1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
73 static struct type *desc_base_type (struct type *);
75 static struct type *desc_bounds_type (struct type *);
77 static struct value *desc_bounds (struct value *);
79 static int fat_pntr_bounds_bitpos (struct type *);
81 static int fat_pntr_bounds_bitsize (struct type *);
83 static struct type *desc_data_target_type (struct type *);
85 static struct value *desc_data (struct value *);
87 static int fat_pntr_data_bitpos (struct type *);
89 static int fat_pntr_data_bitsize (struct type *);
91 static struct value *desc_one_bound (struct value *, int, int);
93 static int desc_bound_bitpos (struct type *, int, int);
95 static int desc_bound_bitsize (struct type *, int, int);
97 static struct type *desc_index_type (struct type *, int);
99 static int desc_arity (struct type *);
101 static int ada_type_match (struct type *, struct type *, int);
103 static int ada_args_match (struct symbol *, struct value **, int);
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
115 static int is_nonfunction (struct ada_symbol_info *, int);
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 static int num_defns_collected (struct obstack *);
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124 static struct value *resolve_subexp (struct expression **, int *, int,
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
132 static char *ada_op_name (enum exp_opcode);
134 static const char *ada_decoded_op_name (enum exp_opcode);
136 static int numeric_type_p (struct type *);
138 static int integer_type_p (struct type *);
140 static int scalar_type_p (struct type *);
142 static int discrete_type_p (struct type *);
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 static struct symbol *find_old_style_renaming_symbol (const char *,
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 static struct value *evaluate_subexp_type (struct expression *, int *);
157 static struct type *ada_find_parallel_type_with_name (struct type *,
160 static int is_dynamic_field (struct type *, int);
162 static struct type *to_fixed_variant_branch_type (struct type *,
164 CORE_ADDR, struct value *);
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168 static struct type *to_fixed_range_type (char *, struct value *,
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
174 static struct value *unwrap_value (struct value *);
176 static struct type *constrained_packed_array_type (struct type *, long *);
178 static struct type *decode_constrained_packed_array_type (struct type *);
180 static long decode_packed_array_bitsize (struct type *);
182 static struct value *decode_constrained_packed_array (struct value *);
184 static int ada_is_packed_array_type (struct type *);
186 static int ada_is_unconstrained_packed_array_type (struct type *);
188 static struct value *value_subscript_packed (struct value *, int,
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193 static struct value *coerce_unspec_val_to_type (struct value *,
196 static struct value *get_var_value (char *, char *);
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int wild_match (const char *, int, const char *);
206 static struct value *ada_coerce_ref (struct value *);
208 static LONGEST pos_atr (struct value *);
210 static struct value *value_pos_atr (struct type *, struct value *);
212 static struct value *value_val_atr (struct type *, struct value *);
214 static struct symbol *standard_lookup (const char *, const struct block *,
217 static struct value *ada_search_struct_field (char *, struct value *, int,
220 static struct value *ada_value_primitive_field (struct value *, int, int,
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
233 static struct value *ada_coerce_to_simple_array (struct value *);
235 static int ada_is_direct_array_type (struct type *);
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
240 static void check_size (const struct type *);
242 static struct value *ada_index_struct_field (int, struct value *, int,
245 static struct value *assign_aggregate (struct value *, struct value *,
246 struct expression *, int *, enum noside);
248 static void aggregate_assign_from_choices (struct value *, struct value *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
253 static void aggregate_assign_positional (struct value *, struct value *,
255 int *, LONGEST *, int *, int,
259 static void aggregate_assign_others (struct value *, struct value *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 static void ada_forward_operator_length (struct expression *, int, int *,
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
311 /* Given DECODED_NAME a string holding a symbol name in its
312 decoded form (ie using the Ada dotted notation), returns
313 its unqualified name. */
316 ada_unqualified_name (const char *decoded_name)
318 const char *result = strrchr (decoded_name, '.');
321 result++; /* Skip the dot... */
323 result = decoded_name;
328 /* Return a string starting with '<', followed by STR, and '>'.
329 The result is good until the next call. */
332 add_angle_brackets (const char *str)
334 static char *result = NULL;
337 result = xstrprintf ("<%s>", str);
342 ada_get_gdb_completer_word_break_characters (void)
344 return ada_completer_word_break_characters;
347 /* Print an array element index using the Ada syntax. */
350 ada_print_array_index (struct value *index_value, struct ui_file *stream,
351 const struct value_print_options *options)
353 LA_VALUE_PRINT (index_value, stream, options);
354 fprintf_filtered (stream, " => ");
357 /* Assuming VECT points to an array of *SIZE objects of size
358 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
359 updating *SIZE as necessary and returning the (new) array. */
362 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
364 if (*size < min_size)
367 if (*size < min_size)
369 vect = xrealloc (vect, *size * element_size);
374 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
375 suffix of FIELD_NAME beginning "___". */
378 field_name_match (const char *field_name, const char *target)
380 int len = strlen (target);
382 (strncmp (field_name, target, len) == 0
383 && (field_name[len] == '\0'
384 || (strncmp (field_name + len, "___", 3) == 0
385 && strcmp (field_name + strlen (field_name) - 6,
390 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
391 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
392 and return its index. This function also handles fields whose name
393 have ___ suffixes because the compiler sometimes alters their name
394 by adding such a suffix to represent fields with certain constraints.
395 If the field could not be found, return a negative number if
396 MAYBE_MISSING is set. Otherwise raise an error. */
399 ada_get_field_index (const struct type *type, const char *field_name,
403 struct type *struct_type = check_typedef ((struct type *) type);
405 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
406 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
410 error (_("Unable to find field %s in struct %s. Aborting"),
411 field_name, TYPE_NAME (struct_type));
416 /* The length of the prefix of NAME prior to any "___" suffix. */
419 ada_name_prefix_len (const char *name)
425 const char *p = strstr (name, "___");
427 return strlen (name);
433 /* Return non-zero if SUFFIX is a suffix of STR.
434 Return zero if STR is null. */
437 is_suffix (const char *str, const char *suffix)
443 len2 = strlen (suffix);
444 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
447 /* The contents of value VAL, treated as a value of type TYPE. The
448 result is an lval in memory if VAL is. */
450 static struct value *
451 coerce_unspec_val_to_type (struct value *val, struct type *type)
453 type = ada_check_typedef (type);
454 if (value_type (val) == type)
458 struct value *result;
460 /* Make sure that the object size is not unreasonable before
461 trying to allocate some memory for it. */
464 result = allocate_value (type);
465 set_value_component_location (result, val);
466 set_value_bitsize (result, value_bitsize (val));
467 set_value_bitpos (result, value_bitpos (val));
468 set_value_address (result, value_address (val));
470 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
471 set_value_lazy (result, 1);
473 memcpy (value_contents_raw (result), value_contents (val),
479 static const gdb_byte *
480 cond_offset_host (const gdb_byte *valaddr, long offset)
485 return valaddr + offset;
489 cond_offset_target (CORE_ADDR address, long offset)
494 return address + offset;
497 /* Issue a warning (as for the definition of warning in utils.c, but
498 with exactly one argument rather than ...), unless the limit on the
499 number of warnings has passed during the evaluation of the current
502 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
503 provided by "complaint". */
504 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
507 lim_warning (const char *format, ...)
510 va_start (args, format);
512 warnings_issued += 1;
513 if (warnings_issued <= warning_limit)
514 vwarning (format, args);
519 /* Issue an error if the size of an object of type T is unreasonable,
520 i.e. if it would be a bad idea to allocate a value of this type in
524 check_size (const struct type *type)
526 if (TYPE_LENGTH (type) > varsize_limit)
527 error (_("object size is larger than varsize-limit"));
530 /* Maximum value of a SIZE-byte signed integer type. */
532 max_of_size (int size)
534 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
535 return top_bit | (top_bit - 1);
538 /* Minimum value of a SIZE-byte signed integer type. */
540 min_of_size (int size)
542 return -max_of_size (size) - 1;
545 /* Maximum value of a SIZE-byte unsigned integer type. */
547 umax_of_size (int size)
549 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
550 return top_bit | (top_bit - 1);
553 /* Maximum value of integral type T, as a signed quantity. */
555 max_of_type (struct type *t)
557 if (TYPE_UNSIGNED (t))
558 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
560 return max_of_size (TYPE_LENGTH (t));
563 /* Minimum value of integral type T, as a signed quantity. */
565 min_of_type (struct type *t)
567 if (TYPE_UNSIGNED (t))
570 return min_of_size (TYPE_LENGTH (t));
573 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
575 ada_discrete_type_high_bound (struct type *type)
577 switch (TYPE_CODE (type))
579 case TYPE_CODE_RANGE:
580 return TYPE_HIGH_BOUND (type);
582 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
587 return max_of_type (type);
589 error (_("Unexpected type in ada_discrete_type_high_bound."));
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
595 ada_discrete_type_low_bound (struct type *type)
597 switch (TYPE_CODE (type))
599 case TYPE_CODE_RANGE:
600 return TYPE_LOW_BOUND (type);
602 return TYPE_FIELD_BITPOS (type, 0);
607 return min_of_type (type);
609 error (_("Unexpected type in ada_discrete_type_low_bound."));
613 /* The identity on non-range types. For range types, the underlying
614 non-range scalar type. */
617 base_type (struct type *type)
619 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
621 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
623 type = TYPE_TARGET_TYPE (type);
629 /* Language Selection */
631 /* If the main program is in Ada, return language_ada, otherwise return LANG
632 (the main program is in Ada iif the adainit symbol is found). */
635 ada_update_initial_language (enum language lang)
637 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
638 (struct objfile *) NULL) != NULL)
644 /* If the main procedure is written in Ada, then return its name.
645 The result is good until the next call. Return NULL if the main
646 procedure doesn't appear to be in Ada. */
651 struct minimal_symbol *msym;
652 static char *main_program_name = NULL;
654 /* For Ada, the name of the main procedure is stored in a specific
655 string constant, generated by the binder. Look for that symbol,
656 extract its address, and then read that string. If we didn't find
657 that string, then most probably the main procedure is not written
659 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
663 CORE_ADDR main_program_name_addr;
666 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
667 if (main_program_name_addr == 0)
668 error (_("Invalid address for Ada main program name."));
670 xfree (main_program_name);
671 target_read_string (main_program_name_addr, &main_program_name,
676 return main_program_name;
679 /* The main procedure doesn't seem to be in Ada. */
685 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
688 const struct ada_opname_map ada_opname_table[] = {
689 {"Oadd", "\"+\"", BINOP_ADD},
690 {"Osubtract", "\"-\"", BINOP_SUB},
691 {"Omultiply", "\"*\"", BINOP_MUL},
692 {"Odivide", "\"/\"", BINOP_DIV},
693 {"Omod", "\"mod\"", BINOP_MOD},
694 {"Orem", "\"rem\"", BINOP_REM},
695 {"Oexpon", "\"**\"", BINOP_EXP},
696 {"Olt", "\"<\"", BINOP_LESS},
697 {"Ole", "\"<=\"", BINOP_LEQ},
698 {"Ogt", "\">\"", BINOP_GTR},
699 {"Oge", "\">=\"", BINOP_GEQ},
700 {"Oeq", "\"=\"", BINOP_EQUAL},
701 {"One", "\"/=\"", BINOP_NOTEQUAL},
702 {"Oand", "\"and\"", BINOP_BITWISE_AND},
703 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
704 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
705 {"Oconcat", "\"&\"", BINOP_CONCAT},
706 {"Oabs", "\"abs\"", UNOP_ABS},
707 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
708 {"Oadd", "\"+\"", UNOP_PLUS},
709 {"Osubtract", "\"-\"", UNOP_NEG},
713 /* The "encoded" form of DECODED, according to GNAT conventions.
714 The result is valid until the next call to ada_encode. */
717 ada_encode (const char *decoded)
719 static char *encoding_buffer = NULL;
720 static size_t encoding_buffer_size = 0;
727 GROW_VECT (encoding_buffer, encoding_buffer_size,
728 2 * strlen (decoded) + 10);
731 for (p = decoded; *p != '\0'; p += 1)
735 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
740 const struct ada_opname_map *mapping;
742 for (mapping = ada_opname_table;
743 mapping->encoded != NULL
744 && strncmp (mapping->decoded, p,
745 strlen (mapping->decoded)) != 0; mapping += 1)
747 if (mapping->encoded == NULL)
748 error (_("invalid Ada operator name: %s"), p);
749 strcpy (encoding_buffer + k, mapping->encoded);
750 k += strlen (mapping->encoded);
755 encoding_buffer[k] = *p;
760 encoding_buffer[k] = '\0';
761 return encoding_buffer;
764 /* Return NAME folded to lower case, or, if surrounded by single
765 quotes, unfolded, but with the quotes stripped away. Result good
769 ada_fold_name (const char *name)
771 static char *fold_buffer = NULL;
772 static size_t fold_buffer_size = 0;
774 int len = strlen (name);
775 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
779 strncpy (fold_buffer, name + 1, len - 2);
780 fold_buffer[len - 2] = '\000';
785 for (i = 0; i <= len; i += 1)
786 fold_buffer[i] = tolower (name[i]);
792 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
795 is_lower_alphanum (const char c)
797 return (isdigit (c) || (isalpha (c) && islower (c)));
800 /* Remove either of these suffixes:
805 These are suffixes introduced by the compiler for entities such as
806 nested subprogram for instance, in order to avoid name clashes.
807 They do not serve any purpose for the debugger. */
810 ada_remove_trailing_digits (const char *encoded, int *len)
812 if (*len > 1 && isdigit (encoded[*len - 1]))
815 while (i > 0 && isdigit (encoded[i]))
817 if (i >= 0 && encoded[i] == '.')
819 else if (i >= 0 && encoded[i] == '$')
821 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
823 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
828 /* Remove the suffix introduced by the compiler for protected object
832 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
834 /* Remove trailing N. */
836 /* Protected entry subprograms are broken into two
837 separate subprograms: The first one is unprotected, and has
838 a 'N' suffix; the second is the protected version, and has
839 the 'P' suffix. The second calls the first one after handling
840 the protection. Since the P subprograms are internally generated,
841 we leave these names undecoded, giving the user a clue that this
842 entity is internal. */
845 && encoded[*len - 1] == 'N'
846 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
850 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
853 ada_remove_Xbn_suffix (const char *encoded, int *len)
857 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
860 if (encoded[i] != 'X')
866 if (isalnum (encoded[i-1]))
870 /* If ENCODED follows the GNAT entity encoding conventions, then return
871 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
874 The resulting string is valid until the next call of ada_decode.
875 If the string is unchanged by decoding, the original string pointer
879 ada_decode (const char *encoded)
886 static char *decoding_buffer = NULL;
887 static size_t decoding_buffer_size = 0;
889 /* The name of the Ada main procedure starts with "_ada_".
890 This prefix is not part of the decoded name, so skip this part
891 if we see this prefix. */
892 if (strncmp (encoded, "_ada_", 5) == 0)
895 /* If the name starts with '_', then it is not a properly encoded
896 name, so do not attempt to decode it. Similarly, if the name
897 starts with '<', the name should not be decoded. */
898 if (encoded[0] == '_' || encoded[0] == '<')
901 len0 = strlen (encoded);
903 ada_remove_trailing_digits (encoded, &len0);
904 ada_remove_po_subprogram_suffix (encoded, &len0);
906 /* Remove the ___X.* suffix if present. Do not forget to verify that
907 the suffix is located before the current "end" of ENCODED. We want
908 to avoid re-matching parts of ENCODED that have previously been
909 marked as discarded (by decrementing LEN0). */
910 p = strstr (encoded, "___");
911 if (p != NULL && p - encoded < len0 - 3)
919 /* Remove any trailing TKB suffix. It tells us that this symbol
920 is for the body of a task, but that information does not actually
921 appear in the decoded name. */
923 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
926 /* Remove any trailing TB suffix. The TB suffix is slightly different
927 from the TKB suffix because it is used for non-anonymous task
930 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
933 /* Remove trailing "B" suffixes. */
934 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
936 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
939 /* Make decoded big enough for possible expansion by operator name. */
941 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
942 decoded = decoding_buffer;
944 /* Remove trailing __{digit}+ or trailing ${digit}+. */
946 if (len0 > 1 && isdigit (encoded[len0 - 1]))
949 while ((i >= 0 && isdigit (encoded[i]))
950 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
952 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
954 else if (encoded[i] == '$')
958 /* The first few characters that are not alphabetic are not part
959 of any encoding we use, so we can copy them over verbatim. */
961 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
962 decoded[j] = encoded[i];
967 /* Is this a symbol function? */
968 if (at_start_name && encoded[i] == 'O')
971 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
973 int op_len = strlen (ada_opname_table[k].encoded);
974 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
976 && !isalnum (encoded[i + op_len]))
978 strcpy (decoded + j, ada_opname_table[k].decoded);
981 j += strlen (ada_opname_table[k].decoded);
985 if (ada_opname_table[k].encoded != NULL)
990 /* Replace "TK__" with "__", which will eventually be translated
991 into "." (just below). */
993 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
996 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
997 be translated into "." (just below). These are internal names
998 generated for anonymous blocks inside which our symbol is nested. */
1000 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1001 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1002 && isdigit (encoded [i+4]))
1006 while (k < len0 && isdigit (encoded[k]))
1007 k++; /* Skip any extra digit. */
1009 /* Double-check that the "__B_{DIGITS}+" sequence we found
1010 is indeed followed by "__". */
1011 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1015 /* Remove _E{DIGITS}+[sb] */
1017 /* Just as for protected object subprograms, there are 2 categories
1018 of subprograms created by the compiler for each entry. The first
1019 one implements the actual entry code, and has a suffix following
1020 the convention above; the second one implements the barrier and
1021 uses the same convention as above, except that the 'E' is replaced
1024 Just as above, we do not decode the name of barrier functions
1025 to give the user a clue that the code he is debugging has been
1026 internally generated. */
1028 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1029 && isdigit (encoded[i+2]))
1033 while (k < len0 && isdigit (encoded[k]))
1037 && (encoded[k] == 'b' || encoded[k] == 's'))
1040 /* Just as an extra precaution, make sure that if this
1041 suffix is followed by anything else, it is a '_'.
1042 Otherwise, we matched this sequence by accident. */
1044 || (k < len0 && encoded[k] == '_'))
1049 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1050 the GNAT front-end in protected object subprograms. */
1053 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1055 /* Backtrack a bit up until we reach either the begining of
1056 the encoded name, or "__". Make sure that we only find
1057 digits or lowercase characters. */
1058 const char *ptr = encoded + i - 1;
1060 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1063 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1067 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1069 /* This is a X[bn]* sequence not separated from the previous
1070 part of the name with a non-alpha-numeric character (in other
1071 words, immediately following an alpha-numeric character), then
1072 verify that it is placed at the end of the encoded name. If
1073 not, then the encoding is not valid and we should abort the
1074 decoding. Otherwise, just skip it, it is used in body-nested
1078 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1082 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1084 /* Replace '__' by '.'. */
1092 /* It's a character part of the decoded name, so just copy it
1094 decoded[j] = encoded[i];
1099 decoded[j] = '\000';
1101 /* Decoded names should never contain any uppercase character.
1102 Double-check this, and abort the decoding if we find one. */
1104 for (i = 0; decoded[i] != '\0'; i += 1)
1105 if (isupper (decoded[i]) || decoded[i] == ' ')
1108 if (strcmp (decoded, encoded) == 0)
1114 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1115 decoded = decoding_buffer;
1116 if (encoded[0] == '<')
1117 strcpy (decoded, encoded);
1119 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1124 /* Table for keeping permanent unique copies of decoded names. Once
1125 allocated, names in this table are never released. While this is a
1126 storage leak, it should not be significant unless there are massive
1127 changes in the set of decoded names in successive versions of a
1128 symbol table loaded during a single session. */
1129 static struct htab *decoded_names_store;
1131 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1132 in the language-specific part of GSYMBOL, if it has not been
1133 previously computed. Tries to save the decoded name in the same
1134 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1135 in any case, the decoded symbol has a lifetime at least that of
1137 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1138 const, but nevertheless modified to a semantically equivalent form
1139 when a decoded name is cached in it.
1143 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1146 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1147 if (*resultp == NULL)
1149 const char *decoded = ada_decode (gsymbol->name);
1150 if (gsymbol->obj_section != NULL)
1152 struct objfile *objf = gsymbol->obj_section->objfile;
1153 *resultp = obsavestring (decoded, strlen (decoded),
1154 &objf->objfile_obstack);
1156 /* Sometimes, we can't find a corresponding objfile, in which
1157 case, we put the result on the heap. Since we only decode
1158 when needed, we hope this usually does not cause a
1159 significant memory leak (FIXME). */
1160 if (*resultp == NULL)
1162 char **slot = (char **) htab_find_slot (decoded_names_store,
1165 *slot = xstrdup (decoded);
1174 ada_la_decode (const char *encoded, int options)
1176 return xstrdup (ada_decode (encoded));
1179 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1180 suffixes that encode debugging information or leading _ada_ on
1181 SYM_NAME (see is_name_suffix commentary for the debugging
1182 information that is ignored). If WILD, then NAME need only match a
1183 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1184 either argument is NULL. */
1187 ada_match_name (const char *sym_name, const char *name, int wild)
1189 if (sym_name == NULL || name == NULL)
1192 return wild_match (name, strlen (name), sym_name);
1195 int len_name = strlen (name);
1196 return (strncmp (sym_name, name, len_name) == 0
1197 && is_name_suffix (sym_name + len_name))
1198 || (strncmp (sym_name, "_ada_", 5) == 0
1199 && strncmp (sym_name + 5, name, len_name) == 0
1200 && is_name_suffix (sym_name + len_name + 5));
1207 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1209 static char *bound_name[] = {
1210 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1211 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1214 /* Maximum number of array dimensions we are prepared to handle. */
1216 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1218 /* Like modify_field, but allows bitpos > wordlength. */
1221 modify_general_field (struct type *type, char *addr,
1222 LONGEST fieldval, int bitpos, int bitsize)
1224 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1228 /* The desc_* routines return primitive portions of array descriptors
1231 /* The descriptor or array type, if any, indicated by TYPE; removes
1232 level of indirection, if needed. */
1234 static struct type *
1235 desc_base_type (struct type *type)
1239 type = ada_check_typedef (type);
1241 && (TYPE_CODE (type) == TYPE_CODE_PTR
1242 || TYPE_CODE (type) == TYPE_CODE_REF))
1243 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1248 /* True iff TYPE indicates a "thin" array pointer type. */
1251 is_thin_pntr (struct type *type)
1254 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1255 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1258 /* The descriptor type for thin pointer type TYPE. */
1260 static struct type *
1261 thin_descriptor_type (struct type *type)
1263 struct type *base_type = desc_base_type (type);
1264 if (base_type == NULL)
1266 if (is_suffix (ada_type_name (base_type), "___XVE"))
1270 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1271 if (alt_type == NULL)
1278 /* A pointer to the array data for thin-pointer value VAL. */
1280 static struct value *
1281 thin_data_pntr (struct value *val)
1283 struct type *type = value_type (val);
1284 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1285 data_type = lookup_pointer_type (data_type);
1287 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1288 return value_cast (data_type, value_copy (val));
1290 return value_from_longest (data_type, value_address (val));
1293 /* True iff TYPE indicates a "thick" array pointer type. */
1296 is_thick_pntr (struct type *type)
1298 type = desc_base_type (type);
1299 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1300 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1303 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1304 pointer to one, the type of its bounds data; otherwise, NULL. */
1306 static struct type *
1307 desc_bounds_type (struct type *type)
1311 type = desc_base_type (type);
1315 else if (is_thin_pntr (type))
1317 type = thin_descriptor_type (type);
1320 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1322 return ada_check_typedef (r);
1324 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1326 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1328 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1333 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1334 one, a pointer to its bounds data. Otherwise NULL. */
1336 static struct value *
1337 desc_bounds (struct value *arr)
1339 struct type *type = ada_check_typedef (value_type (arr));
1340 if (is_thin_pntr (type))
1342 struct type *bounds_type =
1343 desc_bounds_type (thin_descriptor_type (type));
1346 if (bounds_type == NULL)
1347 error (_("Bad GNAT array descriptor"));
1349 /* NOTE: The following calculation is not really kosher, but
1350 since desc_type is an XVE-encoded type (and shouldn't be),
1351 the correct calculation is a real pain. FIXME (and fix GCC). */
1352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1353 addr = value_as_long (arr);
1355 addr = value_address (arr);
1358 value_from_longest (lookup_pointer_type (bounds_type),
1359 addr - TYPE_LENGTH (bounds_type));
1362 else if (is_thick_pntr (type))
1363 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1364 _("Bad GNAT array descriptor"));
1369 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1370 position of the field containing the address of the bounds data. */
1373 fat_pntr_bounds_bitpos (struct type *type)
1375 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1378 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1379 size of the field containing the address of the bounds data. */
1382 fat_pntr_bounds_bitsize (struct type *type)
1384 type = desc_base_type (type);
1386 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1387 return TYPE_FIELD_BITSIZE (type, 1);
1389 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1392 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1393 pointer to one, the type of its array data (a array-with-no-bounds type);
1394 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1397 static struct type *
1398 desc_data_target_type (struct type *type)
1400 type = desc_base_type (type);
1402 /* NOTE: The following is bogus; see comment in desc_bounds. */
1403 if (is_thin_pntr (type))
1404 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1405 else if (is_thick_pntr (type))
1407 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1410 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1411 return TYPE_TARGET_TYPE (data_type);
1417 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1420 static struct value *
1421 desc_data (struct value *arr)
1423 struct type *type = value_type (arr);
1424 if (is_thin_pntr (type))
1425 return thin_data_pntr (arr);
1426 else if (is_thick_pntr (type))
1427 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1428 _("Bad GNAT array descriptor"));
1434 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1435 position of the field containing the address of the data. */
1438 fat_pntr_data_bitpos (struct type *type)
1440 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1443 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1444 size of the field containing the address of the data. */
1447 fat_pntr_data_bitsize (struct type *type)
1449 type = desc_base_type (type);
1451 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1452 return TYPE_FIELD_BITSIZE (type, 0);
1454 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1457 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1458 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1459 bound, if WHICH is 1. The first bound is I=1. */
1461 static struct value *
1462 desc_one_bound (struct value *bounds, int i, int which)
1464 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1465 _("Bad GNAT array descriptor bounds"));
1468 /* If BOUNDS is an array-bounds structure type, return the bit position
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1473 desc_bound_bitpos (struct type *type, int i, int which)
1475 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1478 /* If BOUNDS is an array-bounds structure type, return the bit field size
1479 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1480 bound, if WHICH is 1. The first bound is I=1. */
1483 desc_bound_bitsize (struct type *type, int i, int which)
1485 type = desc_base_type (type);
1487 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1490 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1493 /* If TYPE is the type of an array-bounds structure, the type of its
1494 Ith bound (numbering from 1). Otherwise, NULL. */
1496 static struct type *
1497 desc_index_type (struct type *type, int i)
1499 type = desc_base_type (type);
1501 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1502 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1507 /* The number of index positions in the array-bounds type TYPE.
1508 Return 0 if TYPE is NULL. */
1511 desc_arity (struct type *type)
1513 type = desc_base_type (type);
1516 return TYPE_NFIELDS (type) / 2;
1520 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1521 an array descriptor type (representing an unconstrained array
1525 ada_is_direct_array_type (struct type *type)
1529 type = ada_check_typedef (type);
1530 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1531 || ada_is_array_descriptor_type (type));
1534 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1538 ada_is_array_type (struct type *type)
1541 && (TYPE_CODE (type) == TYPE_CODE_PTR
1542 || TYPE_CODE (type) == TYPE_CODE_REF))
1543 type = TYPE_TARGET_TYPE (type);
1544 return ada_is_direct_array_type (type);
1547 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1550 ada_is_simple_array_type (struct type *type)
1554 type = ada_check_typedef (type);
1555 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1556 || (TYPE_CODE (type) == TYPE_CODE_PTR
1557 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1560 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1563 ada_is_array_descriptor_type (struct type *type)
1565 struct type *data_type = desc_data_target_type (type);
1569 type = ada_check_typedef (type);
1570 return (data_type != NULL
1571 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1572 && desc_arity (desc_bounds_type (type)) > 0);
1575 /* Non-zero iff type is a partially mal-formed GNAT array
1576 descriptor. FIXME: This is to compensate for some problems with
1577 debugging output from GNAT. Re-examine periodically to see if it
1581 ada_is_bogus_array_descriptor (struct type *type)
1585 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1586 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1587 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1588 && !ada_is_array_descriptor_type (type);
1592 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1593 (fat pointer) returns the type of the array data described---specifically,
1594 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1595 in from the descriptor; otherwise, they are left unspecified. If
1596 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1597 returns NULL. The result is simply the type of ARR if ARR is not
1600 ada_type_of_array (struct value *arr, int bounds)
1602 if (ada_is_constrained_packed_array_type (value_type (arr)))
1603 return decode_constrained_packed_array_type (value_type (arr));
1605 if (!ada_is_array_descriptor_type (value_type (arr)))
1606 return value_type (arr);
1610 struct type *array_type =
1611 ada_check_typedef (desc_data_target_type (value_type (arr)));
1613 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1614 TYPE_FIELD_BITSIZE (array_type, 0) =
1615 decode_packed_array_bitsize (value_type (arr));
1621 struct type *elt_type;
1623 struct value *descriptor;
1625 elt_type = ada_array_element_type (value_type (arr), -1);
1626 arity = ada_array_arity (value_type (arr));
1628 if (elt_type == NULL || arity == 0)
1629 return ada_check_typedef (value_type (arr));
1631 descriptor = desc_bounds (arr);
1632 if (value_as_long (descriptor) == 0)
1636 struct type *range_type = alloc_type_copy (value_type (arr));
1637 struct type *array_type = alloc_type_copy (value_type (arr));
1638 struct value *low = desc_one_bound (descriptor, arity, 0);
1639 struct value *high = desc_one_bound (descriptor, arity, 1);
1642 create_range_type (range_type, value_type (low),
1643 longest_to_int (value_as_long (low)),
1644 longest_to_int (value_as_long (high)));
1645 elt_type = create_array_type (array_type, elt_type, range_type);
1647 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1648 TYPE_FIELD_BITSIZE (elt_type, 0) =
1649 decode_packed_array_bitsize (value_type (arr));
1652 return lookup_pointer_type (elt_type);
1656 /* If ARR does not represent an array, returns ARR unchanged.
1657 Otherwise, returns either a standard GDB array with bounds set
1658 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1659 GDB array. Returns NULL if ARR is a null fat pointer. */
1662 ada_coerce_to_simple_array_ptr (struct value *arr)
1664 if (ada_is_array_descriptor_type (value_type (arr)))
1666 struct type *arrType = ada_type_of_array (arr, 1);
1667 if (arrType == NULL)
1669 return value_cast (arrType, value_copy (desc_data (arr)));
1671 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1672 return decode_constrained_packed_array (arr);
1677 /* If ARR does not represent an array, returns ARR unchanged.
1678 Otherwise, returns a standard GDB array describing ARR (which may
1679 be ARR itself if it already is in the proper form). */
1681 static struct value *
1682 ada_coerce_to_simple_array (struct value *arr)
1684 if (ada_is_array_descriptor_type (value_type (arr)))
1686 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1688 error (_("Bounds unavailable for null array pointer."));
1689 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1690 return value_ind (arrVal);
1692 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1693 return decode_constrained_packed_array (arr);
1698 /* If TYPE represents a GNAT array type, return it translated to an
1699 ordinary GDB array type (possibly with BITSIZE fields indicating
1700 packing). For other types, is the identity. */
1703 ada_coerce_to_simple_array_type (struct type *type)
1705 if (ada_is_constrained_packed_array_type (type))
1706 return decode_constrained_packed_array_type (type);
1708 if (ada_is_array_descriptor_type (type))
1709 return ada_check_typedef (desc_data_target_type (type));
1714 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1717 ada_is_packed_array_type (struct type *type)
1721 type = desc_base_type (type);
1722 type = ada_check_typedef (type);
1724 ada_type_name (type) != NULL
1725 && strstr (ada_type_name (type), "___XP") != NULL;
1728 /* Non-zero iff TYPE represents a standard GNAT constrained
1729 packed-array type. */
1732 ada_is_constrained_packed_array_type (struct type *type)
1734 return ada_is_packed_array_type (type)
1735 && !ada_is_array_descriptor_type (type);
1738 /* Non-zero iff TYPE represents an array descriptor for a
1739 unconstrained packed-array type. */
1742 ada_is_unconstrained_packed_array_type (struct type *type)
1744 return ada_is_packed_array_type (type)
1745 && ada_is_array_descriptor_type (type);
1748 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1749 return the size of its elements in bits. */
1752 decode_packed_array_bitsize (struct type *type)
1754 char *raw_name = ada_type_name (ada_check_typedef (type));
1759 raw_name = ada_type_name (desc_base_type (type));
1764 tail = strstr (raw_name, "___XP");
1766 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1769 (_("could not understand bit size information on packed array"));
1776 /* Given that TYPE is a standard GDB array type with all bounds filled
1777 in, and that the element size of its ultimate scalar constituents
1778 (that is, either its elements, or, if it is an array of arrays, its
1779 elements' elements, etc.) is *ELT_BITS, return an identical type,
1780 but with the bit sizes of its elements (and those of any
1781 constituent arrays) recorded in the BITSIZE components of its
1782 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1785 static struct type *
1786 constrained_packed_array_type (struct type *type, long *elt_bits)
1788 struct type *new_elt_type;
1789 struct type *new_type;
1790 LONGEST low_bound, high_bound;
1792 type = ada_check_typedef (type);
1793 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1796 new_type = alloc_type_copy (type);
1798 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1800 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1801 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1802 TYPE_NAME (new_type) = ada_type_name (type);
1804 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1805 &low_bound, &high_bound) < 0)
1806 low_bound = high_bound = 0;
1807 if (high_bound < low_bound)
1808 *elt_bits = TYPE_LENGTH (new_type) = 0;
1811 *elt_bits *= (high_bound - low_bound + 1);
1812 TYPE_LENGTH (new_type) =
1813 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1816 TYPE_FIXED_INSTANCE (new_type) = 1;
1820 /* The array type encoded by TYPE, where
1821 ada_is_constrained_packed_array_type (TYPE). */
1823 static struct type *
1824 decode_constrained_packed_array_type (struct type *type)
1826 char *raw_name = ada_type_name (ada_check_typedef (type));
1829 struct type *shadow_type;
1833 raw_name = ada_type_name (desc_base_type (type));
1838 name = (char *) alloca (strlen (raw_name) + 1);
1839 tail = strstr (raw_name, "___XP");
1840 type = desc_base_type (type);
1842 memcpy (name, raw_name, tail - raw_name);
1843 name[tail - raw_name] = '\000';
1845 shadow_type = ada_find_parallel_type_with_name (type, name);
1847 if (shadow_type == NULL)
1849 lim_warning (_("could not find bounds information on packed array"));
1852 CHECK_TYPEDEF (shadow_type);
1854 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1856 lim_warning (_("could not understand bounds information on packed array"));
1860 bits = decode_packed_array_bitsize (type);
1861 return constrained_packed_array_type (shadow_type, &bits);
1864 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1865 array, returns a simple array that denotes that array. Its type is a
1866 standard GDB array type except that the BITSIZEs of the array
1867 target types are set to the number of bits in each element, and the
1868 type length is set appropriately. */
1870 static struct value *
1871 decode_constrained_packed_array (struct value *arr)
1875 arr = ada_coerce_ref (arr);
1877 /* If our value is a pointer, then dererence it. Make sure that
1878 this operation does not cause the target type to be fixed, as
1879 this would indirectly cause this array to be decoded. The rest
1880 of the routine assumes that the array hasn't been decoded yet,
1881 so we use the basic "value_ind" routine to perform the dereferencing,
1882 as opposed to using "ada_value_ind". */
1883 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1884 arr = value_ind (arr);
1886 type = decode_constrained_packed_array_type (value_type (arr));
1889 error (_("can't unpack array"));
1893 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1894 && ada_is_modular_type (value_type (arr)))
1896 /* This is a (right-justified) modular type representing a packed
1897 array with no wrapper. In order to interpret the value through
1898 the (left-justified) packed array type we just built, we must
1899 first left-justify it. */
1900 int bit_size, bit_pos;
1903 mod = ada_modulus (value_type (arr)) - 1;
1910 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1911 arr = ada_value_primitive_packed_val (arr, NULL,
1912 bit_pos / HOST_CHAR_BIT,
1913 bit_pos % HOST_CHAR_BIT,
1918 return coerce_unspec_val_to_type (arr, type);
1922 /* The value of the element of packed array ARR at the ARITY indices
1923 given in IND. ARR must be a simple array. */
1925 static struct value *
1926 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1929 int bits, elt_off, bit_off;
1930 long elt_total_bit_offset;
1931 struct type *elt_type;
1935 elt_total_bit_offset = 0;
1936 elt_type = ada_check_typedef (value_type (arr));
1937 for (i = 0; i < arity; i += 1)
1939 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1940 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1942 (_("attempt to do packed indexing of something other than a packed array"));
1945 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1946 LONGEST lowerbound, upperbound;
1949 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1951 lim_warning (_("don't know bounds of array"));
1952 lowerbound = upperbound = 0;
1955 idx = pos_atr (ind[i]);
1956 if (idx < lowerbound || idx > upperbound)
1957 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1958 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1959 elt_total_bit_offset += (idx - lowerbound) * bits;
1960 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1963 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1964 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1966 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1971 /* Non-zero iff TYPE includes negative integer values. */
1974 has_negatives (struct type *type)
1976 switch (TYPE_CODE (type))
1981 return !TYPE_UNSIGNED (type);
1982 case TYPE_CODE_RANGE:
1983 return TYPE_LOW_BOUND (type) < 0;
1988 /* Create a new value of type TYPE from the contents of OBJ starting
1989 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1990 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1991 assigning through the result will set the field fetched from.
1992 VALADDR is ignored unless OBJ is NULL, in which case,
1993 VALADDR+OFFSET must address the start of storage containing the
1994 packed value. The value returned in this case is never an lval.
1995 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1998 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1999 long offset, int bit_offset, int bit_size,
2003 int src, /* Index into the source area */
2004 targ, /* Index into the target area */
2005 srcBitsLeft, /* Number of source bits left to move */
2006 nsrc, ntarg, /* Number of source and target bytes */
2007 unusedLS, /* Number of bits in next significant
2008 byte of source that are unused */
2009 accumSize; /* Number of meaningful bits in accum */
2010 unsigned char *bytes; /* First byte containing data to unpack */
2011 unsigned char *unpacked;
2012 unsigned long accum; /* Staging area for bits being transferred */
2014 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2015 /* Transmit bytes from least to most significant; delta is the direction
2016 the indices move. */
2017 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2019 type = ada_check_typedef (type);
2023 v = allocate_value (type);
2024 bytes = (unsigned char *) (valaddr + offset);
2026 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2029 value_address (obj) + offset);
2030 bytes = (unsigned char *) alloca (len);
2031 read_memory (value_address (v), bytes, len);
2035 v = allocate_value (type);
2036 bytes = (unsigned char *) value_contents (obj) + offset;
2042 set_value_component_location (v, obj);
2043 new_addr = value_address (obj) + offset;
2044 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2045 set_value_bitsize (v, bit_size);
2046 if (value_bitpos (v) >= HOST_CHAR_BIT)
2049 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2051 set_value_address (v, new_addr);
2054 set_value_bitsize (v, bit_size);
2055 unpacked = (unsigned char *) value_contents (v);
2057 srcBitsLeft = bit_size;
2059 ntarg = TYPE_LENGTH (type);
2063 memset (unpacked, 0, TYPE_LENGTH (type));
2066 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2069 if (has_negatives (type)
2070 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2074 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2077 switch (TYPE_CODE (type))
2079 case TYPE_CODE_ARRAY:
2080 case TYPE_CODE_UNION:
2081 case TYPE_CODE_STRUCT:
2082 /* Non-scalar values must be aligned at a byte boundary... */
2084 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2085 /* ... And are placed at the beginning (most-significant) bytes
2087 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2092 targ = TYPE_LENGTH (type) - 1;
2098 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2101 unusedLS = bit_offset;
2104 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2111 /* Mask for removing bits of the next source byte that are not
2112 part of the value. */
2113 unsigned int unusedMSMask =
2114 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2116 /* Sign-extend bits for this byte. */
2117 unsigned int signMask = sign & ~unusedMSMask;
2119 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2120 accumSize += HOST_CHAR_BIT - unusedLS;
2121 if (accumSize >= HOST_CHAR_BIT)
2123 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2124 accumSize -= HOST_CHAR_BIT;
2125 accum >>= HOST_CHAR_BIT;
2129 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2136 accum |= sign << accumSize;
2137 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2138 accumSize -= HOST_CHAR_BIT;
2139 accum >>= HOST_CHAR_BIT;
2147 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2148 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2151 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2152 int src_offset, int n, int bits_big_endian_p)
2154 unsigned int accum, mask;
2155 int accum_bits, chunk_size;
2157 target += targ_offset / HOST_CHAR_BIT;
2158 targ_offset %= HOST_CHAR_BIT;
2159 source += src_offset / HOST_CHAR_BIT;
2160 src_offset %= HOST_CHAR_BIT;
2161 if (bits_big_endian_p)
2163 accum = (unsigned char) *source;
2165 accum_bits = HOST_CHAR_BIT - src_offset;
2170 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2171 accum_bits += HOST_CHAR_BIT;
2173 chunk_size = HOST_CHAR_BIT - targ_offset;
2176 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2177 mask = ((1 << chunk_size) - 1) << unused_right;
2180 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2182 accum_bits -= chunk_size;
2189 accum = (unsigned char) *source >> src_offset;
2191 accum_bits = HOST_CHAR_BIT - src_offset;
2195 accum = accum + ((unsigned char) *source << accum_bits);
2196 accum_bits += HOST_CHAR_BIT;
2198 chunk_size = HOST_CHAR_BIT - targ_offset;
2201 mask = ((1 << chunk_size) - 1) << targ_offset;
2202 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2204 accum_bits -= chunk_size;
2205 accum >>= chunk_size;
2212 /* Store the contents of FROMVAL into the location of TOVAL.
2213 Return a new value with the location of TOVAL and contents of
2214 FROMVAL. Handles assignment into packed fields that have
2215 floating-point or non-scalar types. */
2217 static struct value *
2218 ada_value_assign (struct value *toval, struct value *fromval)
2220 struct type *type = value_type (toval);
2221 int bits = value_bitsize (toval);
2223 toval = ada_coerce_ref (toval);
2224 fromval = ada_coerce_ref (fromval);
2226 if (ada_is_direct_array_type (value_type (toval)))
2227 toval = ada_coerce_to_simple_array (toval);
2228 if (ada_is_direct_array_type (value_type (fromval)))
2229 fromval = ada_coerce_to_simple_array (fromval);
2231 if (!deprecated_value_modifiable (toval))
2232 error (_("Left operand of assignment is not a modifiable lvalue."));
2234 if (VALUE_LVAL (toval) == lval_memory
2236 && (TYPE_CODE (type) == TYPE_CODE_FLT
2237 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2239 int len = (value_bitpos (toval)
2240 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2242 char *buffer = (char *) alloca (len);
2244 CORE_ADDR to_addr = value_address (toval);
2246 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2247 fromval = value_cast (type, fromval);
2249 read_memory (to_addr, buffer, len);
2250 from_size = value_bitsize (fromval);
2252 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2253 if (gdbarch_bits_big_endian (get_type_arch (type)))
2254 move_bits (buffer, value_bitpos (toval),
2255 value_contents (fromval), from_size - bits, bits, 1);
2257 move_bits (buffer, value_bitpos (toval),
2258 value_contents (fromval), 0, bits, 0);
2259 write_memory (to_addr, buffer, len);
2260 observer_notify_memory_changed (to_addr, len, buffer);
2262 val = value_copy (toval);
2263 memcpy (value_contents_raw (val), value_contents (fromval),
2264 TYPE_LENGTH (type));
2265 deprecated_set_value_type (val, type);
2270 return value_assign (toval, fromval);
2274 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2275 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2276 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2277 * COMPONENT, and not the inferior's memory. The current contents
2278 * of COMPONENT are ignored. */
2280 value_assign_to_component (struct value *container, struct value *component,
2283 LONGEST offset_in_container =
2284 (LONGEST) (value_address (component) - value_address (container));
2285 int bit_offset_in_container =
2286 value_bitpos (component) - value_bitpos (container);
2289 val = value_cast (value_type (component), val);
2291 if (value_bitsize (component) == 0)
2292 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2294 bits = value_bitsize (component);
2296 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2297 move_bits (value_contents_writeable (container) + offset_in_container,
2298 value_bitpos (container) + bit_offset_in_container,
2299 value_contents (val),
2300 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2303 move_bits (value_contents_writeable (container) + offset_in_container,
2304 value_bitpos (container) + bit_offset_in_container,
2305 value_contents (val), 0, bits, 0);
2308 /* The value of the element of array ARR at the ARITY indices given in IND.
2309 ARR may be either a simple array, GNAT array descriptor, or pointer
2313 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2317 struct type *elt_type;
2319 elt = ada_coerce_to_simple_array (arr);
2321 elt_type = ada_check_typedef (value_type (elt));
2322 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2323 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2324 return value_subscript_packed (elt, arity, ind);
2326 for (k = 0; k < arity; k += 1)
2328 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2329 error (_("too many subscripts (%d expected)"), k);
2330 elt = value_subscript (elt, pos_atr (ind[k]));
2335 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2336 value of the element of *ARR at the ARITY indices given in
2337 IND. Does not read the entire array into memory. */
2339 static struct value *
2340 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2345 for (k = 0; k < arity; k += 1)
2349 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2350 error (_("too many subscripts (%d expected)"), k);
2351 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2353 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2354 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2355 type = TYPE_TARGET_TYPE (type);
2358 return value_ind (arr);
2361 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2362 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2363 elements starting at index LOW. The lower bound of this array is LOW, as
2365 static struct value *
2366 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2369 CORE_ADDR base = value_as_address (array_ptr)
2370 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2371 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2372 struct type *index_type =
2373 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2375 struct type *slice_type =
2376 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2377 return value_at_lazy (slice_type, base);
2381 static struct value *
2382 ada_value_slice (struct value *array, int low, int high)
2384 struct type *type = value_type (array);
2385 struct type *index_type =
2386 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2387 struct type *slice_type =
2388 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2389 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2392 /* If type is a record type in the form of a standard GNAT array
2393 descriptor, returns the number of dimensions for type. If arr is a
2394 simple array, returns the number of "array of"s that prefix its
2395 type designation. Otherwise, returns 0. */
2398 ada_array_arity (struct type *type)
2405 type = desc_base_type (type);
2408 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2409 return desc_arity (desc_bounds_type (type));
2411 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2414 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2420 /* If TYPE is a record type in the form of a standard GNAT array
2421 descriptor or a simple array type, returns the element type for
2422 TYPE after indexing by NINDICES indices, or by all indices if
2423 NINDICES is -1. Otherwise, returns NULL. */
2426 ada_array_element_type (struct type *type, int nindices)
2428 type = desc_base_type (type);
2430 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2433 struct type *p_array_type;
2435 p_array_type = desc_data_target_type (type);
2437 k = ada_array_arity (type);
2441 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2442 if (nindices >= 0 && k > nindices)
2444 while (k > 0 && p_array_type != NULL)
2446 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2449 return p_array_type;
2451 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2453 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2455 type = TYPE_TARGET_TYPE (type);
2464 /* The type of nth index in arrays of given type (n numbering from 1).
2465 Does not examine memory. Throws an error if N is invalid or TYPE
2466 is not an array type. NAME is the name of the Ada attribute being
2467 evaluated ('range, 'first, 'last, or 'length); it is used in building
2468 the error message. */
2470 static struct type *
2471 ada_index_type (struct type *type, int n, const char *name)
2473 struct type *result_type;
2475 type = desc_base_type (type);
2477 if (n < 0 || n > ada_array_arity (type))
2478 error (_("invalid dimension number to '%s"), name);
2480 if (ada_is_simple_array_type (type))
2484 for (i = 1; i < n; i += 1)
2485 type = TYPE_TARGET_TYPE (type);
2486 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2487 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2488 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2489 perhaps stabsread.c would make more sense. */
2490 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2495 result_type = desc_index_type (desc_bounds_type (type), n);
2496 if (result_type == NULL)
2497 error (_("attempt to take bound of something that is not an array"));
2503 /* Given that arr is an array type, returns the lower bound of the
2504 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2505 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2506 array-descriptor type. It works for other arrays with bounds supplied
2507 by run-time quantities other than discriminants. */
2510 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2512 struct type *type, *elt_type, *index_type_desc, *index_type;
2515 gdb_assert (which == 0 || which == 1);
2517 if (ada_is_constrained_packed_array_type (arr_type))
2518 arr_type = decode_constrained_packed_array_type (arr_type);
2520 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2521 return (LONGEST) - which;
2523 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2524 type = TYPE_TARGET_TYPE (arr_type);
2529 for (i = n; i > 1; i--)
2530 elt_type = TYPE_TARGET_TYPE (type);
2532 index_type_desc = ada_find_parallel_type (type, "___XA");
2533 if (index_type_desc != NULL)
2534 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2535 NULL, TYPE_INDEX_TYPE (elt_type));
2537 index_type = TYPE_INDEX_TYPE (elt_type);
2540 (LONGEST) (which == 0
2541 ? ada_discrete_type_low_bound (index_type)
2542 : ada_discrete_type_high_bound (index_type));
2545 /* Given that arr is an array value, returns the lower bound of the
2546 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2547 WHICH is 1. This routine will also work for arrays with bounds
2548 supplied by run-time quantities other than discriminants. */
2551 ada_array_bound (struct value *arr, int n, int which)
2553 struct type *arr_type = value_type (arr);
2555 if (ada_is_constrained_packed_array_type (arr_type))
2556 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2557 else if (ada_is_simple_array_type (arr_type))
2558 return ada_array_bound_from_type (arr_type, n, which);
2560 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2563 /* Given that arr is an array value, returns the length of the
2564 nth index. This routine will also work for arrays with bounds
2565 supplied by run-time quantities other than discriminants.
2566 Does not work for arrays indexed by enumeration types with representation
2567 clauses at the moment. */
2570 ada_array_length (struct value *arr, int n)
2572 struct type *arr_type = ada_check_typedef (value_type (arr));
2574 if (ada_is_constrained_packed_array_type (arr_type))
2575 return ada_array_length (decode_constrained_packed_array (arr), n);
2577 if (ada_is_simple_array_type (arr_type))
2578 return (ada_array_bound_from_type (arr_type, n, 1)
2579 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2581 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2582 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2585 /* An empty array whose type is that of ARR_TYPE (an array type),
2586 with bounds LOW to LOW-1. */
2588 static struct value *
2589 empty_array (struct type *arr_type, int low)
2591 struct type *index_type =
2592 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2594 struct type *elt_type = ada_array_element_type (arr_type, 1);
2595 return allocate_value (create_array_type (NULL, elt_type, index_type));
2599 /* Name resolution */
2601 /* The "decoded" name for the user-definable Ada operator corresponding
2605 ada_decoded_op_name (enum exp_opcode op)
2609 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2611 if (ada_opname_table[i].op == op)
2612 return ada_opname_table[i].decoded;
2614 error (_("Could not find operator name for opcode"));
2618 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2619 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2620 undefined namespace) and converts operators that are
2621 user-defined into appropriate function calls. If CONTEXT_TYPE is
2622 non-null, it provides a preferred result type [at the moment, only
2623 type void has any effect---causing procedures to be preferred over
2624 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2625 return type is preferred. May change (expand) *EXP. */
2628 resolve (struct expression **expp, int void_context_p)
2630 struct type *context_type = NULL;
2634 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2636 resolve_subexp (expp, &pc, 1, context_type);
2639 /* Resolve the operator of the subexpression beginning at
2640 position *POS of *EXPP. "Resolving" consists of replacing
2641 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2642 with their resolutions, replacing built-in operators with
2643 function calls to user-defined operators, where appropriate, and,
2644 when DEPROCEDURE_P is non-zero, converting function-valued variables
2645 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2646 are as in ada_resolve, above. */
2648 static struct value *
2649 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2650 struct type *context_type)
2654 struct expression *exp; /* Convenience: == *expp. */
2655 enum exp_opcode op = (*expp)->elts[pc].opcode;
2656 struct value **argvec; /* Vector of operand types (alloca'ed). */
2657 int nargs; /* Number of operands. */
2664 /* Pass one: resolve operands, saving their types and updating *pos,
2669 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2670 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2675 resolve_subexp (expp, pos, 0, NULL);
2677 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2682 resolve_subexp (expp, pos, 0, NULL);
2687 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2690 case OP_ATR_MODULUS:
2700 case TERNOP_IN_RANGE:
2701 case BINOP_IN_BOUNDS:
2707 case OP_DISCRETE_RANGE:
2709 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2718 arg1 = resolve_subexp (expp, pos, 0, NULL);
2720 resolve_subexp (expp, pos, 1, NULL);
2722 resolve_subexp (expp, pos, 1, value_type (arg1));
2739 case BINOP_LOGICAL_AND:
2740 case BINOP_LOGICAL_OR:
2741 case BINOP_BITWISE_AND:
2742 case BINOP_BITWISE_IOR:
2743 case BINOP_BITWISE_XOR:
2746 case BINOP_NOTEQUAL:
2753 case BINOP_SUBSCRIPT:
2761 case UNOP_LOGICAL_NOT:
2777 case OP_INTERNALVAR:
2787 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2790 case STRUCTOP_STRUCT:
2791 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2804 error (_("Unexpected operator during name resolution"));
2807 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2808 for (i = 0; i < nargs; i += 1)
2809 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2813 /* Pass two: perform any resolution on principal operator. */
2820 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2822 struct ada_symbol_info *candidates;
2826 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2827 (exp->elts[pc + 2].symbol),
2828 exp->elts[pc + 1].block, VAR_DOMAIN,
2831 if (n_candidates > 1)
2833 /* Types tend to get re-introduced locally, so if there
2834 are any local symbols that are not types, first filter
2837 for (j = 0; j < n_candidates; j += 1)
2838 switch (SYMBOL_CLASS (candidates[j].sym))
2843 case LOC_REGPARM_ADDR:
2851 if (j < n_candidates)
2854 while (j < n_candidates)
2856 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2858 candidates[j] = candidates[n_candidates - 1];
2867 if (n_candidates == 0)
2868 error (_("No definition found for %s"),
2869 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2870 else if (n_candidates == 1)
2872 else if (deprocedure_p
2873 && !is_nonfunction (candidates, n_candidates))
2875 i = ada_resolve_function
2876 (candidates, n_candidates, NULL, 0,
2877 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2880 error (_("Could not find a match for %s"),
2881 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2885 printf_filtered (_("Multiple matches for %s\n"),
2886 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2887 user_select_syms (candidates, n_candidates, 1);
2891 exp->elts[pc + 1].block = candidates[i].block;
2892 exp->elts[pc + 2].symbol = candidates[i].sym;
2893 if (innermost_block == NULL
2894 || contained_in (candidates[i].block, innermost_block))
2895 innermost_block = candidates[i].block;
2899 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2902 replace_operator_with_call (expp, pc, 0, 0,
2903 exp->elts[pc + 2].symbol,
2904 exp->elts[pc + 1].block);
2911 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2912 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2914 struct ada_symbol_info *candidates;
2918 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2919 (exp->elts[pc + 5].symbol),
2920 exp->elts[pc + 4].block, VAR_DOMAIN,
2922 if (n_candidates == 1)
2926 i = ada_resolve_function
2927 (candidates, n_candidates,
2929 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2932 error (_("Could not find a match for %s"),
2933 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2936 exp->elts[pc + 4].block = candidates[i].block;
2937 exp->elts[pc + 5].symbol = candidates[i].sym;
2938 if (innermost_block == NULL
2939 || contained_in (candidates[i].block, innermost_block))
2940 innermost_block = candidates[i].block;
2951 case BINOP_BITWISE_AND:
2952 case BINOP_BITWISE_IOR:
2953 case BINOP_BITWISE_XOR:
2955 case BINOP_NOTEQUAL:
2963 case UNOP_LOGICAL_NOT:
2965 if (possible_user_operator_p (op, argvec))
2967 struct ada_symbol_info *candidates;
2971 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2972 (struct block *) NULL, VAR_DOMAIN,
2974 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2975 ada_decoded_op_name (op), NULL);
2979 replace_operator_with_call (expp, pc, nargs, 1,
2980 candidates[i].sym, candidates[i].block);
2991 return evaluate_subexp_type (exp, pos);
2994 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2995 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2997 /* The term "match" here is rather loose. The match is heuristic and
3001 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3003 ftype = ada_check_typedef (ftype);
3004 atype = ada_check_typedef (atype);
3006 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3007 ftype = TYPE_TARGET_TYPE (ftype);
3008 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3009 atype = TYPE_TARGET_TYPE (atype);
3011 switch (TYPE_CODE (ftype))
3014 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3016 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3017 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3018 TYPE_TARGET_TYPE (atype), 0);
3021 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3023 case TYPE_CODE_ENUM:
3024 case TYPE_CODE_RANGE:
3025 switch (TYPE_CODE (atype))
3028 case TYPE_CODE_ENUM:
3029 case TYPE_CODE_RANGE:
3035 case TYPE_CODE_ARRAY:
3036 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3037 || ada_is_array_descriptor_type (atype));
3039 case TYPE_CODE_STRUCT:
3040 if (ada_is_array_descriptor_type (ftype))
3041 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3042 || ada_is_array_descriptor_type (atype));
3044 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3045 && !ada_is_array_descriptor_type (atype));
3047 case TYPE_CODE_UNION:
3049 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3053 /* Return non-zero if the formals of FUNC "sufficiently match" the
3054 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3055 may also be an enumeral, in which case it is treated as a 0-
3056 argument function. */
3059 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3062 struct type *func_type = SYMBOL_TYPE (func);
3064 if (SYMBOL_CLASS (func) == LOC_CONST
3065 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3066 return (n_actuals == 0);
3067 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3070 if (TYPE_NFIELDS (func_type) != n_actuals)
3073 for (i = 0; i < n_actuals; i += 1)
3075 if (actuals[i] == NULL)
3079 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3080 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3082 if (!ada_type_match (ftype, atype, 1))
3089 /* False iff function type FUNC_TYPE definitely does not produce a value
3090 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3091 FUNC_TYPE is not a valid function type with a non-null return type
3092 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3095 return_match (struct type *func_type, struct type *context_type)
3097 struct type *return_type;
3099 if (func_type == NULL)
3102 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3103 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3105 return_type = base_type (func_type);
3106 if (return_type == NULL)
3109 context_type = base_type (context_type);
3111 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3112 return context_type == NULL || return_type == context_type;
3113 else if (context_type == NULL)
3114 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3116 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3120 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3121 function (if any) that matches the types of the NARGS arguments in
3122 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3123 that returns that type, then eliminate matches that don't. If
3124 CONTEXT_TYPE is void and there is at least one match that does not
3125 return void, eliminate all matches that do.
3127 Asks the user if there is more than one match remaining. Returns -1
3128 if there is no such symbol or none is selected. NAME is used
3129 solely for messages. May re-arrange and modify SYMS in
3130 the process; the index returned is for the modified vector. */
3133 ada_resolve_function (struct ada_symbol_info syms[],
3134 int nsyms, struct value **args, int nargs,
3135 const char *name, struct type *context_type)
3139 int m; /* Number of hits */
3142 /* In the first pass of the loop, we only accept functions matching
3143 context_type. If none are found, we add a second pass of the loop
3144 where every function is accepted. */
3145 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3147 for (k = 0; k < nsyms; k += 1)
3149 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3151 if (ada_args_match (syms[k].sym, args, nargs)
3152 && (fallback || return_match (type, context_type)))
3164 printf_filtered (_("Multiple matches for %s\n"), name);
3165 user_select_syms (syms, m, 1);
3171 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3172 in a listing of choices during disambiguation (see sort_choices, below).
3173 The idea is that overloadings of a subprogram name from the
3174 same package should sort in their source order. We settle for ordering
3175 such symbols by their trailing number (__N or $N). */
3178 encoded_ordered_before (char *N0, char *N1)
3182 else if (N0 == NULL)
3187 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3189 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3191 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3192 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3196 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3199 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3201 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3202 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3204 return (strcmp (N0, N1) < 0);
3208 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3212 sort_choices (struct ada_symbol_info syms[], int nsyms)
3215 for (i = 1; i < nsyms; i += 1)
3217 struct ada_symbol_info sym = syms[i];
3220 for (j = i - 1; j >= 0; j -= 1)
3222 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3223 SYMBOL_LINKAGE_NAME (sym.sym)))
3225 syms[j + 1] = syms[j];
3231 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3232 by asking the user (if necessary), returning the number selected,
3233 and setting the first elements of SYMS items. Error if no symbols
3236 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3237 to be re-integrated one of these days. */
3240 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3243 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3245 int first_choice = (max_results == 1) ? 1 : 2;
3246 const char *select_mode = multiple_symbols_select_mode ();
3248 if (max_results < 1)
3249 error (_("Request to select 0 symbols!"));
3253 if (select_mode == multiple_symbols_cancel)
3255 canceled because the command is ambiguous\n\
3256 See set/show multiple-symbol."));
3258 /* If select_mode is "all", then return all possible symbols.
3259 Only do that if more than one symbol can be selected, of course.
3260 Otherwise, display the menu as usual. */
3261 if (select_mode == multiple_symbols_all && max_results > 1)
3264 printf_unfiltered (_("[0] cancel\n"));
3265 if (max_results > 1)
3266 printf_unfiltered (_("[1] all\n"));
3268 sort_choices (syms, nsyms);
3270 for (i = 0; i < nsyms; i += 1)
3272 if (syms[i].sym == NULL)
3275 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3277 struct symtab_and_line sal =
3278 find_function_start_sal (syms[i].sym, 1);
3279 if (sal.symtab == NULL)
3280 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3282 SYMBOL_PRINT_NAME (syms[i].sym),
3285 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3286 SYMBOL_PRINT_NAME (syms[i].sym),
3287 sal.symtab->filename, sal.line);
3293 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3294 && SYMBOL_TYPE (syms[i].sym) != NULL
3295 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3296 struct symtab *symtab = syms[i].sym->symtab;
3298 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3299 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3301 SYMBOL_PRINT_NAME (syms[i].sym),
3302 symtab->filename, SYMBOL_LINE (syms[i].sym));
3303 else if (is_enumeral
3304 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3306 printf_unfiltered (("[%d] "), i + first_choice);
3307 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3309 printf_unfiltered (_("'(%s) (enumeral)\n"),
3310 SYMBOL_PRINT_NAME (syms[i].sym));
3312 else if (symtab != NULL)
3313 printf_unfiltered (is_enumeral
3314 ? _("[%d] %s in %s (enumeral)\n")
3315 : _("[%d] %s at %s:?\n"),
3317 SYMBOL_PRINT_NAME (syms[i].sym),
3320 printf_unfiltered (is_enumeral
3321 ? _("[%d] %s (enumeral)\n")
3322 : _("[%d] %s at ?\n"),
3324 SYMBOL_PRINT_NAME (syms[i].sym));
3328 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3331 for (i = 0; i < n_chosen; i += 1)
3332 syms[i] = syms[chosen[i]];
3337 /* Read and validate a set of numeric choices from the user in the
3338 range 0 .. N_CHOICES-1. Place the results in increasing
3339 order in CHOICES[0 .. N-1], and return N.
3341 The user types choices as a sequence of numbers on one line
3342 separated by blanks, encoding them as follows:
3344 + A choice of 0 means to cancel the selection, throwing an error.
3345 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3346 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3348 The user is not allowed to choose more than MAX_RESULTS values.
3350 ANNOTATION_SUFFIX, if present, is used to annotate the input
3351 prompts (for use with the -f switch). */
3354 get_selections (int *choices, int n_choices, int max_results,
3355 int is_all_choice, char *annotation_suffix)
3360 int first_choice = is_all_choice ? 2 : 1;
3362 prompt = getenv ("PS2");
3366 args = command_line_input (prompt, 0, annotation_suffix);
3369 error_no_arg (_("one or more choice numbers"));
3373 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3374 order, as given in args. Choices are validated. */
3380 while (isspace (*args))
3382 if (*args == '\0' && n_chosen == 0)
3383 error_no_arg (_("one or more choice numbers"));
3384 else if (*args == '\0')
3387 choice = strtol (args, &args2, 10);
3388 if (args == args2 || choice < 0
3389 || choice > n_choices + first_choice - 1)
3390 error (_("Argument must be choice number"));
3394 error (_("cancelled"));
3396 if (choice < first_choice)
3398 n_chosen = n_choices;
3399 for (j = 0; j < n_choices; j += 1)
3403 choice -= first_choice;
3405 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3409 if (j < 0 || choice != choices[j])
3412 for (k = n_chosen - 1; k > j; k -= 1)
3413 choices[k + 1] = choices[k];
3414 choices[j + 1] = choice;
3419 if (n_chosen > max_results)
3420 error (_("Select no more than %d of the above"), max_results);
3425 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3426 on the function identified by SYM and BLOCK, and taking NARGS
3427 arguments. Update *EXPP as needed to hold more space. */
3430 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3431 int oplen, struct symbol *sym,
3432 struct block *block)
3434 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3435 symbol, -oplen for operator being replaced). */
3436 struct expression *newexp = (struct expression *)
3437 xmalloc (sizeof (struct expression)
3438 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3439 struct expression *exp = *expp;
3441 newexp->nelts = exp->nelts + 7 - oplen;
3442 newexp->language_defn = exp->language_defn;
3443 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3444 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3445 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3447 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3448 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3450 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3451 newexp->elts[pc + 4].block = block;
3452 newexp->elts[pc + 5].symbol = sym;
3458 /* Type-class predicates */
3460 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3464 numeric_type_p (struct type *type)
3470 switch (TYPE_CODE (type))
3475 case TYPE_CODE_RANGE:
3476 return (type == TYPE_TARGET_TYPE (type)
3477 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3484 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3487 integer_type_p (struct type *type)
3493 switch (TYPE_CODE (type))
3497 case TYPE_CODE_RANGE:
3498 return (type == TYPE_TARGET_TYPE (type)
3499 || integer_type_p (TYPE_TARGET_TYPE (type)));
3506 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3509 scalar_type_p (struct type *type)
3515 switch (TYPE_CODE (type))
3518 case TYPE_CODE_RANGE:
3519 case TYPE_CODE_ENUM:
3528 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3531 discrete_type_p (struct type *type)
3537 switch (TYPE_CODE (type))
3540 case TYPE_CODE_RANGE:
3541 case TYPE_CODE_ENUM:
3542 case TYPE_CODE_BOOL:
3550 /* Returns non-zero if OP with operands in the vector ARGS could be
3551 a user-defined function. Errs on the side of pre-defined operators
3552 (i.e., result 0). */
3555 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3557 struct type *type0 =
3558 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3559 struct type *type1 =
3560 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3574 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3578 case BINOP_BITWISE_AND:
3579 case BINOP_BITWISE_IOR:
3580 case BINOP_BITWISE_XOR:
3581 return (!(integer_type_p (type0) && integer_type_p (type1)));
3584 case BINOP_NOTEQUAL:
3589 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3592 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3595 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3599 case UNOP_LOGICAL_NOT:
3601 return (!numeric_type_p (type0));
3610 1. In the following, we assume that a renaming type's name may
3611 have an ___XD suffix. It would be nice if this went away at some
3613 2. We handle both the (old) purely type-based representation of
3614 renamings and the (new) variable-based encoding. At some point,
3615 it is devoutly to be hoped that the former goes away
3616 (FIXME: hilfinger-2007-07-09).
3617 3. Subprogram renamings are not implemented, although the XRS
3618 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3620 /* If SYM encodes a renaming,
3622 <renaming> renames <renamed entity>,
3624 sets *LEN to the length of the renamed entity's name,
3625 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3626 the string describing the subcomponent selected from the renamed
3627 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3628 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3629 are undefined). Otherwise, returns a value indicating the category
3630 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3631 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3632 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3633 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3634 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3635 may be NULL, in which case they are not assigned.
3637 [Currently, however, GCC does not generate subprogram renamings.] */
3639 enum ada_renaming_category
3640 ada_parse_renaming (struct symbol *sym,
3641 const char **renamed_entity, int *len,
3642 const char **renaming_expr)
3644 enum ada_renaming_category kind;
3649 return ADA_NOT_RENAMING;
3650 switch (SYMBOL_CLASS (sym))
3653 return ADA_NOT_RENAMING;
3655 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3656 renamed_entity, len, renaming_expr);
3660 case LOC_OPTIMIZED_OUT:
3661 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3663 return ADA_NOT_RENAMING;
3667 kind = ADA_OBJECT_RENAMING;
3671 kind = ADA_EXCEPTION_RENAMING;
3675 kind = ADA_PACKAGE_RENAMING;
3679 kind = ADA_SUBPROGRAM_RENAMING;
3683 return ADA_NOT_RENAMING;
3687 if (renamed_entity != NULL)
3688 *renamed_entity = info;
3689 suffix = strstr (info, "___XE");
3690 if (suffix == NULL || suffix == info)
3691 return ADA_NOT_RENAMING;
3693 *len = strlen (info) - strlen (suffix);
3695 if (renaming_expr != NULL)
3696 *renaming_expr = suffix;
3700 /* Assuming TYPE encodes a renaming according to the old encoding in
3701 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3702 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3703 ADA_NOT_RENAMING otherwise. */
3704 static enum ada_renaming_category
3705 parse_old_style_renaming (struct type *type,
3706 const char **renamed_entity, int *len,
3707 const char **renaming_expr)
3709 enum ada_renaming_category kind;
3714 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3715 || TYPE_NFIELDS (type) != 1)
3716 return ADA_NOT_RENAMING;
3718 name = type_name_no_tag (type);
3720 return ADA_NOT_RENAMING;
3722 name = strstr (name, "___XR");
3724 return ADA_NOT_RENAMING;
3729 kind = ADA_OBJECT_RENAMING;
3732 kind = ADA_EXCEPTION_RENAMING;
3735 kind = ADA_PACKAGE_RENAMING;
3738 kind = ADA_SUBPROGRAM_RENAMING;
3741 return ADA_NOT_RENAMING;
3744 info = TYPE_FIELD_NAME (type, 0);
3746 return ADA_NOT_RENAMING;
3747 if (renamed_entity != NULL)
3748 *renamed_entity = info;
3749 suffix = strstr (info, "___XE");
3750 if (renaming_expr != NULL)
3751 *renaming_expr = suffix + 5;
3752 if (suffix == NULL || suffix == info)
3753 return ADA_NOT_RENAMING;
3755 *len = suffix - info;
3761 /* Evaluation: Function Calls */
3763 /* Return an lvalue containing the value VAL. This is the identity on
3764 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3765 on the stack, using and updating *SP as the stack pointer, and
3766 returning an lvalue whose value_address points to the copy. */
3768 static struct value *
3769 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3771 if (! VALUE_LVAL (val))
3773 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3775 /* The following is taken from the structure-return code in
3776 call_function_by_hand. FIXME: Therefore, some refactoring seems
3778 if (gdbarch_inner_than (gdbarch, 1, 2))
3780 /* Stack grows downward. Align SP and value_address (val) after
3781 reserving sufficient space. */
3783 if (gdbarch_frame_align_p (gdbarch))
3784 *sp = gdbarch_frame_align (gdbarch, *sp);
3785 set_value_address (val, *sp);
3789 /* Stack grows upward. Align the frame, allocate space, and
3790 then again, re-align the frame. */
3791 if (gdbarch_frame_align_p (gdbarch))
3792 *sp = gdbarch_frame_align (gdbarch, *sp);
3793 set_value_address (val, *sp);
3795 if (gdbarch_frame_align_p (gdbarch))
3796 *sp = gdbarch_frame_align (gdbarch, *sp);
3798 VALUE_LVAL (val) = lval_memory;
3800 write_memory (value_address (val), value_contents_raw (val), len);
3806 /* Return the value ACTUAL, converted to be an appropriate value for a
3807 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3808 allocating any necessary descriptors (fat pointers), or copies of
3809 values not residing in memory, updating it as needed. */
3812 ada_convert_actual (struct value *actual, struct type *formal_type0,
3813 struct gdbarch *gdbarch, CORE_ADDR *sp)
3815 struct type *actual_type = ada_check_typedef (value_type (actual));
3816 struct type *formal_type = ada_check_typedef (formal_type0);
3817 struct type *formal_target =
3818 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3819 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3820 struct type *actual_target =
3821 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3822 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3824 if (ada_is_array_descriptor_type (formal_target)
3825 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3826 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3827 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3828 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3830 struct value *result;
3831 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3832 && ada_is_array_descriptor_type (actual_target))
3833 result = desc_data (actual);
3834 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3836 if (VALUE_LVAL (actual) != lval_memory)
3839 actual_type = ada_check_typedef (value_type (actual));
3840 val = allocate_value (actual_type);
3841 memcpy ((char *) value_contents_raw (val),
3842 (char *) value_contents (actual),
3843 TYPE_LENGTH (actual_type));
3844 actual = ensure_lval (val, gdbarch, sp);
3846 result = value_addr (actual);
3850 return value_cast_pointers (formal_type, result);
3852 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3853 return ada_value_ind (actual);
3858 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3859 type TYPE. This is usually an inefficient no-op except on some targets
3860 (such as AVR) where the representation of a pointer and an address
3864 value_pointer (struct value *value, struct type *type)
3866 struct gdbarch *gdbarch = get_type_arch (type);
3867 unsigned len = TYPE_LENGTH (type);
3868 gdb_byte *buf = alloca (len);
3871 addr = value_address (value);
3872 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
3873 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
3878 /* Push a descriptor of type TYPE for array value ARR on the stack at
3879 *SP, updating *SP to reflect the new descriptor. Return either
3880 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3881 to-descriptor type rather than a descriptor type), a struct value *
3882 representing a pointer to this descriptor. */
3884 static struct value *
3885 make_array_descriptor (struct type *type, struct value *arr,
3886 struct gdbarch *gdbarch, CORE_ADDR *sp)
3888 struct type *bounds_type = desc_bounds_type (type);
3889 struct type *desc_type = desc_base_type (type);
3890 struct value *descriptor = allocate_value (desc_type);
3891 struct value *bounds = allocate_value (bounds_type);
3894 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3896 modify_general_field (value_type (bounds),
3897 value_contents_writeable (bounds),
3898 ada_array_bound (arr, i, 0),
3899 desc_bound_bitpos (bounds_type, i, 0),
3900 desc_bound_bitsize (bounds_type, i, 0));
3901 modify_general_field (value_type (bounds),
3902 value_contents_writeable (bounds),
3903 ada_array_bound (arr, i, 1),
3904 desc_bound_bitpos (bounds_type, i, 1),
3905 desc_bound_bitsize (bounds_type, i, 1));
3908 bounds = ensure_lval (bounds, gdbarch, sp);
3910 modify_general_field (value_type (descriptor),
3911 value_contents_writeable (descriptor),
3912 value_pointer (ensure_lval (arr, gdbarch, sp),
3913 TYPE_FIELD_TYPE (desc_type, 0)),
3914 fat_pntr_data_bitpos (desc_type),
3915 fat_pntr_data_bitsize (desc_type));
3917 modify_general_field (value_type (descriptor),
3918 value_contents_writeable (descriptor),
3919 value_pointer (bounds,
3920 TYPE_FIELD_TYPE (desc_type, 1)),
3921 fat_pntr_bounds_bitpos (desc_type),
3922 fat_pntr_bounds_bitsize (desc_type));
3924 descriptor = ensure_lval (descriptor, gdbarch, sp);
3926 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3927 return value_addr (descriptor);
3932 /* Dummy definitions for an experimental caching module that is not
3933 * used in the public sources. */
3936 lookup_cached_symbol (const char *name, domain_enum namespace,
3937 struct symbol **sym, struct block **block)
3943 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3944 struct block *block)
3950 /* Return the result of a standard (literal, C-like) lookup of NAME in
3951 given DOMAIN, visible from lexical block BLOCK. */
3953 static struct symbol *
3954 standard_lookup (const char *name, const struct block *block,
3959 if (lookup_cached_symbol (name, domain, &sym, NULL))
3961 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3962 cache_symbol (name, domain, sym, block_found);
3967 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3968 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3969 since they contend in overloading in the same way. */
3971 is_nonfunction (struct ada_symbol_info syms[], int n)
3975 for (i = 0; i < n; i += 1)
3976 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3977 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3978 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3984 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3985 struct types. Otherwise, they may not. */
3988 equiv_types (struct type *type0, struct type *type1)
3992 if (type0 == NULL || type1 == NULL
3993 || TYPE_CODE (type0) != TYPE_CODE (type1))
3995 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3996 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3997 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3998 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4004 /* True iff SYM0 represents the same entity as SYM1, or one that is
4005 no more defined than that of SYM1. */
4008 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4012 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4013 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4016 switch (SYMBOL_CLASS (sym0))
4022 struct type *type0 = SYMBOL_TYPE (sym0);
4023 struct type *type1 = SYMBOL_TYPE (sym1);
4024 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4025 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4026 int len0 = strlen (name0);
4028 TYPE_CODE (type0) == TYPE_CODE (type1)
4029 && (equiv_types (type0, type1)
4030 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4031 && strncmp (name1 + len0, "___XV", 5) == 0));
4034 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4035 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4041 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4042 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4045 add_defn_to_vec (struct obstack *obstackp,
4047 struct block *block)
4050 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4052 /* Do not try to complete stub types, as the debugger is probably
4053 already scanning all symbols matching a certain name at the
4054 time when this function is called. Trying to replace the stub
4055 type by its associated full type will cause us to restart a scan
4056 which may lead to an infinite recursion. Instead, the client
4057 collecting the matching symbols will end up collecting several
4058 matches, with at least one of them complete. It can then filter
4059 out the stub ones if needed. */
4061 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4063 if (lesseq_defined_than (sym, prevDefns[i].sym))
4065 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4067 prevDefns[i].sym = sym;
4068 prevDefns[i].block = block;
4074 struct ada_symbol_info info;
4078 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4082 /* Number of ada_symbol_info structures currently collected in
4083 current vector in *OBSTACKP. */
4086 num_defns_collected (struct obstack *obstackp)
4088 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4091 /* Vector of ada_symbol_info structures currently collected in current
4092 vector in *OBSTACKP. If FINISH, close off the vector and return
4093 its final address. */
4095 static struct ada_symbol_info *
4096 defns_collected (struct obstack *obstackp, int finish)
4099 return obstack_finish (obstackp);
4101 return (struct ada_symbol_info *) obstack_base (obstackp);
4104 /* Return a minimal symbol matching NAME according to Ada decoding
4105 rules. Returns NULL if there is no such minimal symbol. Names
4106 prefixed with "standard__" are handled specially: "standard__" is
4107 first stripped off, and only static and global symbols are searched. */
4109 struct minimal_symbol *
4110 ada_lookup_simple_minsym (const char *name)
4112 struct objfile *objfile;
4113 struct minimal_symbol *msymbol;
4116 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4118 name += sizeof ("standard__") - 1;
4122 wild_match = (strstr (name, "__") == NULL);
4124 ALL_MSYMBOLS (objfile, msymbol)
4126 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4127 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4134 /* For all subprograms that statically enclose the subprogram of the
4135 selected frame, add symbols matching identifier NAME in DOMAIN
4136 and their blocks to the list of data in OBSTACKP, as for
4137 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4141 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4142 const char *name, domain_enum namespace,
4147 /* True if TYPE is definitely an artificial type supplied to a symbol
4148 for which no debugging information was given in the symbol file. */
4151 is_nondebugging_type (struct type *type)
4153 char *name = ada_type_name (type);
4154 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4157 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4158 duplicate other symbols in the list (The only case I know of where
4159 this happens is when object files containing stabs-in-ecoff are
4160 linked with files containing ordinary ecoff debugging symbols (or no
4161 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4162 Returns the number of items in the modified list. */
4165 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4174 /* If two symbols have the same name and one of them is a stub type,
4175 the get rid of the stub. */
4177 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4178 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4180 for (j = 0; j < nsyms; j++)
4183 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4184 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4185 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4186 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4191 /* Two symbols with the same name, same class and same address
4192 should be identical. */
4194 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4195 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4196 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4198 for (j = 0; j < nsyms; j += 1)
4201 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4202 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4203 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4204 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4205 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4206 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4213 for (j = i + 1; j < nsyms; j += 1)
4214 syms[j - 1] = syms[j];
4223 /* Given a type that corresponds to a renaming entity, use the type name
4224 to extract the scope (package name or function name, fully qualified,
4225 and following the GNAT encoding convention) where this renaming has been
4226 defined. The string returned needs to be deallocated after use. */
4229 xget_renaming_scope (struct type *renaming_type)
4231 /* The renaming types adhere to the following convention:
4232 <scope>__<rename>___<XR extension>.
4233 So, to extract the scope, we search for the "___XR" extension,
4234 and then backtrack until we find the first "__". */
4236 const char *name = type_name_no_tag (renaming_type);
4237 char *suffix = strstr (name, "___XR");
4242 /* Now, backtrack a bit until we find the first "__". Start looking
4243 at suffix - 3, as the <rename> part is at least one character long. */
4245 for (last = suffix - 3; last > name; last--)
4246 if (last[0] == '_' && last[1] == '_')
4249 /* Make a copy of scope and return it. */
4251 scope_len = last - name;
4252 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4254 strncpy (scope, name, scope_len);
4255 scope[scope_len] = '\0';
4260 /* Return nonzero if NAME corresponds to a package name. */
4263 is_package_name (const char *name)
4265 /* Here, We take advantage of the fact that no symbols are generated
4266 for packages, while symbols are generated for each function.
4267 So the condition for NAME represent a package becomes equivalent
4268 to NAME not existing in our list of symbols. There is only one
4269 small complication with library-level functions (see below). */
4273 /* If it is a function that has not been defined at library level,
4274 then we should be able to look it up in the symbols. */
4275 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4278 /* Library-level function names start with "_ada_". See if function
4279 "_ada_" followed by NAME can be found. */
4281 /* Do a quick check that NAME does not contain "__", since library-level
4282 functions names cannot contain "__" in them. */
4283 if (strstr (name, "__") != NULL)
4286 fun_name = xstrprintf ("_ada_%s", name);
4288 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4291 /* Return nonzero if SYM corresponds to a renaming entity that is
4292 not visible from FUNCTION_NAME. */
4295 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4299 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4302 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4304 make_cleanup (xfree, scope);
4306 /* If the rename has been defined in a package, then it is visible. */
4307 if (is_package_name (scope))
4310 /* Check that the rename is in the current function scope by checking
4311 that its name starts with SCOPE. */
4313 /* If the function name starts with "_ada_", it means that it is
4314 a library-level function. Strip this prefix before doing the
4315 comparison, as the encoding for the renaming does not contain
4317 if (strncmp (function_name, "_ada_", 5) == 0)
4320 return (strncmp (function_name, scope, strlen (scope)) != 0);
4323 /* Remove entries from SYMS that corresponds to a renaming entity that
4324 is not visible from the function associated with CURRENT_BLOCK or
4325 that is superfluous due to the presence of more specific renaming
4326 information. Places surviving symbols in the initial entries of
4327 SYMS and returns the number of surviving symbols.
4330 First, in cases where an object renaming is implemented as a
4331 reference variable, GNAT may produce both the actual reference
4332 variable and the renaming encoding. In this case, we discard the
4335 Second, GNAT emits a type following a specified encoding for each renaming
4336 entity. Unfortunately, STABS currently does not support the definition
4337 of types that are local to a given lexical block, so all renamings types
4338 are emitted at library level. As a consequence, if an application
4339 contains two renaming entities using the same name, and a user tries to
4340 print the value of one of these entities, the result of the ada symbol
4341 lookup will also contain the wrong renaming type.
4343 This function partially covers for this limitation by attempting to
4344 remove from the SYMS list renaming symbols that should be visible
4345 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4346 method with the current information available. The implementation
4347 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4349 - When the user tries to print a rename in a function while there
4350 is another rename entity defined in a package: Normally, the
4351 rename in the function has precedence over the rename in the
4352 package, so the latter should be removed from the list. This is
4353 currently not the case.
4355 - This function will incorrectly remove valid renames if
4356 the CURRENT_BLOCK corresponds to a function which symbol name
4357 has been changed by an "Export" pragma. As a consequence,
4358 the user will be unable to print such rename entities. */
4361 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4362 int nsyms, const struct block *current_block)
4364 struct symbol *current_function;
4365 char *current_function_name;
4367 int is_new_style_renaming;
4369 /* If there is both a renaming foo___XR... encoded as a variable and
4370 a simple variable foo in the same block, discard the latter.
4371 First, zero out such symbols, then compress. */
4372 is_new_style_renaming = 0;
4373 for (i = 0; i < nsyms; i += 1)
4375 struct symbol *sym = syms[i].sym;
4376 struct block *block = syms[i].block;
4380 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4382 name = SYMBOL_LINKAGE_NAME (sym);
4383 suffix = strstr (name, "___XR");
4387 int name_len = suffix - name;
4389 is_new_style_renaming = 1;
4390 for (j = 0; j < nsyms; j += 1)
4391 if (i != j && syms[j].sym != NULL
4392 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4394 && block == syms[j].block)
4398 if (is_new_style_renaming)
4402 for (j = k = 0; j < nsyms; j += 1)
4403 if (syms[j].sym != NULL)
4411 /* Extract the function name associated to CURRENT_BLOCK.
4412 Abort if unable to do so. */
4414 if (current_block == NULL)
4417 current_function = block_linkage_function (current_block);
4418 if (current_function == NULL)
4421 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4422 if (current_function_name == NULL)
4425 /* Check each of the symbols, and remove it from the list if it is
4426 a type corresponding to a renaming that is out of the scope of
4427 the current block. */
4432 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4433 == ADA_OBJECT_RENAMING
4434 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4437 for (j = i + 1; j < nsyms; j += 1)
4438 syms[j - 1] = syms[j];
4448 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4449 whose name and domain match NAME and DOMAIN respectively.
4450 If no match was found, then extend the search to "enclosing"
4451 routines (in other words, if we're inside a nested function,
4452 search the symbols defined inside the enclosing functions).
4454 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4457 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4458 struct block *block, domain_enum domain,
4461 int block_depth = 0;
4463 while (block != NULL)
4466 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4468 /* If we found a non-function match, assume that's the one. */
4469 if (is_nonfunction (defns_collected (obstackp, 0),
4470 num_defns_collected (obstackp)))
4473 block = BLOCK_SUPERBLOCK (block);
4476 /* If no luck so far, try to find NAME as a local symbol in some lexically
4477 enclosing subprogram. */
4478 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4479 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4482 /* An object of this type is used as the user_data argument when
4483 calling the map_ada_symtabs method. */
4485 struct ada_psym_data
4487 struct obstack *obstackp;
4494 /* Callback function for map_ada_symtabs. */
4497 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4499 struct ada_psym_data *data = user_data;
4500 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4501 ada_add_block_symbols (data->obstackp,
4502 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4503 data->name, data->domain, objfile, data->wild_match);
4506 /* Add to OBSTACKP all non-local symbols whose name and domain match
4507 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4508 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4511 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4512 domain_enum domain, int global,
4515 struct objfile *objfile;
4516 struct ada_psym_data data;
4518 data.obstackp = obstackp;
4520 data.domain = domain;
4521 data.global = global;
4522 data.wild_match = is_wild_match;
4524 ALL_OBJFILES (objfile)
4527 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4528 ada_add_psyms, name,
4530 is_wild_match, &data);
4534 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4535 scope and in global scopes, returning the number of matches. Sets
4536 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4537 indicating the symbols found and the blocks and symbol tables (if
4538 any) in which they were found. This vector are transient---good only to
4539 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4540 symbol match within the nest of blocks whose innermost member is BLOCK0,
4541 is the one match returned (no other matches in that or
4542 enclosing blocks is returned). If there are any matches in or
4543 surrounding BLOCK0, then these alone are returned. Otherwise, the
4544 search extends to global and file-scope (static) symbol tables.
4545 Names prefixed with "standard__" are handled specially: "standard__"
4546 is first stripped off, and only static and global symbols are searched. */
4549 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4550 domain_enum namespace,
4551 struct ada_symbol_info **results)
4554 struct block *block;
4560 obstack_free (&symbol_list_obstack, NULL);
4561 obstack_init (&symbol_list_obstack);
4565 /* Search specified block and its superiors. */
4567 wild_match = (strstr (name0, "__") == NULL);
4569 block = (struct block *) block0; /* FIXME: No cast ought to be
4570 needed, but adding const will
4571 have a cascade effect. */
4573 /* Special case: If the user specifies a symbol name inside package
4574 Standard, do a non-wild matching of the symbol name without
4575 the "standard__" prefix. This was primarily introduced in order
4576 to allow the user to specifically access the standard exceptions
4577 using, for instance, Standard.Constraint_Error when Constraint_Error
4578 is ambiguous (due to the user defining its own Constraint_Error
4579 entity inside its program). */
4580 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4584 name = name0 + sizeof ("standard__") - 1;
4587 /* Check the non-global symbols. If we have ANY match, then we're done. */
4589 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4591 if (num_defns_collected (&symbol_list_obstack) > 0)
4594 /* No non-global symbols found. Check our cache to see if we have
4595 already performed this search before. If we have, then return
4599 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4602 add_defn_to_vec (&symbol_list_obstack, sym, block);
4606 /* Search symbols from all global blocks. */
4608 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4611 /* Now add symbols from all per-file blocks if we've gotten no hits
4612 (not strictly correct, but perhaps better than an error). */
4614 if (num_defns_collected (&symbol_list_obstack) == 0)
4615 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4619 ndefns = num_defns_collected (&symbol_list_obstack);
4620 *results = defns_collected (&symbol_list_obstack, 1);
4622 ndefns = remove_extra_symbols (*results, ndefns);
4625 cache_symbol (name0, namespace, NULL, NULL);
4627 if (ndefns == 1 && cacheIfUnique)
4628 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4630 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4636 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4637 domain_enum namespace, struct block **block_found)
4639 struct ada_symbol_info *candidates;
4642 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4644 if (n_candidates == 0)
4647 if (block_found != NULL)
4648 *block_found = candidates[0].block;
4650 return fixup_symbol_section (candidates[0].sym, NULL);
4653 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4654 scope and in global scopes, or NULL if none. NAME is folded and
4655 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4656 choosing the first symbol if there are multiple choices.
4657 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4658 table in which the symbol was found (in both cases, these
4659 assignments occur only if the pointers are non-null). */
4661 ada_lookup_symbol (const char *name, const struct block *block0,
4662 domain_enum namespace, int *is_a_field_of_this)
4664 if (is_a_field_of_this != NULL)
4665 *is_a_field_of_this = 0;
4668 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4669 block0, namespace, NULL);
4672 static struct symbol *
4673 ada_lookup_symbol_nonlocal (const char *name,
4674 const struct block *block,
4675 const domain_enum domain)
4677 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4681 /* True iff STR is a possible encoded suffix of a normal Ada name
4682 that is to be ignored for matching purposes. Suffixes of parallel
4683 names (e.g., XVE) are not included here. Currently, the possible suffixes
4684 are given by any of the regular expressions:
4686 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4687 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4688 _E[0-9]+[bs]$ [protected object entry suffixes]
4689 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4691 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4692 match is performed. This sequence is used to differentiate homonyms,
4693 is an optional part of a valid name suffix. */
4696 is_name_suffix (const char *str)
4699 const char *matching;
4700 const int len = strlen (str);
4702 /* Skip optional leading __[0-9]+. */
4704 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4707 while (isdigit (str[0]))
4713 if (str[0] == '.' || str[0] == '$')
4716 while (isdigit (matching[0]))
4718 if (matching[0] == '\0')
4724 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4727 while (isdigit (matching[0]))
4729 if (matching[0] == '\0')
4734 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4735 with a N at the end. Unfortunately, the compiler uses the same
4736 convention for other internal types it creates. So treating
4737 all entity names that end with an "N" as a name suffix causes
4738 some regressions. For instance, consider the case of an enumerated
4739 type. To support the 'Image attribute, it creates an array whose
4741 Having a single character like this as a suffix carrying some
4742 information is a bit risky. Perhaps we should change the encoding
4743 to be something like "_N" instead. In the meantime, do not do
4744 the following check. */
4745 /* Protected Object Subprograms */
4746 if (len == 1 && str [0] == 'N')
4751 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4754 while (isdigit (matching[0]))
4756 if ((matching[0] == 'b' || matching[0] == 's')
4757 && matching [1] == '\0')
4761 /* ??? We should not modify STR directly, as we are doing below. This
4762 is fine in this case, but may become problematic later if we find
4763 that this alternative did not work, and want to try matching
4764 another one from the begining of STR. Since we modified it, we
4765 won't be able to find the begining of the string anymore! */
4769 while (str[0] != '_' && str[0] != '\0')
4771 if (str[0] != 'n' && str[0] != 'b')
4777 if (str[0] == '\000')
4782 if (str[1] != '_' || str[2] == '\000')
4786 if (strcmp (str + 3, "JM") == 0)
4788 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4789 the LJM suffix in favor of the JM one. But we will
4790 still accept LJM as a valid suffix for a reasonable
4791 amount of time, just to allow ourselves to debug programs
4792 compiled using an older version of GNAT. */
4793 if (strcmp (str + 3, "LJM") == 0)
4797 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4798 || str[4] == 'U' || str[4] == 'P')
4800 if (str[4] == 'R' && str[5] != 'T')
4804 if (!isdigit (str[2]))
4806 for (k = 3; str[k] != '\0'; k += 1)
4807 if (!isdigit (str[k]) && str[k] != '_')
4811 if (str[0] == '$' && isdigit (str[1]))
4813 for (k = 2; str[k] != '\0'; k += 1)
4814 if (!isdigit (str[k]) && str[k] != '_')
4821 /* Return non-zero if the string starting at NAME and ending before
4822 NAME_END contains no capital letters. */
4825 is_valid_name_for_wild_match (const char *name0)
4827 const char *decoded_name = ada_decode (name0);
4830 /* If the decoded name starts with an angle bracket, it means that
4831 NAME0 does not follow the GNAT encoding format. It should then
4832 not be allowed as a possible wild match. */
4833 if (decoded_name[0] == '<')
4836 for (i=0; decoded_name[i] != '\0'; i++)
4837 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4843 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4844 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4845 informational suffixes of NAME (i.e., for which is_name_suffix is
4849 wild_match (const char *patn0, int patn_len, const char *name0)
4856 match = strstr (start, patn0);
4861 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4862 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4863 && is_name_suffix (match + patn_len))
4864 return (match == name0 || is_valid_name_for_wild_match (name0));
4869 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4870 vector *defn_symbols, updating the list of symbols in OBSTACKP
4871 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4872 OBJFILE is the section containing BLOCK.
4873 SYMTAB is recorded with each symbol added. */
4876 ada_add_block_symbols (struct obstack *obstackp,
4877 struct block *block, const char *name,
4878 domain_enum domain, struct objfile *objfile,
4881 struct dict_iterator iter;
4882 int name_len = strlen (name);
4883 /* A matching argument symbol, if any. */
4884 struct symbol *arg_sym;
4885 /* Set true when we find a matching non-argument symbol. */
4894 ALL_BLOCK_SYMBOLS (block, iter, sym)
4896 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4897 SYMBOL_DOMAIN (sym), domain)
4898 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4900 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4902 else if (SYMBOL_IS_ARGUMENT (sym))
4907 add_defn_to_vec (obstackp,
4908 fixup_symbol_section (sym, objfile),
4916 ALL_BLOCK_SYMBOLS (block, iter, sym)
4918 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4919 SYMBOL_DOMAIN (sym), domain))
4921 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4923 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4925 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4927 if (SYMBOL_IS_ARGUMENT (sym))
4932 add_defn_to_vec (obstackp,
4933 fixup_symbol_section (sym, objfile),
4942 if (!found_sym && arg_sym != NULL)
4944 add_defn_to_vec (obstackp,
4945 fixup_symbol_section (arg_sym, objfile),
4954 ALL_BLOCK_SYMBOLS (block, iter, sym)
4956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4957 SYMBOL_DOMAIN (sym), domain))
4961 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4964 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4966 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4971 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4973 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4975 if (SYMBOL_IS_ARGUMENT (sym))
4980 add_defn_to_vec (obstackp,
4981 fixup_symbol_section (sym, objfile),
4989 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4990 They aren't parameters, right? */
4991 if (!found_sym && arg_sym != NULL)
4993 add_defn_to_vec (obstackp,
4994 fixup_symbol_section (arg_sym, objfile),
5001 /* Symbol Completion */
5003 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5004 name in a form that's appropriate for the completion. The result
5005 does not need to be deallocated, but is only good until the next call.
5007 TEXT_LEN is equal to the length of TEXT.
5008 Perform a wild match if WILD_MATCH is set.
5009 ENCODED should be set if TEXT represents the start of a symbol name
5010 in its encoded form. */
5013 symbol_completion_match (const char *sym_name,
5014 const char *text, int text_len,
5015 int wild_match, int encoded)
5017 const int verbatim_match = (text[0] == '<');
5022 /* Strip the leading angle bracket. */
5027 /* First, test against the fully qualified name of the symbol. */
5029 if (strncmp (sym_name, text, text_len) == 0)
5032 if (match && !encoded)
5034 /* One needed check before declaring a positive match is to verify
5035 that iff we are doing a verbatim match, the decoded version
5036 of the symbol name starts with '<'. Otherwise, this symbol name
5037 is not a suitable completion. */
5038 const char *sym_name_copy = sym_name;
5039 int has_angle_bracket;
5041 sym_name = ada_decode (sym_name);
5042 has_angle_bracket = (sym_name[0] == '<');
5043 match = (has_angle_bracket == verbatim_match);
5044 sym_name = sym_name_copy;
5047 if (match && !verbatim_match)
5049 /* When doing non-verbatim match, another check that needs to
5050 be done is to verify that the potentially matching symbol name
5051 does not include capital letters, because the ada-mode would
5052 not be able to understand these symbol names without the
5053 angle bracket notation. */
5056 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5061 /* Second: Try wild matching... */
5063 if (!match && wild_match)
5065 /* Since we are doing wild matching, this means that TEXT
5066 may represent an unqualified symbol name. We therefore must
5067 also compare TEXT against the unqualified name of the symbol. */
5068 sym_name = ada_unqualified_name (ada_decode (sym_name));
5070 if (strncmp (sym_name, text, text_len) == 0)
5074 /* Finally: If we found a mach, prepare the result to return. */
5080 sym_name = add_angle_brackets (sym_name);
5083 sym_name = ada_decode (sym_name);
5088 DEF_VEC_P (char_ptr);
5090 /* A companion function to ada_make_symbol_completion_list().
5091 Check if SYM_NAME represents a symbol which name would be suitable
5092 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5093 it is appended at the end of the given string vector SV.
5095 ORIG_TEXT is the string original string from the user command
5096 that needs to be completed. WORD is the entire command on which
5097 completion should be performed. These two parameters are used to
5098 determine which part of the symbol name should be added to the
5100 if WILD_MATCH is set, then wild matching is performed.
5101 ENCODED should be set if TEXT represents a symbol name in its
5102 encoded formed (in which case the completion should also be
5106 symbol_completion_add (VEC(char_ptr) **sv,
5107 const char *sym_name,
5108 const char *text, int text_len,
5109 const char *orig_text, const char *word,
5110 int wild_match, int encoded)
5112 const char *match = symbol_completion_match (sym_name, text, text_len,
5113 wild_match, encoded);
5119 /* We found a match, so add the appropriate completion to the given
5122 if (word == orig_text)
5124 completion = xmalloc (strlen (match) + 5);
5125 strcpy (completion, match);
5127 else if (word > orig_text)
5129 /* Return some portion of sym_name. */
5130 completion = xmalloc (strlen (match) + 5);
5131 strcpy (completion, match + (word - orig_text));
5135 /* Return some of ORIG_TEXT plus sym_name. */
5136 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5137 strncpy (completion, word, orig_text - word);
5138 completion[orig_text - word] = '\0';
5139 strcat (completion, match);
5142 VEC_safe_push (char_ptr, *sv, completion);
5145 /* An object of this type is passed as the user_data argument to the
5146 map_partial_symbol_names method. */
5147 struct add_partial_datum
5149 VEC(char_ptr) **completions;
5158 /* A callback for map_partial_symbol_names. */
5160 ada_add_partial_symbol_completions (const char *name, void *user_data)
5162 struct add_partial_datum *data = user_data;
5163 symbol_completion_add (data->completions, name,
5164 data->text, data->text_len, data->text0, data->word,
5165 data->wild_match, data->encoded);
5168 /* Return a list of possible symbol names completing TEXT0. The list
5169 is NULL terminated. WORD is the entire command on which completion
5173 ada_make_symbol_completion_list (char *text0, char *word)
5179 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5182 struct minimal_symbol *msymbol;
5183 struct objfile *objfile;
5184 struct block *b, *surrounding_static_block = 0;
5186 struct dict_iterator iter;
5188 if (text0[0] == '<')
5190 text = xstrdup (text0);
5191 make_cleanup (xfree, text);
5192 text_len = strlen (text);
5198 text = xstrdup (ada_encode (text0));
5199 make_cleanup (xfree, text);
5200 text_len = strlen (text);
5201 for (i = 0; i < text_len; i++)
5202 text[i] = tolower (text[i]);
5204 encoded = (strstr (text0, "__") != NULL);
5205 /* If the name contains a ".", then the user is entering a fully
5206 qualified entity name, and the match must not be done in wild
5207 mode. Similarly, if the user wants to complete what looks like
5208 an encoded name, the match must not be done in wild mode. */
5209 wild_match = (strchr (text0, '.') == NULL && !encoded);
5212 /* First, look at the partial symtab symbols. */
5214 struct add_partial_datum data;
5216 data.completions = &completions;
5218 data.text_len = text_len;
5221 data.wild_match = wild_match;
5222 data.encoded = encoded;
5223 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5226 /* At this point scan through the misc symbol vectors and add each
5227 symbol you find to the list. Eventually we want to ignore
5228 anything that isn't a text symbol (everything else will be
5229 handled by the psymtab code above). */
5231 ALL_MSYMBOLS (objfile, msymbol)
5234 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5235 text, text_len, text0, word, wild_match, encoded);
5238 /* Search upwards from currently selected frame (so that we can
5239 complete on local vars. */
5241 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5243 if (!BLOCK_SUPERBLOCK (b))
5244 surrounding_static_block = b; /* For elmin of dups */
5246 ALL_BLOCK_SYMBOLS (b, iter, sym)
5248 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5249 text, text_len, text0, word,
5250 wild_match, encoded);
5254 /* Go through the symtabs and check the externs and statics for
5255 symbols which match. */
5257 ALL_SYMTABS (objfile, s)
5260 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5261 ALL_BLOCK_SYMBOLS (b, iter, sym)
5263 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5264 text, text_len, text0, word,
5265 wild_match, encoded);
5269 ALL_SYMTABS (objfile, s)
5272 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5273 /* Don't do this block twice. */
5274 if (b == surrounding_static_block)
5276 ALL_BLOCK_SYMBOLS (b, iter, sym)
5278 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5279 text, text_len, text0, word,
5280 wild_match, encoded);
5284 /* Append the closing NULL entry. */
5285 VEC_safe_push (char_ptr, completions, NULL);
5287 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5288 return the copy. It's unfortunate that we have to make a copy
5289 of an array that we're about to destroy, but there is nothing much
5290 we can do about it. Fortunately, it's typically not a very large
5293 const size_t completions_size =
5294 VEC_length (char_ptr, completions) * sizeof (char *);
5295 char **result = malloc (completions_size);
5297 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5299 VEC_free (char_ptr, completions);
5306 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5307 for tagged types. */
5310 ada_is_dispatch_table_ptr_type (struct type *type)
5314 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5317 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5321 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5324 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5325 to be invisible to users. */
5328 ada_is_ignored_field (struct type *type, int field_num)
5330 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5333 /* Check the name of that field. */
5335 const char *name = TYPE_FIELD_NAME (type, field_num);
5337 /* Anonymous field names should not be printed.
5338 brobecker/2007-02-20: I don't think this can actually happen
5339 but we don't want to print the value of annonymous fields anyway. */
5343 /* A field named "_parent" is internally generated by GNAT for
5344 tagged types, and should not be printed either. */
5345 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5349 /* If this is the dispatch table of a tagged type, then ignore. */
5350 if (ada_is_tagged_type (type, 1)
5351 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5354 /* Not a special field, so it should not be ignored. */
5358 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5359 pointer or reference type whose ultimate target has a tag field. */
5362 ada_is_tagged_type (struct type *type, int refok)
5364 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5367 /* True iff TYPE represents the type of X'Tag */
5370 ada_is_tag_type (struct type *type)
5372 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5376 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5377 return (name != NULL
5378 && strcmp (name, "ada__tags__dispatch_table") == 0);
5382 /* The type of the tag on VAL. */
5385 ada_tag_type (struct value *val)
5387 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5390 /* The value of the tag on VAL. */
5393 ada_value_tag (struct value *val)
5395 return ada_value_struct_elt (val, "_tag", 0);
5398 /* The value of the tag on the object of type TYPE whose contents are
5399 saved at VALADDR, if it is non-null, or is at memory address
5402 static struct value *
5403 value_tag_from_contents_and_address (struct type *type,
5404 const gdb_byte *valaddr,
5407 int tag_byte_offset;
5408 struct type *tag_type;
5409 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5412 const gdb_byte *valaddr1 = ((valaddr == NULL)
5414 : valaddr + tag_byte_offset);
5415 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5417 return value_from_contents_and_address (tag_type, valaddr1, address1);
5422 static struct type *
5423 type_from_tag (struct value *tag)
5425 const char *type_name = ada_tag_name (tag);
5426 if (type_name != NULL)
5427 return ada_find_any_type (ada_encode (type_name));
5438 static int ada_tag_name_1 (void *);
5439 static int ada_tag_name_2 (struct tag_args *);
5441 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5442 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5443 The value stored in ARGS->name is valid until the next call to
5447 ada_tag_name_1 (void *args0)
5449 struct tag_args *args = (struct tag_args *) args0;
5450 static char name[1024];
5454 val = ada_value_struct_elt (args->tag, "tsd", 1);
5456 return ada_tag_name_2 (args);
5457 val = ada_value_struct_elt (val, "expanded_name", 1);
5460 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5461 for (p = name; *p != '\0'; p += 1)
5468 /* Utility function for ada_tag_name_1 that tries the second
5469 representation for the dispatch table (in which there is no
5470 explicit 'tsd' field in the referent of the tag pointer, and instead
5471 the tsd pointer is stored just before the dispatch table. */
5474 ada_tag_name_2 (struct tag_args *args)
5476 struct type *info_type;
5477 static char name[1024];
5479 struct value *val, *valp;
5482 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5483 if (info_type == NULL)
5485 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5486 valp = value_cast (info_type, args->tag);
5489 val = value_ind (value_ptradd (valp, -1));
5492 val = ada_value_struct_elt (val, "expanded_name", 1);
5495 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5496 for (p = name; *p != '\0'; p += 1)
5503 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5507 ada_tag_name (struct value *tag)
5509 struct tag_args args;
5510 if (!ada_is_tag_type (value_type (tag)))
5514 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5518 /* The parent type of TYPE, or NULL if none. */
5521 ada_parent_type (struct type *type)
5525 type = ada_check_typedef (type);
5527 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5530 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5531 if (ada_is_parent_field (type, i))
5533 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5535 /* If the _parent field is a pointer, then dereference it. */
5536 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5537 parent_type = TYPE_TARGET_TYPE (parent_type);
5538 /* If there is a parallel XVS type, get the actual base type. */
5539 parent_type = ada_get_base_type (parent_type);
5541 return ada_check_typedef (parent_type);
5547 /* True iff field number FIELD_NUM of structure type TYPE contains the
5548 parent-type (inherited) fields of a derived type. Assumes TYPE is
5549 a structure type with at least FIELD_NUM+1 fields. */
5552 ada_is_parent_field (struct type *type, int field_num)
5554 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5555 return (name != NULL
5556 && (strncmp (name, "PARENT", 6) == 0
5557 || strncmp (name, "_parent", 7) == 0));
5560 /* True iff field number FIELD_NUM of structure type TYPE is a
5561 transparent wrapper field (which should be silently traversed when doing
5562 field selection and flattened when printing). Assumes TYPE is a
5563 structure type with at least FIELD_NUM+1 fields. Such fields are always
5567 ada_is_wrapper_field (struct type *type, int field_num)
5569 const char *name = TYPE_FIELD_NAME (type, field_num);
5570 return (name != NULL
5571 && (strncmp (name, "PARENT", 6) == 0
5572 || strcmp (name, "REP") == 0
5573 || strncmp (name, "_parent", 7) == 0
5574 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5577 /* True iff field number FIELD_NUM of structure or union type TYPE
5578 is a variant wrapper. Assumes TYPE is a structure type with at least
5579 FIELD_NUM+1 fields. */
5582 ada_is_variant_part (struct type *type, int field_num)
5584 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5585 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5586 || (is_dynamic_field (type, field_num)
5587 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5588 == TYPE_CODE_UNION)));
5591 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5592 whose discriminants are contained in the record type OUTER_TYPE,
5593 returns the type of the controlling discriminant for the variant.
5594 May return NULL if the type could not be found. */
5597 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5599 char *name = ada_variant_discrim_name (var_type);
5600 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5603 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5604 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5605 represents a 'when others' clause; otherwise 0. */
5608 ada_is_others_clause (struct type *type, int field_num)
5610 const char *name = TYPE_FIELD_NAME (type, field_num);
5611 return (name != NULL && name[0] == 'O');
5614 /* Assuming that TYPE0 is the type of the variant part of a record,
5615 returns the name of the discriminant controlling the variant.
5616 The value is valid until the next call to ada_variant_discrim_name. */
5619 ada_variant_discrim_name (struct type *type0)
5621 static char *result = NULL;
5622 static size_t result_len = 0;
5625 const char *discrim_end;
5626 const char *discrim_start;
5628 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5629 type = TYPE_TARGET_TYPE (type0);
5633 name = ada_type_name (type);
5635 if (name == NULL || name[0] == '\000')
5638 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5641 if (strncmp (discrim_end, "___XVN", 6) == 0)
5644 if (discrim_end == name)
5647 for (discrim_start = discrim_end; discrim_start != name + 3;
5650 if (discrim_start == name + 1)
5652 if ((discrim_start > name + 3
5653 && strncmp (discrim_start - 3, "___", 3) == 0)
5654 || discrim_start[-1] == '.')
5658 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5659 strncpy (result, discrim_start, discrim_end - discrim_start);
5660 result[discrim_end - discrim_start] = '\0';
5664 /* Scan STR for a subtype-encoded number, beginning at position K.
5665 Put the position of the character just past the number scanned in
5666 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5667 Return 1 if there was a valid number at the given position, and 0
5668 otherwise. A "subtype-encoded" number consists of the absolute value
5669 in decimal, followed by the letter 'm' to indicate a negative number.
5670 Assumes 0m does not occur. */
5673 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5677 if (!isdigit (str[k]))
5680 /* Do it the hard way so as not to make any assumption about
5681 the relationship of unsigned long (%lu scan format code) and
5684 while (isdigit (str[k]))
5686 RU = RU * 10 + (str[k] - '0');
5693 *R = (-(LONGEST) (RU - 1)) - 1;
5699 /* NOTE on the above: Technically, C does not say what the results of
5700 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5701 number representable as a LONGEST (although either would probably work
5702 in most implementations). When RU>0, the locution in the then branch
5703 above is always equivalent to the negative of RU. */
5710 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5711 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5712 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5715 ada_in_variant (LONGEST val, struct type *type, int field_num)
5717 const char *name = TYPE_FIELD_NAME (type, field_num);
5730 if (!ada_scan_number (name, p + 1, &W, &p))
5739 if (!ada_scan_number (name, p + 1, &L, &p)
5740 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5742 if (val >= L && val <= U)
5754 /* FIXME: Lots of redundancy below. Try to consolidate. */
5756 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5757 ARG_TYPE, extract and return the value of one of its (non-static)
5758 fields. FIELDNO says which field. Differs from value_primitive_field
5759 only in that it can handle packed values of arbitrary type. */
5761 static struct value *
5762 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5763 struct type *arg_type)
5767 arg_type = ada_check_typedef (arg_type);
5768 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5770 /* Handle packed fields. */
5772 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5774 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5775 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5777 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5778 offset + bit_pos / 8,
5779 bit_pos % 8, bit_size, type);
5782 return value_primitive_field (arg1, offset, fieldno, arg_type);
5785 /* Find field with name NAME in object of type TYPE. If found,
5786 set the following for each argument that is non-null:
5787 - *FIELD_TYPE_P to the field's type;
5788 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5789 an object of that type;
5790 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5791 - *BIT_SIZE_P to its size in bits if the field is packed, and
5793 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5794 fields up to but not including the desired field, or by the total
5795 number of fields if not found. A NULL value of NAME never
5796 matches; the function just counts visible fields in this case.
5798 Returns 1 if found, 0 otherwise. */
5801 find_struct_field (char *name, struct type *type, int offset,
5802 struct type **field_type_p,
5803 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5808 type = ada_check_typedef (type);
5810 if (field_type_p != NULL)
5811 *field_type_p = NULL;
5812 if (byte_offset_p != NULL)
5814 if (bit_offset_p != NULL)
5816 if (bit_size_p != NULL)
5819 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5821 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5822 int fld_offset = offset + bit_pos / 8;
5823 char *t_field_name = TYPE_FIELD_NAME (type, i);
5825 if (t_field_name == NULL)
5828 else if (name != NULL && field_name_match (t_field_name, name))
5830 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5831 if (field_type_p != NULL)
5832 *field_type_p = TYPE_FIELD_TYPE (type, i);
5833 if (byte_offset_p != NULL)
5834 *byte_offset_p = fld_offset;
5835 if (bit_offset_p != NULL)
5836 *bit_offset_p = bit_pos % 8;
5837 if (bit_size_p != NULL)
5838 *bit_size_p = bit_size;
5841 else if (ada_is_wrapper_field (type, i))
5843 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5844 field_type_p, byte_offset_p, bit_offset_p,
5845 bit_size_p, index_p))
5848 else if (ada_is_variant_part (type, i))
5850 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5853 struct type *field_type
5854 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5856 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5858 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5860 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5861 field_type_p, byte_offset_p,
5862 bit_offset_p, bit_size_p, index_p))
5866 else if (index_p != NULL)
5872 /* Number of user-visible fields in record type TYPE. */
5875 num_visible_fields (struct type *type)
5879 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5883 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5884 and search in it assuming it has (class) type TYPE.
5885 If found, return value, else return NULL.
5887 Searches recursively through wrapper fields (e.g., '_parent'). */
5889 static struct value *
5890 ada_search_struct_field (char *name, struct value *arg, int offset,
5894 type = ada_check_typedef (type);
5896 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5898 char *t_field_name = TYPE_FIELD_NAME (type, i);
5900 if (t_field_name == NULL)
5903 else if (field_name_match (t_field_name, name))
5904 return ada_value_primitive_field (arg, offset, i, type);
5906 else if (ada_is_wrapper_field (type, i))
5908 struct value *v = /* Do not let indent join lines here. */
5909 ada_search_struct_field (name, arg,
5910 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5911 TYPE_FIELD_TYPE (type, i));
5916 else if (ada_is_variant_part (type, i))
5918 /* PNH: Do we ever get here? See find_struct_field. */
5920 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5921 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5923 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5925 struct value *v = ada_search_struct_field /* Force line break. */
5927 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5928 TYPE_FIELD_TYPE (field_type, j));
5937 static struct value *ada_index_struct_field_1 (int *, struct value *,
5938 int, struct type *);
5941 /* Return field #INDEX in ARG, where the index is that returned by
5942 * find_struct_field through its INDEX_P argument. Adjust the address
5943 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5944 * If found, return value, else return NULL. */
5946 static struct value *
5947 ada_index_struct_field (int index, struct value *arg, int offset,
5950 return ada_index_struct_field_1 (&index, arg, offset, type);
5954 /* Auxiliary function for ada_index_struct_field. Like
5955 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5958 static struct value *
5959 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5963 type = ada_check_typedef (type);
5965 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5967 if (TYPE_FIELD_NAME (type, i) == NULL)
5969 else if (ada_is_wrapper_field (type, i))
5971 struct value *v = /* Do not let indent join lines here. */
5972 ada_index_struct_field_1 (index_p, arg,
5973 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5974 TYPE_FIELD_TYPE (type, i));
5979 else if (ada_is_variant_part (type, i))
5981 /* PNH: Do we ever get here? See ada_search_struct_field,
5982 find_struct_field. */
5983 error (_("Cannot assign this kind of variant record"));
5985 else if (*index_p == 0)
5986 return ada_value_primitive_field (arg, offset, i, type);
5993 /* Given ARG, a value of type (pointer or reference to a)*
5994 structure/union, extract the component named NAME from the ultimate
5995 target structure/union and return it as a value with its
5998 The routine searches for NAME among all members of the structure itself
5999 and (recursively) among all members of any wrapper members
6002 If NO_ERR, then simply return NULL in case of error, rather than
6006 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6008 struct type *t, *t1;
6012 t1 = t = ada_check_typedef (value_type (arg));
6013 if (TYPE_CODE (t) == TYPE_CODE_REF)
6015 t1 = TYPE_TARGET_TYPE (t);
6018 t1 = ada_check_typedef (t1);
6019 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6021 arg = coerce_ref (arg);
6026 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6028 t1 = TYPE_TARGET_TYPE (t);
6031 t1 = ada_check_typedef (t1);
6032 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6034 arg = value_ind (arg);
6041 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6045 v = ada_search_struct_field (name, arg, 0, t);
6048 int bit_offset, bit_size, byte_offset;
6049 struct type *field_type;
6052 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6053 address = value_as_address (arg);
6055 address = unpack_pointer (t, value_contents (arg));
6057 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6058 if (find_struct_field (name, t1, 0,
6059 &field_type, &byte_offset, &bit_offset,
6064 if (TYPE_CODE (t) == TYPE_CODE_REF)
6065 arg = ada_coerce_ref (arg);
6067 arg = ada_value_ind (arg);
6068 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6069 bit_offset, bit_size,
6073 v = value_at_lazy (field_type, address + byte_offset);
6077 if (v != NULL || no_err)
6080 error (_("There is no member named %s."), name);
6086 error (_("Attempt to extract a component of a value that is not a record."));
6089 /* Given a type TYPE, look up the type of the component of type named NAME.
6090 If DISPP is non-null, add its byte displacement from the beginning of a
6091 structure (pointed to by a value) of type TYPE to *DISPP (does not
6092 work for packed fields).
6094 Matches any field whose name has NAME as a prefix, possibly
6097 TYPE can be either a struct or union. If REFOK, TYPE may also
6098 be a (pointer or reference)+ to a struct or union, and the
6099 ultimate target type will be searched.
6101 Looks recursively into variant clauses and parent types.
6103 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6104 TYPE is not a type of the right kind. */
6106 static struct type *
6107 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6108 int noerr, int *dispp)
6115 if (refok && type != NULL)
6118 type = ada_check_typedef (type);
6119 if (TYPE_CODE (type) != TYPE_CODE_PTR
6120 && TYPE_CODE (type) != TYPE_CODE_REF)
6122 type = TYPE_TARGET_TYPE (type);
6126 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6127 && TYPE_CODE (type) != TYPE_CODE_UNION))
6133 target_terminal_ours ();
6134 gdb_flush (gdb_stdout);
6136 error (_("Type (null) is not a structure or union type"));
6139 /* XXX: type_sprint */
6140 fprintf_unfiltered (gdb_stderr, _("Type "));
6141 type_print (type, "", gdb_stderr, -1);
6142 error (_(" is not a structure or union type"));
6147 type = to_static_fixed_type (type);
6149 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6151 char *t_field_name = TYPE_FIELD_NAME (type, i);
6155 if (t_field_name == NULL)
6158 else if (field_name_match (t_field_name, name))
6161 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6162 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6165 else if (ada_is_wrapper_field (type, i))
6168 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6173 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6178 else if (ada_is_variant_part (type, i))
6181 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6183 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6185 /* FIXME pnh 2008/01/26: We check for a field that is
6186 NOT wrapped in a struct, since the compiler sometimes
6187 generates these for unchecked variant types. Revisit
6188 if the compiler changes this practice. */
6189 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6191 if (v_field_name != NULL
6192 && field_name_match (v_field_name, name))
6193 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6195 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6201 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6212 target_terminal_ours ();
6213 gdb_flush (gdb_stdout);
6216 /* XXX: type_sprint */
6217 fprintf_unfiltered (gdb_stderr, _("Type "));
6218 type_print (type, "", gdb_stderr, -1);
6219 error (_(" has no component named <null>"));
6223 /* XXX: type_sprint */
6224 fprintf_unfiltered (gdb_stderr, _("Type "));
6225 type_print (type, "", gdb_stderr, -1);
6226 error (_(" has no component named %s"), name);
6233 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6234 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6235 represents an unchecked union (that is, the variant part of a
6236 record that is named in an Unchecked_Union pragma). */
6239 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6241 char *discrim_name = ada_variant_discrim_name (var_type);
6242 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6247 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6248 within a value of type OUTER_TYPE that is stored in GDB at
6249 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6250 numbering from 0) is applicable. Returns -1 if none are. */
6253 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6254 const gdb_byte *outer_valaddr)
6258 char *discrim_name = ada_variant_discrim_name (var_type);
6259 struct value *outer;
6260 struct value *discrim;
6261 LONGEST discrim_val;
6263 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6264 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6265 if (discrim == NULL)
6267 discrim_val = value_as_long (discrim);
6270 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6272 if (ada_is_others_clause (var_type, i))
6274 else if (ada_in_variant (discrim_val, var_type, i))
6278 return others_clause;
6283 /* Dynamic-Sized Records */
6285 /* Strategy: The type ostensibly attached to a value with dynamic size
6286 (i.e., a size that is not statically recorded in the debugging
6287 data) does not accurately reflect the size or layout of the value.
