1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
47 /*#include <sys/user.h> After a.out.h */
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
60 static int hppa_alignof PARAMS ((struct type *));
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
68 static int inst_saves_gr PARAMS ((unsigned long));
70 static int inst_saves_fr PARAMS ((unsigned long));
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
79 static void read_unwind_info PARAMS ((struct objfile *));
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
89 /* Routines to extract various sized constants out of hppa
92 /* This assumes that no garbage lies outside of the lower bits of
96 sign_extend (val, bits)
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
102 /* For many immediate values the sign bit is the low bit! */
105 low_sign_extend (val, bits)
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
110 /* extract the immediate field from a ld{bhw}s instruction */
113 get_field (val, from, to)
114 unsigned val, from, to;
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
136 extract_5_load (word)
139 return low_sign_extend (word >> 16 & MASK_5, 5);
142 /* extract the immediate field from a st{bhw}s instruction */
145 extract_5_store (word)
148 return low_sign_extend (word & MASK_5, 5);
151 /* extract the immediate field from a break instruction */
154 extract_5r_store (word)
157 return (word & MASK_5);
160 /* extract the immediate field from a {sr}sm instruction */
163 extract_5R_store (word)
166 return (word >> 16 & MASK_5);
169 /* extract an 11 bit immediate field */
175 return low_sign_extend (word & MASK_11, 11);
178 /* extract a 14 bit immediate field */
184 return low_sign_extend (word & MASK_14, 14);
187 /* deposit a 14 bit constant in a word */
190 deposit_14 (opnd, word)
194 unsigned sign = (opnd < 0 ? 1 : 0);
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
199 /* extract a 21 bit constant */
209 val = GET_FIELD (word, 20, 20);
211 val |= GET_FIELD (word, 9, 19);
213 val |= GET_FIELD (word, 5, 6);
215 val |= GET_FIELD (word, 0, 4);
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
226 deposit_21 (opnd, word)
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
243 /* extract a 12 bit constant from branch instructions */
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
254 /* Deposit a 17 bit constant in an instruction (like bl). */
257 deposit_17 (opnd, word)
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
291 if (a->region_start > b->region_start)
293 else if (a->region_start < b->region_start)
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
313 char *buf = alloca (size);
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
317 /* Now internalize the information being careful to handle host/target
319 for (i = 0; i < entries; i++)
321 table[i].region_start = bfd_get_32 (objfile->obfd,
323 table[i].region_start += text_offset;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
369 read_unwind_info (objfile)
370 struct objfile *objfile;
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393 /* Get sizes and unwind counts for all sections. */
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
413 elf_unwind_entries = 0;
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
423 stub_unwind_size = 0;
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
435 /* Internalize the standard unwind entries. */
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
448 char *buf = alloca (stub_unwind_size);
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
464 ui->table[index].region_start += text_offset;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
494 int first, middle, last;
495 struct objfile *objfile;
497 ALL_OBJFILES (objfile)
499 struct obj_unwind_info *ui;
501 ui = OBJ_UNWIND_INFO (objfile);
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
509 /* First, check the cache */
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
516 /* Not in the cache, do a binary search */
521 while (first <= last)
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
531 if (pc < ui->table[middle].region_start)
536 } /* ALL_OBJFILES() */
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
547 hpread_adjust_stack_address (func_addr)
550 struct unwind_table_entry *u;
552 u = find_unwind_entry (func_addr);
556 return u->Total_frame_size << 3;
559 /* Called to determine if PC is in an interrupt handler of some
563 pc_in_interrupt_handler (pc)
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
569 u = find_unwind_entry (pc);
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
584 pc_in_linker_stub (pc)
587 int found_magic_instruction = 0;
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
595 /* We are looking for something like
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
610 /* If we hit something with an unwind, stop searching this direction. */
612 if (find_unwind_entry (pc + i * 4) != 0)
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
619 found_magic_instruction = 1;
622 /* Add code to handle long call/branch and argument relocation stubs
626 if (found_magic_instruction != 0)
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
632 /* If we hit something with an unwind, stop searching this direction. */
634 if (find_unwind_entry (pc - i * 4) != 0)
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
641 found_magic_instruction = 1;
644 /* Add code to handle long call/branch and argument relocation stubs
647 return found_magic_instruction;
651 find_return_regnum(pc)
654 struct unwind_table_entry *u;
656 u = find_unwind_entry (pc);
667 /* Return size of frame, or -1 if we should use a frame pointer. */
669 find_proc_framesize (pc)
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
675 u = find_unwind_entry (pc);
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
686 msym_us = lookup_minimal_symbol_by_pc (pc);
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
694 return u->Total_frame_size << 3;
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
704 struct unwind_table_entry *u;
706 u = find_unwind_entry (pc);
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
719 else if (u->stub_type != 0)
721 switch (u->stub_type)
726 case PARAMETER_RELOCATION:
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
740 struct unwind_table_entry *u;
742 u = find_unwind_entry (frame->pc);
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
756 struct unwind_table_entry *u;
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
771 frame_saved_pc (frame)
772 struct frame_info *frame;
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
794 if (frameless_function_invocation (frame))
798 ret_regnum = find_return_regnum (pc);
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
808 struct frame_saved_regs saved_regs;
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
826 pc = read_register (ret_regnum) & ~0x3;
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
842 struct frame_saved_regs saved_regs;
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
865 /* If PC is inside a linker stub, then dig out the address the stub
868 Don't do this for long branch stubs. Why? For some unknown reason
869 _start is marked as a long branch stub in hpux10. */
870 u = find_unwind_entry (pc);
871 if (u && u->stub_type != 0
872 && u->stub_type != LONG_BRANCH)
876 /* If this is a dynamic executable, and we're in a signal handler,
877 then the call chain will eventually point us into the stub for
878 _sigreturn. Unlike most cases, we'll be pointed to the branch
879 to the real sigreturn rather than the code after the real branch!.
881 Else, try to dig the address the stub will return to in the normal
883 insn = read_memory_integer (pc, 4);
884 if ((insn & 0xfc00e000) == 0xe8000000)
885 return (pc + extract_17 (insn) + 8) & ~0x3;
893 /* We need to correct the PC and the FP for the outermost frame when we are
897 init_extra_frame_info (fromleaf, frame)
899 struct frame_info *frame;
904 if (frame->next && !fromleaf)
907 /* If the next frame represents a frameless function invocation
908 then we have to do some adjustments that are normally done by
909 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
912 /* Find the framesize of *this* frame without peeking at the PC
913 in the current frame structure (it isn't set yet). */
914 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
916 /* Now adjust our base frame accordingly. If we have a frame pointer
917 use it, else subtract the size of this frame from the current
918 frame. (we always want frame->frame to point at the lowest address
921 frame->frame = read_register (FP_REGNUM);
923 frame->frame -= framesize;
927 flags = read_register (FLAGS_REGNUM);
928 if (flags & 2) /* In system call? */
929 frame->pc = read_register (31) & ~0x3;
931 /* The outermost frame is always derived from PC-framesize
933 One might think frameless innermost frames should have
934 a frame->frame that is the same as the parent's frame->frame.
935 That is wrong; frame->frame in that case should be the *high*
936 address of the parent's frame. It's complicated as hell to
937 explain, but the parent *always* creates some stack space for
938 the child. So the child actually does have a frame of some
939 sorts, and its base is the high address in its parent's frame. */
940 framesize = find_proc_framesize(frame->pc);
942 frame->frame = read_register (FP_REGNUM);
944 frame->frame = read_register (SP_REGNUM) - framesize;
947 /* Given a GDB frame, determine the address of the calling function's frame.
948 This will be used to create a new GDB frame struct, and then
949 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
951 This may involve searching through prologues for several functions
952 at boundaries where GCC calls HP C code, or where code which has
953 a frame pointer calls code without a frame pointer. */
957 struct frame_info *frame;
959 int my_framesize, caller_framesize;
960 struct unwind_table_entry *u;
961 CORE_ADDR frame_base;
962 struct frame_info *tmp_frame;
964 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
965 are easy; at *sp we have a full save state strucutre which we can
966 pull the old stack pointer from. Also see frame_saved_pc for
967 code to dig a saved PC out of the save state structure. */
968 if (pc_in_interrupt_handler (frame->pc))
969 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
970 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
971 else if (frame->signal_handler_caller)
973 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
977 frame_base = frame->frame;
979 /* Get frame sizes for the current frame and the frame of the
981 my_framesize = find_proc_framesize (frame->pc);
982 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
984 /* If caller does not have a frame pointer, then its frame
985 can be found at current_frame - caller_framesize. */
986 if (caller_framesize != -1)
987 return frame_base - caller_framesize;
989 /* Both caller and callee have frame pointers and are GCC compiled
990 (SAVE_SP bit in unwind descriptor is on for both functions.
991 The previous frame pointer is found at the top of the current frame. */
992 if (caller_framesize == -1 && my_framesize == -1)
993 return read_memory_integer (frame_base, 4);
995 /* Caller has a frame pointer, but callee does not. This is a little
996 more difficult as GCC and HP C lay out locals and callee register save
997 areas very differently.
999 The previous frame pointer could be in a register, or in one of
1000 several areas on the stack.
1002 Walk from the current frame to the innermost frame examining
1003 unwind descriptors to determine if %r3 ever gets saved into the
1004 stack. If so return whatever value got saved into the stack.
1005 If it was never saved in the stack, then the value in %r3 is still
1008 We use information from unwind descriptors to determine if %r3
1009 is saved into the stack (Entry_GR field has this information). */
1014 u = find_unwind_entry (tmp_frame->pc);
1018 /* We could find this information by examining prologues. I don't
1019 think anyone has actually written any tools (not even "strip")
1020 which leave them out of an executable, so maybe this is a moot
1022 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1026 /* Entry_GR specifies the number of callee-saved general registers
1027 saved in the stack. It starts at %r3, so %r3 would be 1. */
1028 if (u->Entry_GR >= 1 || u->Save_SP
1029 || tmp_frame->signal_handler_caller
1030 || pc_in_interrupt_handler (tmp_frame->pc))
1033 tmp_frame = tmp_frame->next;
1038 /* We may have walked down the chain into a function with a frame
1041 && !tmp_frame->signal_handler_caller
1042 && !pc_in_interrupt_handler (tmp_frame->pc))
1043 return read_memory_integer (tmp_frame->frame, 4);
1044 /* %r3 was saved somewhere in the stack. Dig it out. */
1047 struct frame_saved_regs saved_regs;
1051 For optimization purposes many kernels don't have the
1052 callee saved registers into the save_state structure upon
1053 entry into the kernel for a syscall; the optimization
1054 is usually turned off if the process is being traced so
1055 that the debugger can get full register state for the
1058 This scheme works well except for two cases:
1060 * Attaching to a process when the process is in the
1061 kernel performing a system call (debugger can't get
1062 full register state for the inferior process since
1063 the process wasn't being traced when it entered the
1066 * Register state is not complete if the system call
1067 causes the process to core dump.
1070 The following heinous code is an attempt to deal with
1071 the lack of register state in a core dump. It will
1072 fail miserably if the function which performs the
1073 system call has a variable sized stack frame. */
1075 get_frame_saved_regs (tmp_frame, &saved_regs);
1077 /* Abominable hack. */
1078 if (current_target.to_has_execution == 0
1079 && ((saved_regs.regs[FLAGS_REGNUM]
1080 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1082 || (saved_regs.regs[FLAGS_REGNUM] == 0
1083 && read_register (FLAGS_REGNUM) & 0x2)))
1085 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1087 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1089 return frame_base - (u->Total_frame_size << 3);
1092 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1097 struct frame_saved_regs saved_regs;
1099 /* Get the innermost frame. */
1101 while (tmp_frame->next != NULL)
1102 tmp_frame = tmp_frame->next;
1104 get_frame_saved_regs (tmp_frame, &saved_regs);
1105 /* Abominable hack. See above. */
1106 if (current_target.to_has_execution == 0
1107 && ((saved_regs.regs[FLAGS_REGNUM]
1108 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1110 || (saved_regs.regs[FLAGS_REGNUM] == 0
1111 && read_register (FLAGS_REGNUM) & 0x2)))
1113 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1115 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1117 return frame_base - (u->Total_frame_size << 3);
1120 /* The value in %r3 was never saved into the stack (thus %r3 still
1121 holds the value of the previous frame pointer). */
1122 return read_register (FP_REGNUM);
1127 /* To see if a frame chain is valid, see if the caller looks like it
1128 was compiled with gcc. */
1131 frame_chain_valid (chain, thisframe)
1133 struct frame_info *thisframe;
1135 struct minimal_symbol *msym_us;
1136 struct minimal_symbol *msym_start;
1137 struct unwind_table_entry *u, *next_u = NULL;
1138 struct frame_info *next;
1143 u = find_unwind_entry (thisframe->pc);
1148 /* We can't just check that the same of msym_us is "_start", because
1149 someone idiotically decided that they were going to make a Ltext_end
1150 symbol with the same address. This Ltext_end symbol is totally
1151 indistinguishable (as nearly as I can tell) from the symbol for a function
1152 which is (legitimately, since it is in the user's namespace)
1153 named Ltext_end, so we can't just ignore it. */
1154 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1155 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1158 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1161 /* Grrrr. Some new idiot decided that they don't want _start for the
1162 PRO configurations; $START$ calls main directly.... Deal with it. */
1163 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1166 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1169 next = get_next_frame (thisframe);
1171 next_u = find_unwind_entry (next->pc);
1173 /* If this frame does not save SP, has no stack, isn't a stub,
1174 and doesn't "call" an interrupt routine or signal handler caller,
1175 then its not valid. */
1176 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1177 || (thisframe->next && thisframe->next->signal_handler_caller)
1178 || (next_u && next_u->HP_UX_interrupt_marker))
1181 if (pc_in_linker_stub (thisframe->pc))
1188 * These functions deal with saving and restoring register state
1189 * around a function call in the inferior. They keep the stack
1190 * double-word aligned; eventually, on an hp700, the stack will have
1191 * to be aligned to a 64-byte boundary.
