1 /* i80960 instruction disassembler for GDB.
2 Copyright (C) 1990-1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
26 extern char *reg_names[];
28 static FILE *stream; /* Output goes here */
29 static void print_addr();
37 static void invalid();
39 static void put_abs();
42 /* Print the i960 instruction at address 'memaddr' in debugged memory,
43 on stream 's'. Returns length of the instruction, in bytes. */
45 print_insn( memaddr, s )
49 unsigned int word1, word2;
52 word1 = read_memory_integer( memaddr, 4 );
53 word2 = read_memory_integer( memaddr+4, 4 );
54 return pinsn( memaddr, word1, word2 );
58 /* Read the i960 instruction at 'memaddr' and return the address of
59 the next instruction after that, or 0 if 'memaddr' is not the
60 address of a valid instruction. The first word of the instruction
61 is stored at 'pword1', and the second word, if any, is stored at
65 next_insn (memaddr, pword1, pword2)
66 unsigned long *pword1, *pword2;
72 /* Read the two (potential) words of the instruction at once,
73 to eliminate the overhead of two calls to read_memory ().
74 TODO: read more instructions at once and cache them. */
76 read_memory (memaddr, buf, sizeof (buf));
78 SWAP_TARGET_AND_HOST (pword1, sizeof (long));
80 SWAP_TARGET_AND_HOST (pword2, sizeof (long));
82 /* Divide instruction set into classes based on high 4 bits of opcode*/
84 switch ((*pword1 >> 28) & 0xf)
103 len = mem (memaddr, *pword1, *pword2, 1);
106 default: /* invalid instruction */
112 return memaddr + len;
119 /*****************************************************************************
120 * All code below this point should be identical with that of
121 * the disassembler in gdmp960.
122 *****************************************************************************/
130 pinsn( memaddr, word1, word2 )
131 unsigned long memaddr;
132 unsigned long word1, word2;
137 put_abs( word1, word2 );
139 /* Divide instruction set into classes based on high 4 bits of opcode*/
141 switch ( (word1 >> 28) & 0xf ){
144 ctrl( memaddr, word1, word2 );
148 cobr( memaddr, word1, word2 );
160 instr_len = mem( memaddr, word1, word2, 0 );
163 /* invalid instruction, print as data word */
170 /****************************************/
172 /****************************************/
174 ctrl( memaddr, word1, word2 )
175 unsigned long memaddr;
176 unsigned long word1, word2;
179 static struct tabent ctrl_tab[] = {
189 "call", 1, /* 0x09 */
204 "faultno", 0, /* 0x18 */
205 "faultg", 0, /* 0x19 */
206 "faulte", 0, /* 0x1a */
207 "faultge", 0, /* 0x1b */
208 "faultl", 0, /* 0x1c */
209 "faultne", 0, /* 0x1d */
210 "faultle", 0, /* 0x1e */
211 "faulto", 0, /* 0x1f */
214 i = (word1 >> 24) & 0xff;
215 if ( (ctrl_tab[i].name == NULL) || ((word1 & 1) != 0) ){
220 fputs( ctrl_tab[i].name, stream );
221 if ( word1 & 2 ){ /* Predicts branch not taken */
222 fputs( ".f", stream );
225 if ( ctrl_tab[i].numops == 1 ){
226 /* EXTRACT DISPLACEMENT AND CONVERT TO ADDRESS */
228 if ( word1 & 0x00800000 ){ /* Sign bit is set */
229 word1 |= (-1 & ~0xffffff); /* Sign extend */
231 putc( '\t', stream );
232 print_addr( word1 + memaddr );
236 /****************************************/
238 /****************************************/
240 cobr( memaddr, word1, word2 )
241 unsigned long memaddr;
242 unsigned long word1, word2;
248 static struct tabent cobr_tab[] = {
249 "testno", 1, /* 0x20 */
250 "testg", 1, /* 0x21 */
251 "teste", 1, /* 0x22 */
252 "testge", 1, /* 0x23 */
253 "testl", 1, /* 0x24 */
254 "testne", 1, /* 0x25 */
255 "testle", 1, /* 0x26 */
256 "testo", 1, /* 0x27 */
266 "cmpobg", 3, /* 0x31 */
267 "cmpobe", 3, /* 0x32 */
268 "cmpobge", 3, /* 0x33 */
269 "cmpobl", 3, /* 0x34 */
270 "cmpobne", 3, /* 0x35 */
271 "cmpoble", 3, /* 0x36 */
273 "cmpibno", 3, /* 0x38 */
274 "cmpibg", 3, /* 0x39 */
275 "cmpibe", 3, /* 0x3a */
276 "cmpibge", 3, /* 0x3b */
277 "cmpibl", 3, /* 0x3c */
278 "cmpibne", 3, /* 0x3d */
279 "cmpible", 3, /* 0x3e */
280 "cmpibo", 3, /* 0x3f */
283 i = ((word1 >> 24) & 0xff) - 0x20;
284 if ( cobr_tab[i].name == NULL ){
289 fputs( cobr_tab[i].name, stream );
290 if ( word1 & 2 ){ /* Predicts branch not taken */
291 fputs( ".f", stream );
293 putc( '\t', stream );
295 src1 = (word1 >> 19) & 0x1f;
296 src2 = (word1 >> 14) & 0x1f;
298 if ( word1 & 0x02000 ){ /* M1 is 1 */
299 fprintf( stream, "%d", src1 );
300 } else { /* M1 is 0 */
301 fputs( reg_names[src1], stream );
304 if ( cobr_tab[i].numops > 1 ){
305 if ( word1 & 1 ){ /* S2 is 1 */
306 fprintf( stream, ",sf%d,", src2 );
307 } else { /* S1 is 0 */
308 fprintf( stream, ",%s,", reg_names[src2] );
311 /* Extract displacement and convert to address
314 if ( word1 & 0x00001000 ){ /* Negative displacement */
315 word1 |= (-1 & ~0x1fff); /* Sign extend */
317 print_addr( memaddr + word1 );
321 /****************************************/
323 /****************************************/
324 static int /* returns instruction length: 4 or 8 */
325 mem( memaddr, word1, word2, noprint )
326 unsigned long memaddr;
327 unsigned long word1, word2;
328 int noprint; /* If TRUE, return instruction length, but
329 don't output any text. */
335 char *reg1, *reg2, *reg3;
337 /* This lookup table is too sparse to make it worth typing in, but not
338 * so large as to make a sparse array necessary. We allocate the
339 * table at runtime, initialize all entries to empty, and copy the
340 * real ones in from an initialization table.
342 * NOTE: In this table, the meaning of 'numops' is:
344 * 2: 2 operands, load instruction
345 * -2: 2 operands, store instruction
347 static struct tabent *mem_tab = NULL;
348 static struct { int opcode; char *name; char numops; } mem_init[] = {
371 #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
375 if ( mem_tab == NULL ){
376 mem_tab = (struct tabent *) xmalloc( MEM_SIZ );
377 bzero( mem_tab, MEM_SIZ );
378 for ( i = 0; mem_init[i].opcode != 0; i++ ){
379 j = mem_init[i].opcode - MEM_MIN;
380 mem_tab[j].name = mem_init[i].name;
381 mem_tab[j].numops = mem_init[i].numops;
385 i = ((word1 >> 24) & 0xff) - MEM_MIN;
386 mode = (word1 >> 10) & 0xf;
388 if ( (mem_tab[i].name != NULL) /* Valid instruction */
389 && ((mode == 5) || (mode >=12)) ){ /* With 32-bit displacement */
399 if ( (mem_tab[i].name == NULL) || (mode == 6) ){
404 fprintf( stream, "%s\t", mem_tab[i].name );
406 reg1 = reg_names[ (word1 >> 19) & 0x1f ]; /* MEMB only */
407 reg2 = reg_names[ (word1 >> 14) & 0x1f ];
408 reg3 = reg_names[ word1 & 0x1f ]; /* MEMB only */
409 offset = word1 & 0xfff; /* MEMA only */
411 switch ( mem_tab[i].numops ){
413 case 2: /* LOAD INSTRUCTION */
414 if ( mode & 4 ){ /* MEMB FORMAT */
415 ea( memaddr, mode, reg2, reg3, word1, word2 );
416 fprintf( stream, ",%s", reg1 );
417 } else { /* MEMA FORMAT */
418 fprintf( stream, "0x%x", offset );
