1 /* Definitions to make GDB run on an encore under umax 4.2
2 Copyright (C) 1987, 1989, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
22 /* Define this if the C compiler puts an underscore at the front
23 of external names before giving them to the linker. */
25 #define NAMES_HAVE_UNDERSCORE
27 /* Need to get function ends by adding this to epilogue address from .bf
28 record, not using x_fsize field. */
29 #define FUNCTION_EPILOGUE_SIZE 4
31 /* Offset from address of function to start of its code.
32 Zero on most machines. */
34 #define FUNCTION_START_OFFSET 0
36 /* Advance PC across any function entry prologue instructions
37 to reach some "real" code. */
39 #define SKIP_PROLOGUE(pc) \
40 { register unsigned char op = read_memory_integer (pc, 1); \
41 if (op == 0x82) { op = read_memory_integer (pc+2,1); \
42 if ((op & 0x80) == 0) pc += 3; \
43 else if ((op & 0xc0) == 0x80) pc += 4; \
48 /* Immediately after a function call, return the saved pc.
49 Can't always go through the frames for this because on some machines
50 the new frame is not set up until the new function executes
53 #define SAVED_PC_AFTER_CALL(frame) \
54 read_memory_integer (read_register (SP_REGNUM), 4)
56 /* Address of end of stack space. */
58 #define STACK_END_ADDR (0xfffff000)
60 /* Stack grows downward. */
64 /* Sequence of bytes for breakpoint instruction. */
66 #define BREAKPOINT {0xf2}
68 /* Amount PC must be decremented by after a breakpoint.
69 This is often the number of bytes in BREAKPOINT
72 #define DECR_PC_AFTER_BREAK 0
74 /* Nonzero if instruction at PC is a return instruction. */
76 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12)
82 /* Return 1 if P points to an invalid floating point value. */
83 /* Surely wrong for cross-debugging. */
84 #define INVALID_FLOAT(p, s) \
85 ((s == sizeof (float))? \
86 NaF (*(float *) p) : \
89 /* Say how long (ordinary) registers are. */
91 #define REGISTER_TYPE long
93 /* Number of machine registers */
97 #define NUM_GENERAL_REGS 8
99 /* Initializer for an array of names of registers.
100 There should be NUM_REGS strings in this initializer. */
102 #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
103 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
104 "sp", "fp", "pc", "ps", \
106 "l0", "l1", "l2", "l3", "xx", \
109 /* Register numbers of various important registers.
110 Note that some of these values are "real" register numbers,
111 and correspond to the general registers of the machine,
112 and some are "phony" register numbers which are too large
113 to be actual register numbers as far as the user is concerned
114 but do serve to get the desired values when passed to read_register. */
116 #define FP0_REGNUM 8 /* Floating point register 0 */
117 #define SP_REGNUM 16 /* Contains address of top of stack */
118 #define AP_REGNUM FP_REGNUM
119 #define FP_REGNUM 17 /* Contains address of executing stack frame */
120 #define PC_REGNUM 18 /* Contains program counter */
121 #define PS_REGNUM 19 /* Contains processor status */
122 #define FPS_REGNUM 20 /* Floating point status register */
123 #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
125 /* Total amount of space needed to store our copies of the machine's
126 register state, the array `registers'. */
127 #define REGISTER_BYTES ((NUM_REGS - 4) * sizeof (int) + 4 * sizeof (double))
129 /* Index within `registers' of the first byte of the space for
132 #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
133 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
135 /* Number of bytes of storage in the actual machine representation
136 for register N. On the 32000, all regs are 4 bytes
137 except for the doubled floating registers. */
139 #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
141 /* Number of bytes of storage in the program's representation
142 for register N. On the 32000, all regs are 4 bytes
143 except for the doubled floating registers. */
145 #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
147 /* Largest value REGISTER_RAW_SIZE can have. */
149 #define MAX_REGISTER_RAW_SIZE 8
151 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
153 #define MAX_REGISTER_VIRTUAL_SIZE 8
155 /* Nonzero if register N requires conversion
156 from raw format to virtual format. */
158 #define REGISTER_CONVERTIBLE(N) 0
160 /* Convert data from raw format for register REGNUM
161 to virtual format for register REGNUM. */
163 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
164 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
166 /* Convert data from virtual format for register REGNUM
167 to raw format for register REGNUM. */
169 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
170 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
172 /* Return the GDB type object for the "standard" data type
173 of data in register N. */
175 #define REGISTER_VIRTUAL_TYPE(N) \
176 (((N) < FP0_REGNUM) ? \
178 ((N) < FP0_REGNUM + 8) ? \
179 builtin_type_float : \
180 ((N) < LP0_REGNUM) ? \
184 /* Store the address of the place in which to copy the structure the
185 subroutine will return. This is called from call_function.
187 On this machine this is a no-op, because gcc isn't used on it
188 yet. So this calling convention is not used. */
190 #define STORE_STRUCT_RETURN(ADDR, SP)
192 /* Extract from an array REGBUF containing the (raw) register state
193 a function return value of type TYPE, and copy that, in virtual format,
196 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
197 bcopy (REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
199 /* Write into appropriate registers a function return value
200 of type TYPE, given in virtual format. */
202 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
203 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
205 /* Extract from an array REGBUF containing the (raw) register state
206 the address in which a function should return its structure value,
207 as a CORE_ADDR (or an expression that can be used as one). */
209 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
211 /* Describe the pointer in each stack frame to the previous stack frame
214 /* FRAME_CHAIN takes a frame's nominal address
215 and produces the frame's chain-pointer.
217 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
218 and produces the nominal address of the caller frame.
220 However, if FRAME_CHAIN_VALID returns zero,
221 it means the given frame is the outermost one and has no caller.