6288 Our strategy is to convert these values to values with accurate,
6289 conventional types that are constructed on the fly. */
6291 /* There is a subtle and tricky problem here. In general, we cannot
6292 determine the size of dynamic records without its data. However,
6293 the 'struct value' data structure, which GDB uses to represent
6294 quantities in the inferior process (the target), requires the size
6295 of the type at the time of its allocation in order to reserve space
6296 for GDB's internal copy of the data. That's why the
6297 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6298 rather than struct value*s.
6300 However, GDB's internal history variables ($1, $2, etc.) are
6301 struct value*s containing internal copies of the data that are not, in
6302 general, the same as the data at their corresponding addresses in
6303 the target. Fortunately, the types we give to these values are all
6304 conventional, fixed-size types (as per the strategy described
6305 above), so that we don't usually have to perform the
6306 'to_fixed_xxx_type' conversions to look at their values.
6307 Unfortunately, there is one exception: if one of the internal
6308 history variables is an array whose elements are unconstrained
6309 records, then we will need to create distinct fixed types for each
6310 element selected. */
6312 /* The upshot of all of this is that many routines take a (type, host
6313 address, target address) triple as arguments to represent a value.
6314 The host address, if non-null, is supposed to contain an internal
6315 copy of the relevant data; otherwise, the program is to consult the
6316 target at the target address. */
6318 /* Assuming that VAL0 represents a pointer value, the result of
6319 dereferencing it. Differs from value_ind in its treatment of
6320 dynamic-sized types. */
6323 ada_value_ind (struct value *val0)
6325 struct value *val = unwrap_value (value_ind (val0));
6326 return ada_to_fixed_value (val);
6329 /* The value resulting from dereferencing any "reference to"
6330 qualifiers on VAL0. */
6332 static struct value *
6333 ada_coerce_ref (struct value *val0)
6335 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6337 struct value *val = val0;
6338 val = coerce_ref (val);
6339 val = unwrap_value (val);
6340 return ada_to_fixed_value (val);
6346 /* Return OFF rounded upward if necessary to a multiple of
6347 ALIGNMENT (a power of 2). */
6350 align_value (unsigned int off, unsigned int alignment)
6352 return (off + alignment - 1) & ~(alignment - 1);
6355 /* Return the bit alignment required for field #F of template type TYPE. */
6358 field_alignment (struct type *type, int f)
6360 const char *name = TYPE_FIELD_NAME (type, f);
6364 /* The field name should never be null, unless the debugging information
6365 is somehow malformed. In this case, we assume the field does not
6366 require any alignment. */
6370 len = strlen (name);
6372 if (!isdigit (name[len - 1]))
6375 if (isdigit (name[len - 2]))
6376 align_offset = len - 2;
6378 align_offset = len - 1;
6380 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6381 return TARGET_CHAR_BIT;
6383 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6386 /* Find a symbol named NAME. Ignores ambiguity. */
6389 ada_find_any_symbol (const char *name)
6393 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6394 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6397 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6401 /* Find a type named NAME. Ignores ambiguity. This routine will look
6402 solely for types defined by debug info, it will not search the GDB
6406 ada_find_any_type (const char *name)
6408 struct symbol *sym = ada_find_any_symbol (name);
6411 return SYMBOL_TYPE (sym);
6416 /* Given NAME and an associated BLOCK, search all symbols for
6417 NAME suffixed with "___XR", which is the ``renaming'' symbol
6418 associated to NAME. Return this symbol if found, return
6422 ada_find_renaming_symbol (const char *name, struct block *block)
6426 sym = find_old_style_renaming_symbol (name, block);
6431 /* Not right yet. FIXME pnh 7/20/2007. */
6432 sym = ada_find_any_symbol (name);
6433 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6439 static struct symbol *
6440 find_old_style_renaming_symbol (const char *name, struct block *block)
6442 const struct symbol *function_sym = block_linkage_function (block);
6445 if (function_sym != NULL)
6447 /* If the symbol is defined inside a function, NAME is not fully
6448 qualified. This means we need to prepend the function name
6449 as well as adding the ``___XR'' suffix to build the name of
6450 the associated renaming symbol. */
6451 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6452 /* Function names sometimes contain suffixes used
6453 for instance to qualify nested subprograms. When building
6454 the XR type name, we need to make sure that this suffix is
6455 not included. So do not include any suffix in the function
6456 name length below. */
6457 int function_name_len = ada_name_prefix_len (function_name);
6458 const int rename_len = function_name_len + 2 /* "__" */
6459 + strlen (name) + 6 /* "___XR\0" */ ;
6461 /* Strip the suffix if necessary. */
6462 ada_remove_trailing_digits (function_name, &function_name_len);
6463 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6464 ada_remove_Xbn_suffix (function_name, &function_name_len);
6466 /* Library-level functions are a special case, as GNAT adds
6467 a ``_ada_'' prefix to the function name to avoid namespace
6468 pollution. However, the renaming symbols themselves do not
6469 have this prefix, so we need to skip this prefix if present. */
6470 if (function_name_len > 5 /* "_ada_" */
6471 && strstr (function_name, "_ada_") == function_name)
6474 function_name_len -= 5;
6477 rename = (char *) alloca (rename_len * sizeof (char));
6478 strncpy (rename, function_name, function_name_len);
6479 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6484 const int rename_len = strlen (name) + 6;
6485 rename = (char *) alloca (rename_len * sizeof (char));
6486 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6489 return ada_find_any_symbol (rename);
6492 /* Because of GNAT encoding conventions, several GDB symbols may match a
6493 given type name. If the type denoted by TYPE0 is to be preferred to
6494 that of TYPE1 for purposes of type printing, return non-zero;
6495 otherwise return 0. */
6498 ada_prefer_type (struct type *type0, struct type *type1)
6502 else if (type0 == NULL)
6504 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6506 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6508 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6510 else if (ada_is_constrained_packed_array_type (type0))
6512 else if (ada_is_array_descriptor_type (type0)
6513 && !ada_is_array_descriptor_type (type1))
6517 const char *type0_name = type_name_no_tag (type0);
6518 const char *type1_name = type_name_no_tag (type1);
6520 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6521 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6527 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6528 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6531 ada_type_name (struct type *type)
6535 else if (TYPE_NAME (type) != NULL)
6536 return TYPE_NAME (type);
6538 return TYPE_TAG_NAME (type);
6541 /* Search the list of "descriptive" types associated to TYPE for a type
6542 whose name is NAME. */
6544 static struct type *
6545 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6547 struct type *result;
6549 /* If there no descriptive-type info, then there is no parallel type
6551 if (!HAVE_GNAT_AUX_INFO (type))
6554 result = TYPE_DESCRIPTIVE_TYPE (type);
6555 while (result != NULL)
6557 char *result_name = ada_type_name (result);
6559 if (result_name == NULL)
6561 warning (_("unexpected null name on descriptive type"));
6565 /* If the names match, stop. */
6566 if (strcmp (result_name, name) == 0)
6569 /* Otherwise, look at the next item on the list, if any. */
6570 if (HAVE_GNAT_AUX_INFO (result))
6571 result = TYPE_DESCRIPTIVE_TYPE (result);
6576 /* If we didn't find a match, see whether this is a packed array. With
6577 older compilers, the descriptive type information is either absent or
6578 irrelevant when it comes to packed arrays so the above lookup fails.
6579 Fall back to using a parallel lookup by name in this case. */
6580 if (result == NULL && ada_is_constrained_packed_array_type (type))
6581 return ada_find_any_type (name);
6586 /* Find a parallel type to TYPE with the specified NAME, using the
6587 descriptive type taken from the debugging information, if available,
6588 and otherwise using the (slower) name-based method. */
6590 static struct type *
6591 ada_find_parallel_type_with_name (struct type *type, const char *name)
6593 struct type *result = NULL;
6595 if (HAVE_GNAT_AUX_INFO (type))
6596 result = find_parallel_type_by_descriptive_type (type, name);
6598 result = ada_find_any_type (name);
6603 /* Same as above, but specify the name of the parallel type by appending
6604 SUFFIX to the name of TYPE. */
6607 ada_find_parallel_type (struct type *type, const char *suffix)
6609 char *name, *typename = ada_type_name (type);
6612 if (typename == NULL)
6615 len = strlen (typename);
6617 name = (char *) alloca (len + strlen (suffix) + 1);
6619 strcpy (name, typename);
6620 strcpy (name + len, suffix);
6622 return ada_find_parallel_type_with_name (type, name);
6625 /* If TYPE is a variable-size record type, return the corresponding template
6626 type describing its fields. Otherwise, return NULL. */
6628 static struct type *
6629 dynamic_template_type (struct type *type)
6631 type = ada_check_typedef (type);
6633 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6634 || ada_type_name (type) == NULL)
6638 int len = strlen (ada_type_name (type));
6639 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6642 return ada_find_parallel_type (type, "___XVE");
6646 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6647 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6650 is_dynamic_field (struct type *templ_type, int field_num)
6652 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6654 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6655 && strstr (name, "___XVL") != NULL;
6658 /* The index of the variant field of TYPE, or -1 if TYPE does not
6659 represent a variant record type. */
6662 variant_field_index (struct type *type)
6666 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6669 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6671 if (ada_is_variant_part (type, f))
6677 /* A record type with no fields. */
6679 static struct type *
6680 empty_record (struct type *template)
6682 struct type *type = alloc_type_copy (template);
6683 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6684 TYPE_NFIELDS (type) = 0;
6685 TYPE_FIELDS (type) = NULL;
6686 INIT_CPLUS_SPECIFIC (type);
6687 TYPE_NAME (type) = "<empty>";
6688 TYPE_TAG_NAME (type) = NULL;
6689 TYPE_LENGTH (type) = 0;
6693 /* An ordinary record type (with fixed-length fields) that describes
6694 the value of type TYPE at VALADDR or ADDRESS (see comments at
6695 the beginning of this section) VAL according to GNAT conventions.
6696 DVAL0 should describe the (portion of a) record that contains any
6697 necessary discriminants. It should be NULL if value_type (VAL) is
6698 an outer-level type (i.e., as opposed to a branch of a variant.) A
6699 variant field (unless unchecked) is replaced by a particular branch
6702 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6703 length are not statically known are discarded. As a consequence,
6704 VALADDR, ADDRESS and DVAL0 are ignored.
6706 NOTE: Limitations: For now, we assume that dynamic fields and
6707 variants occupy whole numbers of bytes. However, they need not be
6711 ada_template_to_fixed_record_type_1 (struct type *type,
6712 const gdb_byte *valaddr,
6713 CORE_ADDR address, struct value *dval0,
6714 int keep_dynamic_fields)
6716 struct value *mark = value_mark ();
6719 int nfields, bit_len;
6722 int fld_bit_len, bit_incr;
6725 /* Compute the number of fields in this record type that are going
6726 to be processed: unless keep_dynamic_fields, this includes only
6727 fields whose position and length are static will be processed. */
6728 if (keep_dynamic_fields)
6729 nfields = TYPE_NFIELDS (type);
6733 while (nfields < TYPE_NFIELDS (type)
6734 && !ada_is_variant_part (type, nfields)
6735 && !is_dynamic_field (type, nfields))
6739 rtype = alloc_type_copy (type);
6740 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6741 INIT_CPLUS_SPECIFIC (rtype);
6742 TYPE_NFIELDS (rtype) = nfields;
6743 TYPE_FIELDS (rtype) = (struct field *)
6744 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6745 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6746 TYPE_NAME (rtype) = ada_type_name (type);
6747 TYPE_TAG_NAME (rtype) = NULL;
6748 TYPE_FIXED_INSTANCE (rtype) = 1;
6754 for (f = 0; f < nfields; f += 1)
6756 off = align_value (off, field_alignment (type, f))
6757 + TYPE_FIELD_BITPOS (type, f);
6758 TYPE_FIELD_BITPOS (rtype, f) = off;
6759 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6761 if (ada_is_variant_part (type, f))
6764 fld_bit_len = bit_incr = 0;
6766 else if (is_dynamic_field (type, f))
6768 const gdb_byte *field_valaddr = valaddr;
6769 CORE_ADDR field_address = address;
6770 struct type *field_type =
6771 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6775 /* rtype's length is computed based on the run-time
6776 value of discriminants. If the discriminants are not
6777 initialized, the type size may be completely bogus and
6778 GDB may fail to allocate a value for it. So check the
6779 size first before creating the value. */
6781 dval = value_from_contents_and_address (rtype, valaddr, address);
6786 /* If the type referenced by this field is an aligner type, we need
6787 to unwrap that aligner type, because its size might not be set.
6788 Keeping the aligner type would cause us to compute the wrong
6789 size for this field, impacting the offset of the all the fields
6790 that follow this one. */
6791 if (ada_is_aligner_type (field_type))
6793 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6795 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6796 field_address = cond_offset_target (field_address, field_offset);
6797 field_type = ada_aligned_type (field_type);
6800 field_valaddr = cond_offset_host (field_valaddr,
6801 off / TARGET_CHAR_BIT);
6802 field_address = cond_offset_target (field_address,
6803 off / TARGET_CHAR_BIT);
6805 /* Get the fixed type of the field. Note that, in this case,
6806 we do not want to get the real type out of the tag: if
6807 the current field is the parent part of a tagged record,
6808 we will get the tag of the object. Clearly wrong: the real
6809 type of the parent is not the real type of the child. We
6810 would end up in an infinite loop. */
6811 field_type = ada_get_base_type (field_type);
6812 field_type = ada_to_fixed_type (field_type, field_valaddr,
6813 field_address, dval, 0);
6815 TYPE_FIELD_TYPE (rtype, f) = field_type;
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 bit_incr = fld_bit_len =
6818 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6822 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6824 TYPE_FIELD_TYPE (rtype, f) = field_type;
6825 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6826 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6827 bit_incr = fld_bit_len =
6828 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6830 bit_incr = fld_bit_len =
6831 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6833 if (off + fld_bit_len > bit_len)
6834 bit_len = off + fld_bit_len;
6836 TYPE_LENGTH (rtype) =
6837 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6840 /* We handle the variant part, if any, at the end because of certain
6841 odd cases in which it is re-ordered so as NOT to be the last field of
6842 the record. This can happen in the presence of representation
6844 if (variant_field >= 0)
6846 struct type *branch_type;
6848 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6851 dval = value_from_contents_and_address (rtype, valaddr, address);
6856 to_fixed_variant_branch_type
6857 (TYPE_FIELD_TYPE (type, variant_field),
6858 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6859 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6860 if (branch_type == NULL)
6862 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6863 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6864 TYPE_NFIELDS (rtype) -= 1;
6868 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6869 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6871 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6873 if (off + fld_bit_len > bit_len)
6874 bit_len = off + fld_bit_len;
6875 TYPE_LENGTH (rtype) =
6876 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6880 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6881 should contain the alignment of that record, which should be a strictly
6882 positive value. If null or negative, then something is wrong, most
6883 probably in the debug info. In that case, we don't round up the size
6884 of the resulting type. If this record is not part of another structure,
6885 the current RTYPE length might be good enough for our purposes. */
6886 if (TYPE_LENGTH (type) <= 0)
6888 if (TYPE_NAME (rtype))
6889 warning (_("Invalid type size for `%s' detected: %d."),
6890 TYPE_NAME (rtype), TYPE_LENGTH (type));
6892 warning (_("Invalid type size for <unnamed> detected: %d."),
6893 TYPE_LENGTH (type));
6897 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6898 TYPE_LENGTH (type));
6901 value_free_to_mark (mark);
6902 if (TYPE_LENGTH (rtype) > varsize_limit)
6903 error (_("record type with dynamic size is larger than varsize-limit"));
6907 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6910 static struct type *
6911 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6912 CORE_ADDR address, struct value *dval0)
6914 return ada_template_to_fixed_record_type_1 (type, valaddr,
6918 /* An ordinary record type in which ___XVL-convention fields and
6919 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6920 static approximations, containing all possible fields. Uses
6921 no runtime values. Useless for use in values, but that's OK,
6922 since the results are used only for type determinations. Works on both
6923 structs and unions. Representation note: to save space, we memorize
6924 the result of this function in the TYPE_TARGET_TYPE of the
6927 static struct type *
6928 template_to_static_fixed_type (struct type *type0)
6934 if (TYPE_TARGET_TYPE (type0) != NULL)
6935 return TYPE_TARGET_TYPE (type0);
6937 nfields = TYPE_NFIELDS (type0);
6940 for (f = 0; f < nfields; f += 1)
6942 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6943 struct type *new_type;
6945 if (is_dynamic_field (type0, f))
6946 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6948 new_type = static_unwrap_type (field_type);
6949 if (type == type0 && new_type != field_type)
6951 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6952 TYPE_CODE (type) = TYPE_CODE (type0);
6953 INIT_CPLUS_SPECIFIC (type);
6954 TYPE_NFIELDS (type) = nfields;
6955 TYPE_FIELDS (type) = (struct field *)
6956 TYPE_ALLOC (type, nfields * sizeof (struct field));
6957 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6958 sizeof (struct field) * nfields);
6959 TYPE_NAME (type) = ada_type_name (type0);
6960 TYPE_TAG_NAME (type) = NULL;
6961 TYPE_FIXED_INSTANCE (type) = 1;
6962 TYPE_LENGTH (type) = 0;
6964 TYPE_FIELD_TYPE (type, f) = new_type;
6965 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6970 /* Given an object of type TYPE whose contents are at VALADDR and
6971 whose address in memory is ADDRESS, returns a revision of TYPE,
6972 which should be a non-dynamic-sized record, in which the variant
6973 part, if any, is replaced with the appropriate branch. Looks
6974 for discriminant values in DVAL0, which can be NULL if the record
6975 contains the necessary discriminant values. */
6977 static struct type *
6978 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6979 CORE_ADDR address, struct value *dval0)
6981 struct value *mark = value_mark ();
6984 struct type *branch_type;
6985 int nfields = TYPE_NFIELDS (type);
6986 int variant_field = variant_field_index (type);
6988 if (variant_field == -1)
6992 dval = value_from_contents_and_address (type, valaddr, address);
6996 rtype = alloc_type_copy (type);
6997 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6998 INIT_CPLUS_SPECIFIC (rtype);
6999 TYPE_NFIELDS (rtype) = nfields;
7000 TYPE_FIELDS (rtype) =
7001 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7002 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7003 sizeof (struct field) * nfields);
7004 TYPE_NAME (rtype) = ada_type_name (type);
7005 TYPE_TAG_NAME (rtype) = NULL;
7006 TYPE_FIXED_INSTANCE (rtype) = 1;
7007 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7009 branch_type = to_fixed_variant_branch_type
7010 (TYPE_FIELD_TYPE (type, variant_field),
7011 cond_offset_host (valaddr,
7012 TYPE_FIELD_BITPOS (type, variant_field)
7014 cond_offset_target (address,
7015 TYPE_FIELD_BITPOS (type, variant_field)
7016 / TARGET_CHAR_BIT), dval);
7017 if (branch_type == NULL)
7020 for (f = variant_field + 1; f < nfields; f += 1)
7021 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7022 TYPE_NFIELDS (rtype) -= 1;
7026 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7027 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7028 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7029 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7031 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7033 value_free_to_mark (mark);
7037 /* An ordinary record type (with fixed-length fields) that describes
7038 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7039 beginning of this section]. Any necessary discriminants' values
7040 should be in DVAL, a record value; it may be NULL if the object
7041 at ADDR itself contains any necessary discriminant values.
7042 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7043 values from the record are needed. Except in the case that DVAL,
7044 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7045 unchecked) is replaced by a particular branch of the variant.
7047 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7048 is questionable and may be removed. It can arise during the
7049 processing of an unconstrained-array-of-record type where all the
7050 variant branches have exactly the same size. This is because in
7051 such cases, the compiler does not bother to use the XVS convention
7052 when encoding the record. I am currently dubious of this
7053 shortcut and suspect the compiler should be altered. FIXME. */
7055 static struct type *
7056 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7057 CORE_ADDR address, struct value *dval)
7059 struct type *templ_type;
7061 if (TYPE_FIXED_INSTANCE (type0))
7064 templ_type = dynamic_template_type (type0);
7066 if (templ_type != NULL)
7067 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7068 else if (variant_field_index (type0) >= 0)
7070 if (dval == NULL && valaddr == NULL && address == 0)
7072 return to_record_with_fixed_variant_part (type0, valaddr, address,
7077 TYPE_FIXED_INSTANCE (type0) = 1;
7083 /* An ordinary record type (with fixed-length fields) that describes
7084 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7085 union type. Any necessary discriminants' values should be in DVAL,
7086 a record value. That is, this routine selects the appropriate
7087 branch of the union at ADDR according to the discriminant value
7088 indicated in the union's type name. Returns VAR_TYPE0 itself if
7089 it represents a variant subject to a pragma Unchecked_Union. */
7091 static struct type *
7092 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7093 CORE_ADDR address, struct value *dval)
7096 struct type *templ_type;
7097 struct type *var_type;
7099 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7100 var_type = TYPE_TARGET_TYPE (var_type0);
7102 var_type = var_type0;
7104 templ_type = ada_find_parallel_type (var_type, "___XVU");
7106 if (templ_type != NULL)
7107 var_type = templ_type;
7109 if (is_unchecked_variant (var_type, value_type (dval)))
7112 ada_which_variant_applies (var_type,
7113 value_type (dval), value_contents (dval));
7116 return empty_record (var_type);
7117 else if (is_dynamic_field (var_type, which))
7118 return to_fixed_record_type
7119 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7120 valaddr, address, dval);
7121 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7123 to_fixed_record_type
7124 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7126 return TYPE_FIELD_TYPE (var_type, which);
7129 /* Assuming that TYPE0 is an array type describing the type of a value
7130 at ADDR, and that DVAL describes a record containing any
7131 discriminants used in TYPE0, returns a type for the value that
7132 contains no dynamic components (that is, no components whose sizes
7133 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7134 true, gives an error message if the resulting type's size is over
7137 static struct type *
7138 to_fixed_array_type (struct type *type0, struct value *dval,
7141 struct type *index_type_desc;
7142 struct type *result;
7143 int constrained_packed_array_p;
7145 if (TYPE_FIXED_INSTANCE (type0))
7148 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7149 if (constrained_packed_array_p)
7150 type0 = decode_constrained_packed_array_type (type0);
7152 index_type_desc = ada_find_parallel_type (type0, "___XA");
7153 if (index_type_desc == NULL)
7155 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7156 /* NOTE: elt_type---the fixed version of elt_type0---should never
7157 depend on the contents of the array in properly constructed
7159 /* Create a fixed version of the array element type.
7160 We're not providing the address of an element here,
7161 and thus the actual object value cannot be inspected to do
7162 the conversion. This should not be a problem, since arrays of
7163 unconstrained objects are not allowed. In particular, all
7164 the elements of an array of a tagged type should all be of
7165 the same type specified in the debugging info. No need to
7166 consult the object tag. */
7167 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7169 /* Make sure we always create a new array type when dealing with
7170 packed array types, since we're going to fix-up the array
7171 type length and element bitsize a little further down. */
7172 if (elt_type0 == elt_type && !constrained_packed_array_p)
7175 result = create_array_type (alloc_type_copy (type0),
7176 elt_type, TYPE_INDEX_TYPE (type0));
7181 struct type *elt_type0;
7184 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7185 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7187 /* NOTE: result---the fixed version of elt_type0---should never
7188 depend on the contents of the array in properly constructed
7190 /* Create a fixed version of the array element type.
7191 We're not providing the address of an element here,
7192 and thus the actual object value cannot be inspected to do
7193 the conversion. This should not be a problem, since arrays of
7194 unconstrained objects are not allowed. In particular, all
7195 the elements of an array of a tagged type should all be of
7196 the same type specified in the debugging info. No need to
7197 consult the object tag. */
7199 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7202 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7204 struct type *range_type =
7205 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7206 dval, TYPE_INDEX_TYPE (elt_type0));
7207 result = create_array_type (alloc_type_copy (elt_type0),
7208 result, range_type);
7209 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7211 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7212 error (_("array type with dynamic size is larger than varsize-limit"));
7215 if (constrained_packed_array_p)
7217 /* So far, the resulting type has been created as if the original
7218 type was a regular (non-packed) array type. As a result, the
7219 bitsize of the array elements needs to be set again, and the array
7220 length needs to be recomputed based on that bitsize. */
7221 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7222 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7224 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7225 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7226 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7227 TYPE_LENGTH (result)++;
7230 TYPE_FIXED_INSTANCE (result) = 1;
7235 /* A standard type (containing no dynamically sized components)
7236 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7237 DVAL describes a record containing any discriminants used in TYPE0,
7238 and may be NULL if there are none, or if the object of type TYPE at
7239 ADDRESS or in VALADDR contains these discriminants.
7241 If CHECK_TAG is not null, in the case of tagged types, this function
7242 attempts to locate the object's tag and use it to compute the actual
7243 type. However, when ADDRESS is null, we cannot use it to determine the
7244 location of the tag, and therefore compute the tagged type's actual type.
7245 So we return the tagged type without consulting the tag. */
7247 static struct type *
7248 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7249 CORE_ADDR address, struct value *dval, int check_tag)
7251 type = ada_check_typedef (type);
7252 switch (TYPE_CODE (type))
7256 case TYPE_CODE_STRUCT:
7258 struct type *static_type = to_static_fixed_type (type);
7259 struct type *fixed_record_type =
7260 to_fixed_record_type (type, valaddr, address, NULL);
7261 /* If STATIC_TYPE is a tagged type and we know the object's address,
7262 then we can determine its tag, and compute the object's actual
7263 type from there. Note that we have to use the fixed record
7264 type (the parent part of the record may have dynamic fields
7265 and the way the location of _tag is expressed may depend on
7268 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7270 struct type *real_type =
7271 type_from_tag (value_tag_from_contents_and_address
7275 if (real_type != NULL)
7276 return to_fixed_record_type (real_type, valaddr, address, NULL);
7279 /* Check to see if there is a parallel ___XVZ variable.
7280 If there is, then it provides the actual size of our type. */
7281 else if (ada_type_name (fixed_record_type) != NULL)
7283 char *name = ada_type_name (fixed_record_type);
7284 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7288 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7289 size = get_int_var_value (xvz_name, &xvz_found);
7290 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7292 fixed_record_type = copy_type (fixed_record_type);
7293 TYPE_LENGTH (fixed_record_type) = size;
7295 /* The FIXED_RECORD_TYPE may have be a stub. We have
7296 observed this when the debugging info is STABS, and
7297 apparently it is something that is hard to fix.
7299 In practice, we don't need the actual type definition
7300 at all, because the presence of the XVZ variable allows us
7301 to assume that there must be a XVS type as well, which we
7302 should be able to use later, when we need the actual type
7305 In the meantime, pretend that the "fixed" type we are
7306 returning is NOT a stub, because this can cause trouble
7307 when using this type to create new types targeting it.
7308 Indeed, the associated creation routines often check
7309 whether the target type is a stub and will try to replace
7310 it, thus using a type with the wrong size. This, in turn,
7311 might cause the new type to have the wrong size too.
7312 Consider the case of an array, for instance, where the size
7313 of the array is computed from the number of elements in
7314 our array multiplied by the size of its element. */
7315 TYPE_STUB (fixed_record_type) = 0;
7318 return fixed_record_type;
7320 case TYPE_CODE_ARRAY:
7321 return to_fixed_array_type (type, dval, 1);
7322 case TYPE_CODE_UNION:
7326 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7330 /* The same as ada_to_fixed_type_1, except that it preserves the type
7331 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7332 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7335 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7336 CORE_ADDR address, struct value *dval, int check_tag)
7339 struct type *fixed_type =
7340 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7342 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7343 && TYPE_TARGET_TYPE (type) == fixed_type)
7349 /* A standard (static-sized) type corresponding as well as possible to
7350 TYPE0, but based on no runtime data. */
7352 static struct type *
7353 to_static_fixed_type (struct type *type0)
7360 if (TYPE_FIXED_INSTANCE (type0))
7363 type0 = ada_check_typedef (type0);
7365 switch (TYPE_CODE (type0))
7369 case TYPE_CODE_STRUCT:
7370 type = dynamic_template_type (type0);
7372 return template_to_static_fixed_type (type);
7374 return template_to_static_fixed_type (type0);
7375 case TYPE_CODE_UNION:
7376 type = ada_find_parallel_type (type0, "___XVU");
7378 return template_to_static_fixed_type (type);
7380 return template_to_static_fixed_type (type0);
7384 /* A static approximation of TYPE with all type wrappers removed. */
7386 static struct type *
7387 static_unwrap_type (struct type *type)
7389 if (ada_is_aligner_type (type))
7391 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7392 if (ada_type_name (type1) == NULL)
7393 TYPE_NAME (type1) = ada_type_name (type);
7395 return static_unwrap_type (type1);
7399 struct type *raw_real_type = ada_get_base_type (type);
7400 if (raw_real_type == type)
7403 return to_static_fixed_type (raw_real_type);
7407 /* In some cases, incomplete and private types require
7408 cross-references that are not resolved as records (for example,
7410 type FooP is access Foo;
7412 type Foo is array ...;
7413 ). In these cases, since there is no mechanism for producing
7414 cross-references to such types, we instead substitute for FooP a
7415 stub enumeration type that is nowhere resolved, and whose tag is
7416 the name of the actual type. Call these types "non-record stubs". */
7418 /* A type equivalent to TYPE that is not a non-record stub, if one
7419 exists, otherwise TYPE. */
7422 ada_check_typedef (struct type *type)
7427 CHECK_TYPEDEF (type);
7428 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7429 || !TYPE_STUB (type)
7430 || TYPE_TAG_NAME (type) == NULL)
7434 char *name = TYPE_TAG_NAME (type);
7435 struct type *type1 = ada_find_any_type (name);
7436 return (type1 == NULL) ? type : type1;
7440 /* A value representing the data at VALADDR/ADDRESS as described by
7441 type TYPE0, but with a standard (static-sized) type that correctly
7442 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7443 type, then return VAL0 [this feature is simply to avoid redundant
7444 creation of struct values]. */
7446 static struct value *
7447 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7450 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7451 if (type == type0 && val0 != NULL)
7454 return value_from_contents_and_address (type, 0, address);
7457 /* A value representing VAL, but with a standard (static-sized) type
7458 that correctly describes it. Does not necessarily create a new
7462 ada_to_fixed_value (struct value *val)
7464 return ada_to_fixed_value_create (value_type (val),
7465 value_address (val),
7472 /* Table mapping attribute numbers to names.