1195 push_dummy_frame (inf_status)
1196 struct inferior_status *inf_status;
1198 CORE_ADDR sp, pc, pcspace;
1199 register int regnum;
1203 /* Oh, what a hack. If we're trying to perform an inferior call
1204 while the inferior is asleep, we have to make sure to clear
1205 the "in system call" bit in the flag register (the call will
1206 start after the syscall returns, so we're no longer in the system
1207 call!) This state is kept in "inf_status", change it there.
1209 We also need a number of horrid hacks to deal with lossage in the
1210 PC queue registers (apparently they're not valid when the in syscall
1212 pc = target_read_pc (inferior_pid);
1213 int_buffer = read_register (FLAGS_REGNUM);
1214 if (int_buffer & 0x2)
1218 memcpy (inf_status->registers, &int_buffer, 4);
1219 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1221 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1223 sid = (pc >> 30) & 0x3;
1225 pcspace = read_register (SR4_REGNUM);
1227 pcspace = read_register (SR4_REGNUM + 4 + sid);
1228 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1230 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1234 pcspace = read_register (PCSQ_HEAD_REGNUM);
1236 /* Space for "arguments"; the RP goes in here. */
1237 sp = read_register (SP_REGNUM) + 48;
1238 int_buffer = read_register (RP_REGNUM) | 0x3;
1239 write_memory (sp - 20, (char *)&int_buffer, 4);
1241 int_buffer = read_register (FP_REGNUM);
1242 write_memory (sp, (char *)&int_buffer, 4);
1244 write_register (FP_REGNUM, sp);
1248 for (regnum = 1; regnum < 32; regnum++)
1249 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1250 sp = push_word (sp, read_register (regnum));
1254 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1256 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1257 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1259 sp = push_word (sp, read_register (IPSW_REGNUM));
1260 sp = push_word (sp, read_register (SAR_REGNUM));
1261 sp = push_word (sp, pc);
1262 sp = push_word (sp, pcspace);
1263 sp = push_word (sp, pc + 4);
1264 sp = push_word (sp, pcspace);
1265 write_register (SP_REGNUM, sp);
1269 find_dummy_frame_regs (frame, frame_saved_regs)
1270 struct frame_info *frame;
1271 struct frame_saved_regs *frame_saved_regs;
1273 CORE_ADDR fp = frame->frame;
1276 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1277 frame_saved_regs->regs[FP_REGNUM] = fp;
1278 frame_saved_regs->regs[1] = fp + 8;
1280 for (fp += 12, i = 3; i < 32; i++)
1284 frame_saved_regs->regs[i] = fp;
1290 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1291 frame_saved_regs->regs[i] = fp;
1293 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1294 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1295 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1296 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1297 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1298 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1304 register struct frame_info *frame = get_current_frame ();
1305 register CORE_ADDR fp, npc, target_pc;
1306 register int regnum;
1307 struct frame_saved_regs fsr;
1310 fp = FRAME_FP (frame);
1311 get_frame_saved_regs (frame, &fsr);
1313 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1314 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1315 restore_pc_queue (&fsr);
1318 for (regnum = 31; regnum > 0; regnum--)
1319 if (fsr.regs[regnum])
1320 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1322 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1323 if (fsr.regs[regnum])
1325 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1326 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1329 if (fsr.regs[IPSW_REGNUM])
1330 write_register (IPSW_REGNUM,
1331 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1333 if (fsr.regs[SAR_REGNUM])
1334 write_register (SAR_REGNUM,
1335 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1337 /* If the PC was explicitly saved, then just restore it. */
1338 if (fsr.regs[PCOQ_TAIL_REGNUM])
1340 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1341 write_register (PCOQ_TAIL_REGNUM, npc);
1343 /* Else use the value in %rp to set the new PC. */
1346 npc = read_register (RP_REGNUM);
1347 target_write_pc (npc, 0);
1350 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1352 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1353 write_register (SP_REGNUM, fp - 48);
1355 write_register (SP_REGNUM, fp);
1357 /* The PC we just restored may be inside a return trampoline. If so
1358 we want to restart the inferior and run it through the trampoline.
1360 Do this by setting a momentary breakpoint at the location the
1361 trampoline returns to.
1363 Don't skip through the trampoline if we're popping a dummy frame. */
1364 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1365 if (target_pc && !fsr.regs[IPSW_REGNUM])
1367 struct symtab_and_line sal;
1368 struct breakpoint *breakpoint;
1369 struct cleanup *old_chain;
1371 /* Set up our breakpoint. Set it to be silent as the MI code
1372 for "return_command" will print the frame we returned to. */
1373 sal = find_pc_line (target_pc, 0);
1375 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1376 breakpoint->silent = 1;
1378 /* So we can clean things up. */
1379 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1381 /* Start up the inferior. */
1382 proceed_to_finish = 1;
1383 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1385 /* Perform our cleanups. */
1386 do_cleanups (old_chain);
1388 flush_cached_frames ();
1392 * After returning to a dummy on the stack, restore the instruction
1393 * queue space registers. */
1396 restore_pc_queue (fsr)
1397 struct frame_saved_regs *fsr;
1399 CORE_ADDR pc = read_pc ();
1400 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1401 struct target_waitstatus w;
1404 /* Advance past break instruction in the call dummy. */
1405 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1406 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1409 * HPUX doesn't let us set the space registers or the space
1410 * registers of the PC queue through ptrace. Boo, hiss.