222 In that case, FRAME_CHAIN_COMBINE is not used. */
224 /* In the case of the ns32000 series, the frame's nominal address is the FP
225 value, and at that address is saved previous FP value as a 4-byte word. */
227 #define FRAME_CHAIN(thisframe) \
228 (outside_startup_file ((thisframe)->pc) ? \
229 read_memory_integer ((thisframe)->frame, 4) :\
232 #define FRAME_CHAIN_VALID(chain, thisframe) \
233 (chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
235 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
237 /* Define other aspects of the stack frame. */
239 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
241 /* Compute base of arguments. */
243 #define FRAME_ARGS_ADDRESS(fi) \
244 ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \
245 ((fi)->frame) : (read_register (SP_REGNUM) - 4))
247 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
249 /* Get the address of the enter opcode for this function, if it is active.
250 Returns positive address > 1 if pc is between enter/exit,
251 1 if pc before enter or after exit, 0 otherwise. */
254 #include "defs.h" /* Make sure CORE_ADDR is defined. */
257 extern CORE_ADDR ns32k_get_enter_addr ();
259 /* Return number of args passed to a frame.
260 Can return -1, meaning no way to tell.
261 Encore's C compiler often reuses same area on stack for args,
262 so this will often not work properly. If the arg names
263 are known, it's likely most of them will be printed. */
265 #define FRAME_NUM_ARGS(numargs, fi) \
267 CORE_ADDR enter_addr; \
269 unsigned int addr_mode; \
273 enter_addr = ns32k_get_enter_addr ((fi)->pc); \
274 if (enter_addr > 0) \
276 pc = (enter_addr == 1) ? \
277 SAVED_PC_AFTER_CALL (fi) : \
278 FRAME_SAVED_PC (fi); \
279 insn = read_memory_integer (pc,2); \
280 addr_mode = (insn >> 11) & 0x1f; \
281 insn = insn & 0x7ff; \
282 if ((insn & 0x7fc) == 0x57c && \
283 addr_mode == 0x14) /* immediate */ \
285 if (insn == 0x57c) /* adjspb */ \
287 else if (insn == 0x57d) /* adjspw */ \
289 else if (insn == 0x57f) /* adjspd */ \
291 numargs = read_memory_integer (pc+2,width); \
293 flip_bytes (&numargs, width); \
294 numargs = - sign_extend (numargs, width*8) / 4;\
299 /* Return number of bytes at start of arglist that are not really args. */
301 #define FRAME_ARGS_SKIP 8
303 /* Put here the code to store, into a struct frame_saved_regs,
304 the addresses of the saved registers of frame described by FRAME_INFO.
305 This includes special registers such as pc and fp saved in special
306 ways in the stack frame. sp is even more special:
307 the address we return for it IS the sp for the next frame. */
309 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
311 register int regmask, regnum; \
313 register CORE_ADDR enter_addr; \
314 register CORE_ADDR next_addr; \
316 bzero (&(frame_saved_regs), sizeof (frame_saved_regs)); \
317 enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \
318 if (enter_addr > 1) \
320 regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \
321 localcount = ns32k_localcount (enter_addr); \
322 next_addr = (frame_info)->frame + localcount; \
323 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
324 (frame_saved_regs).regs[regnum] = (regmask & 1) ? \
325 (next_addr -= 4) : 0; \
326 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\
327 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\
328 (frame_saved_regs).regs[FP_REGNUM] = \
329 (read_memory_integer ((frame_info)->frame, 4));\
331 else if (enter_addr == 1) \
333 CORE_ADDR sp = read_register (SP_REGNUM); \
334 (frame_saved_regs).regs[PC_REGNUM] = sp; \
335 (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \
339 /* Things needed for making the inferior call functions. */
341 /* Push an empty stack frame, to record the current PC, etc. */
343 #define PUSH_DUMMY_FRAME \
344 { register CORE_ADDR sp = read_register (SP_REGNUM);\
345 register int regnum; \
346 sp = push_word (sp, read_register (PC_REGNUM)); \
347 sp = push_word (sp, read_register (FP_REGNUM)); \
348 write_register (FP_REGNUM, sp); \
349 for (regnum = 0; regnum < 8; regnum++) \
350 sp = push_word (sp, read_register (regnum)); \
351 write_register (SP_REGNUM, sp); \
354 /* Discard from the stack the innermost frame, restoring all registers. */
357 { register FRAME frame = get_current_frame (); \
358 register CORE_ADDR fp; \
359 register int regnum; \
360 struct frame_saved_regs fsr; \
361 struct frame_info *fi; \
362 fi = get_frame_info (frame); \
364 get_frame_saved_regs (fi, &fsr); \
365 for (regnum = 0; regnum < 8; regnum++) \
366 if (fsr.regs[regnum]) \
367 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
368 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
369 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
370 write_register (SP_REGNUM, fp + 8); \
371 flush_cached_frames (); \
372 set_current_frame (create_new_frame (read_register (FP_REGNUM),\
375 /* This sequence of words is the instructions
376 enter 0xff,0 82 ff 00
377 jsr @0x00010203 7f ae c0 01 02 03
378 adjspd 0x69696969 7f a5 01 02 03 04
380 Note this is 16 bytes. */
382 #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
384 #define CALL_DUMMY_START_OFFSET 3
385 #define CALL_DUMMY_LENGTH 16
386 #define CALL_DUMMY_ADDR 5
387 #define CALL_DUMMY_NARGS 11
389 /* Insert the specified number of args and function address
390 into a call sequence of the above form stored at DUMMYNAME. */
392 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
395 flipped = fun | 0xc0000000; \
396 flip_bytes (&flipped, 4); \
397 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
398 flipped = - nargs * 4; \
399 flip_bytes (&flipped, 4); \
400 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \