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19779 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19780 if (dwo_name == nullptr)
19781 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19785 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19786 and holds a non-zero value. This function should only be used for
19787 DW_FORM_flag or DW_FORM_flag_present attributes. */
19790 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19792 struct attribute *attr = dwarf2_attr (die, name, cu);
19794 return (attr && DW_UNSND (attr));
19798 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19800 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19801 which value is non-zero. However, we have to be careful with
19802 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19803 (via dwarf2_flag_true_p) follows this attribute. So we may
19804 end up accidently finding a declaration attribute that belongs
19805 to a different DIE referenced by the specification attribute,
19806 even though the given DIE does not have a declaration attribute. */
19807 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19808 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19811 /* Return the die giving the specification for DIE, if there is
19812 one. *SPEC_CU is the CU containing DIE on input, and the CU
19813 containing the return value on output. If there is no
19814 specification, but there is an abstract origin, that is
19817 static struct die_info *
19818 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19820 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19823 if (spec_attr == NULL)
19824 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19826 if (spec_attr == NULL)
19829 return follow_die_ref (die, spec_attr, spec_cu);
19832 /* Stub for free_line_header to match void * callback types. */
19835 free_line_header_voidp (void *arg)
19837 struct line_header *lh = (struct line_header *) arg;
19843 line_header::add_include_dir (const char *include_dir)
19845 if (dwarf_line_debug >= 2)
19849 new_size = m_include_dirs.size ();
19851 new_size = m_include_dirs.size () + 1;
19852 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19853 new_size, include_dir);
19855 m_include_dirs.push_back (include_dir);
19859 line_header::add_file_name (const char *name,
19861 unsigned int mod_time,
19862 unsigned int length)
19864 if (dwarf_line_debug >= 2)
19868 new_size = file_names_size ();
19870 new_size = file_names_size () + 1;
19871 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
19874 m_file_names.emplace_back (name, d_index, mod_time, length);
19877 /* A convenience function to find the proper .debug_line section for a CU. */
19879 static struct dwarf2_section_info *
19880 get_debug_line_section (struct dwarf2_cu *cu)
19882 struct dwarf2_section_info *section;
19883 struct dwarf2_per_objfile *dwarf2_per_objfile
19884 = cu->per_cu->dwarf2_per_objfile;
19886 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19888 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19889 section = &cu->dwo_unit->dwo_file->sections.line;
19890 else if (cu->per_cu->is_dwz)
19892 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19894 section = &dwz->line;
19897 section = &dwarf2_per_objfile->line;
19902 /* Read directory or file name entry format, starting with byte of
19903 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19904 entries count and the entries themselves in the described entry
19908 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19909 bfd *abfd, const gdb_byte **bufp,
19910 struct line_header *lh,
19911 const struct comp_unit_head *cu_header,
19912 void (*callback) (struct line_header *lh,
19915 unsigned int mod_time,
19916 unsigned int length))
19918 gdb_byte format_count, formati;
19919 ULONGEST data_count, datai;
19920 const gdb_byte *buf = *bufp;
19921 const gdb_byte *format_header_data;
19922 unsigned int bytes_read;
19924 format_count = read_1_byte (abfd, buf);
19926 format_header_data = buf;
19927 for (formati = 0; formati < format_count; formati++)
19929 read_unsigned_leb128 (abfd, buf, &bytes_read);
19931 read_unsigned_leb128 (abfd, buf, &bytes_read);
19935 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19937 for (datai = 0; datai < data_count; datai++)
19939 const gdb_byte *format = format_header_data;
19940 struct file_entry fe;
19942 for (formati = 0; formati < format_count; formati++)
19944 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19945 format += bytes_read;
19947 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19948 format += bytes_read;
19950 gdb::optional<const char *> string;
19951 gdb::optional<unsigned int> uint;
19955 case DW_FORM_string:
19956 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19960 case DW_FORM_line_strp:
19961 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19968 case DW_FORM_data1:
19969 uint.emplace (read_1_byte (abfd, buf));
19973 case DW_FORM_data2:
19974 uint.emplace (read_2_bytes (abfd, buf));
19978 case DW_FORM_data4:
19979 uint.emplace (read_4_bytes (abfd, buf));
19983 case DW_FORM_data8:
19984 uint.emplace (read_8_bytes (abfd, buf));
19988 case DW_FORM_data16:
19989 /* This is used for MD5, but file_entry does not record MD5s. */
19993 case DW_FORM_udata:
19994 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19998 case DW_FORM_block:
19999 /* It is valid only for DW_LNCT_timestamp which is ignored by
20004 switch (content_type)
20007 if (string.has_value ())
20010 case DW_LNCT_directory_index:
20011 if (uint.has_value ())
20012 fe.d_index = (dir_index) *uint;
20014 case DW_LNCT_timestamp:
20015 if (uint.has_value ())
20016 fe.mod_time = *uint;
20019 if (uint.has_value ())
20025 complaint (_("Unknown format content type %s"),
20026 pulongest (content_type));
20030 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20036 /* Read the statement program header starting at OFFSET in
20037 .debug_line, or .debug_line.dwo. Return a pointer
20038 to a struct line_header, allocated using xmalloc.
20039 Returns NULL if there is a problem reading the header, e.g., if it
20040 has a version we don't understand.
20042 NOTE: the strings in the include directory and file name tables of
20043 the returned object point into the dwarf line section buffer,
20044 and must not be freed. */
20046 static line_header_up
20047 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20049 const gdb_byte *line_ptr;
20050 unsigned int bytes_read, offset_size;
20052 const char *cur_dir, *cur_file;
20053 struct dwarf2_section_info *section;
20055 struct dwarf2_per_objfile *dwarf2_per_objfile
20056 = cu->per_cu->dwarf2_per_objfile;
20058 section = get_debug_line_section (cu);
20059 section->read (dwarf2_per_objfile->objfile);
20060 if (section->buffer == NULL)
20062 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20063 complaint (_("missing .debug_line.dwo section"));
20065 complaint (_("missing .debug_line section"));
20069 /* We can't do this until we know the section is non-empty.
20070 Only then do we know we have such a section. */
20071 abfd = section->get_bfd_owner ();
20073 /* Make sure that at least there's room for the total_length field.
20074 That could be 12 bytes long, but we're just going to fudge that. */
20075 if (to_underlying (sect_off) + 4 >= section->size)
20077 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20081 line_header_up lh (new line_header ());
20083 lh->sect_off = sect_off;
20084 lh->offset_in_dwz = cu->per_cu->is_dwz;
20086 line_ptr = section->buffer + to_underlying (sect_off);
20088 /* Read in the header. */
20090 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20091 &bytes_read, &offset_size);
20092 line_ptr += bytes_read;
20094 const gdb_byte *start_here = line_ptr;
20096 if (line_ptr + lh->total_length > (section->buffer + section->size))
20098 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20101 lh->statement_program_end = start_here + lh->total_length;
20102 lh->version = read_2_bytes (abfd, line_ptr);
20104 if (lh->version > 5)
20106 /* This is a version we don't understand. The format could have
20107 changed in ways we don't handle properly so just punt. */
20108 complaint (_("unsupported version in .debug_line section"));
20111 if (lh->version >= 5)
20113 gdb_byte segment_selector_size;
20115 /* Skip address size. */
20116 read_1_byte (abfd, line_ptr);
20119 segment_selector_size = read_1_byte (abfd, line_ptr);
20121 if (segment_selector_size != 0)
20123 complaint (_("unsupported segment selector size %u "
20124 "in .debug_line section"),
20125 segment_selector_size);
20129 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20130 line_ptr += offset_size;
20131 lh->statement_program_start = line_ptr + lh->header_length;
20132 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20134 if (lh->version >= 4)
20136 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20140 lh->maximum_ops_per_instruction = 1;
20142 if (lh->maximum_ops_per_instruction == 0)
20144 lh->maximum_ops_per_instruction = 1;
20145 complaint (_("invalid maximum_ops_per_instruction "
20146 "in `.debug_line' section"));
20149 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20151 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20153 lh->line_range = read_1_byte (abfd, line_ptr);
20155 lh->opcode_base = read_1_byte (abfd, line_ptr);
20157 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20159 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20160 for (i = 1; i < lh->opcode_base; ++i)
20162 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20166 if (lh->version >= 5)
20168 /* Read directory table. */
20169 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20171 [] (struct line_header *header, const char *name,
20172 dir_index d_index, unsigned int mod_time,
20173 unsigned int length)
20175 header->add_include_dir (name);
20178 /* Read file name table. */
20179 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20181 [] (struct line_header *header, const char *name,
20182 dir_index d_index, unsigned int mod_time,
20183 unsigned int length)
20185 header->add_file_name (name, d_index, mod_time, length);
20190 /* Read directory table. */
20191 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20193 line_ptr += bytes_read;
20194 lh->add_include_dir (cur_dir);
20196 line_ptr += bytes_read;
20198 /* Read file name table. */
20199 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20201 unsigned int mod_time, length;
20204 line_ptr += bytes_read;
20205 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20206 line_ptr += bytes_read;
20207 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20208 line_ptr += bytes_read;
20209 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20210 line_ptr += bytes_read;
20212 lh->add_file_name (cur_file, d_index, mod_time, length);
20214 line_ptr += bytes_read;
20217 if (line_ptr > (section->buffer + section->size))
20218 complaint (_("line number info header doesn't "
20219 "fit in `.debug_line' section"));
20224 /* Subroutine of dwarf_decode_lines to simplify it.
20225 Return the file name of the psymtab for the given file_entry.
20226 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20227 If space for the result is malloc'd, *NAME_HOLDER will be set.
20228 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20230 static const char *
20231 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20232 const dwarf2_psymtab *pst,
20233 const char *comp_dir,
20234 gdb::unique_xmalloc_ptr<char> *name_holder)
20236 const char *include_name = fe.name;
20237 const char *include_name_to_compare = include_name;
20238 const char *pst_filename;
20241 const char *dir_name = fe.include_dir (lh);
20243 gdb::unique_xmalloc_ptr<char> hold_compare;
20244 if (!IS_ABSOLUTE_PATH (include_name)
20245 && (dir_name != NULL || comp_dir != NULL))
20247 /* Avoid creating a duplicate psymtab for PST.
20248 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20249 Before we do the comparison, however, we need to account
20250 for DIR_NAME and COMP_DIR.
20251 First prepend dir_name (if non-NULL). If we still don't
20252 have an absolute path prepend comp_dir (if non-NULL).
20253 However, the directory we record in the include-file's
20254 psymtab does not contain COMP_DIR (to match the
20255 corresponding symtab(s)).
20260 bash$ gcc -g ./hello.c
20261 include_name = "hello.c"
20263 DW_AT_comp_dir = comp_dir = "/tmp"
20264 DW_AT_name = "./hello.c"
20268 if (dir_name != NULL)
20270 name_holder->reset (concat (dir_name, SLASH_STRING,
20271 include_name, (char *) NULL));
20272 include_name = name_holder->get ();
20273 include_name_to_compare = include_name;
20275 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20277 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20278 include_name, (char *) NULL));
20279 include_name_to_compare = hold_compare.get ();
20283 pst_filename = pst->filename;
20284 gdb::unique_xmalloc_ptr<char> copied_name;
20285 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20287 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20288 pst_filename, (char *) NULL));
20289 pst_filename = copied_name.get ();
20292 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20296 return include_name;
20299 /* State machine to track the state of the line number program. */
20301 class lnp_state_machine
20304 /* Initialize a machine state for the start of a line number
20306 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20307 bool record_lines_p);
20309 file_entry *current_file ()
20311 /* lh->file_names is 0-based, but the file name numbers in the
20312 statement program are 1-based. */
20313 return m_line_header->file_name_at (m_file);
20316 /* Record the line in the state machine. END_SEQUENCE is true if
20317 we're processing the end of a sequence. */
20318 void record_line (bool end_sequence);
20320 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20321 nop-out rest of the lines in this sequence. */
20322 void check_line_address (struct dwarf2_cu *cu,
20323 const gdb_byte *line_ptr,
20324 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20326 void handle_set_discriminator (unsigned int discriminator)
20328 m_discriminator = discriminator;
20329 m_line_has_non_zero_discriminator |= discriminator != 0;
20332 /* Handle DW_LNE_set_address. */
20333 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20336 address += baseaddr;
20337 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20340 /* Handle DW_LNS_advance_pc. */
20341 void handle_advance_pc (CORE_ADDR adjust);
20343 /* Handle a special opcode. */
20344 void handle_special_opcode (unsigned char op_code);
20346 /* Handle DW_LNS_advance_line. */
20347 void handle_advance_line (int line_delta)
20349 advance_line (line_delta);
20352 /* Handle DW_LNS_set_file. */
20353 void handle_set_file (file_name_index file);
20355 /* Handle DW_LNS_negate_stmt. */
20356 void handle_negate_stmt ()
20358 m_is_stmt = !m_is_stmt;
20361 /* Handle DW_LNS_const_add_pc. */
20362 void handle_const_add_pc ();
20364 /* Handle DW_LNS_fixed_advance_pc. */
20365 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20367 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20371 /* Handle DW_LNS_copy. */
20372 void handle_copy ()
20374 record_line (false);
20375 m_discriminator = 0;
20378 /* Handle DW_LNE_end_sequence. */
20379 void handle_end_sequence ()
20381 m_currently_recording_lines = true;
20385 /* Advance the line by LINE_DELTA. */
20386 void advance_line (int line_delta)
20388 m_line += line_delta;
20390 if (line_delta != 0)
20391 m_line_has_non_zero_discriminator = m_discriminator != 0;
20394 struct dwarf2_cu *m_cu;
20396 gdbarch *m_gdbarch;
20398 /* True if we're recording lines.
20399 Otherwise we're building partial symtabs and are just interested in
20400 finding include files mentioned by the line number program. */
20401 bool m_record_lines_p;
20403 /* The line number header. */
20404 line_header *m_line_header;
20406 /* These are part of the standard DWARF line number state machine,
20407 and initialized according to the DWARF spec. */
20409 unsigned char m_op_index = 0;
20410 /* The line table index of the current file. */
20411 file_name_index m_file = 1;
20412 unsigned int m_line = 1;
20414 /* These are initialized in the constructor. */
20416 CORE_ADDR m_address;
20418 unsigned int m_discriminator;
20420 /* Additional bits of state we need to track. */
20422 /* The last file that we called dwarf2_start_subfile for.
20423 This is only used for TLLs. */
20424 unsigned int m_last_file = 0;
20425 /* The last file a line number was recorded for. */
20426 struct subfile *m_last_subfile = NULL;
20428 /* When true, record the lines we decode. */
20429 bool m_currently_recording_lines = false;
20431 /* The last line number that was recorded, used to coalesce
20432 consecutive entries for the same line. This can happen, for
20433 example, when discriminators are present. PR 17276. */
20434 unsigned int m_last_line = 0;
20435 bool m_line_has_non_zero_discriminator = false;
20439 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20441 CORE_ADDR addr_adj = (((m_op_index + adjust)
20442 / m_line_header->maximum_ops_per_instruction)
20443 * m_line_header->minimum_instruction_length);
20444 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20445 m_op_index = ((m_op_index + adjust)
20446 % m_line_header->maximum_ops_per_instruction);
20450 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20452 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20453 CORE_ADDR addr_adj = (((m_op_index
20454 + (adj_opcode / m_line_header->line_range))
20455 / m_line_header->maximum_ops_per_instruction)
20456 * m_line_header->minimum_instruction_length);
20457 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20458 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20459 % m_line_header->maximum_ops_per_instruction);
20461 int line_delta = (m_line_header->line_base
20462 + (adj_opcode % m_line_header->line_range));
20463 advance_line (line_delta);
20464 record_line (false);
20465 m_discriminator = 0;
20469 lnp_state_machine::handle_set_file (file_name_index file)
20473 const file_entry *fe = current_file ();
20475 dwarf2_debug_line_missing_file_complaint ();
20476 else if (m_record_lines_p)
20478 const char *dir = fe->include_dir (m_line_header);
20480 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20481 m_line_has_non_zero_discriminator = m_discriminator != 0;
20482 dwarf2_start_subfile (m_cu, fe->name, dir);
20487 lnp_state_machine::handle_const_add_pc ()
20490 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20493 = (((m_op_index + adjust)
20494 / m_line_header->maximum_ops_per_instruction)
20495 * m_line_header->minimum_instruction_length);
20497 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20498 m_op_index = ((m_op_index + adjust)
20499 % m_line_header->maximum_ops_per_instruction);
20502 /* Return non-zero if we should add LINE to the line number table.
20503 LINE is the line to add, LAST_LINE is the last line that was added,
20504 LAST_SUBFILE is the subfile for LAST_LINE.
20505 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20506 had a non-zero discriminator.
20508 We have to be careful in the presence of discriminators.
20509 E.g., for this line:
20511 for (i = 0; i < 100000; i++);
20513 clang can emit four line number entries for that one line,
20514 each with a different discriminator.
