3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
25 # Make certain that the script is not running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
345 # See also PREDEFAULT and POSTDEFAULT.
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
355 garbage_at_eol ) : ;;
357 # Catches stray fields.
360 echo "Bad field ${field}"
368 # See below (DOCO) for description of each field
370 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
372 i::int:byte_order:::BFD_ENDIAN_BIG
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 # Number of bits in a short or unsigned short for the target machine.
382 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
389 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
397 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
407 # / addr_bit will be set from it.
409 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
410 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
413 # ptr_bit is the size of a pointer on the target
414 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
415 # addr_bit is the size of a target address as represented in gdb
416 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::int:char_signed:::1:-1:1
421 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
422 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
423 # Function for getting target's idea of a frame pointer. FIXME: GDB's
424 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
428 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
429 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
431 v::int:num_regs:::0:-1
432 # This macro gives the number of pseudo-registers that live in the
433 # register namespace but do not get fetched or stored on the target.
434 # These pseudo-registers may be aliases for other registers,
435 # combinations of other registers, or they may be computed by GDB.
436 v::int:num_pseudo_regs:::0:0::0
438 # GDB's standard (or well known) register numbers. These can map onto
439 # a real register or a pseudo (computed) register or not be defined at
441 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
442 v::int:sp_regnum:::-1:-1::0
443 v::int:pc_regnum:::-1:-1::0
444 v::int:ps_regnum:::-1:-1::0
445 v::int:fp0_regnum:::0:-1::0
446 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
447 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
449 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
450 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
451 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
452 # Convert from an sdb register number to an internal gdb register number.
453 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
454 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
455 f::const char *:register_name:int regnr:regnr
457 # Return the type of a register specified by the architecture. Only
458 # the register cache should call this function directly; others should
459 # use "register_type".
460 M::struct type *:register_type:int reg_nr:reg_nr
462 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
463 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
464 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
465 # deprecated_fp_regnum.
466 v::int:deprecated_fp_regnum:::-1:-1::0
468 # See gdbint.texinfo. See infcall.c.
469 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
470 v::int:call_dummy_location::::AT_ENTRY_POINT::0
471 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
473 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
474 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
476 # MAP a GDB RAW register number onto a simulator register number. See
477 # also include/...-sim.h.
478 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
479 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
480 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
481 # setjmp/longjmp support.
482 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
484 v::int:believe_pcc_promotion:::::::
486 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
487 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
488 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
495 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
496 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
497 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
499 # It has been suggested that this, well actually its predecessor,
500 # should take the type/value of the function to be called and not the
501 # return type. This is left as an exercise for the reader.
503 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
504 # the predicate with default hack to avoid calling store_return_value
505 # (via legacy_return_value), when a small struct is involved.
507 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
509 # The deprecated methods extract_return_value, store_return_value,
510 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
511 # deprecated_use_struct_convention have all been folded into
514 f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
515 f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
516 f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
518 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
520 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
521 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
522 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
523 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
524 v::CORE_ADDR:decr_pc_after_break:::0:::0
526 # A function can be addressed by either it's "pointer" (possibly a
527 # descriptor address) or "entry point" (first executable instruction).
528 # The method "convert_from_func_ptr_addr" converting the former to the
529 # latter. gdbarch_deprecated_function_start_offset is being used to implement
530 # a simplified subset of that functionality - the function's address
531 # corresponds to the "function pointer" and the function's start
532 # corresponds to the "function entry point" - and hence is redundant.
534 v::CORE_ADDR:deprecated_function_start_offset:::0:::0
536 # Return the remote protocol register number associated with this
537 # register. Normally the identity mapping.
538 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
540 # Fetch the target specific address used to represent a load module.
541 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
543 v::CORE_ADDR:frame_args_skip:::0:::0
544 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
545 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
546 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
547 # frame-base. Enable frame-base before frame-unwind.
548 F::int:frame_num_args:struct frame_info *frame:frame
550 M::CORE_ADDR:frame_align:CORE_ADDR address:address
551 # deprecated_reg_struct_has_addr has been replaced by
552 # stabs_argument_has_addr.
553 F::int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
554 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
555 v::int:frame_red_zone_size
557 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
558 # On some machines there are bits in addresses which are not really
559 # part of the address, but are used by the kernel, the hardware, etc.
560 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
561 # we get a "real" address such as one would find in a symbol table.
562 # This is used only for addresses of instructions, and even then I'm
563 # not sure it's used in all contexts. It exists to deal with there
564 # being a few stray bits in the PC which would mislead us, not as some
565 # sort of generic thing to handle alignment or segmentation (it's
566 # possible it should be in TARGET_READ_PC instead).
567 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
568 # It is not at all clear why gdbarch_smash_text_address is not folded into
569 # gdbarch_addr_bits_remove.
570 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
572 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
573 # indicates if the target needs software single step. An ISA method to
576 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
577 # breakpoints using the breakpoint system instead of blatting memory directly
580 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
581 # target can single step. If not, then implement single step using breakpoints.
583 # A return value of 1 means that the software_single_step breakpoints
584 # were inserted; 0 means they were not.
585 F:=:int:software_single_step:struct frame_info *frame:frame
587 # Return non-zero if the processor is executing a delay slot and a
588 # further single-step is needed before the instruction finishes.
589 M::int:single_step_through_delay:struct frame_info *frame:frame
590 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
591 # disassembler. Perhaps objdump can handle it?
592 f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
593 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
597 # evaluates non-zero, this is the address where the debugger will place
598 # a step-resume breakpoint to get us past the dynamic linker.
599 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
600 # Some systems also have trampoline code for returning from shared libs.
601 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
603 # A target might have problems with watchpoints as soon as the stack
604 # frame of the current function has been destroyed. This mostly happens
605 # as the first action in a funtion's epilogue. in_function_epilogue_p()
606 # is defined to return a non-zero value if either the given addr is one
607 # instruction after the stack destroying instruction up to the trailing
608 # return instruction or if we can figure out that the stack frame has
609 # already been invalidated regardless of the value of addr. Targets
610 # which don't suffer from that problem could just let this functionality
612 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
613 # Given a vector of command-line arguments, return a newly allocated
614 # string which, when passed to the create_inferior function, will be
615 # parsed (on Unix systems, by the shell) to yield the same vector.
616 # This function should call error() if the argument vector is not
617 # representable for this target or if this target does not support
618 # command-line arguments.
619 # ARGC is the number of elements in the vector.
620 # ARGV is an array of strings, one per argument.
621 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
622 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
625 v::int:cannot_step_breakpoint:::0:0::0
626 v::int:have_nonsteppable_watchpoint:::0:0::0
627 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
628 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
629 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
630 # Is a register in a group
631 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
632 # Fetch the pointer to the ith function argument.
633 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
635 # Return the appropriate register set for a core file section with
636 # name SECT_NAME and size SECT_SIZE.
637 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
639 # If the elements of C++ vtables are in-place function descriptors rather
640 # than normal function pointers (which may point to code or a descriptor),
642 v::int:vtable_function_descriptors:::0:0::0
644 # Set if the least significant bit of the delta is used instead of the least
645 # significant bit of the pfn for pointers to virtual member functions.
646 v::int:vbit_in_delta:::0:0::0
648 # Advance PC to next instruction in order to skip a permanent breakpoint.
649 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
651 # Refresh overlay mapped state for section OSECT.
652 F::void:overlay_update:struct obj_section *osect:osect
659 exec > new-gdbarch.log
660 function_list | while do_read
663 ${class} ${returntype} ${function} ($formal)
667 eval echo \"\ \ \ \ ${r}=\${${r}}\"
669 if class_is_predicate_p && fallback_default_p
671 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
675 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
677 echo "Error: postdefault is useless when invalid_p=0" 1>&2
681 if class_is_multiarch_p
683 if class_is_predicate_p ; then :
684 elif test "x${predefault}" = "x"
686 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
695 compare_new gdbarch.log
701 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
703 /* Dynamic architecture support for GDB, the GNU debugger.
705 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
706 Free Software Foundation, Inc.
708 This file is part of GDB.
710 This program is free software; you can redistribute it and/or modify
711 it under the terms of the GNU General Public License as published by
712 the Free Software Foundation; either version 2 of the License, or
713 (at your option) any later version.
715 This program is distributed in the hope that it will be useful,
716 but WITHOUT ANY WARRANTY; without even the implied warranty of
717 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
718 GNU General Public License for more details.
720 You should have received a copy of the GNU General Public License
721 along with this program; if not, write to the Free Software
722 Foundation, Inc., 51 Franklin Street, Fifth Floor,
723 Boston, MA 02110-1301, USA. */
725 /* This file was created with the aid of \`\`gdbarch.sh''.
727 The Bourne shell script \`\`gdbarch.sh'' creates the files
728 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
729 against the existing \`\`gdbarch.[hc]''. Any differences found
732 If editing this file, please also run gdbarch.sh and merge any
733 changes into that script. Conversely, when making sweeping changes
734 to this file, modifying gdbarch.sh and using its output may prove
756 struct minimal_symbol;
760 struct disassemble_info;
763 struct bp_target_info;
766 extern struct gdbarch *current_gdbarch;
772 printf "/* The following are pre-initialized by GDBARCH. */\n"
773 function_list | while do_read
778 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
779 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
780 if test -n "${macro}"
782 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
783 printf "#error \"Non multi-arch definition of ${macro}\"\n"
785 printf "#if !defined (${macro})\n"
786 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
795 printf "/* The following are initialized by the target dependent code. */\n"
796 function_list | while do_read
798 if [ -n "${comment}" ]
800 echo "${comment}" | sed \
806 if class_is_predicate_p
808 if test -n "${macro}"
811 printf "#if defined (${macro})\n"
812 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
813 printf "#if !defined (${macro}_P)\n"
814 printf "#define ${macro}_P() (1)\n"
819 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
820 if test -n "${macro}"
822 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
823 printf "#error \"Non multi-arch definition of ${macro}\"\n"
825 printf "#if !defined (${macro}_P)\n"
826 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
830 if class_is_variable_p
833 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
834 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
835 if test -n "${macro}"
837 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
838 printf "#error \"Non multi-arch definition of ${macro}\"\n"
840 printf "#if !defined (${macro})\n"
841 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
845 if class_is_function_p
848 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
850 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
851 elif class_is_multiarch_p
853 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
855 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
857 if [ "x${formal}" = "xvoid" ]
859 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
861 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
863 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
864 if test -n "${macro}"
866 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
867 printf "#error \"Non multi-arch definition of ${macro}\"\n"
869 if [ "x${actual}" = "x" ]
871 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
872 elif [ "x${actual}" = "x-" ]
874 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
876 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
878 printf "#if !defined (${macro})\n"
879 if [ "x${actual}" = "x" ]
881 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
882 elif [ "x${actual}" = "x-" ]
884 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
886 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
896 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
899 /* Mechanism for co-ordinating the selection of a specific
902 GDB targets (*-tdep.c) can register an interest in a specific
903 architecture. Other GDB components can register a need to maintain
904 per-architecture data.