7473 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7475 static const char *attribute_names[] = {
7493 ada_attribute_name (enum exp_opcode n)
7495 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7496 return attribute_names[n - OP_ATR_FIRST + 1];
7498 return attribute_names[0];
7501 /* Evaluate the 'POS attribute applied to ARG. */
7504 pos_atr (struct value *arg)
7506 struct value *val = coerce_ref (arg);
7507 struct type *type = value_type (val);
7509 if (!discrete_type_p (type))
7510 error (_("'POS only defined on discrete types"));
7512 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7515 LONGEST v = value_as_long (val);
7517 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7519 if (v == TYPE_FIELD_BITPOS (type, i))
7522 error (_("enumeration value is invalid: can't find 'POS"));
7525 return value_as_long (val);
7528 static struct value *
7529 value_pos_atr (struct type *type, struct value *arg)
7531 return value_from_longest (type, pos_atr (arg));
7534 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7536 static struct value *
7537 value_val_atr (struct type *type, struct value *arg)
7539 if (!discrete_type_p (type))
7540 error (_("'VAL only defined on discrete types"));
7541 if (!integer_type_p (value_type (arg)))
7542 error (_("'VAL requires integral argument"));
7544 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7546 long pos = value_as_long (arg);
7547 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7548 error (_("argument to 'VAL out of range"));
7549 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7552 return value_from_longest (type, value_as_long (arg));
7558 /* True if TYPE appears to be an Ada character type.
7559 [At the moment, this is true only for Character and Wide_Character;
7560 It is a heuristic test that could stand improvement]. */
7563 ada_is_character_type (struct type *type)
7567 /* If the type code says it's a character, then assume it really is,
7568 and don't check any further. */
7569 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7572 /* Otherwise, assume it's a character type iff it is a discrete type
7573 with a known character type name. */
7574 name = ada_type_name (type);
7575 return (name != NULL
7576 && (TYPE_CODE (type) == TYPE_CODE_INT
7577 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7578 && (strcmp (name, "character") == 0
7579 || strcmp (name, "wide_character") == 0
7580 || strcmp (name, "wide_wide_character") == 0
7581 || strcmp (name, "unsigned char") == 0));
7584 /* True if TYPE appears to be an Ada string type. */
7587 ada_is_string_type (struct type *type)
7589 type = ada_check_typedef (type);
7591 && TYPE_CODE (type) != TYPE_CODE_PTR
7592 && (ada_is_simple_array_type (type)
7593 || ada_is_array_descriptor_type (type))
7594 && ada_array_arity (type) == 1)
7596 struct type *elttype = ada_array_element_type (type, 1);
7598 return ada_is_character_type (elttype);
7604 /* The compiler sometimes provides a parallel XVS type for a given
7605 PAD type. Normally, it is safe to follow the PAD type directly,
7606 but older versions of the compiler have a bug that causes the offset
7607 of its "F" field to be wrong. Following that field in that case
7608 would lead to incorrect results, but this can be worked around
7609 by ignoring the PAD type and using the associated XVS type instead.
7611 Set to True if the debugger should trust the contents of PAD types.
7612 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7613 static int trust_pad_over_xvs = 1;
7615 /* True if TYPE is a struct type introduced by the compiler to force the
7616 alignment of a value. Such types have a single field with a
7617 distinctive name. */
7620 ada_is_aligner_type (struct type *type)
7622 type = ada_check_typedef (type);
7624 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7627 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7628 && TYPE_NFIELDS (type) == 1
7629 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7632 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7633 the parallel type. */
7636 ada_get_base_type (struct type *raw_type)
7638 struct type *real_type_namer;
7639 struct type *raw_real_type;
7641 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7644 if (ada_is_aligner_type (raw_type))
7645 /* The encoding specifies that we should always use the aligner type.
7646 So, even if this aligner type has an associated XVS type, we should
7649 According to the compiler gurus, an XVS type parallel to an aligner
7650 type may exist because of a stabs limitation. In stabs, aligner
7651 types are empty because the field has a variable-sized type, and
7652 thus cannot actually be used as an aligner type. As a result,
7653 we need the associated parallel XVS type to decode the type.
7654 Since the policy in the compiler is to not change the internal
7655 representation based on the debugging info format, we sometimes
7656 end up having a redundant XVS type parallel to the aligner type. */
7659 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7660 if (real_type_namer == NULL
7661 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7662 || TYPE_NFIELDS (real_type_namer) != 1)
7665 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7667 /* This is an older encoding form where the base type needs to be
7668 looked up by name. We prefer the newer enconding because it is
7670 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7671 if (raw_real_type == NULL)
7674 return raw_real_type;
7677 /* The field in our XVS type is a reference to the base type. */
7678 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7681 /* The type of value designated by TYPE, with all aligners removed. */
7684 ada_aligned_type (struct type *type)
7686 if (ada_is_aligner_type (type))
7687 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7689 return ada_get_base_type (type);
7693 /* The address of the aligned value in an object at address VALADDR
7694 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7697 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7699 if (ada_is_aligner_type (type))
7700 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7702 TYPE_FIELD_BITPOS (type,
7703 0) / TARGET_CHAR_BIT);
7710 /* The printed representation of an enumeration literal with encoded
7711 name NAME. The value is good to the next call of ada_enum_name. */
7713 ada_enum_name (const char *name)
7715 static char *result;
7716 static size_t result_len = 0;
7719 /* First, unqualify the enumeration name:
7720 1. Search for the last '.' character. If we find one, then skip
7721 all the preceeding characters, the unqualified name starts
7722 right after that dot.
7723 2. Otherwise, we may be debugging on a target where the compiler
7724 translates dots into "__". Search forward for double underscores,
7725 but stop searching when we hit an overloading suffix, which is
7726 of the form "__" followed by digits. */
7728 tmp = strrchr (name, '.');
7733 while ((tmp = strstr (name, "__")) != NULL)
7735 if (isdigit (tmp[2]))
7745 if (name[1] == 'U' || name[1] == 'W')
7747 if (sscanf (name + 2, "%x", &v) != 1)
7753 GROW_VECT (result, result_len, 16);
7754 if (isascii (v) && isprint (v))
7755 xsnprintf (result, result_len, "'%c'", v);
7756 else if (name[1] == 'U')
7757 xsnprintf (result, result_len, "[\"%02x\"]", v);
7759 xsnprintf (result, result_len, "[\"%04x\"]", v);
7765 tmp = strstr (name, "__");
7767 tmp = strstr (name, "$");
7770 GROW_VECT (result, result_len, tmp - name + 1);
7771 strncpy (result, name, tmp - name);
7772 result[tmp - name] = '\0';
7780 /* Evaluate the subexpression of EXP starting at *POS as for
7781 evaluate_type, updating *POS to point just past the evaluated
7784 static struct value *
7785 evaluate_subexp_type (struct expression *exp, int *pos)
7787 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7790 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7793 static struct value *
7794 unwrap_value (struct value *val)
7796 struct type *type = ada_check_typedef (value_type (val));
7797 if (ada_is_aligner_type (type))
7799 struct value *v = ada_value_struct_elt (val, "F", 0);
7800 struct type *val_type = ada_check_typedef (value_type (v));
7801 if (ada_type_name (val_type) == NULL)
7802 TYPE_NAME (val_type) = ada_type_name (type);
7804 return unwrap_value (v);
7808 struct type *raw_real_type =
7809 ada_check_typedef (ada_get_base_type (type));
7811 /* If there is no parallel XVS or XVE type, then the value is
7812 already unwrapped. Return it without further modification. */
7813 if ((type == raw_real_type)
7814 && ada_find_parallel_type (type, "___XVE") == NULL)
7818 coerce_unspec_val_to_type
7819 (val, ada_to_fixed_type (raw_real_type, 0,
7820 value_address (val),
7825 static struct value *
7826 cast_to_fixed (struct type *type, struct value *arg)
7830 if (type == value_type (arg))
7832 else if (ada_is_fixed_point_type (value_type (arg)))
7833 val = ada_float_to_fixed (type,
7834 ada_fixed_to_float (value_type (arg),
7835 value_as_long (arg)));
7838 DOUBLEST argd = value_as_double (arg);
7839 val = ada_float_to_fixed (type, argd);
7842 return value_from_longest (type, val);
7845 static struct value *
7846 cast_from_fixed (struct type *type, struct value *arg)
7848 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7849 value_as_long (arg));
7850 return value_from_double (type, val);
7853 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7854 return the converted value. */
7856 static struct value *
7857 coerce_for_assign (struct type *type, struct value *val)
7859 struct type *type2 = value_type (val);
7863 type2 = ada_check_typedef (type2);
7864 type = ada_check_typedef (type);
7866 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7867 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7869 val = ada_value_ind (val);
7870 type2 = value_type (val);
7873 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7874 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7876 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7877 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7878 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7879 error (_("Incompatible types in assignment"));
7880 deprecated_set_value_type (val, type);
7885 static struct value *
7886 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7889 struct type *type1, *type2;
7892 arg1 = coerce_ref (arg1);
7893 arg2 = coerce_ref (arg2);
7894 type1 = base_type (ada_check_typedef (value_type (arg1)));
7895 type2 = base_type (ada_check_typedef (value_type (arg2)));
7897 if (TYPE_CODE (type1) != TYPE_CODE_INT
7898 || TYPE_CODE (type2) != TYPE_CODE_INT)
7899 return value_binop (arg1, arg2, op);
7908 return value_binop (arg1, arg2, op);
7911 v2 = value_as_long (arg2);
7913 error (_("second operand of %s must not be zero."), op_string (op));
7915 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7916 return value_binop (arg1, arg2, op);
7918 v1 = value_as_long (arg1);
7923 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7924 v += v > 0 ? -1 : 1;
7932 /* Should not reach this point. */
7936 val = allocate_value (type1);
7937 store_unsigned_integer (value_contents_raw (val),
7938 TYPE_LENGTH (value_type (val)),
7939 gdbarch_byte_order (get_type_arch (type1)), v);
7944 ada_value_equal (struct value *arg1, struct value *arg2)
7946 if (ada_is_direct_array_type (value_type (arg1))
7947 || ada_is_direct_array_type (value_type (arg2)))
7949 /* Automatically dereference any array reference before
7950 we attempt to perform the comparison. */
7951 arg1 = ada_coerce_ref (arg1);
7952 arg2 = ada_coerce_ref (arg2);
7954 arg1 = ada_coerce_to_simple_array (arg1);
7955 arg2 = ada_coerce_to_simple_array (arg2);
7956 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7957 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7958 error (_("Attempt to compare array with non-array"));
7959 /* FIXME: The following works only for types whose
7960 representations use all bits (no padding or undefined bits)
7961 and do not have user-defined equality. */
7963 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7964 && memcmp (value_contents (arg1), value_contents (arg2),
7965 TYPE_LENGTH (value_type (arg1))) == 0;
7967 return value_equal (arg1, arg2);
7970 /* Total number of component associations in the aggregate starting at
7971 index PC in EXP. Assumes that index PC is the start of an
7975 num_component_specs (struct expression *exp, int pc)
7978 m = exp->elts[pc + 1].longconst;
7981 for (i = 0; i < m; i += 1)
7983 switch (exp->elts[pc].opcode)
7989 n += exp->elts[pc + 1].longconst;
7992 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7997 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7998 component of LHS (a simple array or a record), updating *POS past
7999 the expression, assuming that LHS is contained in CONTAINER. Does
8000 not modify the inferior's memory, nor does it modify LHS (unless
8001 LHS == CONTAINER). */
8004 assign_component (struct value *container, struct value *lhs, LONGEST index,
8005 struct expression *exp, int *pos)
8007 struct value *mark = value_mark ();
8009 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8011 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8012 struct value *index_val = value_from_longest (index_type, index);
8013 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8017 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8018 elt = ada_to_fixed_value (unwrap_value (elt));
8021 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8022 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8024 value_assign_to_component (container, elt,
8025 ada_evaluate_subexp (NULL, exp, pos,
8028 value_free_to_mark (mark);
8031 /* Assuming that LHS represents an lvalue having a record or array
8032 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8033 of that aggregate's value to LHS, advancing *POS past the
8034 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8035 lvalue containing LHS (possibly LHS itself). Does not modify
8036 the inferior's memory, nor does it modify the contents of
8037 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8039 static struct value *
8040 assign_aggregate (struct value *container,
8041 struct value *lhs, struct expression *exp,
8042 int *pos, enum noside noside)
8044 struct type *lhs_type;
8045 int n = exp->elts[*pos+1].longconst;
8046 LONGEST low_index, high_index;
8049 int max_indices, num_indices;
8050 int is_array_aggregate;
8054 if (noside != EVAL_NORMAL)
8057 for (i = 0; i < n; i += 1)
8058 ada_evaluate_subexp (NULL, exp, pos, noside);
8062 container = ada_coerce_ref (container);
8063 if (ada_is_direct_array_type (value_type (container)))
8064 container = ada_coerce_to_simple_array (container);
8065 lhs = ada_coerce_ref (lhs);
8066 if (!deprecated_value_modifiable (lhs))
8067 error (_("Left operand of assignment is not a modifiable lvalue."));
8069 lhs_type = value_type (lhs);
8070 if (ada_is_direct_array_type (lhs_type))
8072 lhs = ada_coerce_to_simple_array (lhs);
8073 lhs_type = value_type (lhs);
8074 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8075 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8076 is_array_aggregate = 1;
8078 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8081 high_index = num_visible_fields (lhs_type) - 1;
8082 is_array_aggregate = 0;
8085 error (_("Left-hand side must be array or record."));
8087 num_specs = num_component_specs (exp, *pos - 3);
8088 max_indices = 4 * num_specs + 4;
8089 indices = alloca (max_indices * sizeof (indices[0]));
8090 indices[0] = indices[1] = low_index - 1;
8091 indices[2] = indices[3] = high_index + 1;
8094 for (i = 0; i < n; i += 1)
8096 switch (exp->elts[*pos].opcode)
8099 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8100 &num_indices, max_indices,
8101 low_index, high_index);
8104 aggregate_assign_positional (container, lhs, exp, pos, indices,
8105 &num_indices, max_indices,
8106 low_index, high_index);
8110 error (_("Misplaced 'others' clause"));
8111 aggregate_assign_others (container, lhs, exp, pos, indices,
8112 num_indices, low_index, high_index);
8115 error (_("Internal error: bad aggregate clause"));
8122 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8123 construct at *POS, updating *POS past the construct, given that
8124 the positions are relative to lower bound LOW, where HIGH is the
8125 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8126 updating *NUM_INDICES as needed. CONTAINER is as for
8127 assign_aggregate. */
8129 aggregate_assign_positional (struct value *container,
8130 struct value *lhs, struct expression *exp,
8131 int *pos, LONGEST *indices, int *num_indices,
8132 int max_indices, LONGEST low, LONGEST high)
8134 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8136 if (ind - 1 == high)
8137 warning (_("Extra components in aggregate ignored."));
8140 add_component_interval (ind, ind, indices, num_indices, max_indices);
8142 assign_component (container, lhs, ind, exp, pos);
8145 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8148 /* Assign into the components of LHS indexed by the OP_CHOICES
8149 construct at *POS, updating *POS past the construct, given that
8150 the allowable indices are LOW..HIGH. Record the indices assigned
8151 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8152 needed. CONTAINER is as for assign_aggregate. */
8154 aggregate_assign_from_choices (struct value *container,
8155 struct value *lhs, struct expression *exp,
8156 int *pos, LONGEST *indices, int *num_indices,
8157 int max_indices, LONGEST low, LONGEST high)
8160 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8161 int choice_pos, expr_pc;
8162 int is_array = ada_is_direct_array_type (value_type (lhs));
8164 choice_pos = *pos += 3;
8166 for (j = 0; j < n_choices; j += 1)
8167 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8169 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8171 for (j = 0; j < n_choices; j += 1)
8173 LONGEST lower, upper;
8174 enum exp_opcode op = exp->elts[choice_pos].opcode;
8175 if (op == OP_DISCRETE_RANGE)
8178 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8180 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8185 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8196 name = &exp->elts[choice_pos + 2].string;
8199 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8202 error (_("Invalid record component association."));
8204 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8206 if (! find_struct_field (name, value_type (lhs), 0,
8207 NULL, NULL, NULL, NULL, &ind))
8208 error (_("Unknown component name: %s."), name);
8209 lower = upper = ind;
8212 if (lower <= upper && (lower < low || upper > high))
8213 error (_("Index in component association out of bounds."));
8215 add_component_interval (lower, upper, indices, num_indices,
8217 while (lower <= upper)
8221 assign_component (container, lhs, lower, exp, &pos1);
8227 /* Assign the value of the expression in the OP_OTHERS construct in
8228 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8229 have not been previously assigned. The index intervals already assigned
8230 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8231 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8233 aggregate_assign_others (struct value *container,
8234 struct value *lhs, struct expression *exp,
8235 int *pos, LONGEST *indices, int num_indices,
8236 LONGEST low, LONGEST high)
8239 int expr_pc = *pos+1;
8241 for (i = 0; i < num_indices - 2; i += 2)
8244 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8248 assign_component (container, lhs, ind, exp, &pos);
8251 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8254 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8255 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8256 modifying *SIZE as needed. It is an error if *SIZE exceeds
8257 MAX_SIZE. The resulting intervals do not overlap. */
8259 add_component_interval (LONGEST low, LONGEST high,
8260 LONGEST* indices, int *size, int max_size)
8263 for (i = 0; i < *size; i += 2) {
8264 if (high >= indices[i] && low <= indices[i + 1])
8267 for (kh = i + 2; kh < *size; kh += 2)
8268 if (high < indices[kh])
8270 if (low < indices[i])
8272 indices[i + 1] = indices[kh - 1];
8273 if (high > indices[i + 1])
8274 indices[i + 1] = high;
8275 memcpy (indices + i + 2, indices + kh, *size - kh);
8276 *size -= kh - i - 2;
8279 else if (high < indices[i])
8283 if (*size == max_size)
8284 error (_("Internal error: miscounted aggregate components."));
8286 for (j = *size-1; j >= i+2; j -= 1)
8287 indices[j] = indices[j - 2];
8289 indices[i + 1] = high;
8292 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8295 static struct value *
8296 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8298 if (type == ada_check_typedef (value_type (arg2)))
8301 if (ada_is_fixed_point_type (type))
8302 return (cast_to_fixed (type, arg2));
8304 if (ada_is_fixed_point_type (value_type (arg2)))
8305 return cast_from_fixed (type, arg2);
8307 return value_cast (type, arg2);
8310 /* Evaluating Ada expressions, and printing their result.
8311 ------------------------------------------------------
8316 We usually evaluate an Ada expression in order to print its value.
8317 We also evaluate an expression in order to print its type, which
8318 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8319 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8320 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8321 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8324 Evaluating expressions is a little more complicated for Ada entities
8325 than it is for entities in languages such as C. The main reason for
8326 this is that Ada provides types whose definition might be dynamic.
8327 One example of such types is variant records. Or another example
8328 would be an array whose bounds can only be known at run time.
8330 The following description is a general guide as to what should be
8331 done (and what should NOT be done) in order to evaluate an expression
8332 involving such types, and when. This does not cover how the semantic
8333 information is encoded by GNAT as this is covered separatly. For the
8334 document used as the reference for the GNAT encoding, see exp_dbug.ads
8335 in the GNAT sources.
8337 Ideally, we should embed each part of this description next to its
8338 associated code. Unfortunately, the amount of code is so vast right
8339 now that it's hard to see whether the code handling a particular
8340 situation might be duplicated or not. One day, when the code is
8341 cleaned up, this guide might become redundant with the comments
8342 inserted in the code, and we might want to remove it.
8344 2. ``Fixing'' an Entity, the Simple Case:
8345 -----------------------------------------
8347 When evaluating Ada expressions, the tricky issue is that they may
8348 reference entities whose type contents and size are not statically
8349 known. Consider for instance a variant record:
8351 type Rec (Empty : Boolean := True) is record
8354 when False => Value : Integer;
8357 Yes : Rec := (Empty => False, Value => 1);
8358 No : Rec := (empty => True);
8360 The size and contents of that record depends on the value of the
8361 descriminant (Rec.Empty). At this point, neither the debugging
8362 information nor the associated type structure in GDB are able to
8363 express such dynamic types. So what the debugger does is to create
8364 "fixed" versions of the type that applies to the specific object.
8365 We also informally refer to this opperation as "fixing" an object,
8366 which means creating its associated fixed type.
8368 Example: when printing the value of variable "Yes" above, its fixed
8369 type would look like this:
8376 On the other hand, if we printed the value of "No", its fixed type
8383 Things become a little more complicated when trying to fix an entity
8384 with a dynamic type that directly contains another dynamic type,
8385 such as an array of variant records, for instance. There are
8386 two possible cases: Arrays, and records.
8388 3. ``Fixing'' Arrays:
8389 ---------------------
8391 The type structure in GDB describes an array in terms of its bounds,
8392 and the type of its elements. By design, all elements in the array
8393 have the same type and we cannot represent an array of variant elements
8394 using the current type structure in GDB. When fixing an array,
8395 we cannot fix the array element, as we would potentially need one
8396 fixed type per element of the array. As a result, the best we can do
8397 when fixing an array is to produce an array whose bounds and size
8398 are correct (allowing us to read it from memory), but without having
8399 touched its element type. Fixing each element will be done later,
8400 when (if) necessary.
8402 Arrays are a little simpler to handle than records, because the same
8403 amount of memory is allocated for each element of the array, even if
8404 the amount of space actually used by each element differs from element
8405 to element. Consider for instance the following array of type Rec:
8407 type Rec_Array is array (1 .. 2) of Rec;
8409 The actual amount of memory occupied by each element might be different
8410 from element to element, depending on the value of their discriminant.
8411 But the amount of space reserved for each element in the array remains
8412 fixed regardless. So we simply need to compute that size using
8413 the debugging information available, from which we can then determine
8414 the array size (we multiply the number of elements of the array by
8415 the size of each element).
8417 The simplest case is when we have an array of a constrained element
8418 type. For instance, consider the following type declarations:
8420 type Bounded_String (Max_Size : Integer) is
8422 Buffer : String (1 .. Max_Size);
8424 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8426 In this case, the compiler describes the array as an array of
8427 variable-size elements (identified by its XVS suffix) for which
8428 the size can be read in the parallel XVZ variable.
8430 In the case of an array of an unconstrained element type, the compiler
8431 wraps the array element inside a private PAD type. This type should not
8432 be shown to the user, and must be "unwrap"'ed before printing. Note
8433 that we also use the adjective "aligner" in our code to designate
8434 these wrapper types.
8436 In some cases, the size allocated for each element is statically
8437 known. In that case, the PAD type already has the correct size,
8438 and the array element should remain unfixed.
8440 But there are cases when this size is not statically known.
8441 For instance, assuming that "Five" is an integer variable:
8443 type Dynamic is array (1 .. Five) of Integer;
8444 type Wrapper (Has_Length : Boolean := False) is record
8447 when True => Length : Integer;
8451 type Wrapper_Array is array (1 .. 2) of Wrapper;
8453 Hello : Wrapper_Array := (others => (Has_Length => True,
8454 Data => (others => 17),
8458 The debugging info would describe variable Hello as being an
8459 array of a PAD type. The size of that PAD type is not statically
8460 known, but can be determined using a parallel XVZ variable.
8461 In that case, a copy of the PAD type with the correct size should
8462 be used for the fixed array.
8464 3. ``Fixing'' record type objects:
8465 ----------------------------------
8467 Things are slightly different from arrays in the case of dynamic
8468 record types. In this case, in order to compute the associated
8469 fixed type, we need to determine the size and offset of each of
8470 its components. This, in turn, requires us to compute the fixed
8471 type of each of these components.
8473 Consider for instance the example:
8475 type Bounded_String (Max_Size : Natural) is record
8476 Str : String (1 .. Max_Size);
8479 My_String : Bounded_String (Max_Size => 10);
8481 In that case, the position of field "Length" depends on the size
8482 of field Str, which itself depends on the value of the Max_Size
8483 discriminant. In order to fix the type of variable My_String,
8484 we need to fix the type of field Str. Therefore, fixing a variant
8485 record requires us to fix each of its components.
8487 However, if a component does not have a dynamic size, the component
8488 should not be fixed. In particular, fields that use a PAD type
8489 should not fixed. Here is an example where this might happen
8490 (assuming type Rec above):
8492 type Container (Big : Boolean) is record
8496 when True => Another : Integer;
8500 My_Container : Container := (Big => False,
8501 First => (Empty => True),
8504 In that example, the compiler creates a PAD type for component First,
8505 whose size is constant, and then positions the component After just
8506 right after it. The offset of component After is therefore constant
8509 The debugger computes the position of each field based on an algorithm
8510 that uses, among other things, the actual position and size of the field
8511 preceding it. Let's now imagine that the user is trying to print
8512 the value of My_Container. If the type fixing was recursive, we would
8513 end up computing the offset of field After based on the size of the
8514 fixed version of field First. And since in our example First has
8515 only one actual field, the size of the fixed type is actually smaller
8516 than the amount of space allocated to that field, and thus we would
8517 compute the wrong offset of field After.
8519 To make things more complicated, we need to watch out for dynamic
8520 components of variant records (identified by the ___XVL suffix in
8521 the component name). Even if the target type is a PAD type, the size
8522 of that type might not be statically known. So the PAD type needs
8523 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8524 we might end up with the wrong size for our component. This can be
8525 observed with the following type declarations:
8527 type Octal is new Integer range 0 .. 7;
8528 type Octal_Array is array (Positive range <>) of Octal;
8529 pragma Pack (Octal_Array);
8531 type Octal_Buffer (Size : Positive) is record
8532 Buffer : Octal_Array (1 .. Size);
8536 In that case, Buffer is a PAD type whose size is unset and needs
8537 to be computed by fixing the unwrapped type.
8539 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8540 ----------------------------------------------------------
8542 Lastly, when should the sub-elements of an entity that remained unfixed
8543 thus far, be actually fixed?
8545 The answer is: Only when referencing that element. For instance
8546 when selecting one component of a record, this specific component
8547 should be fixed at that point in time. Or when printing the value
8548 of a record, each component should be fixed before its value gets
8549 printed. Similarly for arrays, the element of the array should be
8550 fixed when printing each element of the array, or when extracting
8551 one element out of that array. On the other hand, fixing should
8552 not be performed on the elements when taking a slice of an array!
8554 Note that one of the side-effects of miscomputing the offset and
8555 size of each field is that we end up also miscomputing the size
8556 of the containing type. This can have adverse results when computing
8557 the value of an entity. GDB fetches the value of an entity based
8558 on the size of its type, and thus a wrong size causes GDB to fetch
8559 the wrong amount of memory. In the case where the computed size is
8560 too small, GDB fetches too little data to print the value of our
8561 entiry. Results in this case as unpredicatble, as we usually read
8562 past the buffer containing the data =:-o. */
8564 /* Implement the evaluate_exp routine in the exp_descriptor structure
8565 for the Ada language. */
8567 static struct value *
8568 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8569 int *pos, enum noside noside)
8574 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8577 struct value **argvec;
8581 op = exp->elts[pc].opcode;
8587 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8588 arg1 = unwrap_value (arg1);
8590 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8591 then we need to perform the conversion manually, because
8592 evaluate_subexp_standard doesn't do it. This conversion is
8593 necessary in Ada because the different kinds of float/fixed
8594 types in Ada have different representations.
8596 Similarly, we need to perform the conversion from OP_LONG
8598 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8599 arg1 = ada_value_cast (expect_type, arg1, noside);
8605 struct value *result;
8607 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8608 /* The result type will have code OP_STRING, bashed there from
8609 OP_ARRAY. Bash it back. */
8610 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8611 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8617 type = exp->elts[pc + 1].type;
8618 arg1 = evaluate_subexp (type, exp, pos, noside);
8619 if (noside == EVAL_SKIP)
8621 arg1 = ada_value_cast (type, arg1, noside);
8626 type = exp->elts[pc + 1].type;
8627 return ada_evaluate_subexp (type, exp, pos, noside);
8630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8631 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8633 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8634 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8636 return ada_value_assign (arg1, arg1);
8638 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8639 except if the lhs of our assignment is a convenience variable.