1411 * Conveniently, the call dummy has this sequence of instructions
1416 * So, load up the registers and single step until we are in the
1420 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1421 write_register (22, new_pc);
1423 for (insn_count = 0; insn_count < 3; insn_count++)
1425 /* FIXME: What if the inferior gets a signal right now? Want to
1426 merge this into wait_for_inferior (as a special kind of
1427 watchpoint? By setting a breakpoint at the end? Is there
1428 any other choice? Is there *any* way to do this stuff with
1429 ptrace() or some equivalent?). */
1431 target_wait (inferior_pid, &w);
1433 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1435 stop_signal = w.value.sig;
1436 terminal_ours_for_output ();
1437 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1438 target_signal_to_name (stop_signal),
1439 target_signal_to_string (stop_signal));
1440 gdb_flush (gdb_stdout);
1444 target_terminal_ours ();
1445 target_fetch_registers (-1);
1450 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1455 CORE_ADDR struct_addr;
1457 /* array of arguments' offsets */
1458 int *offset = (int *)alloca(nargs * sizeof (int));
1462 for (i = 0; i < nargs; i++)
1464 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1466 /* value must go at proper alignment. Assume alignment is a
1468 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1469 if (cum % alignment)
1470 cum = (cum + alignment) & -alignment;
1473 sp += max ((cum + 7) & -8, 16);
1475 for (i = 0; i < nargs; i++)
1476 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1477 TYPE_LENGTH (VALUE_TYPE (args[i])));
1480 write_register (28, struct_addr);
1485 * Insert the specified number of args and function address
1486 * into a call sequence of the above form stored at DUMMYNAME.
1488 * On the hppa we need to call the stack dummy through $$dyncall.
1489 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1490 * real_pc, which is the location where gdb should start up the
1491 * inferior to do the function call.
1495 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1504 CORE_ADDR dyncall_addr;
1505 struct minimal_symbol *msymbol;
1506 struct minimal_symbol *trampoline;
1507 int flags = read_register (FLAGS_REGNUM);
1508 struct unwind_table_entry *u;
1511 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1512 if (msymbol == NULL)
1513 error ("Can't find an address for $$dyncall trampoline");
1515 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1517 /* FUN could be a procedure label, in which case we have to get
1518 its real address and the value of its GOT/DP. */
1521 /* Get the GOT/DP value for the target function. It's
1522 at *(fun+4). Note the call dummy is *NOT* allowed to
1523 trash %r19 before calling the target function. */
1524 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1526 /* Now get the real address for the function we are calling, it's
1528 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1533 #ifndef GDB_TARGET_IS_PA_ELF
1534 /* FUN could be either an export stub, or the real address of a
1535 function in a shared library. We must call an import stub
1536 rather than the export stub or real function for lazy binding
1537 to work correctly. */
1538 if (som_solib_get_got_by_pc (fun))
1540 struct objfile *objfile;
1541 struct minimal_symbol *funsymbol, *stub_symbol;
1542 CORE_ADDR newfun = 0;
1544 funsymbol = lookup_minimal_symbol_by_pc (fun);
1546 error ("Unable to find minimal symbol for target fucntion.\n");
1548 /* Search all the object files for an import symbol with the
1550 ALL_OBJFILES (objfile)
1552 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1554 /* Found a symbol with the right name. */
1557 struct unwind_table_entry *u;
1558 /* It must be a shared library trampoline. */
1559 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1562 /* It must also be an import stub. */
1563 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1564 if (!u || u->stub_type != IMPORT)
1567 /* OK. Looks like the correct import stub. */
1568 newfun = SYMBOL_VALUE (stub_symbol);
1573 write_register (19, som_solib_get_got_by_pc (fun));
1578 /* If we are calling an import stub (eg calling into a dynamic library)
1579 then have sr4export call the magic __d_plt_call routine which is linked
1580 in from end.o. (You can't use _sr4export to call the import stub as
1581 the value in sp-24 will get fried and you end up returning to the
1582 wrong location. You can't call the import stub directly as the code
1583 to bind the PLT entry to a function can't return to a stack address.) */
1584 u = find_unwind_entry (fun);
1585 if (u && u->stub_type == IMPORT)
1589 /* Prefer __gcc_plt_call over the HP supplied routine because
1590 __gcc_plt_call works for any number of arguments. */
1591 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1592 if (trampoline == NULL)
1593 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1595 if (trampoline == NULL)
1596 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1598 /* This is where sr4export will jump to. */
1599 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1601 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1603 /* We have to store the address of the stub in __shlib_funcptr. */
1604 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1605 (struct objfile *)NULL);
1606 if (msymbol == NULL)
1607 error ("Can't find an address for __shlib_funcptr");
1609 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1611 /* We want sr4export to call __d_plt_call, so we claim it is
1612 the final target. Clear trampoline. */
1618 /* Store upper 21 bits of function address into ldil. fun will either be
1619 the final target (most cases) or __d_plt_call when calling into a shared
1620 library and __gcc_plt_call is not available. */
1621 store_unsigned_integer
1622 (&dummy[FUNC_LDIL_OFFSET],
1624 deposit_21 (fun >> 11,
1625 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1626 INSTRUCTION_SIZE)));
1628 /* Store lower 11 bits of function address into ldo */
1629 store_unsigned_integer
1630 (&dummy[FUNC_LDO_OFFSET],
1632 deposit_14 (fun & MASK_11,
1633 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1634 INSTRUCTION_SIZE)));
1635 #ifdef SR4EXPORT_LDIL_OFFSET
1638 CORE_ADDR trampoline_addr;
1640 /* We may still need sr4export's address too. */
1642 if (trampoline == NULL)
1644 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1645 if (msymbol == NULL)
1646 error ("Can't find an address for _sr4export trampoline");
1648 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1651 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1654 /* Store upper 21 bits of trampoline's address into ldil */
1655 store_unsigned_integer
1656 (&dummy[SR4EXPORT_LDIL_OFFSET],
1658 deposit_21 (trampoline_addr >> 11,
1659 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1660 INSTRUCTION_SIZE)));
1662 /* Store lower 11 bits of trampoline's address into ldo */
1663 store_unsigned_integer
1664 (&dummy[SR4EXPORT_LDO_OFFSET],
1666 deposit_14 (trampoline_addr & MASK_11,
1667 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1668 INSTRUCTION_SIZE)));
1672 write_register (22, pc);
1674 /* If we are in a syscall, then we should call the stack dummy
1675 directly. $$dyncall is not needed as the kernel sets up the
1676 space id registers properly based on the value in %r31. In
1677 fact calling $$dyncall will not work because the value in %r22
1678 will be clobbered on the syscall exit path.