906 The mechanisms below ensures that there is only a loose connection
907 between the set-architecture command and the various GDB
908 components. Each component can independently register their need
909 to maintain architecture specific data with gdbarch.
913 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
916 The more traditional mega-struct containing architecture specific
917 data for all the various GDB components was also considered. Since
918 GDB is built from a variable number of (fairly independent)
919 components it was determined that the global aproach was not
923 /* Register a new architectural family with GDB.
925 Register support for the specified ARCHITECTURE with GDB. When
926 gdbarch determines that the specified architecture has been
927 selected, the corresponding INIT function is called.
931 The INIT function takes two parameters: INFO which contains the
932 information available to gdbarch about the (possibly new)
933 architecture; ARCHES which is a list of the previously created
934 \`\`struct gdbarch'' for this architecture.
936 The INFO parameter is, as far as possible, be pre-initialized with
937 information obtained from INFO.ABFD or the global defaults.
939 The ARCHES parameter is a linked list (sorted most recently used)
940 of all the previously created architures for this architecture
941 family. The (possibly NULL) ARCHES->gdbarch can used to access
942 values from the previously selected architecture for this
943 architecture family. The global \`\`current_gdbarch'' shall not be
946 The INIT function shall return any of: NULL - indicating that it
947 doesn't recognize the selected architecture; an existing \`\`struct
948 gdbarch'' from the ARCHES list - indicating that the new
949 architecture is just a synonym for an earlier architecture (see
950 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
951 - that describes the selected architecture (see gdbarch_alloc()).
953 The DUMP_TDEP function shall print out all target specific values.
954 Care should be taken to ensure that the function works in both the
955 multi-arch and non- multi-arch cases. */
959 struct gdbarch *gdbarch;
960 struct gdbarch_list *next;
965 /* Use default: NULL (ZERO). */
966 const struct bfd_arch_info *bfd_arch_info;
968 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
971 /* Use default: NULL (ZERO). */
974 /* Use default: NULL (ZERO). */
975 struct gdbarch_tdep_info *tdep_info;
977 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
978 enum gdb_osabi osabi;
980 /* Use default: NULL (ZERO). */
981 const struct target_desc *target_desc;
984 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
985 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
987 /* DEPRECATED - use gdbarch_register() */
988 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
990 extern void gdbarch_register (enum bfd_architecture architecture,
991 gdbarch_init_ftype *,
992 gdbarch_dump_tdep_ftype *);
995 /* Return a freshly allocated, NULL terminated, array of the valid
996 architecture names. Since architectures are registered during the
997 _initialize phase this function only returns useful information
998 once initialization has been completed. */
1000 extern const char **gdbarch_printable_names (void);
1003 /* Helper function. Search the list of ARCHES for a GDBARCH that
1004 matches the information provided by INFO. */
1006 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1009 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1010 basic initialization using values obtained from the INFO and TDEP
1011 parameters. set_gdbarch_*() functions are called to complete the
1012 initialization of the object. */
1014 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1017 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1018 It is assumed that the caller freeds the \`\`struct
1021 extern void gdbarch_free (struct gdbarch *);
1024 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1025 obstack. The memory is freed when the corresponding architecture
1028 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1029 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1030 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1033 /* Helper function. Force an update of the current architecture.
1035 The actual architecture selected is determined by INFO, \`\`(gdb) set
1036 architecture'' et.al., the existing architecture and BFD's default
1037 architecture. INFO should be initialized to zero and then selected
1038 fields should be updated.
1040 Returns non-zero if the update succeeds */
1042 extern int gdbarch_update_p (struct gdbarch_info info);
1045 /* Helper function. Find an architecture matching info.
1047 INFO should be initialized using gdbarch_info_init, relevant fields
1048 set, and then finished using gdbarch_info_fill.
1050 Returns the corresponding architecture, or NULL if no matching
1051 architecture was found. "current_gdbarch" is not updated. */
1053 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1056 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1058 FIXME: kettenis/20031124: Of the functions that follow, only
1059 gdbarch_from_bfd is supposed to survive. The others will
1060 dissappear since in the future GDB will (hopefully) be truly
1061 multi-arch. However, for now we're still stuck with the concept of
1062 a single active architecture. */
1064 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1067 /* Register per-architecture data-pointer.
1069 Reserve space for a per-architecture data-pointer. An identifier
1070 for the reserved data-pointer is returned. That identifer should
1071 be saved in a local static variable.
1073 Memory for the per-architecture data shall be allocated using
1074 gdbarch_obstack_zalloc. That memory will be deleted when the
1075 corresponding architecture object is deleted.
1077 When a previously created architecture is re-selected, the
1078 per-architecture data-pointer for that previous architecture is
1079 restored. INIT() is not re-called.
1081 Multiple registrarants for any architecture are allowed (and
1082 strongly encouraged). */
1084 struct gdbarch_data;
1086 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1087 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1088 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1089 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1090 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1091 struct gdbarch_data *data,
1094 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1098 /* Register per-architecture memory region.
1100 Provide a memory-region swap mechanism. Per-architecture memory
1101 region are created. These memory regions are swapped whenever the
1102 architecture is changed. For a new architecture, the memory region
1103 is initialized with zero (0) and the INIT function is called.
1105 Memory regions are swapped / initialized in the order that they are
1106 registered. NULL DATA and/or INIT values can be specified.
1108 New code should use gdbarch_data_register_*(). */
1110 typedef void (gdbarch_swap_ftype) (void);
1111 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1112 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1116 /* Set the dynamic target-system-dependent parameters (architecture,
1117 byte-order, ...) using information found in the BFD */
1119 extern void set_gdbarch_from_file (bfd *);
1122 /* Initialize the current architecture to the "first" one we find on
1125 extern void initialize_current_architecture (void);
1127 /* gdbarch trace variable */
1128 extern int gdbarch_debug;
1130 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1135 #../move-if-change new-gdbarch.h gdbarch.h
1136 compare_new gdbarch.h
1143 exec > new-gdbarch.c
1148 #include "arch-utils.h"
1151 #include "inferior.h"
1154 #include "floatformat.h"
1156 #include "gdb_assert.h"
1157 #include "gdb_string.h"
1158 #include "gdb-events.h"
1159 #include "reggroups.h"
1161 #include "gdb_obstack.h"
1163 /* Static function declarations */
1165 static void alloc_gdbarch_data (struct gdbarch *);
1167 /* Non-zero if we want to trace architecture code. */
1169 #ifndef GDBARCH_DEBUG
1170 #define GDBARCH_DEBUG 0
1172 int gdbarch_debug = GDBARCH_DEBUG;
1174 show_gdbarch_debug (struct ui_file *file, int from_tty,
1175 struct cmd_list_element *c, const char *value)
1177 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1181 pformat (const struct floatformat **format)
1186 /* Just print out one of them - this is only for diagnostics. */
1187 return format[0]->name;
1192 # gdbarch open the gdbarch object
1194 printf "/* Maintain the struct gdbarch object */\n"
1196 printf "struct gdbarch\n"
1198 printf " /* Has this architecture been fully initialized? */\n"
1199 printf " int initialized_p;\n"
1201 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1202 printf " struct obstack *obstack;\n"
1204 printf " /* basic architectural information */\n"
1205 function_list | while do_read
1209 printf " ${returntype} ${function};\n"
1213 printf " /* target specific vector. */\n"
1214 printf " struct gdbarch_tdep *tdep;\n"
1215 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1217 printf " /* per-architecture data-pointers */\n"
1218 printf " unsigned nr_data;\n"
1219 printf " void **data;\n"
1221 printf " /* per-architecture swap-regions */\n"
1222 printf " struct gdbarch_swap *swap;\n"
1225 /* Multi-arch values.
1227 When extending this structure you must:
1229 Add the field below.
1231 Declare set/get functions and define the corresponding
1234 gdbarch_alloc(): If zero/NULL is not a suitable default,
1235 initialize the new field.
1237 verify_gdbarch(): Confirm that the target updated the field
1240 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1243 \`\`startup_gdbarch()'': Append an initial value to the static
1244 variable (base values on the host's c-type system).
1246 get_gdbarch(): Implement the set/get functions (probably using
1247 the macro's as shortcuts).
1252 function_list | while do_read
1254 if class_is_variable_p
1256 printf " ${returntype} ${function};\n"
1257 elif class_is_function_p
1259 printf " gdbarch_${function}_ftype *${function};\n"
1264 # A pre-initialized vector
1268 /* The default architecture uses host values (for want of a better
1272 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1274 printf "struct gdbarch startup_gdbarch =\n"
1276 printf " 1, /* Always initialized. */\n"
1277 printf " NULL, /* The obstack. */\n"
1278 printf " /* basic architecture information */\n"
1279 function_list | while do_read
1283 printf " ${staticdefault}, /* ${function} */\n"
1287 /* target specific vector and its dump routine */
1289 /*per-architecture data-pointers and swap regions */
1291 /* Multi-arch values */
1293 function_list | while do_read
1295 if class_is_function_p || class_is_variable_p
1297 printf " ${staticdefault}, /* ${function} */\n"
1301 /* startup_gdbarch() */
1304 struct gdbarch *current_gdbarch = &startup_gdbarch;
1307 # Create a new gdbarch struct
1310 /* Create a new \`\`struct gdbarch'' based on information provided by
1311 \`\`struct gdbarch_info''. */
1316 gdbarch_alloc (const struct gdbarch_info *info,
1317 struct gdbarch_tdep *tdep)
1319 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1320 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1321 the current local architecture and not the previous global
1322 architecture. This ensures that the new architectures initial
1323 values are not influenced by the previous architecture. Once
1324 everything is parameterised with gdbarch, this will go away. */
1325 struct gdbarch *current_gdbarch;
1327 /* Create an obstack for allocating all the per-architecture memory,
1328 then use that to allocate the architecture vector. */
1329 struct obstack *obstack = XMALLOC (struct obstack);
1330 obstack_init (obstack);
1331 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1332 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1333 current_gdbarch->obstack = obstack;
1335 alloc_gdbarch_data (current_gdbarch);
1337 current_gdbarch->tdep = tdep;
1340 function_list | while do_read
1344 printf " current_gdbarch->${function} = info->${function};\n"
1348 printf " /* Force the explicit initialization of these. */\n"
1349 function_list | while do_read
1351 if class_is_function_p || class_is_variable_p
1353 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1355 printf " current_gdbarch->${function} = ${predefault};\n"
1360 /* gdbarch_alloc() */
1362 return current_gdbarch;
1366 # Free a gdbarch struct.
1370 /* Allocate extra space using the per-architecture obstack. */
1373 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1375 void *data = obstack_alloc (arch->obstack, size);
1376 memset (data, 0, size);
1381 /* Free a gdbarch struct. This should never happen in normal
1382 operation --- once you've created a gdbarch, you keep it around.
1383 However, if an architecture's init function encounters an error
1384 building the structure, it may need to clean up a partially
1385 constructed gdbarch. */
1388 gdbarch_free (struct gdbarch *arch)
1390 struct obstack *obstack;
1391 gdb_assert (arch != NULL);
1392 gdb_assert (!arch->initialized_p);
1393 obstack = arch->obstack;
1394 obstack_free (obstack, 0); /* Includes the ARCH. */
1399 # verify a new architecture
1403 /* Ensure that all values in a GDBARCH are reasonable. */
1405 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1406 just happens to match the global variable \`\`current_gdbarch''. That
1407 way macros refering to that variable get the local and not the global
1408 version - ulgh. Once everything is parameterised with gdbarch, this
1412 verify_gdbarch (struct gdbarch *current_gdbarch)
1414 struct ui_file *log;
1415 struct cleanup *cleanups;
1418 log = mem_fileopen ();
1419 cleanups = make_cleanup_ui_file_delete (log);
1421 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1422 fprintf_unfiltered (log, "\n\tbyte-order");
1423 if (current_gdbarch->bfd_arch_info == NULL)
1424 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1425 /* Check those that need to be defined for the given multi-arch level. */
1427 function_list | while do_read
1429 if class_is_function_p || class_is_variable_p
1431 if [ "x${invalid_p}" = "x0" ]
1433 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1434 elif class_is_predicate_p
1436 printf " /* Skip verify of ${function}, has predicate */\n"
1437 # FIXME: See do_read for potential simplification
1438 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1440 printf " if (${invalid_p})\n"
1441 printf " current_gdbarch->${function} = ${postdefault};\n"
1442 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1444 printf " if (current_gdbarch->${function} == ${predefault})\n"
1445 printf " current_gdbarch->${function} = ${postdefault};\n"
1446 elif [ -n "${postdefault}" ]
1448 printf " if (current_gdbarch->${function} == 0)\n"
1449 printf " current_gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${invalid_p}" ]
1452 printf " if (${invalid_p})\n"
1453 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1454 elif [ -n "${predefault}" ]
1456 printf " if (current_gdbarch->${function} == ${predefault})\n"
1457 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1462 buf = ui_file_xstrdup (log, &dummy);
1463 make_cleanup (xfree, buf);
1464 if (strlen (buf) > 0)
1465 internal_error (__FILE__, __LINE__,
1466 _("verify_gdbarch: the following are invalid ...%s"),
1468 do_cleanups (cleanups);
1472 # dump the structure
1476 /* Print out the details of the current architecture. */
1478 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1479 just happens to match the global variable \`\`current_gdbarch''. That
1480 way macros refering to that variable get the local and not the global
1481 version - ulgh. Once everything is parameterised with gdbarch, this
1485 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1487 const char *gdb_xm_file = "<not-defined>";
1488 const char *gdb_nm_file = "<not-defined>";
1489 const char *gdb_tm_file = "<not-defined>";
1490 #if defined (GDB_XM_FILE)
1491 gdb_xm_file = GDB_XM_FILE;
1493 fprintf_unfiltered (file,
1494 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1496 #if defined (GDB_NM_FILE)
1497 gdb_nm_file = GDB_NM_FILE;
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1502 #if defined (GDB_TM_FILE)
1503 gdb_tm_file = GDB_TM_FILE;
1505 fprintf_unfiltered (file,
1506 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1509 function_list | sort -t: -k 4 | while do_read
1511 # First the predicate
1512 if class_is_predicate_p
1514 if test -n "${macro}"
1516 printf "#ifdef ${macro}_P\n"
1517 printf " fprintf_unfiltered (file,\n"
1518 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1519 printf " \"${macro}_P()\",\n"
1520 printf " XSTRING (${macro}_P ()));\n"
1523 printf " fprintf_unfiltered (file,\n"
1524 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1525 printf " gdbarch_${function}_p (current_gdbarch));\n"
1527 # Print the macro definition.
1528 if test -n "${macro}"
1530 printf "#ifdef ${macro}\n"
1531 if class_is_function_p
1533 printf " fprintf_unfiltered (file,\n"
1534 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1535 printf " \"${macro}(${actual})\",\n"
1536 printf " XSTRING (${macro} (${actual})));\n"
1538 printf " fprintf_unfiltered (file,\n"
1539 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1540 printf " XSTRING (${macro}));\n"
1544 # Print the corresponding value.
1545 if class_is_function_p
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1549 printf " (long) current_gdbarch->${function});\n"
1552 case "${print}:${returntype}" in
1555 print="paddr_nz (current_gdbarch->${function})"
1559 print="paddr_d (current_gdbarch->${function})"
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1567 printf " ${print});\n"
1571 if (current_gdbarch->dump_tdep != NULL)
1572 current_gdbarch->dump_tdep (current_gdbarch, file);
1580 struct gdbarch_tdep *
1581 gdbarch_tdep (struct gdbarch *gdbarch)
1583 if (gdbarch_debug >= 2)
1584 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1585 return gdbarch->tdep;
1589 function_list | while do_read
1591 if class_is_predicate_p
1595 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1597 printf " gdb_assert (gdbarch != NULL);\n"
1598 printf " return ${predicate};\n"
1601 if class_is_function_p
1604 printf "${returntype}\n"
1605 if [ "x${formal}" = "xvoid" ]
1607 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1612 printf " gdb_assert (gdbarch != NULL);\n"
1613 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1614 if class_is_predicate_p && test -n "${predefault}"
1616 # Allow a call to a function with a predicate.
1617 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1619 printf " if (gdbarch_debug >= 2)\n"
1620 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1621 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1623 if class_is_multiarch_p
1630 if class_is_multiarch_p
1632 params="gdbarch, ${actual}"
1637 if [ "x${returntype}" = "xvoid" ]
1639 printf " gdbarch->${function} (${params});\n"
1641 printf " return gdbarch->${function} (${params});\n"
1646 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1647 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1649 printf " gdbarch->${function} = ${function};\n"
1651 elif class_is_variable_p
1654 printf "${returntype}\n"
1655 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1657 printf " gdb_assert (gdbarch != NULL);\n"
1658 if [ "x${invalid_p}" = "x0" ]
1660 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1661 elif [ -n "${invalid_p}" ]
1663 printf " /* Check variable is valid. */\n"
1664 printf " gdb_assert (!(${invalid_p}));\n"
1665 elif [ -n "${predefault}" ]
1667 printf " /* Check variable changed from pre-default. */\n"
1668 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1670 printf " if (gdbarch_debug >= 2)\n"
1671 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1672 printf " return gdbarch->${function};\n"
1676 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1677 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1679 printf " gdbarch->${function} = ${function};\n"
1681 elif class_is_info_p
1684 printf "${returntype}\n"
1685 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1687 printf " gdb_assert (gdbarch != NULL);\n"
1688 printf " if (gdbarch_debug >= 2)\n"
1689 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1690 printf " return gdbarch->${function};\n"
1695 # All the trailing guff
1699 /* Keep a registry of per-architecture data-pointers required by GDB
1706 gdbarch_data_pre_init_ftype *pre_init;
1707 gdbarch_data_post_init_ftype *post_init;
1710 struct gdbarch_data_registration
1712 struct gdbarch_data *data;
1713 struct gdbarch_data_registration *next;
1716 struct gdbarch_data_registry
1719 struct gdbarch_data_registration *registrations;
1722 struct gdbarch_data_registry gdbarch_data_registry =
1727 static struct gdbarch_data *
1728 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1729 gdbarch_data_post_init_ftype *post_init)
1731 struct gdbarch_data_registration **curr;
1732 /* Append the new registraration. */
1733 for (curr = &gdbarch_data_registry.registrations;
1735 curr = &(*curr)->next);
1736 (*curr) = XMALLOC (struct gdbarch_data_registration);
1737 (*curr)->next = NULL;
1738 (*curr)->data = XMALLOC (struct gdbarch_data);
1739 (*curr)->data->index = gdbarch_data_registry.nr++;
1740 (*curr)->data->pre_init = pre_init;
1741 (*curr)->data->post_init = post_init;
1742 (*curr)->data->init_p = 1;
1743 return (*curr)->data;
1746 struct gdbarch_data *
1747 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1749 return gdbarch_data_register (pre_init, NULL);
1752 struct gdbarch_data *
1753 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1755 return gdbarch_data_register (NULL, post_init);
1758 /* Create/delete the gdbarch data vector. */
1761 alloc_gdbarch_data (struct gdbarch *gdbarch)
1763 gdb_assert (gdbarch->data == NULL);
1764 gdbarch->nr_data = gdbarch_data_registry.nr;
1765 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1768 /* Initialize the current value of the specified per-architecture
1772 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1773 struct gdbarch_data *data,
1776 gdb_assert (data->index < gdbarch->nr_data);
1777 gdb_assert (gdbarch->data[data->index] == NULL);
1778 gdb_assert (data->pre_init == NULL);
1779 gdbarch->data[data->index] = pointer;
1782 /* Return the current value of the specified per-architecture
1786 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1788 gdb_assert (data->index < gdbarch->nr_data);
1789 if (gdbarch->data[data->index] == NULL)
1791 /* The data-pointer isn't initialized, call init() to get a
1793 if (data->pre_init != NULL)
1794 /* Mid architecture creation: pass just the obstack, and not
1795 the entire architecture, as that way it isn't possible for
1796 pre-init code to refer to undefined architecture
1798 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1799 else if (gdbarch->initialized_p
1800 && data->post_init != NULL)
1801 /* Post architecture creation: pass the entire architecture
1802 (as all fields are valid), but be careful to also detect
1803 recursive references. */
1805 gdb_assert (data->init_p);
1807 gdbarch->data[data->index] = data->post_init (gdbarch);
1811 /* The architecture initialization hasn't completed - punt -
1812 hope that the caller knows what they are doing. Once
1813 deprecated_set_gdbarch_data has been initialized, this can be
1814 changed to an internal error. */
1816 gdb_assert (gdbarch->data[data->index] != NULL);
1818 return gdbarch->data[data->index];
1823 /* Keep a registry of swapped data required by GDB modules. */
1828 struct gdbarch_swap_registration *source;
1829 struct gdbarch_swap *next;
1832 struct gdbarch_swap_registration
1835 unsigned long sizeof_data;
1836 gdbarch_swap_ftype *init;
1837 struct gdbarch_swap_registration *next;
1840 struct gdbarch_swap_registry
1843 struct gdbarch_swap_registration *registrations;
1846 struct gdbarch_swap_registry gdbarch_swap_registry =
1852 deprecated_register_gdbarch_swap (void *data,
1853 unsigned long sizeof_data,
1854 gdbarch_swap_ftype *init)
1856 struct gdbarch_swap_registration **rego;
1857 for (rego = &gdbarch_swap_registry.registrations;
1859 rego = &(*rego)->next);
1860 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1861 (*rego)->next = NULL;
1862 (*rego)->init = init;
1863 (*rego)->data = data;
1864 (*rego)->sizeof_data = sizeof_data;
1868 current_gdbarch_swap_init_hack (void)
1870 struct gdbarch_swap_registration *rego;
1871 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1872 for (rego = gdbarch_swap_registry.registrations;
1876 if (rego->data != NULL)
1878 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1879 struct gdbarch_swap);
1880 (*curr)->source = rego;
1881 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1883 (*curr)->next = NULL;
1884 curr = &(*curr)->next;
1886 if (rego->init != NULL)
1891 static struct gdbarch *
1892 current_gdbarch_swap_out_hack (void)
1894 struct gdbarch *old_gdbarch = current_gdbarch;
1895 struct gdbarch_swap *curr;
1897 gdb_assert (old_gdbarch != NULL);
1898 for (curr = old_gdbarch->swap;
1902 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1903 memset (curr->source->data, 0, curr->source->sizeof_data);
1905 current_gdbarch = NULL;
1910 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1912 struct gdbarch_swap *curr;
1914 gdb_assert (current_gdbarch == NULL);
1915 for (curr = new_gdbarch->swap;
1918 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1919 current_gdbarch = new_gdbarch;
1923 /* Keep a registry of the architectures known by GDB. */
1925 struct gdbarch_registration
1927 enum bfd_architecture bfd_architecture;
1928 gdbarch_init_ftype *init;
1929 gdbarch_dump_tdep_ftype *dump_tdep;
1930 struct gdbarch_list *arches;
1931 struct gdbarch_registration *next;
1934 static struct gdbarch_registration *gdbarch_registry = NULL;
1937 append_name (const char ***buf, int *nr, const char *name)
1939 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1945 gdbarch_printable_names (void)
1947 /* Accumulate a list of names based on the registed list of
1949 enum bfd_architecture a;
1951 const char **arches = NULL;
1952 struct gdbarch_registration *rego;
1953 for (rego = gdbarch_registry;
1957 const struct bfd_arch_info *ap;
1958 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1960 internal_error (__FILE__, __LINE__,
1961 _("gdbarch_architecture_names: multi-arch unknown"));
1964 append_name (&arches, &nr_arches, ap->printable_name);
1969 append_name (&arches, &nr_arches, NULL);
1975 gdbarch_register (enum bfd_architecture bfd_architecture,
1976 gdbarch_init_ftype *init,
1977 gdbarch_dump_tdep_ftype *dump_tdep)
1979 struct gdbarch_registration **curr;
1980 const struct bfd_arch_info *bfd_arch_info;
1981 /* Check that BFD recognizes this architecture */
1982 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1983 if (bfd_arch_info == NULL)
1985 internal_error (__FILE__, __LINE__,
1986 _("gdbarch: Attempt to register unknown architecture (%d)"),
1989 /* Check that we haven't seen this architecture before */
1990 for (curr = &gdbarch_registry;
1992 curr = &(*curr)->next)
1994 if (bfd_architecture == (*curr)->bfd_architecture)
1995 internal_error (__FILE__, __LINE__,
1996 _("gdbarch: Duplicate registraration of architecture (%s)"),
1997 bfd_arch_info->printable_name);
2001 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2002 bfd_arch_info->printable_name,
2005 (*curr) = XMALLOC (struct gdbarch_registration);
2006 (*curr)->bfd_architecture = bfd_architecture;
2007 (*curr)->init = init;
2008 (*curr)->dump_tdep = dump_tdep;
2009 (*curr)->arches = NULL;
2010 (*curr)->next = NULL;
2014 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2015 gdbarch_init_ftype *init)
2017 gdbarch_register (bfd_architecture, init, NULL);
2021 /* Look for an architecture using gdbarch_info. */
2023 struct gdbarch_list *
2024 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2025 const struct gdbarch_info *info)
2027 for (; arches != NULL; arches = arches->next)
2029 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2031 if (info->byte_order != arches->gdbarch->byte_order)
2033 if (info->osabi != arches->gdbarch->osabi)
2035 if (info->target_desc != arches->gdbarch->target_desc)
2043 /* Find an architecture that matches the specified INFO. Create a new
2044 architecture if needed. Return that new architecture. Assumes
2045 that there is no current architecture. */
2047 static struct gdbarch *
2048 find_arch_by_info (struct gdbarch_info info)
2050 struct gdbarch *new_gdbarch;
2051 struct gdbarch_registration *rego;
2053 /* The existing architecture has been swapped out - all this code
2054 works from a clean slate. */
2055 gdb_assert (current_gdbarch == NULL);
2057 /* Fill in missing parts of the INFO struct using a number of
2058 sources: "set ..."; INFOabfd supplied; and the global
2060 gdbarch_info_fill (&info);
2062 /* Must have found some sort of architecture. */
2063 gdb_assert (info.bfd_arch_info != NULL);
2067 fprintf_unfiltered (gdb_stdlog,
2068 "find_arch_by_info: info.bfd_arch_info %s\n",
2069 (info.bfd_arch_info != NULL
2070 ? info.bfd_arch_info->printable_name
2072 fprintf_unfiltered (gdb_stdlog,
2073 "find_arch_by_info: info.byte_order %d (%s)\n",
2075 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2076 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2078 fprintf_unfiltered (gdb_stdlog,
2079 "find_arch_by_info: info.osabi %d (%s)\n",
2080 info.osabi, gdbarch_osabi_name (info.osabi));
2081 fprintf_unfiltered (gdb_stdlog,
2082 "find_arch_by_info: info.abfd 0x%lx\n",
2084 fprintf_unfiltered (gdb_stdlog,
2085 "find_arch_by_info: info.tdep_info 0x%lx\n",
2086 (long) info.tdep_info);
2089 /* Find the tdep code that knows about this architecture. */
2090 for (rego = gdbarch_registry;
2093 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2098 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2099 "No matching architecture\n");
2103 /* Ask the tdep code for an architecture that matches "info". */
2104 new_gdbarch = rego->init (info, rego->arches);
2106 /* Did the tdep code like it? No. Reject the change and revert to
2107 the old architecture. */
2108 if (new_gdbarch == NULL)
2111 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2112 "Target rejected architecture\n");
2116 /* Is this a pre-existing architecture (as determined by already
2117 being initialized)? Move it to the front of the architecture
2118 list (keeping the list sorted Most Recently Used). */
2119 if (new_gdbarch->initialized_p)
2121 struct gdbarch_list **list;
2122 struct gdbarch_list *this;
2124 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2125 "Previous architecture 0x%08lx (%s) selected\n",
2127 new_gdbarch->bfd_arch_info->printable_name);
2128 /* Find the existing arch in the list. */
2129 for (list = ®o->arches;
2130 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2131 list = &(*list)->next);
2132 /* It had better be in the list of architectures. */
2133 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2136 (*list) = this->next;
2137 /* Insert THIS at the front. */
2138 this->next = rego->arches;
2139 rego->arches = this;
2144 /* It's a new architecture. */
2146 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2147 "New architecture 0x%08lx (%s) selected\n",
2149 new_gdbarch->bfd_arch_info->printable_name);
2151 /* Insert the new architecture into the front of the architecture
2152 list (keep the list sorted Most Recently Used). */
2154 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2155 this->next = rego->arches;
2156 this->gdbarch = new_gdbarch;
2157 rego->arches = this;
2160 /* Check that the newly installed architecture is valid. Plug in
2161 any post init values. */
2162 new_gdbarch->dump_tdep = rego->dump_tdep;
2163 verify_gdbarch (new_gdbarch);
2164 new_gdbarch->initialized_p = 1;
2166 /* Initialize any per-architecture swap areas. This phase requires
2167 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2168 swap the entire architecture out. */
2169 current_gdbarch = new_gdbarch;
2170 current_gdbarch_swap_init_hack ();
2171 current_gdbarch_swap_out_hack ();
2174 gdbarch_dump (new_gdbarch, gdb_stdlog);
2180 gdbarch_find_by_info (struct gdbarch_info info)
2182 /* Save the previously selected architecture, setting the global to
2183 NULL. This stops things like gdbarch->init() trying to use the
2184 previous architecture's configuration. The previous architecture
2185 may not even be of the same architecture family. The most recent
2186 architecture of the same family is found at the head of the
2187 rego->arches list. */
2188 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2190 /* Find the specified architecture. */
2191 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2193 /* Restore the existing architecture. */
2194 gdb_assert (current_gdbarch == NULL);
2195 current_gdbarch_swap_in_hack (old_gdbarch);
2200 /* Make the specified architecture current, swapping the existing one
2204 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2206 gdb_assert (new_gdbarch != NULL);
2207 gdb_assert (current_gdbarch != NULL);
2208 gdb_assert (new_gdbarch->initialized_p);
2209 current_gdbarch_swap_out_hack ();
2210 current_gdbarch_swap_in_hack (new_gdbarch);
2211 architecture_changed_event ();
2212 reinit_frame_cache ();
2215 extern void _initialize_gdbarch (void);
2218 _initialize_gdbarch (void)
2220 struct cmd_list_element *c;
2222 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2223 Set architecture debugging."), _("\\
2224 Show architecture debugging."), _("\\
2225 When non-zero, architecture debugging is enabled."),
2228 &setdebuglist, &showdebuglist);
2234 #../move-if-change new-gdbarch.c gdbarch.c
2235 compare_new gdbarch.c