20515 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20517 However, we want gdb to coalesce all four entries into one.
20518 Otherwise the user could stepi into the middle of the line and
20519 gdb would get confused about whether the pc really was in the
20520 middle of the line.
20522 Things are further complicated by the fact that two consecutive
20523 line number entries for the same line is a heuristic used by gcc
20524 to denote the end of the prologue. So we can't just discard duplicate
20525 entries, we have to be selective about it. The heuristic we use is
20526 that we only collapse consecutive entries for the same line if at least
20527 one of those entries has a non-zero discriminator. PR 17276.
20529 Note: Addresses in the line number state machine can never go backwards
20530 within one sequence, thus this coalescing is ok. */
20533 dwarf_record_line_p (struct dwarf2_cu *cu,
20534 unsigned int line, unsigned int last_line,
20535 int line_has_non_zero_discriminator,
20536 struct subfile *last_subfile)
20538 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20540 if (line != last_line)
20542 /* Same line for the same file that we've seen already.
20543 As a last check, for pr 17276, only record the line if the line
20544 has never had a non-zero discriminator. */
20545 if (!line_has_non_zero_discriminator)
20550 /* Use the CU's builder to record line number LINE beginning at
20551 address ADDRESS in the line table of subfile SUBFILE. */
20554 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20555 unsigned int line, CORE_ADDR address,
20556 struct dwarf2_cu *cu)
20558 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20560 if (dwarf_line_debug)
20562 fprintf_unfiltered (gdb_stdlog,
20563 "Recording line %u, file %s, address %s\n",
20564 line, lbasename (subfile->name),
20565 paddress (gdbarch, address));
20569 cu->get_builder ()->record_line (subfile, line, addr);
20572 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20573 Mark the end of a set of line number records.
20574 The arguments are the same as for dwarf_record_line_1.
20575 If SUBFILE is NULL the request is ignored. */
20578 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20579 CORE_ADDR address, struct dwarf2_cu *cu)
20581 if (subfile == NULL)
20584 if (dwarf_line_debug)
20586 fprintf_unfiltered (gdb_stdlog,
20587 "Finishing current line, file %s, address %s\n",
20588 lbasename (subfile->name),
20589 paddress (gdbarch, address));
20592 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20596 lnp_state_machine::record_line (bool end_sequence)
20598 if (dwarf_line_debug)
20600 fprintf_unfiltered (gdb_stdlog,
20601 "Processing actual line %u: file %u,"
20602 " address %s, is_stmt %u, discrim %u%s\n",
20604 paddress (m_gdbarch, m_address),
20605 m_is_stmt, m_discriminator,
20606 (end_sequence ? "\t(end sequence)" : ""));
20609 file_entry *fe = current_file ();
20612 dwarf2_debug_line_missing_file_complaint ();
20613 /* For now we ignore lines not starting on an instruction boundary.
20614 But not when processing end_sequence for compatibility with the
20615 previous version of the code. */
20616 else if (m_op_index == 0 || end_sequence)
20618 fe->included_p = 1;
20619 if (m_record_lines_p
20620 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20622 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20625 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20626 m_currently_recording_lines ? m_cu : nullptr);
20631 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20632 m_line_has_non_zero_discriminator,
20635 buildsym_compunit *builder = m_cu->get_builder ();
20636 dwarf_record_line_1 (m_gdbarch,
20637 builder->get_current_subfile (),
20639 m_currently_recording_lines ? m_cu : nullptr);
20641 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20642 m_last_line = m_line;
20648 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20649 line_header *lh, bool record_lines_p)
20653 m_record_lines_p = record_lines_p;
20654 m_line_header = lh;
20656 m_currently_recording_lines = true;
20658 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20659 was a line entry for it so that the backend has a chance to adjust it
20660 and also record it in case it needs it. This is currently used by MIPS
20661 code, cf. `mips_adjust_dwarf2_line'. */
20662 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20663 m_is_stmt = lh->default_is_stmt;
20664 m_discriminator = 0;
20668 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20669 const gdb_byte *line_ptr,
20670 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20672 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20673 the pc range of the CU. However, we restrict the test to only ADDRESS
20674 values of zero to preserve GDB's previous behaviour which is to handle
20675 the specific case of a function being GC'd by the linker. */
20677 if (address == 0 && address < unrelocated_lowpc)
20679 /* This line table is for a function which has been
20680 GCd by the linker. Ignore it. PR gdb/12528 */
20682 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20683 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20685 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20686 line_offset, objfile_name (objfile));
20687 m_currently_recording_lines = false;
20688 /* Note: m_currently_recording_lines is left as false until we see
20689 DW_LNE_end_sequence. */
20693 /* Subroutine of dwarf_decode_lines to simplify it.
20694 Process the line number information in LH.
20695 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20696 program in order to set included_p for every referenced header. */
20699 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20700 const int decode_for_pst_p, CORE_ADDR lowpc)
20702 const gdb_byte *line_ptr, *extended_end;
20703 const gdb_byte *line_end;
20704 unsigned int bytes_read, extended_len;
20705 unsigned char op_code, extended_op;
20706 CORE_ADDR baseaddr;
20707 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20708 bfd *abfd = objfile->obfd;
20709 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20710 /* True if we're recording line info (as opposed to building partial
20711 symtabs and just interested in finding include files mentioned by
20712 the line number program). */
20713 bool record_lines_p = !decode_for_pst_p;
20715 baseaddr = objfile->text_section_offset ();
20717 line_ptr = lh->statement_program_start;
20718 line_end = lh->statement_program_end;
20720 /* Read the statement sequences until there's nothing left. */
20721 while (line_ptr < line_end)
20723 /* The DWARF line number program state machine. Reset the state
20724 machine at the start of each sequence. */
20725 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20726 bool end_sequence = false;
20728 if (record_lines_p)
20730 /* Start a subfile for the current file of the state
20732 const file_entry *fe = state_machine.current_file ();
20735 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20738 /* Decode the table. */
20739 while (line_ptr < line_end && !end_sequence)
20741 op_code = read_1_byte (abfd, line_ptr);
20744 if (op_code >= lh->opcode_base)
20746 /* Special opcode. */
20747 state_machine.handle_special_opcode (op_code);
20749 else switch (op_code)
20751 case DW_LNS_extended_op:
20752 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20754 line_ptr += bytes_read;
20755 extended_end = line_ptr + extended_len;
20756 extended_op = read_1_byte (abfd, line_ptr);
20758 switch (extended_op)
20760 case DW_LNE_end_sequence:
20761 state_machine.handle_end_sequence ();
20762 end_sequence = true;
20764 case DW_LNE_set_address:
20767 = read_address (abfd, line_ptr, cu, &bytes_read);
20768 line_ptr += bytes_read;
20770 state_machine.check_line_address (cu, line_ptr,
20771 lowpc - baseaddr, address);
20772 state_machine.handle_set_address (baseaddr, address);
20775 case DW_LNE_define_file:
20777 const char *cur_file;
20778 unsigned int mod_time, length;
20781 cur_file = read_direct_string (abfd, line_ptr,
20783 line_ptr += bytes_read;
20784 dindex = (dir_index)
20785 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20786 line_ptr += bytes_read;
20788 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20789 line_ptr += bytes_read;
20791 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20792 line_ptr += bytes_read;
20793 lh->add_file_name (cur_file, dindex, mod_time, length);
20796 case DW_LNE_set_discriminator:
20798 /* The discriminator is not interesting to the
20799 debugger; just ignore it. We still need to
20800 check its value though:
20801 if there are consecutive entries for the same
20802 (non-prologue) line we want to coalesce them.
20805 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20806 line_ptr += bytes_read;
20808 state_machine.handle_set_discriminator (discr);
20812 complaint (_("mangled .debug_line section"));
20815 /* Make sure that we parsed the extended op correctly. If e.g.
20816 we expected a different address size than the producer used,
20817 we may have read the wrong number of bytes. */
20818 if (line_ptr != extended_end)
20820 complaint (_("mangled .debug_line section"));
20825 state_machine.handle_copy ();
20827 case DW_LNS_advance_pc:
20830 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20831 line_ptr += bytes_read;
20833 state_machine.handle_advance_pc (adjust);
20836 case DW_LNS_advance_line:
20839 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20840 line_ptr += bytes_read;
20842 state_machine.handle_advance_line (line_delta);
20845 case DW_LNS_set_file:
20847 file_name_index file
20848 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20850 line_ptr += bytes_read;
20852 state_machine.handle_set_file (file);
20855 case DW_LNS_set_column:
20856 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20857 line_ptr += bytes_read;
20859 case DW_LNS_negate_stmt:
20860 state_machine.handle_negate_stmt ();
20862 case DW_LNS_set_basic_block:
20864 /* Add to the address register of the state machine the
20865 address increment value corresponding to special opcode
20866 255. I.e., this value is scaled by the minimum
20867 instruction length since special opcode 255 would have
20868 scaled the increment. */
20869 case DW_LNS_const_add_pc:
20870 state_machine.handle_const_add_pc ();
20872 case DW_LNS_fixed_advance_pc:
20874 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20877 state_machine.handle_fixed_advance_pc (addr_adj);
20882 /* Unknown standard opcode, ignore it. */
20885 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20887 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20888 line_ptr += bytes_read;
20895 dwarf2_debug_line_missing_end_sequence_complaint ();
20897 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20898 in which case we still finish recording the last line). */
20899 state_machine.record_line (true);
20903 /* Decode the Line Number Program (LNP) for the given line_header
20904 structure and CU. The actual information extracted and the type
20905 of structures created from the LNP depends on the value of PST.
20907 1. If PST is NULL, then this procedure uses the data from the program
20908 to create all necessary symbol tables, and their linetables.
20910 2. If PST is not NULL, this procedure reads the program to determine
20911 the list of files included by the unit represented by PST, and
20912 builds all the associated partial symbol tables.
20914 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20915 It is used for relative paths in the line table.
20916 NOTE: When processing partial symtabs (pst != NULL),
20917 comp_dir == pst->dirname.
20919 NOTE: It is important that psymtabs have the same file name (via strcmp)
20920 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20921 symtab we don't use it in the name of the psymtabs we create.
20922 E.g. expand_line_sal requires this when finding psymtabs to expand.
20923 A good testcase for this is mb-inline.exp.
20925 LOWPC is the lowest address in CU (or 0 if not known).
20927 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20928 for its PC<->lines mapping information. Otherwise only the filename
20929 table is read in. */
20932 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20933 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20934 CORE_ADDR lowpc, int decode_mapping)
20936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20937 const int decode_for_pst_p = (pst != NULL);
20939 if (decode_mapping)
20940 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20942 if (decode_for_pst_p)
20944 /* Now that we're done scanning the Line Header Program, we can
20945 create the psymtab of each included file. */
20946 for (auto &file_entry : lh->file_names ())
20947 if (file_entry.included_p == 1)
20949 gdb::unique_xmalloc_ptr<char> name_holder;
20950 const char *include_name =
20951 psymtab_include_file_name (lh, file_entry, pst,
20952 comp_dir, &name_holder);
20953 if (include_name != NULL)
20954 dwarf2_create_include_psymtab (include_name, pst, objfile);
20959 /* Make sure a symtab is created for every file, even files
20960 which contain only variables (i.e. no code with associated
20962 buildsym_compunit *builder = cu->get_builder ();
20963 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20965 for (auto &fe : lh->file_names ())
20967 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20968 if (builder->get_current_subfile ()->symtab == NULL)
20970 builder->get_current_subfile ()->symtab
20971 = allocate_symtab (cust,
20972 builder->get_current_subfile ()->name);
20974 fe.symtab = builder->get_current_subfile ()->symtab;
20979 /* Start a subfile for DWARF. FILENAME is the name of the file and
20980 DIRNAME the name of the source directory which contains FILENAME
20981 or NULL if not known.
20982 This routine tries to keep line numbers from identical absolute and
20983 relative file names in a common subfile.
20985 Using the `list' example from the GDB testsuite, which resides in
20986 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20987 of /srcdir/list0.c yields the following debugging information for list0.c:
20989 DW_AT_name: /srcdir/list0.c
20990 DW_AT_comp_dir: /compdir
20991 files.files[0].name: list0.h
20992 files.files[0].dir: /srcdir
20993 files.files[1].name: list0.c
20994 files.files[1].dir: /srcdir
20996 The line number information for list0.c has to end up in a single
20997 subfile, so that `break /srcdir/list0.c:1' works as expected.
20998 start_subfile will ensure that this happens provided that we pass the
20999 concatenation of files.files[1].dir and files.files[1].name as the
21003 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21004 const char *dirname)
21006 gdb::unique_xmalloc_ptr<char> copy;
21008 /* In order not to lose the line information directory,
21009 we concatenate it to the filename when it makes sense.
21010 Note that the Dwarf3 standard says (speaking of filenames in line
21011 information): ``The directory index is ignored for file names
21012 that represent full path names''. Thus ignoring dirname in the
21013 `else' branch below isn't an issue. */
21015 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21017 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21018 filename = copy.get ();
21021 cu->get_builder ()->start_subfile (filename);
21024 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21025 buildsym_compunit constructor. */
21027 struct compunit_symtab *
21028 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21031 gdb_assert (m_builder == nullptr);
21033 m_builder.reset (new struct buildsym_compunit
21034 (per_cu->dwarf2_per_objfile->objfile,
21035 name, comp_dir, language, low_pc));
21037 list_in_scope = get_builder ()->get_file_symbols ();
21039 get_builder ()->record_debugformat ("DWARF 2");
21040 get_builder ()->record_producer (producer);
21042 processing_has_namespace_info = false;
21044 return get_builder ()->get_compunit_symtab ();
21048 var_decode_location (struct attribute *attr, struct symbol *sym,
21049 struct dwarf2_cu *cu)
21051 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21052 struct comp_unit_head *cu_header = &cu->header;
21054 /* NOTE drow/2003-01-30: There used to be a comment and some special
21055 code here to turn a symbol with DW_AT_external and a
21056 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21057 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21058 with some versions of binutils) where shared libraries could have
21059 relocations against symbols in their debug information - the
21060 minimal symbol would have the right address, but the debug info
21061 would not. It's no longer necessary, because we will explicitly
21062 apply relocations when we read in the debug information now. */
21064 /* A DW_AT_location attribute with no contents indicates that a
21065 variable has been optimized away. */
21066 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
21068 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21072 /* Handle one degenerate form of location expression specially, to
21073 preserve GDB's previous behavior when section offsets are
21074 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21075 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21077 if (attr->form_is_block ()
21078 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21079 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21080 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21081 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21082 && (DW_BLOCK (attr)->size
21083 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21085 unsigned int dummy;
21087 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21088 SET_SYMBOL_VALUE_ADDRESS (sym,
21089 read_address (objfile->obfd,
21090 DW_BLOCK (attr)->data + 1,
21093 SET_SYMBOL_VALUE_ADDRESS
21094 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21096 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21097 fixup_symbol_section (sym, objfile);
21098 SET_SYMBOL_VALUE_ADDRESS
21100 SYMBOL_VALUE_ADDRESS (sym)
21101 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21105 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21106 expression evaluator, and use LOC_COMPUTED only when necessary
21107 (i.e. when the value of a register or memory location is
21108 referenced, or a thread-local block, etc.). Then again, it might
21109 not be worthwhile. I'm assuming that it isn't unless performance
21110 or memory numbers show me otherwise. */
21112 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21114 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21115 cu->has_loclist = true;
21118 /* Given a pointer to a DWARF information entry, figure out if we need
21119 to make a symbol table entry for it, and if so, create a new entry
21120 and return a pointer to it.
21121 If TYPE is NULL, determine symbol type from the die, otherwise
21122 used the passed type.
21123 If SPACE is not NULL, use it to hold the new symbol. If it is
21124 NULL, allocate a new symbol on the objfile's obstack. */
21126 static struct symbol *
21127 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21128 struct symbol *space)
21130 struct dwarf2_per_objfile *dwarf2_per_objfile
21131 = cu->per_cu->dwarf2_per_objfile;
21132 struct objfile *objfile = dwarf2_per_objfile->objfile;
21133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21134 struct symbol *sym = NULL;
21136 struct attribute *attr = NULL;
21137 struct attribute *attr2 = NULL;
21138 CORE_ADDR baseaddr;
21139 struct pending **list_to_add = NULL;
21141 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21143 baseaddr = objfile->text_section_offset ();
21145 name = dwarf2_name (die, cu);
21148 const char *linkagename;
21149 int suppress_add = 0;
21154 sym = allocate_symbol (objfile);
21155 OBJSTAT (objfile, n_syms++);
21157 /* Cache this symbol's name and the name's demangled form (if any). */
21158 sym->set_language (cu->language, &objfile->objfile_obstack);
21159 linkagename = dwarf2_physname (name, die, cu);
21160 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
21162 /* Fortran does not have mangling standard and the mangling does differ
21163 between gfortran, iFort etc. */
21164 if (cu->language == language_fortran
21165 && symbol_get_demangled_name (sym) == NULL)
21166 symbol_set_demangled_name (sym,
21167 dwarf2_full_name (name, die, cu),
21170 /* Default assumptions.
21171 Use the passed type or decode it from the die. */
21172 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21173 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21175 SYMBOL_TYPE (sym) = type;
21177 SYMBOL_TYPE (sym) = die_type (die, cu);
21178 attr = dwarf2_attr (die,
21179 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21181 if (attr != nullptr)
21183 SYMBOL_LINE (sym) = DW_UNSND (attr);
21186 attr = dwarf2_attr (die,
21187 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21189 if (attr != nullptr)
21191 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21192 struct file_entry *fe;
21194 if (cu->line_header != NULL)
21195 fe = cu->line_header->file_name_at (file_index);
21200 complaint (_("file index out of range"));
21202 symbol_set_symtab (sym, fe->symtab);
21208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21209 if (attr != nullptr)
21213 addr = attr->value_as_address ();
21214 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21215 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21217 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21218 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21219 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21220 add_symbol_to_list (sym, cu->list_in_scope);
21222 case DW_TAG_subprogram:
21223 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21225 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21226 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21227 if ((attr2 && (DW_UNSND (attr2) != 0))
21228 || cu->language == language_ada
21229 || cu->language == language_fortran)
21231 /* Subprograms marked external are stored as a global symbol.
21232 Ada and Fortran subprograms, whether marked external or
21233 not, are always stored as a global symbol, because we want
21234 to be able to access them globally. For instance, we want
21235 to be able to break on a nested subprogram without having
21236 to specify the context. */
21237 list_to_add = cu->get_builder ()->get_global_symbols ();
21241 list_to_add = cu->list_in_scope;
21244 case DW_TAG_inlined_subroutine:
21245 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21247 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21248 SYMBOL_INLINED (sym) = 1;
21249 list_to_add = cu->list_in_scope;
21251 case DW_TAG_template_value_param:
21253 /* Fall through. */
21254 case DW_TAG_constant:
21255 case DW_TAG_variable:
21256 case DW_TAG_member:
21257 /* Compilation with minimal debug info may result in
21258 variables with missing type entries. Change the
21259 misleading `void' type to something sensible. */
21260 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21261 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21263 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21264 /* In the case of DW_TAG_member, we should only be called for
21265 static const members. */
21266 if (die->tag == DW_TAG_member)
21268 /* dwarf2_add_field uses die_is_declaration,
21269 so we do the same. */
21270 gdb_assert (die_is_declaration (die, cu));
21273 if (attr != nullptr)
21275 dwarf2_const_value (attr, sym, cu);
21276 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21279 if (attr2 && (DW_UNSND (attr2) != 0))
21280 list_to_add = cu->get_builder ()->get_global_symbols ();
21282 list_to_add = cu->list_in_scope;
21286 attr = dwarf2_attr (die, DW_AT_location, cu);
21287 if (attr != nullptr)
21289 var_decode_location (attr, sym, cu);
21290 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21292 /* Fortran explicitly imports any global symbols to the local
21293 scope by DW_TAG_common_block. */
21294 if (cu->language == language_fortran && die->parent
21295 && die->parent->tag == DW_TAG_common_block)
21298 if (SYMBOL_CLASS (sym) == LOC_STATIC
21299 && SYMBOL_VALUE_ADDRESS (sym) == 0
21300 && !dwarf2_per_objfile->has_section_at_zero)
21302 /* When a static variable is eliminated by the linker,
21303 the corresponding debug information is not stripped
21304 out, but the variable address is set to null;
21305 do not add such variables into symbol table. */
21307 else if (attr2 && (DW_UNSND (attr2) != 0))
21309 if (SYMBOL_CLASS (sym) == LOC_STATIC
21310 && (objfile->flags & OBJF_MAINLINE) == 0
21311 && dwarf2_per_objfile->can_copy)
21313 /* A global static variable might be subject to
21314 copy relocation. We first check for a local
21315 minsym, though, because maybe the symbol was
21316 marked hidden, in which case this would not
21318 bound_minimal_symbol found
21319 = (lookup_minimal_symbol_linkage
21320 (sym->linkage_name (), objfile));
21321 if (found.minsym != nullptr)
21322 sym->maybe_copied = 1;
21325 /* A variable with DW_AT_external is never static,
21326 but it may be block-scoped. */
21328 = ((cu->list_in_scope
21329 == cu->get_builder ()->get_file_symbols ())
21330 ? cu->get_builder ()->get_global_symbols ()
21331 : cu->list_in_scope);
21334 list_to_add = cu->list_in_scope;
21338 /* We do not know the address of this symbol.
21339 If it is an external symbol and we have type information
21340 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21341 The address of the variable will then be determined from
21342 the minimal symbol table whenever the variable is
21344 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21346 /* Fortran explicitly imports any global symbols to the local
21347 scope by DW_TAG_common_block. */
21348 if (cu->language == language_fortran && die->parent
21349 && die->parent->tag == DW_TAG_common_block)
21351 /* SYMBOL_CLASS doesn't matter here because
21352 read_common_block is going to reset it. */
21354 list_to_add = cu->list_in_scope;
21356 else if (attr2 && (DW_UNSND (attr2) != 0)
21357 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21359 /* A variable with DW_AT_external is never static, but it
21360 may be block-scoped. */
21362 = ((cu->list_in_scope
21363 == cu->get_builder ()->get_file_symbols ())
21364 ? cu->get_builder ()->get_global_symbols ()
21365 : cu->list_in_scope);
21367 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21369 else if (!die_is_declaration (die, cu))
21371 /* Use the default LOC_OPTIMIZED_OUT class. */
21372 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21374 list_to_add = cu->list_in_scope;
21378 case DW_TAG_formal_parameter:
21380 /* If we are inside a function, mark this as an argument. If
21381 not, we might be looking at an argument to an inlined function
21382 when we do not have enough information to show inlined frames;
21383 pretend it's a local variable in that case so that the user can
21385 struct context_stack *curr
21386 = cu->get_builder ()->get_current_context_stack ();
21387 if (curr != nullptr && curr->name != nullptr)
21388 SYMBOL_IS_ARGUMENT (sym) = 1;
21389 attr = dwarf2_attr (die, DW_AT_location, cu);
21390 if (attr != nullptr)
21392 var_decode_location (attr, sym, cu);
21394 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21395 if (attr != nullptr)
21397 dwarf2_const_value (attr, sym, cu);
21400 list_to_add = cu->list_in_scope;
21403 case DW_TAG_unspecified_parameters:
21404 /* From varargs functions; gdb doesn't seem to have any
21405 interest in this information, so just ignore it for now.
21408 case DW_TAG_template_type_param:
21410 /* Fall through. */
21411 case DW_TAG_class_type:
21412 case DW_TAG_interface_type:
21413 case DW_TAG_structure_type:
21414 case DW_TAG_union_type:
21415 case DW_TAG_set_type:
21416 case DW_TAG_enumeration_type:
21417 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21418 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21421 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21422 really ever be static objects: otherwise, if you try
21423 to, say, break of a class's method and you're in a file
21424 which doesn't mention that class, it won't work unless
21425 the check for all static symbols in lookup_symbol_aux
21426 saves you. See the OtherFileClass tests in
21427 gdb.c++/namespace.exp. */
21431 buildsym_compunit *builder = cu->get_builder ();
21433 = (cu->list_in_scope == builder->get_file_symbols ()
21434 && cu->language == language_cplus
21435 ? builder->get_global_symbols ()
21436 : cu->list_in_scope);
21438 /* The semantics of C++ state that "struct foo {
21439 ... }" also defines a typedef for "foo". */
21440 if (cu->language == language_cplus
21441 || cu->language == language_ada
21442 || cu->language == language_d
21443 || cu->language == language_rust)
21445 /* The symbol's name is already allocated along
21446 with this objfile, so we don't need to
21447 duplicate it for the type. */
21448 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21449 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
21454 case DW_TAG_typedef:
21455 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21456 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21457 list_to_add = cu->list_in_scope;
21459 case DW_TAG_base_type:
21460 case DW_TAG_subrange_type:
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21462 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21463 list_to_add = cu->list_in_scope;
21465 case DW_TAG_enumerator:
21466 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21467 if (attr != nullptr)
21469 dwarf2_const_value (attr, sym, cu);
21472 /* NOTE: carlton/2003-11-10: See comment above in the
21473 DW_TAG_class_type, etc. block. */
21476 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21477 && cu->language == language_cplus
21478 ? cu->get_builder ()->get_global_symbols ()
21479 : cu->list_in_scope);
21482 case DW_TAG_imported_declaration:
21483 case DW_TAG_namespace:
21484 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21485 list_to_add = cu->get_builder ()->get_global_symbols ();
21487 case DW_TAG_module:
21488 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21489 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21490 list_to_add = cu->get_builder ()->get_global_symbols ();
21492 case DW_TAG_common_block:
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21494 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21495 add_symbol_to_list (sym, cu->list_in_scope);
21498 /* Not a tag we recognize. Hopefully we aren't processing
21499 trash data, but since we must specifically ignore things
21500 we don't recognize, there is nothing else we should do at
21502 complaint (_("unsupported tag: '%s'"),
21503 dwarf_tag_name (die->tag));
21509 sym->hash_next = objfile->template_symbols;
21510 objfile->template_symbols = sym;
21511 list_to_add = NULL;
21514 if (list_to_add != NULL)
21515 add_symbol_to_list (sym, list_to_add);
21517 /* For the benefit of old versions of GCC, check for anonymous
21518 namespaces based on the demangled name. */
21519 if (!cu->processing_has_namespace_info
21520 && cu->language == language_cplus)
21521 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21526 /* Given an attr with a DW_FORM_dataN value in host byte order,
21527 zero-extend it as appropriate for the symbol's type. The DWARF
21528 standard (v4) is not entirely clear about the meaning of using
21529 DW_FORM_dataN for a constant with a signed type, where the type is
21530 wider than the data. The conclusion of a discussion on the DWARF
21531 list was that this is unspecified. We choose to always zero-extend
21532 because that is the interpretation long in use by GCC. */
21535 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21536 struct dwarf2_cu *cu, LONGEST *value, int bits)
21538 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21539 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21540 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21541 LONGEST l = DW_UNSND (attr);
21543 if (bits < sizeof (*value) * 8)
21545 l &= ((LONGEST) 1 << bits) - 1;
21548 else if (bits == sizeof (*value) * 8)
21552 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21553 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21560 /* Read a constant value from an attribute. Either set *VALUE, or if
21561 the value does not fit in *VALUE, set *BYTES - either already
21562 allocated on the objfile obstack, or newly allocated on OBSTACK,
21563 or, set *BATON, if we translated the constant to a location
21567 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21568 const char *name, struct obstack *obstack,
21569 struct dwarf2_cu *cu,
21570 LONGEST *value, const gdb_byte **bytes,
21571 struct dwarf2_locexpr_baton **baton)
21573 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21574 struct comp_unit_head *cu_header = &cu->header;
21575 struct dwarf_block *blk;
21576 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21577 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21583 switch (attr->form)
21586 case DW_FORM_addrx:
21587 case DW_FORM_GNU_addr_index:
21591 if (TYPE_LENGTH (type) != cu_header->addr_size)
21592 dwarf2_const_value_length_mismatch_complaint (name,
21593 cu_header->addr_size,
21594 TYPE_LENGTH (type));
21595 /* Symbols of this form are reasonably rare, so we just
21596 piggyback on the existing location code rather than writing
21597 a new implementation of symbol_computed_ops. */
21598 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21599 (*baton)->per_cu = cu->per_cu;
21600 gdb_assert ((*baton)->per_cu);
21602 (*baton)->size = 2 + cu_header->addr_size;
21603 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21604 (*baton)->data = data;
21606 data[0] = DW_OP_addr;
21607 store_unsigned_integer (&data[1], cu_header->addr_size,
21608 byte_order, DW_ADDR (attr));
21609 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21612 case DW_FORM_string:
21615 case DW_FORM_GNU_str_index:
21616 case DW_FORM_GNU_strp_alt:
21617 /* DW_STRING is already allocated on the objfile obstack, point
21619 *bytes = (const gdb_byte *) DW_STRING (attr);
21621 case DW_FORM_block1:
21622 case DW_FORM_block2:
21623 case DW_FORM_block4:
21624 case DW_FORM_block:
21625 case DW_FORM_exprloc:
21626 case DW_FORM_data16:
21627 blk = DW_BLOCK (attr);
21628 if (TYPE_LENGTH (type) != blk->size)
21629 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21630 TYPE_LENGTH (type));
21631 *bytes = blk->data;
21634 /* The DW_AT_const_value attributes are supposed to carry the
21635 symbol's value "represented as it would be on the target
21636 architecture." By the time we get here, it's already been
21637 converted to host endianness, so we just need to sign- or
21638 zero-extend it as appropriate. */
21639 case DW_FORM_data1:
21640 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21642 case DW_FORM_data2:
21643 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21645 case DW_FORM_data4:
21646 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21648 case DW_FORM_data8:
21649 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21652 case DW_FORM_sdata:
21653 case DW_FORM_implicit_const:
21654 *value = DW_SND (attr);
21657 case DW_FORM_udata:
21658 *value = DW_UNSND (attr);
21662 complaint (_("unsupported const value attribute form: '%s'"),
21663 dwarf_form_name (attr->form));
21670 /* Copy constant value from an attribute to a symbol. */
21673 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21674 struct dwarf2_cu *cu)
21676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21678 const gdb_byte *bytes;
21679 struct dwarf2_locexpr_baton *baton;
21681 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21682 sym->print_name (),
21683 &objfile->objfile_obstack, cu,
21684 &value, &bytes, &baton);
21688 SYMBOL_LOCATION_BATON (sym) = baton;
21689 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21691 else if (bytes != NULL)
21693 SYMBOL_VALUE_BYTES (sym) = bytes;
21694 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21698 SYMBOL_VALUE (sym) = value;
21699 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21703 /* Return the type of the die in question using its DW_AT_type attribute. */
21705 static struct type *
21706 die_type (struct die_info *die, struct dwarf2_cu *cu)
21708 struct attribute *type_attr;
21710 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21714 /* A missing DW_AT_type represents a void type. */
21715 return objfile_type (objfile)->builtin_void;
21718 return lookup_die_type (die, type_attr, cu);
21721 /* True iff CU's producer generates GNAT Ada auxiliary information
21722 that allows to find parallel types through that information instead
21723 of having to do expensive parallel lookups by type name. */
21726 need_gnat_info (struct dwarf2_cu *cu)
21728 /* Assume that the Ada compiler was GNAT, which always produces
21729 the auxiliary information. */
21730 return (cu->language == language_ada);
21733 /* Return the auxiliary type of the die in question using its
21734 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21735 attribute is not present. */
21737 static struct type *
21738 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21740 struct attribute *type_attr;
21742 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21746 return lookup_die_type (die, type_attr, cu);
21749 /* If DIE has a descriptive_type attribute, then set the TYPE's
21750 descriptive type accordingly. */
21753 set_descriptive_type (struct type *type, struct die_info *die,
21754 struct dwarf2_cu *cu)
21756 struct type *descriptive_type = die_descriptive_type (die, cu);
21758 if (descriptive_type)
21760 ALLOCATE_GNAT_AUX_TYPE (type);
21761 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21765 /* Return the containing type of the die in question using its
21766 DW_AT_containing_type attribute. */
21768 static struct type *
21769 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21771 struct attribute *type_attr;
21772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21774 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21776 error (_("Dwarf Error: Problem turning containing type into gdb type "
21777 "[in module %s]"), objfile_name (objfile));
21779 return lookup_die_type (die, type_attr, cu);
21782 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21784 static struct type *
21785 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21787 struct dwarf2_per_objfile *dwarf2_per_objfile
21788 = cu->per_cu->dwarf2_per_objfile;
21789 struct objfile *objfile = dwarf2_per_objfile->objfile;
21792 std::string message
21793 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21794 objfile_name (objfile),
21795 sect_offset_str (cu->header.sect_off),
21796 sect_offset_str (die->sect_off));
21797 saved = obstack_strdup (&objfile->objfile_obstack, message);
21799 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21802 /* Look up the type of DIE in CU using its type attribute ATTR.
21803 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21804 DW_AT_containing_type.
21805 If there is no type substitute an error marker. */
21807 static struct type *
21808 lookup_die_type (struct die_info *die, const struct attribute *attr,
21809 struct dwarf2_cu *cu)
21811 struct dwarf2_per_objfile *dwarf2_per_objfile
21812 = cu->per_cu->dwarf2_per_objfile;
21813 struct objfile *objfile = dwarf2_per_objfile->objfile;
21814 struct type *this_type;
21816 gdb_assert (attr->name == DW_AT_type
21817 || attr->name == DW_AT_GNAT_descriptive_type
21818 || attr->name == DW_AT_containing_type);
21820 /* First see if we have it cached. */
21822 if (attr->form == DW_FORM_GNU_ref_alt)
21824 struct dwarf2_per_cu_data *per_cu;
21825 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21827 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21828 dwarf2_per_objfile);
21829 this_type = get_die_type_at_offset (sect_off, per_cu);
21831 else if (attr->form_is_ref ())
21833 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21835 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21837 else if (attr->form == DW_FORM_ref_sig8)
21839 ULONGEST signature = DW_SIGNATURE (attr);
21841 return get_signatured_type (die, signature, cu);
21845 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21846 " at %s [in module %s]"),
21847 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21848 objfile_name (objfile));
21849 return build_error_marker_type (cu, die);
21852 /* If not cached we need to read it in. */
21854 if (this_type == NULL)
21856 struct die_info *type_die = NULL;
21857 struct dwarf2_cu *type_cu = cu;
21859 if (attr->form_is_ref ())
21860 type_die = follow_die_ref (die, attr, &type_cu);
21861 if (type_die == NULL)
21862 return build_error_marker_type (cu, die);
21863 /* If we find the type now, it's probably because the type came
21864 from an inter-CU reference and the type's CU got expanded before
21866 this_type = read_type_die (type_die, type_cu);
21869 /* If we still don't have a type use an error marker. */
21871 if (this_type == NULL)
21872 return build_error_marker_type (cu, die);
21877 /* Return the type in DIE, CU.
21878 Returns NULL for invalid types.
21880 This first does a lookup in die_type_hash,
21881 and only reads the die in if necessary.
21883 NOTE: This can be called when reading in partial or full symbols. */
21885 static struct type *
21886 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21888 struct type *this_type;
21890 this_type = get_die_type (die, cu);
21894 return read_type_die_1 (die, cu);
21897 /* Read the type in DIE, CU.
21898 Returns NULL for invalid types. */
21900 static struct type *
21901 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21903 struct type *this_type = NULL;
21907 case DW_TAG_class_type:
21908 case DW_TAG_interface_type:
21909 case DW_TAG_structure_type:
21910 case DW_TAG_union_type:
21911 this_type = read_structure_type (die, cu);
21913 case DW_TAG_enumeration_type:
21914 this_type = read_enumeration_type (die, cu);
21916 case DW_TAG_subprogram:
21917 case DW_TAG_subroutine_type:
21918 case DW_TAG_inlined_subroutine:
21919 this_type = read_subroutine_type (die, cu);
21921 case DW_TAG_array_type:
21922 this_type = read_array_type (die, cu);
21924 case DW_TAG_set_type:
21925 this_type = read_set_type (die, cu);
21927 case DW_TAG_pointer_type:
21928 this_type = read_tag_pointer_type (die, cu);
21930 case DW_TAG_ptr_to_member_type:
21931 this_type = read_tag_ptr_to_member_type (die, cu);
21933 case DW_TAG_reference_type:
21934 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21936 case DW_TAG_rvalue_reference_type:
21937 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21939 case DW_TAG_const_type:
21940 this_type = read_tag_const_type (die, cu);
21942 case DW_TAG_volatile_type:
21943 this_type = read_tag_volatile_type (die, cu);
21945 case DW_TAG_restrict_type:
21946 this_type = read_tag_restrict_type (die, cu);
21948 case DW_TAG_string_type:
21949 this_type = read_tag_string_type (die, cu);
21951 case DW_TAG_typedef:
21952 this_type = read_typedef (die, cu);
21954 case DW_TAG_subrange_type:
21955 this_type = read_subrange_type (die, cu);
21957 case DW_TAG_base_type:
21958 this_type = read_base_type (die, cu);
21960 case DW_TAG_unspecified_type:
21961 this_type = read_unspecified_type (die, cu);
21963 case DW_TAG_namespace:
21964 this_type = read_namespace_type (die, cu);
21966 case DW_TAG_module:
21967 this_type = read_module_type (die, cu);
21969 case DW_TAG_atomic_type:
21970 this_type = read_tag_atomic_type (die, cu);
21973 complaint (_("unexpected tag in read_type_die: '%s'"),
21974 dwarf_tag_name (die->tag));
21981 /* See if we can figure out if the class lives in a namespace. We do
21982 this by looking for a member function; its demangled name will
21983 contain namespace info, if there is any.
21984 Return the computed name or NULL.
21985 Space for the result is allocated on the objfile's obstack.
21986 This is the full-die version of guess_partial_die_structure_name.
21987 In this case we know DIE has no useful parent. */
21989 static const char *
21990 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21992 struct die_info *spec_die;
21993 struct dwarf2_cu *spec_cu;
21994 struct die_info *child;
21995 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21998 spec_die = die_specification (die, &spec_cu);
21999 if (spec_die != NULL)
22005 for (child = die->child;
22007 child = child->sibling)
22009 if (child->tag == DW_TAG_subprogram)
22011 const char *linkage_name = dw2_linkage_name (child, cu);
22013 if (linkage_name != NULL)
22015 gdb::unique_xmalloc_ptr<char> actual_name
22016 (language_class_name_from_physname (cu->language_defn,
22018 const char *name = NULL;
22020 if (actual_name != NULL)
22022 const char *die_name = dwarf2_name (die, cu);
22024 if (die_name != NULL
22025 && strcmp (die_name, actual_name.get ()) != 0)
22027 /* Strip off the class name from the full name.
22028 We want the prefix. */
22029 int die_name_len = strlen (die_name);
22030 int actual_name_len = strlen (actual_name.get ());
22031 const char *ptr = actual_name.get ();
22033 /* Test for '::' as a sanity check. */
22034 if (actual_name_len > die_name_len + 2
22035 && ptr[actual_name_len - die_name_len - 1] == ':')
22036 name = obstack_strndup (
22037 &objfile->per_bfd->storage_obstack,
22038 ptr, actual_name_len - die_name_len - 2);
22049 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22050 prefix part in such case. See
22051 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22053 static const char *
22054 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22056 struct attribute *attr;
22059 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22060 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22063 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22066 attr = dw2_linkage_name_attr (die, cu);
22067 if (attr == NULL || DW_STRING (attr) == NULL)
22070 /* dwarf2_name had to be already called. */
22071 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22073 /* Strip the base name, keep any leading namespaces/classes. */
22074 base = strrchr (DW_STRING (attr), ':');
22075 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22078 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22079 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22081 &base[-1] - DW_STRING (attr));
22084 /* Return the name of the namespace/class that DIE is defined within,
22085 or "" if we can't tell. The caller should not xfree the result.
22087 For example, if we're within the method foo() in the following
22097 then determine_prefix on foo's die will return "N::C". */
22099 static const char *
22100 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22102 struct dwarf2_per_objfile *dwarf2_per_objfile
22103 = cu->per_cu->dwarf2_per_objfile;
22104 struct die_info *parent, *spec_die;
22105 struct dwarf2_cu *spec_cu;
22106 struct type *parent_type;
22107 const char *retval;
22109 if (cu->language != language_cplus
22110 && cu->language != language_fortran && cu->language != language_d
22111 && cu->language != language_rust)
22114 retval = anonymous_struct_prefix (die, cu);
22118 /* We have to be careful in the presence of DW_AT_specification.
22119 For example, with GCC 3.4, given the code
22123 // Definition of N::foo.
22127 then we'll have a tree of DIEs like this:
22129 1: DW_TAG_compile_unit
22130 2: DW_TAG_namespace // N
22131 3: DW_TAG_subprogram // declaration of N::foo
22132 4: DW_TAG_subprogram // definition of N::foo
22133 DW_AT_specification // refers to die #3
22135 Thus, when processing die #4, we have to pretend that we're in
22136 the context of its DW_AT_specification, namely the contex of die
22139 spec_die = die_specification (die, &spec_cu);
22140 if (spec_die == NULL)
22141 parent = die->parent;
22144 parent = spec_die->parent;
22148 if (parent == NULL)
22150 else if (parent->building_fullname)
22153 const char *parent_name;
22155 /* It has been seen on RealView 2.2 built binaries,
22156 DW_TAG_template_type_param types actually _defined_ as
22157 children of the parent class:
22160 template class <class Enum> Class{};
22161 Class<enum E> class_e;
22163 1: DW_TAG_class_type (Class)
22164 2: DW_TAG_enumeration_type (E)
22165 3: DW_TAG_enumerator (enum1:0)
22166 3: DW_TAG_enumerator (enum2:1)
22168 2: DW_TAG_template_type_param
22169 DW_AT_type DW_FORM_ref_udata (E)
22171 Besides being broken debug info, it can put GDB into an
22172 infinite loop. Consider:
22174 When we're building the full name for Class<E>, we'll start
22175 at Class, and go look over its template type parameters,
22176 finding E. We'll then try to build the full name of E, and
22177 reach here. We're now trying to build the full name of E,
22178 and look over the parent DIE for containing scope. In the
22179 broken case, if we followed the parent DIE of E, we'd again
22180 find Class, and once again go look at its template type
22181 arguments, etc., etc. Simply don't consider such parent die
22182 as source-level parent of this die (it can't be, the language
22183 doesn't allow it), and break the loop here. */
22184 name = dwarf2_name (die, cu);
22185 parent_name = dwarf2_name (parent, cu);
22186 complaint (_("template param type '%s' defined within parent '%s'"),
22187 name ? name : "<unknown>",
22188 parent_name ? parent_name : "<unknown>");
22192 switch (parent->tag)
22194 case DW_TAG_namespace:
22195 parent_type = read_type_die (parent, cu);
22196 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22197 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22198 Work around this problem here. */
22199 if (cu->language == language_cplus
22200 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22202 /* We give a name to even anonymous namespaces. */
22203 return TYPE_NAME (parent_type);
22204 case DW_TAG_class_type:
22205 case DW_TAG_interface_type:
22206 case DW_TAG_structure_type:
22207 case DW_TAG_union_type:
22208 case DW_TAG_module:
22209 parent_type = read_type_die (parent, cu);
22210 if (TYPE_NAME (parent_type) != NULL)
22211 return TYPE_NAME (parent_type);
22213 /* An anonymous structure is only allowed non-static data
22214 members; no typedefs, no member functions, et cetera.
22215 So it does not need a prefix. */
22217 case DW_TAG_compile_unit:
22218 case DW_TAG_partial_unit:
22219 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22220 if (cu->language == language_cplus
22221 && !dwarf2_per_objfile->types.empty ()
22222 && die->child != NULL
22223 && (die->tag == DW_TAG_class_type
22224 || die->tag == DW_TAG_structure_type
22225 || die->tag == DW_TAG_union_type))
22227 const char *name = guess_full_die_structure_name (die, cu);
22232 case DW_TAG_subprogram:
22233 /* Nested subroutines in Fortran get a prefix with the name
22234 of the parent's subroutine. */
22235 if (cu->language == language_fortran)
22237 if ((die->tag == DW_TAG_subprogram)
22238 && (dwarf2_name (parent, cu) != NULL))
22239 return dwarf2_name (parent, cu);
22241 return determine_prefix (parent, cu);
22242 case DW_TAG_enumeration_type:
22243 parent_type = read_type_die (parent, cu);
22244 if (TYPE_DECLARED_CLASS (parent_type))
22246 if (TYPE_NAME (parent_type) != NULL)
22247 return TYPE_NAME (parent_type);
22250 /* Fall through. */
22252 return determine_prefix (parent, cu);
22256 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22257 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22258 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22259 an obconcat, otherwise allocate storage for the result. The CU argument is
22260 used to determine the language and hence, the appropriate separator. */
22262 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22265 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22266 int physname, struct dwarf2_cu *cu)
22268 const char *lead = "";
22271 if (suffix == NULL || suffix[0] == '\0'
22272 || prefix == NULL || prefix[0] == '\0')
22274 else if (cu->language == language_d)
22276 /* For D, the 'main' function could be defined in any module, but it
22277 should never be prefixed. */
22278 if (strcmp (suffix, "D main") == 0)
22286 else if (cu->language == language_fortran && physname)
22288 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22289 DW_AT_MIPS_linkage_name is preferred and used instead. */
22297 if (prefix == NULL)
22299 if (suffix == NULL)
22306 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22308 strcpy (retval, lead);
22309 strcat (retval, prefix);
22310 strcat (retval, sep);
22311 strcat (retval, suffix);
22316 /* We have an obstack. */
22317 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22321 /* Return sibling of die, NULL if no sibling. */
22323 static struct die_info *
22324 sibling_die (struct die_info *die)
22326 return die->sibling;
22329 /* Get name of a die, return NULL if not found. */
22331 static const char *
22332 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22333 struct obstack *obstack)
22335 if (name && cu->language == language_cplus)
22337 std::string canon_name = cp_canonicalize_string (name);
22339 if (!canon_name.empty ())
22341 if (canon_name != name)
22342 name = obstack_strdup (obstack, canon_name);
22349 /* Get name of a die, return NULL if not found.
22350 Anonymous namespaces are converted to their magic string. */
22352 static const char *
22353 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22355 struct attribute *attr;
22356 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22358 attr = dwarf2_attr (die, DW_AT_name, cu);
22359 if ((!attr || !DW_STRING (attr))
22360 && die->tag != DW_TAG_namespace
22361 && die->tag != DW_TAG_class_type
22362 && die->tag != DW_TAG_interface_type
22363 && die->tag != DW_TAG_structure_type
22364 && die->tag != DW_TAG_union_type)
22369 case DW_TAG_compile_unit:
22370 case DW_TAG_partial_unit:
22371 /* Compilation units have a DW_AT_name that is a filename, not
22372 a source language identifier. */
22373 case DW_TAG_enumeration_type:
22374 case DW_TAG_enumerator:
22375 /* These tags always have simple identifiers already; no need
22376 to canonicalize them. */
22377 return DW_STRING (attr);
22379 case DW_TAG_namespace:
22380 if (attr != NULL && DW_STRING (attr) != NULL)
22381 return DW_STRING (attr);
22382 return CP_ANONYMOUS_NAMESPACE_STR;
22384 case DW_TAG_class_type:
22385 case DW_TAG_interface_type:
22386 case DW_TAG_structure_type:
22387 case DW_TAG_union_type:
22388 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22389 structures or unions. These were of the form "._%d" in GCC 4.1,
22390 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22391 and GCC 4.4. We work around this problem by ignoring these. */
22392 if (attr && DW_STRING (attr)
22393 && (startswith (DW_STRING (attr), "._")
22394 || startswith (DW_STRING (attr), "<anonymous")))
22397 /* GCC might emit a nameless typedef that has a linkage name. See
22398 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22399 if (!attr || DW_STRING (attr) == NULL)
22401 attr = dw2_linkage_name_attr (die, cu);
22402 if (attr == NULL || DW_STRING (attr) == NULL)
22405 /* Avoid demangling DW_STRING (attr) the second time on a second
22406 call for the same DIE. */
22407 if (!DW_STRING_IS_CANONICAL (attr))
22409 gdb::unique_xmalloc_ptr<char> demangled
22410 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
22414 /* FIXME: we already did this for the partial symbol... */
22416 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22418 DW_STRING_IS_CANONICAL (attr) = 1;
22420 /* Strip any leading namespaces/classes, keep only the base name.
22421 DW_AT_name for named DIEs does not contain the prefixes. */
22422 base = strrchr (DW_STRING (attr), ':');
22423 if (base && base > DW_STRING (attr) && base[-1] == ':')
22426 return DW_STRING (attr);
22435 if (!DW_STRING_IS_CANONICAL (attr))
22438 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22439 &objfile->per_bfd->storage_obstack);
22440 DW_STRING_IS_CANONICAL (attr) = 1;
22442 return DW_STRING (attr);
22445 /* Return the die that this die in an extension of, or NULL if there
22446 is none. *EXT_CU is the CU containing DIE on input, and the CU
22447 containing the return value on output. */
22449 static struct die_info *
22450 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22452 struct attribute *attr;
22454 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22458 return follow_die_ref (die, attr, ext_cu);
22461 /* A convenience function that returns an "unknown" DWARF name,
22462 including the value of V. STR is the name of the entity being
22463 printed, e.g., "TAG". */
22465 static const char *
22466 dwarf_unknown (const char *str, unsigned v)
22468 char *cell = get_print_cell ();
22469 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22473 /* Convert a DIE tag into its string name. */
22475 static const char *
22476 dwarf_tag_name (unsigned tag)
22478 const char *name = get_DW_TAG_name (tag);
22481 return dwarf_unknown ("TAG", tag);
22486 /* Convert a DWARF attribute code into its string name. */
22488 static const char *
22489 dwarf_attr_name (unsigned attr)
22493 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22494 if (attr == DW_AT_MIPS_fde)
22495 return "DW_AT_MIPS_fde";
22497 if (attr == DW_AT_HP_block_index)
22498 return "DW_AT_HP_block_index";
22501 name = get_DW_AT_name (attr);
22504 return dwarf_unknown ("AT", attr);
22509 /* Convert a unit type to corresponding DW_UT name. */
22511 static const char *
22512 dwarf_unit_type_name (int unit_type) {
22516 return "DW_UT_compile (0x01)";
22518 return "DW_UT_type (0x02)";
22520 return "DW_UT_partial (0x03)";
22522 return "DW_UT_skeleton (0x04)";
22524 return "DW_UT_split_compile (0x05)";
22526 return "DW_UT_split_type (0x06)";
22528 return "DW_UT_lo_user (0x80)";
22530 return "DW_UT_hi_user (0xff)";
22536 /* Convert a DWARF value form code into its string name. */
22538 static const char *
22539 dwarf_form_name (unsigned form)
22541 const char *name = get_DW_FORM_name (form);
22544 return dwarf_unknown ("FORM", form);
22549 static const char *
22550 dwarf_bool_name (unsigned mybool)
22558 /* Convert a DWARF type code into its string name. */
22560 static const char *
22561 dwarf_type_encoding_name (unsigned enc)
22563 const char *name = get_DW_ATE_name (enc);
22566 return dwarf_unknown ("ATE", enc);
22572 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22576 print_spaces (indent, f);
22577 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22578 dwarf_tag_name (die->tag), die->abbrev,
22579 sect_offset_str (die->sect_off));
22581 if (die->parent != NULL)
22583 print_spaces (indent, f);
22584 fprintf_unfiltered (f, " parent at offset: %s\n",
22585 sect_offset_str (die->parent->sect_off));
22588 print_spaces (indent, f);
22589 fprintf_unfiltered (f, " has children: %s\n",
22590 dwarf_bool_name (die->child != NULL));
22592 print_spaces (indent, f);
22593 fprintf_unfiltered (f, " attributes:\n");
22595 for (i = 0; i < die->num_attrs; ++i)
22597 print_spaces (indent, f);
22598 fprintf_unfiltered (f, " %s (%s) ",
22599 dwarf_attr_name (die->attrs[i].name),
22600 dwarf_form_name (die->attrs[i].form));
22602 switch (die->attrs[i].form)
22605 case DW_FORM_addrx:
22606 case DW_FORM_GNU_addr_index:
22607 fprintf_unfiltered (f, "address: ");
22608 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22610 case DW_FORM_block2:
22611 case DW_FORM_block4:
22612 case DW_FORM_block:
22613 case DW_FORM_block1:
22614 fprintf_unfiltered (f, "block: size %s",
22615 pulongest (DW_BLOCK (&die->attrs[i])->size));
22617 case DW_FORM_exprloc:
22618 fprintf_unfiltered (f, "expression: size %s",
22619 pulongest (DW_BLOCK (&die->attrs[i])->size));
22621 case DW_FORM_data16:
22622 fprintf_unfiltered (f, "constant of 16 bytes");
22624 case DW_FORM_ref_addr:
22625 fprintf_unfiltered (f, "ref address: ");
22626 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22628 case DW_FORM_GNU_ref_alt:
22629 fprintf_unfiltered (f, "alt ref address: ");
22630 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22636 case DW_FORM_ref_udata:
22637 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22638 (long) (DW_UNSND (&die->attrs[i])));
22640 case DW_FORM_data1:
22641 case DW_FORM_data2:
22642 case DW_FORM_data4:
22643 case DW_FORM_data8:
22644 case DW_FORM_udata:
22645 case DW_FORM_sdata:
22646 fprintf_unfiltered (f, "constant: %s",
22647 pulongest (DW_UNSND (&die->attrs[i])));
22649 case DW_FORM_sec_offset:
22650 fprintf_unfiltered (f, "section offset: %s",
22651 pulongest (DW_UNSND (&die->attrs[i])));
22653 case DW_FORM_ref_sig8:
22654 fprintf_unfiltered (f, "signature: %s",
22655 hex_string (DW_SIGNATURE (&die->attrs[i])));
22657 case DW_FORM_string:
22659 case DW_FORM_line_strp:
22661 case DW_FORM_GNU_str_index:
22662 case DW_FORM_GNU_strp_alt:
22663 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22664 DW_STRING (&die->attrs[i])
22665 ? DW_STRING (&die->attrs[i]) : "",
22666 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22669 if (DW_UNSND (&die->attrs[i]))
22670 fprintf_unfiltered (f, "flag: TRUE");
22672 fprintf_unfiltered (f, "flag: FALSE");
22674 case DW_FORM_flag_present:
22675 fprintf_unfiltered (f, "flag: TRUE");
22677 case DW_FORM_indirect:
22678 /* The reader will have reduced the indirect form to
22679 the "base form" so this form should not occur. */
22680 fprintf_unfiltered (f,
22681 "unexpected attribute form: DW_FORM_indirect");
22683 case DW_FORM_implicit_const:
22684 fprintf_unfiltered (f, "constant: %s",
22685 plongest (DW_SND (&die->attrs[i])));
22688 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22689 die->attrs[i].form);
22692 fprintf_unfiltered (f, "\n");
22697 dump_die_for_error (struct die_info *die)
22699 dump_die_shallow (gdb_stderr, 0, die);
22703 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22705 int indent = level * 4;
22707 gdb_assert (die != NULL);
22709 if (level >= max_level)
22712 dump_die_shallow (f, indent, die);
22714 if (die->child != NULL)
22716 print_spaces (indent, f);
22717 fprintf_unfiltered (f, " Children:");
22718 if (level + 1 < max_level)
22720 fprintf_unfiltered (f, "\n");
22721 dump_die_1 (f, level + 1, max_level, die->child);
22725 fprintf_unfiltered (f,
22726 " [not printed, max nesting level reached]\n");
22730 if (die->sibling != NULL && level > 0)
22732 dump_die_1 (f, level, max_level, die->sibling);
22736 /* This is called from the pdie macro in gdbinit.in.
22737 It's not static so gcc will keep a copy callable from gdb. */
22740 dump_die (struct die_info *die, int max_level)
22742 dump_die_1 (gdb_stdlog, 0, max_level, die);
22746 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22750 slot = htab_find_slot_with_hash (cu->die_hash, die,
22751 to_underlying (die->sect_off),
22757 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22761 dwarf2_get_ref_die_offset (const struct attribute *attr)
22763 if (attr->form_is_ref ())
22764 return (sect_offset) DW_UNSND (attr);
22766 complaint (_("unsupported die ref attribute form: '%s'"),
22767 dwarf_form_name (attr->form));
22771 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22772 * the value held by the attribute is not constant. */
22775 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22777 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22778 return DW_SND (attr);
22779 else if (attr->form == DW_FORM_udata
22780 || attr->form == DW_FORM_data1
22781 || attr->form == DW_FORM_data2
22782 || attr->form == DW_FORM_data4
22783 || attr->form == DW_FORM_data8)
22784 return DW_UNSND (attr);
22787 /* For DW_FORM_data16 see attribute::form_is_constant. */
22788 complaint (_("Attribute value is not a constant (%s)"),
22789 dwarf_form_name (attr->form));
22790 return default_value;
22794 /* Follow reference or signature attribute ATTR of SRC_DIE.
22795 On entry *REF_CU is the CU of SRC_DIE.
22796 On exit *REF_CU is the CU of the result. */
22798 static struct die_info *
22799 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22800 struct dwarf2_cu **ref_cu)
22802 struct die_info *die;
22804 if (attr->form_is_ref ())
22805 die = follow_die_ref (src_die, attr, ref_cu);
22806 else if (attr->form == DW_FORM_ref_sig8)
22807 die = follow_die_sig (src_die, attr, ref_cu);
22810 dump_die_for_error (src_die);
22811 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22812 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22818 /* Follow reference OFFSET.
22819 On entry *REF_CU is the CU of the source die referencing OFFSET.
22820 On exit *REF_CU is the CU of the result.
22821 Returns NULL if OFFSET is invalid. */
22823 static struct die_info *
22824 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22825 struct dwarf2_cu **ref_cu)
22827 struct die_info temp_die;
22828 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22829 struct dwarf2_per_objfile *dwarf2_per_objfile
22830 = cu->per_cu->dwarf2_per_objfile;
22832 gdb_assert (cu->per_cu != NULL);
22836 if (cu->per_cu->is_debug_types)
22838 /* .debug_types CUs cannot reference anything outside their CU.
22839 If they need to, they have to reference a signatured type via
22840 DW_FORM_ref_sig8. */
22841 if (!offset_in_cu_p (&cu->header, sect_off))
22844 else if (offset_in_dwz != cu->per_cu->is_dwz
22845 || !offset_in_cu_p (&cu->header, sect_off))
22847 struct dwarf2_per_cu_data *per_cu;
22849 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22850 dwarf2_per_objfile);
22852 /* If necessary, add it to the queue and load its DIEs. */
22853 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22854 load_full_comp_unit (per_cu, false, cu->language);
22856 target_cu = per_cu->cu;
22858 else if (cu->dies == NULL)
22860 /* We're loading full DIEs during partial symbol reading. */
22861 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22862 load_full_comp_unit (cu->per_cu, false, language_minimal);
22865 *ref_cu = target_cu;
22866 temp_die.sect_off = sect_off;
22868 if (target_cu != cu)
22869 target_cu->ancestor = cu;
22871 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22873 to_underlying (sect_off));
22876 /* Follow reference attribute ATTR of SRC_DIE.
22877 On entry *REF_CU is the CU of SRC_DIE.
22878 On exit *REF_CU is the CU of the result. */
22880 static struct die_info *
22881 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22882 struct dwarf2_cu **ref_cu)
22884 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22885 struct dwarf2_cu *cu = *ref_cu;
22886 struct die_info *die;
22888 die = follow_die_offset (sect_off,
22889 (attr->form == DW_FORM_GNU_ref_alt
22890 || cu->per_cu->is_dwz),
22893 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22894 "at %s [in module %s]"),
22895 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22896 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22901 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22902 Returned value is intended for DW_OP_call*. Returned
22903 dwarf2_locexpr_baton->data has lifetime of
22904 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22906 struct dwarf2_locexpr_baton
22907 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22908 struct dwarf2_per_cu_data *per_cu,
22909 CORE_ADDR (*get_frame_pc) (void *baton),
22910 void *baton, bool resolve_abstract_p)
22912 struct dwarf2_cu *cu;
22913 struct die_info *die;
22914 struct attribute *attr;
22915 struct dwarf2_locexpr_baton retval;
22916 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22917 struct objfile *objfile = dwarf2_per_objfile->objfile;
22919 if (per_cu->cu == NULL)
22920 load_cu (per_cu, false);
22924 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22925 Instead just throw an error, not much else we can do. */
22926 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22927 sect_offset_str (sect_off), objfile_name (objfile));
22930 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22932 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22933 sect_offset_str (sect_off), objfile_name (objfile));
22935 attr = dwarf2_attr (die, DW_AT_location, cu);
22936 if (!attr && resolve_abstract_p
22937 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22938 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22940 CORE_ADDR pc = (*get_frame_pc) (baton);
22941 CORE_ADDR baseaddr = objfile->text_section_offset ();
22942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22944 for (const auto &cand_off
22945 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22947 struct dwarf2_cu *cand_cu = cu;
22948 struct die_info *cand
22949 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22952 || cand->parent->tag != DW_TAG_subprogram)
22955 CORE_ADDR pc_low, pc_high;
22956 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22957 if (pc_low == ((CORE_ADDR) -1))
22959 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22960 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22961 if (!(pc_low <= pc && pc < pc_high))
22965 attr = dwarf2_attr (die, DW_AT_location, cu);
22972 /* DWARF: "If there is no such attribute, then there is no effect.".
22973 DATA is ignored if SIZE is 0. */
22975 retval.data = NULL;
22978 else if (attr->form_is_section_offset ())
22980 struct dwarf2_loclist_baton loclist_baton;
22981 CORE_ADDR pc = (*get_frame_pc) (baton);
22984 fill_in_loclist_baton (cu, &loclist_baton, attr);
22986 retval.data = dwarf2_find_location_expression (&loclist_baton,
22988 retval.size = size;
22992 if (!attr->form_is_block ())
22993 error (_("Dwarf Error: DIE at %s referenced in module %s "
22994 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22995 sect_offset_str (sect_off), objfile_name (objfile));
22997 retval.data = DW_BLOCK (attr)->data;
22998 retval.size = DW_BLOCK (attr)->size;
23000 retval.per_cu = cu->per_cu;
23002 age_cached_comp_units (dwarf2_per_objfile);
23007 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23010 struct dwarf2_locexpr_baton
23011 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23012 struct dwarf2_per_cu_data *per_cu,
23013 CORE_ADDR (*get_frame_pc) (void *baton),
23016 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23018 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23021 /* Write a constant of a given type as target-ordered bytes into
23024 static const gdb_byte *
23025 write_constant_as_bytes (struct obstack *obstack,
23026 enum bfd_endian byte_order,
23033 *len = TYPE_LENGTH (type);
23034 result = (gdb_byte *) obstack_alloc (obstack, *len);
23035 store_unsigned_integer (result, *len, byte_order, value);
23040 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23041 pointer to the constant bytes and set LEN to the length of the
23042 data. If memory is needed, allocate it on OBSTACK. If the DIE
23043 does not have a DW_AT_const_value, return NULL. */
23046 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23047 struct dwarf2_per_cu_data *per_cu,
23048 struct obstack *obstack,
23051 struct dwarf2_cu *cu;
23052 struct die_info *die;
23053 struct attribute *attr;
23054 const gdb_byte *result = NULL;
23057 enum bfd_endian byte_order;
23058 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23060 if (per_cu->cu == NULL)
23061 load_cu (per_cu, false);
23065 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23066 Instead just throw an error, not much else we can do. */
23067 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23068 sect_offset_str (sect_off), objfile_name (objfile));
23071 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23073 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23074 sect_offset_str (sect_off), objfile_name (objfile));
23076 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23080 byte_order = (bfd_big_endian (objfile->obfd)
23081 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23083 switch (attr->form)
23086 case DW_FORM_addrx:
23087 case DW_FORM_GNU_addr_index:
23091 *len = cu->header.addr_size;
23092 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23093 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23097 case DW_FORM_string:
23100 case DW_FORM_GNU_str_index:
23101 case DW_FORM_GNU_strp_alt:
23102 /* DW_STRING is already allocated on the objfile obstack, point
23104 result = (const gdb_byte *) DW_STRING (attr);
23105 *len = strlen (DW_STRING (attr));
23107 case DW_FORM_block1:
23108 case DW_FORM_block2:
23109 case DW_FORM_block4:
23110 case DW_FORM_block:
23111 case DW_FORM_exprloc:
23112 case DW_FORM_data16:
23113 result = DW_BLOCK (attr)->data;
23114 *len = DW_BLOCK (attr)->size;
23117 /* The DW_AT_const_value attributes are supposed to carry the
23118 symbol's value "represented as it would be on the target
23119 architecture." By the time we get here, it's already been
23120 converted to host endianness, so we just need to sign- or
23121 zero-extend it as appropriate. */
23122 case DW_FORM_data1:
23123 type = die_type (die, cu);
23124 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23125 if (result == NULL)
23126 result = write_constant_as_bytes (obstack, byte_order,
23129 case DW_FORM_data2:
23130 type = die_type (die, cu);
23131 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23132 if (result == NULL)
23133 result = write_constant_as_bytes (obstack, byte_order,
23136 case DW_FORM_data4:
23137 type = die_type (die, cu);
23138 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23139 if (result == NULL)
23140 result = write_constant_as_bytes (obstack, byte_order,
23143 case DW_FORM_data8:
23144 type = die_type (die, cu);
23145 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23146 if (result == NULL)
23147 result = write_constant_as_bytes (obstack, byte_order,
23151 case DW_FORM_sdata:
23152 case DW_FORM_implicit_const:
23153 type = die_type (die, cu);
23154 result = write_constant_as_bytes (obstack, byte_order,
23155 type, DW_SND (attr), len);
23158 case DW_FORM_udata:
23159 type = die_type (die, cu);
23160 result = write_constant_as_bytes (obstack, byte_order,
23161 type, DW_UNSND (attr), len);
23165 complaint (_("unsupported const value attribute form: '%s'"),
23166 dwarf_form_name (attr->form));
23173 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23174 valid type for this die is found. */
23177 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23178 struct dwarf2_per_cu_data *per_cu)
23180 struct dwarf2_cu *cu;
23181 struct die_info *die;
23183 if (per_cu->cu == NULL)
23184 load_cu (per_cu, false);
23189 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23193 return die_type (die, cu);
23196 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23200 dwarf2_get_die_type (cu_offset die_offset,
23201 struct dwarf2_per_cu_data *per_cu)
23203 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23204 return get_die_type_at_offset (die_offset_sect, per_cu);
23207 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23208 On entry *REF_CU is the CU of SRC_DIE.
23209 On exit *REF_CU is the CU of the result.
23210 Returns NULL if the referenced DIE isn't found. */
23212 static struct die_info *
23213 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23214 struct dwarf2_cu **ref_cu)
23216 struct die_info temp_die;
23217 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23218 struct die_info *die;
23220 /* While it might be nice to assert sig_type->type == NULL here,
23221 we can get here for DW_AT_imported_declaration where we need
23222 the DIE not the type. */
23224 /* If necessary, add it to the queue and load its DIEs. */
23226 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23227 read_signatured_type (sig_type);
23229 sig_cu = sig_type->per_cu.cu;
23230 gdb_assert (sig_cu != NULL);
23231 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23232 temp_die.sect_off = sig_type->type_offset_in_section;
23233 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23234 to_underlying (temp_die.sect_off));
23237 struct dwarf2_per_objfile *dwarf2_per_objfile
23238 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23240 /* For .gdb_index version 7 keep track of included TUs.
23241 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23242 if (dwarf2_per_objfile->index_table != NULL
23243 && dwarf2_per_objfile->index_table->version <= 7)
23245 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23250 sig_cu->ancestor = cu;
23258 /* Follow signatured type referenced by ATTR in SRC_DIE.
23259 On entry *REF_CU is the CU of SRC_DIE.
23260 On exit *REF_CU is the CU of the result.
23261 The result is the DIE of the type.
23262 If the referenced type cannot be found an error is thrown. */
23264 static struct die_info *
23265 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23266 struct dwarf2_cu **ref_cu)
23268 ULONGEST signature = DW_SIGNATURE (attr);
23269 struct signatured_type *sig_type;
23270 struct die_info *die;
23272 gdb_assert (attr->form == DW_FORM_ref_sig8);
23274 sig_type = lookup_signatured_type (*ref_cu, signature);
23275 /* sig_type will be NULL if the signatured type is missing from
23277 if (sig_type == NULL)
23279 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23280 " from DIE at %s [in module %s]"),
23281 hex_string (signature), sect_offset_str (src_die->sect_off),
23282 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23285 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23288 dump_die_for_error (src_die);
23289 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23290 " from DIE at %s [in module %s]"),
23291 hex_string (signature), sect_offset_str (src_die->sect_off),
23292 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23298 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23299 reading in and processing the type unit if necessary. */
23301 static struct type *
23302 get_signatured_type (struct die_info *die, ULONGEST signature,
23303 struct dwarf2_cu *cu)
23305 struct dwarf2_per_objfile *dwarf2_per_objfile
23306 = cu->per_cu->dwarf2_per_objfile;
23307 struct signatured_type *sig_type;
23308 struct dwarf2_cu *type_cu;
23309 struct die_info *type_die;
23312 sig_type = lookup_signatured_type (cu, signature);
23313 /* sig_type will be NULL if the signatured type is missing from
23315 if (sig_type == NULL)
23317 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23318 " from DIE at %s [in module %s]"),
23319 hex_string (signature), sect_offset_str (die->sect_off),
23320 objfile_name (dwarf2_per_objfile->objfile));
23321 return build_error_marker_type (cu, die);
23324 /* If we already know the type we're done. */
23325 if (sig_type->type != NULL)
23326 return sig_type->type;
23329 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23330 if (type_die != NULL)
23332 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23333 is created. This is important, for example, because for c++ classes
23334 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23335 type = read_type_die (type_die, type_cu);
23338 complaint (_("Dwarf Error: Cannot build signatured type %s"
23339 " referenced from DIE at %s [in module %s]"),
23340 hex_string (signature), sect_offset_str (die->sect_off),
23341 objfile_name (dwarf2_per_objfile->objfile));
23342 type = build_error_marker_type (cu, die);
23347 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23348 " from DIE at %s [in module %s]"),
23349 hex_string (signature), sect_offset_str (die->sect_off),
23350 objfile_name (dwarf2_per_objfile->objfile));
23351 type = build_error_marker_type (cu, die);
23353 sig_type->type = type;
23358 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23359 reading in and processing the type unit if necessary. */
23361 static struct type *
23362 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23363 struct dwarf2_cu *cu) /* ARI: editCase function */
23365 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23366 if (attr->form_is_ref ())
23368 struct dwarf2_cu *type_cu = cu;
23369 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23371 return read_type_die (type_die, type_cu);
23373 else if (attr->form == DW_FORM_ref_sig8)
23375 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23379 struct dwarf2_per_objfile *dwarf2_per_objfile
23380 = cu->per_cu->dwarf2_per_objfile;
23382 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23383 " at %s [in module %s]"),
23384 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23385 objfile_name (dwarf2_per_objfile->objfile));
23386 return build_error_marker_type (cu, die);
23390 /* Load the DIEs associated with type unit PER_CU into memory. */
23393 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23395 struct signatured_type *sig_type;
23397 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23398 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23400 /* We have the per_cu, but we need the signatured_type.
23401 Fortunately this is an easy translation. */
23402 gdb_assert (per_cu->is_debug_types);
23403 sig_type = (struct signatured_type *) per_cu;
23405 gdb_assert (per_cu->cu == NULL);
23407 read_signatured_type (sig_type);
23409 gdb_assert (per_cu->cu != NULL);
23412 /* Read in a signatured type and build its CU and DIEs.
23413 If the type is a stub for the real type in a DWO file,
23414 read in the real type from the DWO file as well. */
23417 read_signatured_type (struct signatured_type *sig_type)
23419 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23421 gdb_assert (per_cu->is_debug_types);
23422 gdb_assert (per_cu->cu == NULL);
23424 cutu_reader reader (per_cu, NULL, 0, 1, false);
23426 if (!reader.dummy_p)
23428 struct dwarf2_cu *cu = reader.cu;
23429 const gdb_byte *info_ptr = reader.info_ptr;
23431 gdb_assert (cu->die_hash == NULL);
23433 htab_create_alloc_ex (cu->header.length / 12,
23437 &cu->comp_unit_obstack,
23438 hashtab_obstack_allocate,
23439 dummy_obstack_deallocate);
23441 if (reader.comp_unit_die->has_children)
23442 reader.comp_unit_die->child
23443 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23444 reader.comp_unit_die);
23445 cu->dies = reader.comp_unit_die;
23446 /* comp_unit_die is not stored in die_hash, no need. */
23448 /* We try not to read any attributes in this function, because
23449 not all CUs needed for references have been loaded yet, and
23450 symbol table processing isn't initialized. But we have to
23451 set the CU language, or we won't be able to build types
23452 correctly. Similarly, if we do not read the producer, we can
23453 not apply producer-specific interpretation. */
23454 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23457 sig_type->per_cu.tu_read = 1;
23460 /* Decode simple location descriptions.
23461 Given a pointer to a dwarf block that defines a location, compute
23462 the location and return the value.
23464 NOTE drow/2003-11-18: This function is called in two situations
23465 now: for the address of static or global variables (partial symbols
23466 only) and for offsets into structures which are expected to be
23467 (more or less) constant. The partial symbol case should go away,
23468 and only the constant case should remain. That will let this
23469 function complain more accurately. A few special modes are allowed
23470 without complaint for global variables (for instance, global
23471 register values and thread-local values).
23473 A location description containing no operations indicates that the
23474 object is optimized out. The return value is 0 for that case.
23475 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23476 callers will only want a very basic result and this can become a
23479 Note that stack[0] is unused except as a default error return. */
23482 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23484 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23486 size_t size = blk->size;
23487 const gdb_byte *data = blk->data;
23488 CORE_ADDR stack[64];
23490 unsigned int bytes_read, unsnd;
23496 stack[++stacki] = 0;
23535 stack[++stacki] = op - DW_OP_lit0;
23570 stack[++stacki] = op - DW_OP_reg0;
23572 dwarf2_complex_location_expr_complaint ();
23576 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23578 stack[++stacki] = unsnd;
23580 dwarf2_complex_location_expr_complaint ();
23584 stack[++stacki] = read_address (objfile->obfd, &data[i],
23589 case DW_OP_const1u:
23590 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23594 case DW_OP_const1s:
23595 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23599 case DW_OP_const2u:
23600 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23604 case DW_OP_const2s:
23605 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23609 case DW_OP_const4u:
23610 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23614 case DW_OP_const4s:
23615 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23619 case DW_OP_const8u:
23620 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23625 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23631 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23636 stack[stacki + 1] = stack[stacki];
23641 stack[stacki - 1] += stack[stacki];
23645 case DW_OP_plus_uconst:
23646 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23652 stack[stacki - 1] -= stack[stacki];
23657 /* If we're not the last op, then we definitely can't encode
23658 this using GDB's address_class enum. This is valid for partial
23659 global symbols, although the variable's address will be bogus
23662 dwarf2_complex_location_expr_complaint ();
23665 case DW_OP_GNU_push_tls_address:
23666 case DW_OP_form_tls_address:
23667 /* The top of the stack has the offset from the beginning
23668 of the thread control block at which the variable is located. */
23669 /* Nothing should follow this operator, so the top of stack would
23671 /* This is valid for partial global symbols, but the variable's
23672 address will be bogus in the psymtab. Make it always at least
23673 non-zero to not look as a variable garbage collected by linker
23674 which have DW_OP_addr 0. */
23676 dwarf2_complex_location_expr_complaint ();
23680 case DW_OP_GNU_uninit:
23684 case DW_OP_GNU_addr_index:
23685 case DW_OP_GNU_const_index:
23686 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23693 const char *name = get_DW_OP_name (op);
23696 complaint (_("unsupported stack op: '%s'"),
23699 complaint (_("unsupported stack op: '%02x'"),
23703 return (stack[stacki]);
23706 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23707 outside of the allocated space. Also enforce minimum>0. */
23708 if (stacki >= ARRAY_SIZE (stack) - 1)
23710 complaint (_("location description stack overflow"));
23716 complaint (_("location description stack underflow"));
23720 return (stack[stacki]);
23723 /* memory allocation interface */
23725 static struct dwarf_block *
23726 dwarf_alloc_block (struct dwarf2_cu *cu)
23728 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23731 static struct die_info *
23732 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23734 struct die_info *die;
23735 size_t size = sizeof (struct die_info);
23738 size += (num_attrs - 1) * sizeof (struct attribute);
23740 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23741 memset (die, 0, sizeof (struct die_info));
23746 /* Macro support. */
23748 /* Return file name relative to the compilation directory of file number I in
23749 *LH's file name table. The result is allocated using xmalloc; the caller is
23750 responsible for freeing it. */
23753 file_file_name (int file, struct line_header *lh)
23755 /* Is the file number a valid index into the line header's file name
23756 table? Remember that file numbers start with one, not zero. */
23757 if (lh->is_valid_file_index (file))
23759 const file_entry *fe = lh->file_name_at (file);
23761 if (!IS_ABSOLUTE_PATH (fe->name))
23763 const char *dir = fe->include_dir (lh);
23765 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
23767 return xstrdup (fe->name);
23771 /* The compiler produced a bogus file number. We can at least
23772 record the macro definitions made in the file, even if we
23773 won't be able to find the file by name. */
23774 char fake_name[80];
23776 xsnprintf (fake_name, sizeof (fake_name),
23777 "<bad macro file number %d>", file);
23779 complaint (_("bad file number in macro information (%d)"),
23782 return xstrdup (fake_name);
23786 /* Return the full name of file number I in *LH's file name table.
23787 Use COMP_DIR as the name of the current directory of the
23788 compilation. The result is allocated using xmalloc; the caller is
23789 responsible for freeing it. */
23791 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23793 /* Is the file number a valid index into the line header's file name
23794 table? Remember that file numbers start with one, not zero. */
23795 if (lh->is_valid_file_index (file))
23797 char *relative = file_file_name (file, lh);
23799 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23801 return reconcat (relative, comp_dir, SLASH_STRING,
23802 relative, (char *) NULL);
23805 return file_file_name (file, lh);
23809 static struct macro_source_file *
23810 macro_start_file (struct dwarf2_cu *cu,
23811 int file, int line,
23812 struct macro_source_file *current_file,
23813 struct line_header *lh)
23815 /* File name relative to the compilation directory of this source file. */
23816 char *file_name = file_file_name (file, lh);
23818 if (! current_file)
23820 /* Note: We don't create a macro table for this compilation unit
23821 at all until we actually get a filename. */
23822 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23824 /* If we have no current file, then this must be the start_file
23825 directive for the compilation unit's main source file. */
23826 current_file = macro_set_main (macro_table, file_name);
23827 macro_define_special (macro_table);
23830 current_file = macro_include (current_file, line, file_name);
23834 return current_file;
23837 static const char *
23838 consume_improper_spaces (const char *p, const char *body)
23842 complaint (_("macro definition contains spaces "
23843 "in formal argument list:\n`%s'"),
23855 parse_macro_definition (struct macro_source_file *file, int line,
23860 /* The body string takes one of two forms. For object-like macro
23861 definitions, it should be:
23863 <macro name> " " <definition>
23865 For function-like macro definitions, it should be:
23867 <macro name> "() " <definition>
23869 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23871 Spaces may appear only where explicitly indicated, and in the
23874 The Dwarf 2 spec says that an object-like macro's name is always
23875 followed by a space, but versions of GCC around March 2002 omit
23876 the space when the macro's definition is the empty string.
23878 The Dwarf 2 spec says that there should be no spaces between the
23879 formal arguments in a function-like macro's formal argument list,
23880 but versions of GCC around March 2002 include spaces after the
23884 /* Find the extent of the macro name. The macro name is terminated
23885 by either a space or null character (for an object-like macro) or
23886 an opening paren (for a function-like macro). */
23887 for (p = body; *p; p++)
23888 if (*p == ' ' || *p == '(')
23891 if (*p == ' ' || *p == '\0')
23893 /* It's an object-like macro. */
23894 int name_len = p - body;
23895 std::string name (body, name_len);
23896 const char *replacement;
23899 replacement = body + name_len + 1;
23902 dwarf2_macro_malformed_definition_complaint (body);
23903 replacement = body + name_len;
23906 macro_define_object (file, line, name.c_str (), replacement);
23908 else if (*p == '(')
23910 /* It's a function-like macro. */
23911 std::string name (body, p - body);
23914 char **argv = XNEWVEC (char *, argv_size);
23918 p = consume_improper_spaces (p, body);
23920 /* Parse the formal argument list. */
23921 while (*p && *p != ')')
23923 /* Find the extent of the current argument name. */
23924 const char *arg_start = p;
23926 while (*p && *p != ',' && *p != ')' && *p != ' ')
23929 if (! *p || p == arg_start)
23930 dwarf2_macro_malformed_definition_complaint (body);
23933 /* Make sure argv has room for the new argument. */
23934 if (argc >= argv_size)
23937 argv = XRESIZEVEC (char *, argv, argv_size);
23940 argv[argc++] = savestring (arg_start, p - arg_start);
23943 p = consume_improper_spaces (p, body);
23945 /* Consume the comma, if present. */
23950 p = consume_improper_spaces (p, body);
23959 /* Perfectly formed definition, no complaints. */
23960 macro_define_function (file, line, name.c_str (),
23961 argc, (const char **) argv,
23963 else if (*p == '\0')
23965 /* Complain, but do define it. */
23966 dwarf2_macro_malformed_definition_complaint (body);
23967 macro_define_function (file, line, name.c_str (),
23968 argc, (const char **) argv,
23972 /* Just complain. */
23973 dwarf2_macro_malformed_definition_complaint (body);
23976 /* Just complain. */
23977 dwarf2_macro_malformed_definition_complaint (body);
23982 for (i = 0; i < argc; i++)
23988 dwarf2_macro_malformed_definition_complaint (body);
23991 /* Skip some bytes from BYTES according to the form given in FORM.
23992 Returns the new pointer. */
23994 static const gdb_byte *
23995 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23996 enum dwarf_form form,
23997 unsigned int offset_size,
23998 struct dwarf2_section_info *section)
24000 unsigned int bytes_read;
24004 case DW_FORM_data1:
24009 case DW_FORM_data2:
24013 case DW_FORM_data4:
24017 case DW_FORM_data8:
24021 case DW_FORM_data16:
24025 case DW_FORM_string:
24026 read_direct_string (abfd, bytes, &bytes_read);
24027 bytes += bytes_read;
24030 case DW_FORM_sec_offset:
24032 case DW_FORM_GNU_strp_alt:
24033 bytes += offset_size;
24036 case DW_FORM_block:
24037 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24038 bytes += bytes_read;
24041 case DW_FORM_block1:
24042 bytes += 1 + read_1_byte (abfd, bytes);
24044 case DW_FORM_block2:
24045 bytes += 2 + read_2_bytes (abfd, bytes);
24047 case DW_FORM_block4:
24048 bytes += 4 + read_4_bytes (abfd, bytes);
24051 case DW_FORM_addrx:
24052 case DW_FORM_sdata:
24054 case DW_FORM_udata:
24055 case DW_FORM_GNU_addr_index:
24056 case DW_FORM_GNU_str_index:
24057 bytes = gdb_skip_leb128 (bytes, buffer_end);
24060 dwarf2_section_buffer_overflow_complaint (section);
24065 case DW_FORM_implicit_const:
24070 complaint (_("invalid form 0x%x in `%s'"),
24071 form, section->get_name ());
24079 /* A helper for dwarf_decode_macros that handles skipping an unknown
24080 opcode. Returns an updated pointer to the macro data buffer; or,
24081 on error, issues a complaint and returns NULL. */
24083 static const gdb_byte *
24084 skip_unknown_opcode (unsigned int opcode,
24085 const gdb_byte **opcode_definitions,
24086 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24088 unsigned int offset_size,
24089 struct dwarf2_section_info *section)
24091 unsigned int bytes_read, i;
24093 const gdb_byte *defn;
24095 if (opcode_definitions[opcode] == NULL)
24097 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24102 defn = opcode_definitions[opcode];
24103 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24104 defn += bytes_read;
24106 for (i = 0; i < arg; ++i)
24108 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24109 (enum dwarf_form) defn[i], offset_size,
24111 if (mac_ptr == NULL)
24113 /* skip_form_bytes already issued the complaint. */
24121 /* A helper function which parses the header of a macro section.
24122 If the macro section is the extended (for now called "GNU") type,
24123 then this updates *OFFSET_SIZE. Returns a pointer to just after
24124 the header, or issues a complaint and returns NULL on error. */
24126 static const gdb_byte *
24127 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24129 const gdb_byte *mac_ptr,
24130 unsigned int *offset_size,
24131 int section_is_gnu)
24133 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24135 if (section_is_gnu)
24137 unsigned int version, flags;
24139 version = read_2_bytes (abfd, mac_ptr);
24140 if (version != 4 && version != 5)
24142 complaint (_("unrecognized version `%d' in .debug_macro section"),
24148 flags = read_1_byte (abfd, mac_ptr);
24150 *offset_size = (flags & 1) ? 8 : 4;
24152 if ((flags & 2) != 0)
24153 /* We don't need the line table offset. */
24154 mac_ptr += *offset_size;
24156 /* Vendor opcode descriptions. */
24157 if ((flags & 4) != 0)
24159 unsigned int i, count;
24161 count = read_1_byte (abfd, mac_ptr);
24163 for (i = 0; i < count; ++i)
24165 unsigned int opcode, bytes_read;
24168 opcode = read_1_byte (abfd, mac_ptr);
24170 opcode_definitions[opcode] = mac_ptr;
24171 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24172 mac_ptr += bytes_read;
24181 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24182 including DW_MACRO_import. */
24185 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24187 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24188 struct macro_source_file *current_file,
24189 struct line_header *lh,
24190 struct dwarf2_section_info *section,
24191 int section_is_gnu, int section_is_dwz,
24192 unsigned int offset_size,
24193 htab_t include_hash)
24195 struct dwarf2_per_objfile *dwarf2_per_objfile
24196 = cu->per_cu->dwarf2_per_objfile;
24197 struct objfile *objfile = dwarf2_per_objfile->objfile;
24198 enum dwarf_macro_record_type macinfo_type;
24199 int at_commandline;
24200 const gdb_byte *opcode_definitions[256];
24202 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24203 &offset_size, section_is_gnu);
24204 if (mac_ptr == NULL)
24206 /* We already issued a complaint. */
24210 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24211 GDB is still reading the definitions from command line. First
24212 DW_MACINFO_start_file will need to be ignored as it was already executed
24213 to create CURRENT_FILE for the main source holding also the command line
24214 definitions. On first met DW_MACINFO_start_file this flag is reset to
24215 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24217 at_commandline = 1;
24221 /* Do we at least have room for a macinfo type byte? */
24222 if (mac_ptr >= mac_end)
24224 dwarf2_section_buffer_overflow_complaint (section);
24228 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24231 /* Note that we rely on the fact that the corresponding GNU and
24232 DWARF constants are the same. */
24234 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24235 switch (macinfo_type)
24237 /* A zero macinfo type indicates the end of the macro
24242 case DW_MACRO_define:
24243 case DW_MACRO_undef:
24244 case DW_MACRO_define_strp:
24245 case DW_MACRO_undef_strp:
24246 case DW_MACRO_define_sup:
24247 case DW_MACRO_undef_sup:
24249 unsigned int bytes_read;
24254 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24255 mac_ptr += bytes_read;
24257 if (macinfo_type == DW_MACRO_define
24258 || macinfo_type == DW_MACRO_undef)
24260 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24261 mac_ptr += bytes_read;
24265 LONGEST str_offset;
24267 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24268 mac_ptr += offset_size;
24270 if (macinfo_type == DW_MACRO_define_sup
24271 || macinfo_type == DW_MACRO_undef_sup
24274 struct dwz_file *dwz
24275 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24277 body = read_indirect_string_from_dwz (objfile,
24281 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24285 is_define = (macinfo_type == DW_MACRO_define
24286 || macinfo_type == DW_MACRO_define_strp
24287 || macinfo_type == DW_MACRO_define_sup);
24288 if (! current_file)
24290 /* DWARF violation as no main source is present. */
24291 complaint (_("debug info with no main source gives macro %s "
24293 is_define ? _("definition") : _("undefinition"),
24297 if ((line == 0 && !at_commandline)
24298 || (line != 0 && at_commandline))
24299 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24300 at_commandline ? _("command-line") : _("in-file"),
24301 is_define ? _("definition") : _("undefinition"),
24302 line == 0 ? _("zero") : _("non-zero"), line, body);
24306 /* Fedora's rpm-build's "debugedit" binary
24307 corrupted .debug_macro sections.
24310 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24311 complaint (_("debug info gives %s invalid macro %s "
24312 "without body (corrupted?) at line %d "
24314 at_commandline ? _("command-line") : _("in-file"),
24315 is_define ? _("definition") : _("undefinition"),
24316 line, current_file->filename);
24318 else if (is_define)
24319 parse_macro_definition (current_file, line, body);
24322 gdb_assert (macinfo_type == DW_MACRO_undef
24323 || macinfo_type == DW_MACRO_undef_strp
24324 || macinfo_type == DW_MACRO_undef_sup);
24325 macro_undef (current_file, line, body);
24330 case DW_MACRO_start_file:
24332 unsigned int bytes_read;
24335 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24336 mac_ptr += bytes_read;
24337 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24338 mac_ptr += bytes_read;
24340 if ((line == 0 && !at_commandline)
24341 || (line != 0 && at_commandline))
24342 complaint (_("debug info gives source %d included "
24343 "from %s at %s line %d"),
24344 file, at_commandline ? _("command-line") : _("file"),
24345 line == 0 ? _("zero") : _("non-zero"), line);
24347 if (at_commandline)
24349 /* This DW_MACRO_start_file was executed in the
24351 at_commandline = 0;
24354 current_file = macro_start_file (cu, file, line, current_file,
24359 case DW_MACRO_end_file:
24360 if (! current_file)
24361 complaint (_("macro debug info has an unmatched "
24362 "`close_file' directive"));
24365 current_file = current_file->included_by;
24366 if (! current_file)
24368 enum dwarf_macro_record_type next_type;
24370 /* GCC circa March 2002 doesn't produce the zero
24371 type byte marking the end of the compilation
24372 unit. Complain if it's not there, but exit no
24375 /* Do we at least have room for a macinfo type byte? */
24376 if (mac_ptr >= mac_end)
24378 dwarf2_section_buffer_overflow_complaint (section);
24382 /* We don't increment mac_ptr here, so this is just
24385 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24387 if (next_type != 0)
24388 complaint (_("no terminating 0-type entry for "
24389 "macros in `.debug_macinfo' section"));
24396 case DW_MACRO_import:
24397 case DW_MACRO_import_sup:
24401 bfd *include_bfd = abfd;
24402 struct dwarf2_section_info *include_section = section;
24403 const gdb_byte *include_mac_end = mac_end;
24404 int is_dwz = section_is_dwz;
24405 const gdb_byte *new_mac_ptr;
24407 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24408 mac_ptr += offset_size;
24410 if (macinfo_type == DW_MACRO_import_sup)
24412 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24414 dwz->macro.read (objfile);
24416 include_section = &dwz->macro;
24417 include_bfd = include_section->get_bfd_owner ();
24418 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24422 new_mac_ptr = include_section->buffer + offset;
24423 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24427 /* This has actually happened; see
24428 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24429 complaint (_("recursive DW_MACRO_import in "
24430 ".debug_macro section"));
24434 *slot = (void *) new_mac_ptr;
24436 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24437 include_mac_end, current_file, lh,
24438 section, section_is_gnu, is_dwz,
24439 offset_size, include_hash);
24441 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24446 case DW_MACINFO_vendor_ext:
24447 if (!section_is_gnu)
24449 unsigned int bytes_read;
24451 /* This reads the constant, but since we don't recognize
24452 any vendor extensions, we ignore it. */
24453 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24454 mac_ptr += bytes_read;
24455 read_direct_string (abfd, mac_ptr, &bytes_read);
24456 mac_ptr += bytes_read;
24458 /* We don't recognize any vendor extensions. */
24464 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24465 mac_ptr, mac_end, abfd, offset_size,
24467 if (mac_ptr == NULL)
24472 } while (macinfo_type != 0);
24476 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24477 int section_is_gnu)
24479 struct dwarf2_per_objfile *dwarf2_per_objfile
24480 = cu->per_cu->dwarf2_per_objfile;
24481 struct objfile *objfile = dwarf2_per_objfile->objfile;
24482 struct line_header *lh = cu->line_header;
24484 const gdb_byte *mac_ptr, *mac_end;
24485 struct macro_source_file *current_file = 0;
24486 enum dwarf_macro_record_type macinfo_type;
24487 unsigned int offset_size = cu->header.offset_size;
24488 const gdb_byte *opcode_definitions[256];
24490 struct dwarf2_section_info *section;
24491 const char *section_name;
24493 if (cu->dwo_unit != NULL)
24495 if (section_is_gnu)
24497 section = &cu->dwo_unit->dwo_file->sections.macro;
24498 section_name = ".debug_macro.dwo";
24502 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24503 section_name = ".debug_macinfo.dwo";
24508 if (section_is_gnu)
24510 section = &dwarf2_per_objfile->macro;
24511 section_name = ".debug_macro";
24515 section = &dwarf2_per_objfile->macinfo;
24516 section_name = ".debug_macinfo";
24520 section->read (objfile);
24521 if (section->buffer == NULL)
24523 complaint (_("missing %s section"), section_name);
24526 abfd = section->get_bfd_owner ();
24528 /* First pass: Find the name of the base filename.
24529 This filename is needed in order to process all macros whose definition
24530 (or undefinition) comes from the command line. These macros are defined
24531 before the first DW_MACINFO_start_file entry, and yet still need to be
24532 associated to the base file.
24534 To determine the base file name, we scan the macro definitions until we
24535 reach the first DW_MACINFO_start_file entry. We then initialize
24536 CURRENT_FILE accordingly so that any macro definition found before the
24537 first DW_MACINFO_start_file can still be associated to the base file. */
24539 mac_ptr = section->buffer + offset;
24540 mac_end = section->buffer + section->size;
24542 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24543 &offset_size, section_is_gnu);
24544 if (mac_ptr == NULL)
24546 /* We already issued a complaint. */
24552 /* Do we at least have room for a macinfo type byte? */
24553 if (mac_ptr >= mac_end)
24555 /* Complaint is printed during the second pass as GDB will probably
24556 stop the first pass earlier upon finding
24557 DW_MACINFO_start_file. */
24561 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24564 /* Note that we rely on the fact that the corresponding GNU and
24565 DWARF constants are the same. */
24567 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24568 switch (macinfo_type)
24570 /* A zero macinfo type indicates the end of the macro
24575 case DW_MACRO_define:
24576 case DW_MACRO_undef:
24577 /* Only skip the data by MAC_PTR. */
24579 unsigned int bytes_read;
24581 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24582 mac_ptr += bytes_read;
24583 read_direct_string (abfd, mac_ptr, &bytes_read);
24584 mac_ptr += bytes_read;
24588 case DW_MACRO_start_file:
24590 unsigned int bytes_read;
24593 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24594 mac_ptr += bytes_read;
24595 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24596 mac_ptr += bytes_read;
24598 current_file = macro_start_file (cu, file, line, current_file, lh);
24602 case DW_MACRO_end_file:
24603 /* No data to skip by MAC_PTR. */
24606 case DW_MACRO_define_strp:
24607 case DW_MACRO_undef_strp:
24608 case DW_MACRO_define_sup:
24609 case DW_MACRO_undef_sup:
24611 unsigned int bytes_read;
24613 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24615 mac_ptr += offset_size;
24619 case DW_MACRO_import:
24620 case DW_MACRO_import_sup:
24621 /* Note that, according to the spec, a transparent include
24622 chain cannot call DW_MACRO_start_file. So, we can just
24623 skip this opcode. */
24624 mac_ptr += offset_size;
24627 case DW_MACINFO_vendor_ext:
24628 /* Only skip the data by MAC_PTR. */
24629 if (!section_is_gnu)
24631 unsigned int bytes_read;
24633 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24634 mac_ptr += bytes_read;
24635 read_direct_string (abfd, mac_ptr, &bytes_read);
24636 mac_ptr += bytes_read;
24641 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24642 mac_ptr, mac_end, abfd, offset_size,
24644 if (mac_ptr == NULL)
24649 } while (macinfo_type != 0 && current_file == NULL);
24651 /* Second pass: Process all entries.
24653 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24654 command-line macro definitions/undefinitions. This flag is unset when we
24655 reach the first DW_MACINFO_start_file entry. */
24657 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24659 NULL, xcalloc, xfree));
24660 mac_ptr = section->buffer + offset;
24661 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24662 *slot = (void *) mac_ptr;
24663 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24664 current_file, lh, section,
24665 section_is_gnu, 0, offset_size,
24666 include_hash.get ());
24669 /* Return the .debug_loc section to use for CU.
24670 For DWO files use .debug_loc.dwo. */
24672 static struct dwarf2_section_info *
24673 cu_debug_loc_section (struct dwarf2_cu *cu)
24675 struct dwarf2_per_objfile *dwarf2_per_objfile
24676 = cu->per_cu->dwarf2_per_objfile;
24680 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24682 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24684 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24685 : &dwarf2_per_objfile->loc);
24688 /* A helper function that fills in a dwarf2_loclist_baton. */
24691 fill_in_loclist_baton (struct dwarf2_cu *cu,
24692 struct dwarf2_loclist_baton *baton,
24693 const struct attribute *attr)
24695 struct dwarf2_per_objfile *dwarf2_per_objfile
24696 = cu->per_cu->dwarf2_per_objfile;
24697 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24699 section->read (dwarf2_per_objfile->objfile);
24701 baton->per_cu = cu->per_cu;
24702 gdb_assert (baton->per_cu);
24703 /* We don't know how long the location list is, but make sure we
24704 don't run off the edge of the section. */
24705 baton->size = section->size - DW_UNSND (attr);
24706 baton->data = section->buffer + DW_UNSND (attr);
24707 baton->base_address = cu->base_address;
24708 baton->from_dwo = cu->dwo_unit != NULL;
24712 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24713 struct dwarf2_cu *cu, int is_block)
24715 struct dwarf2_per_objfile *dwarf2_per_objfile
24716 = cu->per_cu->dwarf2_per_objfile;
24717 struct objfile *objfile = dwarf2_per_objfile->objfile;
24718 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24720 if (attr->form_is_section_offset ()
24721 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24722 the section. If so, fall through to the complaint in the
24724 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24726 struct dwarf2_loclist_baton *baton;
24728 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24730 fill_in_loclist_baton (cu, baton, attr);
24732 if (cu->base_known == 0)
24733 complaint (_("Location list used without "
24734 "specifying the CU base address."));
24736 SYMBOL_ACLASS_INDEX (sym) = (is_block
24737 ? dwarf2_loclist_block_index
24738 : dwarf2_loclist_index);
24739 SYMBOL_LOCATION_BATON (sym) = baton;
24743 struct dwarf2_locexpr_baton *baton;
24745 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24746 baton->per_cu = cu->per_cu;
24747 gdb_assert (baton->per_cu);
24749 if (attr->form_is_block ())
24751 /* Note that we're just copying the block's data pointer
24752 here, not the actual data. We're still pointing into the
24753 info_buffer for SYM's objfile; right now we never release
24754 that buffer, but when we do clean up properly this may
24756 baton->size = DW_BLOCK (attr)->size;
24757 baton->data = DW_BLOCK (attr)->data;
24761 dwarf2_invalid_attrib_class_complaint ("location description",
24762 sym->natural_name ());
24766 SYMBOL_ACLASS_INDEX (sym) = (is_block
24767 ? dwarf2_locexpr_block_index
24768 : dwarf2_locexpr_index);
24769 SYMBOL_LOCATION_BATON (sym) = baton;
24773 /* Return the OBJFILE associated with the compilation unit CU. If CU
24774 came from a separate debuginfo file, then the master objfile is
24778 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24780 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24782 /* Return the master objfile, so that we can report and look up the
24783 correct file containing this variable. */
24784 if (objfile->separate_debug_objfile_backlink)
24785 objfile = objfile->separate_debug_objfile_backlink;
24790 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24791 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24792 CU_HEADERP first. */
24794 static const struct comp_unit_head *
24795 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24796 struct dwarf2_per_cu_data *per_cu)
24798 const gdb_byte *info_ptr;
24801 return &per_cu->cu->header;
24803 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24805 memset (cu_headerp, 0, sizeof (*cu_headerp));
24806 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24807 rcuh_kind::COMPILE);
24812 /* Return the address size given in the compilation unit header for CU. */
24815 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24817 struct comp_unit_head cu_header_local;
24818 const struct comp_unit_head *cu_headerp;
24820 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24822 return cu_headerp->addr_size;
24825 /* Return the offset size given in the compilation unit header for CU. */
24828 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24830 struct comp_unit_head cu_header_local;
24831 const struct comp_unit_head *cu_headerp;
24833 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24835 return cu_headerp->offset_size;
24838 /* See its dwarf2loc.h declaration. */
24841 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24843 struct comp_unit_head cu_header_local;
24844 const struct comp_unit_head *cu_headerp;
24846 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24848 if (cu_headerp->version == 2)
24849 return cu_headerp->addr_size;
24851 return cu_headerp->offset_size;
24854 /* Return the text offset of the CU. The returned offset comes from
24855 this CU's objfile. If this objfile came from a separate debuginfo
24856 file, then the offset may be different from the corresponding
24857 offset in the parent objfile. */
24860 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24862 return per_cu->dwarf2_per_objfile->objfile->text_section_offset ();
24865 /* Return a type that is a generic pointer type, the size of which matches
24866 the address size given in the compilation unit header for PER_CU. */
24867 static struct type *
24868 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
24870 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24871 struct type *void_type = objfile_type (objfile)->builtin_void;
24872 struct type *addr_type = lookup_pointer_type (void_type);
24873 int addr_size = dwarf2_per_cu_addr_size (per_cu);
24875 if (TYPE_LENGTH (addr_type) == addr_size)
24879 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
24883 /* Return DWARF version number of PER_CU. */
24886 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24888 return per_cu->dwarf_version;
24891 /* Locate the .debug_info compilation unit from CU's objfile which contains
24892 the DIE at OFFSET. Raises an error on failure. */
24894 static struct dwarf2_per_cu_data *
24895 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24896 unsigned int offset_in_dwz,
24897 struct dwarf2_per_objfile *dwarf2_per_objfile)
24899 struct dwarf2_per_cu_data *this_cu;
24903 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24906 struct dwarf2_per_cu_data *mid_cu;
24907 int mid = low + (high - low) / 2;
24909 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24910 if (mid_cu->is_dwz > offset_in_dwz
24911 || (mid_cu->is_dwz == offset_in_dwz
24912 && mid_cu->sect_off + mid_cu->length >= sect_off))
24917 gdb_assert (low == high);
24918 this_cu = dwarf2_per_objfile->all_comp_units[low];
24919 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24921 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24922 error (_("Dwarf Error: could not find partial DIE containing "
24923 "offset %s [in module %s]"),
24924 sect_offset_str (sect_off),
24925 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24927 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24929 return dwarf2_per_objfile->all_comp_units[low-1];
24933 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24934 && sect_off >= this_cu->sect_off + this_cu->length)
24935 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24936 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24941 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24943 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24944 : per_cu (per_cu_),
24946 has_loclist (false),
24947 checked_producer (false),
24948 producer_is_gxx_lt_4_6 (false),
24949 producer_is_gcc_lt_4_3 (false),
24950 producer_is_icc (false),
24951 producer_is_icc_lt_14 (false),
24952 producer_is_codewarrior (false),
24953 processing_has_namespace_info (false)
24958 /* Destroy a dwarf2_cu. */
24960 dwarf2_cu::~dwarf2_cu ()
24965 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24968 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24969 enum language pretend_language)
24971 struct attribute *attr;
24973 /* Set the language we're debugging. */
24974 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24975 if (attr != nullptr)
24976 set_cu_language (DW_UNSND (attr), cu);
24979 cu->language = pretend_language;
24980 cu->language_defn = language_def (cu->language);
24983 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24986 /* Increase the age counter on each cached compilation unit, and free
24987 any that are too old. */
24990 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24992 struct dwarf2_per_cu_data *per_cu, **last_chain;
24994 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24995 per_cu = dwarf2_per_objfile->read_in_chain;
24996 while (per_cu != NULL)
24998 per_cu->cu->last_used ++;
24999 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25000 dwarf2_mark (per_cu->cu);
25001 per_cu = per_cu->cu->read_in_chain;
25004 per_cu = dwarf2_per_objfile->read_in_chain;
25005 last_chain = &dwarf2_per_objfile->read_in_chain;
25006 while (per_cu != NULL)
25008 struct dwarf2_per_cu_data *next_cu;
25010 next_cu = per_cu->cu->read_in_chain;
25012 if (!per_cu->cu->mark)
25015 *last_chain = next_cu;
25018 last_chain = &per_cu->cu->read_in_chain;
25024 /* Remove a single compilation unit from the cache. */
25027 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25029 struct dwarf2_per_cu_data *per_cu, **last_chain;
25030 struct dwarf2_per_objfile *dwarf2_per_objfile
25031 = target_per_cu->dwarf2_per_objfile;
25033 per_cu = dwarf2_per_objfile->read_in_chain;
25034 last_chain = &dwarf2_per_objfile->read_in_chain;
25035 while (per_cu != NULL)
25037 struct dwarf2_per_cu_data *next_cu;
25039 next_cu = per_cu->cu->read_in_chain;
25041 if (per_cu == target_per_cu)
25045 *last_chain = next_cu;
25049 last_chain = &per_cu->cu->read_in_chain;
25055 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25056 We store these in a hash table separate from the DIEs, and preserve them
25057 when the DIEs are flushed out of cache.
25059 The CU "per_cu" pointer is needed because offset alone is not enough to
25060 uniquely identify the type. A file may have multiple .debug_types sections,
25061 or the type may come from a DWO file. Furthermore, while it's more logical
25062 to use per_cu->section+offset, with Fission the section with the data is in
25063 the DWO file but we don't know that section at the point we need it.
25064 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25065 because we can enter the lookup routine, get_die_type_at_offset, from
25066 outside this file, and thus won't necessarily have PER_CU->cu.
25067 Fortunately, PER_CU is stable for the life of the objfile. */
25069 struct dwarf2_per_cu_offset_and_type
25071 const struct dwarf2_per_cu_data *per_cu;
25072 sect_offset sect_off;
25076 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25079 per_cu_offset_and_type_hash (const void *item)
25081 const struct dwarf2_per_cu_offset_and_type *ofs
25082 = (const struct dwarf2_per_cu_offset_and_type *) item;
25084 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25087 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25090 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25092 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25093 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25094 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25095 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25097 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25098 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25101 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25102 table if necessary. For convenience, return TYPE.
25104 The DIEs reading must have careful ordering to:
25105 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25106 reading current DIE.
25107 * Not trying to dereference contents of still incompletely read in types
25108 while reading in other DIEs.
25109 * Enable referencing still incompletely read in types just by a pointer to
25110 the type without accessing its fields.
25112 Therefore caller should follow these rules:
25113 * Try to fetch any prerequisite types we may need to build this DIE type
25114 before building the type and calling set_die_type.
25115 * After building type call set_die_type for current DIE as soon as
25116 possible before fetching more types to complete the current type.
25117 * Make the type as complete as possible before fetching more types. */
25119 static struct type *
25120 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25122 struct dwarf2_per_objfile *dwarf2_per_objfile
25123 = cu->per_cu->dwarf2_per_objfile;
25124 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25125 struct objfile *objfile = dwarf2_per_objfile->objfile;
25126 struct attribute *attr;
25127 struct dynamic_prop prop;
25129 /* For Ada types, make sure that the gnat-specific data is always
25130 initialized (if not already set). There are a few types where
25131 we should not be doing so, because the type-specific area is
25132 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25133 where the type-specific area is used to store the floatformat).
25134 But this is not a problem, because the gnat-specific information
25135 is actually not needed for these types. */
25136 if (need_gnat_info (cu)
25137 && TYPE_CODE (type) != TYPE_CODE_FUNC
25138 && TYPE_CODE (type) != TYPE_CODE_FLT
25139 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25140 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25141 && TYPE_CODE (type) != TYPE_CODE_METHOD
25142 && !HAVE_GNAT_AUX_INFO (type))
25143 INIT_GNAT_SPECIFIC (type);
25145 /* Read DW_AT_allocated and set in type. */
25146 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25147 if (attr != NULL && attr->form_is_block ())
25149 struct type *prop_type
25150 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25151 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25152 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25154 else if (attr != NULL)
25156 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25157 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25158 sect_offset_str (die->sect_off));
25161 /* Read DW_AT_associated and set in type. */
25162 attr = dwarf2_attr (die, DW_AT_associated, cu);
25163 if (attr != NULL && attr->form_is_block ())
25165 struct type *prop_type
25166 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25167 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25168 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25170 else if (attr != NULL)
25172 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25173 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25174 sect_offset_str (die->sect_off));
25177 /* Read DW_AT_data_location and set in type. */
25178 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25179 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25180 dwarf2_per_cu_addr_type (cu->per_cu)))
25181 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25183 if (dwarf2_per_objfile->die_type_hash == NULL)
25184 dwarf2_per_objfile->die_type_hash
25185 = htab_up (htab_create_alloc (127,
25186 per_cu_offset_and_type_hash,
25187 per_cu_offset_and_type_eq,
25188 NULL, xcalloc, xfree));
25190 ofs.per_cu = cu->per_cu;
25191 ofs.sect_off = die->sect_off;
25193 slot = (struct dwarf2_per_cu_offset_and_type **)
25194 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
25196 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25197 sect_offset_str (die->sect_off));
25198 *slot = XOBNEW (&objfile->objfile_obstack,
25199 struct dwarf2_per_cu_offset_and_type);
25204 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25205 or return NULL if the die does not have a saved type. */
25207 static struct type *
25208 get_die_type_at_offset (sect_offset sect_off,
25209 struct dwarf2_per_cu_data *per_cu)
25211 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25212 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25214 if (dwarf2_per_objfile->die_type_hash == NULL)
25217 ofs.per_cu = per_cu;
25218 ofs.sect_off = sect_off;
25219 slot = ((struct dwarf2_per_cu_offset_and_type *)
25220 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
25227 /* Look up the type for DIE in CU in die_type_hash,
25228 or return NULL if DIE does not have a saved type. */
25230 static struct type *
25231 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25233 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25236 /* Add a dependence relationship from CU to REF_PER_CU. */
25239 dwarf2_add_dependence (struct dwarf2_cu *cu,
25240 struct dwarf2_per_cu_data *ref_per_cu)
25244 if (cu->dependencies == NULL)
25246 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25247 NULL, &cu->comp_unit_obstack,
25248 hashtab_obstack_allocate,
25249 dummy_obstack_deallocate);
25251 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25253 *slot = ref_per_cu;
25256 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25257 Set the mark field in every compilation unit in the
25258 cache that we must keep because we are keeping CU. */
25261 dwarf2_mark_helper (void **slot, void *data)
25263 struct dwarf2_per_cu_data *per_cu;
25265 per_cu = (struct dwarf2_per_cu_data *) *slot;
25267 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25268 reading of the chain. As such dependencies remain valid it is not much
25269 useful to track and undo them during QUIT cleanups. */
25270 if (per_cu->cu == NULL)
25273 if (per_cu->cu->mark)
25275 per_cu->cu->mark = true;
25277 if (per_cu->cu->dependencies != NULL)
25278 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25283 /* Set the mark field in CU and in every other compilation unit in the
25284 cache that we must keep because we are keeping CU. */
25287 dwarf2_mark (struct dwarf2_cu *cu)
25292 if (cu->dependencies != NULL)
25293 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25297 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25301 per_cu->cu->mark = false;
25302 per_cu = per_cu->cu->read_in_chain;
25306 /* Trivial hash function for partial_die_info: the hash value of a DIE
25307 is its offset in .debug_info for this objfile. */
25310 partial_die_hash (const void *item)
25312 const struct partial_die_info *part_die
25313 = (const struct partial_die_info *) item;
25315 return to_underlying (part_die->sect_off);
25318 /* Trivial comparison function for partial_die_info structures: two DIEs
25319 are equal if they have the same offset. */
25322 partial_die_eq (const void *item_lhs, const void *item_rhs)
25324 const struct partial_die_info *part_die_lhs
25325 = (const struct partial_die_info *) item_lhs;
25326 const struct partial_die_info *part_die_rhs
25327 = (const struct partial_die_info *) item_rhs;
25329 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25332 struct cmd_list_element *set_dwarf_cmdlist;
25333 struct cmd_list_element *show_dwarf_cmdlist;
25336 set_dwarf_cmd (const char *args, int from_tty)
25338 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25343 show_dwarf_cmd (const char *args, int from_tty)
25345 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25348 bool dwarf_always_disassemble;
25351 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25352 struct cmd_list_element *c, const char *value)
25354 fprintf_filtered (file,
25355 _("Whether to always disassemble "
25356 "DWARF expressions is %s.\n"),
25361 show_check_physname (struct ui_file *file, int from_tty,
25362 struct cmd_list_element *c, const char *value)
25364 fprintf_filtered (file,
25365 _("Whether to check \"physname\" is %s.\n"),
25369 void _initialize_dwarf2_read ();
25371 _initialize_dwarf2_read ()
25373 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25374 Set DWARF specific variables.\n\
25375 Configure DWARF variables such as the cache size."),
25376 &set_dwarf_cmdlist, "maintenance set dwarf ",
25377 0/*allow-unknown*/, &maintenance_set_cmdlist);
25379 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25380 Show DWARF specific variables.\n\
25381 Show DWARF variables such as the cache size."),
25382 &show_dwarf_cmdlist, "maintenance show dwarf ",
25383 0/*allow-unknown*/, &maintenance_show_cmdlist);
25385 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25386 &dwarf_max_cache_age, _("\
25387 Set the upper bound on the age of cached DWARF compilation units."), _("\
25388 Show the upper bound on the age of cached DWARF compilation units."), _("\
25389 A higher limit means that cached compilation units will be stored\n\
25390 in memory longer, and more total memory will be used. Zero disables\n\
25391 caching, which can slow down startup."),
25393 show_dwarf_max_cache_age,
25394 &set_dwarf_cmdlist,
25395 &show_dwarf_cmdlist);
25397 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25398 &dwarf_always_disassemble, _("\
25399 Set whether `info address' always disassembles DWARF expressions."), _("\
25400 Show whether `info address' always disassembles DWARF expressions."), _("\
25401 When enabled, DWARF expressions are always printed in an assembly-like\n\
25402 syntax. When disabled, expressions will be printed in a more\n\
25403 conversational style, when possible."),
25405 show_dwarf_always_disassemble,
25406 &set_dwarf_cmdlist,
25407 &show_dwarf_cmdlist);
25409 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25410 Set debugging of the DWARF reader."), _("\
25411 Show debugging of the DWARF reader."), _("\
25412 When enabled (non-zero), debugging messages are printed during DWARF\n\
25413 reading and symtab expansion. A value of 1 (one) provides basic\n\
25414 information. A value greater than 1 provides more verbose information."),
25417 &setdebuglist, &showdebuglist);
25419 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25420 Set debugging of the DWARF DIE reader."), _("\
25421 Show debugging of the DWARF DIE reader."), _("\
25422 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25423 The value is the maximum depth to print."),
25426 &setdebuglist, &showdebuglist);
25428 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25429 Set debugging of the dwarf line reader."), _("\
25430 Show debugging of the dwarf line reader."), _("\
25431 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25432 A value of 1 (one) provides basic information.\n\
25433 A value greater than 1 provides more verbose information."),
25436 &setdebuglist, &showdebuglist);
25438 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25439 Set cross-checking of \"physname\" code against demangler."), _("\
25440 Show cross-checking of \"physname\" code against demangler."), _("\
25441 When enabled, GDB's internal \"physname\" code is checked against\n\
25443 NULL, show_check_physname,
25444 &setdebuglist, &showdebuglist);
25446 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25447 no_class, &use_deprecated_index_sections, _("\
25448 Set whether to use deprecated gdb_index sections."), _("\
25449 Show whether to use deprecated gdb_index sections."), _("\
25450 When enabled, deprecated .gdb_index sections are used anyway.\n\
25451 Normally they are ignored either because of a missing feature or\n\
25452 performance issue.\n\
25453 Warning: This option must be enabled before gdb reads the file."),
25456 &setlist, &showlist);
25458 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25459 &dwarf2_locexpr_funcs);
25460 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25461 &dwarf2_loclist_funcs);
25463 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25464 &dwarf2_block_frame_base_locexpr_funcs);
25465 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25466 &dwarf2_block_frame_base_loclist_funcs);
25469 selftests::register_test ("dw2_expand_symtabs_matching",
25470 selftests::dw2_expand_symtabs_matching::run_test);