1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
61 #include "common/vec.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "common/filestuff.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
218 /* Convenience method to get at the name of the symbol at IDX in the
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
253 /* Attribute name DW_IDX_*. */
256 /* Attribute form DW_FORM_*. */
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return dwarf2_objfile_data_key.get (objfile);
287 /* Default names of the debugging sections. */
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
315 /* List of DWO/DWP sections. */
317 static const struct dwop_section_names
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
348 /* local data types */
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
366 enum dwarf_unit_type unit_type;
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
388 /* The type to which the method is attached, i.e., its parent class. */
391 /* The index of the method in the type's function fieldlists. */
394 /* The index of the method in the fieldlist. */
397 /* The name of the DIE. */
400 /* The DIE associated with this method. */
401 struct die_info *die;
404 /* Internal state when decoding a particular compilation unit. */
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
434 /* Non-zero if base_address has been set. */
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
441 const char *producer = nullptr;
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
477 /* How many compilation units ago was this CU last referenced? */
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
517 struct dwo_unit *dwo_unit = nullptr;
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
544 /* Mark used when releasing cached dies. */
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
568 bool processing_has_namespace_info : 1;
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
594 struct stmt_list_hash
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
606 struct type_unit_group
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
633 /* The symbol tables for this TU (obtained from the files listed in
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
644 /* These sections are what may appear in a (real or virtual) DWO file. */
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
661 /* CUs/TUs in DWP/DWO files. */
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
688 enum dwp_v2_section_ids
693 /* Data for one DWO file.
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
738 /* These sections are what may appear in a DWP file. */
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
768 struct virtual_v1_dwo_sections
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
786 struct virtual_v2_dwo_sections
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
812 /* Contents of DWP hash tables. */
814 struct dwp_hash_table
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
823 const gdb_byte *indices;
827 /* This is indexed by column number and gives the id of the section
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
843 /* Data for one DWP file. */
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
849 dbfd (std::move (abfd))
853 /* Name of the file. */
856 /* File format version. */
860 gdb_bfd_ref_ptr dbfd;
862 /* Section info for this file. */
863 struct dwp_sections sections {};
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
886 struct die_reader_specs
888 /* The bfd of die_section. */
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
924 enum class dir_index : unsigned int {};
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
931 file_entry () = default;
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
937 mod_time (mod_time_),
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
949 /* The directory index (1-based). */
950 dir_index d_index {};
952 unsigned int mod_time {};
954 unsigned int length {};
956 /* True if referenced by the Line Number Program. */
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
981 const char *include_dir_at (dir_index index) const
983 /* Convert directory index number (1-based) to vector index
985 size_t vec_index = to_underlying (index) - 1;
987 if (vec_index >= include_dirs.size ())
989 return include_dirs[vec_index];
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
994 file_entry *file_name_at (file_name_index index)
996 /* Convert file name index number (1-based) to vector index
998 size_t vec_index = to_underlying (index) - 1;
1000 if (vec_index >= file_names.size ())
1002 return &file_names[vec_index];
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1039 typedef std::unique_ptr<line_header> line_header_up;
1042 file_entry::include_dir (const line_header *lh) const
1044 return lh->include_dir_at (d_index);
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1060 void fixup (struct dwarf2_cu *cu);
1062 /* Read a minimal amount of information into the minimal die
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1087 /* Flag set if the SCOPE field of this structure has been
1089 unsigned int scope_set : 1;
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1169 has_specification = 0;
1172 main_subprogram = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1183 /* This data structure holds the information of an abbrev. */
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1206 /* Top level data structure to contain an abbreviation table. */
1210 explicit abbrev_table (sect_offset off)
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1220 /* Allocate space for a struct abbrev_info object in
1222 struct abbrev_info *alloc_abbrev ();
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1246 struct abbrev_info **m_abbrevs;
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1251 /* Attributes have a name and a value. */
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1265 struct dwarf_block *blk;
1274 /* This data structure holds a complete die structure. */
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1291 unsigned int abbrev;
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1310 /* Get at parts of an attribute structure. */
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1320 /* Blocks are a bunch of untyped bytes. */
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1341 static int bits_per_byte = 8;
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1347 struct variant_field
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1362 int accessibility = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1384 /* Number of fields (including baseclasses). */
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1399 /* Nested types defined by this class and the number of elements in this
1401 std::vector<struct decl_field> nested_types_list;
1404 /* One item on the queue of compilation units to read in full symbols
1406 struct dwarf2_queue_item
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1431 /* local function prototypes */
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1501 cu_partial_die_info () = delete;
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1616 static int need_gnat_info (struct dwarf2_cu *);
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1676 struct partial_symtab *);
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1697 struct dwarf2_cu *);
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1760 static const char *dwarf_tag_name (unsigned int);
1762 static const char *dwarf_attr_name (unsigned int);
1764 static const char *dwarf_form_name (unsigned int);
1766 static const char *dwarf_bool_name (unsigned int);
1768 static const char *dwarf_type_encoding_name (unsigned int);
1770 static struct die_info *sibling_die (struct die_info *);
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1774 static void dump_die_for_error (struct die_info *);
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1809 static void read_signatured_type (struct signatured_type *);
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop);
1815 /* memory allocation interface */
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1823 static int attr_form_is_block (const struct attribute *);
1825 static int attr_form_is_section_offset (const struct attribute *);
1827 static int attr_form_is_constant (const struct attribute *);
1829 static int attr_form_is_ref (const struct attribute *);
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1837 struct dwarf2_cu *cu,
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1844 static hashval_t partial_die_hash (const void *item);
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1879 static void dwarf2_mark (struct dwarf2_cu *);
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1893 /* Class, the destructor of which frees all allocated queue entries. This
1894 will only have work to do if an error was thrown while processing the
1895 dwarf. If no error was thrown then the queue entries should have all
1896 been processed, and freed, as we went along. */
1898 class dwarf2_queue_guard
1901 dwarf2_queue_guard () = default;
1903 /* Free any entries remaining on the queue. There should only be
1904 entries left if we hit an error while processing the dwarf. */
1905 ~dwarf2_queue_guard ()
1907 struct dwarf2_queue_item *item, *last;
1909 item = dwarf2_queue;
1912 /* Anything still marked queued is likely to be in an
1913 inconsistent state, so discard it. */
1914 if (item->per_cu->queued)
1916 if (item->per_cu->cu != NULL)
1917 free_one_cached_comp_unit (item->per_cu);
1918 item->per_cu->queued = 0;
1926 dwarf2_queue = dwarf2_queue_tail = NULL;
1930 /* The return type of find_file_and_directory. Note, the enclosed
1931 string pointers are only valid while this object is valid. */
1933 struct file_and_directory
1935 /* The filename. This is never NULL. */
1938 /* The compilation directory. NULL if not known. If we needed to
1939 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1940 points directly to the DW_AT_comp_dir string attribute owned by
1941 the obstack that owns the DIE. */
1942 const char *comp_dir;
1944 /* If we needed to build a new string for comp_dir, this is what
1945 owns the storage. */
1946 std::string comp_dir_storage;
1949 static file_and_directory find_file_and_directory (struct die_info *die,
1950 struct dwarf2_cu *cu);
1952 static char *file_full_name (int file, struct line_header *lh,
1953 const char *comp_dir);
1955 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1956 enum class rcuh_kind { COMPILE, TYPE };
1958 static const gdb_byte *read_and_check_comp_unit_head
1959 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1960 struct comp_unit_head *header,
1961 struct dwarf2_section_info *section,
1962 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1963 rcuh_kind section_kind);
1965 static void init_cutu_and_read_dies
1966 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1967 int use_existing_cu, int keep, bool skip_partial,
1968 die_reader_func_ftype *die_reader_func, void *data);
1970 static void init_cutu_and_read_dies_simple
1971 (struct dwarf2_per_cu_data *this_cu,
1972 die_reader_func_ftype *die_reader_func, void *data);
1974 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1976 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1978 static struct dwo_unit *lookup_dwo_unit_in_dwp
1979 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1980 struct dwp_file *dwp_file, const char *comp_dir,
1981 ULONGEST signature, int is_debug_types);
1983 static struct dwp_file *get_dwp_file
1984 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1986 static struct dwo_unit *lookup_dwo_comp_unit
1987 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1989 static struct dwo_unit *lookup_dwo_type_unit
1990 (struct signatured_type *, const char *, const char *);
1992 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1994 /* A unique pointer to a dwo_file. */
1996 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1998 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2000 static void check_producer (struct dwarf2_cu *cu);
2002 static void free_line_header_voidp (void *arg);
2004 /* Various complaints about symbol reading that don't abort the process. */
2007 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2009 complaint (_("statement list doesn't fit in .debug_line section"));
2013 dwarf2_debug_line_missing_file_complaint (void)
2015 complaint (_(".debug_line section has line data without a file"));
2019 dwarf2_debug_line_missing_end_sequence_complaint (void)
2021 complaint (_(".debug_line section has line "
2022 "program sequence without an end"));
2026 dwarf2_complex_location_expr_complaint (void)
2028 complaint (_("location expression too complex"));
2032 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2035 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2042 complaint (_("debug info runs off end of %s section"
2044 get_section_name (section),
2045 get_section_file_name (section));
2049 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2051 complaint (_("macro debug info contains a "
2052 "malformed macro definition:\n`%s'"),
2057 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2059 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2063 /* Hash function for line_header_hash. */
2066 line_header_hash (const struct line_header *ofs)
2068 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2071 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2074 line_header_hash_voidp (const void *item)
2076 const struct line_header *ofs = (const struct line_header *) item;
2078 return line_header_hash (ofs);
2081 /* Equality function for line_header_hash. */
2084 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2086 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2087 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2089 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2090 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 /* Read the given attribute value as an address, taking the attribute's
2096 form into account. */
2099 attr_value_as_address (struct attribute *attr)
2103 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2104 && attr->form != DW_FORM_GNU_addr_index)
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2121 addr = DW_ADDR (attr);
2126 /* See declaration. */
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2133 names = &dwarf2_elf_names;
2135 bfd *obfd = objfile->obfd;
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2141 dwarf2_per_objfile::~dwarf2_per_objfile ()
2143 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2144 free_cached_comp_units ();
2146 if (quick_file_names_table)
2147 htab_delete (quick_file_names_table);
2149 if (line_header_hash)
2150 htab_delete (line_header_hash);
2152 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2153 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2155 for (signatured_type *sig_type : all_type_units)
2156 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2158 /* Everything else should be on the objfile obstack. */
2161 /* See declaration. */
2164 dwarf2_per_objfile::free_cached_comp_units ()
2166 dwarf2_per_cu_data *per_cu = read_in_chain;
2167 dwarf2_per_cu_data **last_chain = &read_in_chain;
2168 while (per_cu != NULL)
2170 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2173 *last_chain = next_cu;
2178 /* A helper class that calls free_cached_comp_units on
2181 class free_cached_comp_units
2185 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2186 : m_per_objfile (per_objfile)
2190 ~free_cached_comp_units ()
2192 m_per_objfile->free_cached_comp_units ();
2195 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2199 dwarf2_per_objfile *m_per_objfile;
2202 /* Try to locate the sections we need for DWARF 2 debugging
2203 information and return true if we have enough to do something.
2204 NAMES points to the dwarf2 section names, or is NULL if the standard
2205 ELF names are used. */
2208 dwarf2_has_info (struct objfile *objfile,
2209 const struct dwarf2_debug_sections *names)
2211 if (objfile->flags & OBJF_READNEVER)
2214 struct dwarf2_per_objfile *dwarf2_per_objfile
2215 = get_dwarf2_per_objfile (objfile);
2217 if (dwarf2_per_objfile == NULL)
2218 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2221 return (!dwarf2_per_objfile->info.is_virtual
2222 && dwarf2_per_objfile->info.s.section != NULL
2223 && !dwarf2_per_objfile->abbrev.is_virtual
2224 && dwarf2_per_objfile->abbrev.s.section != NULL);
2227 /* Return the containing section of virtual section SECTION. */
2229 static struct dwarf2_section_info *
2230 get_containing_section (const struct dwarf2_section_info *section)
2232 gdb_assert (section->is_virtual);
2233 return section->s.containing_section;
2236 /* Return the bfd owner of SECTION. */
2239 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 if (section->is_virtual)
2243 section = get_containing_section (section);
2244 gdb_assert (!section->is_virtual);
2246 return section->s.section->owner;
2249 /* Return the bfd section of SECTION.
2250 Returns NULL if the section is not present. */
2253 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 if (section->is_virtual)
2257 section = get_containing_section (section);
2258 gdb_assert (!section->is_virtual);
2260 return section->s.section;
2263 /* Return the name of SECTION. */
2266 get_section_name (const struct dwarf2_section_info *section)
2268 asection *sectp = get_section_bfd_section (section);
2270 gdb_assert (sectp != NULL);
2271 return bfd_section_name (get_section_bfd_owner (section), sectp);
2274 /* Return the name of the file SECTION is in. */
2277 get_section_file_name (const struct dwarf2_section_info *section)
2279 bfd *abfd = get_section_bfd_owner (section);
2281 return bfd_get_filename (abfd);
2284 /* Return the id of SECTION.
2285 Returns 0 if SECTION doesn't exist. */
2288 get_section_id (const struct dwarf2_section_info *section)
2290 asection *sectp = get_section_bfd_section (section);
2297 /* Return the flags of SECTION.
2298 SECTION (or containing section if this is a virtual section) must exist. */
2301 get_section_flags (const struct dwarf2_section_info *section)
2303 asection *sectp = get_section_bfd_section (section);
2305 gdb_assert (sectp != NULL);
2306 return bfd_get_section_flags (sectp->owner, sectp);
2309 /* When loading sections, we look either for uncompressed section or for
2310 compressed section names. */
2313 section_is_p (const char *section_name,
2314 const struct dwarf2_section_names *names)
2316 if (names->normal != NULL
2317 && strcmp (section_name, names->normal) == 0)
2319 if (names->compressed != NULL
2320 && strcmp (section_name, names->compressed) == 0)
2325 /* See declaration. */
2328 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2329 const dwarf2_debug_sections &names)
2331 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333 if ((aflag & SEC_HAS_CONTENTS) == 0)
2336 else if (section_is_p (sectp->name, &names.info))
2338 this->info.s.section = sectp;
2339 this->info.size = bfd_get_section_size (sectp);
2341 else if (section_is_p (sectp->name, &names.abbrev))
2343 this->abbrev.s.section = sectp;
2344 this->abbrev.size = bfd_get_section_size (sectp);
2346 else if (section_is_p (sectp->name, &names.line))
2348 this->line.s.section = sectp;
2349 this->line.size = bfd_get_section_size (sectp);
2351 else if (section_is_p (sectp->name, &names.loc))
2353 this->loc.s.section = sectp;
2354 this->loc.size = bfd_get_section_size (sectp);
2356 else if (section_is_p (sectp->name, &names.loclists))
2358 this->loclists.s.section = sectp;
2359 this->loclists.size = bfd_get_section_size (sectp);
2361 else if (section_is_p (sectp->name, &names.macinfo))
2363 this->macinfo.s.section = sectp;
2364 this->macinfo.size = bfd_get_section_size (sectp);
2366 else if (section_is_p (sectp->name, &names.macro))
2368 this->macro.s.section = sectp;
2369 this->macro.size = bfd_get_section_size (sectp);
2371 else if (section_is_p (sectp->name, &names.str))
2373 this->str.s.section = sectp;
2374 this->str.size = bfd_get_section_size (sectp);
2376 else if (section_is_p (sectp->name, &names.line_str))
2378 this->line_str.s.section = sectp;
2379 this->line_str.size = bfd_get_section_size (sectp);
2381 else if (section_is_p (sectp->name, &names.addr))
2383 this->addr.s.section = sectp;
2384 this->addr.size = bfd_get_section_size (sectp);
2386 else if (section_is_p (sectp->name, &names.frame))
2388 this->frame.s.section = sectp;
2389 this->frame.size = bfd_get_section_size (sectp);
2391 else if (section_is_p (sectp->name, &names.eh_frame))
2393 this->eh_frame.s.section = sectp;
2394 this->eh_frame.size = bfd_get_section_size (sectp);
2396 else if (section_is_p (sectp->name, &names.ranges))
2398 this->ranges.s.section = sectp;
2399 this->ranges.size = bfd_get_section_size (sectp);
2401 else if (section_is_p (sectp->name, &names.rnglists))
2403 this->rnglists.s.section = sectp;
2404 this->rnglists.size = bfd_get_section_size (sectp);
2406 else if (section_is_p (sectp->name, &names.types))
2408 struct dwarf2_section_info type_section;
2410 memset (&type_section, 0, sizeof (type_section));
2411 type_section.s.section = sectp;
2412 type_section.size = bfd_get_section_size (sectp);
2414 this->types.push_back (type_section);
2416 else if (section_is_p (sectp->name, &names.gdb_index))
2418 this->gdb_index.s.section = sectp;
2419 this->gdb_index.size = bfd_get_section_size (sectp);
2421 else if (section_is_p (sectp->name, &names.debug_names))
2423 this->debug_names.s.section = sectp;
2424 this->debug_names.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &names.debug_aranges))
2428 this->debug_aranges.s.section = sectp;
2429 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2433 && bfd_section_vma (abfd, sectp) == 0)
2434 this->has_section_at_zero = true;
2437 /* A helper function that decides whether a section is empty,
2441 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2443 if (section->is_virtual)
2444 return section->size == 0;
2445 return section->s.section == NULL || section->size == 0;
2448 /* See dwarf2read.h. */
2451 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2455 gdb_byte *buf, *retbuf;
2459 info->buffer = NULL;
2460 info->readin = true;
2462 if (dwarf2_section_empty_p (info))
2465 sectp = get_section_bfd_section (info);
2467 /* If this is a virtual section we need to read in the real one first. */
2468 if (info->is_virtual)
2470 struct dwarf2_section_info *containing_section =
2471 get_containing_section (info);
2473 gdb_assert (sectp != NULL);
2474 if ((sectp->flags & SEC_RELOC) != 0)
2476 error (_("Dwarf Error: DWP format V2 with relocations is not"
2477 " supported in section %s [in module %s]"),
2478 get_section_name (info), get_section_file_name (info));
2480 dwarf2_read_section (objfile, containing_section);
2481 /* Other code should have already caught virtual sections that don't
2483 gdb_assert (info->virtual_offset + info->size
2484 <= containing_section->size);
2485 /* If the real section is empty or there was a problem reading the
2486 section we shouldn't get here. */
2487 gdb_assert (containing_section->buffer != NULL);
2488 info->buffer = containing_section->buffer + info->virtual_offset;
2492 /* If the section has relocations, we must read it ourselves.
2493 Otherwise we attach it to the BFD. */
2494 if ((sectp->flags & SEC_RELOC) == 0)
2496 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2500 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 /* When debugging .o files, we may need to apply relocations; see
2504 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2505 We never compress sections in .o files, so we only need to
2506 try this when the section is not compressed. */
2507 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 info->buffer = retbuf;
2514 abfd = get_section_bfd_owner (info);
2515 gdb_assert (abfd != NULL);
2517 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2518 || bfd_bread (buf, info->size, abfd) != info->size)
2520 error (_("Dwarf Error: Can't read DWARF data"
2521 " in section %s [in module %s]"),
2522 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2526 /* A helper function that returns the size of a section in a safe way.
2527 If you are positive that the section has been read before using the
2528 size, then it is safe to refer to the dwarf2_section_info object's
2529 "size" field directly. In other cases, you must call this
2530 function, because for compressed sections the size field is not set
2531 correctly until the section has been read. */
2533 static bfd_size_type
2534 dwarf2_section_size (struct objfile *objfile,
2535 struct dwarf2_section_info *info)
2538 dwarf2_read_section (objfile, info);
2542 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2546 dwarf2_get_section_info (struct objfile *objfile,
2547 enum dwarf2_section_enum sect,
2548 asection **sectp, const gdb_byte **bufp,
2549 bfd_size_type *sizep)
2551 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2552 struct dwarf2_section_info *info;
2554 /* We may see an objfile without any DWARF, in which case we just
2565 case DWARF2_DEBUG_FRAME:
2566 info = &data->frame;
2568 case DWARF2_EH_FRAME:
2569 info = &data->eh_frame;
2572 gdb_assert_not_reached ("unexpected section");
2575 dwarf2_read_section (objfile, info);
2577 *sectp = get_section_bfd_section (info);
2578 *bufp = info->buffer;
2579 *sizep = info->size;
2582 /* A helper function to find the sections for a .dwz file. */
2585 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2587 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2589 /* Note that we only support the standard ELF names, because .dwz
2590 is ELF-only (at the time of writing). */
2591 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2593 dwz_file->abbrev.s.section = sectp;
2594 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2596 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2598 dwz_file->info.s.section = sectp;
2599 dwz_file->info.size = bfd_get_section_size (sectp);
2601 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2603 dwz_file->str.s.section = sectp;
2604 dwz_file->str.size = bfd_get_section_size (sectp);
2606 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2608 dwz_file->line.s.section = sectp;
2609 dwz_file->line.size = bfd_get_section_size (sectp);
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2613 dwz_file->macro.s.section = sectp;
2614 dwz_file->macro.size = bfd_get_section_size (sectp);
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2618 dwz_file->gdb_index.s.section = sectp;
2619 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2623 dwz_file->debug_names.s.section = sectp;
2624 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2628 /* See dwarf2read.h. */
2631 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2633 const char *filename;
2634 bfd_size_type buildid_len_arg;
2638 if (dwarf2_per_objfile->dwz_file != NULL)
2639 return dwarf2_per_objfile->dwz_file.get ();
2641 bfd_set_error (bfd_error_no_error);
2642 gdb::unique_xmalloc_ptr<char> data
2643 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2644 &buildid_len_arg, &buildid));
2647 if (bfd_get_error () == bfd_error_no_error)
2649 error (_("could not read '.gnu_debugaltlink' section: %s"),
2650 bfd_errmsg (bfd_get_error ()));
2653 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2655 buildid_len = (size_t) buildid_len_arg;
2657 filename = data.get ();
2659 std::string abs_storage;
2660 if (!IS_ABSOLUTE_PATH (filename))
2662 gdb::unique_xmalloc_ptr<char> abs
2663 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2665 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2666 filename = abs_storage.c_str ();
2669 /* First try the file name given in the section. If that doesn't
2670 work, try to use the build-id instead. */
2671 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2672 if (dwz_bfd != NULL)
2674 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2675 dwz_bfd.reset (nullptr);
2678 if (dwz_bfd == NULL)
2679 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2681 if (dwz_bfd == NULL)
2682 error (_("could not find '.gnu_debugaltlink' file for %s"),
2683 objfile_name (dwarf2_per_objfile->objfile));
2685 std::unique_ptr<struct dwz_file> result
2686 (new struct dwz_file (std::move (dwz_bfd)));
2688 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2691 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2692 result->dwz_bfd.get ());
2693 dwarf2_per_objfile->dwz_file = std::move (result);
2694 return dwarf2_per_objfile->dwz_file.get ();
2697 /* DWARF quick_symbols_functions support. */
2699 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2700 unique line tables, so we maintain a separate table of all .debug_line
2701 derived entries to support the sharing.
2702 All the quick functions need is the list of file names. We discard the
2703 line_header when we're done and don't need to record it here. */
2704 struct quick_file_names
2706 /* The data used to construct the hash key. */
2707 struct stmt_list_hash hash;
2709 /* The number of entries in file_names, real_names. */
2710 unsigned int num_file_names;
2712 /* The file names from the line table, after being run through
2714 const char **file_names;
2716 /* The file names from the line table after being run through
2717 gdb_realpath. These are computed lazily. */
2718 const char **real_names;
2721 /* When using the index (and thus not using psymtabs), each CU has an
2722 object of this type. This is used to hold information needed by
2723 the various "quick" methods. */
2724 struct dwarf2_per_cu_quick_data
2726 /* The file table. This can be NULL if there was no file table
2727 or it's currently not read in.
2728 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2729 struct quick_file_names *file_names;
2731 /* The corresponding symbol table. This is NULL if symbols for this
2732 CU have not yet been read. */
2733 struct compunit_symtab *compunit_symtab;
2735 /* A temporary mark bit used when iterating over all CUs in
2736 expand_symtabs_matching. */
2737 unsigned int mark : 1;
2739 /* True if we've tried to read the file table and found there isn't one.
2740 There will be no point in trying to read it again next time. */
2741 unsigned int no_file_data : 1;
2744 /* Utility hash function for a stmt_list_hash. */
2747 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2751 if (stmt_list_hash->dwo_unit != NULL)
2752 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2753 v += to_underlying (stmt_list_hash->line_sect_off);
2757 /* Utility equality function for a stmt_list_hash. */
2760 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2761 const struct stmt_list_hash *rhs)
2763 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2765 if (lhs->dwo_unit != NULL
2766 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2769 return lhs->line_sect_off == rhs->line_sect_off;
2772 /* Hash function for a quick_file_names. */
2775 hash_file_name_entry (const void *e)
2777 const struct quick_file_names *file_data
2778 = (const struct quick_file_names *) e;
2780 return hash_stmt_list_entry (&file_data->hash);
2783 /* Equality function for a quick_file_names. */
2786 eq_file_name_entry (const void *a, const void *b)
2788 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2789 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2791 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2794 /* Delete function for a quick_file_names. */
2797 delete_file_name_entry (void *e)
2799 struct quick_file_names *file_data = (struct quick_file_names *) e;
2802 for (i = 0; i < file_data->num_file_names; ++i)
2804 xfree ((void*) file_data->file_names[i]);
2805 if (file_data->real_names)
2806 xfree ((void*) file_data->real_names[i]);
2809 /* The space for the struct itself lives on objfile_obstack,
2810 so we don't free it here. */
2813 /* Create a quick_file_names hash table. */
2816 create_quick_file_names_table (unsigned int nr_initial_entries)
2818 return htab_create_alloc (nr_initial_entries,
2819 hash_file_name_entry, eq_file_name_entry,
2820 delete_file_name_entry, xcalloc, xfree);
2823 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2824 have to be created afterwards. You should call age_cached_comp_units after
2825 processing PER_CU->CU. dw2_setup must have been already called. */
2828 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2830 if (per_cu->is_debug_types)
2831 load_full_type_unit (per_cu);
2833 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2835 if (per_cu->cu == NULL)
2836 return; /* Dummy CU. */
2838 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2841 /* Read in the symbols for PER_CU. */
2844 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2846 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2848 /* Skip type_unit_groups, reading the type units they contain
2849 is handled elsewhere. */
2850 if (IS_TYPE_UNIT_GROUP (per_cu))
2853 /* The destructor of dwarf2_queue_guard frees any entries left on
2854 the queue. After this point we're guaranteed to leave this function
2855 with the dwarf queue empty. */
2856 dwarf2_queue_guard q_guard;
2858 if (dwarf2_per_objfile->using_index
2859 ? per_cu->v.quick->compunit_symtab == NULL
2860 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2862 queue_comp_unit (per_cu, language_minimal);
2863 load_cu (per_cu, skip_partial);
2865 /* If we just loaded a CU from a DWO, and we're working with an index
2866 that may badly handle TUs, load all the TUs in that DWO as well.
2867 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2868 if (!per_cu->is_debug_types
2869 && per_cu->cu != NULL
2870 && per_cu->cu->dwo_unit != NULL
2871 && dwarf2_per_objfile->index_table != NULL
2872 && dwarf2_per_objfile->index_table->version <= 7
2873 /* DWP files aren't supported yet. */
2874 && get_dwp_file (dwarf2_per_objfile) == NULL)
2875 queue_and_load_all_dwo_tus (per_cu);
2878 process_queue (dwarf2_per_objfile);
2880 /* Age the cache, releasing compilation units that have not
2881 been used recently. */
2882 age_cached_comp_units (dwarf2_per_objfile);
2885 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2886 the objfile from which this CU came. Returns the resulting symbol
2889 static struct compunit_symtab *
2890 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2892 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2894 gdb_assert (dwarf2_per_objfile->using_index);
2895 if (!per_cu->v.quick->compunit_symtab)
2897 free_cached_comp_units freer (dwarf2_per_objfile);
2898 scoped_restore decrementer = increment_reading_symtab ();
2899 dw2_do_instantiate_symtab (per_cu, skip_partial);
2900 process_cu_includes (dwarf2_per_objfile);
2903 return per_cu->v.quick->compunit_symtab;
2906 /* See declaration. */
2908 dwarf2_per_cu_data *
2909 dwarf2_per_objfile::get_cutu (int index)
2911 if (index >= this->all_comp_units.size ())
2913 index -= this->all_comp_units.size ();
2914 gdb_assert (index < this->all_type_units.size ());
2915 return &this->all_type_units[index]->per_cu;
2918 return this->all_comp_units[index];
2921 /* See declaration. */
2923 dwarf2_per_cu_data *
2924 dwarf2_per_objfile::get_cu (int index)
2926 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2928 return this->all_comp_units[index];
2931 /* See declaration. */
2934 dwarf2_per_objfile::get_tu (int index)
2936 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2938 return this->all_type_units[index];
2941 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2942 objfile_obstack, and constructed with the specified field
2945 static dwarf2_per_cu_data *
2946 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2947 struct dwarf2_section_info *section,
2949 sect_offset sect_off, ULONGEST length)
2951 struct objfile *objfile = dwarf2_per_objfile->objfile;
2952 dwarf2_per_cu_data *the_cu
2953 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2954 struct dwarf2_per_cu_data);
2955 the_cu->sect_off = sect_off;
2956 the_cu->length = length;
2957 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2958 the_cu->section = section;
2959 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_quick_data);
2961 the_cu->is_dwz = is_dwz;
2965 /* A helper for create_cus_from_index that handles a given list of
2969 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2970 const gdb_byte *cu_list, offset_type n_elements,
2971 struct dwarf2_section_info *section,
2974 for (offset_type i = 0; i < n_elements; i += 2)
2976 gdb_static_assert (sizeof (ULONGEST) >= 8);
2978 sect_offset sect_off
2979 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2980 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2983 dwarf2_per_cu_data *per_cu
2984 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2986 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2990 /* Read the CU list from the mapped index, and use it to create all
2991 the CU objects for this objfile. */
2994 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2995 const gdb_byte *cu_list, offset_type cu_list_elements,
2996 const gdb_byte *dwz_list, offset_type dwz_elements)
2998 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2999 dwarf2_per_objfile->all_comp_units.reserve
3000 ((cu_list_elements + dwz_elements) / 2);
3002 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3003 &dwarf2_per_objfile->info, 0);
3005 if (dwz_elements == 0)
3008 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3009 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3013 /* Create the signatured type hash table from the index. */
3016 create_signatured_type_table_from_index
3017 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3018 struct dwarf2_section_info *section,
3019 const gdb_byte *bytes,
3020 offset_type elements)
3022 struct objfile *objfile = dwarf2_per_objfile->objfile;
3024 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3025 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3027 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3029 for (offset_type i = 0; i < elements; i += 3)
3031 struct signatured_type *sig_type;
3034 cu_offset type_offset_in_tu;
3036 gdb_static_assert (sizeof (ULONGEST) >= 8);
3037 sect_offset sect_off
3038 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3040 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3042 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3045 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3046 struct signatured_type);
3047 sig_type->signature = signature;
3048 sig_type->type_offset_in_tu = type_offset_in_tu;
3049 sig_type->per_cu.is_debug_types = 1;
3050 sig_type->per_cu.section = section;
3051 sig_type->per_cu.sect_off = sect_off;
3052 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3053 sig_type->per_cu.v.quick
3054 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3055 struct dwarf2_per_cu_quick_data);
3057 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3060 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3063 dwarf2_per_objfile->signatured_types = sig_types_hash;
3066 /* Create the signatured type hash table from .debug_names. */
3069 create_signatured_type_table_from_debug_names
3070 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3071 const mapped_debug_names &map,
3072 struct dwarf2_section_info *section,
3073 struct dwarf2_section_info *abbrev_section)
3075 struct objfile *objfile = dwarf2_per_objfile->objfile;
3077 dwarf2_read_section (objfile, section);
3078 dwarf2_read_section (objfile, abbrev_section);
3080 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3081 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3083 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3085 for (uint32_t i = 0; i < map.tu_count; ++i)
3087 struct signatured_type *sig_type;
3090 sect_offset sect_off
3091 = (sect_offset) (extract_unsigned_integer
3092 (map.tu_table_reordered + i * map.offset_size,
3094 map.dwarf5_byte_order));
3096 comp_unit_head cu_header;
3097 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3099 section->buffer + to_underlying (sect_off),
3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3103 struct signatured_type);
3104 sig_type->signature = cu_header.signature;
3105 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3106 sig_type->per_cu.is_debug_types = 1;
3107 sig_type->per_cu.section = section;
3108 sig_type->per_cu.sect_off = sect_off;
3109 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3110 sig_type->per_cu.v.quick
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3117 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
3123 /* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
3127 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3128 struct mapped_index *index)
3130 struct objfile *objfile = dwarf2_per_objfile->objfile;
3131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3132 const gdb_byte *iter, *end;
3133 struct addrmap *mutable_map;
3136 auto_obstack temp_obstack;
3138 mutable_map = addrmap_create_mutable (&temp_obstack);
3140 iter = index->address_table.data ();
3141 end = iter + index->address_table.size ();
3143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3147 ULONGEST hi, lo, cu_index;
3148 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3150 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3152 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3158 hex_string (lo), hex_string (hi));
3162 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3164 complaint (_(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3171 addrmap_set_empty (mutable_map, lo, hi - 1,
3172 dwarf2_per_objfile->get_cu (cu_index));
3175 objfile->partial_symtabs->psymtabs_addrmap
3176 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3179 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3180 populate the objfile's psymtabs_addrmap. */
3183 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3184 struct dwarf2_section_info *section)
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 bfd *abfd = objfile->obfd;
3188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3189 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3190 SECT_OFF_TEXT (objfile));
3192 auto_obstack temp_obstack;
3193 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3195 std::unordered_map<sect_offset,
3196 dwarf2_per_cu_data *,
3197 gdb::hash_enum<sect_offset>>
3198 debug_info_offset_to_per_cu;
3199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3201 const auto insertpair
3202 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3203 if (!insertpair.second)
3205 warning (_("Section .debug_aranges in %s has duplicate "
3206 "debug_info_offset %s, ignoring .debug_aranges."),
3207 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 dwarf2_read_section (objfile, section);
3214 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3216 const gdb_byte *addr = section->buffer;
3218 while (addr < section->buffer + section->size)
3220 const gdb_byte *const entry_addr = addr;
3221 unsigned int bytes_read;
3223 const LONGEST entry_length = read_initial_length (abfd, addr,
3227 const gdb_byte *const entry_end = addr + entry_length;
3228 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3229 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3230 if (addr + entry_length > section->buffer + section->size)
3232 warning (_("Section .debug_aranges in %s entry at offset %s "
3233 "length %s exceeds section length %s, "
3234 "ignoring .debug_aranges."),
3235 objfile_name (objfile),
3236 plongest (entry_addr - section->buffer),
3237 plongest (bytes_read + entry_length),
3238 pulongest (section->size));
3242 /* The version number. */
3243 const uint16_t version = read_2_bytes (abfd, addr);
3247 warning (_("Section .debug_aranges in %s entry at offset %s "
3248 "has unsupported version %d, ignoring .debug_aranges."),
3249 objfile_name (objfile),
3250 plongest (entry_addr - section->buffer), version);
3254 const uint64_t debug_info_offset
3255 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3256 addr += offset_size;
3257 const auto per_cu_it
3258 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3259 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3261 warning (_("Section .debug_aranges in %s entry at offset %s "
3262 "debug_info_offset %s does not exists, "
3263 "ignoring .debug_aranges."),
3264 objfile_name (objfile),
3265 plongest (entry_addr - section->buffer),
3266 pulongest (debug_info_offset));
3269 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3271 const uint8_t address_size = *addr++;
3272 if (address_size < 1 || address_size > 8)
3274 warning (_("Section .debug_aranges in %s entry at offset %s "
3275 "address_size %u is invalid, ignoring .debug_aranges."),
3276 objfile_name (objfile),
3277 plongest (entry_addr - section->buffer), address_size);
3281 const uint8_t segment_selector_size = *addr++;
3282 if (segment_selector_size != 0)
3284 warning (_("Section .debug_aranges in %s entry at offset %s "
3285 "segment_selector_size %u is not supported, "
3286 "ignoring .debug_aranges."),
3287 objfile_name (objfile),
3288 plongest (entry_addr - section->buffer),
3289 segment_selector_size);
3293 /* Must pad to an alignment boundary that is twice the address
3294 size. It is undocumented by the DWARF standard but GCC does
3296 for (size_t padding = ((-(addr - section->buffer))
3297 & (2 * address_size - 1));
3298 padding > 0; padding--)
3301 warning (_("Section .debug_aranges in %s entry at offset %s "
3302 "padding is not zero, ignoring .debug_aranges."),
3303 objfile_name (objfile),
3304 plongest (entry_addr - section->buffer));
3310 if (addr + 2 * address_size > entry_end)
3312 warning (_("Section .debug_aranges in %s entry at offset %s "
3313 "address list is not properly terminated, "
3314 "ignoring .debug_aranges."),
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer));
3319 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 addr += address_size;
3322 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 addr += address_size;
3325 if (start == 0 && length == 0)
3327 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 /* Symbol was eliminated due to a COMDAT group. */
3332 ULONGEST end = start + length;
3333 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3335 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3337 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3341 objfile->partial_symtabs->psymtabs_addrmap
3342 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3345 /* Find a slot in the mapped index INDEX for the object named NAME.
3346 If NAME is found, set *VEC_OUT to point to the CU vector in the
3347 constant pool and return true. If NAME cannot be found, return
3351 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3352 offset_type **vec_out)
3355 offset_type slot, step;
3356 int (*cmp) (const char *, const char *);
3358 gdb::unique_xmalloc_ptr<char> without_params;
3359 if (current_language->la_language == language_cplus
3360 || current_language->la_language == language_fortran
3361 || current_language->la_language == language_d)
3363 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3366 if (strchr (name, '(') != NULL)
3368 without_params = cp_remove_params (name);
3370 if (without_params != NULL)
3371 name = without_params.get ();
3375 /* Index version 4 did not support case insensitive searches. But the
3376 indices for case insensitive languages are built in lowercase, therefore
3377 simulate our NAME being searched is also lowercased. */
3378 hash = mapped_index_string_hash ((index->version == 4
3379 && case_sensitivity == case_sensitive_off
3380 ? 5 : index->version),
3383 slot = hash & (index->symbol_table.size () - 1);
3384 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3385 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391 const auto &bucket = index->symbol_table[slot];
3392 if (bucket.name == 0 && bucket.vec == 0)
3395 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3396 if (!cmp (name, str))
3398 *vec_out = (offset_type *) (index->constant_pool
3399 + MAYBE_SWAP (bucket.vec));
3403 slot = (slot + step) & (index->symbol_table.size () - 1);
3407 /* A helper function that reads the .gdb_index from BUFFER and fills
3408 in MAP. FILENAME is the name of the file containing the data;
3409 it is used for error reporting. DEPRECATED_OK is true if it is
3410 ok to use deprecated sections.
3412 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3413 out parameters that are filled in with information about the CU and
3414 TU lists in the section.
3416 Returns true if all went well, false otherwise. */
3419 read_gdb_index_from_buffer (struct objfile *objfile,
3420 const char *filename,
3422 gdb::array_view<const gdb_byte> buffer,
3423 struct mapped_index *map,
3424 const gdb_byte **cu_list,
3425 offset_type *cu_list_elements,
3426 const gdb_byte **types_list,
3427 offset_type *types_list_elements)
3429 const gdb_byte *addr = &buffer[0];
3431 /* Version check. */
3432 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3433 /* Versions earlier than 3 emitted every copy of a psymbol. This
3434 causes the index to behave very poorly for certain requests. Version 3
3435 contained incomplete addrmap. So, it seems better to just ignore such
3439 static int warning_printed = 0;
3440 if (!warning_printed)
3442 warning (_("Skipping obsolete .gdb_index section in %s."),
3444 warning_printed = 1;
3448 /* Index version 4 uses a different hash function than index version
3451 Versions earlier than 6 did not emit psymbols for inlined
3452 functions. Using these files will cause GDB not to be able to
3453 set breakpoints on inlined functions by name, so we ignore these
3454 indices unless the user has done
3455 "set use-deprecated-index-sections on". */
3456 if (version < 6 && !deprecated_ok)
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3462 Skipping deprecated .gdb_index section in %s.\n\
3463 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3464 to use the section anyway."),
3466 warning_printed = 1;
3470 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3471 of the TU (for symbols coming from TUs),
3472 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3473 Plus gold-generated indices can have duplicate entries for global symbols,
3474 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3475 These are just performance bugs, and we can't distinguish gdb-generated
3476 indices from gold-generated ones, so issue no warning here. */
3478 /* Indexes with higher version than the one supported by GDB may be no
3479 longer backward compatible. */
3483 map->version = version;
3485 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3488 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3489 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3493 *types_list = addr + MAYBE_SWAP (metadata[i]);
3494 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3495 - MAYBE_SWAP (metadata[i]))
3499 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3500 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3502 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3505 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3506 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3508 = gdb::array_view<mapped_index::symbol_table_slot>
3509 ((mapped_index::symbol_table_slot *) symbol_table,
3510 (mapped_index::symbol_table_slot *) symbol_table_end);
3513 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518 /* Callback types for dwarf2_read_gdb_index. */
3520 typedef gdb::function_view
3521 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3522 get_gdb_index_contents_ftype;
3523 typedef gdb::function_view
3524 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3525 get_gdb_index_contents_dwz_ftype;
3527 /* Read .gdb_index. If everything went ok, initialize the "quick"
3528 elements of all the CUs and return 1. Otherwise, return 0. */
3531 dwarf2_read_gdb_index
3532 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3533 get_gdb_index_contents_ftype get_gdb_index_contents,
3534 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3536 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3537 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3538 struct dwz_file *dwz;
3539 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541 gdb::array_view<const gdb_byte> main_index_contents
3542 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3544 if (main_index_contents.empty ())
3547 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3548 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3549 use_deprecated_index_sections,
3550 main_index_contents, map.get (), &cu_list,
3551 &cu_list_elements, &types_list,
3552 &types_list_elements))
3555 /* Don't use the index if it's empty. */
3556 if (map->symbol_table.empty ())
3559 /* If there is a .dwz file, read it so we can get its CU list as
3561 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 struct mapped_index dwz_map;
3565 const gdb_byte *dwz_types_ignore;
3566 offset_type dwz_types_elements_ignore;
3568 gdb::array_view<const gdb_byte> dwz_index_content
3569 = get_gdb_index_contents_dwz (objfile, dwz);
3571 if (dwz_index_content.empty ())
3574 if (!read_gdb_index_from_buffer (objfile,
3575 bfd_get_filename (dwz->dwz_bfd), 1,
3576 dwz_index_content, &dwz_map,
3577 &dwz_list, &dwz_list_elements,
3579 &dwz_types_elements_ignore))
3581 warning (_("could not read '.gdb_index' section from %s; skipping"),
3582 bfd_get_filename (dwz->dwz_bfd));
3587 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3588 dwz_list, dwz_list_elements);
3590 if (types_list_elements)
3592 /* We can only handle a single .debug_types when we have an
3594 if (dwarf2_per_objfile->types.size () != 1)
3597 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3599 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3600 types_list, types_list_elements);
3603 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3605 dwarf2_per_objfile->index_table = std::move (map);
3606 dwarf2_per_objfile->using_index = 1;
3607 dwarf2_per_objfile->quick_file_names_table =
3608 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613 /* die_reader_func for dw2_get_file_names. */
3616 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3617 const gdb_byte *info_ptr,
3618 struct die_info *comp_unit_die,
3622 struct dwarf2_cu *cu = reader->cu;
3623 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3624 struct dwarf2_per_objfile *dwarf2_per_objfile
3625 = cu->per_cu->dwarf2_per_objfile;
3626 struct objfile *objfile = dwarf2_per_objfile->objfile;
3627 struct dwarf2_per_cu_data *lh_cu;
3628 struct attribute *attr;
3631 struct quick_file_names *qfn;
3633 gdb_assert (! this_cu->is_debug_types);
3635 /* Our callers never want to match partial units -- instead they
3636 will match the enclosing full CU. */
3637 if (comp_unit_die->tag == DW_TAG_partial_unit)
3639 this_cu->v.quick->no_file_data = 1;
3647 sect_offset line_offset {};
3649 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3652 struct quick_file_names find_entry;
3654 line_offset = (sect_offset) DW_UNSND (attr);
3656 /* We may have already read in this line header (TU line header sharing).
3657 If we have we're done. */
3658 find_entry.hash.dwo_unit = cu->dwo_unit;
3659 find_entry.hash.line_sect_off = line_offset;
3660 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3661 &find_entry, INSERT);
3664 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 lh = dwarf_decode_line_header (line_offset, cu);
3672 lh_cu->v.quick->no_file_data = 1;
3676 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3677 qfn->hash.dwo_unit = cu->dwo_unit;
3678 qfn->hash.line_sect_off = line_offset;
3679 gdb_assert (slot != NULL);
3682 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3684 qfn->num_file_names = lh->file_names.size ();
3686 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3687 for (i = 0; i < lh->file_names.size (); ++i)
3688 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3689 qfn->real_names = NULL;
3691 lh_cu->v.quick->file_names = qfn;
3694 /* A helper for the "quick" functions which attempts to read the line
3695 table for THIS_CU. */
3697 static struct quick_file_names *
3698 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3700 /* This should never be called for TUs. */
3701 gdb_assert (! this_cu->is_debug_types);
3702 /* Nor type unit groups. */
3703 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3705 if (this_cu->v.quick->file_names != NULL)
3706 return this_cu->v.quick->file_names;
3707 /* If we know there is no line data, no point in looking again. */
3708 if (this_cu->v.quick->no_file_data)
3711 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3713 if (this_cu->v.quick->no_file_data)
3715 return this_cu->v.quick->file_names;
3718 /* A helper for the "quick" functions which computes and caches the
3719 real path for a given file name from the line table. */
3722 dw2_get_real_path (struct objfile *objfile,
3723 struct quick_file_names *qfn, int index)
3725 if (qfn->real_names == NULL)
3726 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3727 qfn->num_file_names, const char *);
3729 if (qfn->real_names[index] == NULL)
3730 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3732 return qfn->real_names[index];
3735 static struct symtab *
3736 dw2_find_last_source_symtab (struct objfile *objfile)
3738 struct dwarf2_per_objfile *dwarf2_per_objfile
3739 = get_dwarf2_per_objfile (objfile);
3740 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3741 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746 return compunit_primary_filetab (cust);
3749 /* Traversal function for dw2_forget_cached_source_info. */
3752 dw2_free_cached_file_names (void **slot, void *info)
3754 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3756 if (file_data->real_names)
3760 for (i = 0; i < file_data->num_file_names; ++i)
3762 xfree ((void*) file_data->real_names[i]);
3763 file_data->real_names[i] = NULL;
3771 dw2_forget_cached_source_info (struct objfile *objfile)
3773 struct dwarf2_per_objfile *dwarf2_per_objfile
3774 = get_dwarf2_per_objfile (objfile);
3776 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3777 dw2_free_cached_file_names, NULL);
3780 /* Helper function for dw2_map_symtabs_matching_filename that expands
3781 the symtabs and calls the iterator. */
3784 dw2_map_expand_apply (struct objfile *objfile,
3785 struct dwarf2_per_cu_data *per_cu,
3786 const char *name, const char *real_path,
3787 gdb::function_view<bool (symtab *)> callback)
3789 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3791 /* Don't visit already-expanded CUs. */
3792 if (per_cu->v.quick->compunit_symtab)
3795 /* This may expand more than one symtab, and we want to iterate over
3797 dw2_instantiate_symtab (per_cu, false);
3799 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3800 last_made, callback);
3803 /* Implementation of the map_symtabs_matching_filename method. */
3806 dw2_map_symtabs_matching_filename
3807 (struct objfile *objfile, const char *name, const char *real_path,
3808 gdb::function_view<bool (symtab *)> callback)
3810 const char *name_basename = lbasename (name);
3811 struct dwarf2_per_objfile *dwarf2_per_objfile
3812 = get_dwarf2_per_objfile (objfile);
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3817 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3819 /* We only need to look at symtabs not already expanded. */
3820 if (per_cu->v.quick->compunit_symtab)
3823 quick_file_names *file_data = dw2_get_file_names (per_cu);
3824 if (file_data == NULL)
3827 for (int j = 0; j < file_data->num_file_names; ++j)
3829 const char *this_name = file_data->file_names[j];
3830 const char *this_real_name;
3832 if (compare_filenames_for_search (this_name, name))
3834 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3840 /* Before we invoke realpath, which can get expensive when many
3841 files are involved, do a quick comparison of the basenames. */
3842 if (! basenames_may_differ
3843 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3846 this_real_name = dw2_get_real_path (objfile, file_data, j);
3847 if (compare_filenames_for_search (this_real_name, name))
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 if (real_path != NULL)
3857 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3858 gdb_assert (IS_ABSOLUTE_PATH (name));
3859 if (this_real_name != NULL
3860 && FILENAME_CMP (real_path, this_real_name) == 0)
3862 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3874 /* Struct used to manage iterating over all CUs looking for a symbol. */
3876 struct dw2_symtab_iterator
3878 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3879 struct dwarf2_per_objfile *dwarf2_per_objfile;
3880 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3881 int want_specific_block;
3882 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3883 Unused if !WANT_SPECIFIC_BLOCK. */
3885 /* The kind of symbol we're looking for. */
3887 /* The list of CUs from the index entry of the symbol,
3888 or NULL if not found. */
3890 /* The next element in VEC to look at. */
3892 /* The number of elements in VEC, or zero if there is no match. */
3894 /* Have we seen a global version of the symbol?
3895 If so we can ignore all further global instances.
3896 This is to work around gold/15646, inefficient gold-generated
3901 /* Initialize the index symtab iterator ITER.
3902 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3903 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 int want_specific_block,
3913 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3914 iter->want_specific_block = want_specific_block;
3915 iter->block_index = block_index;
3916 iter->domain = domain;
3918 iter->global_seen = 0;
3920 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3922 /* index is NULL if OBJF_READNOW. */
3923 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3924 iter->length = MAYBE_SWAP (*iter->vec);
3932 /* Return the next matching CU or NULL if there are no more. */
3934 static struct dwarf2_per_cu_data *
3935 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3937 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3939 for ( ; iter->next < iter->length; ++iter->next)
3941 offset_type cu_index_and_attrs =
3942 MAYBE_SWAP (iter->vec[iter->next + 1]);
3943 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3944 int want_static = iter->block_index != GLOBAL_BLOCK;
3945 /* This value is only valid for index versions >= 7. */
3946 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3947 gdb_index_symbol_kind symbol_kind =
3948 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3949 /* Only check the symbol attributes if they're present.
3950 Indices prior to version 7 don't record them,
3951 and indices >= 7 may elide them for certain symbols
3952 (gold does this). */
3954 (dwarf2_per_objfile->index_table->version >= 7
3955 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3957 /* Don't crash on bad data. */
3958 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3959 + dwarf2_per_objfile->all_type_units.size ()))
3961 complaint (_(".gdb_index entry has bad CU index"
3963 objfile_name (dwarf2_per_objfile->objfile));
3967 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3969 /* Skip if already read in. */
3970 if (per_cu->v.quick->compunit_symtab)
3973 /* Check static vs global. */
3976 if (iter->want_specific_block
3977 && want_static != is_static)
3979 /* Work around gold/15646. */
3980 if (!is_static && iter->global_seen)
3983 iter->global_seen = 1;
3986 /* Only check the symbol's kind if it has one. */
3989 switch (iter->domain)
3992 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3994 /* Some types are also in VAR_DOMAIN. */
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3999 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4018 static struct compunit_symtab *
4019 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4020 const char *name, domain_enum domain)
4022 struct compunit_symtab *stab_best = NULL;
4023 struct dwarf2_per_objfile *dwarf2_per_objfile
4024 = get_dwarf2_per_objfile (objfile);
4026 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4028 struct dw2_symtab_iterator iter;
4029 struct dwarf2_per_cu_data *per_cu;
4031 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4033 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4035 struct symbol *sym, *with_opaque = NULL;
4036 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4037 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4038 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4040 sym = block_find_symbol (block, name, domain,
4041 block_find_non_opaque_type_preferred,
4044 /* Some caution must be observed with overloaded functions
4045 and methods, since the index will not contain any overload
4046 information (but NAME might contain it). */
4049 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4051 if (with_opaque != NULL
4052 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 /* Keep looking through other CUs. */
4062 dw2_print_stats (struct objfile *objfile)
4064 struct dwarf2_per_objfile *dwarf2_per_objfile
4065 = get_dwarf2_per_objfile (objfile);
4066 int total = (dwarf2_per_objfile->all_comp_units.size ()
4067 + dwarf2_per_objfile->all_type_units.size ());
4070 for (int i = 0; i < total; ++i)
4072 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4074 if (!per_cu->v.quick->compunit_symtab)
4077 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4078 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 /* This dumps minimal information about the index.
4082 It is called via "mt print objfiles".
4083 One use is to verify .gdb_index has been loaded by the
4084 gdb.dwarf2/gdb-index.exp testcase. */
4087 dw2_dump (struct objfile *objfile)
4089 struct dwarf2_per_objfile *dwarf2_per_objfile
4090 = get_dwarf2_per_objfile (objfile);
4092 gdb_assert (dwarf2_per_objfile->using_index);
4093 printf_filtered (".gdb_index:");
4094 if (dwarf2_per_objfile->index_table != NULL)
4096 printf_filtered (" version %d\n",
4097 dwarf2_per_objfile->index_table->version);
4100 printf_filtered (" faked for \"readnow\"\n");
4101 printf_filtered ("\n");
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4131 for (int i = 0; i < total_units; ++i)
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4168 const char *this_fullname = file_data->file_names[j];
4170 if (filename_cmp (this_fullname, fullname) == 0)
4172 dw2_instantiate_symtab (per_cu, false);
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4193 /* Symbol name matcher for .gdb_index names.
4195 Symbol names in .gdb_index have a few particularities:
4197 - There's no indication of which is the language of each symbol.
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4217 class gdb_index_symbol_name_matcher
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4231 /* A vector holding all the different symbol name matchers, for all
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4247 matchers.push_back (default_symbol_name_matcher);
4249 for (int i = 0; i < nr_languages; i++)
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4286 make_sort_after_prefix_name (const char *search_name)
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4307 Some examples of this operation:
4309 SEARCH_NAME => "+1" RESULT
4313 "\xff" "a" "\xff" => "\xff" "b"
4318 Then, with these symbols for example:
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4330 funcÿ (Latin1 'ÿ' [0xff])
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4339 ÿÿ (Latin1 'ÿ' [0xff])
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4353 /* See declaration. */
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4389 /* Find the lower bound. */
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4398 /* Find the upper bound. */
4401 if (lookup_name_without_params.completion_mode ())
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4407 function << lower bound
4409 other_function << upper bound
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4414 std::string after = make_sort_after_prefix_name (cplus);
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4424 return {lower, upper};
4427 /* See declaration. */
4430 mapped_index_base::build_name_components ()
4432 if (!this->name_components.empty ())
4435 this->name_components_casing = case_sensitivity;
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4449 if (this->symbol_name_slot_invalid (idx))
4452 const char *name = this->symbol_name_at (idx);
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4464 previous_len = current_len;
4466 this->name_components.push_back ({previous_len, idx});
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4479 return name_cmp (left_name, right_name) < 0;
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4507 /* Build the symbol name component sorted vector, if we haven't
4509 index.build_name_components ();
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4526 for (; bounds.first != bounds.second; ++bounds.first)
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4534 matches.push_back (bounds.first->idx);
4537 std::sort (matches.begin (), matches.end ());
4539 /* Finally call the callback, once per match. */
4541 for (offset_type idx : matches)
4545 match_callback (idx);
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4575 return m_symbol_table.size ();
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4581 return m_symbol_table[idx];
4585 gdb::array_view<const char *> m_symbol_table;
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4592 string_or_null (const char *str)
4594 return str != NULL ? str : "<null>";
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4613 bool matched = true;
4615 auto mismatch = [&] (const char *expected_str,
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4621 (match_type == symbol_name_match_type::FULL
4623 name, string_or_null (expected_str), string_or_null (got));
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4632 [&] (offset_type idx)
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4650 /* The symbols added to the mock mapped_index for testing (in
4652 static const char *test_symbols[] = {
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4727 test_mapped_index_find_name_component_bounds ()
4729 mock_mapped_index mock_index (test_symbols);
4731 mock_index.build_name_components ();
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4736 static const char *expected_syms[] = {
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4748 static const char *expected_syms1[] = {
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4755 static const char *expected_syms2[] = {
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4766 test_dw2_expand_symtabs_matching_symbol ()
4768 mock_mapped_index mock_index (test_symbols);
4770 /* We let all tests run until the end even if some fails, for debug
4772 bool any_mismatch = false;
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4794 /* Should be able to match all existing symbols with
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4829 /* Check that completion mode works at each prefix of the expected
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4836 for (size_t i = 1; i < len; i++)
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4853 /* Same, with a "complicated" symbol. */
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4859 for (size_t i = 1; i < len; i++)
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4927 /* Test lookup names that don't match anything. */
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4939 static const char *syms[] = {
4943 "A :: B :: C ( int )",
4948 for (const char *s : syms)
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4963 SELF_CHECK (!any_mismatch);
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4978 #endif /* GDB_SELF_TEST */
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4996 dw2_instantiate_symtab (per_cu, false);
4998 if (expansion_notify != NULL
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5039 /* Work around gold/15646. */
5042 if (!is_static && global_seen)
5048 /* Only check the symbol's kind if it has one. */
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5074 complaint (_(".gdb_index entry has bad CU index"
5076 objfile_name (dwarf2_per_objfile->objfile));
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5095 if (file_matcher == NULL)
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5105 NULL, xcalloc, xfree));
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5114 per_cu->v.quick->mark = 0;
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5128 per_cu->v.quick->mark = 1;
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5134 const char *this_real_name;
5136 if (file_matcher (file_data->file_names[j], false))
5138 per_cu->v.quick->mark = 1;
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5152 per_cu->v.quick->mark = 1;
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5187 kind, [&] (offset_type idx)
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5207 if (cust->includes == NULL)
5210 for (i = 0; cust->includes[i]; ++i)
5212 struct compunit_symtab *s = cust->includes[i];
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5226 struct obj_section *section,
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5250 gdb_assert (result != NULL);
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5261 if (!dwarf2_per_objfile->filenames_cache)
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5275 if (per_cu->v.quick->compunit_symtab)
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5281 *slot = per_cu->v.quick->file_names;
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5298 /* Already visited. */
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5322 dw2_has_symbols (struct objfile *objfile)
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5343 dw2_map_symbol_filenames
5346 /* DWARF-5 debug_names reader. */
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5355 Returns true if all went well, false otherwise. */
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5363 if (dwarf2_section_empty_p (section))
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5371 dwarf2_read_section (objfile, section);
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5375 const gdb_byte *addr = section->buffer;
5377 bfd *const abfd = get_section_bfd_owner (section);
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5407 uint16_t padding = read_2_bytes (abfd, addr);
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5421 /* local_type_unit_count - The number of TUs in the local TU
5423 map.tu_count = read_4_bytes (abfd, addr);
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5430 if (foreign_tu_count != 0)
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5438 /* bucket_count - The number of hash buckets in the hash lookup
5440 map.bucket_count = read_4_bytes (abfd, addr);
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5483 const gdb_byte *abbrev_table_start = addr;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5511 if (attr.form == DW_FORM_implicit_const)
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5517 if (attr.dw_idx == 0 && attr.form == 0)
5519 indexval.attr_vec.push_back (std::move (attr));
5522 if (addr != abbrev_table_start + abbrev_table_size)
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5530 map.entry_pool = addr;
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info §ion,
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5554 map.dwarf5_byte_order));
5557 sect_off_next = (sect_offset) section.size;
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5566 sect_off_prev = sect_off_next;
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5585 if (dwz_map.cu_count == 0)
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5613 /* If there is a .dwz file, read it so we can get its CU list as
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5630 if (map->tu_count != 0)
5632 /* We can only handle a single .debug_types when we have an
5634 if (dwarf2_per_objfile->types.size () != 1)
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5657 class dw2_debug_names_iterator
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5675 m_addr (find_vec_in_debug_names (map, namei))
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5704 const gdb_byte *m_addr;
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5727 int (*cmp) (const char *, const char *);
5729 gdb::unique_xmalloc_ptr<char> without_params;
5730 if (current_language->la_language == language_cplus
5731 || current_language->la_language == language_fortran
5732 || current_language->la_language == language_d)
5734 /* NAME is already canonical. Drop any qualifiers as
5735 .debug_names does not contain any. */
5737 if (strchr (name, '(') != NULL)
5739 without_params = cp_remove_params (name);
5740 if (without_params != NULL)
5741 name = without_params.get ();
5745 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5747 const uint32_t full_hash = dwarf5_djb_hash (name);
5749 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5750 (map.bucket_table_reordered
5751 + (full_hash % map.bucket_count)), 4,
5752 map.dwarf5_byte_order);
5756 if (namei >= map.name_count)
5758 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5760 namei, map.name_count,
5761 objfile_name (map.dwarf2_per_objfile->objfile));
5767 const uint32_t namei_full_hash
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.hash_table_reordered + namei), 4,
5770 map.dwarf5_byte_order);
5771 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5774 if (full_hash == namei_full_hash)
5776 const char *const namei_string = map.namei_to_name (namei);
5778 #if 0 /* An expensive sanity check. */
5779 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5781 complaint (_("Wrong .debug_names hash for string at index %u "
5783 namei, objfile_name (dwarf2_per_objfile->objfile));
5788 if (cmp (namei_string, name) == 0)
5790 const ULONGEST namei_entry_offs
5791 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5792 + namei * map.offset_size),
5793 map.offset_size, map.dwarf5_byte_order);
5794 return map.entry_pool + namei_entry_offs;
5799 if (namei >= map.name_count)
5805 dw2_debug_names_iterator::find_vec_in_debug_names
5806 (const mapped_debug_names &map, uint32_t namei)
5808 if (namei >= map.name_count)
5810 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5812 namei, map.name_count,
5813 objfile_name (map.dwarf2_per_objfile->objfile));
5817 const ULONGEST namei_entry_offs
5818 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5819 + namei * map.offset_size),
5820 map.offset_size, map.dwarf5_byte_order);
5821 return map.entry_pool + namei_entry_offs;
5824 /* See dw2_debug_names_iterator. */
5826 dwarf2_per_cu_data *
5827 dw2_debug_names_iterator::next ()
5832 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5833 struct objfile *objfile = dwarf2_per_objfile->objfile;
5834 bfd *const abfd = objfile->obfd;
5838 unsigned int bytes_read;
5839 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5840 m_addr += bytes_read;
5844 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5845 if (indexval_it == m_map.abbrev_map.cend ())
5847 complaint (_("Wrong .debug_names undefined abbrev code %s "
5849 pulongest (abbrev), objfile_name (objfile));
5852 const mapped_debug_names::index_val &indexval = indexval_it->second;
5853 bool have_is_static = false;
5855 dwarf2_per_cu_data *per_cu = NULL;
5856 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5861 case DW_FORM_implicit_const:
5862 ull = attr.implicit_const;
5864 case DW_FORM_flag_present:
5868 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5869 m_addr += bytes_read;
5872 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5873 dwarf_form_name (attr.form),
5874 objfile_name (objfile));
5877 switch (attr.dw_idx)
5879 case DW_IDX_compile_unit:
5880 /* Don't crash on bad data. */
5881 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5883 complaint (_(".debug_names entry has bad CU index %s"
5886 objfile_name (dwarf2_per_objfile->objfile));
5889 per_cu = dwarf2_per_objfile->get_cutu (ull);
5891 case DW_IDX_type_unit:
5892 /* Don't crash on bad data. */
5893 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5895 complaint (_(".debug_names entry has bad TU index %s"
5898 objfile_name (dwarf2_per_objfile->objfile));
5901 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5903 case DW_IDX_GNU_internal:
5904 if (!m_map.augmentation_is_gdb)
5906 have_is_static = true;
5909 case DW_IDX_GNU_external:
5910 if (!m_map.augmentation_is_gdb)
5912 have_is_static = true;
5918 /* Skip if already read in. */
5919 if (per_cu->v.quick->compunit_symtab)
5922 /* Check static vs global. */
5925 const bool want_static = m_block_index != GLOBAL_BLOCK;
5926 if (m_want_specific_block && want_static != is_static)
5930 /* Match dw2_symtab_iter_next, symbol_kind
5931 and debug_names::psymbol_tag. */
5935 switch (indexval.dwarf_tag)
5937 case DW_TAG_variable:
5938 case DW_TAG_subprogram:
5939 /* Some types are also in VAR_DOMAIN. */
5940 case DW_TAG_typedef:
5941 case DW_TAG_structure_type:
5948 switch (indexval.dwarf_tag)
5950 case DW_TAG_typedef:
5951 case DW_TAG_structure_type:
5958 switch (indexval.dwarf_tag)
5961 case DW_TAG_variable:
5971 /* Match dw2_expand_symtabs_matching, symbol_kind and
5972 debug_names::psymbol_tag. */
5975 case VARIABLES_DOMAIN:
5976 switch (indexval.dwarf_tag)
5978 case DW_TAG_variable:
5984 case FUNCTIONS_DOMAIN:
5985 switch (indexval.dwarf_tag)
5987 case DW_TAG_subprogram:
5994 switch (indexval.dwarf_tag)
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
6010 static struct compunit_symtab *
6011 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6012 const char *name, domain_enum domain)
6014 const block_enum block_index = static_cast<block_enum> (block_index_int);
6015 struct dwarf2_per_objfile *dwarf2_per_objfile
6016 = get_dwarf2_per_objfile (objfile);
6018 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6021 /* index is NULL if OBJF_READNOW. */
6024 const auto &map = *mapp;
6026 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6027 block_index, domain, name);
6029 struct compunit_symtab *stab_best = NULL;
6030 struct dwarf2_per_cu_data *per_cu;
6031 while ((per_cu = iter.next ()) != NULL)
6033 struct symbol *sym, *with_opaque = NULL;
6034 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6035 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6036 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6038 sym = block_find_symbol (block, name, domain,
6039 block_find_non_opaque_type_preferred,
6042 /* Some caution must be observed with overloaded functions and
6043 methods, since the index will not contain any overload
6044 information (but NAME might contain it). */
6047 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6049 if (with_opaque != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6053 /* Keep looking through other CUs. */
6059 /* This dumps minimal information about .debug_names. It is called
6060 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6061 uses this to verify that .debug_names has been loaded. */
6064 dw2_debug_names_dump (struct objfile *objfile)
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6069 gdb_assert (dwarf2_per_objfile->using_index);
6070 printf_filtered (".debug_names:");
6071 if (dwarf2_per_objfile->debug_names_table)
6072 printf_filtered (" exists\n");
6074 printf_filtered (" faked for \"readnow\"\n");
6075 printf_filtered ("\n");
6079 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6080 const char *func_name)
6082 struct dwarf2_per_objfile *dwarf2_per_objfile
6083 = get_dwarf2_per_objfile (objfile);
6085 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6086 if (dwarf2_per_objfile->debug_names_table)
6088 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6090 /* Note: It doesn't matter what we pass for block_index here. */
6091 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6092 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6094 struct dwarf2_per_cu_data *per_cu;
6095 while ((per_cu = iter.next ()) != NULL)
6096 dw2_instantiate_symtab (per_cu, false);
6101 dw2_debug_names_expand_symtabs_matching
6102 (struct objfile *objfile,
6103 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6104 const lookup_name_info &lookup_name,
6105 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6106 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6107 enum search_domain kind)
6109 struct dwarf2_per_objfile *dwarf2_per_objfile
6110 = get_dwarf2_per_objfile (objfile);
6112 /* debug_names_table is NULL if OBJF_READNOW. */
6113 if (!dwarf2_per_objfile->debug_names_table)
6116 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6118 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6120 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6122 kind, [&] (offset_type namei)
6124 /* The name was matched, now expand corresponding CUs that were
6126 dw2_debug_names_iterator iter (map, kind, namei);
6128 struct dwarf2_per_cu_data *per_cu;
6129 while ((per_cu = iter.next ()) != NULL)
6130 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6135 const struct quick_symbol_functions dwarf2_debug_names_functions =
6138 dw2_find_last_source_symtab,
6139 dw2_forget_cached_source_info,
6140 dw2_map_symtabs_matching_filename,
6141 dw2_debug_names_lookup_symbol,
6143 dw2_debug_names_dump,
6144 dw2_debug_names_expand_symtabs_for_function,
6145 dw2_expand_all_symtabs,
6146 dw2_expand_symtabs_with_fullname,
6147 dw2_map_matching_symbols,
6148 dw2_debug_names_expand_symtabs_matching,
6149 dw2_find_pc_sect_compunit_symtab,
6151 dw2_map_symbol_filenames
6154 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6155 to either a dwarf2_per_objfile or dwz_file object. */
6157 template <typename T>
6158 static gdb::array_view<const gdb_byte>
6159 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6161 dwarf2_section_info *section = §ion_owner->gdb_index;
6163 if (dwarf2_section_empty_p (section))
6166 /* Older elfutils strip versions could keep the section in the main
6167 executable while splitting it for the separate debug info file. */
6168 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6171 dwarf2_read_section (obj, section);
6173 /* dwarf2_section_info::size is a bfd_size_type, while
6174 gdb::array_view works with size_t. On 32-bit hosts, with
6175 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6176 is 32-bit. So we need an explicit narrowing conversion here.
6177 This is fine, because it's impossible to allocate or mmap an
6178 array/buffer larger than what size_t can represent. */
6179 return gdb::make_array_view (section->buffer, section->size);
6182 /* Lookup the index cache for the contents of the index associated to
6185 static gdb::array_view<const gdb_byte>
6186 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6188 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6189 if (build_id == nullptr)
6192 return global_index_cache.lookup_gdb_index (build_id,
6193 &dwarf2_obj->index_cache_res);
6196 /* Same as the above, but for DWZ. */
6198 static gdb::array_view<const gdb_byte>
6199 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6201 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6202 if (build_id == nullptr)
6205 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6208 /* See symfile.h. */
6211 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6213 struct dwarf2_per_objfile *dwarf2_per_objfile
6214 = get_dwarf2_per_objfile (objfile);
6216 /* If we're about to read full symbols, don't bother with the
6217 indices. In this case we also don't care if some other debug
6218 format is making psymtabs, because they are all about to be
6220 if ((objfile->flags & OBJF_READNOW))
6222 dwarf2_per_objfile->using_index = 1;
6223 create_all_comp_units (dwarf2_per_objfile);
6224 create_all_type_units (dwarf2_per_objfile);
6225 dwarf2_per_objfile->quick_file_names_table
6226 = create_quick_file_names_table
6227 (dwarf2_per_objfile->all_comp_units.size ());
6229 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6230 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6232 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6234 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6235 struct dwarf2_per_cu_quick_data);
6238 /* Return 1 so that gdb sees the "quick" functions. However,
6239 these functions will be no-ops because we will have expanded
6241 *index_kind = dw_index_kind::GDB_INDEX;
6245 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6247 *index_kind = dw_index_kind::DEBUG_NAMES;
6251 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6252 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6253 get_gdb_index_contents_from_section<dwz_file>))
6255 *index_kind = dw_index_kind::GDB_INDEX;
6259 /* ... otherwise, try to find the index in the index cache. */
6260 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6261 get_gdb_index_contents_from_cache,
6262 get_gdb_index_contents_from_cache_dwz))
6264 global_index_cache.hit ();
6265 *index_kind = dw_index_kind::GDB_INDEX;
6269 global_index_cache.miss ();
6275 /* Build a partial symbol table. */
6278 dwarf2_build_psymtabs (struct objfile *objfile)
6280 struct dwarf2_per_objfile *dwarf2_per_objfile
6281 = get_dwarf2_per_objfile (objfile);
6283 init_psymbol_list (objfile, 1024);
6287 /* This isn't really ideal: all the data we allocate on the
6288 objfile's obstack is still uselessly kept around. However,
6289 freeing it seems unsafe. */
6290 psymtab_discarder psymtabs (objfile);
6291 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6294 /* (maybe) store an index in the cache. */
6295 global_index_cache.store (dwarf2_per_objfile);
6297 catch (const gdb_exception_error &except)
6299 exception_print (gdb_stderr, except);
6303 /* Return the total length of the CU described by HEADER. */
6306 get_cu_length (const struct comp_unit_head *header)
6308 return header->initial_length_size + header->length;
6311 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6314 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6316 sect_offset bottom = cu_header->sect_off;
6317 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6319 return sect_off >= bottom && sect_off < top;
6322 /* Find the base address of the compilation unit for range lists and
6323 location lists. It will normally be specified by DW_AT_low_pc.
6324 In DWARF-3 draft 4, the base address could be overridden by
6325 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6326 compilation units with discontinuous ranges. */
6329 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6331 struct attribute *attr;
6334 cu->base_address = 0;
6336 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6339 cu->base_address = attr_value_as_address (attr);
6344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6347 cu->base_address = attr_value_as_address (attr);
6353 /* Read in the comp unit header information from the debug_info at info_ptr.
6354 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6355 NOTE: This leaves members offset, first_die_offset to be filled in
6358 static const gdb_byte *
6359 read_comp_unit_head (struct comp_unit_head *cu_header,
6360 const gdb_byte *info_ptr,
6361 struct dwarf2_section_info *section,
6362 rcuh_kind section_kind)
6365 unsigned int bytes_read;
6366 const char *filename = get_section_file_name (section);
6367 bfd *abfd = get_section_bfd_owner (section);
6369 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6370 cu_header->initial_length_size = bytes_read;
6371 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6372 info_ptr += bytes_read;
6373 cu_header->version = read_2_bytes (abfd, info_ptr);
6374 if (cu_header->version < 2 || cu_header->version > 5)
6375 error (_("Dwarf Error: wrong version in compilation unit header "
6376 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6377 cu_header->version, filename);
6379 if (cu_header->version < 5)
6380 switch (section_kind)
6382 case rcuh_kind::COMPILE:
6383 cu_header->unit_type = DW_UT_compile;
6385 case rcuh_kind::TYPE:
6386 cu_header->unit_type = DW_UT_type;
6389 internal_error (__FILE__, __LINE__,
6390 _("read_comp_unit_head: invalid section_kind"));
6394 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6395 (read_1_byte (abfd, info_ptr));
6397 switch (cu_header->unit_type)
6400 if (section_kind != rcuh_kind::COMPILE)
6401 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6402 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6406 section_kind = rcuh_kind::TYPE;
6409 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6410 "(is %d, should be %d or %d) [in module %s]"),
6411 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6414 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6417 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6420 info_ptr += bytes_read;
6421 if (cu_header->version < 5)
6423 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6426 signed_addr = bfd_get_sign_extend_vma (abfd);
6427 if (signed_addr < 0)
6428 internal_error (__FILE__, __LINE__,
6429 _("read_comp_unit_head: dwarf from non elf file"));
6430 cu_header->signed_addr_p = signed_addr;
6432 if (section_kind == rcuh_kind::TYPE)
6434 LONGEST type_offset;
6436 cu_header->signature = read_8_bytes (abfd, info_ptr);
6439 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6440 info_ptr += bytes_read;
6441 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6442 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6443 error (_("Dwarf Error: Too big type_offset in compilation unit "
6444 "header (is %s) [in module %s]"), plongest (type_offset),
6451 /* Helper function that returns the proper abbrev section for
6454 static struct dwarf2_section_info *
6455 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6457 struct dwarf2_section_info *abbrev;
6458 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6460 if (this_cu->is_dwz)
6461 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6463 abbrev = &dwarf2_per_objfile->abbrev;
6468 /* Subroutine of read_and_check_comp_unit_head and
6469 read_and_check_type_unit_head to simplify them.
6470 Perform various error checking on the header. */
6473 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6474 struct comp_unit_head *header,
6475 struct dwarf2_section_info *section,
6476 struct dwarf2_section_info *abbrev_section)
6478 const char *filename = get_section_file_name (section);
6480 if (to_underlying (header->abbrev_sect_off)
6481 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6482 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6483 "(offset %s + 6) [in module %s]"),
6484 sect_offset_str (header->abbrev_sect_off),
6485 sect_offset_str (header->sect_off),
6488 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6489 avoid potential 32-bit overflow. */
6490 if (((ULONGEST) header->sect_off + get_cu_length (header))
6492 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6493 "(offset %s + 0) [in module %s]"),
6494 header->length, sect_offset_str (header->sect_off),
6498 /* Read in a CU/TU header and perform some basic error checking.
6499 The contents of the header are stored in HEADER.
6500 The result is a pointer to the start of the first DIE. */
6502 static const gdb_byte *
6503 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6504 struct comp_unit_head *header,
6505 struct dwarf2_section_info *section,
6506 struct dwarf2_section_info *abbrev_section,
6507 const gdb_byte *info_ptr,
6508 rcuh_kind section_kind)
6510 const gdb_byte *beg_of_comp_unit = info_ptr;
6512 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6514 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6516 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6518 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6524 /* Fetch the abbreviation table offset from a comp or type unit header. */
6527 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6528 struct dwarf2_section_info *section,
6529 sect_offset sect_off)
6531 bfd *abfd = get_section_bfd_owner (section);
6532 const gdb_byte *info_ptr;
6533 unsigned int initial_length_size, offset_size;
6536 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6537 info_ptr = section->buffer + to_underlying (sect_off);
6538 read_initial_length (abfd, info_ptr, &initial_length_size);
6539 offset_size = initial_length_size == 4 ? 4 : 8;
6540 info_ptr += initial_length_size;
6542 version = read_2_bytes (abfd, info_ptr);
6546 /* Skip unit type and address size. */
6550 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6553 /* Allocate a new partial symtab for file named NAME and mark this new
6554 partial symtab as being an include of PST. */
6557 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6558 struct objfile *objfile)
6560 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6562 if (!IS_ABSOLUTE_PATH (subpst->filename))
6564 /* It shares objfile->objfile_obstack. */
6565 subpst->dirname = pst->dirname;
6568 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6569 subpst->dependencies[0] = pst;
6570 subpst->number_of_dependencies = 1;
6572 subpst->read_symtab = pst->read_symtab;
6574 /* No private part is necessary for include psymtabs. This property
6575 can be used to differentiate between such include psymtabs and
6576 the regular ones. */
6577 subpst->read_symtab_private = NULL;
6580 /* Read the Line Number Program data and extract the list of files
6581 included by the source file represented by PST. Build an include
6582 partial symtab for each of these included files. */
6585 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6586 struct die_info *die,
6587 struct partial_symtab *pst)
6590 struct attribute *attr;
6592 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6594 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6596 return; /* No linetable, so no includes. */
6598 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6599 that we pass in the raw text_low here; that is ok because we're
6600 only decoding the line table to make include partial symtabs, and
6601 so the addresses aren't really used. */
6602 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6603 pst->raw_text_low (), 1);
6607 hash_signatured_type (const void *item)
6609 const struct signatured_type *sig_type
6610 = (const struct signatured_type *) item;
6612 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6613 return sig_type->signature;
6617 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6619 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6620 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6622 return lhs->signature == rhs->signature;
6625 /* Allocate a hash table for signatured types. */
6628 allocate_signatured_type_table (struct objfile *objfile)
6630 return htab_create_alloc_ex (41,
6631 hash_signatured_type,
6634 &objfile->objfile_obstack,
6635 hashtab_obstack_allocate,
6636 dummy_obstack_deallocate);
6639 /* A helper function to add a signatured type CU to a table. */
6642 add_signatured_type_cu_to_table (void **slot, void *datum)
6644 struct signatured_type *sigt = (struct signatured_type *) *slot;
6645 std::vector<signatured_type *> *all_type_units
6646 = (std::vector<signatured_type *> *) datum;
6648 all_type_units->push_back (sigt);
6653 /* A helper for create_debug_types_hash_table. Read types from SECTION
6654 and fill them into TYPES_HTAB. It will process only type units,
6655 therefore DW_UT_type. */
6658 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6659 struct dwo_file *dwo_file,
6660 dwarf2_section_info *section, htab_t &types_htab,
6661 rcuh_kind section_kind)
6663 struct objfile *objfile = dwarf2_per_objfile->objfile;
6664 struct dwarf2_section_info *abbrev_section;
6666 const gdb_byte *info_ptr, *end_ptr;
6668 abbrev_section = (dwo_file != NULL
6669 ? &dwo_file->sections.abbrev
6670 : &dwarf2_per_objfile->abbrev);
6672 if (dwarf_read_debug)
6673 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6674 get_section_name (section),
6675 get_section_file_name (abbrev_section));
6677 dwarf2_read_section (objfile, section);
6678 info_ptr = section->buffer;
6680 if (info_ptr == NULL)
6683 /* We can't set abfd until now because the section may be empty or
6684 not present, in which case the bfd is unknown. */
6685 abfd = get_section_bfd_owner (section);
6687 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6688 because we don't need to read any dies: the signature is in the
6691 end_ptr = info_ptr + section->size;
6692 while (info_ptr < end_ptr)
6694 struct signatured_type *sig_type;
6695 struct dwo_unit *dwo_tu;
6697 const gdb_byte *ptr = info_ptr;
6698 struct comp_unit_head header;
6699 unsigned int length;
6701 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6703 /* Initialize it due to a false compiler warning. */
6704 header.signature = -1;
6705 header.type_cu_offset_in_tu = (cu_offset) -1;
6707 /* We need to read the type's signature in order to build the hash
6708 table, but we don't need anything else just yet. */
6710 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6711 abbrev_section, ptr, section_kind);
6713 length = get_cu_length (&header);
6715 /* Skip dummy type units. */
6716 if (ptr >= info_ptr + length
6717 || peek_abbrev_code (abfd, ptr) == 0
6718 || header.unit_type != DW_UT_type)
6724 if (types_htab == NULL)
6727 types_htab = allocate_dwo_unit_table (objfile);
6729 types_htab = allocate_signatured_type_table (objfile);
6735 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6737 dwo_tu->dwo_file = dwo_file;
6738 dwo_tu->signature = header.signature;
6739 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6740 dwo_tu->section = section;
6741 dwo_tu->sect_off = sect_off;
6742 dwo_tu->length = length;
6746 /* N.B.: type_offset is not usable if this type uses a DWO file.
6747 The real type_offset is in the DWO file. */
6749 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6750 struct signatured_type);
6751 sig_type->signature = header.signature;
6752 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6753 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6754 sig_type->per_cu.is_debug_types = 1;
6755 sig_type->per_cu.section = section;
6756 sig_type->per_cu.sect_off = sect_off;
6757 sig_type->per_cu.length = length;
6760 slot = htab_find_slot (types_htab,
6761 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6763 gdb_assert (slot != NULL);
6766 sect_offset dup_sect_off;
6770 const struct dwo_unit *dup_tu
6771 = (const struct dwo_unit *) *slot;
6773 dup_sect_off = dup_tu->sect_off;
6777 const struct signatured_type *dup_tu
6778 = (const struct signatured_type *) *slot;
6780 dup_sect_off = dup_tu->per_cu.sect_off;
6783 complaint (_("debug type entry at offset %s is duplicate to"
6784 " the entry at offset %s, signature %s"),
6785 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6786 hex_string (header.signature));
6788 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6790 if (dwarf_read_debug > 1)
6791 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6792 sect_offset_str (sect_off),
6793 hex_string (header.signature));
6799 /* Create the hash table of all entries in the .debug_types
6800 (or .debug_types.dwo) section(s).
6801 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6802 otherwise it is NULL.
6804 The result is a pointer to the hash table or NULL if there are no types.
6806 Note: This function processes DWO files only, not DWP files. */
6809 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6810 struct dwo_file *dwo_file,
6811 gdb::array_view<dwarf2_section_info> type_sections,
6814 for (dwarf2_section_info §ion : type_sections)
6815 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, §ion,
6816 types_htab, rcuh_kind::TYPE);
6819 /* Create the hash table of all entries in the .debug_types section,
6820 and initialize all_type_units.
6821 The result is zero if there is an error (e.g. missing .debug_types section),
6822 otherwise non-zero. */
6825 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6827 htab_t types_htab = NULL;
6829 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6830 &dwarf2_per_objfile->info, types_htab,
6831 rcuh_kind::COMPILE);
6832 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6833 dwarf2_per_objfile->types, types_htab);
6834 if (types_htab == NULL)
6836 dwarf2_per_objfile->signatured_types = NULL;
6840 dwarf2_per_objfile->signatured_types = types_htab;
6842 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6843 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6845 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6846 &dwarf2_per_objfile->all_type_units);
6851 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6852 If SLOT is non-NULL, it is the entry to use in the hash table.
6853 Otherwise we find one. */
6855 static struct signatured_type *
6856 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6859 struct objfile *objfile = dwarf2_per_objfile->objfile;
6861 if (dwarf2_per_objfile->all_type_units.size ()
6862 == dwarf2_per_objfile->all_type_units.capacity ())
6863 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6865 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6866 struct signatured_type);
6868 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6869 sig_type->signature = sig;
6870 sig_type->per_cu.is_debug_types = 1;
6871 if (dwarf2_per_objfile->using_index)
6873 sig_type->per_cu.v.quick =
6874 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6875 struct dwarf2_per_cu_quick_data);
6880 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6883 gdb_assert (*slot == NULL);
6885 /* The rest of sig_type must be filled in by the caller. */
6889 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6890 Fill in SIG_ENTRY with DWO_ENTRY. */
6893 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6894 struct signatured_type *sig_entry,
6895 struct dwo_unit *dwo_entry)
6897 /* Make sure we're not clobbering something we don't expect to. */
6898 gdb_assert (! sig_entry->per_cu.queued);
6899 gdb_assert (sig_entry->per_cu.cu == NULL);
6900 if (dwarf2_per_objfile->using_index)
6902 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6903 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6906 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6907 gdb_assert (sig_entry->signature == dwo_entry->signature);
6908 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6909 gdb_assert (sig_entry->type_unit_group == NULL);
6910 gdb_assert (sig_entry->dwo_unit == NULL);
6912 sig_entry->per_cu.section = dwo_entry->section;
6913 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6914 sig_entry->per_cu.length = dwo_entry->length;
6915 sig_entry->per_cu.reading_dwo_directly = 1;
6916 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6917 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6918 sig_entry->dwo_unit = dwo_entry;
6921 /* Subroutine of lookup_signatured_type.
6922 If we haven't read the TU yet, create the signatured_type data structure
6923 for a TU to be read in directly from a DWO file, bypassing the stub.
6924 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6925 using .gdb_index, then when reading a CU we want to stay in the DWO file
6926 containing that CU. Otherwise we could end up reading several other DWO
6927 files (due to comdat folding) to process the transitive closure of all the
6928 mentioned TUs, and that can be slow. The current DWO file will have every
6929 type signature that it needs.
6930 We only do this for .gdb_index because in the psymtab case we already have
6931 to read all the DWOs to build the type unit groups. */
6933 static struct signatured_type *
6934 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6936 struct dwarf2_per_objfile *dwarf2_per_objfile
6937 = cu->per_cu->dwarf2_per_objfile;
6938 struct objfile *objfile = dwarf2_per_objfile->objfile;
6939 struct dwo_file *dwo_file;
6940 struct dwo_unit find_dwo_entry, *dwo_entry;
6941 struct signatured_type find_sig_entry, *sig_entry;
6944 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6946 /* If TU skeletons have been removed then we may not have read in any
6948 if (dwarf2_per_objfile->signatured_types == NULL)
6950 dwarf2_per_objfile->signatured_types
6951 = allocate_signatured_type_table (objfile);
6954 /* We only ever need to read in one copy of a signatured type.
6955 Use the global signatured_types array to do our own comdat-folding
6956 of types. If this is the first time we're reading this TU, and
6957 the TU has an entry in .gdb_index, replace the recorded data from
6958 .gdb_index with this TU. */
6960 find_sig_entry.signature = sig;
6961 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6962 &find_sig_entry, INSERT);
6963 sig_entry = (struct signatured_type *) *slot;
6965 /* We can get here with the TU already read, *or* in the process of being
6966 read. Don't reassign the global entry to point to this DWO if that's
6967 the case. Also note that if the TU is already being read, it may not
6968 have come from a DWO, the program may be a mix of Fission-compiled
6969 code and non-Fission-compiled code. */
6971 /* Have we already tried to read this TU?
6972 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6973 needn't exist in the global table yet). */
6974 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6977 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6978 dwo_unit of the TU itself. */
6979 dwo_file = cu->dwo_unit->dwo_file;
6981 /* Ok, this is the first time we're reading this TU. */
6982 if (dwo_file->tus == NULL)
6984 find_dwo_entry.signature = sig;
6985 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6986 if (dwo_entry == NULL)
6989 /* If the global table doesn't have an entry for this TU, add one. */
6990 if (sig_entry == NULL)
6991 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6993 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6994 sig_entry->per_cu.tu_read = 1;
6998 /* Subroutine of lookup_signatured_type.
6999 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7000 then try the DWP file. If the TU stub (skeleton) has been removed then
7001 it won't be in .gdb_index. */
7003 static struct signatured_type *
7004 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7006 struct dwarf2_per_objfile *dwarf2_per_objfile
7007 = cu->per_cu->dwarf2_per_objfile;
7008 struct objfile *objfile = dwarf2_per_objfile->objfile;
7009 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7010 struct dwo_unit *dwo_entry;
7011 struct signatured_type find_sig_entry, *sig_entry;
7014 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7015 gdb_assert (dwp_file != NULL);
7017 /* If TU skeletons have been removed then we may not have read in any
7019 if (dwarf2_per_objfile->signatured_types == NULL)
7021 dwarf2_per_objfile->signatured_types
7022 = allocate_signatured_type_table (objfile);
7025 find_sig_entry.signature = sig;
7026 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7027 &find_sig_entry, INSERT);
7028 sig_entry = (struct signatured_type *) *slot;
7030 /* Have we already tried to read this TU?
7031 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7032 needn't exist in the global table yet). */
7033 if (sig_entry != NULL)
7036 if (dwp_file->tus == NULL)
7038 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7039 sig, 1 /* is_debug_types */);
7040 if (dwo_entry == NULL)
7043 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7044 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7049 /* Lookup a signature based type for DW_FORM_ref_sig8.
7050 Returns NULL if signature SIG is not present in the table.
7051 It is up to the caller to complain about this. */
7053 static struct signatured_type *
7054 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7056 struct dwarf2_per_objfile *dwarf2_per_objfile
7057 = cu->per_cu->dwarf2_per_objfile;
7060 && dwarf2_per_objfile->using_index)
7062 /* We're in a DWO/DWP file, and we're using .gdb_index.
7063 These cases require special processing. */
7064 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7065 return lookup_dwo_signatured_type (cu, sig);
7067 return lookup_dwp_signatured_type (cu, sig);
7071 struct signatured_type find_entry, *entry;
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7075 find_entry.signature = sig;
7076 entry = ((struct signatured_type *)
7077 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7082 /* Low level DIE reading support. */
7084 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7087 init_cu_die_reader (struct die_reader_specs *reader,
7088 struct dwarf2_cu *cu,
7089 struct dwarf2_section_info *section,
7090 struct dwo_file *dwo_file,
7091 struct abbrev_table *abbrev_table)
7093 gdb_assert (section->readin && section->buffer != NULL);
7094 reader->abfd = get_section_bfd_owner (section);
7096 reader->dwo_file = dwo_file;
7097 reader->die_section = section;
7098 reader->buffer = section->buffer;
7099 reader->buffer_end = section->buffer + section->size;
7100 reader->comp_dir = NULL;
7101 reader->abbrev_table = abbrev_table;
7104 /* Subroutine of init_cutu_and_read_dies to simplify it.
7105 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7106 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7109 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7110 from it to the DIE in the DWO. If NULL we are skipping the stub.
7111 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7112 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7113 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7114 STUB_COMP_DIR may be non-NULL.
7115 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7116 are filled in with the info of the DIE from the DWO file.
7117 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7118 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7119 kept around for at least as long as *RESULT_READER.
7121 The result is non-zero if a valid (non-dummy) DIE was found. */
7124 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7125 struct dwo_unit *dwo_unit,
7126 struct die_info *stub_comp_unit_die,
7127 const char *stub_comp_dir,
7128 struct die_reader_specs *result_reader,
7129 const gdb_byte **result_info_ptr,
7130 struct die_info **result_comp_unit_die,
7131 int *result_has_children,
7132 abbrev_table_up *result_dwo_abbrev_table)
7134 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7135 struct objfile *objfile = dwarf2_per_objfile->objfile;
7136 struct dwarf2_cu *cu = this_cu->cu;
7138 const gdb_byte *begin_info_ptr, *info_ptr;
7139 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7140 int i,num_extra_attrs;
7141 struct dwarf2_section_info *dwo_abbrev_section;
7142 struct attribute *attr;
7143 struct die_info *comp_unit_die;
7145 /* At most one of these may be provided. */
7146 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7148 /* These attributes aren't processed until later:
7149 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7150 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7151 referenced later. However, these attributes are found in the stub
7152 which we won't have later. In order to not impose this complication
7153 on the rest of the code, we read them here and copy them to the
7162 if (stub_comp_unit_die != NULL)
7164 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7166 if (! this_cu->is_debug_types)
7167 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7168 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7169 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7170 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7171 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7173 /* There should be a DW_AT_addr_base attribute here (if needed).
7174 We need the value before we can process DW_FORM_GNU_addr_index
7175 or DW_FORM_addrx. */
7177 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7179 cu->addr_base = DW_UNSND (attr);
7181 /* There should be a DW_AT_ranges_base attribute here (if needed).
7182 We need the value before we can process DW_AT_ranges. */
7183 cu->ranges_base = 0;
7184 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7186 cu->ranges_base = DW_UNSND (attr);
7188 else if (stub_comp_dir != NULL)
7190 /* Reconstruct the comp_dir attribute to simplify the code below. */
7191 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7192 comp_dir->name = DW_AT_comp_dir;
7193 comp_dir->form = DW_FORM_string;
7194 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7195 DW_STRING (comp_dir) = stub_comp_dir;
7198 /* Set up for reading the DWO CU/TU. */
7199 cu->dwo_unit = dwo_unit;
7200 dwarf2_section_info *section = dwo_unit->section;
7201 dwarf2_read_section (objfile, section);
7202 abfd = get_section_bfd_owner (section);
7203 begin_info_ptr = info_ptr = (section->buffer
7204 + to_underlying (dwo_unit->sect_off));
7205 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7207 if (this_cu->is_debug_types)
7209 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7211 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7212 &cu->header, section,
7214 info_ptr, rcuh_kind::TYPE);
7215 /* This is not an assert because it can be caused by bad debug info. */
7216 if (sig_type->signature != cu->header.signature)
7218 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7219 " TU at offset %s [in module %s]"),
7220 hex_string (sig_type->signature),
7221 hex_string (cu->header.signature),
7222 sect_offset_str (dwo_unit->sect_off),
7223 bfd_get_filename (abfd));
7225 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7226 /* For DWOs coming from DWP files, we don't know the CU length
7227 nor the type's offset in the TU until now. */
7228 dwo_unit->length = get_cu_length (&cu->header);
7229 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7231 /* Establish the type offset that can be used to lookup the type.
7232 For DWO files, we don't know it until now. */
7233 sig_type->type_offset_in_section
7234 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7238 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7239 &cu->header, section,
7241 info_ptr, rcuh_kind::COMPILE);
7242 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7243 /* For DWOs coming from DWP files, we don't know the CU length
7245 dwo_unit->length = get_cu_length (&cu->header);
7248 *result_dwo_abbrev_table
7249 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7250 cu->header.abbrev_sect_off);
7251 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7252 result_dwo_abbrev_table->get ());
7254 /* Read in the die, but leave space to copy over the attributes
7255 from the stub. This has the benefit of simplifying the rest of
7256 the code - all the work to maintain the illusion of a single
7257 DW_TAG_{compile,type}_unit DIE is done here. */
7258 num_extra_attrs = ((stmt_list != NULL)
7262 + (comp_dir != NULL));
7263 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7264 result_has_children, num_extra_attrs);
7266 /* Copy over the attributes from the stub to the DIE we just read in. */
7267 comp_unit_die = *result_comp_unit_die;
7268 i = comp_unit_die->num_attrs;
7269 if (stmt_list != NULL)
7270 comp_unit_die->attrs[i++] = *stmt_list;
7272 comp_unit_die->attrs[i++] = *low_pc;
7273 if (high_pc != NULL)
7274 comp_unit_die->attrs[i++] = *high_pc;
7276 comp_unit_die->attrs[i++] = *ranges;
7277 if (comp_dir != NULL)
7278 comp_unit_die->attrs[i++] = *comp_dir;
7279 comp_unit_die->num_attrs += num_extra_attrs;
7281 if (dwarf_die_debug)
7283 fprintf_unfiltered (gdb_stdlog,
7284 "Read die from %s@0x%x of %s:\n",
7285 get_section_name (section),
7286 (unsigned) (begin_info_ptr - section->buffer),
7287 bfd_get_filename (abfd));
7288 dump_die (comp_unit_die, dwarf_die_debug);
7291 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7292 TUs by skipping the stub and going directly to the entry in the DWO file.
7293 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7294 to get it via circuitous means. Blech. */
7295 if (comp_dir != NULL)
7296 result_reader->comp_dir = DW_STRING (comp_dir);
7298 /* Skip dummy compilation units. */
7299 if (info_ptr >= begin_info_ptr + dwo_unit->length
7300 || peek_abbrev_code (abfd, info_ptr) == 0)
7303 *result_info_ptr = info_ptr;
7307 /* Subroutine of init_cutu_and_read_dies to simplify it.
7308 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7309 Returns NULL if the specified DWO unit cannot be found. */
7311 static struct dwo_unit *
7312 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7313 struct die_info *comp_unit_die)
7315 struct dwarf2_cu *cu = this_cu->cu;
7317 struct dwo_unit *dwo_unit;
7318 const char *comp_dir, *dwo_name;
7320 gdb_assert (cu != NULL);
7322 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7323 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7324 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7326 if (this_cu->is_debug_types)
7328 struct signatured_type *sig_type;
7330 /* Since this_cu is the first member of struct signatured_type,
7331 we can go from a pointer to one to a pointer to the other. */
7332 sig_type = (struct signatured_type *) this_cu;
7333 signature = sig_type->signature;
7334 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7338 struct attribute *attr;
7340 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7342 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7344 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7345 signature = DW_UNSND (attr);
7346 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7353 /* Subroutine of init_cutu_and_read_dies to simplify it.
7354 See it for a description of the parameters.
7355 Read a TU directly from a DWO file, bypassing the stub. */
7358 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7359 int use_existing_cu, int keep,
7360 die_reader_func_ftype *die_reader_func,
7363 std::unique_ptr<dwarf2_cu> new_cu;
7364 struct signatured_type *sig_type;
7365 struct die_reader_specs reader;
7366 const gdb_byte *info_ptr;
7367 struct die_info *comp_unit_die;
7369 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7371 /* Verify we can do the following downcast, and that we have the
7373 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7374 sig_type = (struct signatured_type *) this_cu;
7375 gdb_assert (sig_type->dwo_unit != NULL);
7377 if (use_existing_cu && this_cu->cu != NULL)
7379 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7380 /* There's no need to do the rereading_dwo_cu handling that
7381 init_cutu_and_read_dies does since we don't read the stub. */
7385 /* If !use_existing_cu, this_cu->cu must be NULL. */
7386 gdb_assert (this_cu->cu == NULL);
7387 new_cu.reset (new dwarf2_cu (this_cu));
7390 /* A future optimization, if needed, would be to use an existing
7391 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7392 could share abbrev tables. */
7394 /* The abbreviation table used by READER, this must live at least as long as
7396 abbrev_table_up dwo_abbrev_table;
7398 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7399 NULL /* stub_comp_unit_die */,
7400 sig_type->dwo_unit->dwo_file->comp_dir,
7402 &comp_unit_die, &has_children,
7403 &dwo_abbrev_table) == 0)
7409 /* All the "real" work is done here. */
7410 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7412 /* This duplicates the code in init_cutu_and_read_dies,
7413 but the alternative is making the latter more complex.
7414 This function is only for the special case of using DWO files directly:
7415 no point in overly complicating the general case just to handle this. */
7416 if (new_cu != NULL && keep)
7418 /* Link this CU into read_in_chain. */
7419 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7420 dwarf2_per_objfile->read_in_chain = this_cu;
7421 /* The chain owns it now. */
7426 /* Initialize a CU (or TU) and read its DIEs.
7427 If the CU defers to a DWO file, read the DWO file as well.
7429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7430 Otherwise the table specified in the comp unit header is read in and used.
7431 This is an optimization for when we already have the abbrev table.
7433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7434 Otherwise, a new CU is allocated with xmalloc.
7436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7440 linker) then DIE_READER_FUNC will not get called. */
7443 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7444 struct abbrev_table *abbrev_table,
7445 int use_existing_cu, int keep,
7447 die_reader_func_ftype *die_reader_func,
7450 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7451 struct objfile *objfile = dwarf2_per_objfile->objfile;
7452 struct dwarf2_section_info *section = this_cu->section;
7453 bfd *abfd = get_section_bfd_owner (section);
7454 struct dwarf2_cu *cu;
7455 const gdb_byte *begin_info_ptr, *info_ptr;
7456 struct die_reader_specs reader;
7457 struct die_info *comp_unit_die;
7459 struct attribute *attr;
7460 struct signatured_type *sig_type = NULL;
7461 struct dwarf2_section_info *abbrev_section;
7462 /* Non-zero if CU currently points to a DWO file and we need to
7463 reread it. When this happens we need to reread the skeleton die
7464 before we can reread the DWO file (this only applies to CUs, not TUs). */
7465 int rereading_dwo_cu = 0;
7467 if (dwarf_die_debug)
7468 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7469 this_cu->is_debug_types ? "type" : "comp",
7470 sect_offset_str (this_cu->sect_off));
7472 if (use_existing_cu)
7475 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7476 file (instead of going through the stub), short-circuit all of this. */
7477 if (this_cu->reading_dwo_directly)
7479 /* Narrow down the scope of possibilities to have to understand. */
7480 gdb_assert (this_cu->is_debug_types);
7481 gdb_assert (abbrev_table == NULL);
7482 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7483 die_reader_func, data);
7487 /* This is cheap if the section is already read in. */
7488 dwarf2_read_section (objfile, section);
7490 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7492 abbrev_section = get_abbrev_section_for_cu (this_cu);
7494 std::unique_ptr<dwarf2_cu> new_cu;
7495 if (use_existing_cu && this_cu->cu != NULL)
7498 /* If this CU is from a DWO file we need to start over, we need to
7499 refetch the attributes from the skeleton CU.
7500 This could be optimized by retrieving those attributes from when we
7501 were here the first time: the previous comp_unit_die was stored in
7502 comp_unit_obstack. But there's no data yet that we need this
7504 if (cu->dwo_unit != NULL)
7505 rereading_dwo_cu = 1;
7509 /* If !use_existing_cu, this_cu->cu must be NULL. */
7510 gdb_assert (this_cu->cu == NULL);
7511 new_cu.reset (new dwarf2_cu (this_cu));
7515 /* Get the header. */
7516 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7518 /* We already have the header, there's no need to read it in again. */
7519 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7523 if (this_cu->is_debug_types)
7525 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7526 &cu->header, section,
7527 abbrev_section, info_ptr,
7530 /* Since per_cu is the first member of struct signatured_type,
7531 we can go from a pointer to one to a pointer to the other. */
7532 sig_type = (struct signatured_type *) this_cu;
7533 gdb_assert (sig_type->signature == cu->header.signature);
7534 gdb_assert (sig_type->type_offset_in_tu
7535 == cu->header.type_cu_offset_in_tu);
7536 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7538 /* LENGTH has not been set yet for type units if we're
7539 using .gdb_index. */
7540 this_cu->length = get_cu_length (&cu->header);
7542 /* Establish the type offset that can be used to lookup the type. */
7543 sig_type->type_offset_in_section =
7544 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7546 this_cu->dwarf_version = cu->header.version;
7550 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7551 &cu->header, section,
7554 rcuh_kind::COMPILE);
7556 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7558 this_cu->dwarf_version = cu->header.version;
7562 /* Skip dummy compilation units. */
7563 if (info_ptr >= begin_info_ptr + this_cu->length
7564 || peek_abbrev_code (abfd, info_ptr) == 0)
7567 /* If we don't have them yet, read the abbrevs for this compilation unit.
7568 And if we need to read them now, make sure they're freed when we're
7569 done (own the table through ABBREV_TABLE_HOLDER). */
7570 abbrev_table_up abbrev_table_holder;
7571 if (abbrev_table != NULL)
7572 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7576 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7577 cu->header.abbrev_sect_off);
7578 abbrev_table = abbrev_table_holder.get ();
7581 /* Read the top level CU/TU die. */
7582 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7583 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7585 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7588 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7589 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7590 table from the DWO file and pass the ownership over to us. It will be
7591 referenced from READER, so we must make sure to free it after we're done
7594 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7595 DWO CU, that this test will fail (the attribute will not be present). */
7596 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7597 abbrev_table_up dwo_abbrev_table;
7600 struct dwo_unit *dwo_unit;
7601 struct die_info *dwo_comp_unit_die;
7605 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7606 " has children (offset %s) [in module %s]"),
7607 sect_offset_str (this_cu->sect_off),
7608 bfd_get_filename (abfd));
7610 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7611 if (dwo_unit != NULL)
7613 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7614 comp_unit_die, NULL,
7616 &dwo_comp_unit_die, &has_children,
7617 &dwo_abbrev_table) == 0)
7622 comp_unit_die = dwo_comp_unit_die;
7626 /* Yikes, we couldn't find the rest of the DIE, we only have
7627 the stub. A complaint has already been logged. There's
7628 not much more we can do except pass on the stub DIE to
7629 die_reader_func. We don't want to throw an error on bad
7634 /* All of the above is setup for this call. Yikes. */
7635 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7637 /* Done, clean up. */
7638 if (new_cu != NULL && keep)
7640 /* Link this CU into read_in_chain. */
7641 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7642 dwarf2_per_objfile->read_in_chain = this_cu;
7643 /* The chain owns it now. */
7648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7650 to have already done the lookup to find the DWO file).
7652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7653 THIS_CU->is_debug_types, but nothing else.
7655 We fill in THIS_CU->length.
7657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7658 linker) then DIE_READER_FUNC will not get called.
7660 THIS_CU->cu is always freed when done.
7661 This is done in order to not leave THIS_CU->cu in a state where we have
7662 to care whether it refers to the "main" CU or the DWO CU. */
7665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7666 struct dwo_file *dwo_file,
7667 die_reader_func_ftype *die_reader_func,
7670 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7671 struct objfile *objfile = dwarf2_per_objfile->objfile;
7672 struct dwarf2_section_info *section = this_cu->section;
7673 bfd *abfd = get_section_bfd_owner (section);
7674 struct dwarf2_section_info *abbrev_section;
7675 const gdb_byte *begin_info_ptr, *info_ptr;
7676 struct die_reader_specs reader;
7677 struct die_info *comp_unit_die;
7680 if (dwarf_die_debug)
7681 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7682 this_cu->is_debug_types ? "type" : "comp",
7683 sect_offset_str (this_cu->sect_off));
7685 gdb_assert (this_cu->cu == NULL);
7687 abbrev_section = (dwo_file != NULL
7688 ? &dwo_file->sections.abbrev
7689 : get_abbrev_section_for_cu (this_cu));
7691 /* This is cheap if the section is already read in. */
7692 dwarf2_read_section (objfile, section);
7694 struct dwarf2_cu cu (this_cu);
7696 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7697 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7698 &cu.header, section,
7699 abbrev_section, info_ptr,
7700 (this_cu->is_debug_types
7702 : rcuh_kind::COMPILE));
7704 this_cu->length = get_cu_length (&cu.header);
7706 /* Skip dummy compilation units. */
7707 if (info_ptr >= begin_info_ptr + this_cu->length
7708 || peek_abbrev_code (abfd, info_ptr) == 0)
7711 abbrev_table_up abbrev_table
7712 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7713 cu.header.abbrev_sect_off);
7715 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7716 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7718 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7721 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7722 does not lookup the specified DWO file.
7723 This cannot be used to read DWO files.
7725 THIS_CU->cu is always freed when done.
7726 This is done in order to not leave THIS_CU->cu in a state where we have
7727 to care whether it refers to the "main" CU or the DWO CU.
7728 We can revisit this if the data shows there's a performance issue. */
7731 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7732 die_reader_func_ftype *die_reader_func,
7735 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7738 /* Type Unit Groups.
7740 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7741 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7742 so that all types coming from the same compilation (.o file) are grouped
7743 together. A future step could be to put the types in the same symtab as
7744 the CU the types ultimately came from. */
7747 hash_type_unit_group (const void *item)
7749 const struct type_unit_group *tu_group
7750 = (const struct type_unit_group *) item;
7752 return hash_stmt_list_entry (&tu_group->hash);
7756 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7758 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7759 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7761 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7764 /* Allocate a hash table for type unit groups. */
7767 allocate_type_unit_groups_table (struct objfile *objfile)
7769 return htab_create_alloc_ex (3,
7770 hash_type_unit_group,
7773 &objfile->objfile_obstack,
7774 hashtab_obstack_allocate,
7775 dummy_obstack_deallocate);
7778 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7779 partial symtabs. We combine several TUs per psymtab to not let the size
7780 of any one psymtab grow too big. */
7781 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7782 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7784 /* Helper routine for get_type_unit_group.
7785 Create the type_unit_group object used to hold one or more TUs. */
7787 static struct type_unit_group *
7788 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7790 struct dwarf2_per_objfile *dwarf2_per_objfile
7791 = cu->per_cu->dwarf2_per_objfile;
7792 struct objfile *objfile = dwarf2_per_objfile->objfile;
7793 struct dwarf2_per_cu_data *per_cu;
7794 struct type_unit_group *tu_group;
7796 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7797 struct type_unit_group);
7798 per_cu = &tu_group->per_cu;
7799 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7801 if (dwarf2_per_objfile->using_index)
7803 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7804 struct dwarf2_per_cu_quick_data);
7808 unsigned int line_offset = to_underlying (line_offset_struct);
7809 struct partial_symtab *pst;
7812 /* Give the symtab a useful name for debug purposes. */
7813 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7814 name = string_printf ("<type_units_%d>",
7815 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7817 name = string_printf ("<type_units_at_0x%x>", line_offset);
7819 pst = create_partial_symtab (per_cu, name.c_str ());
7823 tu_group->hash.dwo_unit = cu->dwo_unit;
7824 tu_group->hash.line_sect_off = line_offset_struct;
7829 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7830 STMT_LIST is a DW_AT_stmt_list attribute. */
7832 static struct type_unit_group *
7833 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7835 struct dwarf2_per_objfile *dwarf2_per_objfile
7836 = cu->per_cu->dwarf2_per_objfile;
7837 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7838 struct type_unit_group *tu_group;
7840 unsigned int line_offset;
7841 struct type_unit_group type_unit_group_for_lookup;
7843 if (dwarf2_per_objfile->type_unit_groups == NULL)
7845 dwarf2_per_objfile->type_unit_groups =
7846 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7849 /* Do we need to create a new group, or can we use an existing one? */
7853 line_offset = DW_UNSND (stmt_list);
7854 ++tu_stats->nr_symtab_sharers;
7858 /* Ugh, no stmt_list. Rare, but we have to handle it.
7859 We can do various things here like create one group per TU or
7860 spread them over multiple groups to split up the expansion work.
7861 To avoid worst case scenarios (too many groups or too large groups)
7862 we, umm, group them in bunches. */
7863 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7864 | (tu_stats->nr_stmt_less_type_units
7865 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7866 ++tu_stats->nr_stmt_less_type_units;
7869 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7870 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7871 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7872 &type_unit_group_for_lookup, INSERT);
7875 tu_group = (struct type_unit_group *) *slot;
7876 gdb_assert (tu_group != NULL);
7880 sect_offset line_offset_struct = (sect_offset) line_offset;
7881 tu_group = create_type_unit_group (cu, line_offset_struct);
7883 ++tu_stats->nr_symtabs;
7889 /* Partial symbol tables. */
7891 /* Create a psymtab named NAME and assign it to PER_CU.
7893 The caller must fill in the following details:
7894 dirname, textlow, texthigh. */
7896 static struct partial_symtab *
7897 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7899 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7900 struct partial_symtab *pst;
7902 pst = start_psymtab_common (objfile, name, 0);
7904 pst->psymtabs_addrmap_supported = 1;
7906 /* This is the glue that links PST into GDB's symbol API. */
7907 pst->read_symtab_private = per_cu;
7908 pst->read_symtab = dwarf2_read_symtab;
7909 per_cu->v.psymtab = pst;
7914 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7917 struct process_psymtab_comp_unit_data
7919 /* True if we are reading a DW_TAG_partial_unit. */
7921 int want_partial_unit;
7923 /* The "pretend" language that is used if the CU doesn't declare a
7926 enum language pretend_language;
7929 /* die_reader_func for process_psymtab_comp_unit. */
7932 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7933 const gdb_byte *info_ptr,
7934 struct die_info *comp_unit_die,
7938 struct dwarf2_cu *cu = reader->cu;
7939 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7941 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7944 struct partial_symtab *pst;
7945 enum pc_bounds_kind cu_bounds_kind;
7946 const char *filename;
7947 struct process_psymtab_comp_unit_data *info
7948 = (struct process_psymtab_comp_unit_data *) data;
7950 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7953 gdb_assert (! per_cu->is_debug_types);
7955 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7957 /* Allocate a new partial symbol table structure. */
7958 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7959 if (filename == NULL)
7962 pst = create_partial_symtab (per_cu, filename);
7964 /* This must be done before calling dwarf2_build_include_psymtabs. */
7965 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7967 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7969 dwarf2_find_base_address (comp_unit_die, cu);
7971 /* Possibly set the default values of LOWPC and HIGHPC from
7973 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7974 &best_highpc, cu, pst);
7975 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7978 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7981 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7983 /* Store the contiguous range if it is not empty; it can be
7984 empty for CUs with no code. */
7985 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7989 /* Check if comp unit has_children.
7990 If so, read the rest of the partial symbols from this comp unit.
7991 If not, there's no more debug_info for this comp unit. */
7994 struct partial_die_info *first_die;
7995 CORE_ADDR lowpc, highpc;
7997 lowpc = ((CORE_ADDR) -1);
7998 highpc = ((CORE_ADDR) 0);
8000 first_die = load_partial_dies (reader, info_ptr, 1);
8002 scan_partial_symbols (first_die, &lowpc, &highpc,
8003 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8005 /* If we didn't find a lowpc, set it to highpc to avoid
8006 complaints from `maint check'. */
8007 if (lowpc == ((CORE_ADDR) -1))
8010 /* If the compilation unit didn't have an explicit address range,
8011 then use the information extracted from its child dies. */
8012 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8015 best_highpc = highpc;
8018 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8019 best_lowpc + baseaddr)
8021 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8022 best_highpc + baseaddr)
8025 end_psymtab_common (objfile, pst);
8027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8031 struct dwarf2_per_cu_data *iter;
8033 /* Fill in 'dependencies' here; we fill in 'users' in a
8035 pst->number_of_dependencies = len;
8037 = objfile->partial_symtabs->allocate_dependencies (len);
8039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8042 pst->dependencies[i] = iter->v.psymtab;
8044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8047 /* Get the list of files included in the current compilation unit,
8048 and build a psymtab for each of them. */
8049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8051 if (dwarf_read_debug)
8052 fprintf_unfiltered (gdb_stdlog,
8053 "Psymtab for %s unit @%s: %s - %s"
8054 ", %d global, %d static syms\n",
8055 per_cu->is_debug_types ? "type" : "comp",
8056 sect_offset_str (per_cu->sect_off),
8057 paddress (gdbarch, pst->text_low (objfile)),
8058 paddress (gdbarch, pst->text_high (objfile)),
8059 pst->n_global_syms, pst->n_static_syms);
8062 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8063 Process compilation unit THIS_CU for a psymtab. */
8066 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8067 int want_partial_unit,
8068 enum language pretend_language)
8070 /* If this compilation unit was already read in, free the
8071 cached copy in order to read it in again. This is
8072 necessary because we skipped some symbols when we first
8073 read in the compilation unit (see load_partial_dies).
8074 This problem could be avoided, but the benefit is unclear. */
8075 if (this_cu->cu != NULL)
8076 free_one_cached_comp_unit (this_cu);
8078 if (this_cu->is_debug_types)
8079 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8080 build_type_psymtabs_reader, NULL);
8083 process_psymtab_comp_unit_data info;
8084 info.want_partial_unit = want_partial_unit;
8085 info.pretend_language = pretend_language;
8086 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8087 process_psymtab_comp_unit_reader, &info);
8090 /* Age out any secondary CUs. */
8091 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8094 /* Reader function for build_type_psymtabs. */
8097 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8098 const gdb_byte *info_ptr,
8099 struct die_info *type_unit_die,
8103 struct dwarf2_per_objfile *dwarf2_per_objfile
8104 = reader->cu->per_cu->dwarf2_per_objfile;
8105 struct objfile *objfile = dwarf2_per_objfile->objfile;
8106 struct dwarf2_cu *cu = reader->cu;
8107 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8108 struct signatured_type *sig_type;
8109 struct type_unit_group *tu_group;
8110 struct attribute *attr;
8111 struct partial_die_info *first_die;
8112 CORE_ADDR lowpc, highpc;
8113 struct partial_symtab *pst;
8115 gdb_assert (data == NULL);
8116 gdb_assert (per_cu->is_debug_types);
8117 sig_type = (struct signatured_type *) per_cu;
8122 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8123 tu_group = get_type_unit_group (cu, attr);
8125 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8127 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8128 pst = create_partial_symtab (per_cu, "");
8131 first_die = load_partial_dies (reader, info_ptr, 1);
8133 lowpc = (CORE_ADDR) -1;
8134 highpc = (CORE_ADDR) 0;
8135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8137 end_psymtab_common (objfile, pst);
8140 /* Struct used to sort TUs by their abbreviation table offset. */
8142 struct tu_abbrev_offset
8144 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8145 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8148 signatured_type *sig_type;
8149 sect_offset abbrev_offset;
8152 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8155 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8156 const struct tu_abbrev_offset &b)
8158 return a.abbrev_offset < b.abbrev_offset;
8161 /* Efficiently read all the type units.
8162 This does the bulk of the work for build_type_psymtabs.
8164 The efficiency is because we sort TUs by the abbrev table they use and
8165 only read each abbrev table once. In one program there are 200K TUs
8166 sharing 8K abbrev tables.
8168 The main purpose of this function is to support building the
8169 dwarf2_per_objfile->type_unit_groups table.
8170 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8171 can collapse the search space by grouping them by stmt_list.
8172 The savings can be significant, in the same program from above the 200K TUs
8173 share 8K stmt_list tables.
8175 FUNC is expected to call get_type_unit_group, which will create the
8176 struct type_unit_group if necessary and add it to
8177 dwarf2_per_objfile->type_unit_groups. */
8180 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8182 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8183 abbrev_table_up abbrev_table;
8184 sect_offset abbrev_offset;
8186 /* It's up to the caller to not call us multiple times. */
8187 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8189 if (dwarf2_per_objfile->all_type_units.empty ())
8192 /* TUs typically share abbrev tables, and there can be way more TUs than
8193 abbrev tables. Sort by abbrev table to reduce the number of times we
8194 read each abbrev table in.
8195 Alternatives are to punt or to maintain a cache of abbrev tables.
8196 This is simpler and efficient enough for now.
8198 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8199 symtab to use). Typically TUs with the same abbrev offset have the same
8200 stmt_list value too so in practice this should work well.
8202 The basic algorithm here is:
8204 sort TUs by abbrev table
8205 for each TU with same abbrev table:
8206 read abbrev table if first user
8207 read TU top level DIE
8208 [IWBN if DWO skeletons had DW_AT_stmt_list]
8211 if (dwarf_read_debug)
8212 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8214 /* Sort in a separate table to maintain the order of all_type_units
8215 for .gdb_index: TU indices directly index all_type_units. */
8216 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8217 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8219 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8220 sorted_by_abbrev.emplace_back
8221 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8222 sig_type->per_cu.section,
8223 sig_type->per_cu.sect_off));
8225 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8226 sort_tu_by_abbrev_offset);
8228 abbrev_offset = (sect_offset) ~(unsigned) 0;
8230 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8232 /* Switch to the next abbrev table if necessary. */
8233 if (abbrev_table == NULL
8234 || tu.abbrev_offset != abbrev_offset)
8236 abbrev_offset = tu.abbrev_offset;
8238 abbrev_table_read_table (dwarf2_per_objfile,
8239 &dwarf2_per_objfile->abbrev,
8241 ++tu_stats->nr_uniq_abbrev_tables;
8244 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8245 0, 0, false, build_type_psymtabs_reader, NULL);
8249 /* Print collected type unit statistics. */
8252 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8254 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8256 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8257 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8258 dwarf2_per_objfile->all_type_units.size ());
8259 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8260 tu_stats->nr_uniq_abbrev_tables);
8261 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8262 tu_stats->nr_symtabs);
8263 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8264 tu_stats->nr_symtab_sharers);
8265 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8266 tu_stats->nr_stmt_less_type_units);
8267 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8268 tu_stats->nr_all_type_units_reallocs);
8271 /* Traversal function for build_type_psymtabs. */
8274 build_type_psymtab_dependencies (void **slot, void *info)
8276 struct dwarf2_per_objfile *dwarf2_per_objfile
8277 = (struct dwarf2_per_objfile *) info;
8278 struct objfile *objfile = dwarf2_per_objfile->objfile;
8279 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8280 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8281 struct partial_symtab *pst = per_cu->v.psymtab;
8282 int len = VEC_length (sig_type_ptr, tu_group->tus);
8283 struct signatured_type *iter;
8286 gdb_assert (len > 0);
8287 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8289 pst->number_of_dependencies = len;
8290 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8292 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8295 gdb_assert (iter->per_cu.is_debug_types);
8296 pst->dependencies[i] = iter->per_cu.v.psymtab;
8297 iter->type_unit_group = tu_group;
8300 VEC_free (sig_type_ptr, tu_group->tus);
8305 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8306 Build partial symbol tables for the .debug_types comp-units. */
8309 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8311 if (! create_all_type_units (dwarf2_per_objfile))
8314 build_type_psymtabs_1 (dwarf2_per_objfile);
8317 /* Traversal function for process_skeletonless_type_unit.
8318 Read a TU in a DWO file and build partial symbols for it. */
8321 process_skeletonless_type_unit (void **slot, void *info)
8323 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8324 struct dwarf2_per_objfile *dwarf2_per_objfile
8325 = (struct dwarf2_per_objfile *) info;
8326 struct signatured_type find_entry, *entry;
8328 /* If this TU doesn't exist in the global table, add it and read it in. */
8330 if (dwarf2_per_objfile->signatured_types == NULL)
8332 dwarf2_per_objfile->signatured_types
8333 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8336 find_entry.signature = dwo_unit->signature;
8337 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8339 /* If we've already seen this type there's nothing to do. What's happening
8340 is we're doing our own version of comdat-folding here. */
8344 /* This does the job that create_all_type_units would have done for
8346 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8347 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8350 /* This does the job that build_type_psymtabs_1 would have done. */
8351 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8352 build_type_psymtabs_reader, NULL);
8357 /* Traversal function for process_skeletonless_type_units. */
8360 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8362 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8364 if (dwo_file->tus != NULL)
8366 htab_traverse_noresize (dwo_file->tus,
8367 process_skeletonless_type_unit, info);
8373 /* Scan all TUs of DWO files, verifying we've processed them.
8374 This is needed in case a TU was emitted without its skeleton.
8375 Note: This can't be done until we know what all the DWO files are. */
8378 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8380 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8381 if (get_dwp_file (dwarf2_per_objfile) == NULL
8382 && dwarf2_per_objfile->dwo_files != NULL)
8384 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8385 process_dwo_file_for_skeletonless_type_units,
8386 dwarf2_per_objfile);
8390 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8393 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8395 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8397 struct partial_symtab *pst = per_cu->v.psymtab;
8402 for (int j = 0; j < pst->number_of_dependencies; ++j)
8404 /* Set the 'user' field only if it is not already set. */
8405 if (pst->dependencies[j]->user == NULL)
8406 pst->dependencies[j]->user = pst;
8411 /* Build the partial symbol table by doing a quick pass through the
8412 .debug_info and .debug_abbrev sections. */
8415 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8417 struct objfile *objfile = dwarf2_per_objfile->objfile;
8419 if (dwarf_read_debug)
8421 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8422 objfile_name (objfile));
8425 dwarf2_per_objfile->reading_partial_symbols = 1;
8427 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8429 /* Any cached compilation units will be linked by the per-objfile
8430 read_in_chain. Make sure to free them when we're done. */
8431 free_cached_comp_units freer (dwarf2_per_objfile);
8433 build_type_psymtabs (dwarf2_per_objfile);
8435 create_all_comp_units (dwarf2_per_objfile);
8437 /* Create a temporary address map on a temporary obstack. We later
8438 copy this to the final obstack. */
8439 auto_obstack temp_obstack;
8441 scoped_restore save_psymtabs_addrmap
8442 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8443 addrmap_create_mutable (&temp_obstack));
8445 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8446 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8448 /* This has to wait until we read the CUs, we need the list of DWOs. */
8449 process_skeletonless_type_units (dwarf2_per_objfile);
8451 /* Now that all TUs have been processed we can fill in the dependencies. */
8452 if (dwarf2_per_objfile->type_unit_groups != NULL)
8454 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8455 build_type_psymtab_dependencies, dwarf2_per_objfile);
8458 if (dwarf_read_debug)
8459 print_tu_stats (dwarf2_per_objfile);
8461 set_partial_user (dwarf2_per_objfile);
8463 objfile->partial_symtabs->psymtabs_addrmap
8464 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8465 objfile->partial_symtabs->obstack ());
8466 /* At this point we want to keep the address map. */
8467 save_psymtabs_addrmap.release ();
8469 if (dwarf_read_debug)
8470 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8471 objfile_name (objfile));
8474 /* die_reader_func for load_partial_comp_unit. */
8477 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8478 const gdb_byte *info_ptr,
8479 struct die_info *comp_unit_die,
8483 struct dwarf2_cu *cu = reader->cu;
8485 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8487 /* Check if comp unit has_children.
8488 If so, read the rest of the partial symbols from this comp unit.
8489 If not, there's no more debug_info for this comp unit. */
8491 load_partial_dies (reader, info_ptr, 0);
8494 /* Load the partial DIEs for a secondary CU into memory.
8495 This is also used when rereading a primary CU with load_all_dies. */
8498 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8500 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8501 load_partial_comp_unit_reader, NULL);
8505 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8506 struct dwarf2_section_info *section,
8507 struct dwarf2_section_info *abbrev_section,
8508 unsigned int is_dwz)
8510 const gdb_byte *info_ptr;
8511 struct objfile *objfile = dwarf2_per_objfile->objfile;
8513 if (dwarf_read_debug)
8514 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8515 get_section_name (section),
8516 get_section_file_name (section));
8518 dwarf2_read_section (objfile, section);
8520 info_ptr = section->buffer;
8522 while (info_ptr < section->buffer + section->size)
8524 struct dwarf2_per_cu_data *this_cu;
8526 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8528 comp_unit_head cu_header;
8529 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8530 abbrev_section, info_ptr,
8531 rcuh_kind::COMPILE);
8533 /* Save the compilation unit for later lookup. */
8534 if (cu_header.unit_type != DW_UT_type)
8536 this_cu = XOBNEW (&objfile->objfile_obstack,
8537 struct dwarf2_per_cu_data);
8538 memset (this_cu, 0, sizeof (*this_cu));
8542 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8543 struct signatured_type);
8544 memset (sig_type, 0, sizeof (*sig_type));
8545 sig_type->signature = cu_header.signature;
8546 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8547 this_cu = &sig_type->per_cu;
8549 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8550 this_cu->sect_off = sect_off;
8551 this_cu->length = cu_header.length + cu_header.initial_length_size;
8552 this_cu->is_dwz = is_dwz;
8553 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8554 this_cu->section = section;
8556 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8558 info_ptr = info_ptr + this_cu->length;
8562 /* Create a list of all compilation units in OBJFILE.
8563 This is only done for -readnow and building partial symtabs. */
8566 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8568 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8569 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8570 &dwarf2_per_objfile->abbrev, 0);
8572 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8574 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8578 /* Process all loaded DIEs for compilation unit CU, starting at
8579 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8580 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8581 DW_AT_ranges). See the comments of add_partial_subprogram on how
8582 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8585 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8586 CORE_ADDR *highpc, int set_addrmap,
8587 struct dwarf2_cu *cu)
8589 struct partial_die_info *pdi;
8591 /* Now, march along the PDI's, descending into ones which have
8592 interesting children but skipping the children of the other ones,
8593 until we reach the end of the compilation unit. */
8601 /* Anonymous namespaces or modules have no name but have interesting
8602 children, so we need to look at them. Ditto for anonymous
8605 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8606 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8607 || pdi->tag == DW_TAG_imported_unit
8608 || pdi->tag == DW_TAG_inlined_subroutine)
8612 case DW_TAG_subprogram:
8613 case DW_TAG_inlined_subroutine:
8614 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8616 case DW_TAG_constant:
8617 case DW_TAG_variable:
8618 case DW_TAG_typedef:
8619 case DW_TAG_union_type:
8620 if (!pdi->is_declaration)
8622 add_partial_symbol (pdi, cu);
8625 case DW_TAG_class_type:
8626 case DW_TAG_interface_type:
8627 case DW_TAG_structure_type:
8628 if (!pdi->is_declaration)
8630 add_partial_symbol (pdi, cu);
8632 if ((cu->language == language_rust
8633 || cu->language == language_cplus) && pdi->has_children)
8634 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8637 case DW_TAG_enumeration_type:
8638 if (!pdi->is_declaration)
8639 add_partial_enumeration (pdi, cu);
8641 case DW_TAG_base_type:
8642 case DW_TAG_subrange_type:
8643 /* File scope base type definitions are added to the partial
8645 add_partial_symbol (pdi, cu);
8647 case DW_TAG_namespace:
8648 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8651 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8653 case DW_TAG_imported_unit:
8655 struct dwarf2_per_cu_data *per_cu;
8657 /* For now we don't handle imported units in type units. */
8658 if (cu->per_cu->is_debug_types)
8660 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8661 " supported in type units [in module %s]"),
8662 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8665 per_cu = dwarf2_find_containing_comp_unit
8666 (pdi->d.sect_off, pdi->is_dwz,
8667 cu->per_cu->dwarf2_per_objfile);
8669 /* Go read the partial unit, if needed. */
8670 if (per_cu->v.psymtab == NULL)
8671 process_psymtab_comp_unit (per_cu, 1, cu->language);
8673 VEC_safe_push (dwarf2_per_cu_ptr,
8674 cu->per_cu->imported_symtabs, per_cu);
8677 case DW_TAG_imported_declaration:
8678 add_partial_symbol (pdi, cu);
8685 /* If the die has a sibling, skip to the sibling. */
8687 pdi = pdi->die_sibling;
8691 /* Functions used to compute the fully scoped name of a partial DIE.
8693 Normally, this is simple. For C++, the parent DIE's fully scoped
8694 name is concatenated with "::" and the partial DIE's name.
8695 Enumerators are an exception; they use the scope of their parent
8696 enumeration type, i.e. the name of the enumeration type is not
8697 prepended to the enumerator.
8699 There are two complexities. One is DW_AT_specification; in this
8700 case "parent" means the parent of the target of the specification,
8701 instead of the direct parent of the DIE. The other is compilers
8702 which do not emit DW_TAG_namespace; in this case we try to guess
8703 the fully qualified name of structure types from their members'
8704 linkage names. This must be done using the DIE's children rather
8705 than the children of any DW_AT_specification target. We only need
8706 to do this for structures at the top level, i.e. if the target of
8707 any DW_AT_specification (if any; otherwise the DIE itself) does not
8710 /* Compute the scope prefix associated with PDI's parent, in
8711 compilation unit CU. The result will be allocated on CU's
8712 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8713 field. NULL is returned if no prefix is necessary. */
8715 partial_die_parent_scope (struct partial_die_info *pdi,
8716 struct dwarf2_cu *cu)
8718 const char *grandparent_scope;
8719 struct partial_die_info *parent, *real_pdi;
8721 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8722 then this means the parent of the specification DIE. */
8725 while (real_pdi->has_specification)
8727 auto res = find_partial_die (real_pdi->spec_offset,
8728 real_pdi->spec_is_dwz, cu);
8733 parent = real_pdi->die_parent;
8737 if (parent->scope_set)
8738 return parent->scope;
8742 grandparent_scope = partial_die_parent_scope (parent, cu);
8744 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8745 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8746 Work around this problem here. */
8747 if (cu->language == language_cplus
8748 && parent->tag == DW_TAG_namespace
8749 && strcmp (parent->name, "::") == 0
8750 && grandparent_scope == NULL)
8752 parent->scope = NULL;
8753 parent->scope_set = 1;
8757 if (pdi->tag == DW_TAG_enumerator)
8758 /* Enumerators should not get the name of the enumeration as a prefix. */
8759 parent->scope = grandparent_scope;
8760 else if (parent->tag == DW_TAG_namespace
8761 || parent->tag == DW_TAG_module
8762 || parent->tag == DW_TAG_structure_type
8763 || parent->tag == DW_TAG_class_type
8764 || parent->tag == DW_TAG_interface_type
8765 || parent->tag == DW_TAG_union_type
8766 || parent->tag == DW_TAG_enumeration_type)
8768 if (grandparent_scope == NULL)
8769 parent->scope = parent->name;
8771 parent->scope = typename_concat (&cu->comp_unit_obstack,
8773 parent->name, 0, cu);
8777 /* FIXME drow/2004-04-01: What should we be doing with
8778 function-local names? For partial symbols, we should probably be
8780 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8781 dwarf_tag_name (parent->tag),
8782 sect_offset_str (pdi->sect_off));
8783 parent->scope = grandparent_scope;
8786 parent->scope_set = 1;
8787 return parent->scope;
8790 /* Return the fully scoped name associated with PDI, from compilation unit
8791 CU. The result will be allocated with malloc. */
8794 partial_die_full_name (struct partial_die_info *pdi,
8795 struct dwarf2_cu *cu)
8797 const char *parent_scope;
8799 /* If this is a template instantiation, we can not work out the
8800 template arguments from partial DIEs. So, unfortunately, we have
8801 to go through the full DIEs. At least any work we do building
8802 types here will be reused if full symbols are loaded later. */
8803 if (pdi->has_template_arguments)
8807 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8809 struct die_info *die;
8810 struct attribute attr;
8811 struct dwarf2_cu *ref_cu = cu;
8813 /* DW_FORM_ref_addr is using section offset. */
8814 attr.name = (enum dwarf_attribute) 0;
8815 attr.form = DW_FORM_ref_addr;
8816 attr.u.unsnd = to_underlying (pdi->sect_off);
8817 die = follow_die_ref (NULL, &attr, &ref_cu);
8819 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8823 parent_scope = partial_die_parent_scope (pdi, cu);
8824 if (parent_scope == NULL)
8827 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8831 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8833 struct dwarf2_per_objfile *dwarf2_per_objfile
8834 = cu->per_cu->dwarf2_per_objfile;
8835 struct objfile *objfile = dwarf2_per_objfile->objfile;
8836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8838 const char *actual_name = NULL;
8840 char *built_actual_name;
8842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8844 built_actual_name = partial_die_full_name (pdi, cu);
8845 if (built_actual_name != NULL)
8846 actual_name = built_actual_name;
8848 if (actual_name == NULL)
8849 actual_name = pdi->name;
8853 case DW_TAG_inlined_subroutine:
8854 case DW_TAG_subprogram:
8855 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8857 if (pdi->is_external || cu->language == language_ada)
8859 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8860 of the global scope. But in Ada, we want to be able to access
8861 nested procedures globally. So all Ada subprograms are stored
8862 in the global scope. */
8863 add_psymbol_to_list (actual_name, strlen (actual_name),
8864 built_actual_name != NULL,
8865 VAR_DOMAIN, LOC_BLOCK,
8866 SECT_OFF_TEXT (objfile),
8867 psymbol_placement::GLOBAL,
8869 cu->language, objfile);
8873 add_psymbol_to_list (actual_name, strlen (actual_name),
8874 built_actual_name != NULL,
8875 VAR_DOMAIN, LOC_BLOCK,
8876 SECT_OFF_TEXT (objfile),
8877 psymbol_placement::STATIC,
8878 addr, cu->language, objfile);
8881 if (pdi->main_subprogram && actual_name != NULL)
8882 set_objfile_main_name (objfile, actual_name, cu->language);
8884 case DW_TAG_constant:
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8887 -1, (pdi->is_external
8888 ? psymbol_placement::GLOBAL
8889 : psymbol_placement::STATIC),
8890 0, cu->language, objfile);
8892 case DW_TAG_variable:
8894 addr = decode_locdesc (pdi->d.locdesc, cu);
8898 && !dwarf2_per_objfile->has_section_at_zero)
8900 /* A global or static variable may also have been stripped
8901 out by the linker if unused, in which case its address
8902 will be nullified; do not add such variables into partial
8903 symbol table then. */
8905 else if (pdi->is_external)
8908 Don't enter into the minimal symbol tables as there is
8909 a minimal symbol table entry from the ELF symbols already.
8910 Enter into partial symbol table if it has a location
8911 descriptor or a type.
8912 If the location descriptor is missing, new_symbol will create
8913 a LOC_UNRESOLVED symbol, the address of the variable will then
8914 be determined from the minimal symbol table whenever the variable
8916 The address for the partial symbol table entry is not
8917 used by GDB, but it comes in handy for debugging partial symbol
8920 if (pdi->d.locdesc || pdi->has_type)
8921 add_psymbol_to_list (actual_name, strlen (actual_name),
8922 built_actual_name != NULL,
8923 VAR_DOMAIN, LOC_STATIC,
8924 SECT_OFF_TEXT (objfile),
8925 psymbol_placement::GLOBAL,
8926 addr, cu->language, objfile);
8930 int has_loc = pdi->d.locdesc != NULL;
8932 /* Static Variable. Skip symbols whose value we cannot know (those
8933 without location descriptors or constant values). */
8934 if (!has_loc && !pdi->has_const_value)
8936 xfree (built_actual_name);
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 VAR_DOMAIN, LOC_STATIC,
8943 SECT_OFF_TEXT (objfile),
8944 psymbol_placement::STATIC,
8946 cu->language, objfile);
8949 case DW_TAG_typedef:
8950 case DW_TAG_base_type:
8951 case DW_TAG_subrange_type:
8952 add_psymbol_to_list (actual_name, strlen (actual_name),
8953 built_actual_name != NULL,
8954 VAR_DOMAIN, LOC_TYPEDEF, -1,
8955 psymbol_placement::STATIC,
8956 0, cu->language, objfile);
8958 case DW_TAG_imported_declaration:
8959 case DW_TAG_namespace:
8960 add_psymbol_to_list (actual_name, strlen (actual_name),
8961 built_actual_name != NULL,
8962 VAR_DOMAIN, LOC_TYPEDEF, -1,
8963 psymbol_placement::GLOBAL,
8964 0, cu->language, objfile);
8967 /* With Fortran 77 there might be a "BLOCK DATA" module
8968 available without any name. If so, we skip the module as it
8969 doesn't bring any value. */
8970 if (actual_name != nullptr)
8971 add_psymbol_to_list (actual_name, strlen (actual_name),
8972 built_actual_name != NULL,
8973 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8974 psymbol_placement::GLOBAL,
8975 0, cu->language, objfile);
8977 case DW_TAG_class_type:
8978 case DW_TAG_interface_type:
8979 case DW_TAG_structure_type:
8980 case DW_TAG_union_type:
8981 case DW_TAG_enumeration_type:
8982 /* Skip external references. The DWARF standard says in the section
8983 about "Structure, Union, and Class Type Entries": "An incomplete
8984 structure, union or class type is represented by a structure,
8985 union or class entry that does not have a byte size attribute
8986 and that has a DW_AT_declaration attribute." */
8987 if (!pdi->has_byte_size && pdi->is_declaration)
8989 xfree (built_actual_name);
8993 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8994 static vs. global. */
8995 add_psymbol_to_list (actual_name, strlen (actual_name),
8996 built_actual_name != NULL,
8997 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8998 cu->language == language_cplus
8999 ? psymbol_placement::GLOBAL
9000 : psymbol_placement::STATIC,
9001 0, cu->language, objfile);
9004 case DW_TAG_enumerator:
9005 add_psymbol_to_list (actual_name, strlen (actual_name),
9006 built_actual_name != NULL,
9007 VAR_DOMAIN, LOC_CONST, -1,
9008 cu->language == language_cplus
9009 ? psymbol_placement::GLOBAL
9010 : psymbol_placement::STATIC,
9011 0, cu->language, objfile);
9017 xfree (built_actual_name);
9020 /* Read a partial die corresponding to a namespace; also, add a symbol
9021 corresponding to that namespace to the symbol table. NAMESPACE is
9022 the name of the enclosing namespace. */
9025 add_partial_namespace (struct partial_die_info *pdi,
9026 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9027 int set_addrmap, struct dwarf2_cu *cu)
9029 /* Add a symbol for the namespace. */
9031 add_partial_symbol (pdi, cu);
9033 /* Now scan partial symbols in that namespace. */
9035 if (pdi->has_children)
9036 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9039 /* Read a partial die corresponding to a Fortran module. */
9042 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9043 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9045 /* Add a symbol for the namespace. */
9047 add_partial_symbol (pdi, cu);
9049 /* Now scan partial symbols in that module. */
9051 if (pdi->has_children)
9052 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9055 /* Read a partial die corresponding to a subprogram or an inlined
9056 subprogram and create a partial symbol for that subprogram.
9057 When the CU language allows it, this routine also defines a partial
9058 symbol for each nested subprogram that this subprogram contains.
9059 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9060 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9062 PDI may also be a lexical block, in which case we simply search
9063 recursively for subprograms defined inside that lexical block.
9064 Again, this is only performed when the CU language allows this
9065 type of definitions. */
9068 add_partial_subprogram (struct partial_die_info *pdi,
9069 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9070 int set_addrmap, struct dwarf2_cu *cu)
9072 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9074 if (pdi->has_pc_info)
9076 if (pdi->lowpc < *lowpc)
9077 *lowpc = pdi->lowpc;
9078 if (pdi->highpc > *highpc)
9079 *highpc = pdi->highpc;
9082 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9085 CORE_ADDR this_highpc;
9086 CORE_ADDR this_lowpc;
9088 baseaddr = ANOFFSET (objfile->section_offsets,
9089 SECT_OFF_TEXT (objfile));
9091 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9092 pdi->lowpc + baseaddr)
9095 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9096 pdi->highpc + baseaddr)
9098 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9099 this_lowpc, this_highpc - 1,
9100 cu->per_cu->v.psymtab);
9104 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9106 if (!pdi->is_declaration)
9107 /* Ignore subprogram DIEs that do not have a name, they are
9108 illegal. Do not emit a complaint at this point, we will
9109 do so when we convert this psymtab into a symtab. */
9111 add_partial_symbol (pdi, cu);
9115 if (! pdi->has_children)
9118 if (cu->language == language_ada)
9120 pdi = pdi->die_child;
9124 if (pdi->tag == DW_TAG_subprogram
9125 || pdi->tag == DW_TAG_inlined_subroutine
9126 || pdi->tag == DW_TAG_lexical_block)
9127 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9128 pdi = pdi->die_sibling;
9133 /* Read a partial die corresponding to an enumeration type. */
9136 add_partial_enumeration (struct partial_die_info *enum_pdi,
9137 struct dwarf2_cu *cu)
9139 struct partial_die_info *pdi;
9141 if (enum_pdi->name != NULL)
9142 add_partial_symbol (enum_pdi, cu);
9144 pdi = enum_pdi->die_child;
9147 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9148 complaint (_("malformed enumerator DIE ignored"));
9150 add_partial_symbol (pdi, cu);
9151 pdi = pdi->die_sibling;
9155 /* Return the initial uleb128 in the die at INFO_PTR. */
9158 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9160 unsigned int bytes_read;
9162 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9165 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9166 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9168 Return the corresponding abbrev, or NULL if the number is zero (indicating
9169 an empty DIE). In either case *BYTES_READ will be set to the length of
9170 the initial number. */
9172 static struct abbrev_info *
9173 peek_die_abbrev (const die_reader_specs &reader,
9174 const gdb_byte *info_ptr, unsigned int *bytes_read)
9176 dwarf2_cu *cu = reader.cu;
9177 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9178 unsigned int abbrev_number
9179 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9181 if (abbrev_number == 0)
9184 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9187 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9188 " at offset %s [in module %s]"),
9189 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9190 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9196 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9197 Returns a pointer to the end of a series of DIEs, terminated by an empty
9198 DIE. Any children of the skipped DIEs will also be skipped. */
9200 static const gdb_byte *
9201 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9205 unsigned int bytes_read;
9206 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9209 return info_ptr + bytes_read;
9211 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9215 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9216 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9217 abbrev corresponding to that skipped uleb128 should be passed in
9218 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9221 static const gdb_byte *
9222 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9223 struct abbrev_info *abbrev)
9225 unsigned int bytes_read;
9226 struct attribute attr;
9227 bfd *abfd = reader->abfd;
9228 struct dwarf2_cu *cu = reader->cu;
9229 const gdb_byte *buffer = reader->buffer;
9230 const gdb_byte *buffer_end = reader->buffer_end;
9231 unsigned int form, i;
9233 for (i = 0; i < abbrev->num_attrs; i++)
9235 /* The only abbrev we care about is DW_AT_sibling. */
9236 if (abbrev->attrs[i].name == DW_AT_sibling)
9238 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9239 if (attr.form == DW_FORM_ref_addr)
9240 complaint (_("ignoring absolute DW_AT_sibling"));
9243 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9244 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9246 if (sibling_ptr < info_ptr)
9247 complaint (_("DW_AT_sibling points backwards"));
9248 else if (sibling_ptr > reader->buffer_end)
9249 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9255 /* If it isn't DW_AT_sibling, skip this attribute. */
9256 form = abbrev->attrs[i].form;
9260 case DW_FORM_ref_addr:
9261 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9262 and later it is offset sized. */
9263 if (cu->header.version == 2)
9264 info_ptr += cu->header.addr_size;
9266 info_ptr += cu->header.offset_size;
9268 case DW_FORM_GNU_ref_alt:
9269 info_ptr += cu->header.offset_size;
9272 info_ptr += cu->header.addr_size;
9279 case DW_FORM_flag_present:
9280 case DW_FORM_implicit_const:
9292 case DW_FORM_ref_sig8:
9295 case DW_FORM_data16:
9298 case DW_FORM_string:
9299 read_direct_string (abfd, info_ptr, &bytes_read);
9300 info_ptr += bytes_read;
9302 case DW_FORM_sec_offset:
9304 case DW_FORM_GNU_strp_alt:
9305 info_ptr += cu->header.offset_size;
9307 case DW_FORM_exprloc:
9309 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9310 info_ptr += bytes_read;
9312 case DW_FORM_block1:
9313 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9315 case DW_FORM_block2:
9316 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9318 case DW_FORM_block4:
9319 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9325 case DW_FORM_ref_udata:
9326 case DW_FORM_GNU_addr_index:
9327 case DW_FORM_GNU_str_index:
9328 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9330 case DW_FORM_indirect:
9331 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9332 info_ptr += bytes_read;
9333 /* We need to continue parsing from here, so just go back to
9335 goto skip_attribute;
9338 error (_("Dwarf Error: Cannot handle %s "
9339 "in DWARF reader [in module %s]"),
9340 dwarf_form_name (form),
9341 bfd_get_filename (abfd));
9345 if (abbrev->has_children)
9346 return skip_children (reader, info_ptr);
9351 /* Locate ORIG_PDI's sibling.
9352 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9354 static const gdb_byte *
9355 locate_pdi_sibling (const struct die_reader_specs *reader,
9356 struct partial_die_info *orig_pdi,
9357 const gdb_byte *info_ptr)
9359 /* Do we know the sibling already? */
9361 if (orig_pdi->sibling)
9362 return orig_pdi->sibling;
9364 /* Are there any children to deal with? */
9366 if (!orig_pdi->has_children)
9369 /* Skip the children the long way. */
9371 return skip_children (reader, info_ptr);
9374 /* Expand this partial symbol table into a full symbol table. SELF is
9378 dwarf2_read_symtab (struct partial_symtab *self,
9379 struct objfile *objfile)
9381 struct dwarf2_per_objfile *dwarf2_per_objfile
9382 = get_dwarf2_per_objfile (objfile);
9386 warning (_("bug: psymtab for %s is already read in."),
9393 printf_filtered (_("Reading in symbols for %s..."),
9395 gdb_flush (gdb_stdout);
9398 /* If this psymtab is constructed from a debug-only objfile, the
9399 has_section_at_zero flag will not necessarily be correct. We
9400 can get the correct value for this flag by looking at the data
9401 associated with the (presumably stripped) associated objfile. */
9402 if (objfile->separate_debug_objfile_backlink)
9404 struct dwarf2_per_objfile *dpo_backlink
9405 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9407 dwarf2_per_objfile->has_section_at_zero
9408 = dpo_backlink->has_section_at_zero;
9411 dwarf2_per_objfile->reading_partial_symbols = 0;
9413 psymtab_to_symtab_1 (self);
9415 /* Finish up the debug error message. */
9417 printf_filtered (_("done.\n"));
9420 process_cu_includes (dwarf2_per_objfile);
9423 /* Reading in full CUs. */
9425 /* Add PER_CU to the queue. */
9428 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9429 enum language pretend_language)
9431 struct dwarf2_queue_item *item;
9434 item = XNEW (struct dwarf2_queue_item);
9435 item->per_cu = per_cu;
9436 item->pretend_language = pretend_language;
9439 if (dwarf2_queue == NULL)
9440 dwarf2_queue = item;
9442 dwarf2_queue_tail->next = item;
9444 dwarf2_queue_tail = item;
9447 /* If PER_CU is not yet queued, add it to the queue.
9448 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9450 The result is non-zero if PER_CU was queued, otherwise the result is zero
9451 meaning either PER_CU is already queued or it is already loaded.
9453 N.B. There is an invariant here that if a CU is queued then it is loaded.
9454 The caller is required to load PER_CU if we return non-zero. */
9457 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9458 struct dwarf2_per_cu_data *per_cu,
9459 enum language pretend_language)
9461 /* We may arrive here during partial symbol reading, if we need full
9462 DIEs to process an unusual case (e.g. template arguments). Do
9463 not queue PER_CU, just tell our caller to load its DIEs. */
9464 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9466 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9471 /* Mark the dependence relation so that we don't flush PER_CU
9473 if (dependent_cu != NULL)
9474 dwarf2_add_dependence (dependent_cu, per_cu);
9476 /* If it's already on the queue, we have nothing to do. */
9480 /* If the compilation unit is already loaded, just mark it as
9482 if (per_cu->cu != NULL)
9484 per_cu->cu->last_used = 0;
9488 /* Add it to the queue. */
9489 queue_comp_unit (per_cu, pretend_language);
9494 /* Process the queue. */
9497 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9499 struct dwarf2_queue_item *item, *next_item;
9501 if (dwarf_read_debug)
9503 fprintf_unfiltered (gdb_stdlog,
9504 "Expanding one or more symtabs of objfile %s ...\n",
9505 objfile_name (dwarf2_per_objfile->objfile));
9508 /* The queue starts out with one item, but following a DIE reference
9509 may load a new CU, adding it to the end of the queue. */
9510 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9512 if ((dwarf2_per_objfile->using_index
9513 ? !item->per_cu->v.quick->compunit_symtab
9514 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9515 /* Skip dummy CUs. */
9516 && item->per_cu->cu != NULL)
9518 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9519 unsigned int debug_print_threshold;
9522 if (per_cu->is_debug_types)
9524 struct signatured_type *sig_type =
9525 (struct signatured_type *) per_cu;
9527 sprintf (buf, "TU %s at offset %s",
9528 hex_string (sig_type->signature),
9529 sect_offset_str (per_cu->sect_off));
9530 /* There can be 100s of TUs.
9531 Only print them in verbose mode. */
9532 debug_print_threshold = 2;
9536 sprintf (buf, "CU at offset %s",
9537 sect_offset_str (per_cu->sect_off));
9538 debug_print_threshold = 1;
9541 if (dwarf_read_debug >= debug_print_threshold)
9542 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9544 if (per_cu->is_debug_types)
9545 process_full_type_unit (per_cu, item->pretend_language);
9547 process_full_comp_unit (per_cu, item->pretend_language);
9549 if (dwarf_read_debug >= debug_print_threshold)
9550 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9553 item->per_cu->queued = 0;
9554 next_item = item->next;
9558 dwarf2_queue_tail = NULL;
9560 if (dwarf_read_debug)
9562 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9563 objfile_name (dwarf2_per_objfile->objfile));
9567 /* Read in full symbols for PST, and anything it depends on. */
9570 psymtab_to_symtab_1 (struct partial_symtab *pst)
9572 struct dwarf2_per_cu_data *per_cu;
9578 for (i = 0; i < pst->number_of_dependencies; i++)
9579 if (!pst->dependencies[i]->readin
9580 && pst->dependencies[i]->user == NULL)
9582 /* Inform about additional files that need to be read in. */
9585 /* FIXME: i18n: Need to make this a single string. */
9586 fputs_filtered (" ", gdb_stdout);
9588 fputs_filtered ("and ", gdb_stdout);
9590 printf_filtered ("%s...", pst->dependencies[i]->filename);
9591 wrap_here (""); /* Flush output. */
9592 gdb_flush (gdb_stdout);
9594 psymtab_to_symtab_1 (pst->dependencies[i]);
9597 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9601 /* It's an include file, no symbols to read for it.
9602 Everything is in the parent symtab. */
9607 dw2_do_instantiate_symtab (per_cu, false);
9610 /* Trivial hash function for die_info: the hash value of a DIE
9611 is its offset in .debug_info for this objfile. */
9614 die_hash (const void *item)
9616 const struct die_info *die = (const struct die_info *) item;
9618 return to_underlying (die->sect_off);
9621 /* Trivial comparison function for die_info structures: two DIEs
9622 are equal if they have the same offset. */
9625 die_eq (const void *item_lhs, const void *item_rhs)
9627 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9628 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9630 return die_lhs->sect_off == die_rhs->sect_off;
9633 /* die_reader_func for load_full_comp_unit.
9634 This is identical to read_signatured_type_reader,
9635 but is kept separate for now. */
9638 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9639 const gdb_byte *info_ptr,
9640 struct die_info *comp_unit_die,
9644 struct dwarf2_cu *cu = reader->cu;
9645 enum language *language_ptr = (enum language *) data;
9647 gdb_assert (cu->die_hash == NULL);
9649 htab_create_alloc_ex (cu->header.length / 12,
9653 &cu->comp_unit_obstack,
9654 hashtab_obstack_allocate,
9655 dummy_obstack_deallocate);
9658 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9659 &info_ptr, comp_unit_die);
9660 cu->dies = comp_unit_die;
9661 /* comp_unit_die is not stored in die_hash, no need. */
9663 /* We try not to read any attributes in this function, because not
9664 all CUs needed for references have been loaded yet, and symbol
9665 table processing isn't initialized. But we have to set the CU language,
9666 or we won't be able to build types correctly.
9667 Similarly, if we do not read the producer, we can not apply
9668 producer-specific interpretation. */
9669 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9672 /* Load the DIEs associated with PER_CU into memory. */
9675 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9677 enum language pretend_language)
9679 gdb_assert (! this_cu->is_debug_types);
9681 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9682 load_full_comp_unit_reader, &pretend_language);
9685 /* Add a DIE to the delayed physname list. */
9688 add_to_method_list (struct type *type, int fnfield_index, int index,
9689 const char *name, struct die_info *die,
9690 struct dwarf2_cu *cu)
9692 struct delayed_method_info mi;
9694 mi.fnfield_index = fnfield_index;
9698 cu->method_list.push_back (mi);
9701 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9702 "const" / "volatile". If so, decrements LEN by the length of the
9703 modifier and return true. Otherwise return false. */
9707 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9709 size_t mod_len = sizeof (mod) - 1;
9710 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9718 /* Compute the physnames of any methods on the CU's method list.
9720 The computation of method physnames is delayed in order to avoid the
9721 (bad) condition that one of the method's formal parameters is of an as yet
9725 compute_delayed_physnames (struct dwarf2_cu *cu)
9727 /* Only C++ delays computing physnames. */
9728 if (cu->method_list.empty ())
9730 gdb_assert (cu->language == language_cplus);
9732 for (const delayed_method_info &mi : cu->method_list)
9734 const char *physname;
9735 struct fn_fieldlist *fn_flp
9736 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9737 physname = dwarf2_physname (mi.name, mi.die, cu);
9738 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9739 = physname ? physname : "";
9741 /* Since there's no tag to indicate whether a method is a
9742 const/volatile overload, extract that information out of the
9744 if (physname != NULL)
9746 size_t len = strlen (physname);
9750 if (physname[len] == ')') /* shortcut */
9752 else if (check_modifier (physname, len, " const"))
9753 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9754 else if (check_modifier (physname, len, " volatile"))
9755 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9762 /* The list is no longer needed. */
9763 cu->method_list.clear ();
9766 /* Go objects should be embedded in a DW_TAG_module DIE,
9767 and it's not clear if/how imported objects will appear.
9768 To keep Go support simple until that's worked out,
9769 go back through what we've read and create something usable.
9770 We could do this while processing each DIE, and feels kinda cleaner,
9771 but that way is more invasive.
9772 This is to, for example, allow the user to type "p var" or "b main"
9773 without having to specify the package name, and allow lookups
9774 of module.object to work in contexts that use the expression
9778 fixup_go_packaging (struct dwarf2_cu *cu)
9780 char *package_name = NULL;
9781 struct pending *list;
9784 for (list = *cu->get_builder ()->get_global_symbols ();
9788 for (i = 0; i < list->nsyms; ++i)
9790 struct symbol *sym = list->symbol[i];
9792 if (SYMBOL_LANGUAGE (sym) == language_go
9793 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9795 char *this_package_name = go_symbol_package_name (sym);
9797 if (this_package_name == NULL)
9799 if (package_name == NULL)
9800 package_name = this_package_name;
9803 struct objfile *objfile
9804 = cu->per_cu->dwarf2_per_objfile->objfile;
9805 if (strcmp (package_name, this_package_name) != 0)
9806 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9807 (symbol_symtab (sym) != NULL
9808 ? symtab_to_filename_for_display
9809 (symbol_symtab (sym))
9810 : objfile_name (objfile)),
9811 this_package_name, package_name);
9812 xfree (this_package_name);
9818 if (package_name != NULL)
9820 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9821 const char *saved_package_name
9822 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9824 strlen (package_name));
9825 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9826 saved_package_name);
9829 sym = allocate_symbol (objfile);
9830 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9831 SYMBOL_SET_NAMES (sym, saved_package_name,
9832 strlen (saved_package_name), 0, objfile);
9833 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9834 e.g., "main" finds the "main" module and not C's main(). */
9835 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9836 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9837 SYMBOL_TYPE (sym) = type;
9839 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9841 xfree (package_name);
9845 /* Allocate a fully-qualified name consisting of the two parts on the
9849 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9851 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9854 /* A helper that allocates a struct discriminant_info to attach to a
9857 static struct discriminant_info *
9858 alloc_discriminant_info (struct type *type, int discriminant_index,
9861 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9862 gdb_assert (discriminant_index == -1
9863 || (discriminant_index >= 0
9864 && discriminant_index < TYPE_NFIELDS (type)));
9865 gdb_assert (default_index == -1
9866 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9868 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9870 struct discriminant_info *disc
9871 = ((struct discriminant_info *)
9873 offsetof (struct discriminant_info, discriminants)
9874 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9875 disc->default_index = default_index;
9876 disc->discriminant_index = discriminant_index;
9878 struct dynamic_prop prop;
9879 prop.kind = PROP_UNDEFINED;
9880 prop.data.baton = disc;
9882 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9887 /* Some versions of rustc emitted enums in an unusual way.
9889 Ordinary enums were emitted as unions. The first element of each
9890 structure in the union was named "RUST$ENUM$DISR". This element
9891 held the discriminant.
9893 These versions of Rust also implemented the "non-zero"
9894 optimization. When the enum had two values, and one is empty and
9895 the other holds a pointer that cannot be zero, the pointer is used
9896 as the discriminant, with a zero value meaning the empty variant.
9897 Here, the union's first member is of the form
9898 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9899 where the fieldnos are the indices of the fields that should be
9900 traversed in order to find the field (which may be several fields deep)
9901 and the variantname is the name of the variant of the case when the
9904 This function recognizes whether TYPE is of one of these forms,
9905 and, if so, smashes it to be a variant type. */
9908 quirk_rust_enum (struct type *type, struct objfile *objfile)
9910 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9912 /* We don't need to deal with empty enums. */
9913 if (TYPE_NFIELDS (type) == 0)
9916 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9917 if (TYPE_NFIELDS (type) == 1
9918 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9920 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9922 /* Decode the field name to find the offset of the
9924 ULONGEST bit_offset = 0;
9925 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9926 while (name[0] >= '0' && name[0] <= '9')
9929 unsigned long index = strtoul (name, &tail, 10);
9932 || index >= TYPE_NFIELDS (field_type)
9933 || (TYPE_FIELD_LOC_KIND (field_type, index)
9934 != FIELD_LOC_KIND_BITPOS))
9936 complaint (_("Could not parse Rust enum encoding string \"%s\""
9938 TYPE_FIELD_NAME (type, 0),
9939 objfile_name (objfile));
9944 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9945 field_type = TYPE_FIELD_TYPE (field_type, index);
9948 /* Make a union to hold the variants. */
9949 struct type *union_type = alloc_type (objfile);
9950 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9951 TYPE_NFIELDS (union_type) = 3;
9952 TYPE_FIELDS (union_type)
9953 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9954 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9955 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9957 /* Put the discriminant must at index 0. */
9958 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9959 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9960 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9961 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9963 /* The order of fields doesn't really matter, so put the real
9964 field at index 1 and the data-less field at index 2. */
9965 struct discriminant_info *disc
9966 = alloc_discriminant_info (union_type, 0, 1);
9967 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9968 TYPE_FIELD_NAME (union_type, 1)
9969 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9970 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9971 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9972 TYPE_FIELD_NAME (union_type, 1));
9974 const char *dataless_name
9975 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9977 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9979 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9980 /* NAME points into the original discriminant name, which
9981 already has the correct lifetime. */
9982 TYPE_FIELD_NAME (union_type, 2) = name;
9983 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9984 disc->discriminants[2] = 0;
9986 /* Smash this type to be a structure type. We have to do this
9987 because the type has already been recorded. */
9988 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9989 TYPE_NFIELDS (type) = 1;
9991 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9993 /* Install the variant part. */
9994 TYPE_FIELD_TYPE (type, 0) = union_type;
9995 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9996 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9998 else if (TYPE_NFIELDS (type) == 1)
10000 /* We assume that a union with a single field is a univariant
10002 /* Smash this type to be a structure type. We have to do this
10003 because the type has already been recorded. */
10004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10006 /* Make a union to hold the variants. */
10007 struct type *union_type = alloc_type (objfile);
10008 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10009 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10010 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10011 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10012 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10014 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10015 const char *variant_name
10016 = rust_last_path_segment (TYPE_NAME (field_type));
10017 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10018 TYPE_NAME (field_type)
10019 = rust_fully_qualify (&objfile->objfile_obstack,
10020 TYPE_NAME (type), variant_name);
10022 /* Install the union in the outer struct type. */
10023 TYPE_NFIELDS (type) = 1;
10025 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10026 TYPE_FIELD_TYPE (type, 0) = union_type;
10027 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10028 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10030 alloc_discriminant_info (union_type, -1, 0);
10034 struct type *disr_type = nullptr;
10035 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10037 disr_type = TYPE_FIELD_TYPE (type, i);
10039 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10041 /* All fields of a true enum will be structs. */
10044 else if (TYPE_NFIELDS (disr_type) == 0)
10046 /* Could be data-less variant, so keep going. */
10047 disr_type = nullptr;
10049 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10050 "RUST$ENUM$DISR") != 0)
10052 /* Not a Rust enum. */
10062 /* If we got here without a discriminant, then it's probably
10064 if (disr_type == nullptr)
10067 /* Smash this type to be a structure type. We have to do this
10068 because the type has already been recorded. */
10069 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10071 /* Make a union to hold the variants. */
10072 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10073 struct type *union_type = alloc_type (objfile);
10074 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10075 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10076 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10077 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10078 TYPE_FIELDS (union_type)
10079 = (struct field *) TYPE_ZALLOC (union_type,
10080 (TYPE_NFIELDS (union_type)
10081 * sizeof (struct field)));
10083 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10084 TYPE_NFIELDS (type) * sizeof (struct field));
10086 /* Install the discriminant at index 0 in the union. */
10087 TYPE_FIELD (union_type, 0) = *disr_field;
10088 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10089 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10091 /* Install the union in the outer struct type. */
10092 TYPE_FIELD_TYPE (type, 0) = union_type;
10093 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10094 TYPE_NFIELDS (type) = 1;
10096 /* Set the size and offset of the union type. */
10097 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10099 /* We need a way to find the correct discriminant given a
10100 variant name. For convenience we build a map here. */
10101 struct type *enum_type = FIELD_TYPE (*disr_field);
10102 std::unordered_map<std::string, ULONGEST> discriminant_map;
10103 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10105 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10108 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10109 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10113 int n_fields = TYPE_NFIELDS (union_type);
10114 struct discriminant_info *disc
10115 = alloc_discriminant_info (union_type, 0, -1);
10116 /* Skip the discriminant here. */
10117 for (int i = 1; i < n_fields; ++i)
10119 /* Find the final word in the name of this variant's type.
10120 That name can be used to look up the correct
10122 const char *variant_name
10123 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10126 auto iter = discriminant_map.find (variant_name);
10127 if (iter != discriminant_map.end ())
10128 disc->discriminants[i] = iter->second;
10130 /* Remove the discriminant field, if it exists. */
10131 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10132 if (TYPE_NFIELDS (sub_type) > 0)
10134 --TYPE_NFIELDS (sub_type);
10135 ++TYPE_FIELDS (sub_type);
10137 TYPE_FIELD_NAME (union_type, i) = variant_name;
10138 TYPE_NAME (sub_type)
10139 = rust_fully_qualify (&objfile->objfile_obstack,
10140 TYPE_NAME (type), variant_name);
10145 /* Rewrite some Rust unions to be structures with variants parts. */
10148 rust_union_quirks (struct dwarf2_cu *cu)
10150 gdb_assert (cu->language == language_rust);
10151 for (type *type_ : cu->rust_unions)
10152 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10153 /* We don't need this any more. */
10154 cu->rust_unions.clear ();
10157 /* Return the symtab for PER_CU. This works properly regardless of
10158 whether we're using the index or psymtabs. */
10160 static struct compunit_symtab *
10161 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10163 return (per_cu->dwarf2_per_objfile->using_index
10164 ? per_cu->v.quick->compunit_symtab
10165 : per_cu->v.psymtab->compunit_symtab);
10168 /* A helper function for computing the list of all symbol tables
10169 included by PER_CU. */
10172 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10173 htab_t all_children, htab_t all_type_symtabs,
10174 struct dwarf2_per_cu_data *per_cu,
10175 struct compunit_symtab *immediate_parent)
10179 struct compunit_symtab *cust;
10180 struct dwarf2_per_cu_data *iter;
10182 slot = htab_find_slot (all_children, per_cu, INSERT);
10185 /* This inclusion and its children have been processed. */
10190 /* Only add a CU if it has a symbol table. */
10191 cust = get_compunit_symtab (per_cu);
10194 /* If this is a type unit only add its symbol table if we haven't
10195 seen it yet (type unit per_cu's can share symtabs). */
10196 if (per_cu->is_debug_types)
10198 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10202 result->push_back (cust);
10203 if (cust->user == NULL)
10204 cust->user = immediate_parent;
10209 result->push_back (cust);
10210 if (cust->user == NULL)
10211 cust->user = immediate_parent;
10216 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10219 recursively_compute_inclusions (result, all_children,
10220 all_type_symtabs, iter, cust);
10224 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10228 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10230 gdb_assert (! per_cu->is_debug_types);
10232 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10235 struct dwarf2_per_cu_data *per_cu_iter;
10236 std::vector<compunit_symtab *> result_symtabs;
10237 htab_t all_children, all_type_symtabs;
10238 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10240 /* If we don't have a symtab, we can just skip this case. */
10244 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10245 NULL, xcalloc, xfree);
10246 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10247 NULL, xcalloc, xfree);
10250 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10254 recursively_compute_inclusions (&result_symtabs, all_children,
10255 all_type_symtabs, per_cu_iter,
10259 /* Now we have a transitive closure of all the included symtabs. */
10260 len = result_symtabs.size ();
10262 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10263 struct compunit_symtab *, len + 1);
10264 memcpy (cust->includes, result_symtabs.data (),
10265 len * sizeof (compunit_symtab *));
10266 cust->includes[len] = NULL;
10268 htab_delete (all_children);
10269 htab_delete (all_type_symtabs);
10273 /* Compute the 'includes' field for the symtabs of all the CUs we just
10277 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10279 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10281 if (! iter->is_debug_types)
10282 compute_compunit_symtab_includes (iter);
10285 dwarf2_per_objfile->just_read_cus.clear ();
10288 /* Generate full symbol information for PER_CU, whose DIEs have
10289 already been loaded into memory. */
10292 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10293 enum language pretend_language)
10295 struct dwarf2_cu *cu = per_cu->cu;
10296 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10297 struct objfile *objfile = dwarf2_per_objfile->objfile;
10298 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10299 CORE_ADDR lowpc, highpc;
10300 struct compunit_symtab *cust;
10301 CORE_ADDR baseaddr;
10302 struct block *static_block;
10305 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10307 /* Clear the list here in case something was left over. */
10308 cu->method_list.clear ();
10310 cu->language = pretend_language;
10311 cu->language_defn = language_def (cu->language);
10313 /* Do line number decoding in read_file_scope () */
10314 process_die (cu->dies, cu);
10316 /* For now fudge the Go package. */
10317 if (cu->language == language_go)
10318 fixup_go_packaging (cu);
10320 /* Now that we have processed all the DIEs in the CU, all the types
10321 should be complete, and it should now be safe to compute all of the
10323 compute_delayed_physnames (cu);
10325 if (cu->language == language_rust)
10326 rust_union_quirks (cu);
10328 /* Some compilers don't define a DW_AT_high_pc attribute for the
10329 compilation unit. If the DW_AT_high_pc is missing, synthesize
10330 it, by scanning the DIE's below the compilation unit. */
10331 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10333 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10334 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10336 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10337 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10338 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10339 addrmap to help ensure it has an accurate map of pc values belonging to
10341 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10343 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10344 SECT_OFF_TEXT (objfile),
10349 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10351 /* Set symtab language to language from DW_AT_language. If the
10352 compilation is from a C file generated by language preprocessors, do
10353 not set the language if it was already deduced by start_subfile. */
10354 if (!(cu->language == language_c
10355 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10356 COMPUNIT_FILETABS (cust)->language = cu->language;
10358 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10359 produce DW_AT_location with location lists but it can be possibly
10360 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10361 there were bugs in prologue debug info, fixed later in GCC-4.5
10362 by "unwind info for epilogues" patch (which is not directly related).
10364 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10365 needed, it would be wrong due to missing DW_AT_producer there.
10367 Still one can confuse GDB by using non-standard GCC compilation
10368 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10370 if (cu->has_loclist && gcc_4_minor >= 5)
10371 cust->locations_valid = 1;
10373 if (gcc_4_minor >= 5)
10374 cust->epilogue_unwind_valid = 1;
10376 cust->call_site_htab = cu->call_site_htab;
10379 if (dwarf2_per_objfile->using_index)
10380 per_cu->v.quick->compunit_symtab = cust;
10383 struct partial_symtab *pst = per_cu->v.psymtab;
10384 pst->compunit_symtab = cust;
10388 /* Push it for inclusion processing later. */
10389 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10391 /* Not needed any more. */
10392 cu->reset_builder ();
10395 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10396 already been loaded into memory. */
10399 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10400 enum language pretend_language)
10402 struct dwarf2_cu *cu = per_cu->cu;
10403 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10404 struct objfile *objfile = dwarf2_per_objfile->objfile;
10405 struct compunit_symtab *cust;
10406 struct signatured_type *sig_type;
10408 gdb_assert (per_cu->is_debug_types);
10409 sig_type = (struct signatured_type *) per_cu;
10411 /* Clear the list here in case something was left over. */
10412 cu->method_list.clear ();
10414 cu->language = pretend_language;
10415 cu->language_defn = language_def (cu->language);
10417 /* The symbol tables are set up in read_type_unit_scope. */
10418 process_die (cu->dies, cu);
10420 /* For now fudge the Go package. */
10421 if (cu->language == language_go)
10422 fixup_go_packaging (cu);
10424 /* Now that we have processed all the DIEs in the CU, all the types
10425 should be complete, and it should now be safe to compute all of the
10427 compute_delayed_physnames (cu);
10429 if (cu->language == language_rust)
10430 rust_union_quirks (cu);
10432 /* TUs share symbol tables.
10433 If this is the first TU to use this symtab, complete the construction
10434 of it with end_expandable_symtab. Otherwise, complete the addition of
10435 this TU's symbols to the existing symtab. */
10436 if (sig_type->type_unit_group->compunit_symtab == NULL)
10438 buildsym_compunit *builder = cu->get_builder ();
10439 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10440 sig_type->type_unit_group->compunit_symtab = cust;
10444 /* Set symtab language to language from DW_AT_language. If the
10445 compilation is from a C file generated by language preprocessors,
10446 do not set the language if it was already deduced by
10448 if (!(cu->language == language_c
10449 && COMPUNIT_FILETABS (cust)->language != language_c))
10450 COMPUNIT_FILETABS (cust)->language = cu->language;
10455 cu->get_builder ()->augment_type_symtab ();
10456 cust = sig_type->type_unit_group->compunit_symtab;
10459 if (dwarf2_per_objfile->using_index)
10460 per_cu->v.quick->compunit_symtab = cust;
10463 struct partial_symtab *pst = per_cu->v.psymtab;
10464 pst->compunit_symtab = cust;
10468 /* Not needed any more. */
10469 cu->reset_builder ();
10472 /* Process an imported unit DIE. */
10475 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10477 struct attribute *attr;
10479 /* For now we don't handle imported units in type units. */
10480 if (cu->per_cu->is_debug_types)
10482 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10483 " supported in type units [in module %s]"),
10484 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10487 attr = dwarf2_attr (die, DW_AT_import, cu);
10490 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10491 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10492 dwarf2_per_cu_data *per_cu
10493 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10494 cu->per_cu->dwarf2_per_objfile);
10496 /* If necessary, add it to the queue and load its DIEs. */
10497 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10498 load_full_comp_unit (per_cu, false, cu->language);
10500 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10505 /* RAII object that represents a process_die scope: i.e.,
10506 starts/finishes processing a DIE. */
10507 class process_die_scope
10510 process_die_scope (die_info *die, dwarf2_cu *cu)
10511 : m_die (die), m_cu (cu)
10513 /* We should only be processing DIEs not already in process. */
10514 gdb_assert (!m_die->in_process);
10515 m_die->in_process = true;
10518 ~process_die_scope ()
10520 m_die->in_process = false;
10522 /* If we're done processing the DIE for the CU that owns the line
10523 header, we don't need the line header anymore. */
10524 if (m_cu->line_header_die_owner == m_die)
10526 delete m_cu->line_header;
10527 m_cu->line_header = NULL;
10528 m_cu->line_header_die_owner = NULL;
10537 /* Process a die and its children. */
10540 process_die (struct die_info *die, struct dwarf2_cu *cu)
10542 process_die_scope scope (die, cu);
10546 case DW_TAG_padding:
10548 case DW_TAG_compile_unit:
10549 case DW_TAG_partial_unit:
10550 read_file_scope (die, cu);
10552 case DW_TAG_type_unit:
10553 read_type_unit_scope (die, cu);
10555 case DW_TAG_subprogram:
10556 case DW_TAG_inlined_subroutine:
10557 read_func_scope (die, cu);
10559 case DW_TAG_lexical_block:
10560 case DW_TAG_try_block:
10561 case DW_TAG_catch_block:
10562 read_lexical_block_scope (die, cu);
10564 case DW_TAG_call_site:
10565 case DW_TAG_GNU_call_site:
10566 read_call_site_scope (die, cu);
10568 case DW_TAG_class_type:
10569 case DW_TAG_interface_type:
10570 case DW_TAG_structure_type:
10571 case DW_TAG_union_type:
10572 process_structure_scope (die, cu);
10574 case DW_TAG_enumeration_type:
10575 process_enumeration_scope (die, cu);
10578 /* These dies have a type, but processing them does not create
10579 a symbol or recurse to process the children. Therefore we can
10580 read them on-demand through read_type_die. */
10581 case DW_TAG_subroutine_type:
10582 case DW_TAG_set_type:
10583 case DW_TAG_array_type:
10584 case DW_TAG_pointer_type:
10585 case DW_TAG_ptr_to_member_type:
10586 case DW_TAG_reference_type:
10587 case DW_TAG_rvalue_reference_type:
10588 case DW_TAG_string_type:
10591 case DW_TAG_base_type:
10592 case DW_TAG_subrange_type:
10593 case DW_TAG_typedef:
10594 /* Add a typedef symbol for the type definition, if it has a
10596 new_symbol (die, read_type_die (die, cu), cu);
10598 case DW_TAG_common_block:
10599 read_common_block (die, cu);
10601 case DW_TAG_common_inclusion:
10603 case DW_TAG_namespace:
10604 cu->processing_has_namespace_info = true;
10605 read_namespace (die, cu);
10607 case DW_TAG_module:
10608 cu->processing_has_namespace_info = true;
10609 read_module (die, cu);
10611 case DW_TAG_imported_declaration:
10612 cu->processing_has_namespace_info = true;
10613 if (read_namespace_alias (die, cu))
10615 /* The declaration is not a global namespace alias. */
10616 /* Fall through. */
10617 case DW_TAG_imported_module:
10618 cu->processing_has_namespace_info = true;
10619 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10620 || cu->language != language_fortran))
10621 complaint (_("Tag '%s' has unexpected children"),
10622 dwarf_tag_name (die->tag));
10623 read_import_statement (die, cu);
10626 case DW_TAG_imported_unit:
10627 process_imported_unit_die (die, cu);
10630 case DW_TAG_variable:
10631 read_variable (die, cu);
10635 new_symbol (die, NULL, cu);
10640 /* DWARF name computation. */
10642 /* A helper function for dwarf2_compute_name which determines whether DIE
10643 needs to have the name of the scope prepended to the name listed in the
10647 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10649 struct attribute *attr;
10653 case DW_TAG_namespace:
10654 case DW_TAG_typedef:
10655 case DW_TAG_class_type:
10656 case DW_TAG_interface_type:
10657 case DW_TAG_structure_type:
10658 case DW_TAG_union_type:
10659 case DW_TAG_enumeration_type:
10660 case DW_TAG_enumerator:
10661 case DW_TAG_subprogram:
10662 case DW_TAG_inlined_subroutine:
10663 case DW_TAG_member:
10664 case DW_TAG_imported_declaration:
10667 case DW_TAG_variable:
10668 case DW_TAG_constant:
10669 /* We only need to prefix "globally" visible variables. These include
10670 any variable marked with DW_AT_external or any variable that
10671 lives in a namespace. [Variables in anonymous namespaces
10672 require prefixing, but they are not DW_AT_external.] */
10674 if (dwarf2_attr (die, DW_AT_specification, cu))
10676 struct dwarf2_cu *spec_cu = cu;
10678 return die_needs_namespace (die_specification (die, &spec_cu),
10682 attr = dwarf2_attr (die, DW_AT_external, cu);
10683 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10684 && die->parent->tag != DW_TAG_module)
10686 /* A variable in a lexical block of some kind does not need a
10687 namespace, even though in C++ such variables may be external
10688 and have a mangled name. */
10689 if (die->parent->tag == DW_TAG_lexical_block
10690 || die->parent->tag == DW_TAG_try_block
10691 || die->parent->tag == DW_TAG_catch_block
10692 || die->parent->tag == DW_TAG_subprogram)
10701 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10702 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10703 defined for the given DIE. */
10705 static struct attribute *
10706 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10708 struct attribute *attr;
10710 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10712 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10717 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10718 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10719 defined for the given DIE. */
10721 static const char *
10722 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10724 const char *linkage_name;
10726 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10727 if (linkage_name == NULL)
10728 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10730 return linkage_name;
10733 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10734 compute the physname for the object, which include a method's:
10735 - formal parameters (C++),
10736 - receiver type (Go),
10738 The term "physname" is a bit confusing.
10739 For C++, for example, it is the demangled name.
10740 For Go, for example, it's the mangled name.
10742 For Ada, return the DIE's linkage name rather than the fully qualified
10743 name. PHYSNAME is ignored..
10745 The result is allocated on the objfile_obstack and canonicalized. */
10747 static const char *
10748 dwarf2_compute_name (const char *name,
10749 struct die_info *die, struct dwarf2_cu *cu,
10752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10755 name = dwarf2_name (die, cu);
10757 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10758 but otherwise compute it by typename_concat inside GDB.
10759 FIXME: Actually this is not really true, or at least not always true.
10760 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10761 Fortran names because there is no mangling standard. So new_symbol
10762 will set the demangled name to the result of dwarf2_full_name, and it is
10763 the demangled name that GDB uses if it exists. */
10764 if (cu->language == language_ada
10765 || (cu->language == language_fortran && physname))
10767 /* For Ada unit, we prefer the linkage name over the name, as
10768 the former contains the exported name, which the user expects
10769 to be able to reference. Ideally, we want the user to be able
10770 to reference this entity using either natural or linkage name,
10771 but we haven't started looking at this enhancement yet. */
10772 const char *linkage_name = dw2_linkage_name (die, cu);
10774 if (linkage_name != NULL)
10775 return linkage_name;
10778 /* These are the only languages we know how to qualify names in. */
10780 && (cu->language == language_cplus
10781 || cu->language == language_fortran || cu->language == language_d
10782 || cu->language == language_rust))
10784 if (die_needs_namespace (die, cu))
10786 const char *prefix;
10787 const char *canonical_name = NULL;
10791 prefix = determine_prefix (die, cu);
10792 if (*prefix != '\0')
10794 char *prefixed_name = typename_concat (NULL, prefix, name,
10797 buf.puts (prefixed_name);
10798 xfree (prefixed_name);
10803 /* Template parameters may be specified in the DIE's DW_AT_name, or
10804 as children with DW_TAG_template_type_param or
10805 DW_TAG_value_type_param. If the latter, add them to the name
10806 here. If the name already has template parameters, then
10807 skip this step; some versions of GCC emit both, and
10808 it is more efficient to use the pre-computed name.
10810 Something to keep in mind about this process: it is very
10811 unlikely, or in some cases downright impossible, to produce
10812 something that will match the mangled name of a function.
10813 If the definition of the function has the same debug info,
10814 we should be able to match up with it anyway. But fallbacks
10815 using the minimal symbol, for instance to find a method
10816 implemented in a stripped copy of libstdc++, will not work.
10817 If we do not have debug info for the definition, we will have to
10818 match them up some other way.
10820 When we do name matching there is a related problem with function
10821 templates; two instantiated function templates are allowed to
10822 differ only by their return types, which we do not add here. */
10824 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10826 struct attribute *attr;
10827 struct die_info *child;
10830 die->building_fullname = 1;
10832 for (child = die->child; child != NULL; child = child->sibling)
10836 const gdb_byte *bytes;
10837 struct dwarf2_locexpr_baton *baton;
10840 if (child->tag != DW_TAG_template_type_param
10841 && child->tag != DW_TAG_template_value_param)
10852 attr = dwarf2_attr (child, DW_AT_type, cu);
10855 complaint (_("template parameter missing DW_AT_type"));
10856 buf.puts ("UNKNOWN_TYPE");
10859 type = die_type (child, cu);
10861 if (child->tag == DW_TAG_template_type_param)
10863 c_print_type (type, "", &buf, -1, 0, cu->language,
10864 &type_print_raw_options);
10868 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10871 complaint (_("template parameter missing "
10872 "DW_AT_const_value"));
10873 buf.puts ("UNKNOWN_VALUE");
10877 dwarf2_const_value_attr (attr, type, name,
10878 &cu->comp_unit_obstack, cu,
10879 &value, &bytes, &baton);
10881 if (TYPE_NOSIGN (type))
10882 /* GDB prints characters as NUMBER 'CHAR'. If that's
10883 changed, this can use value_print instead. */
10884 c_printchar (value, type, &buf);
10887 struct value_print_options opts;
10890 v = dwarf2_evaluate_loc_desc (type, NULL,
10894 else if (bytes != NULL)
10896 v = allocate_value (type);
10897 memcpy (value_contents_writeable (v), bytes,
10898 TYPE_LENGTH (type));
10901 v = value_from_longest (type, value);
10903 /* Specify decimal so that we do not depend on
10905 get_formatted_print_options (&opts, 'd');
10907 value_print (v, &buf, &opts);
10912 die->building_fullname = 0;
10916 /* Close the argument list, with a space if necessary
10917 (nested templates). */
10918 if (!buf.empty () && buf.string ().back () == '>')
10925 /* For C++ methods, append formal parameter type
10926 information, if PHYSNAME. */
10928 if (physname && die->tag == DW_TAG_subprogram
10929 && cu->language == language_cplus)
10931 struct type *type = read_type_die (die, cu);
10933 c_type_print_args (type, &buf, 1, cu->language,
10934 &type_print_raw_options);
10936 if (cu->language == language_cplus)
10938 /* Assume that an artificial first parameter is
10939 "this", but do not crash if it is not. RealView
10940 marks unnamed (and thus unused) parameters as
10941 artificial; there is no way to differentiate
10943 if (TYPE_NFIELDS (type) > 0
10944 && TYPE_FIELD_ARTIFICIAL (type, 0)
10945 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10946 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10948 buf.puts (" const");
10952 const std::string &intermediate_name = buf.string ();
10954 if (cu->language == language_cplus)
10956 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10957 &objfile->per_bfd->storage_obstack);
10959 /* If we only computed INTERMEDIATE_NAME, or if
10960 INTERMEDIATE_NAME is already canonical, then we need to
10961 copy it to the appropriate obstack. */
10962 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10963 name = ((const char *)
10964 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10965 intermediate_name.c_str (),
10966 intermediate_name.length ()));
10968 name = canonical_name;
10975 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10976 If scope qualifiers are appropriate they will be added. The result
10977 will be allocated on the storage_obstack, or NULL if the DIE does
10978 not have a name. NAME may either be from a previous call to
10979 dwarf2_name or NULL.
10981 The output string will be canonicalized (if C++). */
10983 static const char *
10984 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10986 return dwarf2_compute_name (name, die, cu, 0);
10989 /* Construct a physname for the given DIE in CU. NAME may either be
10990 from a previous call to dwarf2_name or NULL. The result will be
10991 allocated on the objfile_objstack or NULL if the DIE does not have a
10994 The output string will be canonicalized (if C++). */
10996 static const char *
10997 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11000 const char *retval, *mangled = NULL, *canon = NULL;
11003 /* In this case dwarf2_compute_name is just a shortcut not building anything
11005 if (!die_needs_namespace (die, cu))
11006 return dwarf2_compute_name (name, die, cu, 1);
11008 mangled = dw2_linkage_name (die, cu);
11010 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11011 See https://github.com/rust-lang/rust/issues/32925. */
11012 if (cu->language == language_rust && mangled != NULL
11013 && strchr (mangled, '{') != NULL)
11016 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11018 gdb::unique_xmalloc_ptr<char> demangled;
11019 if (mangled != NULL)
11022 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11024 /* Do nothing (do not demangle the symbol name). */
11026 else if (cu->language == language_go)
11028 /* This is a lie, but we already lie to the caller new_symbol.
11029 new_symbol assumes we return the mangled name.
11030 This just undoes that lie until things are cleaned up. */
11034 /* Use DMGL_RET_DROP for C++ template functions to suppress
11035 their return type. It is easier for GDB users to search
11036 for such functions as `name(params)' than `long name(params)'.
11037 In such case the minimal symbol names do not match the full
11038 symbol names but for template functions there is never a need
11039 to look up their definition from their declaration so
11040 the only disadvantage remains the minimal symbol variant
11041 `long name(params)' does not have the proper inferior type. */
11042 demangled.reset (gdb_demangle (mangled,
11043 (DMGL_PARAMS | DMGL_ANSI
11044 | DMGL_RET_DROP)));
11047 canon = demangled.get ();
11055 if (canon == NULL || check_physname)
11057 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11059 if (canon != NULL && strcmp (physname, canon) != 0)
11061 /* It may not mean a bug in GDB. The compiler could also
11062 compute DW_AT_linkage_name incorrectly. But in such case
11063 GDB would need to be bug-to-bug compatible. */
11065 complaint (_("Computed physname <%s> does not match demangled <%s> "
11066 "(from linkage <%s>) - DIE at %s [in module %s]"),
11067 physname, canon, mangled, sect_offset_str (die->sect_off),
11068 objfile_name (objfile));
11070 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11071 is available here - over computed PHYSNAME. It is safer
11072 against both buggy GDB and buggy compilers. */
11086 retval = ((const char *)
11087 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11088 retval, strlen (retval)));
11093 /* Inspect DIE in CU for a namespace alias. If one exists, record
11094 a new symbol for it.
11096 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11099 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11101 struct attribute *attr;
11103 /* If the die does not have a name, this is not a namespace
11105 attr = dwarf2_attr (die, DW_AT_name, cu);
11109 struct die_info *d = die;
11110 struct dwarf2_cu *imported_cu = cu;
11112 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11113 keep inspecting DIEs until we hit the underlying import. */
11114 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11115 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11117 attr = dwarf2_attr (d, DW_AT_import, cu);
11121 d = follow_die_ref (d, attr, &imported_cu);
11122 if (d->tag != DW_TAG_imported_declaration)
11126 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11128 complaint (_("DIE at %s has too many recursively imported "
11129 "declarations"), sect_offset_str (d->sect_off));
11136 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11138 type = get_die_type_at_offset (sect_off, cu->per_cu);
11139 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11141 /* This declaration is a global namespace alias. Add
11142 a symbol for it whose type is the aliased namespace. */
11143 new_symbol (die, type, cu);
11152 /* Return the using directives repository (global or local?) to use in the
11153 current context for CU.
11155 For Ada, imported declarations can materialize renamings, which *may* be
11156 global. However it is impossible (for now?) in DWARF to distinguish
11157 "external" imported declarations and "static" ones. As all imported
11158 declarations seem to be static in all other languages, make them all CU-wide
11159 global only in Ada. */
11161 static struct using_direct **
11162 using_directives (struct dwarf2_cu *cu)
11164 if (cu->language == language_ada
11165 && cu->get_builder ()->outermost_context_p ())
11166 return cu->get_builder ()->get_global_using_directives ();
11168 return cu->get_builder ()->get_local_using_directives ();
11171 /* Read the import statement specified by the given die and record it. */
11174 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11176 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11177 struct attribute *import_attr;
11178 struct die_info *imported_die, *child_die;
11179 struct dwarf2_cu *imported_cu;
11180 const char *imported_name;
11181 const char *imported_name_prefix;
11182 const char *canonical_name;
11183 const char *import_alias;
11184 const char *imported_declaration = NULL;
11185 const char *import_prefix;
11186 std::vector<const char *> excludes;
11188 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11189 if (import_attr == NULL)
11191 complaint (_("Tag '%s' has no DW_AT_import"),
11192 dwarf_tag_name (die->tag));
11197 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11198 imported_name = dwarf2_name (imported_die, imported_cu);
11199 if (imported_name == NULL)
11201 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11203 The import in the following code:
11217 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11218 <52> DW_AT_decl_file : 1
11219 <53> DW_AT_decl_line : 6
11220 <54> DW_AT_import : <0x75>
11221 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11222 <59> DW_AT_name : B
11223 <5b> DW_AT_decl_file : 1
11224 <5c> DW_AT_decl_line : 2
11225 <5d> DW_AT_type : <0x6e>
11227 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11228 <76> DW_AT_byte_size : 4
11229 <77> DW_AT_encoding : 5 (signed)
11231 imports the wrong die ( 0x75 instead of 0x58 ).
11232 This case will be ignored until the gcc bug is fixed. */
11236 /* Figure out the local name after import. */
11237 import_alias = dwarf2_name (die, cu);
11239 /* Figure out where the statement is being imported to. */
11240 import_prefix = determine_prefix (die, cu);
11242 /* Figure out what the scope of the imported die is and prepend it
11243 to the name of the imported die. */
11244 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11246 if (imported_die->tag != DW_TAG_namespace
11247 && imported_die->tag != DW_TAG_module)
11249 imported_declaration = imported_name;
11250 canonical_name = imported_name_prefix;
11252 else if (strlen (imported_name_prefix) > 0)
11253 canonical_name = obconcat (&objfile->objfile_obstack,
11254 imported_name_prefix,
11255 (cu->language == language_d ? "." : "::"),
11256 imported_name, (char *) NULL);
11258 canonical_name = imported_name;
11260 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11261 for (child_die = die->child; child_die && child_die->tag;
11262 child_die = sibling_die (child_die))
11264 /* DWARF-4: A Fortran use statement with a “rename list” may be
11265 represented by an imported module entry with an import attribute
11266 referring to the module and owned entries corresponding to those
11267 entities that are renamed as part of being imported. */
11269 if (child_die->tag != DW_TAG_imported_declaration)
11271 complaint (_("child DW_TAG_imported_declaration expected "
11272 "- DIE at %s [in module %s]"),
11273 sect_offset_str (child_die->sect_off),
11274 objfile_name (objfile));
11278 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11279 if (import_attr == NULL)
11281 complaint (_("Tag '%s' has no DW_AT_import"),
11282 dwarf_tag_name (child_die->tag));
11287 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11289 imported_name = dwarf2_name (imported_die, imported_cu);
11290 if (imported_name == NULL)
11292 complaint (_("child DW_TAG_imported_declaration has unknown "
11293 "imported name - DIE at %s [in module %s]"),
11294 sect_offset_str (child_die->sect_off),
11295 objfile_name (objfile));
11299 excludes.push_back (imported_name);
11301 process_die (child_die, cu);
11304 add_using_directive (using_directives (cu),
11308 imported_declaration,
11311 &objfile->objfile_obstack);
11314 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11315 types, but gives them a size of zero. Starting with version 14,
11316 ICC is compatible with GCC. */
11319 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11321 if (!cu->checked_producer)
11322 check_producer (cu);
11324 return cu->producer_is_icc_lt_14;
11327 /* ICC generates a DW_AT_type for C void functions. This was observed on
11328 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11329 which says that void functions should not have a DW_AT_type. */
11332 producer_is_icc (struct dwarf2_cu *cu)
11334 if (!cu->checked_producer)
11335 check_producer (cu);
11337 return cu->producer_is_icc;
11340 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11341 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11342 this, it was first present in GCC release 4.3.0. */
11345 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11347 if (!cu->checked_producer)
11348 check_producer (cu);
11350 return cu->producer_is_gcc_lt_4_3;
11353 static file_and_directory
11354 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11356 file_and_directory res;
11358 /* Find the filename. Do not use dwarf2_name here, since the filename
11359 is not a source language identifier. */
11360 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11361 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11363 if (res.comp_dir == NULL
11364 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11365 && IS_ABSOLUTE_PATH (res.name))
11367 res.comp_dir_storage = ldirname (res.name);
11368 if (!res.comp_dir_storage.empty ())
11369 res.comp_dir = res.comp_dir_storage.c_str ();
11371 if (res.comp_dir != NULL)
11373 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11374 directory, get rid of it. */
11375 const char *cp = strchr (res.comp_dir, ':');
11377 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11378 res.comp_dir = cp + 1;
11381 if (res.name == NULL)
11382 res.name = "<unknown>";
11387 /* Handle DW_AT_stmt_list for a compilation unit.
11388 DIE is the DW_TAG_compile_unit die for CU.
11389 COMP_DIR is the compilation directory. LOWPC is passed to
11390 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11393 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11394 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11396 struct dwarf2_per_objfile *dwarf2_per_objfile
11397 = cu->per_cu->dwarf2_per_objfile;
11398 struct objfile *objfile = dwarf2_per_objfile->objfile;
11399 struct attribute *attr;
11400 struct line_header line_header_local;
11401 hashval_t line_header_local_hash;
11403 int decode_mapping;
11405 gdb_assert (! cu->per_cu->is_debug_types);
11407 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11411 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11413 /* The line header hash table is only created if needed (it exists to
11414 prevent redundant reading of the line table for partial_units).
11415 If we're given a partial_unit, we'll need it. If we're given a
11416 compile_unit, then use the line header hash table if it's already
11417 created, but don't create one just yet. */
11419 if (dwarf2_per_objfile->line_header_hash == NULL
11420 && die->tag == DW_TAG_partial_unit)
11422 dwarf2_per_objfile->line_header_hash
11423 = htab_create_alloc_ex (127, line_header_hash_voidp,
11424 line_header_eq_voidp,
11425 free_line_header_voidp,
11426 &objfile->objfile_obstack,
11427 hashtab_obstack_allocate,
11428 dummy_obstack_deallocate);
11431 line_header_local.sect_off = line_offset;
11432 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11433 line_header_local_hash = line_header_hash (&line_header_local);
11434 if (dwarf2_per_objfile->line_header_hash != NULL)
11436 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11437 &line_header_local,
11438 line_header_local_hash, NO_INSERT);
11440 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11441 is not present in *SLOT (since if there is something in *SLOT then
11442 it will be for a partial_unit). */
11443 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11445 gdb_assert (*slot != NULL);
11446 cu->line_header = (struct line_header *) *slot;
11451 /* dwarf_decode_line_header does not yet provide sufficient information.
11452 We always have to call also dwarf_decode_lines for it. */
11453 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11457 cu->line_header = lh.release ();
11458 cu->line_header_die_owner = die;
11460 if (dwarf2_per_objfile->line_header_hash == NULL)
11464 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11465 &line_header_local,
11466 line_header_local_hash, INSERT);
11467 gdb_assert (slot != NULL);
11469 if (slot != NULL && *slot == NULL)
11471 /* This newly decoded line number information unit will be owned
11472 by line_header_hash hash table. */
11473 *slot = cu->line_header;
11474 cu->line_header_die_owner = NULL;
11478 /* We cannot free any current entry in (*slot) as that struct line_header
11479 may be already used by multiple CUs. Create only temporary decoded
11480 line_header for this CU - it may happen at most once for each line
11481 number information unit. And if we're not using line_header_hash
11482 then this is what we want as well. */
11483 gdb_assert (die->tag != DW_TAG_partial_unit);
11485 decode_mapping = (die->tag != DW_TAG_partial_unit);
11486 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11491 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11494 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11496 struct dwarf2_per_objfile *dwarf2_per_objfile
11497 = cu->per_cu->dwarf2_per_objfile;
11498 struct objfile *objfile = dwarf2_per_objfile->objfile;
11499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11500 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11501 CORE_ADDR highpc = ((CORE_ADDR) 0);
11502 struct attribute *attr;
11503 struct die_info *child_die;
11504 CORE_ADDR baseaddr;
11506 prepare_one_comp_unit (cu, die, cu->language);
11507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11509 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11511 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11512 from finish_block. */
11513 if (lowpc == ((CORE_ADDR) -1))
11515 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11517 file_and_directory fnd = find_file_and_directory (die, cu);
11519 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11520 standardised yet. As a workaround for the language detection we fall
11521 back to the DW_AT_producer string. */
11522 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11523 cu->language = language_opencl;
11525 /* Similar hack for Go. */
11526 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11527 set_cu_language (DW_LANG_Go, cu);
11529 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11531 /* Decode line number information if present. We do this before
11532 processing child DIEs, so that the line header table is available
11533 for DW_AT_decl_file. */
11534 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11536 /* Process all dies in compilation unit. */
11537 if (die->child != NULL)
11539 child_die = die->child;
11540 while (child_die && child_die->tag)
11542 process_die (child_die, cu);
11543 child_die = sibling_die (child_die);
11547 /* Decode macro information, if present. Dwarf 2 macro information
11548 refers to information in the line number info statement program
11549 header, so we can only read it if we've read the header
11551 attr = dwarf2_attr (die, DW_AT_macros, cu);
11553 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11554 if (attr && cu->line_header)
11556 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11557 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11559 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11563 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11564 if (attr && cu->line_header)
11566 unsigned int macro_offset = DW_UNSND (attr);
11568 dwarf_decode_macros (cu, macro_offset, 0);
11574 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11576 struct type_unit_group *tu_group;
11578 struct attribute *attr;
11580 struct signatured_type *sig_type;
11582 gdb_assert (per_cu->is_debug_types);
11583 sig_type = (struct signatured_type *) per_cu;
11585 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11587 /* If we're using .gdb_index (includes -readnow) then
11588 per_cu->type_unit_group may not have been set up yet. */
11589 if (sig_type->type_unit_group == NULL)
11590 sig_type->type_unit_group = get_type_unit_group (this, attr);
11591 tu_group = sig_type->type_unit_group;
11593 /* If we've already processed this stmt_list there's no real need to
11594 do it again, we could fake it and just recreate the part we need
11595 (file name,index -> symtab mapping). If data shows this optimization
11596 is useful we can do it then. */
11597 first_time = tu_group->compunit_symtab == NULL;
11599 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11604 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11605 lh = dwarf_decode_line_header (line_offset, this);
11610 start_symtab ("", NULL, 0);
11613 gdb_assert (tu_group->symtabs == NULL);
11614 gdb_assert (m_builder == nullptr);
11615 struct compunit_symtab *cust = tu_group->compunit_symtab;
11616 m_builder.reset (new struct buildsym_compunit
11617 (COMPUNIT_OBJFILE (cust), "",
11618 COMPUNIT_DIRNAME (cust),
11619 compunit_language (cust),
11625 line_header = lh.release ();
11626 line_header_die_owner = die;
11630 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11632 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11633 still initializing it, and our caller (a few levels up)
11634 process_full_type_unit still needs to know if this is the first
11637 tu_group->num_symtabs = line_header->file_names.size ();
11638 tu_group->symtabs = XNEWVEC (struct symtab *,
11639 line_header->file_names.size ());
11641 for (i = 0; i < line_header->file_names.size (); ++i)
11643 file_entry &fe = line_header->file_names[i];
11645 dwarf2_start_subfile (this, fe.name,
11646 fe.include_dir (line_header));
11647 buildsym_compunit *b = get_builder ();
11648 if (b->get_current_subfile ()->symtab == NULL)
11650 /* NOTE: start_subfile will recognize when it's been
11651 passed a file it has already seen. So we can't
11652 assume there's a simple mapping from
11653 cu->line_header->file_names to subfiles, plus
11654 cu->line_header->file_names may contain dups. */
11655 b->get_current_subfile ()->symtab
11656 = allocate_symtab (cust, b->get_current_subfile ()->name);
11659 fe.symtab = b->get_current_subfile ()->symtab;
11660 tu_group->symtabs[i] = fe.symtab;
11665 gdb_assert (m_builder == nullptr);
11666 struct compunit_symtab *cust = tu_group->compunit_symtab;
11667 m_builder.reset (new struct buildsym_compunit
11668 (COMPUNIT_OBJFILE (cust), "",
11669 COMPUNIT_DIRNAME (cust),
11670 compunit_language (cust),
11673 for (i = 0; i < line_header->file_names.size (); ++i)
11675 file_entry &fe = line_header->file_names[i];
11677 fe.symtab = tu_group->symtabs[i];
11681 /* The main symtab is allocated last. Type units don't have DW_AT_name
11682 so they don't have a "real" (so to speak) symtab anyway.
11683 There is later code that will assign the main symtab to all symbols
11684 that don't have one. We need to handle the case of a symbol with a
11685 missing symtab (DW_AT_decl_file) anyway. */
11688 /* Process DW_TAG_type_unit.
11689 For TUs we want to skip the first top level sibling if it's not the
11690 actual type being defined by this TU. In this case the first top
11691 level sibling is there to provide context only. */
11694 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11696 struct die_info *child_die;
11698 prepare_one_comp_unit (cu, die, language_minimal);
11700 /* Initialize (or reinitialize) the machinery for building symtabs.
11701 We do this before processing child DIEs, so that the line header table
11702 is available for DW_AT_decl_file. */
11703 cu->setup_type_unit_groups (die);
11705 if (die->child != NULL)
11707 child_die = die->child;
11708 while (child_die && child_die->tag)
11710 process_die (child_die, cu);
11711 child_die = sibling_die (child_die);
11718 http://gcc.gnu.org/wiki/DebugFission
11719 http://gcc.gnu.org/wiki/DebugFissionDWP
11721 To simplify handling of both DWO files ("object" files with the DWARF info)
11722 and DWP files (a file with the DWOs packaged up into one file), we treat
11723 DWP files as having a collection of virtual DWO files. */
11726 hash_dwo_file (const void *item)
11728 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11731 hash = htab_hash_string (dwo_file->dwo_name);
11732 if (dwo_file->comp_dir != NULL)
11733 hash += htab_hash_string (dwo_file->comp_dir);
11738 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11740 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11741 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11743 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11745 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11746 return lhs->comp_dir == rhs->comp_dir;
11747 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11750 /* Allocate a hash table for DWO files. */
11753 allocate_dwo_file_hash_table (struct objfile *objfile)
11755 auto delete_dwo_file = [] (void *item)
11757 struct dwo_file *dwo_file = (struct dwo_file *) item;
11762 return htab_up (htab_create_alloc_ex (41,
11766 &objfile->objfile_obstack,
11767 hashtab_obstack_allocate,
11768 dummy_obstack_deallocate));
11771 /* Lookup DWO file DWO_NAME. */
11774 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11775 const char *dwo_name,
11776 const char *comp_dir)
11778 struct dwo_file find_entry;
11781 if (dwarf2_per_objfile->dwo_files == NULL)
11782 dwarf2_per_objfile->dwo_files
11783 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11785 find_entry.dwo_name = dwo_name;
11786 find_entry.comp_dir = comp_dir;
11787 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11794 hash_dwo_unit (const void *item)
11796 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11798 /* This drops the top 32 bits of the id, but is ok for a hash. */
11799 return dwo_unit->signature;
11803 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11805 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11806 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11808 /* The signature is assumed to be unique within the DWO file.
11809 So while object file CU dwo_id's always have the value zero,
11810 that's OK, assuming each object file DWO file has only one CU,
11811 and that's the rule for now. */
11812 return lhs->signature == rhs->signature;
11815 /* Allocate a hash table for DWO CUs,TUs.
11816 There is one of these tables for each of CUs,TUs for each DWO file. */
11819 allocate_dwo_unit_table (struct objfile *objfile)
11821 /* Start out with a pretty small number.
11822 Generally DWO files contain only one CU and maybe some TUs. */
11823 return htab_create_alloc_ex (3,
11827 &objfile->objfile_obstack,
11828 hashtab_obstack_allocate,
11829 dummy_obstack_deallocate);
11832 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11834 struct create_dwo_cu_data
11836 struct dwo_file *dwo_file;
11837 struct dwo_unit dwo_unit;
11840 /* die_reader_func for create_dwo_cu. */
11843 create_dwo_cu_reader (const struct die_reader_specs *reader,
11844 const gdb_byte *info_ptr,
11845 struct die_info *comp_unit_die,
11849 struct dwarf2_cu *cu = reader->cu;
11850 sect_offset sect_off = cu->per_cu->sect_off;
11851 struct dwarf2_section_info *section = cu->per_cu->section;
11852 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11853 struct dwo_file *dwo_file = data->dwo_file;
11854 struct dwo_unit *dwo_unit = &data->dwo_unit;
11855 struct attribute *attr;
11857 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11860 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11861 " its dwo_id [in module %s]"),
11862 sect_offset_str (sect_off), dwo_file->dwo_name);
11866 dwo_unit->dwo_file = dwo_file;
11867 dwo_unit->signature = DW_UNSND (attr);
11868 dwo_unit->section = section;
11869 dwo_unit->sect_off = sect_off;
11870 dwo_unit->length = cu->per_cu->length;
11872 if (dwarf_read_debug)
11873 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11874 sect_offset_str (sect_off),
11875 hex_string (dwo_unit->signature));
11878 /* Create the dwo_units for the CUs in a DWO_FILE.
11879 Note: This function processes DWO files only, not DWP files. */
11882 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11883 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11886 struct objfile *objfile = dwarf2_per_objfile->objfile;
11887 const gdb_byte *info_ptr, *end_ptr;
11889 dwarf2_read_section (objfile, §ion);
11890 info_ptr = section.buffer;
11892 if (info_ptr == NULL)
11895 if (dwarf_read_debug)
11897 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11898 get_section_name (§ion),
11899 get_section_file_name (§ion));
11902 end_ptr = info_ptr + section.size;
11903 while (info_ptr < end_ptr)
11905 struct dwarf2_per_cu_data per_cu;
11906 struct create_dwo_cu_data create_dwo_cu_data;
11907 struct dwo_unit *dwo_unit;
11909 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11911 memset (&create_dwo_cu_data.dwo_unit, 0,
11912 sizeof (create_dwo_cu_data.dwo_unit));
11913 memset (&per_cu, 0, sizeof (per_cu));
11914 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11915 per_cu.is_debug_types = 0;
11916 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11917 per_cu.section = §ion;
11918 create_dwo_cu_data.dwo_file = &dwo_file;
11920 init_cutu_and_read_dies_no_follow (
11921 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11922 info_ptr += per_cu.length;
11924 // If the unit could not be parsed, skip it.
11925 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11928 if (cus_htab == NULL)
11929 cus_htab = allocate_dwo_unit_table (objfile);
11931 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11932 *dwo_unit = create_dwo_cu_data.dwo_unit;
11933 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11934 gdb_assert (slot != NULL);
11937 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11938 sect_offset dup_sect_off = dup_cu->sect_off;
11940 complaint (_("debug cu entry at offset %s is duplicate to"
11941 " the entry at offset %s, signature %s"),
11942 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11943 hex_string (dwo_unit->signature));
11945 *slot = (void *)dwo_unit;
11949 /* DWP file .debug_{cu,tu}_index section format:
11950 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11954 Both index sections have the same format, and serve to map a 64-bit
11955 signature to a set of section numbers. Each section begins with a header,
11956 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11957 indexes, and a pool of 32-bit section numbers. The index sections will be
11958 aligned at 8-byte boundaries in the file.
11960 The index section header consists of:
11962 V, 32 bit version number
11964 N, 32 bit number of compilation units or type units in the index
11965 M, 32 bit number of slots in the hash table
11967 Numbers are recorded using the byte order of the application binary.
11969 The hash table begins at offset 16 in the section, and consists of an array
11970 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11971 order of the application binary). Unused slots in the hash table are 0.
11972 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11974 The parallel table begins immediately after the hash table
11975 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11976 array of 32-bit indexes (using the byte order of the application binary),
11977 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11978 table contains a 32-bit index into the pool of section numbers. For unused
11979 hash table slots, the corresponding entry in the parallel table will be 0.
11981 The pool of section numbers begins immediately following the hash table
11982 (at offset 16 + 12 * M from the beginning of the section). The pool of
11983 section numbers consists of an array of 32-bit words (using the byte order
11984 of the application binary). Each item in the array is indexed starting
11985 from 0. The hash table entry provides the index of the first section
11986 number in the set. Additional section numbers in the set follow, and the
11987 set is terminated by a 0 entry (section number 0 is not used in ELF).
11989 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11990 section must be the first entry in the set, and the .debug_abbrev.dwo must
11991 be the second entry. Other members of the set may follow in any order.
11997 DWP Version 2 combines all the .debug_info, etc. sections into one,
11998 and the entries in the index tables are now offsets into these sections.
11999 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12002 Index Section Contents:
12004 Hash Table of Signatures dwp_hash_table.hash_table
12005 Parallel Table of Indices dwp_hash_table.unit_table
12006 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12007 Table of Section Sizes dwp_hash_table.v2.sizes
12009 The index section header consists of:
12011 V, 32 bit version number
12012 L, 32 bit number of columns in the table of section offsets
12013 N, 32 bit number of compilation units or type units in the index
12014 M, 32 bit number of slots in the hash table
12016 Numbers are recorded using the byte order of the application binary.
12018 The hash table has the same format as version 1.
12019 The parallel table of indices has the same format as version 1,
12020 except that the entries are origin-1 indices into the table of sections
12021 offsets and the table of section sizes.
12023 The table of offsets begins immediately following the parallel table
12024 (at offset 16 + 12 * M from the beginning of the section). The table is
12025 a two-dimensional array of 32-bit words (using the byte order of the
12026 application binary), with L columns and N+1 rows, in row-major order.
12027 Each row in the array is indexed starting from 0. The first row provides
12028 a key to the remaining rows: each column in this row provides an identifier
12029 for a debug section, and the offsets in the same column of subsequent rows
12030 refer to that section. The section identifiers are:
12032 DW_SECT_INFO 1 .debug_info.dwo
12033 DW_SECT_TYPES 2 .debug_types.dwo
12034 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12035 DW_SECT_LINE 4 .debug_line.dwo
12036 DW_SECT_LOC 5 .debug_loc.dwo
12037 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12038 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12039 DW_SECT_MACRO 8 .debug_macro.dwo
12041 The offsets provided by the CU and TU index sections are the base offsets
12042 for the contributions made by each CU or TU to the corresponding section
12043 in the package file. Each CU and TU header contains an abbrev_offset
12044 field, used to find the abbreviations table for that CU or TU within the
12045 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12046 be interpreted as relative to the base offset given in the index section.
12047 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12048 should be interpreted as relative to the base offset for .debug_line.dwo,
12049 and offsets into other debug sections obtained from DWARF attributes should
12050 also be interpreted as relative to the corresponding base offset.
12052 The table of sizes begins immediately following the table of offsets.
12053 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12054 with L columns and N rows, in row-major order. Each row in the array is
12055 indexed starting from 1 (row 0 is shared by the two tables).
12059 Hash table lookup is handled the same in version 1 and 2:
12061 We assume that N and M will not exceed 2^32 - 1.
12062 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12064 Given a 64-bit compilation unit signature or a type signature S, an entry
12065 in the hash table is located as follows:
12067 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12068 the low-order k bits all set to 1.
12070 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12072 3) If the hash table entry at index H matches the signature, use that
12073 entry. If the hash table entry at index H is unused (all zeroes),
12074 terminate the search: the signature is not present in the table.
12076 4) Let H = (H + H') modulo M. Repeat at Step 3.
12078 Because M > N and H' and M are relatively prime, the search is guaranteed
12079 to stop at an unused slot or find the match. */
12081 /* Create a hash table to map DWO IDs to their CU/TU entry in
12082 .debug_{info,types}.dwo in DWP_FILE.
12083 Returns NULL if there isn't one.
12084 Note: This function processes DWP files only, not DWO files. */
12086 static struct dwp_hash_table *
12087 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12088 struct dwp_file *dwp_file, int is_debug_types)
12090 struct objfile *objfile = dwarf2_per_objfile->objfile;
12091 bfd *dbfd = dwp_file->dbfd.get ();
12092 const gdb_byte *index_ptr, *index_end;
12093 struct dwarf2_section_info *index;
12094 uint32_t version, nr_columns, nr_units, nr_slots;
12095 struct dwp_hash_table *htab;
12097 if (is_debug_types)
12098 index = &dwp_file->sections.tu_index;
12100 index = &dwp_file->sections.cu_index;
12102 if (dwarf2_section_empty_p (index))
12104 dwarf2_read_section (objfile, index);
12106 index_ptr = index->buffer;
12107 index_end = index_ptr + index->size;
12109 version = read_4_bytes (dbfd, index_ptr);
12112 nr_columns = read_4_bytes (dbfd, index_ptr);
12116 nr_units = read_4_bytes (dbfd, index_ptr);
12118 nr_slots = read_4_bytes (dbfd, index_ptr);
12121 if (version != 1 && version != 2)
12123 error (_("Dwarf Error: unsupported DWP file version (%s)"
12124 " [in module %s]"),
12125 pulongest (version), dwp_file->name);
12127 if (nr_slots != (nr_slots & -nr_slots))
12129 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12130 " is not power of 2 [in module %s]"),
12131 pulongest (nr_slots), dwp_file->name);
12134 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12135 htab->version = version;
12136 htab->nr_columns = nr_columns;
12137 htab->nr_units = nr_units;
12138 htab->nr_slots = nr_slots;
12139 htab->hash_table = index_ptr;
12140 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12142 /* Exit early if the table is empty. */
12143 if (nr_slots == 0 || nr_units == 0
12144 || (version == 2 && nr_columns == 0))
12146 /* All must be zero. */
12147 if (nr_slots != 0 || nr_units != 0
12148 || (version == 2 && nr_columns != 0))
12150 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12151 " all zero [in modules %s]"),
12159 htab->section_pool.v1.indices =
12160 htab->unit_table + sizeof (uint32_t) * nr_slots;
12161 /* It's harder to decide whether the section is too small in v1.
12162 V1 is deprecated anyway so we punt. */
12166 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12167 int *ids = htab->section_pool.v2.section_ids;
12168 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12169 /* Reverse map for error checking. */
12170 int ids_seen[DW_SECT_MAX + 1];
12173 if (nr_columns < 2)
12175 error (_("Dwarf Error: bad DWP hash table, too few columns"
12176 " in section table [in module %s]"),
12179 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12181 error (_("Dwarf Error: bad DWP hash table, too many columns"
12182 " in section table [in module %s]"),
12185 memset (ids, 255, sizeof_ids);
12186 memset (ids_seen, 255, sizeof (ids_seen));
12187 for (i = 0; i < nr_columns; ++i)
12189 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12191 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12193 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12194 " in section table [in module %s]"),
12195 id, dwp_file->name);
12197 if (ids_seen[id] != -1)
12199 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12200 " id %d in section table [in module %s]"),
12201 id, dwp_file->name);
12206 /* Must have exactly one info or types section. */
12207 if (((ids_seen[DW_SECT_INFO] != -1)
12208 + (ids_seen[DW_SECT_TYPES] != -1))
12211 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12212 " DWO info/types section [in module %s]"),
12215 /* Must have an abbrev section. */
12216 if (ids_seen[DW_SECT_ABBREV] == -1)
12218 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12219 " section [in module %s]"),
12222 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12223 htab->section_pool.v2.sizes =
12224 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12225 * nr_units * nr_columns);
12226 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12227 * nr_units * nr_columns))
12230 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12231 " [in module %s]"),
12239 /* Update SECTIONS with the data from SECTP.
12241 This function is like the other "locate" section routines that are
12242 passed to bfd_map_over_sections, but in this context the sections to
12243 read comes from the DWP V1 hash table, not the full ELF section table.
12245 The result is non-zero for success, or zero if an error was found. */
12248 locate_v1_virtual_dwo_sections (asection *sectp,
12249 struct virtual_v1_dwo_sections *sections)
12251 const struct dwop_section_names *names = &dwop_section_names;
12253 if (section_is_p (sectp->name, &names->abbrev_dwo))
12255 /* There can be only one. */
12256 if (sections->abbrev.s.section != NULL)
12258 sections->abbrev.s.section = sectp;
12259 sections->abbrev.size = bfd_get_section_size (sectp);
12261 else if (section_is_p (sectp->name, &names->info_dwo)
12262 || section_is_p (sectp->name, &names->types_dwo))
12264 /* There can be only one. */
12265 if (sections->info_or_types.s.section != NULL)
12267 sections->info_or_types.s.section = sectp;
12268 sections->info_or_types.size = bfd_get_section_size (sectp);
12270 else if (section_is_p (sectp->name, &names->line_dwo))
12272 /* There can be only one. */
12273 if (sections->line.s.section != NULL)
12275 sections->line.s.section = sectp;
12276 sections->line.size = bfd_get_section_size (sectp);
12278 else if (section_is_p (sectp->name, &names->loc_dwo))
12280 /* There can be only one. */
12281 if (sections->loc.s.section != NULL)
12283 sections->loc.s.section = sectp;
12284 sections->loc.size = bfd_get_section_size (sectp);
12286 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12288 /* There can be only one. */
12289 if (sections->macinfo.s.section != NULL)
12291 sections->macinfo.s.section = sectp;
12292 sections->macinfo.size = bfd_get_section_size (sectp);
12294 else if (section_is_p (sectp->name, &names->macro_dwo))
12296 /* There can be only one. */
12297 if (sections->macro.s.section != NULL)
12299 sections->macro.s.section = sectp;
12300 sections->macro.size = bfd_get_section_size (sectp);
12302 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12304 /* There can be only one. */
12305 if (sections->str_offsets.s.section != NULL)
12307 sections->str_offsets.s.section = sectp;
12308 sections->str_offsets.size = bfd_get_section_size (sectp);
12312 /* No other kind of section is valid. */
12319 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12320 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12321 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12322 This is for DWP version 1 files. */
12324 static struct dwo_unit *
12325 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12326 struct dwp_file *dwp_file,
12327 uint32_t unit_index,
12328 const char *comp_dir,
12329 ULONGEST signature, int is_debug_types)
12331 struct objfile *objfile = dwarf2_per_objfile->objfile;
12332 const struct dwp_hash_table *dwp_htab =
12333 is_debug_types ? dwp_file->tus : dwp_file->cus;
12334 bfd *dbfd = dwp_file->dbfd.get ();
12335 const char *kind = is_debug_types ? "TU" : "CU";
12336 struct dwo_file *dwo_file;
12337 struct dwo_unit *dwo_unit;
12338 struct virtual_v1_dwo_sections sections;
12339 void **dwo_file_slot;
12342 gdb_assert (dwp_file->version == 1);
12344 if (dwarf_read_debug)
12346 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12348 pulongest (unit_index), hex_string (signature),
12352 /* Fetch the sections of this DWO unit.
12353 Put a limit on the number of sections we look for so that bad data
12354 doesn't cause us to loop forever. */
12356 #define MAX_NR_V1_DWO_SECTIONS \
12357 (1 /* .debug_info or .debug_types */ \
12358 + 1 /* .debug_abbrev */ \
12359 + 1 /* .debug_line */ \
12360 + 1 /* .debug_loc */ \
12361 + 1 /* .debug_str_offsets */ \
12362 + 1 /* .debug_macro or .debug_macinfo */ \
12363 + 1 /* trailing zero */)
12365 memset (§ions, 0, sizeof (sections));
12367 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12370 uint32_t section_nr =
12371 read_4_bytes (dbfd,
12372 dwp_htab->section_pool.v1.indices
12373 + (unit_index + i) * sizeof (uint32_t));
12375 if (section_nr == 0)
12377 if (section_nr >= dwp_file->num_sections)
12379 error (_("Dwarf Error: bad DWP hash table, section number too large"
12380 " [in module %s]"),
12384 sectp = dwp_file->elf_sections[section_nr];
12385 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12387 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12388 " [in module %s]"),
12394 || dwarf2_section_empty_p (§ions.info_or_types)
12395 || dwarf2_section_empty_p (§ions.abbrev))
12397 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12398 " [in module %s]"),
12401 if (i == MAX_NR_V1_DWO_SECTIONS)
12403 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12404 " [in module %s]"),
12408 /* It's easier for the rest of the code if we fake a struct dwo_file and
12409 have dwo_unit "live" in that. At least for now.
12411 The DWP file can be made up of a random collection of CUs and TUs.
12412 However, for each CU + set of TUs that came from the same original DWO
12413 file, we can combine them back into a virtual DWO file to save space
12414 (fewer struct dwo_file objects to allocate). Remember that for really
12415 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12417 std::string virtual_dwo_name =
12418 string_printf ("virtual-dwo/%d-%d-%d-%d",
12419 get_section_id (§ions.abbrev),
12420 get_section_id (§ions.line),
12421 get_section_id (§ions.loc),
12422 get_section_id (§ions.str_offsets));
12423 /* Can we use an existing virtual DWO file? */
12424 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12425 virtual_dwo_name.c_str (),
12427 /* Create one if necessary. */
12428 if (*dwo_file_slot == NULL)
12430 if (dwarf_read_debug)
12432 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12433 virtual_dwo_name.c_str ());
12435 dwo_file = new struct dwo_file;
12437 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12438 virtual_dwo_name.c_str (),
12439 virtual_dwo_name.size ());
12440 dwo_file->comp_dir = comp_dir;
12441 dwo_file->sections.abbrev = sections.abbrev;
12442 dwo_file->sections.line = sections.line;
12443 dwo_file->sections.loc = sections.loc;
12444 dwo_file->sections.macinfo = sections.macinfo;
12445 dwo_file->sections.macro = sections.macro;
12446 dwo_file->sections.str_offsets = sections.str_offsets;
12447 /* The "str" section is global to the entire DWP file. */
12448 dwo_file->sections.str = dwp_file->sections.str;
12449 /* The info or types section is assigned below to dwo_unit,
12450 there's no need to record it in dwo_file.
12451 Also, we can't simply record type sections in dwo_file because
12452 we record a pointer into the vector in dwo_unit. As we collect more
12453 types we'll grow the vector and eventually have to reallocate space
12454 for it, invalidating all copies of pointers into the previous
12456 *dwo_file_slot = dwo_file;
12460 if (dwarf_read_debug)
12462 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12463 virtual_dwo_name.c_str ());
12465 dwo_file = (struct dwo_file *) *dwo_file_slot;
12468 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12469 dwo_unit->dwo_file = dwo_file;
12470 dwo_unit->signature = signature;
12471 dwo_unit->section =
12472 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12473 *dwo_unit->section = sections.info_or_types;
12474 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12479 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12480 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12481 piece within that section used by a TU/CU, return a virtual section
12482 of just that piece. */
12484 static struct dwarf2_section_info
12485 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12486 struct dwarf2_section_info *section,
12487 bfd_size_type offset, bfd_size_type size)
12489 struct dwarf2_section_info result;
12492 gdb_assert (section != NULL);
12493 gdb_assert (!section->is_virtual);
12495 memset (&result, 0, sizeof (result));
12496 result.s.containing_section = section;
12497 result.is_virtual = true;
12502 sectp = get_section_bfd_section (section);
12504 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12505 bounds of the real section. This is a pretty-rare event, so just
12506 flag an error (easier) instead of a warning and trying to cope. */
12508 || offset + size > bfd_get_section_size (sectp))
12510 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12511 " in section %s [in module %s]"),
12512 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12513 objfile_name (dwarf2_per_objfile->objfile));
12516 result.virtual_offset = offset;
12517 result.size = size;
12521 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12522 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12523 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12524 This is for DWP version 2 files. */
12526 static struct dwo_unit *
12527 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12528 struct dwp_file *dwp_file,
12529 uint32_t unit_index,
12530 const char *comp_dir,
12531 ULONGEST signature, int is_debug_types)
12533 struct objfile *objfile = dwarf2_per_objfile->objfile;
12534 const struct dwp_hash_table *dwp_htab =
12535 is_debug_types ? dwp_file->tus : dwp_file->cus;
12536 bfd *dbfd = dwp_file->dbfd.get ();
12537 const char *kind = is_debug_types ? "TU" : "CU";
12538 struct dwo_file *dwo_file;
12539 struct dwo_unit *dwo_unit;
12540 struct virtual_v2_dwo_sections sections;
12541 void **dwo_file_slot;
12544 gdb_assert (dwp_file->version == 2);
12546 if (dwarf_read_debug)
12548 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12550 pulongest (unit_index), hex_string (signature),
12554 /* Fetch the section offsets of this DWO unit. */
12556 memset (§ions, 0, sizeof (sections));
12558 for (i = 0; i < dwp_htab->nr_columns; ++i)
12560 uint32_t offset = read_4_bytes (dbfd,
12561 dwp_htab->section_pool.v2.offsets
12562 + (((unit_index - 1) * dwp_htab->nr_columns
12564 * sizeof (uint32_t)));
12565 uint32_t size = read_4_bytes (dbfd,
12566 dwp_htab->section_pool.v2.sizes
12567 + (((unit_index - 1) * dwp_htab->nr_columns
12569 * sizeof (uint32_t)));
12571 switch (dwp_htab->section_pool.v2.section_ids[i])
12574 case DW_SECT_TYPES:
12575 sections.info_or_types_offset = offset;
12576 sections.info_or_types_size = size;
12578 case DW_SECT_ABBREV:
12579 sections.abbrev_offset = offset;
12580 sections.abbrev_size = size;
12583 sections.line_offset = offset;
12584 sections.line_size = size;
12587 sections.loc_offset = offset;
12588 sections.loc_size = size;
12590 case DW_SECT_STR_OFFSETS:
12591 sections.str_offsets_offset = offset;
12592 sections.str_offsets_size = size;
12594 case DW_SECT_MACINFO:
12595 sections.macinfo_offset = offset;
12596 sections.macinfo_size = size;
12598 case DW_SECT_MACRO:
12599 sections.macro_offset = offset;
12600 sections.macro_size = size;
12605 /* It's easier for the rest of the code if we fake a struct dwo_file and
12606 have dwo_unit "live" in that. At least for now.
12608 The DWP file can be made up of a random collection of CUs and TUs.
12609 However, for each CU + set of TUs that came from the same original DWO
12610 file, we can combine them back into a virtual DWO file to save space
12611 (fewer struct dwo_file objects to allocate). Remember that for really
12612 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12614 std::string virtual_dwo_name =
12615 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12616 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12617 (long) (sections.line_size ? sections.line_offset : 0),
12618 (long) (sections.loc_size ? sections.loc_offset : 0),
12619 (long) (sections.str_offsets_size
12620 ? sections.str_offsets_offset : 0));
12621 /* Can we use an existing virtual DWO file? */
12622 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12623 virtual_dwo_name.c_str (),
12625 /* Create one if necessary. */
12626 if (*dwo_file_slot == NULL)
12628 if (dwarf_read_debug)
12630 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12631 virtual_dwo_name.c_str ());
12633 dwo_file = new struct dwo_file;
12635 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12636 virtual_dwo_name.c_str (),
12637 virtual_dwo_name.size ());
12638 dwo_file->comp_dir = comp_dir;
12639 dwo_file->sections.abbrev =
12640 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12641 sections.abbrev_offset, sections.abbrev_size);
12642 dwo_file->sections.line =
12643 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12644 sections.line_offset, sections.line_size);
12645 dwo_file->sections.loc =
12646 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12647 sections.loc_offset, sections.loc_size);
12648 dwo_file->sections.macinfo =
12649 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12650 sections.macinfo_offset, sections.macinfo_size);
12651 dwo_file->sections.macro =
12652 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12653 sections.macro_offset, sections.macro_size);
12654 dwo_file->sections.str_offsets =
12655 create_dwp_v2_section (dwarf2_per_objfile,
12656 &dwp_file->sections.str_offsets,
12657 sections.str_offsets_offset,
12658 sections.str_offsets_size);
12659 /* The "str" section is global to the entire DWP file. */
12660 dwo_file->sections.str = dwp_file->sections.str;
12661 /* The info or types section is assigned below to dwo_unit,
12662 there's no need to record it in dwo_file.
12663 Also, we can't simply record type sections in dwo_file because
12664 we record a pointer into the vector in dwo_unit. As we collect more
12665 types we'll grow the vector and eventually have to reallocate space
12666 for it, invalidating all copies of pointers into the previous
12668 *dwo_file_slot = dwo_file;
12672 if (dwarf_read_debug)
12674 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12675 virtual_dwo_name.c_str ());
12677 dwo_file = (struct dwo_file *) *dwo_file_slot;
12680 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12681 dwo_unit->dwo_file = dwo_file;
12682 dwo_unit->signature = signature;
12683 dwo_unit->section =
12684 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12685 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12687 ? &dwp_file->sections.types
12688 : &dwp_file->sections.info,
12689 sections.info_or_types_offset,
12690 sections.info_or_types_size);
12691 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12696 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12697 Returns NULL if the signature isn't found. */
12699 static struct dwo_unit *
12700 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12701 struct dwp_file *dwp_file, const char *comp_dir,
12702 ULONGEST signature, int is_debug_types)
12704 const struct dwp_hash_table *dwp_htab =
12705 is_debug_types ? dwp_file->tus : dwp_file->cus;
12706 bfd *dbfd = dwp_file->dbfd.get ();
12707 uint32_t mask = dwp_htab->nr_slots - 1;
12708 uint32_t hash = signature & mask;
12709 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12712 struct dwo_unit find_dwo_cu;
12714 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12715 find_dwo_cu.signature = signature;
12716 slot = htab_find_slot (is_debug_types
12717 ? dwp_file->loaded_tus
12718 : dwp_file->loaded_cus,
12719 &find_dwo_cu, INSERT);
12722 return (struct dwo_unit *) *slot;
12724 /* Use a for loop so that we don't loop forever on bad debug info. */
12725 for (i = 0; i < dwp_htab->nr_slots; ++i)
12727 ULONGEST signature_in_table;
12729 signature_in_table =
12730 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12731 if (signature_in_table == signature)
12733 uint32_t unit_index =
12734 read_4_bytes (dbfd,
12735 dwp_htab->unit_table + hash * sizeof (uint32_t));
12737 if (dwp_file->version == 1)
12739 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12740 dwp_file, unit_index,
12741 comp_dir, signature,
12746 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12747 dwp_file, unit_index,
12748 comp_dir, signature,
12751 return (struct dwo_unit *) *slot;
12753 if (signature_in_table == 0)
12755 hash = (hash + hash2) & mask;
12758 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12759 " [in module %s]"),
12763 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12764 Open the file specified by FILE_NAME and hand it off to BFD for
12765 preliminary analysis. Return a newly initialized bfd *, which
12766 includes a canonicalized copy of FILE_NAME.
12767 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12768 SEARCH_CWD is true if the current directory is to be searched.
12769 It will be searched before debug-file-directory.
12770 If successful, the file is added to the bfd include table of the
12771 objfile's bfd (see gdb_bfd_record_inclusion).
12772 If unable to find/open the file, return NULL.
12773 NOTE: This function is derived from symfile_bfd_open. */
12775 static gdb_bfd_ref_ptr
12776 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12777 const char *file_name, int is_dwp, int search_cwd)
12780 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12781 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12782 to debug_file_directory. */
12783 const char *search_path;
12784 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12786 gdb::unique_xmalloc_ptr<char> search_path_holder;
12789 if (*debug_file_directory != '\0')
12791 search_path_holder.reset (concat (".", dirname_separator_string,
12792 debug_file_directory,
12794 search_path = search_path_holder.get ();
12800 search_path = debug_file_directory;
12802 openp_flags flags = OPF_RETURN_REALPATH;
12804 flags |= OPF_SEARCH_IN_PATH;
12806 gdb::unique_xmalloc_ptr<char> absolute_name;
12807 desc = openp (search_path, flags, file_name,
12808 O_RDONLY | O_BINARY, &absolute_name);
12812 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12814 if (sym_bfd == NULL)
12816 bfd_set_cacheable (sym_bfd.get (), 1);
12818 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12821 /* Success. Record the bfd as having been included by the objfile's bfd.
12822 This is important because things like demangled_names_hash lives in the
12823 objfile's per_bfd space and may have references to things like symbol
12824 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12825 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12830 /* Try to open DWO file FILE_NAME.
12831 COMP_DIR is the DW_AT_comp_dir attribute.
12832 The result is the bfd handle of the file.
12833 If there is a problem finding or opening the file, return NULL.
12834 Upon success, the canonicalized path of the file is stored in the bfd,
12835 same as symfile_bfd_open. */
12837 static gdb_bfd_ref_ptr
12838 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12839 const char *file_name, const char *comp_dir)
12841 if (IS_ABSOLUTE_PATH (file_name))
12842 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12843 0 /*is_dwp*/, 0 /*search_cwd*/);
12845 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12847 if (comp_dir != NULL)
12849 char *path_to_try = concat (comp_dir, SLASH_STRING,
12850 file_name, (char *) NULL);
12852 /* NOTE: If comp_dir is a relative path, this will also try the
12853 search path, which seems useful. */
12854 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12857 1 /*search_cwd*/));
12858 xfree (path_to_try);
12863 /* That didn't work, try debug-file-directory, which, despite its name,
12864 is a list of paths. */
12866 if (*debug_file_directory == '\0')
12869 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12870 0 /*is_dwp*/, 1 /*search_cwd*/);
12873 /* This function is mapped across the sections and remembers the offset and
12874 size of each of the DWO debugging sections we are interested in. */
12877 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12879 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12880 const struct dwop_section_names *names = &dwop_section_names;
12882 if (section_is_p (sectp->name, &names->abbrev_dwo))
12884 dwo_sections->abbrev.s.section = sectp;
12885 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12887 else if (section_is_p (sectp->name, &names->info_dwo))
12889 dwo_sections->info.s.section = sectp;
12890 dwo_sections->info.size = bfd_get_section_size (sectp);
12892 else if (section_is_p (sectp->name, &names->line_dwo))
12894 dwo_sections->line.s.section = sectp;
12895 dwo_sections->line.size = bfd_get_section_size (sectp);
12897 else if (section_is_p (sectp->name, &names->loc_dwo))
12899 dwo_sections->loc.s.section = sectp;
12900 dwo_sections->loc.size = bfd_get_section_size (sectp);
12902 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12904 dwo_sections->macinfo.s.section = sectp;
12905 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12907 else if (section_is_p (sectp->name, &names->macro_dwo))
12909 dwo_sections->macro.s.section = sectp;
12910 dwo_sections->macro.size = bfd_get_section_size (sectp);
12912 else if (section_is_p (sectp->name, &names->str_dwo))
12914 dwo_sections->str.s.section = sectp;
12915 dwo_sections->str.size = bfd_get_section_size (sectp);
12917 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12919 dwo_sections->str_offsets.s.section = sectp;
12920 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12922 else if (section_is_p (sectp->name, &names->types_dwo))
12924 struct dwarf2_section_info type_section;
12926 memset (&type_section, 0, sizeof (type_section));
12927 type_section.s.section = sectp;
12928 type_section.size = bfd_get_section_size (sectp);
12929 dwo_sections->types.push_back (type_section);
12933 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12934 by PER_CU. This is for the non-DWP case.
12935 The result is NULL if DWO_NAME can't be found. */
12937 static struct dwo_file *
12938 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12939 const char *dwo_name, const char *comp_dir)
12941 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12943 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12946 if (dwarf_read_debug)
12947 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12951 dwo_file_up dwo_file (new struct dwo_file);
12952 dwo_file->dwo_name = dwo_name;
12953 dwo_file->comp_dir = comp_dir;
12954 dwo_file->dbfd = std::move (dbfd);
12956 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12957 &dwo_file->sections);
12959 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12962 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12963 dwo_file->sections.types, dwo_file->tus);
12965 if (dwarf_read_debug)
12966 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12968 return dwo_file.release ();
12971 /* This function is mapped across the sections and remembers the offset and
12972 size of each of the DWP debugging sections common to version 1 and 2 that
12973 we are interested in. */
12976 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12977 void *dwp_file_ptr)
12979 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12980 const struct dwop_section_names *names = &dwop_section_names;
12981 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12983 /* Record the ELF section number for later lookup: this is what the
12984 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12985 gdb_assert (elf_section_nr < dwp_file->num_sections);
12986 dwp_file->elf_sections[elf_section_nr] = sectp;
12988 /* Look for specific sections that we need. */
12989 if (section_is_p (sectp->name, &names->str_dwo))
12991 dwp_file->sections.str.s.section = sectp;
12992 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12994 else if (section_is_p (sectp->name, &names->cu_index))
12996 dwp_file->sections.cu_index.s.section = sectp;
12997 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12999 else if (section_is_p (sectp->name, &names->tu_index))
13001 dwp_file->sections.tu_index.s.section = sectp;
13002 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13006 /* This function is mapped across the sections and remembers the offset and
13007 size of each of the DWP version 2 debugging sections that we are interested
13008 in. This is split into a separate function because we don't know if we
13009 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13012 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13014 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13015 const struct dwop_section_names *names = &dwop_section_names;
13016 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13018 /* Record the ELF section number for later lookup: this is what the
13019 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13020 gdb_assert (elf_section_nr < dwp_file->num_sections);
13021 dwp_file->elf_sections[elf_section_nr] = sectp;
13023 /* Look for specific sections that we need. */
13024 if (section_is_p (sectp->name, &names->abbrev_dwo))
13026 dwp_file->sections.abbrev.s.section = sectp;
13027 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13029 else if (section_is_p (sectp->name, &names->info_dwo))
13031 dwp_file->sections.info.s.section = sectp;
13032 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13034 else if (section_is_p (sectp->name, &names->line_dwo))
13036 dwp_file->sections.line.s.section = sectp;
13037 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13039 else if (section_is_p (sectp->name, &names->loc_dwo))
13041 dwp_file->sections.loc.s.section = sectp;
13042 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13044 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13046 dwp_file->sections.macinfo.s.section = sectp;
13047 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13049 else if (section_is_p (sectp->name, &names->macro_dwo))
13051 dwp_file->sections.macro.s.section = sectp;
13052 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13054 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13056 dwp_file->sections.str_offsets.s.section = sectp;
13057 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13059 else if (section_is_p (sectp->name, &names->types_dwo))
13061 dwp_file->sections.types.s.section = sectp;
13062 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13066 /* Hash function for dwp_file loaded CUs/TUs. */
13069 hash_dwp_loaded_cutus (const void *item)
13071 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13073 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13074 return dwo_unit->signature;
13077 /* Equality function for dwp_file loaded CUs/TUs. */
13080 eq_dwp_loaded_cutus (const void *a, const void *b)
13082 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13083 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13085 return dua->signature == dub->signature;
13088 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13091 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13093 return htab_create_alloc_ex (3,
13094 hash_dwp_loaded_cutus,
13095 eq_dwp_loaded_cutus,
13097 &objfile->objfile_obstack,
13098 hashtab_obstack_allocate,
13099 dummy_obstack_deallocate);
13102 /* Try to open DWP file FILE_NAME.
13103 The result is the bfd handle of the file.
13104 If there is a problem finding or opening the file, return NULL.
13105 Upon success, the canonicalized path of the file is stored in the bfd,
13106 same as symfile_bfd_open. */
13108 static gdb_bfd_ref_ptr
13109 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13110 const char *file_name)
13112 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13114 1 /*search_cwd*/));
13118 /* Work around upstream bug 15652.
13119 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13120 [Whether that's a "bug" is debatable, but it is getting in our way.]
13121 We have no real idea where the dwp file is, because gdb's realpath-ing
13122 of the executable's path may have discarded the needed info.
13123 [IWBN if the dwp file name was recorded in the executable, akin to
13124 .gnu_debuglink, but that doesn't exist yet.]
13125 Strip the directory from FILE_NAME and search again. */
13126 if (*debug_file_directory != '\0')
13128 /* Don't implicitly search the current directory here.
13129 If the user wants to search "." to handle this case,
13130 it must be added to debug-file-directory. */
13131 return try_open_dwop_file (dwarf2_per_objfile,
13132 lbasename (file_name), 1 /*is_dwp*/,
13139 /* Initialize the use of the DWP file for the current objfile.
13140 By convention the name of the DWP file is ${objfile}.dwp.
13141 The result is NULL if it can't be found. */
13143 static std::unique_ptr<struct dwp_file>
13144 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13146 struct objfile *objfile = dwarf2_per_objfile->objfile;
13148 /* Try to find first .dwp for the binary file before any symbolic links
13151 /* If the objfile is a debug file, find the name of the real binary
13152 file and get the name of dwp file from there. */
13153 std::string dwp_name;
13154 if (objfile->separate_debug_objfile_backlink != NULL)
13156 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13157 const char *backlink_basename = lbasename (backlink->original_name);
13159 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13162 dwp_name = objfile->original_name;
13164 dwp_name += ".dwp";
13166 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13168 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13170 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13171 dwp_name = objfile_name (objfile);
13172 dwp_name += ".dwp";
13173 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13178 if (dwarf_read_debug)
13179 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13180 return std::unique_ptr<dwp_file> ();
13183 const char *name = bfd_get_filename (dbfd.get ());
13184 std::unique_ptr<struct dwp_file> dwp_file
13185 (new struct dwp_file (name, std::move (dbfd)));
13187 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13188 dwp_file->elf_sections =
13189 OBSTACK_CALLOC (&objfile->objfile_obstack,
13190 dwp_file->num_sections, asection *);
13192 bfd_map_over_sections (dwp_file->dbfd.get (),
13193 dwarf2_locate_common_dwp_sections,
13196 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13199 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13202 /* The DWP file version is stored in the hash table. Oh well. */
13203 if (dwp_file->cus && dwp_file->tus
13204 && dwp_file->cus->version != dwp_file->tus->version)
13206 /* Technically speaking, we should try to limp along, but this is
13207 pretty bizarre. We use pulongest here because that's the established
13208 portability solution (e.g, we cannot use %u for uint32_t). */
13209 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13210 " TU version %s [in DWP file %s]"),
13211 pulongest (dwp_file->cus->version),
13212 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13216 dwp_file->version = dwp_file->cus->version;
13217 else if (dwp_file->tus)
13218 dwp_file->version = dwp_file->tus->version;
13220 dwp_file->version = 2;
13222 if (dwp_file->version == 2)
13223 bfd_map_over_sections (dwp_file->dbfd.get (),
13224 dwarf2_locate_v2_dwp_sections,
13227 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13228 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13230 if (dwarf_read_debug)
13232 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13233 fprintf_unfiltered (gdb_stdlog,
13234 " %s CUs, %s TUs\n",
13235 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13236 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13242 /* Wrapper around open_and_init_dwp_file, only open it once. */
13244 static struct dwp_file *
13245 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13247 if (! dwarf2_per_objfile->dwp_checked)
13249 dwarf2_per_objfile->dwp_file
13250 = open_and_init_dwp_file (dwarf2_per_objfile);
13251 dwarf2_per_objfile->dwp_checked = 1;
13253 return dwarf2_per_objfile->dwp_file.get ();
13256 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13257 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13258 or in the DWP file for the objfile, referenced by THIS_UNIT.
13259 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13260 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13262 This is called, for example, when wanting to read a variable with a
13263 complex location. Therefore we don't want to do file i/o for every call.
13264 Therefore we don't want to look for a DWO file on every call.
13265 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13266 then we check if we've already seen DWO_NAME, and only THEN do we check
13269 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13270 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13272 static struct dwo_unit *
13273 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13274 const char *dwo_name, const char *comp_dir,
13275 ULONGEST signature, int is_debug_types)
13277 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13278 struct objfile *objfile = dwarf2_per_objfile->objfile;
13279 const char *kind = is_debug_types ? "TU" : "CU";
13280 void **dwo_file_slot;
13281 struct dwo_file *dwo_file;
13282 struct dwp_file *dwp_file;
13284 /* First see if there's a DWP file.
13285 If we have a DWP file but didn't find the DWO inside it, don't
13286 look for the original DWO file. It makes gdb behave differently
13287 depending on whether one is debugging in the build tree. */
13289 dwp_file = get_dwp_file (dwarf2_per_objfile);
13290 if (dwp_file != NULL)
13292 const struct dwp_hash_table *dwp_htab =
13293 is_debug_types ? dwp_file->tus : dwp_file->cus;
13295 if (dwp_htab != NULL)
13297 struct dwo_unit *dwo_cutu =
13298 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13299 signature, is_debug_types);
13301 if (dwo_cutu != NULL)
13303 if (dwarf_read_debug)
13305 fprintf_unfiltered (gdb_stdlog,
13306 "Virtual DWO %s %s found: @%s\n",
13307 kind, hex_string (signature),
13308 host_address_to_string (dwo_cutu));
13316 /* No DWP file, look for the DWO file. */
13318 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13319 dwo_name, comp_dir);
13320 if (*dwo_file_slot == NULL)
13322 /* Read in the file and build a table of the CUs/TUs it contains. */
13323 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13325 /* NOTE: This will be NULL if unable to open the file. */
13326 dwo_file = (struct dwo_file *) *dwo_file_slot;
13328 if (dwo_file != NULL)
13330 struct dwo_unit *dwo_cutu = NULL;
13332 if (is_debug_types && dwo_file->tus)
13334 struct dwo_unit find_dwo_cutu;
13336 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13337 find_dwo_cutu.signature = signature;
13339 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13341 else if (!is_debug_types && dwo_file->cus)
13343 struct dwo_unit find_dwo_cutu;
13345 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13346 find_dwo_cutu.signature = signature;
13347 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13351 if (dwo_cutu != NULL)
13353 if (dwarf_read_debug)
13355 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13356 kind, dwo_name, hex_string (signature),
13357 host_address_to_string (dwo_cutu));
13364 /* We didn't find it. This could mean a dwo_id mismatch, or
13365 someone deleted the DWO/DWP file, or the search path isn't set up
13366 correctly to find the file. */
13368 if (dwarf_read_debug)
13370 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13371 kind, dwo_name, hex_string (signature));
13374 /* This is a warning and not a complaint because it can be caused by
13375 pilot error (e.g., user accidentally deleting the DWO). */
13377 /* Print the name of the DWP file if we looked there, helps the user
13378 better diagnose the problem. */
13379 std::string dwp_text;
13381 if (dwp_file != NULL)
13382 dwp_text = string_printf (" [in DWP file %s]",
13383 lbasename (dwp_file->name));
13385 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13386 " [in module %s]"),
13387 kind, dwo_name, hex_string (signature),
13389 this_unit->is_debug_types ? "TU" : "CU",
13390 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13395 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13396 See lookup_dwo_cutu_unit for details. */
13398 static struct dwo_unit *
13399 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13400 const char *dwo_name, const char *comp_dir,
13401 ULONGEST signature)
13403 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13406 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13407 See lookup_dwo_cutu_unit for details. */
13409 static struct dwo_unit *
13410 lookup_dwo_type_unit (struct signatured_type *this_tu,
13411 const char *dwo_name, const char *comp_dir)
13413 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13416 /* Traversal function for queue_and_load_all_dwo_tus. */
13419 queue_and_load_dwo_tu (void **slot, void *info)
13421 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13422 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13423 ULONGEST signature = dwo_unit->signature;
13424 struct signatured_type *sig_type =
13425 lookup_dwo_signatured_type (per_cu->cu, signature);
13427 if (sig_type != NULL)
13429 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13431 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13432 a real dependency of PER_CU on SIG_TYPE. That is detected later
13433 while processing PER_CU. */
13434 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13435 load_full_type_unit (sig_cu);
13436 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13442 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13443 The DWO may have the only definition of the type, though it may not be
13444 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13445 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13448 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13450 struct dwo_unit *dwo_unit;
13451 struct dwo_file *dwo_file;
13453 gdb_assert (!per_cu->is_debug_types);
13454 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13455 gdb_assert (per_cu->cu != NULL);
13457 dwo_unit = per_cu->cu->dwo_unit;
13458 gdb_assert (dwo_unit != NULL);
13460 dwo_file = dwo_unit->dwo_file;
13461 if (dwo_file->tus != NULL)
13462 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13465 /* Read in various DIEs. */
13467 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13468 Inherit only the children of the DW_AT_abstract_origin DIE not being
13469 already referenced by DW_AT_abstract_origin from the children of the
13473 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13475 struct die_info *child_die;
13476 sect_offset *offsetp;
13477 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13478 struct die_info *origin_die;
13479 /* Iterator of the ORIGIN_DIE children. */
13480 struct die_info *origin_child_die;
13481 struct attribute *attr;
13482 struct dwarf2_cu *origin_cu;
13483 struct pending **origin_previous_list_in_scope;
13485 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13489 /* Note that following die references may follow to a die in a
13493 origin_die = follow_die_ref (die, attr, &origin_cu);
13495 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13497 origin_previous_list_in_scope = origin_cu->list_in_scope;
13498 origin_cu->list_in_scope = cu->list_in_scope;
13500 if (die->tag != origin_die->tag
13501 && !(die->tag == DW_TAG_inlined_subroutine
13502 && origin_die->tag == DW_TAG_subprogram))
13503 complaint (_("DIE %s and its abstract origin %s have different tags"),
13504 sect_offset_str (die->sect_off),
13505 sect_offset_str (origin_die->sect_off));
13507 std::vector<sect_offset> offsets;
13509 for (child_die = die->child;
13510 child_die && child_die->tag;
13511 child_die = sibling_die (child_die))
13513 struct die_info *child_origin_die;
13514 struct dwarf2_cu *child_origin_cu;
13516 /* We are trying to process concrete instance entries:
13517 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13518 it's not relevant to our analysis here. i.e. detecting DIEs that are
13519 present in the abstract instance but not referenced in the concrete
13521 if (child_die->tag == DW_TAG_call_site
13522 || child_die->tag == DW_TAG_GNU_call_site)
13525 /* For each CHILD_DIE, find the corresponding child of
13526 ORIGIN_DIE. If there is more than one layer of
13527 DW_AT_abstract_origin, follow them all; there shouldn't be,
13528 but GCC versions at least through 4.4 generate this (GCC PR
13530 child_origin_die = child_die;
13531 child_origin_cu = cu;
13534 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13538 child_origin_die = follow_die_ref (child_origin_die, attr,
13542 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13543 counterpart may exist. */
13544 if (child_origin_die != child_die)
13546 if (child_die->tag != child_origin_die->tag
13547 && !(child_die->tag == DW_TAG_inlined_subroutine
13548 && child_origin_die->tag == DW_TAG_subprogram))
13549 complaint (_("Child DIE %s and its abstract origin %s have "
13551 sect_offset_str (child_die->sect_off),
13552 sect_offset_str (child_origin_die->sect_off));
13553 if (child_origin_die->parent != origin_die)
13554 complaint (_("Child DIE %s and its abstract origin %s have "
13555 "different parents"),
13556 sect_offset_str (child_die->sect_off),
13557 sect_offset_str (child_origin_die->sect_off));
13559 offsets.push_back (child_origin_die->sect_off);
13562 std::sort (offsets.begin (), offsets.end ());
13563 sect_offset *offsets_end = offsets.data () + offsets.size ();
13564 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13565 if (offsetp[-1] == *offsetp)
13566 complaint (_("Multiple children of DIE %s refer "
13567 "to DIE %s as their abstract origin"),
13568 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13570 offsetp = offsets.data ();
13571 origin_child_die = origin_die->child;
13572 while (origin_child_die && origin_child_die->tag)
13574 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13575 while (offsetp < offsets_end
13576 && *offsetp < origin_child_die->sect_off)
13578 if (offsetp >= offsets_end
13579 || *offsetp > origin_child_die->sect_off)
13581 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13582 Check whether we're already processing ORIGIN_CHILD_DIE.
13583 This can happen with mutually referenced abstract_origins.
13585 if (!origin_child_die->in_process)
13586 process_die (origin_child_die, origin_cu);
13588 origin_child_die = sibling_die (origin_child_die);
13590 origin_cu->list_in_scope = origin_previous_list_in_scope;
13594 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13596 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13597 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13598 struct context_stack *newobj;
13601 struct die_info *child_die;
13602 struct attribute *attr, *call_line, *call_file;
13604 CORE_ADDR baseaddr;
13605 struct block *block;
13606 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13607 std::vector<struct symbol *> template_args;
13608 struct template_symbol *templ_func = NULL;
13612 /* If we do not have call site information, we can't show the
13613 caller of this inlined function. That's too confusing, so
13614 only use the scope for local variables. */
13615 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13616 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13617 if (call_line == NULL || call_file == NULL)
13619 read_lexical_block_scope (die, cu);
13624 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13626 name = dwarf2_name (die, cu);
13628 /* Ignore functions with missing or empty names. These are actually
13629 illegal according to the DWARF standard. */
13632 complaint (_("missing name for subprogram DIE at %s"),
13633 sect_offset_str (die->sect_off));
13637 /* Ignore functions with missing or invalid low and high pc attributes. */
13638 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13639 <= PC_BOUNDS_INVALID)
13641 attr = dwarf2_attr (die, DW_AT_external, cu);
13642 if (!attr || !DW_UNSND (attr))
13643 complaint (_("cannot get low and high bounds "
13644 "for subprogram DIE at %s"),
13645 sect_offset_str (die->sect_off));
13649 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13650 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13652 /* If we have any template arguments, then we must allocate a
13653 different sort of symbol. */
13654 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13656 if (child_die->tag == DW_TAG_template_type_param
13657 || child_die->tag == DW_TAG_template_value_param)
13659 templ_func = allocate_template_symbol (objfile);
13660 templ_func->subclass = SYMBOL_TEMPLATE;
13665 newobj = cu->get_builder ()->push_context (0, lowpc);
13666 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13667 (struct symbol *) templ_func);
13669 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13670 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13673 /* If there is a location expression for DW_AT_frame_base, record
13675 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13677 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13679 /* If there is a location for the static link, record it. */
13680 newobj->static_link = NULL;
13681 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13684 newobj->static_link
13685 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13686 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13689 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13691 if (die->child != NULL)
13693 child_die = die->child;
13694 while (child_die && child_die->tag)
13696 if (child_die->tag == DW_TAG_template_type_param
13697 || child_die->tag == DW_TAG_template_value_param)
13699 struct symbol *arg = new_symbol (child_die, NULL, cu);
13702 template_args.push_back (arg);
13705 process_die (child_die, cu);
13706 child_die = sibling_die (child_die);
13710 inherit_abstract_dies (die, cu);
13712 /* If we have a DW_AT_specification, we might need to import using
13713 directives from the context of the specification DIE. See the
13714 comment in determine_prefix. */
13715 if (cu->language == language_cplus
13716 && dwarf2_attr (die, DW_AT_specification, cu))
13718 struct dwarf2_cu *spec_cu = cu;
13719 struct die_info *spec_die = die_specification (die, &spec_cu);
13723 child_die = spec_die->child;
13724 while (child_die && child_die->tag)
13726 if (child_die->tag == DW_TAG_imported_module)
13727 process_die (child_die, spec_cu);
13728 child_die = sibling_die (child_die);
13731 /* In some cases, GCC generates specification DIEs that
13732 themselves contain DW_AT_specification attributes. */
13733 spec_die = die_specification (spec_die, &spec_cu);
13737 struct context_stack cstk = cu->get_builder ()->pop_context ();
13738 /* Make a block for the local symbols within. */
13739 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13740 cstk.static_link, lowpc, highpc);
13742 /* For C++, set the block's scope. */
13743 if ((cu->language == language_cplus
13744 || cu->language == language_fortran
13745 || cu->language == language_d
13746 || cu->language == language_rust)
13747 && cu->processing_has_namespace_info)
13748 block_set_scope (block, determine_prefix (die, cu),
13749 &objfile->objfile_obstack);
13751 /* If we have address ranges, record them. */
13752 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13754 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13756 /* Attach template arguments to function. */
13757 if (!template_args.empty ())
13759 gdb_assert (templ_func != NULL);
13761 templ_func->n_template_arguments = template_args.size ();
13762 templ_func->template_arguments
13763 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13764 templ_func->n_template_arguments);
13765 memcpy (templ_func->template_arguments,
13766 template_args.data (),
13767 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13769 /* Make sure that the symtab is set on the new symbols. Even
13770 though they don't appear in this symtab directly, other parts
13771 of gdb assume that symbols do, and this is reasonably
13773 for (symbol *sym : template_args)
13774 symbol_set_symtab (sym, symbol_symtab (templ_func));
13777 /* In C++, we can have functions nested inside functions (e.g., when
13778 a function declares a class that has methods). This means that
13779 when we finish processing a function scope, we may need to go
13780 back to building a containing block's symbol lists. */
13781 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13782 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13784 /* If we've finished processing a top-level function, subsequent
13785 symbols go in the file symbol list. */
13786 if (cu->get_builder ()->outermost_context_p ())
13787 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13790 /* Process all the DIES contained within a lexical block scope. Start
13791 a new scope, process the dies, and then close the scope. */
13794 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13798 CORE_ADDR lowpc, highpc;
13799 struct die_info *child_die;
13800 CORE_ADDR baseaddr;
13802 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13804 /* Ignore blocks with missing or invalid low and high pc attributes. */
13805 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13806 as multiple lexical blocks? Handling children in a sane way would
13807 be nasty. Might be easier to properly extend generic blocks to
13808 describe ranges. */
13809 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13811 case PC_BOUNDS_NOT_PRESENT:
13812 /* DW_TAG_lexical_block has no attributes, process its children as if
13813 there was no wrapping by that DW_TAG_lexical_block.
13814 GCC does no longer produces such DWARF since GCC r224161. */
13815 for (child_die = die->child;
13816 child_die != NULL && child_die->tag;
13817 child_die = sibling_die (child_die))
13818 process_die (child_die, cu);
13820 case PC_BOUNDS_INVALID:
13823 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13824 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13826 cu->get_builder ()->push_context (0, lowpc);
13827 if (die->child != NULL)
13829 child_die = die->child;
13830 while (child_die && child_die->tag)
13832 process_die (child_die, cu);
13833 child_die = sibling_die (child_die);
13836 inherit_abstract_dies (die, cu);
13837 struct context_stack cstk = cu->get_builder ()->pop_context ();
13839 if (*cu->get_builder ()->get_local_symbols () != NULL
13840 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13842 struct block *block
13843 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13844 cstk.start_addr, highpc);
13846 /* Note that recording ranges after traversing children, as we
13847 do here, means that recording a parent's ranges entails
13848 walking across all its children's ranges as they appear in
13849 the address map, which is quadratic behavior.
13851 It would be nicer to record the parent's ranges before
13852 traversing its children, simply overriding whatever you find
13853 there. But since we don't even decide whether to create a
13854 block until after we've traversed its children, that's hard
13856 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13858 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13859 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13862 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13865 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13869 CORE_ADDR pc, baseaddr;
13870 struct attribute *attr;
13871 struct call_site *call_site, call_site_local;
13874 struct die_info *child_die;
13876 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13878 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13881 /* This was a pre-DWARF-5 GNU extension alias
13882 for DW_AT_call_return_pc. */
13883 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13887 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13888 "DIE %s [in module %s]"),
13889 sect_offset_str (die->sect_off), objfile_name (objfile));
13892 pc = attr_value_as_address (attr) + baseaddr;
13893 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13895 if (cu->call_site_htab == NULL)
13896 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13897 NULL, &objfile->objfile_obstack,
13898 hashtab_obstack_allocate, NULL);
13899 call_site_local.pc = pc;
13900 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13903 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13904 "DIE %s [in module %s]"),
13905 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13906 objfile_name (objfile));
13910 /* Count parameters at the caller. */
13913 for (child_die = die->child; child_die && child_die->tag;
13914 child_die = sibling_die (child_die))
13916 if (child_die->tag != DW_TAG_call_site_parameter
13917 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13919 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13920 "DW_TAG_call_site child DIE %s [in module %s]"),
13921 child_die->tag, sect_offset_str (child_die->sect_off),
13922 objfile_name (objfile));
13930 = ((struct call_site *)
13931 obstack_alloc (&objfile->objfile_obstack,
13932 sizeof (*call_site)
13933 + (sizeof (*call_site->parameter) * (nparams - 1))));
13935 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13936 call_site->pc = pc;
13938 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13939 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13941 struct die_info *func_die;
13943 /* Skip also over DW_TAG_inlined_subroutine. */
13944 for (func_die = die->parent;
13945 func_die && func_die->tag != DW_TAG_subprogram
13946 && func_die->tag != DW_TAG_subroutine_type;
13947 func_die = func_die->parent);
13949 /* DW_AT_call_all_calls is a superset
13950 of DW_AT_call_all_tail_calls. */
13952 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13953 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13954 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13955 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13957 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13958 not complete. But keep CALL_SITE for look ups via call_site_htab,
13959 both the initial caller containing the real return address PC and
13960 the final callee containing the current PC of a chain of tail
13961 calls do not need to have the tail call list complete. But any
13962 function candidate for a virtual tail call frame searched via
13963 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13964 determined unambiguously. */
13968 struct type *func_type = NULL;
13971 func_type = get_die_type (func_die, cu);
13972 if (func_type != NULL)
13974 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13976 /* Enlist this call site to the function. */
13977 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13978 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13981 complaint (_("Cannot find function owning DW_TAG_call_site "
13982 "DIE %s [in module %s]"),
13983 sect_offset_str (die->sect_off), objfile_name (objfile));
13987 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13989 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13991 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13994 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13995 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13997 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13998 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13999 /* Keep NULL DWARF_BLOCK. */;
14000 else if (attr_form_is_block (attr))
14002 struct dwarf2_locexpr_baton *dlbaton;
14004 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14005 dlbaton->data = DW_BLOCK (attr)->data;
14006 dlbaton->size = DW_BLOCK (attr)->size;
14007 dlbaton->per_cu = cu->per_cu;
14009 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14011 else if (attr_form_is_ref (attr))
14013 struct dwarf2_cu *target_cu = cu;
14014 struct die_info *target_die;
14016 target_die = follow_die_ref (die, attr, &target_cu);
14017 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14018 if (die_is_declaration (target_die, target_cu))
14020 const char *target_physname;
14022 /* Prefer the mangled name; otherwise compute the demangled one. */
14023 target_physname = dw2_linkage_name (target_die, target_cu);
14024 if (target_physname == NULL)
14025 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14026 if (target_physname == NULL)
14027 complaint (_("DW_AT_call_target target DIE has invalid "
14028 "physname, for referencing DIE %s [in module %s]"),
14029 sect_offset_str (die->sect_off), objfile_name (objfile));
14031 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14037 /* DW_AT_entry_pc should be preferred. */
14038 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14039 <= PC_BOUNDS_INVALID)
14040 complaint (_("DW_AT_call_target target DIE has invalid "
14041 "low pc, for referencing DIE %s [in module %s]"),
14042 sect_offset_str (die->sect_off), objfile_name (objfile));
14045 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14046 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14051 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14052 "block nor reference, for DIE %s [in module %s]"),
14053 sect_offset_str (die->sect_off), objfile_name (objfile));
14055 call_site->per_cu = cu->per_cu;
14057 for (child_die = die->child;
14058 child_die && child_die->tag;
14059 child_die = sibling_die (child_die))
14061 struct call_site_parameter *parameter;
14062 struct attribute *loc, *origin;
14064 if (child_die->tag != DW_TAG_call_site_parameter
14065 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14067 /* Already printed the complaint above. */
14071 gdb_assert (call_site->parameter_count < nparams);
14072 parameter = &call_site->parameter[call_site->parameter_count];
14074 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14075 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14076 register is contained in DW_AT_call_value. */
14078 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14079 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14080 if (origin == NULL)
14082 /* This was a pre-DWARF-5 GNU extension alias
14083 for DW_AT_call_parameter. */
14084 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14086 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14088 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14090 sect_offset sect_off
14091 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14092 if (!offset_in_cu_p (&cu->header, sect_off))
14094 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14095 binding can be done only inside one CU. Such referenced DIE
14096 therefore cannot be even moved to DW_TAG_partial_unit. */
14097 complaint (_("DW_AT_call_parameter offset is not in CU for "
14098 "DW_TAG_call_site child DIE %s [in module %s]"),
14099 sect_offset_str (child_die->sect_off),
14100 objfile_name (objfile));
14103 parameter->u.param_cu_off
14104 = (cu_offset) (sect_off - cu->header.sect_off);
14106 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14108 complaint (_("No DW_FORM_block* DW_AT_location for "
14109 "DW_TAG_call_site child DIE %s [in module %s]"),
14110 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14115 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14116 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14117 if (parameter->u.dwarf_reg != -1)
14118 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14119 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14120 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14121 ¶meter->u.fb_offset))
14122 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14125 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14126 "for DW_FORM_block* DW_AT_location is supported for "
14127 "DW_TAG_call_site child DIE %s "
14129 sect_offset_str (child_die->sect_off),
14130 objfile_name (objfile));
14135 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14137 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14138 if (!attr_form_is_block (attr))
14140 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14141 "DW_TAG_call_site child DIE %s [in module %s]"),
14142 sect_offset_str (child_die->sect_off),
14143 objfile_name (objfile));
14146 parameter->value = DW_BLOCK (attr)->data;
14147 parameter->value_size = DW_BLOCK (attr)->size;
14149 /* Parameters are not pre-cleared by memset above. */
14150 parameter->data_value = NULL;
14151 parameter->data_value_size = 0;
14152 call_site->parameter_count++;
14154 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14156 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14159 if (!attr_form_is_block (attr))
14160 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14161 "DW_TAG_call_site child DIE %s [in module %s]"),
14162 sect_offset_str (child_die->sect_off),
14163 objfile_name (objfile));
14166 parameter->data_value = DW_BLOCK (attr)->data;
14167 parameter->data_value_size = DW_BLOCK (attr)->size;
14173 /* Helper function for read_variable. If DIE represents a virtual
14174 table, then return the type of the concrete object that is
14175 associated with the virtual table. Otherwise, return NULL. */
14177 static struct type *
14178 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14180 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14184 /* Find the type DIE. */
14185 struct die_info *type_die = NULL;
14186 struct dwarf2_cu *type_cu = cu;
14188 if (attr_form_is_ref (attr))
14189 type_die = follow_die_ref (die, attr, &type_cu);
14190 if (type_die == NULL)
14193 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14195 return die_containing_type (type_die, type_cu);
14198 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14201 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14203 struct rust_vtable_symbol *storage = NULL;
14205 if (cu->language == language_rust)
14207 struct type *containing_type = rust_containing_type (die, cu);
14209 if (containing_type != NULL)
14211 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14213 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14214 struct rust_vtable_symbol);
14215 initialize_objfile_symbol (storage);
14216 storage->concrete_type = containing_type;
14217 storage->subclass = SYMBOL_RUST_VTABLE;
14221 struct symbol *res = new_symbol (die, NULL, cu, storage);
14222 struct attribute *abstract_origin
14223 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14224 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14225 if (res == NULL && loc && abstract_origin)
14227 /* We have a variable without a name, but with a location and an abstract
14228 origin. This may be a concrete instance of an abstract variable
14229 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14231 struct dwarf2_cu *origin_cu = cu;
14232 struct die_info *origin_die
14233 = follow_die_ref (die, abstract_origin, &origin_cu);
14234 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14235 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14239 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14240 reading .debug_rnglists.
14241 Callback's type should be:
14242 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14243 Return true if the attributes are present and valid, otherwise,
14246 template <typename Callback>
14248 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14249 Callback &&callback)
14251 struct dwarf2_per_objfile *dwarf2_per_objfile
14252 = cu->per_cu->dwarf2_per_objfile;
14253 struct objfile *objfile = dwarf2_per_objfile->objfile;
14254 bfd *obfd = objfile->obfd;
14255 /* Base address selection entry. */
14258 const gdb_byte *buffer;
14259 CORE_ADDR baseaddr;
14260 bool overflow = false;
14262 found_base = cu->base_known;
14263 base = cu->base_address;
14265 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14266 if (offset >= dwarf2_per_objfile->rnglists.size)
14268 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14272 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14274 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14278 /* Initialize it due to a false compiler warning. */
14279 CORE_ADDR range_beginning = 0, range_end = 0;
14280 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14281 + dwarf2_per_objfile->rnglists.size);
14282 unsigned int bytes_read;
14284 if (buffer == buf_end)
14289 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14292 case DW_RLE_end_of_list:
14294 case DW_RLE_base_address:
14295 if (buffer + cu->header.addr_size > buf_end)
14300 base = read_address (obfd, buffer, cu, &bytes_read);
14302 buffer += bytes_read;
14304 case DW_RLE_start_length:
14305 if (buffer + cu->header.addr_size > buf_end)
14310 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14311 buffer += bytes_read;
14312 range_end = (range_beginning
14313 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14314 buffer += bytes_read;
14315 if (buffer > buf_end)
14321 case DW_RLE_offset_pair:
14322 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14323 buffer += bytes_read;
14324 if (buffer > buf_end)
14329 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14330 buffer += bytes_read;
14331 if (buffer > buf_end)
14337 case DW_RLE_start_end:
14338 if (buffer + 2 * cu->header.addr_size > buf_end)
14343 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14344 buffer += bytes_read;
14345 range_end = read_address (obfd, buffer, cu, &bytes_read);
14346 buffer += bytes_read;
14349 complaint (_("Invalid .debug_rnglists data (no base address)"));
14352 if (rlet == DW_RLE_end_of_list || overflow)
14354 if (rlet == DW_RLE_base_address)
14359 /* We have no valid base address for the ranges
14361 complaint (_("Invalid .debug_rnglists data (no base address)"));
14365 if (range_beginning > range_end)
14367 /* Inverted range entries are invalid. */
14368 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14372 /* Empty range entries have no effect. */
14373 if (range_beginning == range_end)
14376 range_beginning += base;
14379 /* A not-uncommon case of bad debug info.
14380 Don't pollute the addrmap with bad data. */
14381 if (range_beginning + baseaddr == 0
14382 && !dwarf2_per_objfile->has_section_at_zero)
14384 complaint (_(".debug_rnglists entry has start address of zero"
14385 " [in module %s]"), objfile_name (objfile));
14389 callback (range_beginning, range_end);
14394 complaint (_("Offset %d is not terminated "
14395 "for DW_AT_ranges attribute"),
14403 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14404 Callback's type should be:
14405 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14406 Return 1 if the attributes are present and valid, otherwise, return 0. */
14408 template <typename Callback>
14410 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14411 Callback &&callback)
14413 struct dwarf2_per_objfile *dwarf2_per_objfile
14414 = cu->per_cu->dwarf2_per_objfile;
14415 struct objfile *objfile = dwarf2_per_objfile->objfile;
14416 struct comp_unit_head *cu_header = &cu->header;
14417 bfd *obfd = objfile->obfd;
14418 unsigned int addr_size = cu_header->addr_size;
14419 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14420 /* Base address selection entry. */
14423 unsigned int dummy;
14424 const gdb_byte *buffer;
14425 CORE_ADDR baseaddr;
14427 if (cu_header->version >= 5)
14428 return dwarf2_rnglists_process (offset, cu, callback);
14430 found_base = cu->base_known;
14431 base = cu->base_address;
14433 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14434 if (offset >= dwarf2_per_objfile->ranges.size)
14436 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14440 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14446 CORE_ADDR range_beginning, range_end;
14448 range_beginning = read_address (obfd, buffer, cu, &dummy);
14449 buffer += addr_size;
14450 range_end = read_address (obfd, buffer, cu, &dummy);
14451 buffer += addr_size;
14452 offset += 2 * addr_size;
14454 /* An end of list marker is a pair of zero addresses. */
14455 if (range_beginning == 0 && range_end == 0)
14456 /* Found the end of list entry. */
14459 /* Each base address selection entry is a pair of 2 values.
14460 The first is the largest possible address, the second is
14461 the base address. Check for a base address here. */
14462 if ((range_beginning & mask) == mask)
14464 /* If we found the largest possible address, then we already
14465 have the base address in range_end. */
14473 /* We have no valid base address for the ranges
14475 complaint (_("Invalid .debug_ranges data (no base address)"));
14479 if (range_beginning > range_end)
14481 /* Inverted range entries are invalid. */
14482 complaint (_("Invalid .debug_ranges data (inverted range)"));
14486 /* Empty range entries have no effect. */
14487 if (range_beginning == range_end)
14490 range_beginning += base;
14493 /* A not-uncommon case of bad debug info.
14494 Don't pollute the addrmap with bad data. */
14495 if (range_beginning + baseaddr == 0
14496 && !dwarf2_per_objfile->has_section_at_zero)
14498 complaint (_(".debug_ranges entry has start address of zero"
14499 " [in module %s]"), objfile_name (objfile));
14503 callback (range_beginning, range_end);
14509 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14510 Return 1 if the attributes are present and valid, otherwise, return 0.
14511 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14514 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14515 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14516 struct partial_symtab *ranges_pst)
14518 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14519 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14520 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14521 SECT_OFF_TEXT (objfile));
14524 CORE_ADDR high = 0;
14527 retval = dwarf2_ranges_process (offset, cu,
14528 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14530 if (ranges_pst != NULL)
14535 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14536 range_beginning + baseaddr)
14538 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14539 range_end + baseaddr)
14541 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14542 lowpc, highpc - 1, ranges_pst);
14545 /* FIXME: This is recording everything as a low-high
14546 segment of consecutive addresses. We should have a
14547 data structure for discontiguous block ranges
14551 low = range_beginning;
14557 if (range_beginning < low)
14558 low = range_beginning;
14559 if (range_end > high)
14567 /* If the first entry is an end-of-list marker, the range
14568 describes an empty scope, i.e. no instructions. */
14574 *high_return = high;
14578 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14579 definition for the return value. *LOWPC and *HIGHPC are set iff
14580 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14582 static enum pc_bounds_kind
14583 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14584 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14585 struct partial_symtab *pst)
14587 struct dwarf2_per_objfile *dwarf2_per_objfile
14588 = cu->per_cu->dwarf2_per_objfile;
14589 struct attribute *attr;
14590 struct attribute *attr_high;
14592 CORE_ADDR high = 0;
14593 enum pc_bounds_kind ret;
14595 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14598 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14601 low = attr_value_as_address (attr);
14602 high = attr_value_as_address (attr_high);
14603 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14607 /* Found high w/o low attribute. */
14608 return PC_BOUNDS_INVALID;
14610 /* Found consecutive range of addresses. */
14611 ret = PC_BOUNDS_HIGH_LOW;
14615 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14618 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14619 We take advantage of the fact that DW_AT_ranges does not appear
14620 in DW_TAG_compile_unit of DWO files. */
14621 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14622 unsigned int ranges_offset = (DW_UNSND (attr)
14623 + (need_ranges_base
14627 /* Value of the DW_AT_ranges attribute is the offset in the
14628 .debug_ranges section. */
14629 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14630 return PC_BOUNDS_INVALID;
14631 /* Found discontinuous range of addresses. */
14632 ret = PC_BOUNDS_RANGES;
14635 return PC_BOUNDS_NOT_PRESENT;
14638 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14640 return PC_BOUNDS_INVALID;
14642 /* When using the GNU linker, .gnu.linkonce. sections are used to
14643 eliminate duplicate copies of functions and vtables and such.
14644 The linker will arbitrarily choose one and discard the others.
14645 The AT_*_pc values for such functions refer to local labels in
14646 these sections. If the section from that file was discarded, the
14647 labels are not in the output, so the relocs get a value of 0.
14648 If this is a discarded function, mark the pc bounds as invalid,
14649 so that GDB will ignore it. */
14650 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14651 return PC_BOUNDS_INVALID;
14659 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14660 its low and high PC addresses. Do nothing if these addresses could not
14661 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14662 and HIGHPC to the high address if greater than HIGHPC. */
14665 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14666 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14667 struct dwarf2_cu *cu)
14669 CORE_ADDR low, high;
14670 struct die_info *child = die->child;
14672 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14674 *lowpc = std::min (*lowpc, low);
14675 *highpc = std::max (*highpc, high);
14678 /* If the language does not allow nested subprograms (either inside
14679 subprograms or lexical blocks), we're done. */
14680 if (cu->language != language_ada)
14683 /* Check all the children of the given DIE. If it contains nested
14684 subprograms, then check their pc bounds. Likewise, we need to
14685 check lexical blocks as well, as they may also contain subprogram
14687 while (child && child->tag)
14689 if (child->tag == DW_TAG_subprogram
14690 || child->tag == DW_TAG_lexical_block)
14691 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14692 child = sibling_die (child);
14696 /* Get the low and high pc's represented by the scope DIE, and store
14697 them in *LOWPC and *HIGHPC. If the correct values can't be
14698 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14701 get_scope_pc_bounds (struct die_info *die,
14702 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14703 struct dwarf2_cu *cu)
14705 CORE_ADDR best_low = (CORE_ADDR) -1;
14706 CORE_ADDR best_high = (CORE_ADDR) 0;
14707 CORE_ADDR current_low, current_high;
14709 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14710 >= PC_BOUNDS_RANGES)
14712 best_low = current_low;
14713 best_high = current_high;
14717 struct die_info *child = die->child;
14719 while (child && child->tag)
14721 switch (child->tag) {
14722 case DW_TAG_subprogram:
14723 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14725 case DW_TAG_namespace:
14726 case DW_TAG_module:
14727 /* FIXME: carlton/2004-01-16: Should we do this for
14728 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14729 that current GCC's always emit the DIEs corresponding
14730 to definitions of methods of classes as children of a
14731 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14732 the DIEs giving the declarations, which could be
14733 anywhere). But I don't see any reason why the
14734 standards says that they have to be there. */
14735 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14737 if (current_low != ((CORE_ADDR) -1))
14739 best_low = std::min (best_low, current_low);
14740 best_high = std::max (best_high, current_high);
14748 child = sibling_die (child);
14753 *highpc = best_high;
14756 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14760 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14761 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14763 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14764 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14765 struct attribute *attr;
14766 struct attribute *attr_high;
14768 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14771 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14774 CORE_ADDR low = attr_value_as_address (attr);
14775 CORE_ADDR high = attr_value_as_address (attr_high);
14777 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14780 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14781 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14782 cu->get_builder ()->record_block_range (block, low, high - 1);
14786 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14789 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14790 We take advantage of the fact that DW_AT_ranges does not appear
14791 in DW_TAG_compile_unit of DWO files. */
14792 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14794 /* The value of the DW_AT_ranges attribute is the offset of the
14795 address range list in the .debug_ranges section. */
14796 unsigned long offset = (DW_UNSND (attr)
14797 + (need_ranges_base ? cu->ranges_base : 0));
14799 std::vector<blockrange> blockvec;
14800 dwarf2_ranges_process (offset, cu,
14801 [&] (CORE_ADDR start, CORE_ADDR end)
14805 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14806 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14807 cu->get_builder ()->record_block_range (block, start, end - 1);
14808 blockvec.emplace_back (start, end);
14811 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14815 /* Check whether the producer field indicates either of GCC < 4.6, or the
14816 Intel C/C++ compiler, and cache the result in CU. */
14819 check_producer (struct dwarf2_cu *cu)
14823 if (cu->producer == NULL)
14825 /* For unknown compilers expect their behavior is DWARF version
14828 GCC started to support .debug_types sections by -gdwarf-4 since
14829 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14830 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14831 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14832 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14834 else if (producer_is_gcc (cu->producer, &major, &minor))
14836 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14837 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14839 else if (producer_is_icc (cu->producer, &major, &minor))
14841 cu->producer_is_icc = true;
14842 cu->producer_is_icc_lt_14 = major < 14;
14844 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14845 cu->producer_is_codewarrior = true;
14848 /* For other non-GCC compilers, expect their behavior is DWARF version
14852 cu->checked_producer = true;
14855 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14856 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14857 during 4.6.0 experimental. */
14860 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14862 if (!cu->checked_producer)
14863 check_producer (cu);
14865 return cu->producer_is_gxx_lt_4_6;
14869 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14870 with incorrect is_stmt attributes. */
14873 producer_is_codewarrior (struct dwarf2_cu *cu)
14875 if (!cu->checked_producer)
14876 check_producer (cu);
14878 return cu->producer_is_codewarrior;
14881 /* Return the default accessibility type if it is not overriden by
14882 DW_AT_accessibility. */
14884 static enum dwarf_access_attribute
14885 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14887 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14889 /* The default DWARF 2 accessibility for members is public, the default
14890 accessibility for inheritance is private. */
14892 if (die->tag != DW_TAG_inheritance)
14893 return DW_ACCESS_public;
14895 return DW_ACCESS_private;
14899 /* DWARF 3+ defines the default accessibility a different way. The same
14900 rules apply now for DW_TAG_inheritance as for the members and it only
14901 depends on the container kind. */
14903 if (die->parent->tag == DW_TAG_class_type)
14904 return DW_ACCESS_private;
14906 return DW_ACCESS_public;
14910 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14911 offset. If the attribute was not found return 0, otherwise return
14912 1. If it was found but could not properly be handled, set *OFFSET
14916 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14919 struct attribute *attr;
14921 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14926 /* Note that we do not check for a section offset first here.
14927 This is because DW_AT_data_member_location is new in DWARF 4,
14928 so if we see it, we can assume that a constant form is really
14929 a constant and not a section offset. */
14930 if (attr_form_is_constant (attr))
14931 *offset = dwarf2_get_attr_constant_value (attr, 0);
14932 else if (attr_form_is_section_offset (attr))
14933 dwarf2_complex_location_expr_complaint ();
14934 else if (attr_form_is_block (attr))
14935 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14937 dwarf2_complex_location_expr_complaint ();
14945 /* Add an aggregate field to the field list. */
14948 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14949 struct dwarf2_cu *cu)
14951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14953 struct nextfield *new_field;
14954 struct attribute *attr;
14956 const char *fieldname = "";
14958 if (die->tag == DW_TAG_inheritance)
14960 fip->baseclasses.emplace_back ();
14961 new_field = &fip->baseclasses.back ();
14965 fip->fields.emplace_back ();
14966 new_field = &fip->fields.back ();
14971 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14973 new_field->accessibility = DW_UNSND (attr);
14975 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14976 if (new_field->accessibility != DW_ACCESS_public)
14977 fip->non_public_fields = 1;
14979 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14981 new_field->virtuality = DW_UNSND (attr);
14983 new_field->virtuality = DW_VIRTUALITY_none;
14985 fp = &new_field->field;
14987 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14991 /* Data member other than a C++ static data member. */
14993 /* Get type of field. */
14994 fp->type = die_type (die, cu);
14996 SET_FIELD_BITPOS (*fp, 0);
14998 /* Get bit size of field (zero if none). */
14999 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15002 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15006 FIELD_BITSIZE (*fp) = 0;
15009 /* Get bit offset of field. */
15010 if (handle_data_member_location (die, cu, &offset))
15011 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15012 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15015 if (gdbarch_bits_big_endian (gdbarch))
15017 /* For big endian bits, the DW_AT_bit_offset gives the
15018 additional bit offset from the MSB of the containing
15019 anonymous object to the MSB of the field. We don't
15020 have to do anything special since we don't need to
15021 know the size of the anonymous object. */
15022 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15026 /* For little endian bits, compute the bit offset to the
15027 MSB of the anonymous object, subtract off the number of
15028 bits from the MSB of the field to the MSB of the
15029 object, and then subtract off the number of bits of
15030 the field itself. The result is the bit offset of
15031 the LSB of the field. */
15032 int anonymous_size;
15033 int bit_offset = DW_UNSND (attr);
15035 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15038 /* The size of the anonymous object containing
15039 the bit field is explicit, so use the
15040 indicated size (in bytes). */
15041 anonymous_size = DW_UNSND (attr);
15045 /* The size of the anonymous object containing
15046 the bit field must be inferred from the type
15047 attribute of the data member containing the
15049 anonymous_size = TYPE_LENGTH (fp->type);
15051 SET_FIELD_BITPOS (*fp,
15052 (FIELD_BITPOS (*fp)
15053 + anonymous_size * bits_per_byte
15054 - bit_offset - FIELD_BITSIZE (*fp)));
15057 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15059 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15060 + dwarf2_get_attr_constant_value (attr, 0)));
15062 /* Get name of field. */
15063 fieldname = dwarf2_name (die, cu);
15064 if (fieldname == NULL)
15067 /* The name is already allocated along with this objfile, so we don't
15068 need to duplicate it for the type. */
15069 fp->name = fieldname;
15071 /* Change accessibility for artificial fields (e.g. virtual table
15072 pointer or virtual base class pointer) to private. */
15073 if (dwarf2_attr (die, DW_AT_artificial, cu))
15075 FIELD_ARTIFICIAL (*fp) = 1;
15076 new_field->accessibility = DW_ACCESS_private;
15077 fip->non_public_fields = 1;
15080 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15082 /* C++ static member. */
15084 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15085 is a declaration, but all versions of G++ as of this writing
15086 (so through at least 3.2.1) incorrectly generate
15087 DW_TAG_variable tags. */
15089 const char *physname;
15091 /* Get name of field. */
15092 fieldname = dwarf2_name (die, cu);
15093 if (fieldname == NULL)
15096 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15098 /* Only create a symbol if this is an external value.
15099 new_symbol checks this and puts the value in the global symbol
15100 table, which we want. If it is not external, new_symbol
15101 will try to put the value in cu->list_in_scope which is wrong. */
15102 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15104 /* A static const member, not much different than an enum as far as
15105 we're concerned, except that we can support more types. */
15106 new_symbol (die, NULL, cu);
15109 /* Get physical name. */
15110 physname = dwarf2_physname (fieldname, die, cu);
15112 /* The name is already allocated along with this objfile, so we don't
15113 need to duplicate it for the type. */
15114 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15115 FIELD_TYPE (*fp) = die_type (die, cu);
15116 FIELD_NAME (*fp) = fieldname;
15118 else if (die->tag == DW_TAG_inheritance)
15122 /* C++ base class field. */
15123 if (handle_data_member_location (die, cu, &offset))
15124 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15125 FIELD_BITSIZE (*fp) = 0;
15126 FIELD_TYPE (*fp) = die_type (die, cu);
15127 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15129 else if (die->tag == DW_TAG_variant_part)
15131 /* process_structure_scope will treat this DIE as a union. */
15132 process_structure_scope (die, cu);
15134 /* The variant part is relative to the start of the enclosing
15136 SET_FIELD_BITPOS (*fp, 0);
15137 fp->type = get_die_type (die, cu);
15138 fp->artificial = 1;
15139 fp->name = "<<variant>>";
15141 /* Normally a DW_TAG_variant_part won't have a size, but our
15142 representation requires one, so set it to the maximum of the
15144 if (TYPE_LENGTH (fp->type) == 0)
15147 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15148 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15149 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15150 TYPE_LENGTH (fp->type) = max;
15154 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15157 /* Can the type given by DIE define another type? */
15160 type_can_define_types (const struct die_info *die)
15164 case DW_TAG_typedef:
15165 case DW_TAG_class_type:
15166 case DW_TAG_structure_type:
15167 case DW_TAG_union_type:
15168 case DW_TAG_enumeration_type:
15176 /* Add a type definition defined in the scope of the FIP's class. */
15179 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15180 struct dwarf2_cu *cu)
15182 struct decl_field fp;
15183 memset (&fp, 0, sizeof (fp));
15185 gdb_assert (type_can_define_types (die));
15187 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15188 fp.name = dwarf2_name (die, cu);
15189 fp.type = read_type_die (die, cu);
15191 /* Save accessibility. */
15192 enum dwarf_access_attribute accessibility;
15193 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15195 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15197 accessibility = dwarf2_default_access_attribute (die, cu);
15198 switch (accessibility)
15200 case DW_ACCESS_public:
15201 /* The assumed value if neither private nor protected. */
15203 case DW_ACCESS_private:
15206 case DW_ACCESS_protected:
15207 fp.is_protected = 1;
15210 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15213 if (die->tag == DW_TAG_typedef)
15214 fip->typedef_field_list.push_back (fp);
15216 fip->nested_types_list.push_back (fp);
15219 /* Create the vector of fields, and attach it to the type. */
15222 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15223 struct dwarf2_cu *cu)
15225 int nfields = fip->nfields;
15227 /* Record the field count, allocate space for the array of fields,
15228 and create blank accessibility bitfields if necessary. */
15229 TYPE_NFIELDS (type) = nfields;
15230 TYPE_FIELDS (type) = (struct field *)
15231 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15233 if (fip->non_public_fields && cu->language != language_ada)
15235 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15237 TYPE_FIELD_PRIVATE_BITS (type) =
15238 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15239 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15241 TYPE_FIELD_PROTECTED_BITS (type) =
15242 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15243 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15245 TYPE_FIELD_IGNORE_BITS (type) =
15246 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15247 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15250 /* If the type has baseclasses, allocate and clear a bit vector for
15251 TYPE_FIELD_VIRTUAL_BITS. */
15252 if (!fip->baseclasses.empty () && cu->language != language_ada)
15254 int num_bytes = B_BYTES (fip->baseclasses.size ());
15255 unsigned char *pointer;
15257 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15258 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15259 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15260 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15261 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15264 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15266 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15268 for (int index = 0; index < nfields; ++index)
15270 struct nextfield &field = fip->fields[index];
15272 if (field.variant.is_discriminant)
15273 di->discriminant_index = index;
15274 else if (field.variant.default_branch)
15275 di->default_index = index;
15277 di->discriminants[index] = field.variant.discriminant_value;
15281 /* Copy the saved-up fields into the field vector. */
15282 for (int i = 0; i < nfields; ++i)
15284 struct nextfield &field
15285 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15286 : fip->fields[i - fip->baseclasses.size ()]);
15288 TYPE_FIELD (type, i) = field.field;
15289 switch (field.accessibility)
15291 case DW_ACCESS_private:
15292 if (cu->language != language_ada)
15293 SET_TYPE_FIELD_PRIVATE (type, i);
15296 case DW_ACCESS_protected:
15297 if (cu->language != language_ada)
15298 SET_TYPE_FIELD_PROTECTED (type, i);
15301 case DW_ACCESS_public:
15305 /* Unknown accessibility. Complain and treat it as public. */
15307 complaint (_("unsupported accessibility %d"),
15308 field.accessibility);
15312 if (i < fip->baseclasses.size ())
15314 switch (field.virtuality)
15316 case DW_VIRTUALITY_virtual:
15317 case DW_VIRTUALITY_pure_virtual:
15318 if (cu->language == language_ada)
15319 error (_("unexpected virtuality in component of Ada type"));
15320 SET_TYPE_FIELD_VIRTUAL (type, i);
15327 /* Return true if this member function is a constructor, false
15331 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15333 const char *fieldname;
15334 const char *type_name;
15337 if (die->parent == NULL)
15340 if (die->parent->tag != DW_TAG_structure_type
15341 && die->parent->tag != DW_TAG_union_type
15342 && die->parent->tag != DW_TAG_class_type)
15345 fieldname = dwarf2_name (die, cu);
15346 type_name = dwarf2_name (die->parent, cu);
15347 if (fieldname == NULL || type_name == NULL)
15350 len = strlen (fieldname);
15351 return (strncmp (fieldname, type_name, len) == 0
15352 && (type_name[len] == '\0' || type_name[len] == '<'));
15355 /* Add a member function to the proper fieldlist. */
15358 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15359 struct type *type, struct dwarf2_cu *cu)
15361 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15362 struct attribute *attr;
15364 struct fnfieldlist *flp = nullptr;
15365 struct fn_field *fnp;
15366 const char *fieldname;
15367 struct type *this_type;
15368 enum dwarf_access_attribute accessibility;
15370 if (cu->language == language_ada)
15371 error (_("unexpected member function in Ada type"));
15373 /* Get name of member function. */
15374 fieldname = dwarf2_name (die, cu);
15375 if (fieldname == NULL)
15378 /* Look up member function name in fieldlist. */
15379 for (i = 0; i < fip->fnfieldlists.size (); i++)
15381 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15383 flp = &fip->fnfieldlists[i];
15388 /* Create a new fnfieldlist if necessary. */
15389 if (flp == nullptr)
15391 fip->fnfieldlists.emplace_back ();
15392 flp = &fip->fnfieldlists.back ();
15393 flp->name = fieldname;
15394 i = fip->fnfieldlists.size () - 1;
15397 /* Create a new member function field and add it to the vector of
15399 flp->fnfields.emplace_back ();
15400 fnp = &flp->fnfields.back ();
15402 /* Delay processing of the physname until later. */
15403 if (cu->language == language_cplus)
15404 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15408 const char *physname = dwarf2_physname (fieldname, die, cu);
15409 fnp->physname = physname ? physname : "";
15412 fnp->type = alloc_type (objfile);
15413 this_type = read_type_die (die, cu);
15414 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15416 int nparams = TYPE_NFIELDS (this_type);
15418 /* TYPE is the domain of this method, and THIS_TYPE is the type
15419 of the method itself (TYPE_CODE_METHOD). */
15420 smash_to_method_type (fnp->type, type,
15421 TYPE_TARGET_TYPE (this_type),
15422 TYPE_FIELDS (this_type),
15423 TYPE_NFIELDS (this_type),
15424 TYPE_VARARGS (this_type));
15426 /* Handle static member functions.
15427 Dwarf2 has no clean way to discern C++ static and non-static
15428 member functions. G++ helps GDB by marking the first
15429 parameter for non-static member functions (which is the this
15430 pointer) as artificial. We obtain this information from
15431 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15432 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15433 fnp->voffset = VOFFSET_STATIC;
15436 complaint (_("member function type missing for '%s'"),
15437 dwarf2_full_name (fieldname, die, cu));
15439 /* Get fcontext from DW_AT_containing_type if present. */
15440 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15441 fnp->fcontext = die_containing_type (die, cu);
15443 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15444 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15446 /* Get accessibility. */
15447 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15449 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15451 accessibility = dwarf2_default_access_attribute (die, cu);
15452 switch (accessibility)
15454 case DW_ACCESS_private:
15455 fnp->is_private = 1;
15457 case DW_ACCESS_protected:
15458 fnp->is_protected = 1;
15462 /* Check for artificial methods. */
15463 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15464 if (attr && DW_UNSND (attr) != 0)
15465 fnp->is_artificial = 1;
15467 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15469 /* Get index in virtual function table if it is a virtual member
15470 function. For older versions of GCC, this is an offset in the
15471 appropriate virtual table, as specified by DW_AT_containing_type.
15472 For everyone else, it is an expression to be evaluated relative
15473 to the object address. */
15475 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15478 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15480 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15482 /* Old-style GCC. */
15483 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15485 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15486 || (DW_BLOCK (attr)->size > 1
15487 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15488 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15490 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15491 if ((fnp->voffset % cu->header.addr_size) != 0)
15492 dwarf2_complex_location_expr_complaint ();
15494 fnp->voffset /= cu->header.addr_size;
15498 dwarf2_complex_location_expr_complaint ();
15500 if (!fnp->fcontext)
15502 /* If there is no `this' field and no DW_AT_containing_type,
15503 we cannot actually find a base class context for the
15505 if (TYPE_NFIELDS (this_type) == 0
15506 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15508 complaint (_("cannot determine context for virtual member "
15509 "function \"%s\" (offset %s)"),
15510 fieldname, sect_offset_str (die->sect_off));
15515 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15519 else if (attr_form_is_section_offset (attr))
15521 dwarf2_complex_location_expr_complaint ();
15525 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15531 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15532 if (attr && DW_UNSND (attr))
15534 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15535 complaint (_("Member function \"%s\" (offset %s) is virtual "
15536 "but the vtable offset is not specified"),
15537 fieldname, sect_offset_str (die->sect_off));
15538 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15539 TYPE_CPLUS_DYNAMIC (type) = 1;
15544 /* Create the vector of member function fields, and attach it to the type. */
15547 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15548 struct dwarf2_cu *cu)
15550 if (cu->language == language_ada)
15551 error (_("unexpected member functions in Ada type"));
15553 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15554 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15556 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15558 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15560 struct fnfieldlist &nf = fip->fnfieldlists[i];
15561 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15563 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15564 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15565 fn_flp->fn_fields = (struct fn_field *)
15566 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15568 for (int k = 0; k < nf.fnfields.size (); ++k)
15569 fn_flp->fn_fields[k] = nf.fnfields[k];
15572 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15575 /* Returns non-zero if NAME is the name of a vtable member in CU's
15576 language, zero otherwise. */
15578 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15580 static const char vptr[] = "_vptr";
15582 /* Look for the C++ form of the vtable. */
15583 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15589 /* GCC outputs unnamed structures that are really pointers to member
15590 functions, with the ABI-specified layout. If TYPE describes
15591 such a structure, smash it into a member function type.
15593 GCC shouldn't do this; it should just output pointer to member DIEs.
15594 This is GCC PR debug/28767. */
15597 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15599 struct type *pfn_type, *self_type, *new_type;
15601 /* Check for a structure with no name and two children. */
15602 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15605 /* Check for __pfn and __delta members. */
15606 if (TYPE_FIELD_NAME (type, 0) == NULL
15607 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15608 || TYPE_FIELD_NAME (type, 1) == NULL
15609 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15612 /* Find the type of the method. */
15613 pfn_type = TYPE_FIELD_TYPE (type, 0);
15614 if (pfn_type == NULL
15615 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15616 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15619 /* Look for the "this" argument. */
15620 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15621 if (TYPE_NFIELDS (pfn_type) == 0
15622 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15623 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15626 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15627 new_type = alloc_type (objfile);
15628 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15629 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15630 TYPE_VARARGS (pfn_type));
15631 smash_to_methodptr_type (type, new_type);
15634 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15635 appropriate error checking and issuing complaints if there is a
15639 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15641 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15643 if (attr == nullptr)
15646 if (!attr_form_is_constant (attr))
15648 complaint (_("DW_AT_alignment must have constant form"
15649 " - DIE at %s [in module %s]"),
15650 sect_offset_str (die->sect_off),
15651 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15656 if (attr->form == DW_FORM_sdata)
15658 LONGEST val = DW_SND (attr);
15661 complaint (_("DW_AT_alignment value must not be negative"
15662 " - DIE at %s [in module %s]"),
15663 sect_offset_str (die->sect_off),
15664 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15670 align = DW_UNSND (attr);
15674 complaint (_("DW_AT_alignment value must not be zero"
15675 " - DIE at %s [in module %s]"),
15676 sect_offset_str (die->sect_off),
15677 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15680 if ((align & (align - 1)) != 0)
15682 complaint (_("DW_AT_alignment value must be a power of 2"
15683 " - DIE at %s [in module %s]"),
15684 sect_offset_str (die->sect_off),
15685 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15692 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15693 the alignment for TYPE. */
15696 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15699 if (!set_type_align (type, get_alignment (cu, die)))
15700 complaint (_("DW_AT_alignment value too large"
15701 " - DIE at %s [in module %s]"),
15702 sect_offset_str (die->sect_off),
15703 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15706 /* Called when we find the DIE that starts a structure or union scope
15707 (definition) to create a type for the structure or union. Fill in
15708 the type's name and general properties; the members will not be
15709 processed until process_structure_scope. A symbol table entry for
15710 the type will also not be done until process_structure_scope (assuming
15711 the type has a name).
15713 NOTE: we need to call these functions regardless of whether or not the
15714 DIE has a DW_AT_name attribute, since it might be an anonymous
15715 structure or union. This gets the type entered into our set of
15716 user defined types. */
15718 static struct type *
15719 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15723 struct attribute *attr;
15726 /* If the definition of this type lives in .debug_types, read that type.
15727 Don't follow DW_AT_specification though, that will take us back up
15728 the chain and we want to go down. */
15729 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15732 type = get_DW_AT_signature_type (die, attr, cu);
15734 /* The type's CU may not be the same as CU.