420 fprintf( stream, "(%s)", reg2 );
422 fprintf( stream, ",%s", reg1 );
426 case -2: /* STORE INSTRUCTION */
427 if ( mode & 4 ){ /* MEMB FORMAT */
428 fprintf( stream, "%s,", reg1 );
429 ea( memaddr, mode, reg2, reg3, word1, word2 );
430 } else { /* MEMA FORMAT */
431 fprintf( stream, "%s,0x%x", reg1, offset );
433 fprintf( stream, "(%s)", reg2 );
438 case 1: /* BX/CALLX INSTRUCTION */
439 if ( mode & 4 ){ /* MEMB FORMAT */
440 ea( memaddr, mode, reg2, reg3, word1, word2 );
441 } else { /* MEMA FORMAT */
442 fprintf( stream, "0x%x", offset );
444 fprintf( stream, "(%s)", reg2 );
453 /****************************************/
455 /****************************************/
468 /* This lookup table is too sparse to make it worth typing in, but not
469 * so large as to make a sparse array necessary. We allocate the
470 * table at runtime, initialize all entries to empty, and copy the
471 * real ones in from an initialization table.
473 * NOTE: In this table, the meaning of 'numops' is:
474 * 1: single operand, which is NOT a destination.
475 * -1: single operand, which IS a destination.
476 * 2: 2 operands, the 2nd of which is NOT a destination.
477 * -2: 2 operands, the 2nd of which IS a destination.
480 * If an opcode mnemonic begins with "F", it is a floating-point
481 * opcode (the "F" is not printed).
484 static struct tabent *reg_tab = NULL;
485 static struct { int opcode; char *name; char numops; } reg_init[] = {
486 #define REG_MIN 0x580
501 0x58f, "alterbit", 3,
520 0x5ac, "scanbyte", 2,
537 0x613, "inspacc", -2,
543 0x640, "spanbit", -2,
544 0x641, "scanbit", -2,
549 0x646, "condrec", -2,
554 0x656, "receive", -2,
558 0x663, "sendserv", 1,
559 0x664, "resumprcs", 1,
560 0x665, "schedprcs", 1,
561 0x666, "saveprcs", 0,
562 0x668, "condwait", 1,
567 0x66d, "flushreg", 0,
573 0x675, "Fcvtilr", -2,
574 0x676, "Fscalerl", 3,
584 0x68a, "Flogbnr", -2,
585 0x68b, "Froundr", -2,
591 0x691, "Flogeprl", 3,
596 0x698, "Fsqrtrl", -2,
598 0x69a, "Flogbnrl", -2,
599 0x69b, "Froundrl", -2,
603 0x69f, "Fclassrl", 1,
605 0x6c1, "Fcvtril", -2,
606 0x6c2, "Fcvtzri", -2,
607 0x6c3, "Fcvtzril", -2,
612 0x6e3, "Fcpyrsre", 3,
628 #define REG_MAX 0x79f
629 #define REG_SIZ ((REG_MAX-REG_MIN+1) * sizeof(struct tabent))
633 if ( reg_tab == NULL ){
634 reg_tab = (struct tabent *) xmalloc( REG_SIZ );
635 bzero( reg_tab, REG_SIZ );
636 for ( i = 0; reg_init[i].opcode != 0; i++ ){
637 j = reg_init[i].opcode - REG_MIN;
638 reg_tab[j].name = reg_init[i].name;
639 reg_tab[j].numops = reg_init[i].numops;
643 opcode = ((word1 >> 20) & 0xff0) | ((word1 >> 7) & 0xf);
644 i = opcode - REG_MIN;
646 if ( (opcode<REG_MIN) || (opcode>REG_MAX) || (reg_tab[i].name==NULL) ){
651 mnemp = reg_tab[i].name;
652 if ( *mnemp == 'F' ){
659 fputs( mnemp, stream );
661 s1 = (word1 >> 5) & 1;
662 s2 = (word1 >> 6) & 1;
663 m1 = (word1 >> 11) & 1;
664 m2 = (word1 >> 12) & 1;
665 m3 = (word1 >> 13) & 1;
667 src2 = (word1 >> 14) & 0x1f;
668 dst = (word1 >> 19) & 0x1f;
670 if ( reg_tab[i].numops != 0 ){
671 putc( '\t', stream );
673 switch ( reg_tab[i].numops ){
675 regop( m1, s1, src, fp );
678 dstop( m3, dst, fp );
681 regop( m1, s1, src, fp );
683 regop( m2, s2, src2, fp );
686 regop( m1, s1, src, fp );
688 dstop( m3, dst, fp );
691 regop( m1, s1, src, fp );
693 regop( m2, s2, src2, fp );
695 dstop( m3, dst, fp );
703 * Print out effective address for memb instructions.
706 ea( memaddr, mode, reg2, reg3, word1, word2 )
707 unsigned long memaddr;
713 static int scale_tab[] = { 1, 2, 4, 8, 16 };
715 scale = (word1 >> 7) & 0x07;
716 if ( (scale > 4) || ((word1 >> 5) & 0x03 != 0) ){
720 scale = scale_tab[scale];
724 fprintf( stream, "(%s)", reg2 );
726 case 5: /* displ+8(ip) */
727 print_addr( word2+8+memaddr );
729 case 7: /* (reg)[index*scale] */
731 fprintf( stream, "(%s)[%s]", reg2, reg3 );
733 fprintf( stream, "(%s)[%s*%d]",reg2,reg3,scale);
736 case 12: /* displacement */
739 case 13: /* displ(reg) */
741 fprintf( stream, "(%s)", reg2 );
743 case 14: /* displ[index*scale] */
746 fprintf( stream, "[%s]", reg3 );
748 fprintf( stream, "[%s*%d]", reg3, scale );
751 case 15: /* displ(reg)[index*scale] */
754 fprintf( stream, "(%s)[%s]", reg2, reg3 );
756 fprintf( stream, "(%s)[%s*%d]",reg2,reg3,scale );
766 /************************************************/
767 /* Register Instruction Operand */
768 /************************************************/
770 regop( mode, spec, reg, fp )
771 int mode, spec, reg, fp;
773 if ( fp ){ /* FLOATING POINT INSTRUCTION */
774 if ( mode == 1 ){ /* FP operand */
776 case 0: fputs( "fp0", stream ); break;
777 case 1: fputs( "fp1", stream ); break;
778 case 2: fputs( "fp2", stream ); break;
779 case 3: fputs( "fp3", stream ); break;
780 case 16: fputs( "0f0.0", stream ); break;
781 case 22: fputs( "0f1.0", stream ); break;
782 default: putc( '?', stream ); break;
784 } else { /* Non-FP register */
785 fputs( reg_names[reg], stream );
787 } else { /* NOT FLOATING POINT */
788 if ( mode == 1 ){ /* Literal */
789 fprintf( stream, "%d", reg );
790 } else { /* Register */
792 fputs( reg_names[reg], stream );
794 fprintf( stream, "sf%d", reg );
800 /************************************************/
801 /* Register Instruction Destination Operand */
802 /************************************************/
804 dstop( mode, reg, fp )
807 /* 'dst' operand can't be a literal. On non-FP instructions, register
808 * mode is assumed and "m3" acts as if were "s3"; on FP-instructions,
809 * sf registers are not allowed so m3 acts normally.
812 regop( mode, 0, reg, fp );
814 regop( 0, mode, reg, fp );
823 fprintf( stream, ".word\t0x%08x", word1 );
829 fprintf( stream, "0x%x", a );
833 put_abs( word1, word2 )
834 unsigned long word1, word2;
841 switch ( (word1 >> 28) & 0xf ){
847 /* MEM format instruction */
848 len = mem( 0, word1, word2, 1 );
856 fprintf( stream, "%08x %08x\t", word1, word2 );
858 fprintf( stream, "%08x \t", word1 );