1680 Similarly if the current PC is in a shared library. Note however,
1681 this scheme won't work if the shared library isn't mapped into
1682 the same space as the stack. */
1685 #ifndef GDB_TARGET_IS_PA_ELF
1686 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1690 return dyncall_addr;
1694 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1698 target_read_pc (pid)
1701 int flags = read_register (FLAGS_REGNUM);
1704 return read_register (31) & ~0x3;
1706 return read_register (PC_REGNUM) & ~0x3;
1709 /* Write out the PC. If currently in a syscall, then also write the new
1710 PC value into %r31. */
1713 target_write_pc (v, pid)
1717 int flags = read_register (FLAGS_REGNUM);
1719 /* If in a syscall, then set %r31. Also make sure to get the
1720 privilege bits set correctly. */
1722 write_register (31, (long) (v | 0x3));
1724 write_register (PC_REGNUM, (long) v);
1725 write_register (NPC_REGNUM, (long) v + 4);
1728 /* return the alignment of a type in bytes. Structures have the maximum
1729 alignment required by their fields. */
1735 int max_align, align, i;
1736 CHECK_TYPEDEf (type);
1737 switch (TYPE_CODE (type))
1742 return TYPE_LENGTH (type);
1743 case TYPE_CODE_ARRAY:
1744 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1745 case TYPE_CODE_STRUCT:
1746 case TYPE_CODE_UNION:
1748 for (i = 0; i < TYPE_NFIELDS (type); i++)
1750 /* Bit fields have no real alignment. */
1751 if (!TYPE_FIELD_BITPOS (type, i))
1753 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1754 max_align = max (max_align, align);
1763 /* Print the register regnum, or all registers if regnum is -1 */
1766 pa_do_registers_info (regnum, fpregs)
1770 char raw_regs [REGISTER_BYTES];
1773 for (i = 0; i < NUM_REGS; i++)
1774 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1776 pa_print_registers (raw_regs, regnum, fpregs);
1777 else if (regnum < FP0_REGNUM)
1778 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1779 REGISTER_BYTE (regnum)));
1781 pa_print_fp_reg (regnum);
1785 pa_print_registers (raw_regs, regnum, fpregs)
1793 for (i = 0; i < 18; i++)
1795 for (j = 0; j < 4; j++)
1798 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1799 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1801 printf_unfiltered ("\n");
1805 for (i = 72; i < NUM_REGS; i++)
1806 pa_print_fp_reg (i);
1813 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1814 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1816 /* Get 32bits of data. */
1817 read_relative_register_raw_bytes (i, raw_buffer);
1819 /* Put it in the buffer. No conversions are ever necessary. */
1820 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1822 fputs_filtered (reg_names[i], gdb_stdout);
1823 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1824 fputs_filtered ("(single precision) ", gdb_stdout);
1826 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1827 1, 0, Val_pretty_default);
1828 printf_filtered ("\n");
1830 /* If "i" is even, then this register can also be a double-precision
1831 FP register. Dump it out as such. */
1834 /* Get the data in raw format for the 2nd half. */
1835 read_relative_register_raw_bytes (i + 1, raw_buffer);
1837 /* Copy it into the appropriate part of the virtual buffer. */
1838 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1839 REGISTER_RAW_SIZE (i));
1841 /* Dump it as a double. */
1842 fputs_filtered (reg_names[i], gdb_stdout);
1843 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1844 fputs_filtered ("(double precision) ", gdb_stdout);
1846 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1847 1, 0, Val_pretty_default);
1848 printf_filtered ("\n");
1852 /* Return one if PC is in the call path of a trampoline, else return zero.
1854 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1855 just shared library trampolines (import, export). */
1858 in_solib_call_trampoline (pc, name)
1862 struct minimal_symbol *minsym;
1863 struct unwind_table_entry *u;
1864 static CORE_ADDR dyncall = 0;
1865 static CORE_ADDR sr4export = 0;
1867 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1870 /* First see if PC is in one of the two C-library trampolines. */
1873 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1875 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1882 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1884 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1889 if (pc == dyncall || pc == sr4export)
1892 /* Get the unwind descriptor corresponding to PC, return zero
1893 if no unwind was found. */
1894 u = find_unwind_entry (pc);
1898 /* If this isn't a linker stub, then return now. */
1899 if (u->stub_type == 0)
1902 /* By definition a long-branch stub is a call stub. */
1903 if (u->stub_type == LONG_BRANCH)
1906 /* The call and return path execute the same instructions within
1907 an IMPORT stub! So an IMPORT stub is both a call and return
1909 if (u->stub_type == IMPORT)
1912 /* Parameter relocation stubs always have a call path and may have a
1914 if (u->stub_type == PARAMETER_RELOCATION
1915 || u->stub_type == EXPORT)
1919 /* Search forward from the current PC until we hit a branch
1920 or the end of the stub. */
1921 for (addr = pc; addr <= u->region_end; addr += 4)
1925 insn = read_memory_integer (addr, 4);
1927 /* Does it look like a bl? If so then it's the call path, if
1928 we find a bv or be first, then we're on the return path. */
1929 if ((insn & 0xfc00e000) == 0xe8000000)
1931 else if ((insn & 0xfc00e001) == 0xe800c000
1932 || (insn & 0xfc000000) == 0xe0000000)
1936 /* Should never happen. */
1937 warning ("Unable to find branch in parameter relocation stub.\n");
1941 /* Unknown stub type. For now, just return zero. */
1945 /* Return one if PC is in the return path of a trampoline, else return zero.
1947 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1948 just shared library trampolines (import, export). */
1951 in_solib_return_trampoline (pc, name)
1955 struct unwind_table_entry *u;
1957 /* Get the unwind descriptor corresponding to PC, return zero
1958 if no unwind was found. */
1959 u = find_unwind_entry (pc);
1963 /* If this isn't a linker stub or it's just a long branch stub, then
1965 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1968 /* The call and return path execute the same instructions within
1969 an IMPORT stub! So an IMPORT stub is both a call and return
1971 if (u->stub_type == IMPORT)
1974 /* Parameter relocation stubs always have a call path and may have a
1976 if (u->stub_type == PARAMETER_RELOCATION
1977 || u->stub_type == EXPORT)
1981 /* Search forward from the current PC until we hit a branch
1982 or the end of the stub. */
1983 for (addr = pc; addr <= u->region_end; addr += 4)
1987 insn = read_memory_integer (addr, 4);
1989 /* Does it look like a bl? If so then it's the call path, if
1990 we find a bv or be first, then we're on the return path. */
1991 if ((insn & 0xfc00e000) == 0xe8000000)
1993 else if ((insn & 0xfc00e001) == 0xe800c000
1994 || (insn & 0xfc000000) == 0xe0000000)
1998 /* Should never happen. */
1999 warning ("Unable to find branch in parameter relocation stub.\n");
2003 /* Unknown stub type. For now, just return zero. */
2008 /* Figure out if PC is in a trampoline, and if so find out where
2009 the trampoline will jump to. If not in a trampoline, return zero.
2011 Simple code examination probably is not a good idea since the code
2012 sequences in trampolines can also appear in user code.
2014 We use unwinds and information from the minimal symbol table to
2015 determine when we're in a trampoline. This won't work for ELF
2016 (yet) since it doesn't create stub unwind entries. Whether or
2017 not ELF will create stub unwinds or normal unwinds for linker
2018 stubs is still being debated.
2020 This should handle simple calls through dyncall or sr4export,
2021 long calls, argument relocation stubs, and dyncall/sr4export
2022 calling an argument relocation stub. It even handles some stubs
2023 used in dynamic executables. */
2026 skip_trampoline_code (pc, name)
2031 long prev_inst, curr_inst, loc;
2032 static CORE_ADDR dyncall = 0;
2033 static CORE_ADDR sr4export = 0;
2034 struct minimal_symbol *msym;
2035 struct unwind_table_entry *u;
2037 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2042 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2044 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2051 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2053 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2058 /* Addresses passed to dyncall may *NOT* be the actual address
2059 of the function. So we may have to do something special. */
2062 pc = (CORE_ADDR) read_register (22);
2064 /* If bit 30 (counting from the left) is on, then pc is the address of
2065 the PLT entry for this function, not the address of the function
2066 itself. Bit 31 has meaning too, but only for MPE. */
2068 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2070 else if (pc == sr4export)
2071 pc = (CORE_ADDR) (read_register (22));
2073 /* Get the unwind descriptor corresponding to PC, return zero
2074 if no unwind was found. */
2075 u = find_unwind_entry (pc);
2079 /* If this isn't a linker stub, then return now. */
2080 if (u->stub_type == 0)
2081 return orig_pc == pc ? 0 : pc & ~0x3;
2083 /* It's a stub. Search for a branch and figure out where it goes.
2084 Note we have to handle multi insn branch sequences like ldil;ble.
2085 Most (all?) other branches can be determined by examining the contents
2086 of certain registers and the stack. */
2092 /* Make sure we haven't walked outside the range of this stub. */
2093 if (u != find_unwind_entry (loc))
2095 warning ("Unable to find branch in linker stub");
2096 return orig_pc == pc ? 0 : pc & ~0x3;
2099 prev_inst = curr_inst;
2100 curr_inst = read_memory_integer (loc, 4);
2102 /* Does it look like a branch external using %r1? Then it's the
2103 branch from the stub to the actual function. */
2104 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2106 /* Yup. See if the previous instruction loaded
2107 a value into %r1. If so compute and return the jump address. */
2108 if ((prev_inst & 0xffe00000) == 0x20200000)
2109 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2112 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2113 return orig_pc == pc ? 0 : pc & ~0x3;
2117 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2118 import stub to an export stub.
2120 It is impossible to determine the target of the branch via
2121 simple examination of instructions and/or data (consider
2122 that the address in the plabel may be the address of the
2123 bind-on-reference routine in the dynamic loader).
2125 So we have try an alternative approach.
2127 Get the name of the symbol at our current location; it should
2128 be a stub symbol with the same name as the symbol in the
2131 Then lookup a minimal symbol with the same name; we should
2132 get the minimal symbol for the target routine in the shared
2133 library as those take precedence of import/export stubs. */
2134 if (curr_inst == 0xe2a00000)
2136 struct minimal_symbol *stubsym, *libsym;
2138 stubsym = lookup_minimal_symbol_by_pc (loc);
2139 if (stubsym == NULL)
2141 warning ("Unable to find symbol for 0x%x", loc);
2142 return orig_pc == pc ? 0 : pc & ~0x3;
2145 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2148 warning ("Unable to find library symbol for %s\n",
2149 SYMBOL_NAME (stubsym));
2150 return orig_pc == pc ? 0 : pc & ~0x3;
2153 return SYMBOL_VALUE (libsym);
2156 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2157 branch from the stub to the actual function. */
2158 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2159 || (curr_inst & 0xffe0e000) == 0xe8000000)
2160 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2162 /* Does it look like bv (rp)? Note this depends on the
2163 current stack pointer being the same as the stack
2164 pointer in the stub itself! This is a branch on from the
2165 stub back to the original caller. */
2166 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2168 /* Yup. See if the previous instruction loaded
2170 if (prev_inst == 0x4bc23ff1)
2171 return (read_memory_integer
2172 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2175 warning ("Unable to find restore of %%rp before bv (%%rp).");
2176 return orig_pc == pc ? 0 : pc & ~0x3;
2180 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2181 the original caller from the stub. Used in dynamic executables. */
2182 else if (curr_inst == 0xe0400002)
2184 /* The value we jump to is sitting in sp - 24. But that's
2185 loaded several instructions before the be instruction.
2186 I guess we could check for the previous instruction being
2187 mtsp %r1,%sr0 if we want to do sanity checking. */
2188 return (read_memory_integer
2189 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2192 /* Haven't found the branch yet, but we're still in the stub.
2198 /* For the given instruction (INST), return any adjustment it makes
2199 to the stack pointer or zero for no adjustment.
2201 This only handles instructions commonly found in prologues. */
2204 prologue_inst_adjust_sp (inst)
2207 /* This must persist across calls. */
2208 static int save_high21;
2210 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2211 if ((inst & 0xffffc000) == 0x37de0000)
2212 return extract_14 (inst);
2215 if ((inst & 0xffe00000) == 0x6fc00000)
2216 return extract_14 (inst);
2218 /* addil high21,%r1; ldo low11,(%r1),%r30)
2219 save high bits in save_high21 for later use. */
2220 if ((inst & 0xffe00000) == 0x28200000)
2222 save_high21 = extract_21 (inst);
2226 if ((inst & 0xffff0000) == 0x343e0000)
2227 return save_high21 + extract_14 (inst);
2229 /* fstws as used by the HP compilers. */
2230 if ((inst & 0xffffffe0) == 0x2fd01220)
2231 return extract_5_load (inst);
2233 /* No adjustment. */
2237 /* Return nonzero if INST is a branch of some kind, else return zero. */
2267 /* Return the register number for a GR which is saved by INST or
2268 zero it INST does not save a GR. */
2271 inst_saves_gr (inst)
2274 /* Does it look like a stw? */
2275 if ((inst >> 26) == 0x1a)
2276 return extract_5R_store (inst);
2278 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2279 if ((inst >> 26) == 0x1b)
2280 return extract_5R_store (inst);
2282 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2284 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2285 return extract_5R_store (inst);
2290 /* Return the register number for a FR which is saved by INST or
2291 zero it INST does not save a FR.
2293 Note we only care about full 64bit register stores (that's the only
2294 kind of stores the prologue will use).