8640 In the case of assigning to a convenience variable, the lhs
8641 should be exactly the result of the evaluation of the rhs. */
8642 type = value_type (arg1);
8643 if (VALUE_LVAL (arg1) == lval_internalvar)
8645 arg2 = evaluate_subexp (type, exp, pos, noside);
8646 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8648 if (ada_is_fixed_point_type (value_type (arg1)))
8649 arg2 = cast_to_fixed (value_type (arg1), arg2);
8650 else if (ada_is_fixed_point_type (value_type (arg2)))
8652 (_("Fixed-point values must be assigned to fixed-point variables"));
8654 arg2 = coerce_for_assign (value_type (arg1), arg2);
8655 return ada_value_assign (arg1, arg2);
8658 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8659 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8660 if (noside == EVAL_SKIP)
8662 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8663 return (value_from_longest
8665 value_as_long (arg1) + value_as_long (arg2)));
8666 if ((ada_is_fixed_point_type (value_type (arg1))
8667 || ada_is_fixed_point_type (value_type (arg2)))
8668 && value_type (arg1) != value_type (arg2))
8669 error (_("Operands of fixed-point addition must have the same type"));
8670 /* Do the addition, and cast the result to the type of the first
8671 argument. We cannot cast the result to a reference type, so if
8672 ARG1 is a reference type, find its underlying type. */
8673 type = value_type (arg1);
8674 while (TYPE_CODE (type) == TYPE_CODE_REF)
8675 type = TYPE_TARGET_TYPE (type);
8676 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8677 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8680 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8681 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8682 if (noside == EVAL_SKIP)
8684 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8685 return (value_from_longest
8687 value_as_long (arg1) - value_as_long (arg2)));
8688 if ((ada_is_fixed_point_type (value_type (arg1))
8689 || ada_is_fixed_point_type (value_type (arg2)))
8690 && value_type (arg1) != value_type (arg2))
8691 error (_("Operands of fixed-point subtraction must have the same type"));
8692 /* Do the substraction, and cast the result to the type of the first
8693 argument. We cannot cast the result to a reference type, so if
8694 ARG1 is a reference type, find its underlying type. */
8695 type = value_type (arg1);
8696 while (TYPE_CODE (type) == TYPE_CODE_REF)
8697 type = TYPE_TARGET_TYPE (type);
8698 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8699 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8706 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8707 if (noside == EVAL_SKIP)
8709 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8712 return value_zero (value_type (arg1), not_lval);
8716 type = builtin_type (exp->gdbarch)->builtin_double;
8717 if (ada_is_fixed_point_type (value_type (arg1)))
8718 arg1 = cast_from_fixed (type, arg1);
8719 if (ada_is_fixed_point_type (value_type (arg2)))
8720 arg2 = cast_from_fixed (type, arg2);
8721 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8722 return ada_value_binop (arg1, arg2, op);
8726 case BINOP_NOTEQUAL:
8727 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8728 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8729 if (noside == EVAL_SKIP)
8731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8736 tem = ada_value_equal (arg1, arg2);
8738 if (op == BINOP_NOTEQUAL)
8740 type = language_bool_type (exp->language_defn, exp->gdbarch);
8741 return value_from_longest (type, (LONGEST) tem);
8744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8745 if (noside == EVAL_SKIP)
8747 else if (ada_is_fixed_point_type (value_type (arg1)))
8748 return value_cast (value_type (arg1), value_neg (arg1));
8751 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8752 return value_neg (arg1);
8755 case BINOP_LOGICAL_AND:
8756 case BINOP_LOGICAL_OR:
8757 case UNOP_LOGICAL_NOT:
8762 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8763 type = language_bool_type (exp->language_defn, exp->gdbarch);
8764 return value_cast (type, val);
8767 case BINOP_BITWISE_AND:
8768 case BINOP_BITWISE_IOR:
8769 case BINOP_BITWISE_XOR:
8773 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8775 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8777 return value_cast (value_type (arg1), val);
8783 if (noside == EVAL_SKIP)
8788 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8789 /* Only encountered when an unresolved symbol occurs in a
8790 context other than a function call, in which case, it is
8792 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8793 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8794 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8796 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8797 /* Check to see if this is a tagged type. We also need to handle
8798 the case where the type is a reference to a tagged type, but
8799 we have to be careful to exclude pointers to tagged types.
8800 The latter should be shown as usual (as a pointer), whereas
8801 a reference should mostly be transparent to the user. */
8802 if (ada_is_tagged_type (type, 0)
8803 || (TYPE_CODE(type) == TYPE_CODE_REF
8804 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8806 /* Tagged types are a little special in the fact that the real
8807 type is dynamic and can only be determined by inspecting the
8808 object's tag. This means that we need to get the object's
8809 value first (EVAL_NORMAL) and then extract the actual object
8812 Note that we cannot skip the final step where we extract
8813 the object type from its tag, because the EVAL_NORMAL phase
8814 results in dynamic components being resolved into fixed ones.
8815 This can cause problems when trying to print the type
8816 description of tagged types whose parent has a dynamic size:
8817 We use the type name of the "_parent" component in order
8818 to print the name of the ancestor type in the type description.
8819 If that component had a dynamic size, the resolution into
8820 a fixed type would result in the loss of that type name,
8821 thus preventing us from printing the name of the ancestor
8822 type in the type description. */
8823 struct type *actual_type;
8825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8826 actual_type = type_from_tag (ada_value_tag (arg1));
8827 if (actual_type == NULL)
8828 /* If, for some reason, we were unable to determine
8829 the actual type from the tag, then use the static
8830 approximation that we just computed as a fallback.
8831 This can happen if the debugging information is
8832 incomplete, for instance. */
8835 return value_zero (actual_type, not_lval);
8840 (to_static_fixed_type
8841 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8846 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8847 arg1 = unwrap_value (arg1);
8848 return ada_to_fixed_value (arg1);
8854 /* Allocate arg vector, including space for the function to be
8855 called in argvec[0] and a terminating NULL. */
8856 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8858 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8860 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8861 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8862 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8863 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8866 for (tem = 0; tem <= nargs; tem += 1)
8867 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8870 if (noside == EVAL_SKIP)
8874 if (ada_is_constrained_packed_array_type
8875 (desc_base_type (value_type (argvec[0]))))
8876 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8877 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8878 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8879 /* This is a packed array that has already been fixed, and
8880 therefore already coerced to a simple array. Nothing further
8883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8884 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8885 && VALUE_LVAL (argvec[0]) == lval_memory))
8886 argvec[0] = value_addr (argvec[0]);
8888 type = ada_check_typedef (value_type (argvec[0]));
8889 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8891 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8893 case TYPE_CODE_FUNC:
8894 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8896 case TYPE_CODE_ARRAY:
8898 case TYPE_CODE_STRUCT:
8899 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8900 argvec[0] = ada_value_ind (argvec[0]);
8901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8904 error (_("cannot subscript or call something of type `%s'"),
8905 ada_type_name (value_type (argvec[0])));
8910 switch (TYPE_CODE (type))
8912 case TYPE_CODE_FUNC:
8913 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8914 return allocate_value (TYPE_TARGET_TYPE (type));
8915 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8916 case TYPE_CODE_STRUCT:
8920 arity = ada_array_arity (type);
8921 type = ada_array_element_type (type, nargs);
8923 error (_("cannot subscript or call a record"));
8925 error (_("wrong number of subscripts; expecting %d"), arity);
8926 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8927 return value_zero (ada_aligned_type (type), lval_memory);
8929 unwrap_value (ada_value_subscript
8930 (argvec[0], nargs, argvec + 1));
8932 case TYPE_CODE_ARRAY:
8933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8935 type = ada_array_element_type (type, nargs);
8937 error (_("element type of array unknown"));
8939 return value_zero (ada_aligned_type (type), lval_memory);
8942 unwrap_value (ada_value_subscript
8943 (ada_coerce_to_simple_array (argvec[0]),
8944 nargs, argvec + 1));
8945 case TYPE_CODE_PTR: /* Pointer to array */
8946 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8949 type = ada_array_element_type (type, nargs);
8951 error (_("element type of array unknown"));
8953 return value_zero (ada_aligned_type (type), lval_memory);
8956 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8957 nargs, argvec + 1));
8960 error (_("Attempt to index or call something other than an "
8961 "array or function"));
8966 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8967 struct value *low_bound_val =
8968 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8969 struct value *high_bound_val =
8970 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8973 low_bound_val = coerce_ref (low_bound_val);
8974 high_bound_val = coerce_ref (high_bound_val);
8975 low_bound = pos_atr (low_bound_val);
8976 high_bound = pos_atr (high_bound_val);
8978 if (noside == EVAL_SKIP)
8981 /* If this is a reference to an aligner type, then remove all
8983 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8984 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8985 TYPE_TARGET_TYPE (value_type (array)) =
8986 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8988 if (ada_is_constrained_packed_array_type (value_type (array)))
8989 error (_("cannot slice a packed array"));
8991 /* If this is a reference to an array or an array lvalue,
8992 convert to a pointer. */
8993 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8994 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8995 && VALUE_LVAL (array) == lval_memory))
8996 array = value_addr (array);
8998 if (noside == EVAL_AVOID_SIDE_EFFECTS
8999 && ada_is_array_descriptor_type (ada_check_typedef
9000 (value_type (array))))
9001 return empty_array (ada_type_of_array (array, 0), low_bound);
9003 array = ada_coerce_to_simple_array_ptr (array);
9005 /* If we have more than one level of pointer indirection,
9006 dereference the value until we get only one level. */
9007 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9008 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9010 array = value_ind (array);
9012 /* Make sure we really do have an array type before going further,
9013 to avoid a SEGV when trying to get the index type or the target
9014 type later down the road if the debug info generated by
9015 the compiler is incorrect or incomplete. */
9016 if (!ada_is_simple_array_type (value_type (array)))
9017 error (_("cannot take slice of non-array"));
9019 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9021 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9022 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9026 struct type *arr_type0 =
9027 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9029 return ada_value_slice_from_ptr (array, arr_type0,
9030 longest_to_int (low_bound),
9031 longest_to_int (high_bound));
9034 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9036 else if (high_bound < low_bound)
9037 return empty_array (value_type (array), low_bound);
9039 return ada_value_slice (array, longest_to_int (low_bound),
9040 longest_to_int (high_bound));
9045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046 type = check_typedef (exp->elts[pc + 1].type);
9048 if (noside == EVAL_SKIP)
9051 switch (TYPE_CODE (type))
9054 lim_warning (_("Membership test incompletely implemented; "
9055 "always returns true"));
9056 type = language_bool_type (exp->language_defn, exp->gdbarch);
9057 return value_from_longest (type, (LONGEST) 1);
9059 case TYPE_CODE_RANGE:
9060 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9061 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9062 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9064 type = language_bool_type (exp->language_defn, exp->gdbarch);
9066 value_from_longest (type,
9067 (value_less (arg1, arg3)
9068 || value_equal (arg1, arg3))
9069 && (value_less (arg2, arg1)
9070 || value_equal (arg2, arg1)));
9073 case BINOP_IN_BOUNDS:
9075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9078 if (noside == EVAL_SKIP)
9081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9083 type = language_bool_type (exp->language_defn, exp->gdbarch);
9084 return value_zero (type, not_lval);
9087 tem = longest_to_int (exp->elts[pc + 1].longconst);
9089 type = ada_index_type (value_type (arg2), tem, "range");
9091 type = value_type (arg1);
9093 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9094 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9096 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9097 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9098 type = language_bool_type (exp->language_defn, exp->gdbarch);
9100 value_from_longest (type,
9101 (value_less (arg1, arg3)
9102 || value_equal (arg1, arg3))
9103 && (value_less (arg2, arg1)
9104 || value_equal (arg2, arg1)));
9106 case TERNOP_IN_RANGE:
9107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9109 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9111 if (noside == EVAL_SKIP)
9114 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9115 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9116 type = language_bool_type (exp->language_defn, exp->gdbarch);
9118 value_from_longest (type,
9119 (value_less (arg1, arg3)
9120 || value_equal (arg1, arg3))
9121 && (value_less (arg2, arg1)
9122 || value_equal (arg2, arg1)));
9128 struct type *type_arg;
9129 if (exp->elts[*pos].opcode == OP_TYPE)
9131 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9133 type_arg = check_typedef (exp->elts[pc + 2].type);
9137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9141 if (exp->elts[*pos].opcode != OP_LONG)
9142 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9143 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9146 if (noside == EVAL_SKIP)
9149 if (type_arg == NULL)
9151 arg1 = ada_coerce_ref (arg1);
9153 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9154 arg1 = ada_coerce_to_simple_array (arg1);
9156 type = ada_index_type (value_type (arg1), tem,
9157 ada_attribute_name (op));
9159 type = builtin_type (exp->gdbarch)->builtin_int;
9161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9162 return allocate_value (type);
9166 default: /* Should never happen. */
9167 error (_("unexpected attribute encountered"));
9169 return value_from_longest
9170 (type, ada_array_bound (arg1, tem, 0));
9172 return value_from_longest
9173 (type, ada_array_bound (arg1, tem, 1));
9175 return value_from_longest
9176 (type, ada_array_length (arg1, tem));
9179 else if (discrete_type_p (type_arg))
9181 struct type *range_type;
9182 char *name = ada_type_name (type_arg);
9184 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9185 range_type = to_fixed_range_type (name, NULL, type_arg);
9186 if (range_type == NULL)
9187 range_type = type_arg;
9191 error (_("unexpected attribute encountered"));
9193 return value_from_longest
9194 (range_type, ada_discrete_type_low_bound (range_type));
9196 return value_from_longest
9197 (range_type, ada_discrete_type_high_bound (range_type));
9199 error (_("the 'length attribute applies only to array types"));
9202 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9203 error (_("unimplemented type attribute"));
9208 if (ada_is_constrained_packed_array_type (type_arg))
9209 type_arg = decode_constrained_packed_array_type (type_arg);
9211 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9213 type = builtin_type (exp->gdbarch)->builtin_int;
9215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9216 return allocate_value (type);
9221 error (_("unexpected attribute encountered"));
9223 low = ada_array_bound_from_type (type_arg, tem, 0);
9224 return value_from_longest (type, low);
9226 high = ada_array_bound_from_type (type_arg, tem, 1);
9227 return value_from_longest (type, high);
9229 low = ada_array_bound_from_type (type_arg, tem, 0);
9230 high = ada_array_bound_from_type (type_arg, tem, 1);
9231 return value_from_longest (type, high - low + 1);
9237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9238 if (noside == EVAL_SKIP)
9241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9242 return value_zero (ada_tag_type (arg1), not_lval);
9244 return ada_value_tag (arg1);
9248 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9250 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9251 if (noside == EVAL_SKIP)
9253 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9254 return value_zero (value_type (arg1), not_lval);
9257 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9258 return value_binop (arg1, arg2,
9259 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9262 case OP_ATR_MODULUS:
9264 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9265 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9267 if (noside == EVAL_SKIP)
9270 if (!ada_is_modular_type (type_arg))
9271 error (_("'modulus must be applied to modular type"));
9273 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9274 ada_modulus (type_arg));
9279 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9281 if (noside == EVAL_SKIP)
9283 type = builtin_type (exp->gdbarch)->builtin_int;
9284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9285 return value_zero (type, not_lval);
9287 return value_pos_atr (type, arg1);
9290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9291 type = value_type (arg1);
9293 /* If the argument is a reference, then dereference its type, since
9294 the user is really asking for the size of the actual object,
9295 not the size of the pointer. */
9296 if (TYPE_CODE (type) == TYPE_CODE_REF)
9297 type = TYPE_TARGET_TYPE (type);
9299 if (noside == EVAL_SKIP)
9301 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9302 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9304 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9305 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9308 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9309 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9310 type = exp->elts[pc + 2].type;
9311 if (noside == EVAL_SKIP)
9313 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9314 return value_zero (type, not_lval);
9316 return value_val_atr (type, arg1);
9319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9320 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 if (noside == EVAL_SKIP)
9323 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9324 return value_zero (value_type (arg1), not_lval);
9327 /* For integer exponentiation operations,
9328 only promote the first argument. */
9329 if (is_integral_type (value_type (arg2)))
9330 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9332 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9334 return value_binop (arg1, arg2, op);
9338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9339 if (noside == EVAL_SKIP)
9345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9346 if (noside == EVAL_SKIP)
9348 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9349 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9350 return value_neg (arg1);
9355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9356 if (noside == EVAL_SKIP)
9358 type = ada_check_typedef (value_type (arg1));
9359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9361 if (ada_is_array_descriptor_type (type))
9362 /* GDB allows dereferencing GNAT array descriptors. */
9364 struct type *arrType = ada_type_of_array (arg1, 0);
9365 if (arrType == NULL)
9366 error (_("Attempt to dereference null array pointer."));
9367 return value_at_lazy (arrType, 0);
9369 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9370 || TYPE_CODE (type) == TYPE_CODE_REF
9371 /* In C you can dereference an array to get the 1st elt. */
9372 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9374 type = to_static_fixed_type
9376 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9378 return value_zero (type, lval_memory);
9380 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9382 /* GDB allows dereferencing an int. */
9383 if (expect_type == NULL)
9384 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9389 to_static_fixed_type (ada_aligned_type (expect_type));
9390 return value_zero (expect_type, lval_memory);
9394 error (_("Attempt to take contents of a non-pointer value."));
9396 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9397 type = ada_check_typedef (value_type (arg1));
9399 if (TYPE_CODE (type) == TYPE_CODE_INT)
9400 /* GDB allows dereferencing an int. If we were given
9401 the expect_type, then use that as the target type.
9402 Otherwise, assume that the target type is an int. */
9404 if (expect_type != NULL)
9405 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9408 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9409 (CORE_ADDR) value_as_address (arg1));
9412 if (ada_is_array_descriptor_type (type))
9413 /* GDB allows dereferencing GNAT array descriptors. */
9414 return ada_coerce_to_simple_array (arg1);
9416 return ada_value_ind (arg1);
9418 case STRUCTOP_STRUCT:
9419 tem = longest_to_int (exp->elts[pc + 1].longconst);
9420 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9422 if (noside == EVAL_SKIP)
9424 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9426 struct type *type1 = value_type (arg1);
9427 if (ada_is_tagged_type (type1, 1))
9429 type = ada_lookup_struct_elt_type (type1,
9430 &exp->elts[pc + 2].string,
9433 /* In this case, we assume that the field COULD exist
9434 in some extension of the type. Return an object of
9435 "type" void, which will match any formal
9436 (see ada_type_match). */
9437 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9442 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9445 return value_zero (ada_aligned_type (type), lval_memory);
9448 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9449 arg1 = unwrap_value (arg1);
9450 return ada_to_fixed_value (arg1);
9453 /* The value is not supposed to be used. This is here to make it
9454 easier to accommodate expressions that contain types. */
9456 if (noside == EVAL_SKIP)
9458 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9459 return allocate_value (exp->elts[pc + 1].type);
9461 error (_("Attempt to use a type name as an expression"));
9466 case OP_DISCRETE_RANGE:
9469 if (noside == EVAL_NORMAL)
9473 error (_("Undefined name, ambiguous name, or renaming used in "
9474 "component association: %s."), &exp->elts[pc+2].string);
9476 error (_("Aggregates only allowed on the right of an assignment"));
9478 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9481 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9483 for (tem = 0; tem < nargs; tem += 1)
9484 ada_evaluate_subexp (NULL, exp, pos, noside);
9489 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9495 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9496 type name that encodes the 'small and 'delta information.
9497 Otherwise, return NULL. */
9500 fixed_type_info (struct type *type)
9502 const char *name = ada_type_name (type);
9503 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9505 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9507 const char *tail = strstr (name, "___XF_");
9513 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9514 return fixed_type_info (TYPE_TARGET_TYPE (type));
9519 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9522 ada_is_fixed_point_type (struct type *type)
9524 return fixed_type_info (type) != NULL;
9527 /* Return non-zero iff TYPE represents a System.Address type. */
9530 ada_is_system_address_type (struct type *type)
9532 return (TYPE_NAME (type)
9533 && strcmp (TYPE_NAME (type), "system__address") == 0);
9536 /* Assuming that TYPE is the representation of an Ada fixed-point
9537 type, return its delta, or -1 if the type is malformed and the
9538 delta cannot be determined. */
9541 ada_delta (struct type *type)
9543 const char *encoding = fixed_type_info (type);
9546 /* Strictly speaking, num and den are encoded as integer. However,
9547 they may not fit into a long, and they will have to be converted
9548 to DOUBLEST anyway. So scan them as DOUBLEST. */
9549 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9556 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9557 factor ('SMALL value) associated with the type. */
9560 scaling_factor (struct type *type)
9562 const char *encoding = fixed_type_info (type);
9563 DOUBLEST num0, den0, num1, den1;
9566 /* Strictly speaking, num's and den's are encoded as integer. However,
9567 they may not fit into a long, and they will have to be converted
9568 to DOUBLEST anyway. So scan them as DOUBLEST. */
9569 n = sscanf (encoding,
9570 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9571 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9572 &num0, &den0, &num1, &den1);
9583 /* Assuming that X is the representation of a value of fixed-point
9584 type TYPE, return its floating-point equivalent. */
9587 ada_fixed_to_float (struct type *type, LONGEST x)
9589 return (DOUBLEST) x *scaling_factor (type);
9592 /* The representation of a fixed-point value of type TYPE
9593 corresponding to the value X. */
9596 ada_float_to_fixed (struct type *type, DOUBLEST x)
9598 return (LONGEST) (x / scaling_factor (type) + 0.5);
9605 /* Scan STR beginning at position K for a discriminant name, and
9606 return the value of that discriminant field of DVAL in *PX. If
9607 PNEW_K is not null, put the position of the character beyond the
9608 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9609 not alter *PX and *PNEW_K if unsuccessful. */
9612 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9615 static char *bound_buffer = NULL;
9616 static size_t bound_buffer_len = 0;
9619 struct value *bound_val;
9621 if (dval == NULL || str == NULL || str[k] == '\0')
9624 pend = strstr (str + k, "__");
9628 k += strlen (bound);
9632 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9633 bound = bound_buffer;
9634 strncpy (bound_buffer, str + k, pend - (str + k));
9635 bound[pend - (str + k)] = '\0';
9639 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9640 if (bound_val == NULL)
9643 *px = value_as_long (bound_val);
9649 /* Value of variable named NAME in the current environment. If
9650 no such variable found, then if ERR_MSG is null, returns 0, and
9651 otherwise causes an error with message ERR_MSG. */
9653 static struct value *
9654 get_var_value (char *name, char *err_msg)
9656 struct ada_symbol_info *syms;
9659 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9664 if (err_msg == NULL)
9667 error (("%s"), err_msg);
9670 return value_of_variable (syms[0].sym, syms[0].block);
9673 /* Value of integer variable named NAME in the current environment. If
9674 no such variable found, returns 0, and sets *FLAG to 0. If
9675 successful, sets *FLAG to 1. */
9678 get_int_var_value (char *name, int *flag)
9680 struct value *var_val = get_var_value (name, 0);
9692 return value_as_long (var_val);
9697 /* Return a range type whose base type is that of the range type named
9698 NAME in the current environment, and whose bounds are calculated
9699 from NAME according to the GNAT range encoding conventions.
9700 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9701 corresponding range type from debug information; fall back to using it
9702 if symbol lookup fails. If a new type must be created, allocate it
9703 like ORIG_TYPE was. The bounds information, in general, is encoded
9704 in NAME, the base type given in the named range type. */
9706 static struct type *
9707 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9709 struct type *raw_type = ada_find_any_type (name);
9710 struct type *base_type;
9713 /* Fall back to the original type if symbol lookup failed. */
9714 if (raw_type == NULL)
9715 raw_type = orig_type;
9717 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9718 base_type = TYPE_TARGET_TYPE (raw_type);
9720 base_type = raw_type;
9722 subtype_info = strstr (name, "___XD");
9723 if (subtype_info == NULL)
9725 LONGEST L = ada_discrete_type_low_bound (raw_type);
9726 LONGEST U = ada_discrete_type_high_bound (raw_type);
9727 if (L < INT_MIN || U > INT_MAX)
9730 return create_range_type (alloc_type_copy (orig_type), raw_type,
9731 ada_discrete_type_low_bound (raw_type),
9732 ada_discrete_type_high_bound (raw_type));
9736 static char *name_buf = NULL;
9737 static size_t name_len = 0;
9738 int prefix_len = subtype_info - name;
9744 GROW_VECT (name_buf, name_len, prefix_len + 5);
9745 strncpy (name_buf, name, prefix_len);
9746 name_buf[prefix_len] = '\0';
9749 bounds_str = strchr (subtype_info, '_');
9752 if (*subtype_info == 'L')
9754 if (!ada_scan_number (bounds_str, n, &L, &n)
9755 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9757 if (bounds_str[n] == '_')
9759 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9766 strcpy (name_buf + prefix_len, "___L");
9767 L = get_int_var_value (name_buf, &ok);
9770 lim_warning (_("Unknown lower bound, using 1."));
9775 if (*subtype_info == 'U')
9777 if (!ada_scan_number (bounds_str, n, &U, &n)
9778 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9784 strcpy (name_buf + prefix_len, "___U");
9785 U = get_int_var_value (name_buf, &ok);
9788 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9793 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9794 TYPE_NAME (type) = name;
9799 /* True iff NAME is the name of a range type. */
9802 ada_is_range_type_name (const char *name)
9804 return (name != NULL && strstr (name, "___XD"));
9810 /* True iff TYPE is an Ada modular type. */
9813 ada_is_modular_type (struct type *type)
9815 struct type *subranged_type = base_type (type);
9817 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9818 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9819 && TYPE_UNSIGNED (subranged_type));
9822 /* Try to determine the lower and upper bounds of the given modular type
9823 using the type name only. Return non-zero and set L and U as the lower
9824 and upper bounds (respectively) if successful. */
9827 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9829 char *name = ada_type_name (type);
9837 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9838 we are looking for static bounds, which means an __XDLU suffix.
9839 Moreover, we know that the lower bound of modular types is always
9840 zero, so the actual suffix should start with "__XDLU_0__", and
9841 then be followed by the upper bound value. */
9842 suffix = strstr (name, "__XDLU_0__");
9846 if (!ada_scan_number (suffix, k, &U, NULL))
9849 *modulus = (ULONGEST) U + 1;
9853 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9856 ada_modulus (struct type *type)
9858 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9862 /* Ada exception catchpoint support:
9863 ---------------------------------
9865 We support 3 kinds of exception catchpoints:
9866 . catchpoints on Ada exceptions
9867 . catchpoints on unhandled Ada exceptions
9868 . catchpoints on failed assertions
9870 Exceptions raised during failed assertions, or unhandled exceptions
9871 could perfectly be caught with the general catchpoint on Ada exceptions.
9872 However, we can easily differentiate these two special cases, and having
9873 the option to distinguish these two cases from the rest can be useful
9874 to zero-in on certain situations.
9876 Exception catchpoints are a specialized form of breakpoint,
9877 since they rely on inserting breakpoints inside known routines
9878 of the GNAT runtime. The implementation therefore uses a standard
9879 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9882 Support in the runtime for exception catchpoints have been changed
9883 a few times already, and these changes affect the implementation
9884 of these catchpoints. In order to be able to support several
9885 variants of the runtime, we use a sniffer that will determine
9886 the runtime variant used by the program being debugged.
9888 At this time, we do not support the use of conditions on Ada exception
9889 catchpoints. The COND and COND_STRING fields are therefore set
9890 to NULL (most of the time, see below).
9892 Conditions where EXP_STRING, COND, and COND_STRING are used:
9894 When a user specifies the name of a specific exception in the case
9895 of catchpoints on Ada exceptions, we store the name of that exception
9896 in the EXP_STRING. We then translate this request into an actual
9897 condition stored in COND_STRING, and then parse it into an expression
9900 /* The different types of catchpoints that we introduced for catching
9903 enum exception_catchpoint_kind
9906 ex_catch_exception_unhandled,
9910 /* Ada's standard exceptions. */
9912 static char *standard_exc[] = {
9919 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9921 /* A structure that describes how to support exception catchpoints
9922 for a given executable. */
9924 struct exception_support_info
9926 /* The name of the symbol to break on in order to insert
9927 a catchpoint on exceptions. */
9928 const char *catch_exception_sym;
9930 /* The name of the symbol to break on in order to insert
9931 a catchpoint on unhandled exceptions. */
9932 const char *catch_exception_unhandled_sym;
9934 /* The name of the symbol to break on in order to insert
9935 a catchpoint on failed assertions. */
9936 const char *catch_assert_sym;
9938 /* Assuming that the inferior just triggered an unhandled exception
9939 catchpoint, this function is responsible for returning the address
9940 in inferior memory where the name of that exception is stored.
9941 Return zero if the address could not be computed. */
9942 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9945 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9946 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9948 /* The following exception support info structure describes how to
9949 implement exception catchpoints with the latest version of the
9950 Ada runtime (as of 2007-03-06). */
9952 static const struct exception_support_info default_exception_support_info =
9954 "__gnat_debug_raise_exception", /* catch_exception_sym */
9955 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9956 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9957 ada_unhandled_exception_name_addr
9960 /* The following exception support info structure describes how to
9961 implement exception catchpoints with a slightly older version
9962 of the Ada runtime. */
9964 static const struct exception_support_info exception_support_info_fallback =
9966 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9967 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9968 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9969 ada_unhandled_exception_name_addr_from_raise
9972 /* For each executable, we sniff which exception info structure to use
9973 and cache it in the following global variable. */
9975 static const struct exception_support_info *exception_info = NULL;
9977 /* Inspect the Ada runtime and determine which exception info structure
9978 should be used to provide support for exception catchpoints.
9980 This function will always set exception_info, or raise an error. */
9983 ada_exception_support_info_sniffer (void)
9987 /* If the exception info is already known, then no need to recompute it. */
9988 if (exception_info != NULL)
9991 /* Check the latest (default) exception support info. */
9992 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9996 exception_info = &default_exception_support_info;
10000 /* Try our fallback exception suport info. */
10001 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10005 exception_info = &exception_support_info_fallback;
10009 /* Sometimes, it is normal for us to not be able to find the routine
10010 we are looking for. This happens when the program is linked with
10011 the shared version of the GNAT runtime, and the program has not been
10012 started yet. Inform the user of these two possible causes if
10015 if (ada_update_initial_language (language_unknown) != language_ada)
10016 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10018 /* If the symbol does not exist, then check that the program is
10019 already started, to make sure that shared libraries have been
10020 loaded. If it is not started, this may mean that the symbol is
10021 in a shared library. */
10023 if (ptid_get_pid (inferior_ptid) == 0)
10024 error (_("Unable to insert catchpoint. Try to start the program first."));
10026 /* At this point, we know that we are debugging an Ada program and
10027 that the inferior has been started, but we still are not able to
10028 find the run-time symbols. That can mean that we are in
10029 configurable run time mode, or that a-except as been optimized
10030 out by the linker... In any case, at this point it is not worth
10031 supporting this feature. */
10033 error (_("Cannot insert catchpoints in this configuration."));
10036 /* An observer of "executable_changed" events.
10037 Its role is to clear certain cached values that need to be recomputed
10038 each time a new executable is loaded by GDB. */
10041 ada_executable_changed_observer (void)
10043 /* If the executable changed, then it is possible that the Ada runtime
10044 is different. So we need to invalidate the exception support info
10046 exception_info = NULL;
10049 /* True iff FRAME is very likely to be that of a function that is
10050 part of the runtime system. This is all very heuristic, but is
10051 intended to be used as advice as to what frames are uninteresting
10055 is_known_support_routine (struct frame_info *frame)
10057 struct symtab_and_line sal;
10059 enum language func_lang;
10062 /* If this code does not have any debugging information (no symtab),
10063 This cannot be any user code. */
10065 find_frame_sal (frame, &sal);
10066 if (sal.symtab == NULL)
10069 /* If there is a symtab, but the associated source file cannot be
10070 located, then assume this is not user code: Selecting a frame
10071 for which we cannot display the code would not be very helpful
10072 for the user. This should also take care of case such as VxWorks
10073 where the kernel has some debugging info provided for a few units. */
10075 if (symtab_to_fullname (sal.symtab) == NULL)
10078 /* Check the unit filename againt the Ada runtime file naming.
10079 We also check the name of the objfile against the name of some
10080 known system libraries that sometimes come with debugging info
10083 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10085 re_comp (known_runtime_file_name_patterns[i]);
10086 if (re_exec (sal.symtab->filename))
10088 if (sal.symtab->objfile != NULL
10089 && re_exec (sal.symtab->objfile->name))
10093 /* Check whether the function is a GNAT-generated entity. */
10095 find_frame_funname (frame, &func_name, &func_lang);
10096 if (func_name == NULL)
10099 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10101 re_comp (known_auxiliary_function_name_patterns[i]);
10102 if (re_exec (func_name))
10109 /* Find the first frame that contains debugging information and that is not
10110 part of the Ada run-time, starting from FI and moving upward. */
10113 ada_find_printable_frame (struct frame_info *fi)
10115 for (; fi != NULL; fi = get_prev_frame (fi))
10117 if (!is_known_support_routine (fi))
10126 /* Assuming that the inferior just triggered an unhandled exception
10127 catchpoint, return the address in inferior memory where the name
10128 of the exception is stored.
10130 Return zero if the address could not be computed. */
10133 ada_unhandled_exception_name_addr (void)
10135 return parse_and_eval_address ("e.full_name");
10138 /* Same as ada_unhandled_exception_name_addr, except that this function
10139 should be used when the inferior uses an older version of the runtime,
10140 where the exception name needs to be extracted from a specific frame
10141 several frames up in the callstack. */
10144 ada_unhandled_exception_name_addr_from_raise (void)
10147 struct frame_info *fi;
10149 /* To determine the name of this exception, we need to select
10150 the frame corresponding to RAISE_SYM_NAME. This frame is
10151 at least 3 levels up, so we simply skip the first 3 frames
10152 without checking the name of their associated function. */
10153 fi = get_current_frame ();
10154 for (frame_level = 0; frame_level < 3; frame_level += 1)
10156 fi = get_prev_frame (fi);
10161 enum language func_lang;
10163 find_frame_funname (fi, &func_name, &func_lang);
10164 if (func_name != NULL
10165 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10166 break; /* We found the frame we were looking for... */
10167 fi = get_prev_frame (fi);
10174 return parse_and_eval_address ("id.full_name");
10177 /* Assuming the inferior just triggered an Ada exception catchpoint
10178 (of any type), return the address in inferior memory where the name
10179 of the exception is stored, if applicable.
10181 Return zero if the address could not be computed, or if not relevant. */
10184 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10185 struct breakpoint *b)
10189 case ex_catch_exception:
10190 return (parse_and_eval_address ("e.full_name"));
10193 case ex_catch_exception_unhandled:
10194 return exception_info->unhandled_exception_name_addr ();
10197 case ex_catch_assert:
10198 return 0; /* Exception name is not relevant in this case. */
10202 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10206 return 0; /* Should never be reached. */
10209 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10210 any error that ada_exception_name_addr_1 might cause to be thrown.
10211 When an error is intercepted, a warning with the error message is printed,
10212 and zero is returned. */
10215 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10216 struct breakpoint *b)
10218 struct gdb_exception e;
10219 CORE_ADDR result = 0;
10221 TRY_CATCH (e, RETURN_MASK_ERROR)
10223 result = ada_exception_name_addr_1 (ex, b);
10228 warning (_("failed to get exception name: %s"), e.message);
10235 /* Implement the PRINT_IT method in the breakpoint_ops structure
10236 for all exception catchpoint kinds. */
10238 static enum print_stop_action
10239 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10241 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10242 char exception_name[256];
10246 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10247 exception_name [sizeof (exception_name) - 1] = '\0';
10250 ada_find_printable_frame (get_current_frame ());
10252 annotate_catchpoint (b->number);
10255 case ex_catch_exception:
10257 printf_filtered (_("\nCatchpoint %d, %s at "),
10258 b->number, exception_name);
10260 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10262 case ex_catch_exception_unhandled:
10264 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10265 b->number, exception_name);
10267 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10270 case ex_catch_assert:
10271 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10276 return PRINT_SRC_AND_LOC;
10279 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10280 for all exception catchpoint kinds. */
10283 print_one_exception (enum exception_catchpoint_kind ex,
10284 struct breakpoint *b, struct bp_location **last_loc)
10286 struct value_print_options opts;
10288 get_user_print_options (&opts);
10289 if (opts.addressprint)
10291 annotate_field (4);
10292 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10295 annotate_field (5);
10296 *last_loc = b->loc;
10299 case ex_catch_exception:
10300 if (b->exp_string != NULL)
10302 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10304 ui_out_field_string (uiout, "what", msg);
10308 ui_out_field_string (uiout, "what", "all Ada exceptions");
10312 case ex_catch_exception_unhandled:
10313 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10316 case ex_catch_assert:
10317 ui_out_field_string (uiout, "what", "failed Ada assertions");
10321 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10326 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10327 for all exception catchpoint kinds. */
10330 print_mention_exception (enum exception_catchpoint_kind ex,
10331 struct breakpoint *b)
10335 case ex_catch_exception:
10336 if (b->exp_string != NULL)
10337 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10338 b->number, b->exp_string);
10340 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10344 case ex_catch_exception_unhandled:
10345 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10349 case ex_catch_assert:
10350 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10354 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10359 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10360 for all exception catchpoint kinds. */
10363 print_recreate_exception (enum exception_catchpoint_kind ex,
10364 struct breakpoint *b, struct ui_file *fp)
10368 case ex_catch_exception:
10369 fprintf_filtered (fp, "catch exception");
10370 if (b->exp_string != NULL)
10371 fprintf_filtered (fp, " %s", b->exp_string);
10374 case ex_catch_exception_unhandled:
10375 fprintf_filtered (fp, "catch exception unhandled");
10378 case ex_catch_assert:
10379 fprintf_filtered (fp, "catch assert");
10383 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10387 /* Virtual table for "catch exception" breakpoints. */
10389 static enum print_stop_action
10390 print_it_catch_exception (struct breakpoint *b)
10392 return print_it_exception (ex_catch_exception, b);
10396 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10398 print_one_exception (ex_catch_exception, b, last_loc);
10402 print_mention_catch_exception (struct breakpoint *b)
10404 print_mention_exception (ex_catch_exception, b);
10408 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10410 print_recreate_exception (ex_catch_exception, b, fp);
10413 static struct breakpoint_ops catch_exception_breakpoint_ops =
10417 NULL, /* breakpoint_hit */
10418 print_it_catch_exception,
10419 print_one_catch_exception,
10420 print_mention_catch_exception,
10421 print_recreate_catch_exception
10424 /* Virtual table for "catch exception unhandled" breakpoints. */
10426 static enum print_stop_action
10427 print_it_catch_exception_unhandled (struct breakpoint *b)
10429 return print_it_exception (ex_catch_exception_unhandled, b);
10433 print_one_catch_exception_unhandled (struct breakpoint *b,
10434 struct bp_location **last_loc)
10436 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10440 print_mention_catch_exception_unhandled (struct breakpoint *b)
10442 print_mention_exception (ex_catch_exception_unhandled, b);
10446 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10447 struct ui_file *fp)
10449 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10452 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10455 NULL, /* breakpoint_hit */
10456 print_it_catch_exception_unhandled,
10457 print_one_catch_exception_unhandled,
10458 print_mention_catch_exception_unhandled,
10459 print_recreate_catch_exception_unhandled
10462 /* Virtual table for "catch assert" breakpoints. */
10464 static enum print_stop_action
10465 print_it_catch_assert (struct breakpoint *b)
10467 return print_it_exception (ex_catch_assert, b);
10471 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10473 print_one_exception (ex_catch_assert, b, last_loc);
10477 print_mention_catch_assert (struct breakpoint *b)
10479 print_mention_exception (ex_catch_assert, b);
10483 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10485 print_recreate_exception (ex_catch_assert, b, fp);
10488 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10491 NULL, /* breakpoint_hit */
10492 print_it_catch_assert,
10493 print_one_catch_assert,
10494 print_mention_catch_assert,
10495 print_recreate_catch_assert
10498 /* Return non-zero if B is an Ada exception catchpoint. */
10501 ada_exception_catchpoint_p (struct breakpoint *b)
10503 return (b->ops == &catch_exception_breakpoint_ops
10504 || b->ops == &catch_exception_unhandled_breakpoint_ops
10505 || b->ops == &catch_assert_breakpoint_ops);
10508 /* Return a newly allocated copy of the first space-separated token
10509 in ARGSP, and then adjust ARGSP to point immediately after that
10512 Return NULL if ARGPS does not contain any more tokens. */
10515 ada_get_next_arg (char **argsp)
10517 char *args = *argsp;
10521 /* Skip any leading white space. */
10523 while (isspace (*args))
10526 if (args[0] == '\0')
10527 return NULL; /* No more arguments. */
10529 /* Find the end of the current argument. */
10532 while (*end != '\0' && !isspace (*end))
10535 /* Adjust ARGSP to point to the start of the next argument. */
10539 /* Make a copy of the current argument and return it. */
10541 result = xmalloc (end - args + 1);
10542 strncpy (result, args, end - args);
10543 result[end - args] = '\0';
10548 /* Split the arguments specified in a "catch exception" command.
10549 Set EX to the appropriate catchpoint type.
10550 Set EXP_STRING to the name of the specific exception if
10551 specified by the user. */
10554 catch_ada_exception_command_split (char *args,
10555 enum exception_catchpoint_kind *ex,
10558 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10559 char *exception_name;
10561 exception_name = ada_get_next_arg (&args);
10562 make_cleanup (xfree, exception_name);
10564 /* Check that we do not have any more arguments. Anything else
10567 while (isspace (*args))
10570 if (args[0] != '\0')
10571 error (_("Junk at end of expression"));
10573 discard_cleanups (old_chain);
10575 if (exception_name == NULL)
10577 /* Catch all exceptions. */
10578 *ex = ex_catch_exception;
10579 *exp_string = NULL;
10581 else if (strcmp (exception_name, "unhandled") == 0)
10583 /* Catch unhandled exceptions. */
10584 *ex = ex_catch_exception_unhandled;
10585 *exp_string = NULL;
10589 /* Catch a specific exception. */
10590 *ex = ex_catch_exception;
10591 *exp_string = exception_name;
10595 /* Return the name of the symbol on which we should break in order to
10596 implement a catchpoint of the EX kind. */
10598 static const char *
10599 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10601 gdb_assert (exception_info != NULL);
10605 case ex_catch_exception:
10606 return (exception_info->catch_exception_sym);
10608 case ex_catch_exception_unhandled:
10609 return (exception_info->catch_exception_unhandled_sym);
10611 case ex_catch_assert:
10612 return (exception_info->catch_assert_sym);
10615 internal_error (__FILE__, __LINE__,
10616 _("unexpected catchpoint kind (%d)"), ex);
10620 /* Return the breakpoint ops "virtual table" used for catchpoints
10623 static struct breakpoint_ops *
10624 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10628 case ex_catch_exception:
10629 return (&catch_exception_breakpoint_ops);
10631 case ex_catch_exception_unhandled:
10632 return (&catch_exception_unhandled_breakpoint_ops);
10634 case ex_catch_assert:
10635 return (&catch_assert_breakpoint_ops);
10638 internal_error (__FILE__, __LINE__,
10639 _("unexpected catchpoint kind (%d)"), ex);
10643 /* Return the condition that will be used to match the current exception
10644 being raised with the exception that the user wants to catch. This
10645 assumes that this condition is used when the inferior just triggered
10646 an exception catchpoint.
10648 The string returned is a newly allocated string that needs to be
10649 deallocated later. */
10652 ada_exception_catchpoint_cond_string (const char *exp_string)
10656 /* The standard exceptions are a special case. They are defined in
10657 runtime units that have been compiled without debugging info; if
10658 EXP_STRING is the not-fully-qualified name of a standard
10659 exception (e.g. "constraint_error") then, during the evaluation
10660 of the condition expression, the symbol lookup on this name would
10661 *not* return this standard exception. The catchpoint condition
10662 may then be set only on user-defined exceptions which have the
10663 same not-fully-qualified name (e.g. my_package.constraint_error).
10665 To avoid this unexcepted behavior, these standard exceptions are
10666 systematically prefixed by "standard". This means that "catch
10667 exception constraint_error" is rewritten into "catch exception
10668 standard.constraint_error".
10670 If an exception named contraint_error is defined in another package of
10671 the inferior program, then the only way to specify this exception as a
10672 breakpoint condition is to use its fully-qualified named:
10673 e.g. my_package.constraint_error. */
10675 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10677 if (strcmp (standard_exc [i], exp_string) == 0)
10679 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10683 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10686 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10688 static struct expression *
10689 ada_parse_catchpoint_condition (char *cond_string,
10690 struct symtab_and_line sal)
10692 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10695 /* Return the symtab_and_line that should be used to insert an exception
10696 catchpoint of the TYPE kind.
10698 EX_STRING should contain the name of a specific exception
10699 that the catchpoint should catch, or NULL otherwise.
10701 The idea behind all the remaining parameters is that their names match
10702 the name of certain fields in the breakpoint structure that are used to
10703 handle exception catchpoints. This function returns the value to which
10704 these fields should be set, depending on the type of catchpoint we need
10707 If COND and COND_STRING are both non-NULL, any value they might
10708 hold will be free'ed, and then replaced by newly allocated ones.
10709 These parameters are left untouched otherwise. */
10711 static struct symtab_and_line
10712 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10713 char **addr_string, char **cond_string,
10714 struct expression **cond, struct breakpoint_ops **ops)
10716 const char *sym_name;
10717 struct symbol *sym;
10718 struct symtab_and_line sal;
10720 /* First, find out which exception support info to use. */
10721 ada_exception_support_info_sniffer ();
10723 /* Then lookup the function on which we will break in order to catch
10724 the Ada exceptions requested by the user. */
10726 sym_name = ada_exception_sym_name (ex);
10727 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10729 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10730 that should be compiled with debugging information. As a result, we
10731 expect to find that symbol in the symtabs. If we don't find it, then
10732 the target most likely does not support Ada exceptions, or we cannot
10733 insert exception breakpoints yet, because the GNAT runtime hasn't been
10736 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10737 in such a way that no debugging information is produced for the symbol
10738 we are looking for. In this case, we could search the minimal symbols
10739 as a fall-back mechanism. This would still be operating in degraded
10740 mode, however, as we would still be missing the debugging information
10741 that is needed in order to extract the name of the exception being
10742 raised (this name is printed in the catchpoint message, and is also
10743 used when trying to catch a specific exception). We do not handle
10744 this case for now. */
10747 error (_("Unable to break on '%s' in this configuration."), sym_name);
10749 /* Make sure that the symbol we found corresponds to a function. */
10750 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10751 error (_("Symbol \"%s\" is not a function (class = %d)"),
10752 sym_name, SYMBOL_CLASS (sym));
10754 sal = find_function_start_sal (sym, 1);
10756 /* Set ADDR_STRING. */
10758 *addr_string = xstrdup (sym_name);
10760 /* Set the COND and COND_STRING (if not NULL). */
10762 if (cond_string != NULL && cond != NULL)
10764 if (*cond_string != NULL)
10766 xfree (*cond_string);
10767 *cond_string = NULL;
10774 if (exp_string != NULL)
10776 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10777 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10782 *ops = ada_exception_breakpoint_ops (ex);
10787 /* Parse the arguments (ARGS) of the "catch exception" command.
10789 Set TYPE to the appropriate exception catchpoint type.
10790 If the user asked the catchpoint to catch only a specific
10791 exception, then save the exception name in ADDR_STRING.
10793 See ada_exception_sal for a description of all the remaining
10794 function arguments of this function. */
10796 struct symtab_and_line
10797 ada_decode_exception_location (char *args, char **addr_string,
10798 char **exp_string, char **cond_string,
10799 struct expression **cond,
10800 struct breakpoint_ops **ops)
10802 enum exception_catchpoint_kind ex;
10804 catch_ada_exception_command_split (args, &ex, exp_string);
10805 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10809 struct symtab_and_line
10810 ada_decode_assert_location (char *args, char **addr_string,
10811 struct breakpoint_ops **ops)
10813 /* Check that no argument where provided at the end of the command. */
10817 while (isspace (*args))
10820 error (_("Junk at end of arguments."));
10823 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10828 /* Information about operators given special treatment in functions
10830 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10832 #define ADA_OPERATORS \
10833 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10834 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10835 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10836 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10837 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10838 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10839 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10840 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10841 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10842 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10843 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10844 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10845 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10846 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10847 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10848 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10849 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10850 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10851 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10854 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10856 switch (exp->elts[pc - 1].opcode)
10859 operator_length_standard (exp, pc, oplenp, argsp);
10862 #define OP_DEFN(op, len, args, binop) \
10863 case op: *oplenp = len; *argsp = args; break;
10869 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10874 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10879 /* Implementation of the exp_descriptor method operator_check. */
10882 ada_operator_check (struct expression *exp, int pos,
10883 int (*objfile_func) (struct objfile *objfile, void *data),
10886 const union exp_element *const elts = exp->elts;
10887 struct type *type = NULL;
10889 switch (elts[pos].opcode)
10891 case UNOP_IN_RANGE:
10893 type = elts[pos + 1].type;
10897 return operator_check_standard (exp, pos, objfile_func, data);
10900 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
10902 if (type && TYPE_OBJFILE (type)
10903 && (*objfile_func) (TYPE_OBJFILE (type), data))
10910 ada_op_name (enum exp_opcode opcode)
10915 return op_name_standard (opcode);
10917 #define OP_DEFN(op, len, args, binop) case op: return #op;
10922 return "OP_AGGREGATE";
10924 return "OP_CHOICES";
10930 /* As for operator_length, but assumes PC is pointing at the first
10931 element of the operator, and gives meaningful results only for the
10932 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10935 ada_forward_operator_length (struct expression *exp, int pc,
10936 int *oplenp, int *argsp)
10938 switch (exp->elts[pc].opcode)
10941 *oplenp = *argsp = 0;
10944 #define OP_DEFN(op, len, args, binop) \
10945 case op: *oplenp = len; *argsp = args; break;
10951 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10956 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10962 int len = longest_to_int (exp->elts[pc + 1].longconst);
10963 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10971 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10973 enum exp_opcode op = exp->elts[elt].opcode;
10978 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10982 /* Ada attributes ('Foo). */
10985 case OP_ATR_LENGTH:
10989 case OP_ATR_MODULUS:
10996 case UNOP_IN_RANGE:
10998 /* XXX: gdb_sprint_host_address, type_sprint */
10999 fprintf_filtered (stream, _("Type @"));
11000 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11001 fprintf_filtered (stream, " (");
11002 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11003 fprintf_filtered (stream, ")");
11005 case BINOP_IN_BOUNDS:
11006 fprintf_filtered (stream, " (%d)",
11007 longest_to_int (exp->elts[pc + 2].longconst));
11009 case TERNOP_IN_RANGE:
11014 case OP_DISCRETE_RANGE:
11015 case OP_POSITIONAL:
11022 char *name = &exp->elts[elt + 2].string;
11023 int len = longest_to_int (exp->elts[elt + 1].longconst);
11024 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11029 return dump_subexp_body_standard (exp, stream, elt);
11033 for (i = 0; i < nargs; i += 1)
11034 elt = dump_subexp (exp, stream, elt);
11039 /* The Ada extension of print_subexp (q.v.). */
11042 ada_print_subexp (struct expression *exp, int *pos,
11043 struct ui_file *stream, enum precedence prec)
11045 int oplen, nargs, i;
11047 enum exp_opcode op = exp->elts[pc].opcode;
11049 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11056 print_subexp_standard (exp, pos, stream, prec);
11060 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11063 case BINOP_IN_BOUNDS:
11064 /* XXX: sprint_subexp */
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 fputs_filtered (" in ", stream);
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 fputs_filtered ("'range", stream);
11069 if (exp->elts[pc + 1].longconst > 1)
11070 fprintf_filtered (stream, "(%ld)",
11071 (long) exp->elts[pc + 1].longconst);
11074 case TERNOP_IN_RANGE:
11075 if (prec >= PREC_EQUAL)
11076 fputs_filtered ("(", stream);
11077 /* XXX: sprint_subexp */
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 fputs_filtered (" in ", stream);
11080 print_subexp (exp, pos, stream, PREC_EQUAL);
11081 fputs_filtered (" .. ", stream);
11082 print_subexp (exp, pos, stream, PREC_EQUAL);
11083 if (prec >= PREC_EQUAL)
11084 fputs_filtered (")", stream);
11089 case OP_ATR_LENGTH:
11093 case OP_ATR_MODULUS:
11098 if (exp->elts[*pos].opcode == OP_TYPE)
11100 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11101 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11105 print_subexp (exp, pos, stream, PREC_SUFFIX);
11106 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11110 for (tem = 1; tem < nargs; tem += 1)
11112 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11113 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11115 fputs_filtered (")", stream);
11120 type_print (exp->elts[pc + 1].type, "", stream, 0);
11121 fputs_filtered ("'(", stream);
11122 print_subexp (exp, pos, stream, PREC_PREFIX);
11123 fputs_filtered (")", stream);
11126 case UNOP_IN_RANGE:
11127 /* XXX: sprint_subexp */
11128 print_subexp (exp, pos, stream, PREC_SUFFIX);
11129 fputs_filtered (" in ", stream);
11130 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11133 case OP_DISCRETE_RANGE:
11134 print_subexp (exp, pos, stream, PREC_SUFFIX);
11135 fputs_filtered ("..", stream);
11136 print_subexp (exp, pos, stream, PREC_SUFFIX);
11140 fputs_filtered ("others => ", stream);
11141 print_subexp (exp, pos, stream, PREC_SUFFIX);
11145 for (i = 0; i < nargs-1; i += 1)
11148 fputs_filtered ("|", stream);
11149 print_subexp (exp, pos, stream, PREC_SUFFIX);
11151 fputs_filtered (" => ", stream);
11152 print_subexp (exp, pos, stream, PREC_SUFFIX);
11155 case OP_POSITIONAL:
11156 print_subexp (exp, pos, stream, PREC_SUFFIX);
11160 fputs_filtered ("(", stream);
11161 for (i = 0; i < nargs; i += 1)
11164 fputs_filtered (", ", stream);
11165 print_subexp (exp, pos, stream, PREC_SUFFIX);
11167 fputs_filtered (")", stream);
11172 /* Table mapping opcodes into strings for printing operators
11173 and precedences of the operators. */
11175 static const struct op_print ada_op_print_tab[] = {
11176 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11177 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11178 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11179 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11180 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11181 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11182 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11183 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11184 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11185 {">=", BINOP_GEQ, PREC_ORDER, 0},
11186 {">", BINOP_GTR, PREC_ORDER, 0},
11187 {"<", BINOP_LESS, PREC_ORDER, 0},
11188 {">>", BINOP_RSH, PREC_SHIFT, 0},
11189 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11190 {"+", BINOP_ADD, PREC_ADD, 0},
11191 {"-", BINOP_SUB, PREC_ADD, 0},
11192 {"&", BINOP_CONCAT, PREC_ADD, 0},
11193 {"*", BINOP_MUL, PREC_MUL, 0},
11194 {"/", BINOP_DIV, PREC_MUL, 0},
11195 {"rem", BINOP_REM, PREC_MUL, 0},
11196 {"mod", BINOP_MOD, PREC_MUL, 0},
11197 {"**", BINOP_EXP, PREC_REPEAT, 0},
11198 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11199 {"-", UNOP_NEG, PREC_PREFIX, 0},
11200 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11201 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11202 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11203 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11204 {".all", UNOP_IND, PREC_SUFFIX, 1},
11205 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11206 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11210 enum ada_primitive_types {
11211 ada_primitive_type_int,
11212 ada_primitive_type_long,
11213 ada_primitive_type_short,
11214 ada_primitive_type_char,
11215 ada_primitive_type_float,
11216 ada_primitive_type_double,
11217 ada_primitive_type_void,
11218 ada_primitive_type_long_long,
11219 ada_primitive_type_long_double,
11220 ada_primitive_type_natural,
11221 ada_primitive_type_positive,
11222 ada_primitive_type_system_address,
11223 nr_ada_primitive_types
11227 ada_language_arch_info (struct gdbarch *gdbarch,
11228 struct language_arch_info *lai)
11230 const struct builtin_type *builtin = builtin_type (gdbarch);
11231 lai->primitive_type_vector
11232 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11235 lai->primitive_type_vector [ada_primitive_type_int]
11236 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11238 lai->primitive_type_vector [ada_primitive_type_long]
11239 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11240 0, "long_integer");
11241 lai->primitive_type_vector [ada_primitive_type_short]
11242 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11243 0, "short_integer");
11244 lai->string_char_type
11245 = lai->primitive_type_vector [ada_primitive_type_char]
11246 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11247 lai->primitive_type_vector [ada_primitive_type_float]
11248 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11250 lai->primitive_type_vector [ada_primitive_type_double]
11251 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11252 "long_float", NULL);
11253 lai->primitive_type_vector [ada_primitive_type_long_long]
11254 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11255 0, "long_long_integer");
11256 lai->primitive_type_vector [ada_primitive_type_long_double]
11257 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11258 "long_long_float", NULL);
11259 lai->primitive_type_vector [ada_primitive_type_natural]
11260 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11262 lai->primitive_type_vector [ada_primitive_type_positive]
11263 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11265 lai->primitive_type_vector [ada_primitive_type_void]
11266 = builtin->builtin_void;
11268 lai->primitive_type_vector [ada_primitive_type_system_address]
11269 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11270 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11271 = "system__address";
11273 lai->bool_type_symbol = NULL;
11274 lai->bool_type_default = builtin->builtin_bool;
11277 /* Language vector */
11279 /* Not really used, but needed in the ada_language_defn. */
11282 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11284 ada_emit_char (c, type, stream, quoter, 1);
11290 warnings_issued = 0;
11291 return ada_parse ();
11294 static const struct exp_descriptor ada_exp_descriptor = {
11296 ada_operator_length,
11297 ada_operator_check,
11299 ada_dump_subexp_body,
11300 ada_evaluate_subexp
11303 const struct language_defn ada_language_defn = {
11304 "ada", /* Language name */
11308 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11309 that's not quite what this means. */
11311 macro_expansion_no,
11312 &ada_exp_descriptor,
11316 ada_printchar, /* Print a character constant */
11317 ada_printstr, /* Function to print string constant */
11318 emit_char, /* Function to print single char (not used) */
11319 ada_print_type, /* Print a type using appropriate syntax */
11320 ada_print_typedef, /* Print a typedef using appropriate syntax */
11321 ada_val_print, /* Print a value using appropriate syntax */
11322 ada_value_print, /* Print a top-level value */
11323 NULL, /* Language specific skip_trampoline */
11324 NULL, /* name_of_this */
11325 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11326 basic_lookup_transparent_type, /* lookup_transparent_type */
11327 ada_la_decode, /* Language specific symbol demangler */
11328 NULL, /* Language specific class_name_from_physname */
11329 ada_op_print_tab, /* expression operators for printing */
11330 0, /* c-style arrays */
11331 1, /* String lower bound */
11332 ada_get_gdb_completer_word_break_characters,
11333 ada_make_symbol_completion_list,
11334 ada_language_arch_info,
11335 ada_print_array_index,
11336 default_pass_by_reference,
11341 /* Provide a prototype to silence -Wmissing-prototypes. */
11342 extern initialize_file_ftype _initialize_ada_language;
11344 /* Command-list for the "set/show ada" prefix command. */
11345 static struct cmd_list_element *set_ada_list;
11346 static struct cmd_list_element *show_ada_list;
11348 /* Implement the "set ada" prefix command. */
11351 set_ada_command (char *arg, int from_tty)
11353 printf_unfiltered (_(\
11354 "\"set ada\" must be followed by the name of a setting.\n"));
11355 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11358 /* Implement the "show ada" prefix command. */
11361 show_ada_command (char *args, int from_tty)
11363 cmd_show_list (show_ada_list, from_tty, "");
11367 _initialize_ada_language (void)
11369 add_language (&ada_language_defn);
11371 add_prefix_cmd ("ada", no_class, set_ada_command,
11372 _("Prefix command for changing Ada-specfic settings"),
11373 &set_ada_list, "set ada ", 0, &setlist);
11375 add_prefix_cmd ("ada", no_class, show_ada_command,
11376 _("Generic command for showing Ada-specific settings."),
11377 &show_ada_list, "show ada ", 0, &showlist);
11379 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11380 &trust_pad_over_xvs, _("\
11381 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11382 Show whether an optimization trusting PAD types over XVS types is activated"),
11384 This is related to the encoding used by the GNAT compiler. The debugger\n\
11385 should normally trust the contents of PAD types, but certain older versions\n\
11386 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11387 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11388 work around this bug. It is always safe to turn this option \"off\", but\n\
11389 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11390 this option to \"off\" unless necessary."),
11391 NULL, NULL, &set_ada_list, &show_ada_list);
11393 varsize_limit = 65536;
11395 obstack_init (&symbol_list_obstack);
11397 decoded_names_store = htab_create_alloc
11398 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11399 NULL, xcalloc, xfree);
11401 observer_attach_executable_changed (ada_executable_changed_observer);