2296 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2299 inst_saves_fr (inst)
2302 if ((inst & 0xfc00dfc0) == 0x2c001200)
2303 return extract_5r_store (inst);
2307 /* Advance PC across any function entry prologue instructions
2308 to reach some "real" code.
2310 Use information in the unwind table to determine what exactly should
2311 be in the prologue. */
2318 CORE_ADDR orig_pc = pc;
2319 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2320 unsigned long args_stored, status, i, restart_gr, restart_fr;
2321 struct unwind_table_entry *u;
2327 u = find_unwind_entry (pc);
2331 /* If we are not at the beginning of a function, then return now. */
2332 if ((pc & ~0x3) != u->region_start)
2335 /* This is how much of a frame adjustment we need to account for. */
2336 stack_remaining = u->Total_frame_size << 3;
2338 /* Magic register saves we want to know about. */
2339 save_rp = u->Save_RP;
2340 save_sp = u->Save_SP;
2342 /* An indication that args may be stored into the stack. Unfortunately
2343 the HPUX compilers tend to set this in cases where no args were
2347 /* Turn the Entry_GR field into a bitmask. */
2349 for (i = 3; i < u->Entry_GR + 3; i++)
2351 /* Frame pointer gets saved into a special location. */
2352 if (u->Save_SP && i == FP_REGNUM)
2355 save_gr |= (1 << i);
2357 save_gr &= ~restart_gr;
2359 /* Turn the Entry_FR field into a bitmask too. */
2361 for (i = 12; i < u->Entry_FR + 12; i++)
2362 save_fr |= (1 << i);
2363 save_fr &= ~restart_fr;
2365 /* Loop until we find everything of interest or hit a branch.
2367 For unoptimized GCC code and for any HP CC code this will never ever
2368 examine any user instructions.
2370 For optimzied GCC code we're faced with problems. GCC will schedule
2371 its prologue and make prologue instructions available for delay slot
2372 filling. The end result is user code gets mixed in with the prologue
2373 and a prologue instruction may be in the delay slot of the first branch
2376 Some unexpected things are expected with debugging optimized code, so
2377 we allow this routine to walk past user instructions in optimized
2379 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2382 unsigned int reg_num;
2383 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2384 unsigned long old_save_rp, old_save_sp, next_inst;
2386 /* Save copies of all the triggers so we can compare them later
2388 old_save_gr = save_gr;
2389 old_save_fr = save_fr;
2390 old_save_rp = save_rp;
2391 old_save_sp = save_sp;
2392 old_stack_remaining = stack_remaining;
2394 status = target_read_memory (pc, buf, 4);
2395 inst = extract_unsigned_integer (buf, 4);
2401 /* Note the interesting effects of this instruction. */
2402 stack_remaining -= prologue_inst_adjust_sp (inst);
2404 /* There is only one instruction used for saving RP into the stack. */
2405 if (inst == 0x6bc23fd9)
2408 /* This is the only way we save SP into the stack. At this time
2409 the HP compilers never bother to save SP into the stack. */
2410 if ((inst & 0xffffc000) == 0x6fc10000)
2413 /* Account for general and floating-point register saves. */
2414 reg_num = inst_saves_gr (inst);
2415 save_gr &= ~(1 << reg_num);
2417 /* Ugh. Also account for argument stores into the stack.
2418 Unfortunately args_stored only tells us that some arguments
2419 where stored into the stack. Not how many or what kind!
2421 This is a kludge as on the HP compiler sets this bit and it
2422 never does prologue scheduling. So once we see one, skip past
2423 all of them. We have similar code for the fp arg stores below.
2425 FIXME. Can still die if we have a mix of GR and FR argument
2427 if (reg_num >= 23 && reg_num <= 26)
2429 while (reg_num >= 23 && reg_num <= 26)
2432 status = target_read_memory (pc, buf, 4);
2433 inst = extract_unsigned_integer (buf, 4);
2436 reg_num = inst_saves_gr (inst);
2442 reg_num = inst_saves_fr (inst);
2443 save_fr &= ~(1 << reg_num);
2445 status = target_read_memory (pc + 4, buf, 4);
2446 next_inst = extract_unsigned_integer (buf, 4);
2452 /* We've got to be read to handle the ldo before the fp register
2454 if ((inst & 0xfc000000) == 0x34000000
2455 && inst_saves_fr (next_inst) >= 4
2456 && inst_saves_fr (next_inst) <= 7)
2458 /* So we drop into the code below in a reasonable state. */
2459 reg_num = inst_saves_fr (next_inst);
2463 /* Ugh. Also account for argument stores into the stack.
2464 This is a kludge as on the HP compiler sets this bit and it
2465 never does prologue scheduling. So once we see one, skip past
2467 if (reg_num >= 4 && reg_num <= 7)
2469 while (reg_num >= 4 && reg_num <= 7)
2472 status = target_read_memory (pc, buf, 4);
2473 inst = extract_unsigned_integer (buf, 4);
2476 if ((inst & 0xfc000000) != 0x34000000)
2478 status = target_read_memory (pc + 4, buf, 4);
2479 next_inst = extract_unsigned_integer (buf, 4);
2482 reg_num = inst_saves_fr (next_inst);
2488 /* Quit if we hit any kind of branch. This can happen if a prologue
2489 instruction is in the delay slot of the first call/branch. */
2490 if (is_branch (inst))
2493 /* What a crock. The HP compilers set args_stored even if no
2494 arguments were stored into the stack (boo hiss). This could
2495 cause this code to then skip a bunch of user insns (up to the
2498 To combat this we try to identify when args_stored was bogusly
2499 set and clear it. We only do this when args_stored is nonzero,
2500 all other resources are accounted for, and nothing changed on
2503 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2504 && old_save_gr == save_gr && old_save_fr == save_fr
2505 && old_save_rp == save_rp && old_save_sp == save_sp
2506 && old_stack_remaining == stack_remaining)
2513 /* We've got a tenative location for the end of the prologue. However
2514 because of limitations in the unwind descriptor mechanism we may
2515 have went too far into user code looking for the save of a register
2516 that does not exist. So, if there registers we expected to be saved
2517 but never were, mask them out and restart.
2519 This should only happen in optimized code, and should be very rare. */
2520 if (save_gr || save_fr
2521 && ! (restart_fr || restart_gr))
2524 restart_gr = save_gr;
2525 restart_fr = save_fr;
2532 /* Put here the code to store, into a struct frame_saved_regs,
2533 the addresses of the saved registers of frame described by FRAME_INFO.
2534 This includes special registers such as pc and fp saved in special
2535 ways in the stack frame. sp is even more special:
2536 the address we return for it IS the sp for the next frame. */
2539 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2540 struct frame_info *frame_info;
2541 struct frame_saved_regs *frame_saved_regs;
2544 struct unwind_table_entry *u;
2545 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2550 /* Zero out everything. */
2551 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2553 /* Call dummy frames always look the same, so there's no need to
2554 examine the dummy code to determine locations of saved registers;
2555 instead, let find_dummy_frame_regs fill in the correct offsets
2556 for the saved registers. */
2557 if ((frame_info->pc >= frame_info->frame
2558 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2559 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2561 find_dummy_frame_regs (frame_info, frame_saved_regs);
2563 /* Interrupt handlers are special too. They lay out the register
2564 state in the exact same order as the register numbers in GDB. */
2565 if (pc_in_interrupt_handler (frame_info->pc))
2567 for (i = 0; i < NUM_REGS; i++)
2569 /* SP is a little special. */
2571 frame_saved_regs->regs[SP_REGNUM]
2572 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2574 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2579 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2580 /* Handle signal handler callers. */
2581 if (frame_info->signal_handler_caller)
2583 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2588 /* Get the starting address of the function referred to by the PC
2590 pc = get_pc_function_start (frame_info->pc);
2593 u = find_unwind_entry (pc);
2597 /* This is how much of a frame adjustment we need to account for. */
2598 stack_remaining = u->Total_frame_size << 3;
2600 /* Magic register saves we want to know about. */
2601 save_rp = u->Save_RP;
2602 save_sp = u->Save_SP;
2604 /* Turn the Entry_GR field into a bitmask. */
2606 for (i = 3; i < u->Entry_GR + 3; i++)
2608 /* Frame pointer gets saved into a special location. */
2609 if (u->Save_SP && i == FP_REGNUM)
2612 save_gr |= (1 << i);
2615 /* Turn the Entry_FR field into a bitmask too. */
2617 for (i = 12; i < u->Entry_FR + 12; i++)
2618 save_fr |= (1 << i);
2620 /* The frame always represents the value of %sp at entry to the
2621 current function (and is thus equivalent to the "saved" stack
2623 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2625 /* Loop until we find everything of interest or hit a branch.
2627 For unoptimized GCC code and for any HP CC code this will never ever
2628 examine any user instructions.
2630 For optimzied GCC code we're faced with problems. GCC will schedule
2631 its prologue and make prologue instructions available for delay slot
2632 filling. The end result is user code gets mixed in with the prologue
2633 and a prologue instruction may be in the delay slot of the first branch
2636 Some unexpected things are expected with debugging optimized code, so
2637 we allow this routine to walk past user instructions in optimized
2639 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2641 status = target_read_memory (pc, buf, 4);
2642 inst = extract_unsigned_integer (buf, 4);
2648 /* Note the interesting effects of this instruction. */
2649 stack_remaining -= prologue_inst_adjust_sp (inst);
2651 /* There is only one instruction used for saving RP into the stack. */
2652 if (inst == 0x6bc23fd9)
2655 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2658 /* Just note that we found the save of SP into the stack. The
2659 value for frame_saved_regs was computed above. */
2660 if ((inst & 0xffffc000) == 0x6fc10000)
2663 /* Account for general and floating-point register saves. */
2664 reg = inst_saves_gr (inst);
2665 if (reg >= 3 && reg <= 18
2666 && (!u->Save_SP || reg != FP_REGNUM))
2668 save_gr &= ~(1 << reg);
2670 /* stwm with a positive displacement is a *post modify*. */
2671 if ((inst >> 26) == 0x1b
2672 && extract_14 (inst) >= 0)
2673 frame_saved_regs->regs[reg] = frame_info->frame;
2676 /* Handle code with and without frame pointers. */
2678 frame_saved_regs->regs[reg]
2679 = frame_info->frame + extract_14 (inst);
2681 frame_saved_regs->regs[reg]
2682 = frame_info->frame + (u->Total_frame_size << 3)
2683 + extract_14 (inst);
2688 /* GCC handles callee saved FP regs a little differently.
2690 It emits an instruction to put the value of the start of
2691 the FP store area into %r1. It then uses fstds,ma with
2692 a basereg of %r1 for the stores.
2694 HP CC emits them at the current stack pointer modifying
2695 the stack pointer as it stores each register. */
2697 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2698 if ((inst & 0xffffc000) == 0x34610000
2699 || (inst & 0xffffc000) == 0x37c10000)
2700 fp_loc = extract_14 (inst);
2702 reg = inst_saves_fr (inst);
2703 if (reg >= 12 && reg <= 21)
2705 /* Note +4 braindamage below is necessary because the FP status
2706 registers are internally 8 registers rather than the expected
2708 save_fr &= ~(1 << reg);
2711 /* 1st HP CC FP register store. After this instruction
2712 we've set enough state that the GCC and HPCC code are
2713 both handled in the same manner. */
2714 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2719 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2720 = frame_info->frame + fp_loc;
2725 /* Quit if we hit any kind of branch. This can happen if a prologue
2726 instruction is in the delay slot of the first call/branch. */
2727 if (is_branch (inst))
2735 #ifdef MAINTENANCE_CMDS
2738 unwind_command (exp, from_tty)
2743 struct unwind_table_entry *u;
2745 /* If we have an expression, evaluate it and use it as the address. */
2747 if (exp != 0 && *exp != 0)
2748 address = parse_and_eval_address (exp);
2752 u = find_unwind_entry (address);
2756 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2760 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2762 printf_unfiltered ("\tregion_start = ");
2763 print_address (u->region_start, gdb_stdout);
2765 printf_unfiltered ("\n\tregion_end = ");
2766 print_address (u->region_end, gdb_stdout);
2769 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2771 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2774 printf_unfiltered ("\n\tflags =");
2775 pif (Cannot_unwind);
2777 pif (Millicode_save_sr0);
2780 pif (Variable_Frame);
2781 pif (Separate_Package_Body);
2782 pif (Frame_Extension_Millicode);
2783 pif (Stack_Overflow_Check);
2784 pif (Two_Instruction_SP_Increment);
2788 pif (Save_MRP_in_frame);
2789 pif (extn_ptr_defined);
2790 pif (Cleanup_defined);
2791 pif (MPE_XL_interrupt_marker);
2792 pif (HP_UX_interrupt_marker);
2795 putchar_unfiltered ('\n');
2798 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2800 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2803 pin (Region_description);
2806 pin (Total_frame_size);
2808 #endif /* MAINTENANCE_CMDS */
2811 _initialize_hppa_tdep ()
2813 tm_print_insn = print_insn_hppa;
2815 #ifdef MAINTENANCE_CMDS
2816 add_cmd ("unwind", class_maintenance, unwind_command,
2817 "Print unwind table entry at given address.",
2818 &maintenanceprintlist);
2819 #endif /* MAINTENANCE_CMDS */