15735 Ensure TYPE is recorded with CU in die_type_hash. */
15736 return set_die_type (die, type, cu);
15739 type = alloc_type (objfile);
15740 INIT_CPLUS_SPECIFIC (type);
15742 name = dwarf2_name (die, cu);
15745 if (cu->language == language_cplus
15746 || cu->language == language_d
15747 || cu->language == language_rust)
15749 const char *full_name = dwarf2_full_name (name, die, cu);
15751 /* dwarf2_full_name might have already finished building the DIE's
15752 type. If so, there is no need to continue. */
15753 if (get_die_type (die, cu) != NULL)
15754 return get_die_type (die, cu);
15756 TYPE_NAME (type) = full_name;
15760 /* The name is already allocated along with this objfile, so
15761 we don't need to duplicate it for the type. */
15762 TYPE_NAME (type) = name;
15766 if (die->tag == DW_TAG_structure_type)
15768 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15770 else if (die->tag == DW_TAG_union_type)
15772 TYPE_CODE (type) = TYPE_CODE_UNION;
15774 else if (die->tag == DW_TAG_variant_part)
15776 TYPE_CODE (type) = TYPE_CODE_UNION;
15777 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15781 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15784 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15785 TYPE_DECLARED_CLASS (type) = 1;
15787 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15790 if (attr_form_is_constant (attr))
15791 TYPE_LENGTH (type) = DW_UNSND (attr);
15794 /* For the moment, dynamic type sizes are not supported
15795 by GDB's struct type. The actual size is determined
15796 on-demand when resolving the type of a given object,
15797 so set the type's length to zero for now. Otherwise,
15798 we record an expression as the length, and that expression
15799 could lead to a very large value, which could eventually
15800 lead to us trying to allocate that much memory when creating
15801 a value of that type. */
15802 TYPE_LENGTH (type) = 0;
15807 TYPE_LENGTH (type) = 0;
15810 maybe_set_alignment (cu, die, type);
15812 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15814 /* ICC<14 does not output the required DW_AT_declaration on
15815 incomplete types, but gives them a size of zero. */
15816 TYPE_STUB (type) = 1;
15819 TYPE_STUB_SUPPORTED (type) = 1;
15821 if (die_is_declaration (die, cu))
15822 TYPE_STUB (type) = 1;
15823 else if (attr == NULL && die->child == NULL
15824 && producer_is_realview (cu->producer))
15825 /* RealView does not output the required DW_AT_declaration
15826 on incomplete types. */
15827 TYPE_STUB (type) = 1;
15829 /* We need to add the type field to the die immediately so we don't
15830 infinitely recurse when dealing with pointers to the structure
15831 type within the structure itself. */
15832 set_die_type (die, type, cu);
15834 /* set_die_type should be already done. */
15835 set_descriptive_type (type, die, cu);
15840 /* A helper for process_structure_scope that handles a single member
15844 handle_struct_member_die (struct die_info *child_die, struct type *type,
15845 struct field_info *fi,
15846 std::vector<struct symbol *> *template_args,
15847 struct dwarf2_cu *cu)
15849 if (child_die->tag == DW_TAG_member
15850 || child_die->tag == DW_TAG_variable
15851 || child_die->tag == DW_TAG_variant_part)
15853 /* NOTE: carlton/2002-11-05: A C++ static data member
15854 should be a DW_TAG_member that is a declaration, but
15855 all versions of G++ as of this writing (so through at
15856 least 3.2.1) incorrectly generate DW_TAG_variable
15857 tags for them instead. */
15858 dwarf2_add_field (fi, child_die, cu);
15860 else if (child_die->tag == DW_TAG_subprogram)
15862 /* Rust doesn't have member functions in the C++ sense.
15863 However, it does emit ordinary functions as children
15864 of a struct DIE. */
15865 if (cu->language == language_rust)
15866 read_func_scope (child_die, cu);
15869 /* C++ member function. */
15870 dwarf2_add_member_fn (fi, child_die, type, cu);
15873 else if (child_die->tag == DW_TAG_inheritance)
15875 /* C++ base class field. */
15876 dwarf2_add_field (fi, child_die, cu);
15878 else if (type_can_define_types (child_die))
15879 dwarf2_add_type_defn (fi, child_die, cu);
15880 else if (child_die->tag == DW_TAG_template_type_param
15881 || child_die->tag == DW_TAG_template_value_param)
15883 struct symbol *arg = new_symbol (child_die, NULL, cu);
15886 template_args->push_back (arg);
15888 else if (child_die->tag == DW_TAG_variant)
15890 /* In a variant we want to get the discriminant and also add a
15891 field for our sole member child. */
15892 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15894 for (die_info *variant_child = child_die->child;
15895 variant_child != NULL;
15896 variant_child = sibling_die (variant_child))
15898 if (variant_child->tag == DW_TAG_member)
15900 handle_struct_member_die (variant_child, type, fi,
15901 template_args, cu);
15902 /* Only handle the one. */
15907 /* We don't handle this but we might as well report it if we see
15909 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15910 complaint (_("DW_AT_discr_list is not supported yet"
15911 " - DIE at %s [in module %s]"),
15912 sect_offset_str (child_die->sect_off),
15913 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15915 /* The first field was just added, so we can stash the
15916 discriminant there. */
15917 gdb_assert (!fi->fields.empty ());
15919 fi->fields.back ().variant.default_branch = true;
15921 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15925 /* Finish creating a structure or union type, including filling in
15926 its members and creating a symbol for it. */
15929 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15932 struct die_info *child_die;
15935 type = get_die_type (die, cu);
15937 type = read_structure_type (die, cu);
15939 /* When reading a DW_TAG_variant_part, we need to notice when we
15940 read the discriminant member, so we can record it later in the
15941 discriminant_info. */
15942 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15943 sect_offset discr_offset;
15944 bool has_template_parameters = false;
15946 if (is_variant_part)
15948 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15951 /* Maybe it's a univariant form, an extension we support.
15952 In this case arrange not to check the offset. */
15953 is_variant_part = false;
15955 else if (attr_form_is_ref (discr))
15957 struct dwarf2_cu *target_cu = cu;
15958 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15960 discr_offset = target_die->sect_off;
15964 complaint (_("DW_AT_discr does not have DIE reference form"
15965 " - DIE at %s [in module %s]"),
15966 sect_offset_str (die->sect_off),
15967 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15968 is_variant_part = false;
15972 if (die->child != NULL && ! die_is_declaration (die, cu))
15974 struct field_info fi;
15975 std::vector<struct symbol *> template_args;
15977 child_die = die->child;
15979 while (child_die && child_die->tag)
15981 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15983 if (is_variant_part && discr_offset == child_die->sect_off)
15984 fi.fields.back ().variant.is_discriminant = true;
15986 child_die = sibling_die (child_die);
15989 /* Attach template arguments to type. */
15990 if (!template_args.empty ())
15992 has_template_parameters = true;
15993 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15994 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15995 TYPE_TEMPLATE_ARGUMENTS (type)
15996 = XOBNEWVEC (&objfile->objfile_obstack,
15998 TYPE_N_TEMPLATE_ARGUMENTS (type));
15999 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16000 template_args.data (),
16001 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16002 * sizeof (struct symbol *)));
16005 /* Attach fields and member functions to the type. */
16007 dwarf2_attach_fields_to_type (&fi, type, cu);
16008 if (!fi.fnfieldlists.empty ())
16010 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16012 /* Get the type which refers to the base class (possibly this
16013 class itself) which contains the vtable pointer for the current
16014 class from the DW_AT_containing_type attribute. This use of
16015 DW_AT_containing_type is a GNU extension. */
16017 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16019 struct type *t = die_containing_type (die, cu);
16021 set_type_vptr_basetype (type, t);
16026 /* Our own class provides vtbl ptr. */
16027 for (i = TYPE_NFIELDS (t) - 1;
16028 i >= TYPE_N_BASECLASSES (t);
16031 const char *fieldname = TYPE_FIELD_NAME (t, i);
16033 if (is_vtable_name (fieldname, cu))
16035 set_type_vptr_fieldno (type, i);
16040 /* Complain if virtual function table field not found. */
16041 if (i < TYPE_N_BASECLASSES (t))
16042 complaint (_("virtual function table pointer "
16043 "not found when defining class '%s'"),
16044 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16048 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16051 else if (cu->producer
16052 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16054 /* The IBM XLC compiler does not provide direct indication
16055 of the containing type, but the vtable pointer is
16056 always named __vfp. */
16060 for (i = TYPE_NFIELDS (type) - 1;
16061 i >= TYPE_N_BASECLASSES (type);
16064 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16066 set_type_vptr_fieldno (type, i);
16067 set_type_vptr_basetype (type, type);
16074 /* Copy fi.typedef_field_list linked list elements content into the
16075 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16076 if (!fi.typedef_field_list.empty ())
16078 int count = fi.typedef_field_list.size ();
16080 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16081 TYPE_TYPEDEF_FIELD_ARRAY (type)
16082 = ((struct decl_field *)
16084 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16085 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16087 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16088 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16091 /* Copy fi.nested_types_list linked list elements content into the
16092 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16093 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16095 int count = fi.nested_types_list.size ();
16097 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16098 TYPE_NESTED_TYPES_ARRAY (type)
16099 = ((struct decl_field *)
16100 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16101 TYPE_NESTED_TYPES_COUNT (type) = count;
16103 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16104 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16108 quirk_gcc_member_function_pointer (type, objfile);
16109 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16110 cu->rust_unions.push_back (type);
16112 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16113 snapshots) has been known to create a die giving a declaration
16114 for a class that has, as a child, a die giving a definition for a
16115 nested class. So we have to process our children even if the
16116 current die is a declaration. Normally, of course, a declaration
16117 won't have any children at all. */
16119 child_die = die->child;
16121 while (child_die != NULL && child_die->tag)
16123 if (child_die->tag == DW_TAG_member
16124 || child_die->tag == DW_TAG_variable
16125 || child_die->tag == DW_TAG_inheritance
16126 || child_die->tag == DW_TAG_template_value_param
16127 || child_die->tag == DW_TAG_template_type_param)
16132 process_die (child_die, cu);
16134 child_die = sibling_die (child_die);
16137 /* Do not consider external references. According to the DWARF standard,
16138 these DIEs are identified by the fact that they have no byte_size
16139 attribute, and a declaration attribute. */
16140 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16141 || !die_is_declaration (die, cu))
16143 struct symbol *sym = new_symbol (die, type, cu);
16145 if (has_template_parameters)
16147 struct symtab *symtab;
16148 if (sym != nullptr)
16149 symtab = symbol_symtab (sym);
16150 else if (cu->line_header != nullptr)
16152 /* Any related symtab will do. */
16154 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16159 complaint (_("could not find suitable "
16160 "symtab for template parameter"
16161 " - DIE at %s [in module %s]"),
16162 sect_offset_str (die->sect_off),
16163 objfile_name (objfile));
16166 if (symtab != nullptr)
16168 /* Make sure that the symtab is set on the new symbols.
16169 Even though they don't appear in this symtab directly,
16170 other parts of gdb assume that symbols do, and this is
16171 reasonably true. */
16172 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16173 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16179 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16180 update TYPE using some information only available in DIE's children. */
16183 update_enumeration_type_from_children (struct die_info *die,
16185 struct dwarf2_cu *cu)
16187 struct die_info *child_die;
16188 int unsigned_enum = 1;
16192 auto_obstack obstack;
16194 for (child_die = die->child;
16195 child_die != NULL && child_die->tag;
16196 child_die = sibling_die (child_die))
16198 struct attribute *attr;
16200 const gdb_byte *bytes;
16201 struct dwarf2_locexpr_baton *baton;
16204 if (child_die->tag != DW_TAG_enumerator)
16207 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16211 name = dwarf2_name (child_die, cu);
16213 name = "<anonymous enumerator>";
16215 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16216 &value, &bytes, &baton);
16222 else if ((mask & value) != 0)
16227 /* If we already know that the enum type is neither unsigned, nor
16228 a flag type, no need to look at the rest of the enumerates. */
16229 if (!unsigned_enum && !flag_enum)
16234 TYPE_UNSIGNED (type) = 1;
16236 TYPE_FLAG_ENUM (type) = 1;
16239 /* Given a DW_AT_enumeration_type die, set its type. We do not
16240 complete the type's fields yet, or create any symbols. */
16242 static struct type *
16243 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16247 struct attribute *attr;
16250 /* If the definition of this type lives in .debug_types, read that type.
16251 Don't follow DW_AT_specification though, that will take us back up
16252 the chain and we want to go down. */
16253 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16256 type = get_DW_AT_signature_type (die, attr, cu);
16258 /* The type's CU may not be the same as CU.
16259 Ensure TYPE is recorded with CU in die_type_hash. */
16260 return set_die_type (die, type, cu);
16263 type = alloc_type (objfile);
16265 TYPE_CODE (type) = TYPE_CODE_ENUM;
16266 name = dwarf2_full_name (NULL, die, cu);
16268 TYPE_NAME (type) = name;
16270 attr = dwarf2_attr (die, DW_AT_type, cu);
16273 struct type *underlying_type = die_type (die, cu);
16275 TYPE_TARGET_TYPE (type) = underlying_type;
16278 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16281 TYPE_LENGTH (type) = DW_UNSND (attr);
16285 TYPE_LENGTH (type) = 0;
16288 maybe_set_alignment (cu, die, type);
16290 /* The enumeration DIE can be incomplete. In Ada, any type can be
16291 declared as private in the package spec, and then defined only
16292 inside the package body. Such types are known as Taft Amendment
16293 Types. When another package uses such a type, an incomplete DIE
16294 may be generated by the compiler. */
16295 if (die_is_declaration (die, cu))
16296 TYPE_STUB (type) = 1;
16298 /* Finish the creation of this type by using the enum's children.
16299 We must call this even when the underlying type has been provided
16300 so that we can determine if we're looking at a "flag" enum. */
16301 update_enumeration_type_from_children (die, type, cu);
16303 /* If this type has an underlying type that is not a stub, then we
16304 may use its attributes. We always use the "unsigned" attribute
16305 in this situation, because ordinarily we guess whether the type
16306 is unsigned -- but the guess can be wrong and the underlying type
16307 can tell us the reality. However, we defer to a local size
16308 attribute if one exists, because this lets the compiler override
16309 the underlying type if needed. */
16310 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16312 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16313 if (TYPE_LENGTH (type) == 0)
16314 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16315 if (TYPE_RAW_ALIGN (type) == 0
16316 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16317 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16320 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16322 return set_die_type (die, type, cu);
16325 /* Given a pointer to a die which begins an enumeration, process all
16326 the dies that define the members of the enumeration, and create the
16327 symbol for the enumeration type.
16329 NOTE: We reverse the order of the element list. */
16332 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16334 struct type *this_type;
16336 this_type = get_die_type (die, cu);
16337 if (this_type == NULL)
16338 this_type = read_enumeration_type (die, cu);
16340 if (die->child != NULL)
16342 struct die_info *child_die;
16343 struct symbol *sym;
16344 struct field *fields = NULL;
16345 int num_fields = 0;
16348 child_die = die->child;
16349 while (child_die && child_die->tag)
16351 if (child_die->tag != DW_TAG_enumerator)
16353 process_die (child_die, cu);
16357 name = dwarf2_name (child_die, cu);
16360 sym = new_symbol (child_die, this_type, cu);
16362 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16364 fields = (struct field *)
16366 (num_fields + DW_FIELD_ALLOC_CHUNK)
16367 * sizeof (struct field));
16370 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16371 FIELD_TYPE (fields[num_fields]) = NULL;
16372 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16373 FIELD_BITSIZE (fields[num_fields]) = 0;
16379 child_die = sibling_die (child_die);
16384 TYPE_NFIELDS (this_type) = num_fields;
16385 TYPE_FIELDS (this_type) = (struct field *)
16386 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16387 memcpy (TYPE_FIELDS (this_type), fields,
16388 sizeof (struct field) * num_fields);
16393 /* If we are reading an enum from a .debug_types unit, and the enum
16394 is a declaration, and the enum is not the signatured type in the
16395 unit, then we do not want to add a symbol for it. Adding a
16396 symbol would in some cases obscure the true definition of the
16397 enum, giving users an incomplete type when the definition is
16398 actually available. Note that we do not want to do this for all
16399 enums which are just declarations, because C++0x allows forward
16400 enum declarations. */
16401 if (cu->per_cu->is_debug_types
16402 && die_is_declaration (die, cu))
16404 struct signatured_type *sig_type;
16406 sig_type = (struct signatured_type *) cu->per_cu;
16407 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16408 if (sig_type->type_offset_in_section != die->sect_off)
16412 new_symbol (die, this_type, cu);
16415 /* Extract all information from a DW_TAG_array_type DIE and put it in
16416 the DIE's type field. For now, this only handles one dimensional
16419 static struct type *
16420 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16422 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16423 struct die_info *child_die;
16425 struct type *element_type, *range_type, *index_type;
16426 struct attribute *attr;
16428 struct dynamic_prop *byte_stride_prop = NULL;
16429 unsigned int bit_stride = 0;
16431 element_type = die_type (die, cu);
16433 /* The die_type call above may have already set the type for this DIE. */
16434 type = get_die_type (die, cu);
16438 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16444 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16445 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16448 complaint (_("unable to read array DW_AT_byte_stride "
16449 " - DIE at %s [in module %s]"),
16450 sect_offset_str (die->sect_off),
16451 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16452 /* Ignore this attribute. We will likely not be able to print
16453 arrays of this type correctly, but there is little we can do
16454 to help if we cannot read the attribute's value. */
16455 byte_stride_prop = NULL;
16459 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16461 bit_stride = DW_UNSND (attr);
16463 /* Irix 6.2 native cc creates array types without children for
16464 arrays with unspecified length. */
16465 if (die->child == NULL)
16467 index_type = objfile_type (objfile)->builtin_int;
16468 range_type = create_static_range_type (NULL, index_type, 0, -1);
16469 type = create_array_type_with_stride (NULL, element_type, range_type,
16470 byte_stride_prop, bit_stride);
16471 return set_die_type (die, type, cu);
16474 std::vector<struct type *> range_types;
16475 child_die = die->child;
16476 while (child_die && child_die->tag)
16478 if (child_die->tag == DW_TAG_subrange_type)
16480 struct type *child_type = read_type_die (child_die, cu);
16482 if (child_type != NULL)
16484 /* The range type was succesfully read. Save it for the
16485 array type creation. */
16486 range_types.push_back (child_type);
16489 child_die = sibling_die (child_die);
16492 /* Dwarf2 dimensions are output from left to right, create the
16493 necessary array types in backwards order. */
16495 type = element_type;
16497 if (read_array_order (die, cu) == DW_ORD_col_major)
16501 while (i < range_types.size ())
16502 type = create_array_type_with_stride (NULL, type, range_types[i++],
16503 byte_stride_prop, bit_stride);
16507 size_t ndim = range_types.size ();
16509 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16510 byte_stride_prop, bit_stride);
16513 /* Understand Dwarf2 support for vector types (like they occur on
16514 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16515 array type. This is not part of the Dwarf2/3 standard yet, but a
16516 custom vendor extension. The main difference between a regular
16517 array and the vector variant is that vectors are passed by value
16519 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16521 make_vector_type (type);
16523 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16524 implementation may choose to implement triple vectors using this
16526 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16529 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16530 TYPE_LENGTH (type) = DW_UNSND (attr);
16532 complaint (_("DW_AT_byte_size for array type smaller "
16533 "than the total size of elements"));
16536 name = dwarf2_name (die, cu);
16538 TYPE_NAME (type) = name;
16540 maybe_set_alignment (cu, die, type);
16542 /* Install the type in the die. */
16543 set_die_type (die, type, cu);
16545 /* set_die_type should be already done. */
16546 set_descriptive_type (type, die, cu);
16551 static enum dwarf_array_dim_ordering
16552 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16554 struct attribute *attr;
16556 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16559 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16561 /* GNU F77 is a special case, as at 08/2004 array type info is the
16562 opposite order to the dwarf2 specification, but data is still
16563 laid out as per normal fortran.
16565 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16566 version checking. */
16568 if (cu->language == language_fortran
16569 && cu->producer && strstr (cu->producer, "GNU F77"))
16571 return DW_ORD_row_major;
16574 switch (cu->language_defn->la_array_ordering)
16576 case array_column_major:
16577 return DW_ORD_col_major;
16578 case array_row_major:
16580 return DW_ORD_row_major;
16584 /* Extract all information from a DW_TAG_set_type DIE and put it in
16585 the DIE's type field. */
16587 static struct type *
16588 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16590 struct type *domain_type, *set_type;
16591 struct attribute *attr;
16593 domain_type = die_type (die, cu);
16595 /* The die_type call above may have already set the type for this DIE. */
16596 set_type = get_die_type (die, cu);
16600 set_type = create_set_type (NULL, domain_type);
16602 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16604 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16606 maybe_set_alignment (cu, die, set_type);
16608 return set_die_type (die, set_type, cu);
16611 /* A helper for read_common_block that creates a locexpr baton.
16612 SYM is the symbol which we are marking as computed.
16613 COMMON_DIE is the DIE for the common block.
16614 COMMON_LOC is the location expression attribute for the common
16616 MEMBER_LOC is the location expression attribute for the particular
16617 member of the common block that we are processing.
16618 CU is the CU from which the above come. */
16621 mark_common_block_symbol_computed (struct symbol *sym,
16622 struct die_info *common_die,
16623 struct attribute *common_loc,
16624 struct attribute *member_loc,
16625 struct dwarf2_cu *cu)
16627 struct dwarf2_per_objfile *dwarf2_per_objfile
16628 = cu->per_cu->dwarf2_per_objfile;
16629 struct objfile *objfile = dwarf2_per_objfile->objfile;
16630 struct dwarf2_locexpr_baton *baton;
16632 unsigned int cu_off;
16633 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16634 LONGEST offset = 0;
16636 gdb_assert (common_loc && member_loc);
16637 gdb_assert (attr_form_is_block (common_loc));
16638 gdb_assert (attr_form_is_block (member_loc)
16639 || attr_form_is_constant (member_loc));
16641 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16642 baton->per_cu = cu->per_cu;
16643 gdb_assert (baton->per_cu);
16645 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16647 if (attr_form_is_constant (member_loc))
16649 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16650 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16653 baton->size += DW_BLOCK (member_loc)->size;
16655 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16658 *ptr++ = DW_OP_call4;
16659 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16660 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16663 if (attr_form_is_constant (member_loc))
16665 *ptr++ = DW_OP_addr;
16666 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16667 ptr += cu->header.addr_size;
16671 /* We have to copy the data here, because DW_OP_call4 will only
16672 use a DW_AT_location attribute. */
16673 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16674 ptr += DW_BLOCK (member_loc)->size;
16677 *ptr++ = DW_OP_plus;
16678 gdb_assert (ptr - baton->data == baton->size);
16680 SYMBOL_LOCATION_BATON (sym) = baton;
16681 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16684 /* Create appropriate locally-scoped variables for all the
16685 DW_TAG_common_block entries. Also create a struct common_block
16686 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16687 is used to sepate the common blocks name namespace from regular
16691 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16693 struct attribute *attr;
16695 attr = dwarf2_attr (die, DW_AT_location, cu);
16698 /* Support the .debug_loc offsets. */
16699 if (attr_form_is_block (attr))
16703 else if (attr_form_is_section_offset (attr))
16705 dwarf2_complex_location_expr_complaint ();
16710 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16711 "common block member");
16716 if (die->child != NULL)
16718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16719 struct die_info *child_die;
16720 size_t n_entries = 0, size;
16721 struct common_block *common_block;
16722 struct symbol *sym;
16724 for (child_die = die->child;
16725 child_die && child_die->tag;
16726 child_die = sibling_die (child_die))
16729 size = (sizeof (struct common_block)
16730 + (n_entries - 1) * sizeof (struct symbol *));
16732 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16734 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16735 common_block->n_entries = 0;
16737 for (child_die = die->child;
16738 child_die && child_die->tag;
16739 child_die = sibling_die (child_die))
16741 /* Create the symbol in the DW_TAG_common_block block in the current
16743 sym = new_symbol (child_die, NULL, cu);
16746 struct attribute *member_loc;
16748 common_block->contents[common_block->n_entries++] = sym;
16750 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16754 /* GDB has handled this for a long time, but it is
16755 not specified by DWARF. It seems to have been
16756 emitted by gfortran at least as recently as:
16757 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16758 complaint (_("Variable in common block has "
16759 "DW_AT_data_member_location "
16760 "- DIE at %s [in module %s]"),
16761 sect_offset_str (child_die->sect_off),
16762 objfile_name (objfile));
16764 if (attr_form_is_section_offset (member_loc))
16765 dwarf2_complex_location_expr_complaint ();
16766 else if (attr_form_is_constant (member_loc)
16767 || attr_form_is_block (member_loc))
16770 mark_common_block_symbol_computed (sym, die, attr,
16774 dwarf2_complex_location_expr_complaint ();
16779 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16780 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16784 /* Create a type for a C++ namespace. */
16786 static struct type *
16787 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16790 const char *previous_prefix, *name;
16794 /* For extensions, reuse the type of the original namespace. */
16795 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16797 struct die_info *ext_die;
16798 struct dwarf2_cu *ext_cu = cu;
16800 ext_die = dwarf2_extension (die, &ext_cu);
16801 type = read_type_die (ext_die, ext_cu);
16803 /* EXT_CU may not be the same as CU.
16804 Ensure TYPE is recorded with CU in die_type_hash. */
16805 return set_die_type (die, type, cu);
16808 name = namespace_name (die, &is_anonymous, cu);
16810 /* Now build the name of the current namespace. */
16812 previous_prefix = determine_prefix (die, cu);
16813 if (previous_prefix[0] != '\0')
16814 name = typename_concat (&objfile->objfile_obstack,
16815 previous_prefix, name, 0, cu);
16817 /* Create the type. */
16818 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16820 return set_die_type (die, type, cu);
16823 /* Read a namespace scope. */
16826 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16831 /* Add a symbol associated to this if we haven't seen the namespace
16832 before. Also, add a using directive if it's an anonymous
16835 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16839 type = read_type_die (die, cu);
16840 new_symbol (die, type, cu);
16842 namespace_name (die, &is_anonymous, cu);
16845 const char *previous_prefix = determine_prefix (die, cu);
16847 std::vector<const char *> excludes;
16848 add_using_directive (using_directives (cu),
16849 previous_prefix, TYPE_NAME (type), NULL,
16850 NULL, excludes, 0, &objfile->objfile_obstack);
16854 if (die->child != NULL)
16856 struct die_info *child_die = die->child;
16858 while (child_die && child_die->tag)
16860 process_die (child_die, cu);
16861 child_die = sibling_die (child_die);
16866 /* Read a Fortran module as type. This DIE can be only a declaration used for
16867 imported module. Still we need that type as local Fortran "use ... only"
16868 declaration imports depend on the created type in determine_prefix. */
16870 static struct type *
16871 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16874 const char *module_name;
16877 module_name = dwarf2_name (die, cu);
16878 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16880 return set_die_type (die, type, cu);
16883 /* Read a Fortran module. */
16886 read_module (struct die_info *die, struct dwarf2_cu *cu)
16888 struct die_info *child_die = die->child;
16891 type = read_type_die (die, cu);
16892 new_symbol (die, type, cu);
16894 while (child_die && child_die->tag)
16896 process_die (child_die, cu);
16897 child_die = sibling_die (child_die);
16901 /* Return the name of the namespace represented by DIE. Set
16902 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16905 static const char *
16906 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16908 struct die_info *current_die;
16909 const char *name = NULL;
16911 /* Loop through the extensions until we find a name. */
16913 for (current_die = die;
16914 current_die != NULL;
16915 current_die = dwarf2_extension (die, &cu))
16917 /* We don't use dwarf2_name here so that we can detect the absence
16918 of a name -> anonymous namespace. */
16919 name = dwarf2_string_attr (die, DW_AT_name, cu);
16925 /* Is it an anonymous namespace? */
16927 *is_anonymous = (name == NULL);
16929 name = CP_ANONYMOUS_NAMESPACE_STR;
16934 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16935 the user defined type vector. */
16937 static struct type *
16938 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16940 struct gdbarch *gdbarch
16941 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16942 struct comp_unit_head *cu_header = &cu->header;
16944 struct attribute *attr_byte_size;
16945 struct attribute *attr_address_class;
16946 int byte_size, addr_class;
16947 struct type *target_type;
16949 target_type = die_type (die, cu);
16951 /* The die_type call above may have already set the type for this DIE. */
16952 type = get_die_type (die, cu);
16956 type = lookup_pointer_type (target_type);
16958 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16959 if (attr_byte_size)
16960 byte_size = DW_UNSND (attr_byte_size);
16962 byte_size = cu_header->addr_size;
16964 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16965 if (attr_address_class)
16966 addr_class = DW_UNSND (attr_address_class);
16968 addr_class = DW_ADDR_none;
16970 ULONGEST alignment = get_alignment (cu, die);
16972 /* If the pointer size, alignment, or address class is different
16973 than the default, create a type variant marked as such and set
16974 the length accordingly. */
16975 if (TYPE_LENGTH (type) != byte_size
16976 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16977 && alignment != TYPE_RAW_ALIGN (type))
16978 || addr_class != DW_ADDR_none)
16980 if (gdbarch_address_class_type_flags_p (gdbarch))
16984 type_flags = gdbarch_address_class_type_flags
16985 (gdbarch, byte_size, addr_class);
16986 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16988 type = make_type_with_address_space (type, type_flags);
16990 else if (TYPE_LENGTH (type) != byte_size)
16992 complaint (_("invalid pointer size %d"), byte_size);
16994 else if (TYPE_RAW_ALIGN (type) != alignment)
16996 complaint (_("Invalid DW_AT_alignment"
16997 " - DIE at %s [in module %s]"),
16998 sect_offset_str (die->sect_off),
16999 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17003 /* Should we also complain about unhandled address classes? */
17007 TYPE_LENGTH (type) = byte_size;
17008 set_type_align (type, alignment);
17009 return set_die_type (die, type, cu);
17012 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17013 the user defined type vector. */
17015 static struct type *
17016 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17019 struct type *to_type;
17020 struct type *domain;
17022 to_type = die_type (die, cu);
17023 domain = die_containing_type (die, cu);
17025 /* The calls above may have already set the type for this DIE. */
17026 type = get_die_type (die, cu);
17030 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17031 type = lookup_methodptr_type (to_type);
17032 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17034 struct type *new_type
17035 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17037 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17038 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17039 TYPE_VARARGS (to_type));
17040 type = lookup_methodptr_type (new_type);
17043 type = lookup_memberptr_type (to_type, domain);
17045 return set_die_type (die, type, cu);
17048 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17049 the user defined type vector. */
17051 static struct type *
17052 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17053 enum type_code refcode)
17055 struct comp_unit_head *cu_header = &cu->header;
17056 struct type *type, *target_type;
17057 struct attribute *attr;
17059 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17061 target_type = die_type (die, cu);
17063 /* The die_type call above may have already set the type for this DIE. */
17064 type = get_die_type (die, cu);
17068 type = lookup_reference_type (target_type, refcode);
17069 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17072 TYPE_LENGTH (type) = DW_UNSND (attr);
17076 TYPE_LENGTH (type) = cu_header->addr_size;
17078 maybe_set_alignment (cu, die, type);
17079 return set_die_type (die, type, cu);
17082 /* Add the given cv-qualifiers to the element type of the array. GCC
17083 outputs DWARF type qualifiers that apply to an array, not the
17084 element type. But GDB relies on the array element type to carry
17085 the cv-qualifiers. This mimics section 6.7.3 of the C99
17088 static struct type *
17089 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17090 struct type *base_type, int cnst, int voltl)
17092 struct type *el_type, *inner_array;
17094 base_type = copy_type (base_type);
17095 inner_array = base_type;
17097 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17099 TYPE_TARGET_TYPE (inner_array) =
17100 copy_type (TYPE_TARGET_TYPE (inner_array));
17101 inner_array = TYPE_TARGET_TYPE (inner_array);
17104 el_type = TYPE_TARGET_TYPE (inner_array);
17105 cnst |= TYPE_CONST (el_type);
17106 voltl |= TYPE_VOLATILE (el_type);
17107 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17109 return set_die_type (die, base_type, cu);
17112 static struct type *
17113 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17115 struct type *base_type, *cv_type;
17117 base_type = die_type (die, cu);
17119 /* The die_type call above may have already set the type for this DIE. */
17120 cv_type = get_die_type (die, cu);
17124 /* In case the const qualifier is applied to an array type, the element type
17125 is so qualified, not the array type (section 6.7.3 of C99). */
17126 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17127 return add_array_cv_type (die, cu, base_type, 1, 0);
17129 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17130 return set_die_type (die, cv_type, cu);
17133 static struct type *
17134 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17136 struct type *base_type, *cv_type;
17138 base_type = die_type (die, cu);
17140 /* The die_type call above may have already set the type for this DIE. */
17141 cv_type = get_die_type (die, cu);
17145 /* In case the volatile qualifier is applied to an array type, the
17146 element type is so qualified, not the array type (section 6.7.3
17148 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17149 return add_array_cv_type (die, cu, base_type, 0, 1);
17151 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17152 return set_die_type (die, cv_type, cu);
17155 /* Handle DW_TAG_restrict_type. */
17157 static struct type *
17158 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17160 struct type *base_type, *cv_type;
17162 base_type = die_type (die, cu);
17164 /* The die_type call above may have already set the type for this DIE. */
17165 cv_type = get_die_type (die, cu);
17169 cv_type = make_restrict_type (base_type);
17170 return set_die_type (die, cv_type, cu);
17173 /* Handle DW_TAG_atomic_type. */
17175 static struct type *
17176 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17178 struct type *base_type, *cv_type;
17180 base_type = die_type (die, cu);
17182 /* The die_type call above may have already set the type for this DIE. */
17183 cv_type = get_die_type (die, cu);
17187 cv_type = make_atomic_type (base_type);
17188 return set_die_type (die, cv_type, cu);
17191 /* Extract all information from a DW_TAG_string_type DIE and add to
17192 the user defined type vector. It isn't really a user defined type,
17193 but it behaves like one, with other DIE's using an AT_user_def_type
17194 attribute to reference it. */
17196 static struct type *
17197 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17201 struct type *type, *range_type, *index_type, *char_type;
17202 struct attribute *attr;
17203 unsigned int length;
17205 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17208 length = DW_UNSND (attr);
17212 /* Check for the DW_AT_byte_size attribute. */
17213 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17216 length = DW_UNSND (attr);
17224 index_type = objfile_type (objfile)->builtin_int;
17225 range_type = create_static_range_type (NULL, index_type, 1, length);
17226 char_type = language_string_char_type (cu->language_defn, gdbarch);
17227 type = create_string_type (NULL, char_type, range_type);
17229 return set_die_type (die, type, cu);
17232 /* Assuming that DIE corresponds to a function, returns nonzero
17233 if the function is prototyped. */
17236 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17238 struct attribute *attr;
17240 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17241 if (attr && (DW_UNSND (attr) != 0))
17244 /* The DWARF standard implies that the DW_AT_prototyped attribute
17245 is only meaninful for C, but the concept also extends to other
17246 languages that allow unprototyped functions (Eg: Objective C).
17247 For all other languages, assume that functions are always
17249 if (cu->language != language_c
17250 && cu->language != language_objc
17251 && cu->language != language_opencl)
17254 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17255 prototyped and unprototyped functions; default to prototyped,
17256 since that is more common in modern code (and RealView warns
17257 about unprototyped functions). */
17258 if (producer_is_realview (cu->producer))
17264 /* Handle DIES due to C code like:
17268 int (*funcp)(int a, long l);
17272 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17274 static struct type *
17275 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17277 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17278 struct type *type; /* Type that this function returns. */
17279 struct type *ftype; /* Function that returns above type. */
17280 struct attribute *attr;
17282 type = die_type (die, cu);
17284 /* The die_type call above may have already set the type for this DIE. */
17285 ftype = get_die_type (die, cu);
17289 ftype = lookup_function_type (type);
17291 if (prototyped_function_p (die, cu))
17292 TYPE_PROTOTYPED (ftype) = 1;
17294 /* Store the calling convention in the type if it's available in
17295 the subroutine die. Otherwise set the calling convention to
17296 the default value DW_CC_normal. */
17297 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17299 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17300 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17301 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17303 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17305 /* Record whether the function returns normally to its caller or not
17306 if the DWARF producer set that information. */
17307 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17308 if (attr && (DW_UNSND (attr) != 0))
17309 TYPE_NO_RETURN (ftype) = 1;
17311 /* We need to add the subroutine type to the die immediately so
17312 we don't infinitely recurse when dealing with parameters
17313 declared as the same subroutine type. */
17314 set_die_type (die, ftype, cu);
17316 if (die->child != NULL)
17318 struct type *void_type = objfile_type (objfile)->builtin_void;
17319 struct die_info *child_die;
17320 int nparams, iparams;
17322 /* Count the number of parameters.
17323 FIXME: GDB currently ignores vararg functions, but knows about
17324 vararg member functions. */
17326 child_die = die->child;
17327 while (child_die && child_die->tag)
17329 if (child_die->tag == DW_TAG_formal_parameter)
17331 else if (child_die->tag == DW_TAG_unspecified_parameters)
17332 TYPE_VARARGS (ftype) = 1;
17333 child_die = sibling_die (child_die);
17336 /* Allocate storage for parameters and fill them in. */
17337 TYPE_NFIELDS (ftype) = nparams;
17338 TYPE_FIELDS (ftype) = (struct field *)
17339 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17341 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17342 even if we error out during the parameters reading below. */
17343 for (iparams = 0; iparams < nparams; iparams++)
17344 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17347 child_die = die->child;
17348 while (child_die && child_die->tag)
17350 if (child_die->tag == DW_TAG_formal_parameter)
17352 struct type *arg_type;
17354 /* DWARF version 2 has no clean way to discern C++
17355 static and non-static member functions. G++ helps
17356 GDB by marking the first parameter for non-static
17357 member functions (which is the this pointer) as
17358 artificial. We pass this information to
17359 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17361 DWARF version 3 added DW_AT_object_pointer, which GCC
17362 4.5 does not yet generate. */
17363 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17365 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17367 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17368 arg_type = die_type (child_die, cu);
17370 /* RealView does not mark THIS as const, which the testsuite
17371 expects. GCC marks THIS as const in method definitions,
17372 but not in the class specifications (GCC PR 43053). */
17373 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17374 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17377 struct dwarf2_cu *arg_cu = cu;
17378 const char *name = dwarf2_name (child_die, cu);
17380 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17383 /* If the compiler emits this, use it. */
17384 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17387 else if (name && strcmp (name, "this") == 0)
17388 /* Function definitions will have the argument names. */
17390 else if (name == NULL && iparams == 0)
17391 /* Declarations may not have the names, so like
17392 elsewhere in GDB, assume an artificial first
17393 argument is "this". */
17397 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17401 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17404 child_die = sibling_die (child_die);
17411 static struct type *
17412 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17414 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17415 const char *name = NULL;
17416 struct type *this_type, *target_type;
17418 name = dwarf2_full_name (NULL, die, cu);
17419 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17420 TYPE_TARGET_STUB (this_type) = 1;
17421 set_die_type (die, this_type, cu);
17422 target_type = die_type (die, cu);
17423 if (target_type != this_type)
17424 TYPE_TARGET_TYPE (this_type) = target_type;
17427 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17428 spec and cause infinite loops in GDB. */
17429 complaint (_("Self-referential DW_TAG_typedef "
17430 "- DIE at %s [in module %s]"),
17431 sect_offset_str (die->sect_off), objfile_name (objfile));
17432 TYPE_TARGET_TYPE (this_type) = NULL;
17437 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17438 (which may be different from NAME) to the architecture back-end to allow
17439 it to guess the correct format if necessary. */
17441 static struct type *
17442 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17443 const char *name_hint)
17445 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17446 const struct floatformat **format;
17449 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17451 type = init_float_type (objfile, bits, name, format);
17453 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17458 /* Allocate an integer type of size BITS and name NAME. */
17460 static struct type *
17461 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17462 int bits, int unsigned_p, const char *name)
17466 /* Versions of Intel's C Compiler generate an integer type called "void"
17467 instead of using DW_TAG_unspecified_type. This has been seen on
17468 at least versions 14, 17, and 18. */
17469 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17470 && strcmp (name, "void") == 0)
17471 type = objfile_type (objfile)->builtin_void;
17473 type = init_integer_type (objfile, bits, unsigned_p, name);
17478 /* Initialise and return a floating point type of size BITS suitable for
17479 use as a component of a complex number. The NAME_HINT is passed through
17480 when initialising the floating point type and is the name of the complex
17483 As DWARF doesn't currently provide an explicit name for the components
17484 of a complex number, but it can be helpful to have these components
17485 named, we try to select a suitable name based on the size of the
17487 static struct type *
17488 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17489 struct objfile *objfile,
17490 int bits, const char *name_hint)
17492 gdbarch *gdbarch = get_objfile_arch (objfile);
17493 struct type *tt = nullptr;
17495 /* Try to find a suitable floating point builtin type of size BITS.
17496 We're going to use the name of this type as the name for the complex
17497 target type that we are about to create. */
17498 switch (cu->language)
17500 case language_fortran:
17504 tt = builtin_f_type (gdbarch)->builtin_real;
17507 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17509 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17511 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17519 tt = builtin_type (gdbarch)->builtin_float;
17522 tt = builtin_type (gdbarch)->builtin_double;
17524 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17526 tt = builtin_type (gdbarch)->builtin_long_double;
17532 /* If the type we found doesn't match the size we were looking for, then
17533 pretend we didn't find a type at all, the complex target type we
17534 create will then be nameless. */
17535 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17538 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17539 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17542 /* Find a representation of a given base type and install
17543 it in the TYPE field of the die. */
17545 static struct type *
17546 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17548 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17550 struct attribute *attr;
17551 int encoding = 0, bits = 0;
17554 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17557 encoding = DW_UNSND (attr);
17559 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17562 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17564 name = dwarf2_name (die, cu);
17567 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17572 case DW_ATE_address:
17573 /* Turn DW_ATE_address into a void * pointer. */
17574 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17575 type = init_pointer_type (objfile, bits, name, type);
17577 case DW_ATE_boolean:
17578 type = init_boolean_type (objfile, bits, 1, name);
17580 case DW_ATE_complex_float:
17581 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17582 type = init_complex_type (objfile, name, type);
17584 case DW_ATE_decimal_float:
17585 type = init_decfloat_type (objfile, bits, name);
17588 type = dwarf2_init_float_type (objfile, bits, name, name);
17590 case DW_ATE_signed:
17591 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17593 case DW_ATE_unsigned:
17594 if (cu->language == language_fortran
17596 && startswith (name, "character("))
17597 type = init_character_type (objfile, bits, 1, name);
17599 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17601 case DW_ATE_signed_char:
17602 if (cu->language == language_ada || cu->language == language_m2
17603 || cu->language == language_pascal
17604 || cu->language == language_fortran)
17605 type = init_character_type (objfile, bits, 0, name);
17607 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17609 case DW_ATE_unsigned_char:
17610 if (cu->language == language_ada || cu->language == language_m2
17611 || cu->language == language_pascal
17612 || cu->language == language_fortran
17613 || cu->language == language_rust)
17614 type = init_character_type (objfile, bits, 1, name);
17616 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17620 gdbarch *arch = get_objfile_arch (objfile);
17623 type = builtin_type (arch)->builtin_char16;
17624 else if (bits == 32)
17625 type = builtin_type (arch)->builtin_char32;
17628 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17630 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17632 return set_die_type (die, type, cu);
17637 complaint (_("unsupported DW_AT_encoding: '%s'"),
17638 dwarf_type_encoding_name (encoding));
17639 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17643 if (name && strcmp (name, "char") == 0)
17644 TYPE_NOSIGN (type) = 1;
17646 maybe_set_alignment (cu, die, type);
17648 return set_die_type (die, type, cu);
17651 /* Parse dwarf attribute if it's a block, reference or constant and put the
17652 resulting value of the attribute into struct bound_prop.
17653 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17656 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17657 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17659 struct dwarf2_property_baton *baton;
17660 struct obstack *obstack
17661 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17663 if (attr == NULL || prop == NULL)
17666 if (attr_form_is_block (attr))
17668 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17669 baton->referenced_type = NULL;
17670 baton->locexpr.per_cu = cu->per_cu;
17671 baton->locexpr.size = DW_BLOCK (attr)->size;
17672 baton->locexpr.data = DW_BLOCK (attr)->data;
17673 prop->data.baton = baton;
17674 prop->kind = PROP_LOCEXPR;
17675 gdb_assert (prop->data.baton != NULL);
17677 else if (attr_form_is_ref (attr))
17679 struct dwarf2_cu *target_cu = cu;
17680 struct die_info *target_die;
17681 struct attribute *target_attr;
17683 target_die = follow_die_ref (die, attr, &target_cu);
17684 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17685 if (target_attr == NULL)
17686 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17688 if (target_attr == NULL)
17691 switch (target_attr->name)
17693 case DW_AT_location:
17694 if (attr_form_is_section_offset (target_attr))
17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17697 baton->referenced_type = die_type (target_die, target_cu);
17698 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17699 prop->data.baton = baton;
17700 prop->kind = PROP_LOCLIST;
17701 gdb_assert (prop->data.baton != NULL);
17703 else if (attr_form_is_block (target_attr))
17705 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17706 baton->referenced_type = die_type (target_die, target_cu);
17707 baton->locexpr.per_cu = cu->per_cu;
17708 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17709 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17710 prop->data.baton = baton;
17711 prop->kind = PROP_LOCEXPR;
17712 gdb_assert (prop->data.baton != NULL);
17716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17717 "dynamic property");
17721 case DW_AT_data_member_location:
17725 if (!handle_data_member_location (target_die, target_cu,
17729 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17730 baton->referenced_type = read_type_die (target_die->parent,
17732 baton->offset_info.offset = offset;
17733 baton->offset_info.type = die_type (target_die, target_cu);
17734 prop->data.baton = baton;
17735 prop->kind = PROP_ADDR_OFFSET;
17740 else if (attr_form_is_constant (attr))
17742 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17743 prop->kind = PROP_CONST;
17747 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17748 dwarf2_name (die, cu));
17755 /* Read the given DW_AT_subrange DIE. */
17757 static struct type *
17758 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17760 struct type *base_type, *orig_base_type;
17761 struct type *range_type;
17762 struct attribute *attr;
17763 struct dynamic_prop low, high;
17764 int low_default_is_valid;
17765 int high_bound_is_count = 0;
17767 ULONGEST negative_mask;
17769 orig_base_type = die_type (die, cu);
17770 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17771 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17772 creating the range type, but we use the result of check_typedef
17773 when examining properties of the type. */
17774 base_type = check_typedef (orig_base_type);
17776 /* The die_type call above may have already set the type for this DIE. */
17777 range_type = get_die_type (die, cu);
17781 low.kind = PROP_CONST;
17782 high.kind = PROP_CONST;
17783 high.data.const_val = 0;
17785 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17786 omitting DW_AT_lower_bound. */
17787 switch (cu->language)
17790 case language_cplus:
17791 low.data.const_val = 0;
17792 low_default_is_valid = 1;
17794 case language_fortran:
17795 low.data.const_val = 1;
17796 low_default_is_valid = 1;
17799 case language_objc:
17800 case language_rust:
17801 low.data.const_val = 0;
17802 low_default_is_valid = (cu->header.version >= 4);
17806 case language_pascal:
17807 low.data.const_val = 1;
17808 low_default_is_valid = (cu->header.version >= 4);
17811 low.data.const_val = 0;
17812 low_default_is_valid = 0;
17816 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17818 attr_to_dynamic_prop (attr, die, cu, &low);
17819 else if (!low_default_is_valid)
17820 complaint (_("Missing DW_AT_lower_bound "
17821 "- DIE at %s [in module %s]"),
17822 sect_offset_str (die->sect_off),
17823 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17825 struct attribute *attr_ub, *attr_count;
17826 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17827 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17829 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17830 if (attr_to_dynamic_prop (attr, die, cu, &high))
17832 /* If bounds are constant do the final calculation here. */
17833 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17834 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17836 high_bound_is_count = 1;
17840 if (attr_ub != NULL)
17841 complaint (_("Unresolved DW_AT_upper_bound "
17842 "- DIE at %s [in module %s]"),
17843 sect_offset_str (die->sect_off),
17844 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17845 if (attr_count != NULL)
17846 complaint (_("Unresolved DW_AT_count "
17847 "- DIE at %s [in module %s]"),
17848 sect_offset_str (die->sect_off),
17849 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17854 /* Dwarf-2 specifications explicitly allows to create subrange types
17855 without specifying a base type.
17856 In that case, the base type must be set to the type of
17857 the lower bound, upper bound or count, in that order, if any of these
17858 three attributes references an object that has a type.
17859 If no base type is found, the Dwarf-2 specifications say that
17860 a signed integer type of size equal to the size of an address should
17862 For the following C code: `extern char gdb_int [];'
17863 GCC produces an empty range DIE.
17864 FIXME: muller/2010-05-28: Possible references to object for low bound,
17865 high bound or count are not yet handled by this code. */
17866 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17870 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17871 struct type *int_type = objfile_type (objfile)->builtin_int;
17873 /* Test "int", "long int", and "long long int" objfile types,
17874 and select the first one having a size above or equal to the
17875 architecture address size. */
17876 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17877 base_type = int_type;
17880 int_type = objfile_type (objfile)->builtin_long;
17881 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17882 base_type = int_type;
17885 int_type = objfile_type (objfile)->builtin_long_long;
17886 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17887 base_type = int_type;
17892 /* Normally, the DWARF producers are expected to use a signed
17893 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17894 But this is unfortunately not always the case, as witnessed
17895 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17896 is used instead. To work around that ambiguity, we treat
17897 the bounds as signed, and thus sign-extend their values, when
17898 the base type is signed. */
17900 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17901 if (low.kind == PROP_CONST
17902 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17903 low.data.const_val |= negative_mask;
17904 if (high.kind == PROP_CONST
17905 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17906 high.data.const_val |= negative_mask;
17908 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17910 if (high_bound_is_count)
17911 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17913 /* Ada expects an empty array on no boundary attributes. */
17914 if (attr == NULL && cu->language != language_ada)
17915 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17917 name = dwarf2_name (die, cu);
17919 TYPE_NAME (range_type) = name;
17921 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17923 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17925 maybe_set_alignment (cu, die, range_type);
17927 set_die_type (die, range_type, cu);
17929 /* set_die_type should be already done. */
17930 set_descriptive_type (range_type, die, cu);
17935 static struct type *
17936 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17940 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17942 TYPE_NAME (type) = dwarf2_name (die, cu);
17944 /* In Ada, an unspecified type is typically used when the description
17945 of the type is defered to a different unit. When encountering
17946 such a type, we treat it as a stub, and try to resolve it later on,
17948 if (cu->language == language_ada)
17949 TYPE_STUB (type) = 1;
17951 return set_die_type (die, type, cu);
17954 /* Read a single die and all its descendents. Set the die's sibling
17955 field to NULL; set other fields in the die correctly, and set all
17956 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17957 location of the info_ptr after reading all of those dies. PARENT
17958 is the parent of the die in question. */
17960 static struct die_info *
17961 read_die_and_children (const struct die_reader_specs *reader,
17962 const gdb_byte *info_ptr,
17963 const gdb_byte **new_info_ptr,
17964 struct die_info *parent)
17966 struct die_info *die;
17967 const gdb_byte *cur_ptr;
17970 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17973 *new_info_ptr = cur_ptr;
17976 store_in_ref_table (die, reader->cu);
17979 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17983 *new_info_ptr = cur_ptr;
17986 die->sibling = NULL;
17987 die->parent = parent;
17991 /* Read a die, all of its descendents, and all of its siblings; set
17992 all of the fields of all of the dies correctly. Arguments are as
17993 in read_die_and_children. */
17995 static struct die_info *
17996 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17997 const gdb_byte *info_ptr,
17998 const gdb_byte **new_info_ptr,
17999 struct die_info *parent)
18001 struct die_info *first_die, *last_sibling;
18002 const gdb_byte *cur_ptr;
18004 cur_ptr = info_ptr;
18005 first_die = last_sibling = NULL;
18009 struct die_info *die
18010 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18014 *new_info_ptr = cur_ptr;
18021 last_sibling->sibling = die;
18023 last_sibling = die;
18027 /* Read a die, all of its descendents, and all of its siblings; set
18028 all of the fields of all of the dies correctly. Arguments are as
18029 in read_die_and_children.
18030 This the main entry point for reading a DIE and all its children. */
18032 static struct die_info *
18033 read_die_and_siblings (const struct die_reader_specs *reader,
18034 const gdb_byte *info_ptr,
18035 const gdb_byte **new_info_ptr,
18036 struct die_info *parent)
18038 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18039 new_info_ptr, parent);
18041 if (dwarf_die_debug)
18043 fprintf_unfiltered (gdb_stdlog,
18044 "Read die from %s@0x%x of %s:\n",
18045 get_section_name (reader->die_section),
18046 (unsigned) (info_ptr - reader->die_section->buffer),
18047 bfd_get_filename (reader->abfd));
18048 dump_die (die, dwarf_die_debug);
18054 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18056 The caller is responsible for filling in the extra attributes
18057 and updating (*DIEP)->num_attrs.
18058 Set DIEP to point to a newly allocated die with its information,
18059 except for its child, sibling, and parent fields.
18060 Set HAS_CHILDREN to tell whether the die has children or not. */
18062 static const gdb_byte *
18063 read_full_die_1 (const struct die_reader_specs *reader,
18064 struct die_info **diep, const gdb_byte *info_ptr,
18065 int *has_children, int num_extra_attrs)
18067 unsigned int abbrev_number, bytes_read, i;
18068 struct abbrev_info *abbrev;
18069 struct die_info *die;
18070 struct dwarf2_cu *cu = reader->cu;
18071 bfd *abfd = reader->abfd;
18073 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18074 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18075 info_ptr += bytes_read;
18076 if (!abbrev_number)
18083 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18085 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18087 bfd_get_filename (abfd));
18089 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18090 die->sect_off = sect_off;
18091 die->tag = abbrev->tag;
18092 die->abbrev = abbrev_number;
18094 /* Make the result usable.
18095 The caller needs to update num_attrs after adding the extra
18097 die->num_attrs = abbrev->num_attrs;
18099 for (i = 0; i < abbrev->num_attrs; ++i)
18100 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18104 *has_children = abbrev->has_children;
18108 /* Read a die and all its attributes.
18109 Set DIEP to point to a newly allocated die with its information,
18110 except for its child, sibling, and parent fields.
18111 Set HAS_CHILDREN to tell whether the die has children or not. */
18113 static const gdb_byte *
18114 read_full_die (const struct die_reader_specs *reader,
18115 struct die_info **diep, const gdb_byte *info_ptr,
18118 const gdb_byte *result;
18120 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18122 if (dwarf_die_debug)
18124 fprintf_unfiltered (gdb_stdlog,
18125 "Read die from %s@0x%x of %s:\n",
18126 get_section_name (reader->die_section),
18127 (unsigned) (info_ptr - reader->die_section->buffer),
18128 bfd_get_filename (reader->abfd));
18129 dump_die (*diep, dwarf_die_debug);
18135 /* Abbreviation tables.
18137 In DWARF version 2, the description of the debugging information is
18138 stored in a separate .debug_abbrev section. Before we read any
18139 dies from a section we read in all abbreviations and install them
18140 in a hash table. */
18142 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18144 struct abbrev_info *
18145 abbrev_table::alloc_abbrev ()
18147 struct abbrev_info *abbrev;
18149 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18150 memset (abbrev, 0, sizeof (struct abbrev_info));
18155 /* Add an abbreviation to the table. */
18158 abbrev_table::add_abbrev (unsigned int abbrev_number,
18159 struct abbrev_info *abbrev)
18161 unsigned int hash_number;
18163 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18164 abbrev->next = m_abbrevs[hash_number];
18165 m_abbrevs[hash_number] = abbrev;
18168 /* Look up an abbrev in the table.
18169 Returns NULL if the abbrev is not found. */
18171 struct abbrev_info *
18172 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18174 unsigned int hash_number;
18175 struct abbrev_info *abbrev;
18177 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18178 abbrev = m_abbrevs[hash_number];
18182 if (abbrev->number == abbrev_number)
18184 abbrev = abbrev->next;
18189 /* Read in an abbrev table. */
18191 static abbrev_table_up
18192 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18193 struct dwarf2_section_info *section,
18194 sect_offset sect_off)
18196 struct objfile *objfile = dwarf2_per_objfile->objfile;
18197 bfd *abfd = get_section_bfd_owner (section);
18198 const gdb_byte *abbrev_ptr;
18199 struct abbrev_info *cur_abbrev;
18200 unsigned int abbrev_number, bytes_read, abbrev_name;
18201 unsigned int abbrev_form;
18202 struct attr_abbrev *cur_attrs;
18203 unsigned int allocated_attrs;
18205 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18207 dwarf2_read_section (objfile, section);
18208 abbrev_ptr = section->buffer + to_underlying (sect_off);
18209 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18210 abbrev_ptr += bytes_read;
18212 allocated_attrs = ATTR_ALLOC_CHUNK;
18213 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18215 /* Loop until we reach an abbrev number of 0. */
18216 while (abbrev_number)
18218 cur_abbrev = abbrev_table->alloc_abbrev ();
18220 /* read in abbrev header */
18221 cur_abbrev->number = abbrev_number;
18223 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18224 abbrev_ptr += bytes_read;
18225 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18228 /* now read in declarations */
18231 LONGEST implicit_const;
18233 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18234 abbrev_ptr += bytes_read;
18235 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18236 abbrev_ptr += bytes_read;
18237 if (abbrev_form == DW_FORM_implicit_const)
18239 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18241 abbrev_ptr += bytes_read;
18245 /* Initialize it due to a false compiler warning. */
18246 implicit_const = -1;
18249 if (abbrev_name == 0)
18252 if (cur_abbrev->num_attrs == allocated_attrs)
18254 allocated_attrs += ATTR_ALLOC_CHUNK;
18256 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18259 cur_attrs[cur_abbrev->num_attrs].name
18260 = (enum dwarf_attribute) abbrev_name;
18261 cur_attrs[cur_abbrev->num_attrs].form
18262 = (enum dwarf_form) abbrev_form;
18263 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18264 ++cur_abbrev->num_attrs;
18267 cur_abbrev->attrs =
18268 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18269 cur_abbrev->num_attrs);
18270 memcpy (cur_abbrev->attrs, cur_attrs,
18271 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18273 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18275 /* Get next abbreviation.
18276 Under Irix6 the abbreviations for a compilation unit are not
18277 always properly terminated with an abbrev number of 0.
18278 Exit loop if we encounter an abbreviation which we have
18279 already read (which means we are about to read the abbreviations
18280 for the next compile unit) or if the end of the abbreviation
18281 table is reached. */
18282 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18284 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18285 abbrev_ptr += bytes_read;
18286 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18291 return abbrev_table;
18294 /* Returns nonzero if TAG represents a type that we might generate a partial
18298 is_type_tag_for_partial (int tag)
18303 /* Some types that would be reasonable to generate partial symbols for,
18304 that we don't at present. */
18305 case DW_TAG_array_type:
18306 case DW_TAG_file_type:
18307 case DW_TAG_ptr_to_member_type:
18308 case DW_TAG_set_type:
18309 case DW_TAG_string_type:
18310 case DW_TAG_subroutine_type:
18312 case DW_TAG_base_type:
18313 case DW_TAG_class_type:
18314 case DW_TAG_interface_type:
18315 case DW_TAG_enumeration_type:
18316 case DW_TAG_structure_type:
18317 case DW_TAG_subrange_type:
18318 case DW_TAG_typedef:
18319 case DW_TAG_union_type:
18326 /* Load all DIEs that are interesting for partial symbols into memory. */
18328 static struct partial_die_info *
18329 load_partial_dies (const struct die_reader_specs *reader,
18330 const gdb_byte *info_ptr, int building_psymtab)
18332 struct dwarf2_cu *cu = reader->cu;
18333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18334 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18335 unsigned int bytes_read;
18336 unsigned int load_all = 0;
18337 int nesting_level = 1;
18342 gdb_assert (cu->per_cu != NULL);
18343 if (cu->per_cu->load_all_dies)
18347 = htab_create_alloc_ex (cu->header.length / 12,
18351 &cu->comp_unit_obstack,
18352 hashtab_obstack_allocate,
18353 dummy_obstack_deallocate);
18357 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18359 /* A NULL abbrev means the end of a series of children. */
18360 if (abbrev == NULL)
18362 if (--nesting_level == 0)
18365 info_ptr += bytes_read;
18366 last_die = parent_die;
18367 parent_die = parent_die->die_parent;
18371 /* Check for template arguments. We never save these; if
18372 they're seen, we just mark the parent, and go on our way. */
18373 if (parent_die != NULL
18374 && cu->language == language_cplus
18375 && (abbrev->tag == DW_TAG_template_type_param
18376 || abbrev->tag == DW_TAG_template_value_param))
18378 parent_die->has_template_arguments = 1;
18382 /* We don't need a partial DIE for the template argument. */
18383 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18388 /* We only recurse into c++ subprograms looking for template arguments.
18389 Skip their other children. */
18391 && cu->language == language_cplus
18392 && parent_die != NULL
18393 && parent_die->tag == DW_TAG_subprogram)
18395 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18399 /* Check whether this DIE is interesting enough to save. Normally
18400 we would not be interested in members here, but there may be
18401 later variables referencing them via DW_AT_specification (for
18402 static members). */
18404 && !is_type_tag_for_partial (abbrev->tag)
18405 && abbrev->tag != DW_TAG_constant
18406 && abbrev->tag != DW_TAG_enumerator
18407 && abbrev->tag != DW_TAG_subprogram
18408 && abbrev->tag != DW_TAG_inlined_subroutine
18409 && abbrev->tag != DW_TAG_lexical_block
18410 && abbrev->tag != DW_TAG_variable
18411 && abbrev->tag != DW_TAG_namespace
18412 && abbrev->tag != DW_TAG_module
18413 && abbrev->tag != DW_TAG_member
18414 && abbrev->tag != DW_TAG_imported_unit
18415 && abbrev->tag != DW_TAG_imported_declaration)
18417 /* Otherwise we skip to the next sibling, if any. */
18418 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18422 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18425 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18427 /* This two-pass algorithm for processing partial symbols has a
18428 high cost in cache pressure. Thus, handle some simple cases
18429 here which cover the majority of C partial symbols. DIEs
18430 which neither have specification tags in them, nor could have
18431 specification tags elsewhere pointing at them, can simply be
18432 processed and discarded.
18434 This segment is also optional; scan_partial_symbols and
18435 add_partial_symbol will handle these DIEs if we chain
18436 them in normally. When compilers which do not emit large
18437 quantities of duplicate debug information are more common,
18438 this code can probably be removed. */
18440 /* Any complete simple types at the top level (pretty much all
18441 of them, for a language without namespaces), can be processed
18443 if (parent_die == NULL
18444 && pdi.has_specification == 0
18445 && pdi.is_declaration == 0
18446 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18447 || pdi.tag == DW_TAG_base_type
18448 || pdi.tag == DW_TAG_subrange_type))
18450 if (building_psymtab && pdi.name != NULL)
18451 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18452 VAR_DOMAIN, LOC_TYPEDEF, -1,
18453 psymbol_placement::STATIC,
18454 0, cu->language, objfile);
18455 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18459 /* The exception for DW_TAG_typedef with has_children above is
18460 a workaround of GCC PR debug/47510. In the case of this complaint
18461 type_name_or_error will error on such types later.
18463 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18464 it could not find the child DIEs referenced later, this is checked
18465 above. In correct DWARF DW_TAG_typedef should have no children. */
18467 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18468 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18469 "- DIE at %s [in module %s]"),
18470 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18472 /* If we're at the second level, and we're an enumerator, and
18473 our parent has no specification (meaning possibly lives in a
18474 namespace elsewhere), then we can add the partial symbol now
18475 instead of queueing it. */
18476 if (pdi.tag == DW_TAG_enumerator
18477 && parent_die != NULL
18478 && parent_die->die_parent == NULL
18479 && parent_die->tag == DW_TAG_enumeration_type
18480 && parent_die->has_specification == 0)
18482 if (pdi.name == NULL)
18483 complaint (_("malformed enumerator DIE ignored"));
18484 else if (building_psymtab)
18485 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18486 VAR_DOMAIN, LOC_CONST, -1,
18487 cu->language == language_cplus
18488 ? psymbol_placement::GLOBAL
18489 : psymbol_placement::STATIC,
18490 0, cu->language, objfile);
18492 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18496 struct partial_die_info *part_die
18497 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18499 /* We'll save this DIE so link it in. */
18500 part_die->die_parent = parent_die;
18501 part_die->die_sibling = NULL;
18502 part_die->die_child = NULL;
18504 if (last_die && last_die == parent_die)
18505 last_die->die_child = part_die;
18507 last_die->die_sibling = part_die;
18509 last_die = part_die;
18511 if (first_die == NULL)
18512 first_die = part_die;
18514 /* Maybe add the DIE to the hash table. Not all DIEs that we
18515 find interesting need to be in the hash table, because we
18516 also have the parent/sibling/child chains; only those that we
18517 might refer to by offset later during partial symbol reading.
18519 For now this means things that might have be the target of a
18520 DW_AT_specification, DW_AT_abstract_origin, or
18521 DW_AT_extension. DW_AT_extension will refer only to
18522 namespaces; DW_AT_abstract_origin refers to functions (and
18523 many things under the function DIE, but we do not recurse
18524 into function DIEs during partial symbol reading) and
18525 possibly variables as well; DW_AT_specification refers to
18526 declarations. Declarations ought to have the DW_AT_declaration
18527 flag. It happens that GCC forgets to put it in sometimes, but
18528 only for functions, not for types.
18530 Adding more things than necessary to the hash table is harmless
18531 except for the performance cost. Adding too few will result in
18532 wasted time in find_partial_die, when we reread the compilation
18533 unit with load_all_dies set. */
18536 || abbrev->tag == DW_TAG_constant
18537 || abbrev->tag == DW_TAG_subprogram
18538 || abbrev->tag == DW_TAG_variable
18539 || abbrev->tag == DW_TAG_namespace
18540 || part_die->is_declaration)
18544 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18545 to_underlying (part_die->sect_off),
18550 /* For some DIEs we want to follow their children (if any). For C
18551 we have no reason to follow the children of structures; for other
18552 languages we have to, so that we can get at method physnames
18553 to infer fully qualified class names, for DW_AT_specification,
18554 and for C++ template arguments. For C++, we also look one level
18555 inside functions to find template arguments (if the name of the
18556 function does not already contain the template arguments).
18558 For Ada, we need to scan the children of subprograms and lexical
18559 blocks as well because Ada allows the definition of nested
18560 entities that could be interesting for the debugger, such as
18561 nested subprograms for instance. */
18562 if (last_die->has_children
18564 || last_die->tag == DW_TAG_namespace
18565 || last_die->tag == DW_TAG_module
18566 || last_die->tag == DW_TAG_enumeration_type
18567 || (cu->language == language_cplus
18568 && last_die->tag == DW_TAG_subprogram
18569 && (last_die->name == NULL
18570 || strchr (last_die->name, '<') == NULL))
18571 || (cu->language != language_c
18572 && (last_die->tag == DW_TAG_class_type
18573 || last_die->tag == DW_TAG_interface_type
18574 || last_die->tag == DW_TAG_structure_type
18575 || last_die->tag == DW_TAG_union_type))
18576 || (cu->language == language_ada
18577 && (last_die->tag == DW_TAG_subprogram
18578 || last_die->tag == DW_TAG_lexical_block))))
18581 parent_die = last_die;
18585 /* Otherwise we skip to the next sibling, if any. */
18586 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18588 /* Back to the top, do it again. */
18592 partial_die_info::partial_die_info (sect_offset sect_off_,
18593 struct abbrev_info *abbrev)
18594 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18598 /* Read a minimal amount of information into the minimal die structure.
18599 INFO_PTR should point just after the initial uleb128 of a DIE. */
18602 partial_die_info::read (const struct die_reader_specs *reader,
18603 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18605 struct dwarf2_cu *cu = reader->cu;
18606 struct dwarf2_per_objfile *dwarf2_per_objfile
18607 = cu->per_cu->dwarf2_per_objfile;
18609 int has_low_pc_attr = 0;
18610 int has_high_pc_attr = 0;
18611 int high_pc_relative = 0;
18613 for (i = 0; i < abbrev.num_attrs; ++i)
18615 struct attribute attr;
18617 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18619 /* Store the data if it is of an attribute we want to keep in a
18620 partial symbol table. */
18626 case DW_TAG_compile_unit:
18627 case DW_TAG_partial_unit:
18628 case DW_TAG_type_unit:
18629 /* Compilation units have a DW_AT_name that is a filename, not
18630 a source language identifier. */
18631 case DW_TAG_enumeration_type:
18632 case DW_TAG_enumerator:
18633 /* These tags always have simple identifiers already; no need
18634 to canonicalize them. */
18635 name = DW_STRING (&attr);
18639 struct objfile *objfile = dwarf2_per_objfile->objfile;
18642 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18643 &objfile->per_bfd->storage_obstack);
18648 case DW_AT_linkage_name:
18649 case DW_AT_MIPS_linkage_name:
18650 /* Note that both forms of linkage name might appear. We
18651 assume they will be the same, and we only store the last
18653 linkage_name = DW_STRING (&attr);
18656 has_low_pc_attr = 1;
18657 lowpc = attr_value_as_address (&attr);
18659 case DW_AT_high_pc:
18660 has_high_pc_attr = 1;
18661 highpc = attr_value_as_address (&attr);
18662 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18663 high_pc_relative = 1;
18665 case DW_AT_location:
18666 /* Support the .debug_loc offsets. */
18667 if (attr_form_is_block (&attr))
18669 d.locdesc = DW_BLOCK (&attr);
18671 else if (attr_form_is_section_offset (&attr))
18673 dwarf2_complex_location_expr_complaint ();
18677 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18678 "partial symbol information");
18681 case DW_AT_external:
18682 is_external = DW_UNSND (&attr);
18684 case DW_AT_declaration:
18685 is_declaration = DW_UNSND (&attr);
18690 case DW_AT_abstract_origin:
18691 case DW_AT_specification:
18692 case DW_AT_extension:
18693 has_specification = 1;
18694 spec_offset = dwarf2_get_ref_die_offset (&attr);
18695 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18696 || cu->per_cu->is_dwz);
18698 case DW_AT_sibling:
18699 /* Ignore absolute siblings, they might point outside of
18700 the current compile unit. */
18701 if (attr.form == DW_FORM_ref_addr)
18702 complaint (_("ignoring absolute DW_AT_sibling"));
18705 const gdb_byte *buffer = reader->buffer;
18706 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18707 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18709 if (sibling_ptr < info_ptr)
18710 complaint (_("DW_AT_sibling points backwards"));
18711 else if (sibling_ptr > reader->buffer_end)
18712 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18714 sibling = sibling_ptr;
18717 case DW_AT_byte_size:
18720 case DW_AT_const_value:
18721 has_const_value = 1;
18723 case DW_AT_calling_convention:
18724 /* DWARF doesn't provide a way to identify a program's source-level
18725 entry point. DW_AT_calling_convention attributes are only meant
18726 to describe functions' calling conventions.
18728 However, because it's a necessary piece of information in
18729 Fortran, and before DWARF 4 DW_CC_program was the only
18730 piece of debugging information whose definition refers to
18731 a 'main program' at all, several compilers marked Fortran
18732 main programs with DW_CC_program --- even when those
18733 functions use the standard calling conventions.
18735 Although DWARF now specifies a way to provide this
18736 information, we support this practice for backward
18738 if (DW_UNSND (&attr) == DW_CC_program
18739 && cu->language == language_fortran)
18740 main_subprogram = 1;
18743 if (DW_UNSND (&attr) == DW_INL_inlined
18744 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18745 may_be_inlined = 1;
18749 if (tag == DW_TAG_imported_unit)
18751 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18752 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18753 || cu->per_cu->is_dwz);
18757 case DW_AT_main_subprogram:
18758 main_subprogram = DW_UNSND (&attr);
18763 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18764 but that requires a full DIE, so instead we just
18766 int need_ranges_base = tag != DW_TAG_compile_unit;
18767 unsigned int ranges_offset = (DW_UNSND (&attr)
18768 + (need_ranges_base
18772 /* Value of the DW_AT_ranges attribute is the offset in the
18773 .debug_ranges section. */
18774 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18785 /* For Ada, if both the name and the linkage name appear, we prefer
18786 the latter. This lets "catch exception" work better, regardless
18787 of the order in which the name and linkage name were emitted.
18788 Really, though, this is just a workaround for the fact that gdb
18789 doesn't store both the name and the linkage name. */
18790 if (cu->language == language_ada && linkage_name != nullptr)
18791 name = linkage_name;
18793 if (high_pc_relative)
18796 if (has_low_pc_attr && has_high_pc_attr)
18798 /* When using the GNU linker, .gnu.linkonce. sections are used to
18799 eliminate duplicate copies of functions and vtables and such.
18800 The linker will arbitrarily choose one and discard the others.
18801 The AT_*_pc values for such functions refer to local labels in
18802 these sections. If the section from that file was discarded, the
18803 labels are not in the output, so the relocs get a value of 0.
18804 If this is a discarded function, mark the pc bounds as invalid,
18805 so that GDB will ignore it. */
18806 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18808 struct objfile *objfile = dwarf2_per_objfile->objfile;
18809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18811 complaint (_("DW_AT_low_pc %s is zero "
18812 "for DIE at %s [in module %s]"),
18813 paddress (gdbarch, lowpc),
18814 sect_offset_str (sect_off),
18815 objfile_name (objfile));
18817 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18818 else if (lowpc >= highpc)
18820 struct objfile *objfile = dwarf2_per_objfile->objfile;
18821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18823 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18824 "for DIE at %s [in module %s]"),
18825 paddress (gdbarch, lowpc),
18826 paddress (gdbarch, highpc),
18827 sect_offset_str (sect_off),
18828 objfile_name (objfile));
18837 /* Find a cached partial DIE at OFFSET in CU. */
18839 struct partial_die_info *
18840 dwarf2_cu::find_partial_die (sect_offset sect_off)
18842 struct partial_die_info *lookup_die = NULL;
18843 struct partial_die_info part_die (sect_off);
18845 lookup_die = ((struct partial_die_info *)
18846 htab_find_with_hash (partial_dies, &part_die,
18847 to_underlying (sect_off)));
18852 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18853 except in the case of .debug_types DIEs which do not reference
18854 outside their CU (they do however referencing other types via
18855 DW_FORM_ref_sig8). */
18857 static const struct cu_partial_die_info
18858 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18860 struct dwarf2_per_objfile *dwarf2_per_objfile
18861 = cu->per_cu->dwarf2_per_objfile;
18862 struct objfile *objfile = dwarf2_per_objfile->objfile;
18863 struct dwarf2_per_cu_data *per_cu = NULL;
18864 struct partial_die_info *pd = NULL;
18866 if (offset_in_dwz == cu->per_cu->is_dwz
18867 && offset_in_cu_p (&cu->header, sect_off))
18869 pd = cu->find_partial_die (sect_off);
18872 /* We missed recording what we needed.
18873 Load all dies and try again. */
18874 per_cu = cu->per_cu;
18878 /* TUs don't reference other CUs/TUs (except via type signatures). */
18879 if (cu->per_cu->is_debug_types)
18881 error (_("Dwarf Error: Type Unit at offset %s contains"
18882 " external reference to offset %s [in module %s].\n"),
18883 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18884 bfd_get_filename (objfile->obfd));
18886 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18887 dwarf2_per_objfile);
18889 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18890 load_partial_comp_unit (per_cu);
18892 per_cu->cu->last_used = 0;
18893 pd = per_cu->cu->find_partial_die (sect_off);
18896 /* If we didn't find it, and not all dies have been loaded,
18897 load them all and try again. */
18899 if (pd == NULL && per_cu->load_all_dies == 0)
18901 per_cu->load_all_dies = 1;
18903 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18904 THIS_CU->cu may already be in use. So we can't just free it and
18905 replace its DIEs with the ones we read in. Instead, we leave those
18906 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18907 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18909 load_partial_comp_unit (per_cu);
18911 pd = per_cu->cu->find_partial_die (sect_off);
18915 internal_error (__FILE__, __LINE__,
18916 _("could not find partial DIE %s "
18917 "in cache [from module %s]\n"),
18918 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18919 return { per_cu->cu, pd };
18922 /* See if we can figure out if the class lives in a namespace. We do
18923 this by looking for a member function; its demangled name will
18924 contain namespace info, if there is any. */
18927 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18928 struct dwarf2_cu *cu)
18930 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18931 what template types look like, because the demangler
18932 frequently doesn't give the same name as the debug info. We
18933 could fix this by only using the demangled name to get the
18934 prefix (but see comment in read_structure_type). */
18936 struct partial_die_info *real_pdi;
18937 struct partial_die_info *child_pdi;
18939 /* If this DIE (this DIE's specification, if any) has a parent, then
18940 we should not do this. We'll prepend the parent's fully qualified
18941 name when we create the partial symbol. */
18943 real_pdi = struct_pdi;
18944 while (real_pdi->has_specification)
18946 auto res = find_partial_die (real_pdi->spec_offset,
18947 real_pdi->spec_is_dwz, cu);
18948 real_pdi = res.pdi;
18952 if (real_pdi->die_parent != NULL)
18955 for (child_pdi = struct_pdi->die_child;
18957 child_pdi = child_pdi->die_sibling)
18959 if (child_pdi->tag == DW_TAG_subprogram
18960 && child_pdi->linkage_name != NULL)
18962 char *actual_class_name
18963 = language_class_name_from_physname (cu->language_defn,
18964 child_pdi->linkage_name);
18965 if (actual_class_name != NULL)
18967 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18970 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18972 strlen (actual_class_name)));
18973 xfree (actual_class_name);
18981 partial_die_info::fixup (struct dwarf2_cu *cu)
18983 /* Once we've fixed up a die, there's no point in doing so again.
18984 This also avoids a memory leak if we were to call
18985 guess_partial_die_structure_name multiple times. */
18989 /* If we found a reference attribute and the DIE has no name, try
18990 to find a name in the referred to DIE. */
18992 if (name == NULL && has_specification)
18994 struct partial_die_info *spec_die;
18996 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18997 spec_die = res.pdi;
19000 spec_die->fixup (cu);
19002 if (spec_die->name)
19004 name = spec_die->name;
19006 /* Copy DW_AT_external attribute if it is set. */
19007 if (spec_die->is_external)
19008 is_external = spec_die->is_external;
19012 /* Set default names for some unnamed DIEs. */
19014 if (name == NULL && tag == DW_TAG_namespace)
19015 name = CP_ANONYMOUS_NAMESPACE_STR;
19017 /* If there is no parent die to provide a namespace, and there are
19018 children, see if we can determine the namespace from their linkage
19020 if (cu->language == language_cplus
19021 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19022 && die_parent == NULL
19024 && (tag == DW_TAG_class_type
19025 || tag == DW_TAG_structure_type
19026 || tag == DW_TAG_union_type))
19027 guess_partial_die_structure_name (this, cu);
19029 /* GCC might emit a nameless struct or union that has a linkage
19030 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19032 && (tag == DW_TAG_class_type
19033 || tag == DW_TAG_interface_type
19034 || tag == DW_TAG_structure_type
19035 || tag == DW_TAG_union_type)
19036 && linkage_name != NULL)
19040 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19045 /* Strip any leading namespaces/classes, keep only the base name.
19046 DW_AT_name for named DIEs does not contain the prefixes. */
19047 base = strrchr (demangled, ':');
19048 if (base && base > demangled && base[-1] == ':')
19053 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19056 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19057 base, strlen (base)));
19065 /* Read an attribute value described by an attribute form. */
19067 static const gdb_byte *
19068 read_attribute_value (const struct die_reader_specs *reader,
19069 struct attribute *attr, unsigned form,
19070 LONGEST implicit_const, const gdb_byte *info_ptr)
19072 struct dwarf2_cu *cu = reader->cu;
19073 struct dwarf2_per_objfile *dwarf2_per_objfile
19074 = cu->per_cu->dwarf2_per_objfile;
19075 struct objfile *objfile = dwarf2_per_objfile->objfile;
19076 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19077 bfd *abfd = reader->abfd;
19078 struct comp_unit_head *cu_header = &cu->header;
19079 unsigned int bytes_read;
19080 struct dwarf_block *blk;
19082 attr->form = (enum dwarf_form) form;
19085 case DW_FORM_ref_addr:
19086 if (cu->header.version == 2)
19087 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19089 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19090 &cu->header, &bytes_read);
19091 info_ptr += bytes_read;
19093 case DW_FORM_GNU_ref_alt:
19094 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19095 info_ptr += bytes_read;
19098 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19099 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19100 info_ptr += bytes_read;
19102 case DW_FORM_block2:
19103 blk = dwarf_alloc_block (cu);
19104 blk->size = read_2_bytes (abfd, info_ptr);
19106 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19107 info_ptr += blk->size;
19108 DW_BLOCK (attr) = blk;
19110 case DW_FORM_block4:
19111 blk = dwarf_alloc_block (cu);
19112 blk->size = read_4_bytes (abfd, info_ptr);
19114 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19115 info_ptr += blk->size;
19116 DW_BLOCK (attr) = blk;
19118 case DW_FORM_data2:
19119 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19122 case DW_FORM_data4:
19123 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19126 case DW_FORM_data8:
19127 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19130 case DW_FORM_data16:
19131 blk = dwarf_alloc_block (cu);
19133 blk->data = read_n_bytes (abfd, info_ptr, 16);
19135 DW_BLOCK (attr) = blk;
19137 case DW_FORM_sec_offset:
19138 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19139 info_ptr += bytes_read;
19141 case DW_FORM_string:
19142 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19143 DW_STRING_IS_CANONICAL (attr) = 0;
19144 info_ptr += bytes_read;
19147 if (!cu->per_cu->is_dwz)
19149 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19150 abfd, info_ptr, cu_header,
19152 DW_STRING_IS_CANONICAL (attr) = 0;
19153 info_ptr += bytes_read;
19157 case DW_FORM_line_strp:
19158 if (!cu->per_cu->is_dwz)
19160 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19162 cu_header, &bytes_read);
19163 DW_STRING_IS_CANONICAL (attr) = 0;
19164 info_ptr += bytes_read;
19168 case DW_FORM_GNU_strp_alt:
19170 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19171 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19174 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19176 DW_STRING_IS_CANONICAL (attr) = 0;
19177 info_ptr += bytes_read;
19180 case DW_FORM_exprloc:
19181 case DW_FORM_block:
19182 blk = dwarf_alloc_block (cu);
19183 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19184 info_ptr += bytes_read;
19185 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19186 info_ptr += blk->size;
19187 DW_BLOCK (attr) = blk;
19189 case DW_FORM_block1:
19190 blk = dwarf_alloc_block (cu);
19191 blk->size = read_1_byte (abfd, info_ptr);
19193 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19194 info_ptr += blk->size;
19195 DW_BLOCK (attr) = blk;
19197 case DW_FORM_data1:
19198 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19202 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19205 case DW_FORM_flag_present:
19206 DW_UNSND (attr) = 1;
19208 case DW_FORM_sdata:
19209 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19210 info_ptr += bytes_read;
19212 case DW_FORM_udata:
19213 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19214 info_ptr += bytes_read;
19217 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19218 + read_1_byte (abfd, info_ptr));
19222 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19223 + read_2_bytes (abfd, info_ptr));
19227 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19228 + read_4_bytes (abfd, info_ptr));
19232 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19233 + read_8_bytes (abfd, info_ptr));
19236 case DW_FORM_ref_sig8:
19237 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19240 case DW_FORM_ref_udata:
19241 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19242 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19243 info_ptr += bytes_read;
19245 case DW_FORM_indirect:
19246 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19247 info_ptr += bytes_read;
19248 if (form == DW_FORM_implicit_const)
19250 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19251 info_ptr += bytes_read;
19253 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19256 case DW_FORM_implicit_const:
19257 DW_SND (attr) = implicit_const;
19259 case DW_FORM_addrx:
19260 case DW_FORM_GNU_addr_index:
19261 if (reader->dwo_file == NULL)
19263 /* For now flag a hard error.
19264 Later we can turn this into a complaint. */
19265 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19266 dwarf_form_name (form),
19267 bfd_get_filename (abfd));
19269 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19270 info_ptr += bytes_read;
19273 case DW_FORM_strx1:
19274 case DW_FORM_strx2:
19275 case DW_FORM_strx3:
19276 case DW_FORM_strx4:
19277 case DW_FORM_GNU_str_index:
19278 if (reader->dwo_file == NULL)
19280 /* For now flag a hard error.
19281 Later we can turn this into a complaint if warranted. */
19282 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19283 dwarf_form_name (form),
19284 bfd_get_filename (abfd));
19287 ULONGEST str_index;
19288 if (form == DW_FORM_strx1)
19290 str_index = read_1_byte (abfd, info_ptr);
19293 else if (form == DW_FORM_strx2)
19295 str_index = read_2_bytes (abfd, info_ptr);
19298 else if (form == DW_FORM_strx3)
19300 str_index = read_3_bytes (abfd, info_ptr);
19303 else if (form == DW_FORM_strx4)
19305 str_index = read_4_bytes (abfd, info_ptr);
19310 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19311 info_ptr += bytes_read;
19313 DW_STRING (attr) = read_str_index (reader, str_index);
19314 DW_STRING_IS_CANONICAL (attr) = 0;
19318 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19319 dwarf_form_name (form),
19320 bfd_get_filename (abfd));
19324 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19325 attr->form = DW_FORM_GNU_ref_alt;
19327 /* We have seen instances where the compiler tried to emit a byte
19328 size attribute of -1 which ended up being encoded as an unsigned
19329 0xffffffff. Although 0xffffffff is technically a valid size value,
19330 an object of this size seems pretty unlikely so we can relatively
19331 safely treat these cases as if the size attribute was invalid and
19332 treat them as zero by default. */
19333 if (attr->name == DW_AT_byte_size
19334 && form == DW_FORM_data4
19335 && DW_UNSND (attr) >= 0xffffffff)
19338 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19339 hex_string (DW_UNSND (attr)));
19340 DW_UNSND (attr) = 0;
19346 /* Read an attribute described by an abbreviated attribute. */
19348 static const gdb_byte *
19349 read_attribute (const struct die_reader_specs *reader,
19350 struct attribute *attr, struct attr_abbrev *abbrev,
19351 const gdb_byte *info_ptr)
19353 attr->name = abbrev->name;
19354 return read_attribute_value (reader, attr, abbrev->form,
19355 abbrev->implicit_const, info_ptr);
19358 /* Read dwarf information from a buffer. */
19360 static unsigned int
19361 read_1_byte (bfd *abfd, const gdb_byte *buf)
19363 return bfd_get_8 (abfd, buf);
19367 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19369 return bfd_get_signed_8 (abfd, buf);
19372 static unsigned int
19373 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19375 return bfd_get_16 (abfd, buf);
19379 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19381 return bfd_get_signed_16 (abfd, buf);
19384 static unsigned int
19385 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19387 unsigned int result = 0;
19388 for (int i = 0; i < 3; ++i)
19390 unsigned char byte = bfd_get_8 (abfd, buf);
19392 result |= ((unsigned int) byte << (i * 8));
19397 static unsigned int
19398 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19400 return bfd_get_32 (abfd, buf);
19404 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19406 return bfd_get_signed_32 (abfd, buf);
19410 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19412 return bfd_get_64 (abfd, buf);
19416 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19417 unsigned int *bytes_read)
19419 struct comp_unit_head *cu_header = &cu->header;
19420 CORE_ADDR retval = 0;
19422 if (cu_header->signed_addr_p)
19424 switch (cu_header->addr_size)
19427 retval = bfd_get_signed_16 (abfd, buf);
19430 retval = bfd_get_signed_32 (abfd, buf);
19433 retval = bfd_get_signed_64 (abfd, buf);
19436 internal_error (__FILE__, __LINE__,
19437 _("read_address: bad switch, signed [in module %s]"),
19438 bfd_get_filename (abfd));
19443 switch (cu_header->addr_size)
19446 retval = bfd_get_16 (abfd, buf);
19449 retval = bfd_get_32 (abfd, buf);
19452 retval = bfd_get_64 (abfd, buf);
19455 internal_error (__FILE__, __LINE__,
19456 _("read_address: bad switch, "
19457 "unsigned [in module %s]"),
19458 bfd_get_filename (abfd));
19462 *bytes_read = cu_header->addr_size;
19466 /* Read the initial length from a section. The (draft) DWARF 3
19467 specification allows the initial length to take up either 4 bytes
19468 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19469 bytes describe the length and all offsets will be 8 bytes in length
19472 An older, non-standard 64-bit format is also handled by this
19473 function. The older format in question stores the initial length
19474 as an 8-byte quantity without an escape value. Lengths greater
19475 than 2^32 aren't very common which means that the initial 4 bytes
19476 is almost always zero. Since a length value of zero doesn't make
19477 sense for the 32-bit format, this initial zero can be considered to
19478 be an escape value which indicates the presence of the older 64-bit
19479 format. As written, the code can't detect (old format) lengths
19480 greater than 4GB. If it becomes necessary to handle lengths
19481 somewhat larger than 4GB, we could allow other small values (such
19482 as the non-sensical values of 1, 2, and 3) to also be used as
19483 escape values indicating the presence of the old format.
19485 The value returned via bytes_read should be used to increment the
19486 relevant pointer after calling read_initial_length().
19488 [ Note: read_initial_length() and read_offset() are based on the
19489 document entitled "DWARF Debugging Information Format", revision
19490 3, draft 8, dated November 19, 2001. This document was obtained
19493 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19495 This document is only a draft and is subject to change. (So beware.)
19497 Details regarding the older, non-standard 64-bit format were
19498 determined empirically by examining 64-bit ELF files produced by
19499 the SGI toolchain on an IRIX 6.5 machine.
19501 - Kevin, July 16, 2002
19505 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19507 LONGEST length = bfd_get_32 (abfd, buf);
19509 if (length == 0xffffffff)
19511 length = bfd_get_64 (abfd, buf + 4);
19514 else if (length == 0)
19516 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19517 length = bfd_get_64 (abfd, buf);
19528 /* Cover function for read_initial_length.
19529 Returns the length of the object at BUF, and stores the size of the
19530 initial length in *BYTES_READ and stores the size that offsets will be in
19532 If the initial length size is not equivalent to that specified in
19533 CU_HEADER then issue a complaint.
19534 This is useful when reading non-comp-unit headers. */
19537 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19538 const struct comp_unit_head *cu_header,
19539 unsigned int *bytes_read,
19540 unsigned int *offset_size)
19542 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19544 gdb_assert (cu_header->initial_length_size == 4
19545 || cu_header->initial_length_size == 8
19546 || cu_header->initial_length_size == 12);
19548 if (cu_header->initial_length_size != *bytes_read)
19549 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19551 *offset_size = (*bytes_read == 4) ? 4 : 8;
19555 /* Read an offset from the data stream. The size of the offset is
19556 given by cu_header->offset_size. */
19559 read_offset (bfd *abfd, const gdb_byte *buf,
19560 const struct comp_unit_head *cu_header,
19561 unsigned int *bytes_read)
19563 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19565 *bytes_read = cu_header->offset_size;
19569 /* Read an offset from the data stream. */
19572 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19574 LONGEST retval = 0;
19576 switch (offset_size)
19579 retval = bfd_get_32 (abfd, buf);
19582 retval = bfd_get_64 (abfd, buf);
19585 internal_error (__FILE__, __LINE__,
19586 _("read_offset_1: bad switch [in module %s]"),
19587 bfd_get_filename (abfd));
19593 static const gdb_byte *
19594 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19596 /* If the size of a host char is 8 bits, we can return a pointer
19597 to the buffer, otherwise we have to copy the data to a buffer
19598 allocated on the temporary obstack. */
19599 gdb_assert (HOST_CHAR_BIT == 8);
19603 static const char *
19604 read_direct_string (bfd *abfd, const gdb_byte *buf,
19605 unsigned int *bytes_read_ptr)
19607 /* If the size of a host char is 8 bits, we can return a pointer
19608 to the string, otherwise we have to copy the string to a buffer
19609 allocated on the temporary obstack. */
19610 gdb_assert (HOST_CHAR_BIT == 8);
19613 *bytes_read_ptr = 1;
19616 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19617 return (const char *) buf;
19620 /* Return pointer to string at section SECT offset STR_OFFSET with error
19621 reporting strings FORM_NAME and SECT_NAME. */
19623 static const char *
19624 read_indirect_string_at_offset_from (struct objfile *objfile,
19625 bfd *abfd, LONGEST str_offset,
19626 struct dwarf2_section_info *sect,
19627 const char *form_name,
19628 const char *sect_name)
19630 dwarf2_read_section (objfile, sect);
19631 if (sect->buffer == NULL)
19632 error (_("%s used without %s section [in module %s]"),
19633 form_name, sect_name, bfd_get_filename (abfd));
19634 if (str_offset >= sect->size)
19635 error (_("%s pointing outside of %s section [in module %s]"),
19636 form_name, sect_name, bfd_get_filename (abfd));
19637 gdb_assert (HOST_CHAR_BIT == 8);
19638 if (sect->buffer[str_offset] == '\0')
19640 return (const char *) (sect->buffer + str_offset);
19643 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19645 static const char *
19646 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19647 bfd *abfd, LONGEST str_offset)
19649 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19651 &dwarf2_per_objfile->str,
19652 "DW_FORM_strp", ".debug_str");
19655 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19657 static const char *
19658 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19659 bfd *abfd, LONGEST str_offset)
19661 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19663 &dwarf2_per_objfile->line_str,
19664 "DW_FORM_line_strp",
19665 ".debug_line_str");
19668 /* Read a string at offset STR_OFFSET in the .debug_str section from
19669 the .dwz file DWZ. Throw an error if the offset is too large. If
19670 the string consists of a single NUL byte, return NULL; otherwise
19671 return a pointer to the string. */
19673 static const char *
19674 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19675 LONGEST str_offset)
19677 dwarf2_read_section (objfile, &dwz->str);
19679 if (dwz->str.buffer == NULL)
19680 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19681 "section [in module %s]"),
19682 bfd_get_filename (dwz->dwz_bfd));
19683 if (str_offset >= dwz->str.size)
19684 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19685 ".debug_str section [in module %s]"),
19686 bfd_get_filename (dwz->dwz_bfd));
19687 gdb_assert (HOST_CHAR_BIT == 8);
19688 if (dwz->str.buffer[str_offset] == '\0')
19690 return (const char *) (dwz->str.buffer + str_offset);
19693 /* Return pointer to string at .debug_str offset as read from BUF.
19694 BUF is assumed to be in a compilation unit described by CU_HEADER.
19695 Return *BYTES_READ_PTR count of bytes read from BUF. */
19697 static const char *
19698 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19699 const gdb_byte *buf,
19700 const struct comp_unit_head *cu_header,
19701 unsigned int *bytes_read_ptr)
19703 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19705 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19708 /* Return pointer to string at .debug_line_str offset as read from BUF.
19709 BUF is assumed to be in a compilation unit described by CU_HEADER.
19710 Return *BYTES_READ_PTR count of bytes read from BUF. */
19712 static const char *
19713 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19714 bfd *abfd, const gdb_byte *buf,
19715 const struct comp_unit_head *cu_header,
19716 unsigned int *bytes_read_ptr)
19718 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19720 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19725 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19726 unsigned int *bytes_read_ptr)
19729 unsigned int num_read;
19731 unsigned char byte;
19738 byte = bfd_get_8 (abfd, buf);
19741 result |= ((ULONGEST) (byte & 127) << shift);
19742 if ((byte & 128) == 0)
19748 *bytes_read_ptr = num_read;
19753 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19754 unsigned int *bytes_read_ptr)
19757 int shift, num_read;
19758 unsigned char byte;
19765 byte = bfd_get_8 (abfd, buf);
19768 result |= ((ULONGEST) (byte & 127) << shift);
19770 if ((byte & 128) == 0)
19775 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19776 result |= -(((ULONGEST) 1) << shift);
19777 *bytes_read_ptr = num_read;
19781 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19782 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19783 ADDR_SIZE is the size of addresses from the CU header. */
19786 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19787 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19789 struct objfile *objfile = dwarf2_per_objfile->objfile;
19790 bfd *abfd = objfile->obfd;
19791 const gdb_byte *info_ptr;
19793 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19794 if (dwarf2_per_objfile->addr.buffer == NULL)
19795 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19796 objfile_name (objfile));
19797 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19798 error (_("DW_FORM_addr_index pointing outside of "
19799 ".debug_addr section [in module %s]"),
19800 objfile_name (objfile));
19801 info_ptr = (dwarf2_per_objfile->addr.buffer
19802 + addr_base + addr_index * addr_size);
19803 if (addr_size == 4)
19804 return bfd_get_32 (abfd, info_ptr);
19806 return bfd_get_64 (abfd, info_ptr);
19809 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19812 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19814 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19815 cu->addr_base, cu->header.addr_size);
19818 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19821 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19822 unsigned int *bytes_read)
19824 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19825 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19827 return read_addr_index (cu, addr_index);
19830 /* Data structure to pass results from dwarf2_read_addr_index_reader
19831 back to dwarf2_read_addr_index. */
19833 struct dwarf2_read_addr_index_data
19835 ULONGEST addr_base;
19839 /* die_reader_func for dwarf2_read_addr_index. */
19842 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19843 const gdb_byte *info_ptr,
19844 struct die_info *comp_unit_die,
19848 struct dwarf2_cu *cu = reader->cu;
19849 struct dwarf2_read_addr_index_data *aidata =
19850 (struct dwarf2_read_addr_index_data *) data;
19852 aidata->addr_base = cu->addr_base;
19853 aidata->addr_size = cu->header.addr_size;
19856 /* Given an index in .debug_addr, fetch the value.
19857 NOTE: This can be called during dwarf expression evaluation,
19858 long after the debug information has been read, and thus per_cu->cu
19859 may no longer exist. */
19862 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19863 unsigned int addr_index)
19865 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19866 struct dwarf2_cu *cu = per_cu->cu;
19867 ULONGEST addr_base;
19870 /* We need addr_base and addr_size.
19871 If we don't have PER_CU->cu, we have to get it.
19872 Nasty, but the alternative is storing the needed info in PER_CU,
19873 which at this point doesn't seem justified: it's not clear how frequently
19874 it would get used and it would increase the size of every PER_CU.
19875 Entry points like dwarf2_per_cu_addr_size do a similar thing
19876 so we're not in uncharted territory here.
19877 Alas we need to be a bit more complicated as addr_base is contained
19880 We don't need to read the entire CU(/TU).
19881 We just need the header and top level die.
19883 IWBN to use the aging mechanism to let us lazily later discard the CU.
19884 For now we skip this optimization. */
19888 addr_base = cu->addr_base;
19889 addr_size = cu->header.addr_size;
19893 struct dwarf2_read_addr_index_data aidata;
19895 /* Note: We can't use init_cutu_and_read_dies_simple here,
19896 we need addr_base. */
19897 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19898 dwarf2_read_addr_index_reader, &aidata);
19899 addr_base = aidata.addr_base;
19900 addr_size = aidata.addr_size;
19903 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19907 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19908 This is only used by the Fission support. */
19910 static const char *
19911 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19913 struct dwarf2_cu *cu = reader->cu;
19914 struct dwarf2_per_objfile *dwarf2_per_objfile
19915 = cu->per_cu->dwarf2_per_objfile;
19916 struct objfile *objfile = dwarf2_per_objfile->objfile;
19917 const char *objf_name = objfile_name (objfile);
19918 bfd *abfd = objfile->obfd;
19919 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19920 struct dwarf2_section_info *str_offsets_section =
19921 &reader->dwo_file->sections.str_offsets;
19922 const gdb_byte *info_ptr;
19923 ULONGEST str_offset;
19924 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19926 dwarf2_read_section (objfile, str_section);
19927 dwarf2_read_section (objfile, str_offsets_section);
19928 if (str_section->buffer == NULL)
19929 error (_("%s used without .debug_str.dwo section"
19930 " in CU at offset %s [in module %s]"),
19931 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19932 if (str_offsets_section->buffer == NULL)
19933 error (_("%s used without .debug_str_offsets.dwo section"
19934 " in CU at offset %s [in module %s]"),
19935 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19936 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19937 error (_("%s pointing outside of .debug_str_offsets.dwo"
19938 " section in CU at offset %s [in module %s]"),
19939 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19940 info_ptr = (str_offsets_section->buffer
19941 + str_index * cu->header.offset_size);
19942 if (cu->header.offset_size == 4)
19943 str_offset = bfd_get_32 (abfd, info_ptr);
19945 str_offset = bfd_get_64 (abfd, info_ptr);
19946 if (str_offset >= str_section->size)
19947 error (_("Offset from %s pointing outside of"
19948 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19949 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19950 return (const char *) (str_section->buffer + str_offset);
19953 /* Return the length of an LEB128 number in BUF. */
19956 leb128_size (const gdb_byte *buf)
19958 const gdb_byte *begin = buf;
19964 if ((byte & 128) == 0)
19965 return buf - begin;
19970 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19979 cu->language = language_c;
19982 case DW_LANG_C_plus_plus:
19983 case DW_LANG_C_plus_plus_11:
19984 case DW_LANG_C_plus_plus_14:
19985 cu->language = language_cplus;
19988 cu->language = language_d;
19990 case DW_LANG_Fortran77:
19991 case DW_LANG_Fortran90:
19992 case DW_LANG_Fortran95:
19993 case DW_LANG_Fortran03:
19994 case DW_LANG_Fortran08:
19995 cu->language = language_fortran;
19998 cu->language = language_go;
20000 case DW_LANG_Mips_Assembler:
20001 cu->language = language_asm;
20003 case DW_LANG_Ada83:
20004 case DW_LANG_Ada95:
20005 cu->language = language_ada;
20007 case DW_LANG_Modula2:
20008 cu->language = language_m2;
20010 case DW_LANG_Pascal83:
20011 cu->language = language_pascal;
20014 cu->language = language_objc;
20017 case DW_LANG_Rust_old:
20018 cu->language = language_rust;
20020 case DW_LANG_Cobol74:
20021 case DW_LANG_Cobol85:
20023 cu->language = language_minimal;
20026 cu->language_defn = language_def (cu->language);
20029 /* Return the named attribute or NULL if not there. */
20031 static struct attribute *
20032 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20037 struct attribute *spec = NULL;
20039 for (i = 0; i < die->num_attrs; ++i)
20041 if (die->attrs[i].name == name)
20042 return &die->attrs[i];
20043 if (die->attrs[i].name == DW_AT_specification
20044 || die->attrs[i].name == DW_AT_abstract_origin)
20045 spec = &die->attrs[i];
20051 die = follow_die_ref (die, spec, &cu);
20057 /* Return the named attribute or NULL if not there,
20058 but do not follow DW_AT_specification, etc.
20059 This is for use in contexts where we're reading .debug_types dies.
20060 Following DW_AT_specification, DW_AT_abstract_origin will take us
20061 back up the chain, and we want to go down. */
20063 static struct attribute *
20064 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20068 for (i = 0; i < die->num_attrs; ++i)
20069 if (die->attrs[i].name == name)
20070 return &die->attrs[i];
20075 /* Return the string associated with a string-typed attribute, or NULL if it
20076 is either not found or is of an incorrect type. */
20078 static const char *
20079 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20081 struct attribute *attr;
20082 const char *str = NULL;
20084 attr = dwarf2_attr (die, name, cu);
20088 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20089 || attr->form == DW_FORM_string
20090 || attr->form == DW_FORM_strx
20091 || attr->form == DW_FORM_GNU_str_index
20092 || attr->form == DW_FORM_GNU_strp_alt)
20093 str = DW_STRING (attr);
20095 complaint (_("string type expected for attribute %s for "
20096 "DIE at %s in module %s"),
20097 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20098 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20104 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20105 and holds a non-zero value. This function should only be used for
20106 DW_FORM_flag or DW_FORM_flag_present attributes. */
20109 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20111 struct attribute *attr = dwarf2_attr (die, name, cu);
20113 return (attr && DW_UNSND (attr));
20117 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20119 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20120 which value is non-zero. However, we have to be careful with
20121 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20122 (via dwarf2_flag_true_p) follows this attribute. So we may
20123 end up accidently finding a declaration attribute that belongs
20124 to a different DIE referenced by the specification attribute,
20125 even though the given DIE does not have a declaration attribute. */
20126 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20127 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20130 /* Return the die giving the specification for DIE, if there is
20131 one. *SPEC_CU is the CU containing DIE on input, and the CU
20132 containing the return value on output. If there is no
20133 specification, but there is an abstract origin, that is
20136 static struct die_info *
20137 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20139 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20142 if (spec_attr == NULL)
20143 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20145 if (spec_attr == NULL)
20148 return follow_die_ref (die, spec_attr, spec_cu);
20151 /* Stub for free_line_header to match void * callback types. */
20154 free_line_header_voidp (void *arg)
20156 struct line_header *lh = (struct line_header *) arg;
20162 line_header::add_include_dir (const char *include_dir)
20164 if (dwarf_line_debug >= 2)
20165 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20166 include_dirs.size () + 1, include_dir);
20168 include_dirs.push_back (include_dir);
20172 line_header::add_file_name (const char *name,
20174 unsigned int mod_time,
20175 unsigned int length)
20177 if (dwarf_line_debug >= 2)
20178 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20179 (unsigned) file_names.size () + 1, name);
20181 file_names.emplace_back (name, d_index, mod_time, length);
20184 /* A convenience function to find the proper .debug_line section for a CU. */
20186 static struct dwarf2_section_info *
20187 get_debug_line_section (struct dwarf2_cu *cu)
20189 struct dwarf2_section_info *section;
20190 struct dwarf2_per_objfile *dwarf2_per_objfile
20191 = cu->per_cu->dwarf2_per_objfile;
20193 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20195 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20196 section = &cu->dwo_unit->dwo_file->sections.line;
20197 else if (cu->per_cu->is_dwz)
20199 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20201 section = &dwz->line;
20204 section = &dwarf2_per_objfile->line;
20209 /* Read directory or file name entry format, starting with byte of
20210 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20211 entries count and the entries themselves in the described entry
20215 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20216 bfd *abfd, const gdb_byte **bufp,
20217 struct line_header *lh,
20218 const struct comp_unit_head *cu_header,
20219 void (*callback) (struct line_header *lh,
20222 unsigned int mod_time,
20223 unsigned int length))
20225 gdb_byte format_count, formati;
20226 ULONGEST data_count, datai;
20227 const gdb_byte *buf = *bufp;
20228 const gdb_byte *format_header_data;
20229 unsigned int bytes_read;
20231 format_count = read_1_byte (abfd, buf);
20233 format_header_data = buf;
20234 for (formati = 0; formati < format_count; formati++)
20236 read_unsigned_leb128 (abfd, buf, &bytes_read);
20238 read_unsigned_leb128 (abfd, buf, &bytes_read);
20242 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20244 for (datai = 0; datai < data_count; datai++)
20246 const gdb_byte *format = format_header_data;
20247 struct file_entry fe;
20249 for (formati = 0; formati < format_count; formati++)
20251 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20252 format += bytes_read;
20254 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20255 format += bytes_read;
20257 gdb::optional<const char *> string;
20258 gdb::optional<unsigned int> uint;
20262 case DW_FORM_string:
20263 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20267 case DW_FORM_line_strp:
20268 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20275 case DW_FORM_data1:
20276 uint.emplace (read_1_byte (abfd, buf));
20280 case DW_FORM_data2:
20281 uint.emplace (read_2_bytes (abfd, buf));
20285 case DW_FORM_data4:
20286 uint.emplace (read_4_bytes (abfd, buf));
20290 case DW_FORM_data8:
20291 uint.emplace (read_8_bytes (abfd, buf));
20295 case DW_FORM_udata:
20296 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20300 case DW_FORM_block:
20301 /* It is valid only for DW_LNCT_timestamp which is ignored by
20306 switch (content_type)
20309 if (string.has_value ())
20312 case DW_LNCT_directory_index:
20313 if (uint.has_value ())
20314 fe.d_index = (dir_index) *uint;
20316 case DW_LNCT_timestamp:
20317 if (uint.has_value ())
20318 fe.mod_time = *uint;
20321 if (uint.has_value ())
20327 complaint (_("Unknown format content type %s"),
20328 pulongest (content_type));
20332 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20338 /* Read the statement program header starting at OFFSET in
20339 .debug_line, or .debug_line.dwo. Return a pointer
20340 to a struct line_header, allocated using xmalloc.
20341 Returns NULL if there is a problem reading the header, e.g., if it
20342 has a version we don't understand.
20344 NOTE: the strings in the include directory and file name tables of
20345 the returned object point into the dwarf line section buffer,
20346 and must not be freed. */
20348 static line_header_up
20349 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20351 const gdb_byte *line_ptr;
20352 unsigned int bytes_read, offset_size;
20354 const char *cur_dir, *cur_file;
20355 struct dwarf2_section_info *section;
20357 struct dwarf2_per_objfile *dwarf2_per_objfile
20358 = cu->per_cu->dwarf2_per_objfile;
20360 section = get_debug_line_section (cu);
20361 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20362 if (section->buffer == NULL)
20364 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20365 complaint (_("missing .debug_line.dwo section"));
20367 complaint (_("missing .debug_line section"));
20371 /* We can't do this until we know the section is non-empty.
20372 Only then do we know we have such a section. */
20373 abfd = get_section_bfd_owner (section);
20375 /* Make sure that at least there's room for the total_length field.
20376 That could be 12 bytes long, but we're just going to fudge that. */
20377 if (to_underlying (sect_off) + 4 >= section->size)
20379 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20383 line_header_up lh (new line_header ());
20385 lh->sect_off = sect_off;
20386 lh->offset_in_dwz = cu->per_cu->is_dwz;
20388 line_ptr = section->buffer + to_underlying (sect_off);
20390 /* Read in the header. */
20392 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20393 &bytes_read, &offset_size);
20394 line_ptr += bytes_read;
20395 if (line_ptr + lh->total_length > (section->buffer + section->size))
20397 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20400 lh->statement_program_end = line_ptr + lh->total_length;
20401 lh->version = read_2_bytes (abfd, line_ptr);
20403 if (lh->version > 5)
20405 /* This is a version we don't understand. The format could have
20406 changed in ways we don't handle properly so just punt. */
20407 complaint (_("unsupported version in .debug_line section"));
20410 if (lh->version >= 5)
20412 gdb_byte segment_selector_size;
20414 /* Skip address size. */
20415 read_1_byte (abfd, line_ptr);
20418 segment_selector_size = read_1_byte (abfd, line_ptr);
20420 if (segment_selector_size != 0)
20422 complaint (_("unsupported segment selector size %u "
20423 "in .debug_line section"),
20424 segment_selector_size);
20428 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20429 line_ptr += offset_size;
20430 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20432 if (lh->version >= 4)
20434 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20438 lh->maximum_ops_per_instruction = 1;
20440 if (lh->maximum_ops_per_instruction == 0)
20442 lh->maximum_ops_per_instruction = 1;
20443 complaint (_("invalid maximum_ops_per_instruction "
20444 "in `.debug_line' section"));
20447 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20449 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20451 lh->line_range = read_1_byte (abfd, line_ptr);
20453 lh->opcode_base = read_1_byte (abfd, line_ptr);
20455 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20457 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20458 for (i = 1; i < lh->opcode_base; ++i)
20460 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20464 if (lh->version >= 5)
20466 /* Read directory table. */
20467 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20469 [] (struct line_header *header, const char *name,
20470 dir_index d_index, unsigned int mod_time,
20471 unsigned int length)
20473 header->add_include_dir (name);
20476 /* Read file name table. */
20477 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20479 [] (struct line_header *header, const char *name,
20480 dir_index d_index, unsigned int mod_time,
20481 unsigned int length)
20483 header->add_file_name (name, d_index, mod_time, length);
20488 /* Read directory table. */
20489 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20491 line_ptr += bytes_read;
20492 lh->add_include_dir (cur_dir);
20494 line_ptr += bytes_read;
20496 /* Read file name table. */
20497 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20499 unsigned int mod_time, length;
20502 line_ptr += bytes_read;
20503 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20504 line_ptr += bytes_read;
20505 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20506 line_ptr += bytes_read;
20507 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20508 line_ptr += bytes_read;
20510 lh->add_file_name (cur_file, d_index, mod_time, length);
20512 line_ptr += bytes_read;
20514 lh->statement_program_start = line_ptr;
20516 if (line_ptr > (section->buffer + section->size))
20517 complaint (_("line number info header doesn't "
20518 "fit in `.debug_line' section"));
20523 /* Subroutine of dwarf_decode_lines to simplify it.
20524 Return the file name of the psymtab for included file FILE_INDEX
20525 in line header LH of PST.
20526 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20527 If space for the result is malloc'd, *NAME_HOLDER will be set.
20528 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20530 static const char *
20531 psymtab_include_file_name (const struct line_header *lh, int file_index,
20532 const struct partial_symtab *pst,
20533 const char *comp_dir,
20534 gdb::unique_xmalloc_ptr<char> *name_holder)
20536 const file_entry &fe = lh->file_names[file_index];
20537 const char *include_name = fe.name;
20538 const char *include_name_to_compare = include_name;
20539 const char *pst_filename;
20542 const char *dir_name = fe.include_dir (lh);
20544 gdb::unique_xmalloc_ptr<char> hold_compare;
20545 if (!IS_ABSOLUTE_PATH (include_name)
20546 && (dir_name != NULL || comp_dir != NULL))
20548 /* Avoid creating a duplicate psymtab for PST.
20549 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20550 Before we do the comparison, however, we need to account
20551 for DIR_NAME and COMP_DIR.
20552 First prepend dir_name (if non-NULL). If we still don't
20553 have an absolute path prepend comp_dir (if non-NULL).
20554 However, the directory we record in the include-file's
20555 psymtab does not contain COMP_DIR (to match the
20556 corresponding symtab(s)).
20561 bash$ gcc -g ./hello.c
20562 include_name = "hello.c"
20564 DW_AT_comp_dir = comp_dir = "/tmp"
20565 DW_AT_name = "./hello.c"
20569 if (dir_name != NULL)
20571 name_holder->reset (concat (dir_name, SLASH_STRING,
20572 include_name, (char *) NULL));
20573 include_name = name_holder->get ();
20574 include_name_to_compare = include_name;
20576 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20578 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20579 include_name, (char *) NULL));
20580 include_name_to_compare = hold_compare.get ();
20584 pst_filename = pst->filename;
20585 gdb::unique_xmalloc_ptr<char> copied_name;
20586 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20588 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20589 pst_filename, (char *) NULL));
20590 pst_filename = copied_name.get ();
20593 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20597 return include_name;
20600 /* State machine to track the state of the line number program. */
20602 class lnp_state_machine
20605 /* Initialize a machine state for the start of a line number
20607 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20608 bool record_lines_p);
20610 file_entry *current_file ()
20612 /* lh->file_names is 0-based, but the file name numbers in the
20613 statement program are 1-based. */
20614 return m_line_header->file_name_at (m_file);
20617 /* Record the line in the state machine. END_SEQUENCE is true if
20618 we're processing the end of a sequence. */
20619 void record_line (bool end_sequence);
20621 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20622 nop-out rest of the lines in this sequence. */
20623 void check_line_address (struct dwarf2_cu *cu,
20624 const gdb_byte *line_ptr,
20625 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20627 void handle_set_discriminator (unsigned int discriminator)
20629 m_discriminator = discriminator;
20630 m_line_has_non_zero_discriminator |= discriminator != 0;
20633 /* Handle DW_LNE_set_address. */
20634 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20637 address += baseaddr;
20638 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20641 /* Handle DW_LNS_advance_pc. */
20642 void handle_advance_pc (CORE_ADDR adjust);
20644 /* Handle a special opcode. */
20645 void handle_special_opcode (unsigned char op_code);
20647 /* Handle DW_LNS_advance_line. */
20648 void handle_advance_line (int line_delta)
20650 advance_line (line_delta);
20653 /* Handle DW_LNS_set_file. */
20654 void handle_set_file (file_name_index file);
20656 /* Handle DW_LNS_negate_stmt. */
20657 void handle_negate_stmt ()
20659 m_is_stmt = !m_is_stmt;
20662 /* Handle DW_LNS_const_add_pc. */
20663 void handle_const_add_pc ();
20665 /* Handle DW_LNS_fixed_advance_pc. */
20666 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20668 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20672 /* Handle DW_LNS_copy. */
20673 void handle_copy ()
20675 record_line (false);
20676 m_discriminator = 0;
20679 /* Handle DW_LNE_end_sequence. */
20680 void handle_end_sequence ()
20682 m_currently_recording_lines = true;
20686 /* Advance the line by LINE_DELTA. */
20687 void advance_line (int line_delta)
20689 m_line += line_delta;
20691 if (line_delta != 0)
20692 m_line_has_non_zero_discriminator = m_discriminator != 0;
20695 struct dwarf2_cu *m_cu;
20697 gdbarch *m_gdbarch;
20699 /* True if we're recording lines.
20700 Otherwise we're building partial symtabs and are just interested in
20701 finding include files mentioned by the line number program. */
20702 bool m_record_lines_p;
20704 /* The line number header. */
20705 line_header *m_line_header;
20707 /* These are part of the standard DWARF line number state machine,
20708 and initialized according to the DWARF spec. */
20710 unsigned char m_op_index = 0;
20711 /* The line table index (1-based) of the current file. */
20712 file_name_index m_file = (file_name_index) 1;
20713 unsigned int m_line = 1;
20715 /* These are initialized in the constructor. */
20717 CORE_ADDR m_address;
20719 unsigned int m_discriminator;
20721 /* Additional bits of state we need to track. */
20723 /* The last file that we called dwarf2_start_subfile for.
20724 This is only used for TLLs. */
20725 unsigned int m_last_file = 0;
20726 /* The last file a line number was recorded for. */
20727 struct subfile *m_last_subfile = NULL;
20729 /* When true, record the lines we decode. */
20730 bool m_currently_recording_lines = false;
20732 /* The last line number that was recorded, used to coalesce
20733 consecutive entries for the same line. This can happen, for
20734 example, when discriminators are present. PR 17276. */
20735 unsigned int m_last_line = 0;
20736 bool m_line_has_non_zero_discriminator = false;
20740 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20742 CORE_ADDR addr_adj = (((m_op_index + adjust)
20743 / m_line_header->maximum_ops_per_instruction)
20744 * m_line_header->minimum_instruction_length);
20745 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20746 m_op_index = ((m_op_index + adjust)
20747 % m_line_header->maximum_ops_per_instruction);
20751 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20753 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20754 CORE_ADDR addr_adj = (((m_op_index
20755 + (adj_opcode / m_line_header->line_range))
20756 / m_line_header->maximum_ops_per_instruction)
20757 * m_line_header->minimum_instruction_length);
20758 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20759 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20760 % m_line_header->maximum_ops_per_instruction);
20762 int line_delta = (m_line_header->line_base
20763 + (adj_opcode % m_line_header->line_range));
20764 advance_line (line_delta);
20765 record_line (false);
20766 m_discriminator = 0;
20770 lnp_state_machine::handle_set_file (file_name_index file)
20774 const file_entry *fe = current_file ();
20776 dwarf2_debug_line_missing_file_complaint ();
20777 else if (m_record_lines_p)
20779 const char *dir = fe->include_dir (m_line_header);
20781 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20782 m_line_has_non_zero_discriminator = m_discriminator != 0;
20783 dwarf2_start_subfile (m_cu, fe->name, dir);
20788 lnp_state_machine::handle_const_add_pc ()
20791 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20794 = (((m_op_index + adjust)
20795 / m_line_header->maximum_ops_per_instruction)
20796 * m_line_header->minimum_instruction_length);
20798 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20799 m_op_index = ((m_op_index + adjust)
20800 % m_line_header->maximum_ops_per_instruction);
20803 /* Return non-zero if we should add LINE to the line number table.
20804 LINE is the line to add, LAST_LINE is the last line that was added,
20805 LAST_SUBFILE is the subfile for LAST_LINE.
20806 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20807 had a non-zero discriminator.
20809 We have to be careful in the presence of discriminators.
20810 E.g., for this line:
20812 for (i = 0; i < 100000; i++);
20814 clang can emit four line number entries for that one line,
20815 each with a different discriminator.
20816 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20818 However, we want gdb to coalesce all four entries into one.
20819 Otherwise the user could stepi into the middle of the line and
20820 gdb would get confused about whether the pc really was in the
20821 middle of the line.
20823 Things are further complicated by the fact that two consecutive
20824 line number entries for the same line is a heuristic used by gcc
20825 to denote the end of the prologue. So we can't just discard duplicate
20826 entries, we have to be selective about it. The heuristic we use is
20827 that we only collapse consecutive entries for the same line if at least
20828 one of those entries has a non-zero discriminator. PR 17276.
20830 Note: Addresses in the line number state machine can never go backwards
20831 within one sequence, thus this coalescing is ok. */
20834 dwarf_record_line_p (struct dwarf2_cu *cu,
20835 unsigned int line, unsigned int last_line,
20836 int line_has_non_zero_discriminator,
20837 struct subfile *last_subfile)
20839 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20841 if (line != last_line)
20843 /* Same line for the same file that we've seen already.
20844 As a last check, for pr 17276, only record the line if the line
20845 has never had a non-zero discriminator. */
20846 if (!line_has_non_zero_discriminator)
20851 /* Use the CU's builder to record line number LINE beginning at
20852 address ADDRESS in the line table of subfile SUBFILE. */
20855 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20856 unsigned int line, CORE_ADDR address,
20857 struct dwarf2_cu *cu)
20859 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20861 if (dwarf_line_debug)
20863 fprintf_unfiltered (gdb_stdlog,
20864 "Recording line %u, file %s, address %s\n",
20865 line, lbasename (subfile->name),
20866 paddress (gdbarch, address));
20870 cu->get_builder ()->record_line (subfile, line, addr);
20873 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20874 Mark the end of a set of line number records.
20875 The arguments are the same as for dwarf_record_line_1.
20876 If SUBFILE is NULL the request is ignored. */
20879 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20880 CORE_ADDR address, struct dwarf2_cu *cu)
20882 if (subfile == NULL)
20885 if (dwarf_line_debug)
20887 fprintf_unfiltered (gdb_stdlog,
20888 "Finishing current line, file %s, address %s\n",
20889 lbasename (subfile->name),
20890 paddress (gdbarch, address));
20893 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20897 lnp_state_machine::record_line (bool end_sequence)
20899 if (dwarf_line_debug)
20901 fprintf_unfiltered (gdb_stdlog,
20902 "Processing actual line %u: file %u,"
20903 " address %s, is_stmt %u, discrim %u\n",
20904 m_line, to_underlying (m_file),
20905 paddress (m_gdbarch, m_address),
20906 m_is_stmt, m_discriminator);
20909 file_entry *fe = current_file ();
20912 dwarf2_debug_line_missing_file_complaint ();
20913 /* For now we ignore lines not starting on an instruction boundary.
20914 But not when processing end_sequence for compatibility with the
20915 previous version of the code. */
20916 else if (m_op_index == 0 || end_sequence)
20918 fe->included_p = 1;
20919 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20921 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20924 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20925 m_currently_recording_lines ? m_cu : nullptr);
20930 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20931 m_line_has_non_zero_discriminator,
20934 buildsym_compunit *builder = m_cu->get_builder ();
20935 dwarf_record_line_1 (m_gdbarch,
20936 builder->get_current_subfile (),
20938 m_currently_recording_lines ? m_cu : nullptr);
20940 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20941 m_last_line = m_line;
20947 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20948 line_header *lh, bool record_lines_p)
20952 m_record_lines_p = record_lines_p;
20953 m_line_header = lh;
20955 m_currently_recording_lines = true;
20957 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20958 was a line entry for it so that the backend has a chance to adjust it
20959 and also record it in case it needs it. This is currently used by MIPS
20960 code, cf. `mips_adjust_dwarf2_line'. */
20961 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20962 m_is_stmt = lh->default_is_stmt;
20963 m_discriminator = 0;
20967 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20968 const gdb_byte *line_ptr,
20969 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20971 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20972 the pc range of the CU. However, we restrict the test to only ADDRESS
20973 values of zero to preserve GDB's previous behaviour which is to handle
20974 the specific case of a function being GC'd by the linker. */
20976 if (address == 0 && address < unrelocated_lowpc)
20978 /* This line table is for a function which has been
20979 GCd by the linker. Ignore it. PR gdb/12528 */
20981 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20982 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20984 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20985 line_offset, objfile_name (objfile));
20986 m_currently_recording_lines = false;
20987 /* Note: m_currently_recording_lines is left as false until we see
20988 DW_LNE_end_sequence. */
20992 /* Subroutine of dwarf_decode_lines to simplify it.
20993 Process the line number information in LH.
20994 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20995 program in order to set included_p for every referenced header. */
20998 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20999 const int decode_for_pst_p, CORE_ADDR lowpc)
21001 const gdb_byte *line_ptr, *extended_end;
21002 const gdb_byte *line_end;
21003 unsigned int bytes_read, extended_len;
21004 unsigned char op_code, extended_op;
21005 CORE_ADDR baseaddr;
21006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21007 bfd *abfd = objfile->obfd;
21008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21009 /* True if we're recording line info (as opposed to building partial
21010 symtabs and just interested in finding include files mentioned by
21011 the line number program). */
21012 bool record_lines_p = !decode_for_pst_p;
21014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21016 line_ptr = lh->statement_program_start;
21017 line_end = lh->statement_program_end;
21019 /* Read the statement sequences until there's nothing left. */
21020 while (line_ptr < line_end)
21022 /* The DWARF line number program state machine. Reset the state
21023 machine at the start of each sequence. */
21024 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21025 bool end_sequence = false;
21027 if (record_lines_p)
21029 /* Start a subfile for the current file of the state
21031 const file_entry *fe = state_machine.current_file ();
21034 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21037 /* Decode the table. */
21038 while (line_ptr < line_end && !end_sequence)
21040 op_code = read_1_byte (abfd, line_ptr);
21043 if (op_code >= lh->opcode_base)
21045 /* Special opcode. */
21046 state_machine.handle_special_opcode (op_code);
21048 else switch (op_code)
21050 case DW_LNS_extended_op:
21051 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21053 line_ptr += bytes_read;
21054 extended_end = line_ptr + extended_len;
21055 extended_op = read_1_byte (abfd, line_ptr);
21057 switch (extended_op)
21059 case DW_LNE_end_sequence:
21060 state_machine.handle_end_sequence ();
21061 end_sequence = true;
21063 case DW_LNE_set_address:
21066 = read_address (abfd, line_ptr, cu, &bytes_read);
21067 line_ptr += bytes_read;
21069 state_machine.check_line_address (cu, line_ptr,
21070 lowpc - baseaddr, address);
21071 state_machine.handle_set_address (baseaddr, address);
21074 case DW_LNE_define_file:
21076 const char *cur_file;
21077 unsigned int mod_time, length;
21080 cur_file = read_direct_string (abfd, line_ptr,
21082 line_ptr += bytes_read;
21083 dindex = (dir_index)
21084 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21085 line_ptr += bytes_read;
21087 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21088 line_ptr += bytes_read;
21090 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21091 line_ptr += bytes_read;
21092 lh->add_file_name (cur_file, dindex, mod_time, length);
21095 case DW_LNE_set_discriminator:
21097 /* The discriminator is not interesting to the
21098 debugger; just ignore it. We still need to
21099 check its value though:
21100 if there are consecutive entries for the same
21101 (non-prologue) line we want to coalesce them.
21104 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21105 line_ptr += bytes_read;
21107 state_machine.handle_set_discriminator (discr);
21111 complaint (_("mangled .debug_line section"));
21114 /* Make sure that we parsed the extended op correctly. If e.g.
21115 we expected a different address size than the producer used,
21116 we may have read the wrong number of bytes. */
21117 if (line_ptr != extended_end)
21119 complaint (_("mangled .debug_line section"));
21124 state_machine.handle_copy ();
21126 case DW_LNS_advance_pc:
21129 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21130 line_ptr += bytes_read;
21132 state_machine.handle_advance_pc (adjust);
21135 case DW_LNS_advance_line:
21138 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21139 line_ptr += bytes_read;
21141 state_machine.handle_advance_line (line_delta);
21144 case DW_LNS_set_file:
21146 file_name_index file
21147 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21149 line_ptr += bytes_read;
21151 state_machine.handle_set_file (file);
21154 case DW_LNS_set_column:
21155 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21156 line_ptr += bytes_read;
21158 case DW_LNS_negate_stmt:
21159 state_machine.handle_negate_stmt ();
21161 case DW_LNS_set_basic_block:
21163 /* Add to the address register of the state machine the
21164 address increment value corresponding to special opcode
21165 255. I.e., this value is scaled by the minimum
21166 instruction length since special opcode 255 would have
21167 scaled the increment. */
21168 case DW_LNS_const_add_pc:
21169 state_machine.handle_const_add_pc ();
21171 case DW_LNS_fixed_advance_pc:
21173 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21176 state_machine.handle_fixed_advance_pc (addr_adj);
21181 /* Unknown standard opcode, ignore it. */
21184 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21186 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21187 line_ptr += bytes_read;
21194 dwarf2_debug_line_missing_end_sequence_complaint ();
21196 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21197 in which case we still finish recording the last line). */
21198 state_machine.record_line (true);
21202 /* Decode the Line Number Program (LNP) for the given line_header
21203 structure and CU. The actual information extracted and the type
21204 of structures created from the LNP depends on the value of PST.
21206 1. If PST is NULL, then this procedure uses the data from the program
21207 to create all necessary symbol tables, and their linetables.
21209 2. If PST is not NULL, this procedure reads the program to determine
21210 the list of files included by the unit represented by PST, and
21211 builds all the associated partial symbol tables.
21213 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21214 It is used for relative paths in the line table.
21215 NOTE: When processing partial symtabs (pst != NULL),
21216 comp_dir == pst->dirname.
21218 NOTE: It is important that psymtabs have the same file name (via strcmp)
21219 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21220 symtab we don't use it in the name of the psymtabs we create.
21221 E.g. expand_line_sal requires this when finding psymtabs to expand.
21222 A good testcase for this is mb-inline.exp.
21224 LOWPC is the lowest address in CU (or 0 if not known).
21226 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21227 for its PC<->lines mapping information. Otherwise only the filename
21228 table is read in. */
21231 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21232 struct dwarf2_cu *cu, struct partial_symtab *pst,
21233 CORE_ADDR lowpc, int decode_mapping)
21235 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21236 const int decode_for_pst_p = (pst != NULL);
21238 if (decode_mapping)
21239 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21241 if (decode_for_pst_p)
21245 /* Now that we're done scanning the Line Header Program, we can
21246 create the psymtab of each included file. */
21247 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21248 if (lh->file_names[file_index].included_p == 1)
21250 gdb::unique_xmalloc_ptr<char> name_holder;
21251 const char *include_name =
21252 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21254 if (include_name != NULL)
21255 dwarf2_create_include_psymtab (include_name, pst, objfile);
21260 /* Make sure a symtab is created for every file, even files
21261 which contain only variables (i.e. no code with associated
21263 buildsym_compunit *builder = cu->get_builder ();
21264 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21267 for (i = 0; i < lh->file_names.size (); i++)
21269 file_entry &fe = lh->file_names[i];
21271 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21273 if (builder->get_current_subfile ()->symtab == NULL)
21275 builder->get_current_subfile ()->symtab
21276 = allocate_symtab (cust,
21277 builder->get_current_subfile ()->name);
21279 fe.symtab = builder->get_current_subfile ()->symtab;
21284 /* Start a subfile for DWARF. FILENAME is the name of the file and
21285 DIRNAME the name of the source directory which contains FILENAME
21286 or NULL if not known.
21287 This routine tries to keep line numbers from identical absolute and
21288 relative file names in a common subfile.
21290 Using the `list' example from the GDB testsuite, which resides in
21291 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21292 of /srcdir/list0.c yields the following debugging information for list0.c:
21294 DW_AT_name: /srcdir/list0.c
21295 DW_AT_comp_dir: /compdir
21296 files.files[0].name: list0.h
21297 files.files[0].dir: /srcdir
21298 files.files[1].name: list0.c
21299 files.files[1].dir: /srcdir
21301 The line number information for list0.c has to end up in a single
21302 subfile, so that `break /srcdir/list0.c:1' works as expected.
21303 start_subfile will ensure that this happens provided that we pass the
21304 concatenation of files.files[1].dir and files.files[1].name as the
21308 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21309 const char *dirname)
21313 /* In order not to lose the line information directory,
21314 we concatenate it to the filename when it makes sense.
21315 Note that the Dwarf3 standard says (speaking of filenames in line
21316 information): ``The directory index is ignored for file names
21317 that represent full path names''. Thus ignoring dirname in the
21318 `else' branch below isn't an issue. */
21320 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21322 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21326 cu->get_builder ()->start_subfile (filename);
21332 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21333 buildsym_compunit constructor. */
21335 struct compunit_symtab *
21336 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21339 gdb_assert (m_builder == nullptr);
21341 m_builder.reset (new struct buildsym_compunit
21342 (per_cu->dwarf2_per_objfile->objfile,
21343 name, comp_dir, language, low_pc));
21345 list_in_scope = get_builder ()->get_file_symbols ();
21347 get_builder ()->record_debugformat ("DWARF 2");
21348 get_builder ()->record_producer (producer);
21350 processing_has_namespace_info = false;
21352 return get_builder ()->get_compunit_symtab ();
21356 var_decode_location (struct attribute *attr, struct symbol *sym,
21357 struct dwarf2_cu *cu)
21359 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21360 struct comp_unit_head *cu_header = &cu->header;
21362 /* NOTE drow/2003-01-30: There used to be a comment and some special
21363 code here to turn a symbol with DW_AT_external and a
21364 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21365 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21366 with some versions of binutils) where shared libraries could have
21367 relocations against symbols in their debug information - the
21368 minimal symbol would have the right address, but the debug info
21369 would not. It's no longer necessary, because we will explicitly
21370 apply relocations when we read in the debug information now. */
21372 /* A DW_AT_location attribute with no contents indicates that a
21373 variable has been optimized away. */
21374 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21376 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21380 /* Handle one degenerate form of location expression specially, to
21381 preserve GDB's previous behavior when section offsets are
21382 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21383 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21385 if (attr_form_is_block (attr)
21386 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21387 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21388 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21389 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21390 && (DW_BLOCK (attr)->size
21391 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21393 unsigned int dummy;
21395 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21396 SYMBOL_VALUE_ADDRESS (sym) =
21397 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21399 SYMBOL_VALUE_ADDRESS (sym) =
21400 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21401 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21402 fixup_symbol_section (sym, objfile);
21403 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21404 SYMBOL_SECTION (sym));
21408 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21409 expression evaluator, and use LOC_COMPUTED only when necessary
21410 (i.e. when the value of a register or memory location is
21411 referenced, or a thread-local block, etc.). Then again, it might
21412 not be worthwhile. I'm assuming that it isn't unless performance
21413 or memory numbers show me otherwise. */
21415 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21417 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21418 cu->has_loclist = true;
21421 /* Given a pointer to a DWARF information entry, figure out if we need
21422 to make a symbol table entry for it, and if so, create a new entry
21423 and return a pointer to it.
21424 If TYPE is NULL, determine symbol type from the die, otherwise
21425 used the passed type.
21426 If SPACE is not NULL, use it to hold the new symbol. If it is
21427 NULL, allocate a new symbol on the objfile's obstack. */
21429 static struct symbol *
21430 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21431 struct symbol *space)
21433 struct dwarf2_per_objfile *dwarf2_per_objfile
21434 = cu->per_cu->dwarf2_per_objfile;
21435 struct objfile *objfile = dwarf2_per_objfile->objfile;
21436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21437 struct symbol *sym = NULL;
21439 struct attribute *attr = NULL;
21440 struct attribute *attr2 = NULL;
21441 CORE_ADDR baseaddr;
21442 struct pending **list_to_add = NULL;
21444 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21446 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21448 name = dwarf2_name (die, cu);
21451 const char *linkagename;
21452 int suppress_add = 0;
21457 sym = allocate_symbol (objfile);
21458 OBJSTAT (objfile, n_syms++);
21460 /* Cache this symbol's name and the name's demangled form (if any). */
21461 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21462 linkagename = dwarf2_physname (name, die, cu);
21463 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21465 /* Fortran does not have mangling standard and the mangling does differ
21466 between gfortran, iFort etc. */
21467 if (cu->language == language_fortran
21468 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21469 symbol_set_demangled_name (&(sym->ginfo),
21470 dwarf2_full_name (name, die, cu),
21473 /* Default assumptions.
21474 Use the passed type or decode it from the die. */
21475 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21476 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21478 SYMBOL_TYPE (sym) = type;
21480 SYMBOL_TYPE (sym) = die_type (die, cu);
21481 attr = dwarf2_attr (die,
21482 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21486 SYMBOL_LINE (sym) = DW_UNSND (attr);
21489 attr = dwarf2_attr (die,
21490 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21494 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21495 struct file_entry *fe;
21497 if (cu->line_header != NULL)
21498 fe = cu->line_header->file_name_at (file_index);
21503 complaint (_("file index out of range"));
21505 symbol_set_symtab (sym, fe->symtab);
21511 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21516 addr = attr_value_as_address (attr);
21517 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21518 SYMBOL_VALUE_ADDRESS (sym) = addr;
21520 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21521 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21522 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21523 add_symbol_to_list (sym, cu->list_in_scope);
21525 case DW_TAG_subprogram:
21526 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21528 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21529 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21530 if ((attr2 && (DW_UNSND (attr2) != 0))
21531 || cu->language == language_ada)
21533 /* Subprograms marked external are stored as a global symbol.
21534 Ada subprograms, whether marked external or not, are always
21535 stored as a global symbol, because we want to be able to
21536 access them globally. For instance, we want to be able
21537 to break on a nested subprogram without having to
21538 specify the context. */
21539 list_to_add = cu->get_builder ()->get_global_symbols ();
21543 list_to_add = cu->list_in_scope;
21546 case DW_TAG_inlined_subroutine:
21547 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21549 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21550 SYMBOL_INLINED (sym) = 1;
21551 list_to_add = cu->list_in_scope;
21553 case DW_TAG_template_value_param:
21555 /* Fall through. */
21556 case DW_TAG_constant:
21557 case DW_TAG_variable:
21558 case DW_TAG_member:
21559 /* Compilation with minimal debug info may result in
21560 variables with missing type entries. Change the
21561 misleading `void' type to something sensible. */
21562 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21563 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21565 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21566 /* In the case of DW_TAG_member, we should only be called for
21567 static const members. */
21568 if (die->tag == DW_TAG_member)
21570 /* dwarf2_add_field uses die_is_declaration,
21571 so we do the same. */
21572 gdb_assert (die_is_declaration (die, cu));
21577 dwarf2_const_value (attr, sym, cu);
21578 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21581 if (attr2 && (DW_UNSND (attr2) != 0))
21582 list_to_add = cu->get_builder ()->get_global_symbols ();
21584 list_to_add = cu->list_in_scope;
21588 attr = dwarf2_attr (die, DW_AT_location, cu);
21591 var_decode_location (attr, sym, cu);
21592 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21594 /* Fortran explicitly imports any global symbols to the local
21595 scope by DW_TAG_common_block. */
21596 if (cu->language == language_fortran && die->parent
21597 && die->parent->tag == DW_TAG_common_block)
21600 if (SYMBOL_CLASS (sym) == LOC_STATIC
21601 && SYMBOL_VALUE_ADDRESS (sym) == 0
21602 && !dwarf2_per_objfile->has_section_at_zero)
21604 /* When a static variable is eliminated by the linker,
21605 the corresponding debug information is not stripped
21606 out, but the variable address is set to null;
21607 do not add such variables into symbol table. */
21609 else if (attr2 && (DW_UNSND (attr2) != 0))
21611 /* Workaround gfortran PR debug/40040 - it uses
21612 DW_AT_location for variables in -fPIC libraries which may
21613 get overriden by other libraries/executable and get
21614 a different address. Resolve it by the minimal symbol
21615 which may come from inferior's executable using copy
21616 relocation. Make this workaround only for gfortran as for
21617 other compilers GDB cannot guess the minimal symbol
21618 Fortran mangling kind. */
21619 if (cu->language == language_fortran && die->parent
21620 && die->parent->tag == DW_TAG_module
21622 && startswith (cu->producer, "GNU Fortran"))
21623 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21625 /* A variable with DW_AT_external is never static,
21626 but it may be block-scoped. */
21628 = ((cu->list_in_scope
21629 == cu->get_builder ()->get_file_symbols ())
21630 ? cu->get_builder ()->get_global_symbols ()
21631 : cu->list_in_scope);
21634 list_to_add = cu->list_in_scope;
21638 /* We do not know the address of this symbol.
21639 If it is an external symbol and we have type information
21640 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21641 The address of the variable will then be determined from
21642 the minimal symbol table whenever the variable is
21644 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21646 /* Fortran explicitly imports any global symbols to the local
21647 scope by DW_TAG_common_block. */
21648 if (cu->language == language_fortran && die->parent
21649 && die->parent->tag == DW_TAG_common_block)
21651 /* SYMBOL_CLASS doesn't matter here because
21652 read_common_block is going to reset it. */
21654 list_to_add = cu->list_in_scope;
21656 else if (attr2 && (DW_UNSND (attr2) != 0)
21657 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21659 /* A variable with DW_AT_external is never static, but it
21660 may be block-scoped. */
21662 = ((cu->list_in_scope
21663 == cu->get_builder ()->get_file_symbols ())
21664 ? cu->get_builder ()->get_global_symbols ()
21665 : cu->list_in_scope);
21667 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21669 else if (!die_is_declaration (die, cu))
21671 /* Use the default LOC_OPTIMIZED_OUT class. */
21672 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21674 list_to_add = cu->list_in_scope;
21678 case DW_TAG_formal_parameter:
21680 /* If we are inside a function, mark this as an argument. If
21681 not, we might be looking at an argument to an inlined function
21682 when we do not have enough information to show inlined frames;
21683 pretend it's a local variable in that case so that the user can
21685 struct context_stack *curr
21686 = cu->get_builder ()->get_current_context_stack ();
21687 if (curr != nullptr && curr->name != nullptr)
21688 SYMBOL_IS_ARGUMENT (sym) = 1;
21689 attr = dwarf2_attr (die, DW_AT_location, cu);
21692 var_decode_location (attr, sym, cu);
21694 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21697 dwarf2_const_value (attr, sym, cu);
21700 list_to_add = cu->list_in_scope;
21703 case DW_TAG_unspecified_parameters:
21704 /* From varargs functions; gdb doesn't seem to have any
21705 interest in this information, so just ignore it for now.
21708 case DW_TAG_template_type_param:
21710 /* Fall through. */
21711 case DW_TAG_class_type:
21712 case DW_TAG_interface_type:
21713 case DW_TAG_structure_type:
21714 case DW_TAG_union_type:
21715 case DW_TAG_set_type:
21716 case DW_TAG_enumeration_type:
21717 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21718 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21721 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21722 really ever be static objects: otherwise, if you try
21723 to, say, break of a class's method and you're in a file
21724 which doesn't mention that class, it won't work unless
21725 the check for all static symbols in lookup_symbol_aux
21726 saves you. See the OtherFileClass tests in
21727 gdb.c++/namespace.exp. */
21731 buildsym_compunit *builder = cu->get_builder ();
21733 = (cu->list_in_scope == builder->get_file_symbols ()
21734 && cu->language == language_cplus
21735 ? builder->get_global_symbols ()
21736 : cu->list_in_scope);
21738 /* The semantics of C++ state that "struct foo {
21739 ... }" also defines a typedef for "foo". */
21740 if (cu->language == language_cplus
21741 || cu->language == language_ada
21742 || cu->language == language_d
21743 || cu->language == language_rust)
21745 /* The symbol's name is already allocated along
21746 with this objfile, so we don't need to
21747 duplicate it for the type. */
21748 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21749 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21754 case DW_TAG_typedef:
21755 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21756 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21757 list_to_add = cu->list_in_scope;
21759 case DW_TAG_base_type:
21760 case DW_TAG_subrange_type:
21761 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21762 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21763 list_to_add = cu->list_in_scope;
21765 case DW_TAG_enumerator:
21766 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21769 dwarf2_const_value (attr, sym, cu);
21772 /* NOTE: carlton/2003-11-10: See comment above in the
21773 DW_TAG_class_type, etc. block. */
21776 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21777 && cu->language == language_cplus
21778 ? cu->get_builder ()->get_global_symbols ()
21779 : cu->list_in_scope);
21782 case DW_TAG_imported_declaration:
21783 case DW_TAG_namespace:
21784 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21785 list_to_add = cu->get_builder ()->get_global_symbols ();
21787 case DW_TAG_module:
21788 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21789 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21790 list_to_add = cu->get_builder ()->get_global_symbols ();
21792 case DW_TAG_common_block:
21793 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21794 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21795 add_symbol_to_list (sym, cu->list_in_scope);
21798 /* Not a tag we recognize. Hopefully we aren't processing
21799 trash data, but since we must specifically ignore things
21800 we don't recognize, there is nothing else we should do at
21802 complaint (_("unsupported tag: '%s'"),
21803 dwarf_tag_name (die->tag));
21809 sym->hash_next = objfile->template_symbols;
21810 objfile->template_symbols = sym;
21811 list_to_add = NULL;
21814 if (list_to_add != NULL)
21815 add_symbol_to_list (sym, list_to_add);
21817 /* For the benefit of old versions of GCC, check for anonymous
21818 namespaces based on the demangled name. */
21819 if (!cu->processing_has_namespace_info
21820 && cu->language == language_cplus)
21821 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21826 /* Given an attr with a DW_FORM_dataN value in host byte order,
21827 zero-extend it as appropriate for the symbol's type. The DWARF
21828 standard (v4) is not entirely clear about the meaning of using
21829 DW_FORM_dataN for a constant with a signed type, where the type is
21830 wider than the data. The conclusion of a discussion on the DWARF
21831 list was that this is unspecified. We choose to always zero-extend
21832 because that is the interpretation long in use by GCC. */
21835 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21836 struct dwarf2_cu *cu, LONGEST *value, int bits)
21838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21839 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21840 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21841 LONGEST l = DW_UNSND (attr);
21843 if (bits < sizeof (*value) * 8)
21845 l &= ((LONGEST) 1 << bits) - 1;
21848 else if (bits == sizeof (*value) * 8)
21852 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21853 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21860 /* Read a constant value from an attribute. Either set *VALUE, or if
21861 the value does not fit in *VALUE, set *BYTES - either already
21862 allocated on the objfile obstack, or newly allocated on OBSTACK,
21863 or, set *BATON, if we translated the constant to a location
21867 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21868 const char *name, struct obstack *obstack,
21869 struct dwarf2_cu *cu,
21870 LONGEST *value, const gdb_byte **bytes,
21871 struct dwarf2_locexpr_baton **baton)
21873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21874 struct comp_unit_head *cu_header = &cu->header;
21875 struct dwarf_block *blk;
21876 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21877 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21883 switch (attr->form)
21886 case DW_FORM_addrx:
21887 case DW_FORM_GNU_addr_index:
21891 if (TYPE_LENGTH (type) != cu_header->addr_size)
21892 dwarf2_const_value_length_mismatch_complaint (name,
21893 cu_header->addr_size,
21894 TYPE_LENGTH (type));
21895 /* Symbols of this form are reasonably rare, so we just
21896 piggyback on the existing location code rather than writing
21897 a new implementation of symbol_computed_ops. */
21898 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21899 (*baton)->per_cu = cu->per_cu;
21900 gdb_assert ((*baton)->per_cu);
21902 (*baton)->size = 2 + cu_header->addr_size;
21903 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21904 (*baton)->data = data;
21906 data[0] = DW_OP_addr;
21907 store_unsigned_integer (&data[1], cu_header->addr_size,
21908 byte_order, DW_ADDR (attr));
21909 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21912 case DW_FORM_string:
21915 case DW_FORM_GNU_str_index:
21916 case DW_FORM_GNU_strp_alt:
21917 /* DW_STRING is already allocated on the objfile obstack, point
21919 *bytes = (const gdb_byte *) DW_STRING (attr);
21921 case DW_FORM_block1:
21922 case DW_FORM_block2:
21923 case DW_FORM_block4:
21924 case DW_FORM_block:
21925 case DW_FORM_exprloc:
21926 case DW_FORM_data16:
21927 blk = DW_BLOCK (attr);
21928 if (TYPE_LENGTH (type) != blk->size)
21929 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21930 TYPE_LENGTH (type));
21931 *bytes = blk->data;
21934 /* The DW_AT_const_value attributes are supposed to carry the
21935 symbol's value "represented as it would be on the target
21936 architecture." By the time we get here, it's already been
21937 converted to host endianness, so we just need to sign- or
21938 zero-extend it as appropriate. */
21939 case DW_FORM_data1:
21940 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21942 case DW_FORM_data2:
21943 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21945 case DW_FORM_data4:
21946 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21948 case DW_FORM_data8:
21949 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21952 case DW_FORM_sdata:
21953 case DW_FORM_implicit_const:
21954 *value = DW_SND (attr);
21957 case DW_FORM_udata:
21958 *value = DW_UNSND (attr);
21962 complaint (_("unsupported const value attribute form: '%s'"),
21963 dwarf_form_name (attr->form));
21970 /* Copy constant value from an attribute to a symbol. */
21973 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21974 struct dwarf2_cu *cu)
21976 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21978 const gdb_byte *bytes;
21979 struct dwarf2_locexpr_baton *baton;
21981 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21982 SYMBOL_PRINT_NAME (sym),
21983 &objfile->objfile_obstack, cu,
21984 &value, &bytes, &baton);
21988 SYMBOL_LOCATION_BATON (sym) = baton;
21989 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21991 else if (bytes != NULL)
21993 SYMBOL_VALUE_BYTES (sym) = bytes;
21994 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21998 SYMBOL_VALUE (sym) = value;
21999 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22003 /* Return the type of the die in question using its DW_AT_type attribute. */
22005 static struct type *
22006 die_type (struct die_info *die, struct dwarf2_cu *cu)
22008 struct attribute *type_attr;
22010 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22013 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22014 /* A missing DW_AT_type represents a void type. */
22015 return objfile_type (objfile)->builtin_void;
22018 return lookup_die_type (die, type_attr, cu);
22021 /* True iff CU's producer generates GNAT Ada auxiliary information
22022 that allows to find parallel types through that information instead
22023 of having to do expensive parallel lookups by type name. */
22026 need_gnat_info (struct dwarf2_cu *cu)
22028 /* Assume that the Ada compiler was GNAT, which always produces
22029 the auxiliary information. */
22030 return (cu->language == language_ada);
22033 /* Return the auxiliary type of the die in question using its
22034 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22035 attribute is not present. */
22037 static struct type *
22038 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22040 struct attribute *type_attr;
22042 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22046 return lookup_die_type (die, type_attr, cu);
22049 /* If DIE has a descriptive_type attribute, then set the TYPE's
22050 descriptive type accordingly. */
22053 set_descriptive_type (struct type *type, struct die_info *die,
22054 struct dwarf2_cu *cu)
22056 struct type *descriptive_type = die_descriptive_type (die, cu);
22058 if (descriptive_type)
22060 ALLOCATE_GNAT_AUX_TYPE (type);
22061 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22065 /* Return the containing type of the die in question using its
22066 DW_AT_containing_type attribute. */
22068 static struct type *
22069 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22071 struct attribute *type_attr;
22072 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22074 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22076 error (_("Dwarf Error: Problem turning containing type into gdb type "
22077 "[in module %s]"), objfile_name (objfile));
22079 return lookup_die_type (die, type_attr, cu);
22082 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22084 static struct type *
22085 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22087 struct dwarf2_per_objfile *dwarf2_per_objfile
22088 = cu->per_cu->dwarf2_per_objfile;
22089 struct objfile *objfile = dwarf2_per_objfile->objfile;
22092 std::string message
22093 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22094 objfile_name (objfile),
22095 sect_offset_str (cu->header.sect_off),
22096 sect_offset_str (die->sect_off));
22097 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22098 message.c_str (), message.length ());
22100 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22103 /* Look up the type of DIE in CU using its type attribute ATTR.
22104 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22105 DW_AT_containing_type.
22106 If there is no type substitute an error marker. */
22108 static struct type *
22109 lookup_die_type (struct die_info *die, const struct attribute *attr,
22110 struct dwarf2_cu *cu)
22112 struct dwarf2_per_objfile *dwarf2_per_objfile
22113 = cu->per_cu->dwarf2_per_objfile;
22114 struct objfile *objfile = dwarf2_per_objfile->objfile;
22115 struct type *this_type;
22117 gdb_assert (attr->name == DW_AT_type
22118 || attr->name == DW_AT_GNAT_descriptive_type
22119 || attr->name == DW_AT_containing_type);
22121 /* First see if we have it cached. */
22123 if (attr->form == DW_FORM_GNU_ref_alt)
22125 struct dwarf2_per_cu_data *per_cu;
22126 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22128 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22129 dwarf2_per_objfile);
22130 this_type = get_die_type_at_offset (sect_off, per_cu);
22132 else if (attr_form_is_ref (attr))
22134 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22136 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22138 else if (attr->form == DW_FORM_ref_sig8)
22140 ULONGEST signature = DW_SIGNATURE (attr);
22142 return get_signatured_type (die, signature, cu);
22146 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22147 " at %s [in module %s]"),
22148 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22149 objfile_name (objfile));
22150 return build_error_marker_type (cu, die);
22153 /* If not cached we need to read it in. */
22155 if (this_type == NULL)
22157 struct die_info *type_die = NULL;
22158 struct dwarf2_cu *type_cu = cu;
22160 if (attr_form_is_ref (attr))
22161 type_die = follow_die_ref (die, attr, &type_cu);
22162 if (type_die == NULL)
22163 return build_error_marker_type (cu, die);
22164 /* If we find the type now, it's probably because the type came
22165 from an inter-CU reference and the type's CU got expanded before
22167 this_type = read_type_die (type_die, type_cu);
22170 /* If we still don't have a type use an error marker. */
22172 if (this_type == NULL)
22173 return build_error_marker_type (cu, die);
22178 /* Return the type in DIE, CU.
22179 Returns NULL for invalid types.
22181 This first does a lookup in die_type_hash,
22182 and only reads the die in if necessary.
22184 NOTE: This can be called when reading in partial or full symbols. */
22186 static struct type *
22187 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22189 struct type *this_type;
22191 this_type = get_die_type (die, cu);
22195 return read_type_die_1 (die, cu);
22198 /* Read the type in DIE, CU.
22199 Returns NULL for invalid types. */
22201 static struct type *
22202 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22204 struct type *this_type = NULL;
22208 case DW_TAG_class_type:
22209 case DW_TAG_interface_type:
22210 case DW_TAG_structure_type:
22211 case DW_TAG_union_type:
22212 this_type = read_structure_type (die, cu);
22214 case DW_TAG_enumeration_type:
22215 this_type = read_enumeration_type (die, cu);
22217 case DW_TAG_subprogram:
22218 case DW_TAG_subroutine_type:
22219 case DW_TAG_inlined_subroutine:
22220 this_type = read_subroutine_type (die, cu);
22222 case DW_TAG_array_type:
22223 this_type = read_array_type (die, cu);
22225 case DW_TAG_set_type:
22226 this_type = read_set_type (die, cu);
22228 case DW_TAG_pointer_type:
22229 this_type = read_tag_pointer_type (die, cu);
22231 case DW_TAG_ptr_to_member_type:
22232 this_type = read_tag_ptr_to_member_type (die, cu);
22234 case DW_TAG_reference_type:
22235 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22237 case DW_TAG_rvalue_reference_type:
22238 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22240 case DW_TAG_const_type:
22241 this_type = read_tag_const_type (die, cu);
22243 case DW_TAG_volatile_type:
22244 this_type = read_tag_volatile_type (die, cu);
22246 case DW_TAG_restrict_type:
22247 this_type = read_tag_restrict_type (die, cu);
22249 case DW_TAG_string_type:
22250 this_type = read_tag_string_type (die, cu);
22252 case DW_TAG_typedef:
22253 this_type = read_typedef (die, cu);
22255 case DW_TAG_subrange_type:
22256 this_type = read_subrange_type (die, cu);
22258 case DW_TAG_base_type:
22259 this_type = read_base_type (die, cu);
22261 case DW_TAG_unspecified_type:
22262 this_type = read_unspecified_type (die, cu);
22264 case DW_TAG_namespace:
22265 this_type = read_namespace_type (die, cu);
22267 case DW_TAG_module:
22268 this_type = read_module_type (die, cu);
22270 case DW_TAG_atomic_type:
22271 this_type = read_tag_atomic_type (die, cu);
22274 complaint (_("unexpected tag in read_type_die: '%s'"),
22275 dwarf_tag_name (die->tag));
22282 /* See if we can figure out if the class lives in a namespace. We do
22283 this by looking for a member function; its demangled name will
22284 contain namespace info, if there is any.
22285 Return the computed name or NULL.
22286 Space for the result is allocated on the objfile's obstack.
22287 This is the full-die version of guess_partial_die_structure_name.
22288 In this case we know DIE has no useful parent. */
22291 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22293 struct die_info *spec_die;
22294 struct dwarf2_cu *spec_cu;
22295 struct die_info *child;
22296 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22299 spec_die = die_specification (die, &spec_cu);
22300 if (spec_die != NULL)
22306 for (child = die->child;
22308 child = child->sibling)
22310 if (child->tag == DW_TAG_subprogram)
22312 const char *linkage_name = dw2_linkage_name (child, cu);
22314 if (linkage_name != NULL)
22317 = language_class_name_from_physname (cu->language_defn,
22321 if (actual_name != NULL)
22323 const char *die_name = dwarf2_name (die, cu);
22325 if (die_name != NULL
22326 && strcmp (die_name, actual_name) != 0)
22328 /* Strip off the class name from the full name.
22329 We want the prefix. */
22330 int die_name_len = strlen (die_name);
22331 int actual_name_len = strlen (actual_name);
22333 /* Test for '::' as a sanity check. */
22334 if (actual_name_len > die_name_len + 2
22335 && actual_name[actual_name_len
22336 - die_name_len - 1] == ':')
22337 name = (char *) obstack_copy0 (
22338 &objfile->per_bfd->storage_obstack,
22339 actual_name, actual_name_len - die_name_len - 2);
22342 xfree (actual_name);
22351 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22352 prefix part in such case. See
22353 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22355 static const char *
22356 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22358 struct attribute *attr;
22361 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22362 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22365 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22368 attr = dw2_linkage_name_attr (die, cu);
22369 if (attr == NULL || DW_STRING (attr) == NULL)
22372 /* dwarf2_name had to be already called. */
22373 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22375 /* Strip the base name, keep any leading namespaces/classes. */
22376 base = strrchr (DW_STRING (attr), ':');
22377 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22380 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22381 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22383 &base[-1] - DW_STRING (attr));
22386 /* Return the name of the namespace/class that DIE is defined within,
22387 or "" if we can't tell. The caller should not xfree the result.
22389 For example, if we're within the method foo() in the following
22399 then determine_prefix on foo's die will return "N::C". */
22401 static const char *
22402 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22404 struct dwarf2_per_objfile *dwarf2_per_objfile
22405 = cu->per_cu->dwarf2_per_objfile;
22406 struct die_info *parent, *spec_die;
22407 struct dwarf2_cu *spec_cu;
22408 struct type *parent_type;
22409 const char *retval;
22411 if (cu->language != language_cplus
22412 && cu->language != language_fortran && cu->language != language_d
22413 && cu->language != language_rust)
22416 retval = anonymous_struct_prefix (die, cu);
22420 /* We have to be careful in the presence of DW_AT_specification.
22421 For example, with GCC 3.4, given the code
22425 // Definition of N::foo.
22429 then we'll have a tree of DIEs like this:
22431 1: DW_TAG_compile_unit
22432 2: DW_TAG_namespace // N
22433 3: DW_TAG_subprogram // declaration of N::foo
22434 4: DW_TAG_subprogram // definition of N::foo
22435 DW_AT_specification // refers to die #3
22437 Thus, when processing die #4, we have to pretend that we're in
22438 the context of its DW_AT_specification, namely the contex of die
22441 spec_die = die_specification (die, &spec_cu);
22442 if (spec_die == NULL)
22443 parent = die->parent;
22446 parent = spec_die->parent;
22450 if (parent == NULL)
22452 else if (parent->building_fullname)
22455 const char *parent_name;
22457 /* It has been seen on RealView 2.2 built binaries,
22458 DW_TAG_template_type_param types actually _defined_ as
22459 children of the parent class:
22462 template class <class Enum> Class{};
22463 Class<enum E> class_e;
22465 1: DW_TAG_class_type (Class)
22466 2: DW_TAG_enumeration_type (E)
22467 3: DW_TAG_enumerator (enum1:0)
22468 3: DW_TAG_enumerator (enum2:1)
22470 2: DW_TAG_template_type_param
22471 DW_AT_type DW_FORM_ref_udata (E)
22473 Besides being broken debug info, it can put GDB into an
22474 infinite loop. Consider:
22476 When we're building the full name for Class<E>, we'll start
22477 at Class, and go look over its template type parameters,
22478 finding E. We'll then try to build the full name of E, and
22479 reach here. We're now trying to build the full name of E,
22480 and look over the parent DIE for containing scope. In the
22481 broken case, if we followed the parent DIE of E, we'd again
22482 find Class, and once again go look at its template type
22483 arguments, etc., etc. Simply don't consider such parent die
22484 as source-level parent of this die (it can't be, the language
22485 doesn't allow it), and break the loop here. */
22486 name = dwarf2_name (die, cu);
22487 parent_name = dwarf2_name (parent, cu);
22488 complaint (_("template param type '%s' defined within parent '%s'"),
22489 name ? name : "<unknown>",
22490 parent_name ? parent_name : "<unknown>");
22494 switch (parent->tag)
22496 case DW_TAG_namespace:
22497 parent_type = read_type_die (parent, cu);
22498 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22499 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22500 Work around this problem here. */
22501 if (cu->language == language_cplus
22502 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22504 /* We give a name to even anonymous namespaces. */
22505 return TYPE_NAME (parent_type);
22506 case DW_TAG_class_type:
22507 case DW_TAG_interface_type:
22508 case DW_TAG_structure_type:
22509 case DW_TAG_union_type:
22510 case DW_TAG_module:
22511 parent_type = read_type_die (parent, cu);
22512 if (TYPE_NAME (parent_type) != NULL)
22513 return TYPE_NAME (parent_type);
22515 /* An anonymous structure is only allowed non-static data
22516 members; no typedefs, no member functions, et cetera.
22517 So it does not need a prefix. */
22519 case DW_TAG_compile_unit:
22520 case DW_TAG_partial_unit:
22521 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22522 if (cu->language == language_cplus
22523 && !dwarf2_per_objfile->types.empty ()
22524 && die->child != NULL
22525 && (die->tag == DW_TAG_class_type
22526 || die->tag == DW_TAG_structure_type
22527 || die->tag == DW_TAG_union_type))
22529 char *name = guess_full_die_structure_name (die, cu);
22534 case DW_TAG_enumeration_type:
22535 parent_type = read_type_die (parent, cu);
22536 if (TYPE_DECLARED_CLASS (parent_type))
22538 if (TYPE_NAME (parent_type) != NULL)
22539 return TYPE_NAME (parent_type);
22542 /* Fall through. */
22544 return determine_prefix (parent, cu);
22548 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22549 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22550 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22551 an obconcat, otherwise allocate storage for the result. The CU argument is
22552 used to determine the language and hence, the appropriate separator. */
22554 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22557 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22558 int physname, struct dwarf2_cu *cu)
22560 const char *lead = "";
22563 if (suffix == NULL || suffix[0] == '\0'
22564 || prefix == NULL || prefix[0] == '\0')
22566 else if (cu->language == language_d)
22568 /* For D, the 'main' function could be defined in any module, but it
22569 should never be prefixed. */
22570 if (strcmp (suffix, "D main") == 0)
22578 else if (cu->language == language_fortran && physname)
22580 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22581 DW_AT_MIPS_linkage_name is preferred and used instead. */
22589 if (prefix == NULL)
22591 if (suffix == NULL)
22598 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22600 strcpy (retval, lead);
22601 strcat (retval, prefix);
22602 strcat (retval, sep);
22603 strcat (retval, suffix);
22608 /* We have an obstack. */
22609 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22613 /* Return sibling of die, NULL if no sibling. */
22615 static struct die_info *
22616 sibling_die (struct die_info *die)
22618 return die->sibling;
22621 /* Get name of a die, return NULL if not found. */
22623 static const char *
22624 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22625 struct obstack *obstack)
22627 if (name && cu->language == language_cplus)
22629 std::string canon_name = cp_canonicalize_string (name);
22631 if (!canon_name.empty ())
22633 if (canon_name != name)
22634 name = (const char *) obstack_copy0 (obstack,
22635 canon_name.c_str (),
22636 canon_name.length ());
22643 /* Get name of a die, return NULL if not found.
22644 Anonymous namespaces are converted to their magic string. */
22646 static const char *
22647 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22649 struct attribute *attr;
22650 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22652 attr = dwarf2_attr (die, DW_AT_name, cu);
22653 if ((!attr || !DW_STRING (attr))
22654 && die->tag != DW_TAG_namespace
22655 && die->tag != DW_TAG_class_type
22656 && die->tag != DW_TAG_interface_type
22657 && die->tag != DW_TAG_structure_type
22658 && die->tag != DW_TAG_union_type)
22663 case DW_TAG_compile_unit:
22664 case DW_TAG_partial_unit:
22665 /* Compilation units have a DW_AT_name that is a filename, not
22666 a source language identifier. */
22667 case DW_TAG_enumeration_type:
22668 case DW_TAG_enumerator:
22669 /* These tags always have simple identifiers already; no need
22670 to canonicalize them. */
22671 return DW_STRING (attr);
22673 case DW_TAG_namespace:
22674 if (attr != NULL && DW_STRING (attr) != NULL)
22675 return DW_STRING (attr);
22676 return CP_ANONYMOUS_NAMESPACE_STR;
22678 case DW_TAG_class_type:
22679 case DW_TAG_interface_type:
22680 case DW_TAG_structure_type:
22681 case DW_TAG_union_type:
22682 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22683 structures or unions. These were of the form "._%d" in GCC 4.1,
22684 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22685 and GCC 4.4. We work around this problem by ignoring these. */
22686 if (attr && DW_STRING (attr)
22687 && (startswith (DW_STRING (attr), "._")
22688 || startswith (DW_STRING (attr), "<anonymous")))
22691 /* GCC might emit a nameless typedef that has a linkage name. See
22692 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22693 if (!attr || DW_STRING (attr) == NULL)
22695 char *demangled = NULL;
22697 attr = dw2_linkage_name_attr (die, cu);
22698 if (attr == NULL || DW_STRING (attr) == NULL)
22701 /* Avoid demangling DW_STRING (attr) the second time on a second
22702 call for the same DIE. */
22703 if (!DW_STRING_IS_CANONICAL (attr))
22704 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22710 /* FIXME: we already did this for the partial symbol... */
22713 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22714 demangled, strlen (demangled)));
22715 DW_STRING_IS_CANONICAL (attr) = 1;
22718 /* Strip any leading namespaces/classes, keep only the base name.
22719 DW_AT_name for named DIEs does not contain the prefixes. */
22720 base = strrchr (DW_STRING (attr), ':');
22721 if (base && base > DW_STRING (attr) && base[-1] == ':')
22724 return DW_STRING (attr);
22733 if (!DW_STRING_IS_CANONICAL (attr))
22736 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22737 &objfile->per_bfd->storage_obstack);
22738 DW_STRING_IS_CANONICAL (attr) = 1;
22740 return DW_STRING (attr);
22743 /* Return the die that this die in an extension of, or NULL if there
22744 is none. *EXT_CU is the CU containing DIE on input, and the CU
22745 containing the return value on output. */
22747 static struct die_info *
22748 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22750 struct attribute *attr;
22752 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22756 return follow_die_ref (die, attr, ext_cu);
22759 /* A convenience function that returns an "unknown" DWARF name,
22760 including the value of V. STR is the name of the entity being
22761 printed, e.g., "TAG". */
22763 static const char *
22764 dwarf_unknown (const char *str, unsigned v)
22766 char *cell = get_print_cell ();
22767 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22771 /* Convert a DIE tag into its string name. */
22773 static const char *
22774 dwarf_tag_name (unsigned tag)
22776 const char *name = get_DW_TAG_name (tag);
22779 return dwarf_unknown ("TAG", tag);
22784 /* Convert a DWARF attribute code into its string name. */
22786 static const char *
22787 dwarf_attr_name (unsigned attr)
22791 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22792 if (attr == DW_AT_MIPS_fde)
22793 return "DW_AT_MIPS_fde";
22795 if (attr == DW_AT_HP_block_index)
22796 return "DW_AT_HP_block_index";
22799 name = get_DW_AT_name (attr);
22802 return dwarf_unknown ("AT", attr);
22807 /* Convert a DWARF value form code into its string name. */
22809 static const char *
22810 dwarf_form_name (unsigned form)
22812 const char *name = get_DW_FORM_name (form);
22815 return dwarf_unknown ("FORM", form);
22820 static const char *
22821 dwarf_bool_name (unsigned mybool)
22829 /* Convert a DWARF type code into its string name. */
22831 static const char *
22832 dwarf_type_encoding_name (unsigned enc)
22834 const char *name = get_DW_ATE_name (enc);
22837 return dwarf_unknown ("ATE", enc);
22843 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22847 print_spaces (indent, f);
22848 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22849 dwarf_tag_name (die->tag), die->abbrev,
22850 sect_offset_str (die->sect_off));
22852 if (die->parent != NULL)
22854 print_spaces (indent, f);
22855 fprintf_unfiltered (f, " parent at offset: %s\n",
22856 sect_offset_str (die->parent->sect_off));
22859 print_spaces (indent, f);
22860 fprintf_unfiltered (f, " has children: %s\n",
22861 dwarf_bool_name (die->child != NULL));
22863 print_spaces (indent, f);
22864 fprintf_unfiltered (f, " attributes:\n");
22866 for (i = 0; i < die->num_attrs; ++i)
22868 print_spaces (indent, f);
22869 fprintf_unfiltered (f, " %s (%s) ",
22870 dwarf_attr_name (die->attrs[i].name),
22871 dwarf_form_name (die->attrs[i].form));
22873 switch (die->attrs[i].form)
22876 case DW_FORM_addrx:
22877 case DW_FORM_GNU_addr_index:
22878 fprintf_unfiltered (f, "address: ");
22879 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22881 case DW_FORM_block2:
22882 case DW_FORM_block4:
22883 case DW_FORM_block:
22884 case DW_FORM_block1:
22885 fprintf_unfiltered (f, "block: size %s",
22886 pulongest (DW_BLOCK (&die->attrs[i])->size));
22888 case DW_FORM_exprloc:
22889 fprintf_unfiltered (f, "expression: size %s",
22890 pulongest (DW_BLOCK (&die->attrs[i])->size));
22892 case DW_FORM_data16:
22893 fprintf_unfiltered (f, "constant of 16 bytes");
22895 case DW_FORM_ref_addr:
22896 fprintf_unfiltered (f, "ref address: ");
22897 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22899 case DW_FORM_GNU_ref_alt:
22900 fprintf_unfiltered (f, "alt ref address: ");
22901 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22907 case DW_FORM_ref_udata:
22908 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22909 (long) (DW_UNSND (&die->attrs[i])));
22911 case DW_FORM_data1:
22912 case DW_FORM_data2:
22913 case DW_FORM_data4:
22914 case DW_FORM_data8:
22915 case DW_FORM_udata:
22916 case DW_FORM_sdata:
22917 fprintf_unfiltered (f, "constant: %s",
22918 pulongest (DW_UNSND (&die->attrs[i])));
22920 case DW_FORM_sec_offset:
22921 fprintf_unfiltered (f, "section offset: %s",
22922 pulongest (DW_UNSND (&die->attrs[i])));
22924 case DW_FORM_ref_sig8:
22925 fprintf_unfiltered (f, "signature: %s",
22926 hex_string (DW_SIGNATURE (&die->attrs[i])));
22928 case DW_FORM_string:
22930 case DW_FORM_line_strp:
22932 case DW_FORM_GNU_str_index:
22933 case DW_FORM_GNU_strp_alt:
22934 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22935 DW_STRING (&die->attrs[i])
22936 ? DW_STRING (&die->attrs[i]) : "",
22937 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22940 if (DW_UNSND (&die->attrs[i]))
22941 fprintf_unfiltered (f, "flag: TRUE");
22943 fprintf_unfiltered (f, "flag: FALSE");
22945 case DW_FORM_flag_present:
22946 fprintf_unfiltered (f, "flag: TRUE");
22948 case DW_FORM_indirect:
22949 /* The reader will have reduced the indirect form to
22950 the "base form" so this form should not occur. */
22951 fprintf_unfiltered (f,
22952 "unexpected attribute form: DW_FORM_indirect");
22954 case DW_FORM_implicit_const:
22955 fprintf_unfiltered (f, "constant: %s",
22956 plongest (DW_SND (&die->attrs[i])));
22959 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22960 die->attrs[i].form);
22963 fprintf_unfiltered (f, "\n");
22968 dump_die_for_error (struct die_info *die)
22970 dump_die_shallow (gdb_stderr, 0, die);
22974 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22976 int indent = level * 4;
22978 gdb_assert (die != NULL);
22980 if (level >= max_level)
22983 dump_die_shallow (f, indent, die);
22985 if (die->child != NULL)
22987 print_spaces (indent, f);
22988 fprintf_unfiltered (f, " Children:");
22989 if (level + 1 < max_level)
22991 fprintf_unfiltered (f, "\n");
22992 dump_die_1 (f, level + 1, max_level, die->child);
22996 fprintf_unfiltered (f,
22997 " [not printed, max nesting level reached]\n");
23001 if (die->sibling != NULL && level > 0)
23003 dump_die_1 (f, level, max_level, die->sibling);
23007 /* This is called from the pdie macro in gdbinit.in.
23008 It's not static so gcc will keep a copy callable from gdb. */
23011 dump_die (struct die_info *die, int max_level)
23013 dump_die_1 (gdb_stdlog, 0, max_level, die);
23017 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23021 slot = htab_find_slot_with_hash (cu->die_hash, die,
23022 to_underlying (die->sect_off),
23028 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23032 dwarf2_get_ref_die_offset (const struct attribute *attr)
23034 if (attr_form_is_ref (attr))
23035 return (sect_offset) DW_UNSND (attr);
23037 complaint (_("unsupported die ref attribute form: '%s'"),
23038 dwarf_form_name (attr->form));
23042 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23043 * the value held by the attribute is not constant. */
23046 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23048 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23049 return DW_SND (attr);
23050 else if (attr->form == DW_FORM_udata
23051 || attr->form == DW_FORM_data1
23052 || attr->form == DW_FORM_data2
23053 || attr->form == DW_FORM_data4
23054 || attr->form == DW_FORM_data8)
23055 return DW_UNSND (attr);
23058 /* For DW_FORM_data16 see attr_form_is_constant. */
23059 complaint (_("Attribute value is not a constant (%s)"),
23060 dwarf_form_name (attr->form));
23061 return default_value;
23065 /* Follow reference or signature attribute ATTR of SRC_DIE.
23066 On entry *REF_CU is the CU of SRC_DIE.
23067 On exit *REF_CU is the CU of the result. */
23069 static struct die_info *
23070 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23071 struct dwarf2_cu **ref_cu)
23073 struct die_info *die;
23075 if (attr_form_is_ref (attr))
23076 die = follow_die_ref (src_die, attr, ref_cu);
23077 else if (attr->form == DW_FORM_ref_sig8)
23078 die = follow_die_sig (src_die, attr, ref_cu);
23081 dump_die_for_error (src_die);
23082 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23083 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23089 /* Follow reference OFFSET.
23090 On entry *REF_CU is the CU of the source die referencing OFFSET.
23091 On exit *REF_CU is the CU of the result.
23092 Returns NULL if OFFSET is invalid. */
23094 static struct die_info *
23095 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23096 struct dwarf2_cu **ref_cu)
23098 struct die_info temp_die;
23099 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23100 struct dwarf2_per_objfile *dwarf2_per_objfile
23101 = cu->per_cu->dwarf2_per_objfile;
23103 gdb_assert (cu->per_cu != NULL);
23107 if (cu->per_cu->is_debug_types)
23109 /* .debug_types CUs cannot reference anything outside their CU.
23110 If they need to, they have to reference a signatured type via
23111 DW_FORM_ref_sig8. */
23112 if (!offset_in_cu_p (&cu->header, sect_off))
23115 else if (offset_in_dwz != cu->per_cu->is_dwz
23116 || !offset_in_cu_p (&cu->header, sect_off))
23118 struct dwarf2_per_cu_data *per_cu;
23120 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23121 dwarf2_per_objfile);
23123 /* If necessary, add it to the queue and load its DIEs. */
23124 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23125 load_full_comp_unit (per_cu, false, cu->language);
23127 target_cu = per_cu->cu;
23129 else if (cu->dies == NULL)
23131 /* We're loading full DIEs during partial symbol reading. */
23132 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23133 load_full_comp_unit (cu->per_cu, false, language_minimal);
23136 *ref_cu = target_cu;
23137 temp_die.sect_off = sect_off;
23139 if (target_cu != cu)
23140 target_cu->ancestor = cu;
23142 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23144 to_underlying (sect_off));
23147 /* Follow reference attribute ATTR of SRC_DIE.
23148 On entry *REF_CU is the CU of SRC_DIE.
23149 On exit *REF_CU is the CU of the result. */
23151 static struct die_info *
23152 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23153 struct dwarf2_cu **ref_cu)
23155 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23156 struct dwarf2_cu *cu = *ref_cu;
23157 struct die_info *die;
23159 die = follow_die_offset (sect_off,
23160 (attr->form == DW_FORM_GNU_ref_alt
23161 || cu->per_cu->is_dwz),
23164 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23165 "at %s [in module %s]"),
23166 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23167 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23172 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23173 Returned value is intended for DW_OP_call*. Returned
23174 dwarf2_locexpr_baton->data has lifetime of
23175 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23177 struct dwarf2_locexpr_baton
23178 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23179 struct dwarf2_per_cu_data *per_cu,
23180 CORE_ADDR (*get_frame_pc) (void *baton),
23181 void *baton, bool resolve_abstract_p)
23183 struct dwarf2_cu *cu;
23184 struct die_info *die;
23185 struct attribute *attr;
23186 struct dwarf2_locexpr_baton retval;
23187 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23188 struct objfile *objfile = dwarf2_per_objfile->objfile;
23190 if (per_cu->cu == NULL)
23191 load_cu (per_cu, false);
23195 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23196 Instead just throw an error, not much else we can do. */
23197 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23198 sect_offset_str (sect_off), objfile_name (objfile));
23201 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23203 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23204 sect_offset_str (sect_off), objfile_name (objfile));
23206 attr = dwarf2_attr (die, DW_AT_location, cu);
23207 if (!attr && resolve_abstract_p
23208 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23209 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23211 CORE_ADDR pc = (*get_frame_pc) (baton);
23213 for (const auto &cand_off
23214 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23216 struct dwarf2_cu *cand_cu = cu;
23217 struct die_info *cand
23218 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23221 || cand->parent->tag != DW_TAG_subprogram)
23224 CORE_ADDR pc_low, pc_high;
23225 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23226 if (pc_low == ((CORE_ADDR) -1)
23227 || !(pc_low <= pc && pc < pc_high))
23231 attr = dwarf2_attr (die, DW_AT_location, cu);
23238 /* DWARF: "If there is no such attribute, then there is no effect.".
23239 DATA is ignored if SIZE is 0. */
23241 retval.data = NULL;
23244 else if (attr_form_is_section_offset (attr))
23246 struct dwarf2_loclist_baton loclist_baton;
23247 CORE_ADDR pc = (*get_frame_pc) (baton);
23250 fill_in_loclist_baton (cu, &loclist_baton, attr);
23252 retval.data = dwarf2_find_location_expression (&loclist_baton,
23254 retval.size = size;
23258 if (!attr_form_is_block (attr))
23259 error (_("Dwarf Error: DIE at %s referenced in module %s "
23260 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23261 sect_offset_str (sect_off), objfile_name (objfile));
23263 retval.data = DW_BLOCK (attr)->data;
23264 retval.size = DW_BLOCK (attr)->size;
23266 retval.per_cu = cu->per_cu;
23268 age_cached_comp_units (dwarf2_per_objfile);
23273 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23276 struct dwarf2_locexpr_baton
23277 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23278 struct dwarf2_per_cu_data *per_cu,
23279 CORE_ADDR (*get_frame_pc) (void *baton),
23282 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23284 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23287 /* Write a constant of a given type as target-ordered bytes into
23290 static const gdb_byte *
23291 write_constant_as_bytes (struct obstack *obstack,
23292 enum bfd_endian byte_order,
23299 *len = TYPE_LENGTH (type);
23300 result = (gdb_byte *) obstack_alloc (obstack, *len);
23301 store_unsigned_integer (result, *len, byte_order, value);
23306 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23307 pointer to the constant bytes and set LEN to the length of the
23308 data. If memory is needed, allocate it on OBSTACK. If the DIE
23309 does not have a DW_AT_const_value, return NULL. */
23312 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23313 struct dwarf2_per_cu_data *per_cu,
23314 struct obstack *obstack,
23317 struct dwarf2_cu *cu;
23318 struct die_info *die;
23319 struct attribute *attr;
23320 const gdb_byte *result = NULL;
23323 enum bfd_endian byte_order;
23324 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23326 if (per_cu->cu == NULL)
23327 load_cu (per_cu, false);
23331 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23332 Instead just throw an error, not much else we can do. */
23333 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23334 sect_offset_str (sect_off), objfile_name (objfile));
23337 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23339 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23340 sect_offset_str (sect_off), objfile_name (objfile));
23342 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23346 byte_order = (bfd_big_endian (objfile->obfd)
23347 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23349 switch (attr->form)
23352 case DW_FORM_addrx:
23353 case DW_FORM_GNU_addr_index:
23357 *len = cu->header.addr_size;
23358 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23359 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23363 case DW_FORM_string:
23366 case DW_FORM_GNU_str_index:
23367 case DW_FORM_GNU_strp_alt:
23368 /* DW_STRING is already allocated on the objfile obstack, point
23370 result = (const gdb_byte *) DW_STRING (attr);
23371 *len = strlen (DW_STRING (attr));
23373 case DW_FORM_block1:
23374 case DW_FORM_block2:
23375 case DW_FORM_block4:
23376 case DW_FORM_block:
23377 case DW_FORM_exprloc:
23378 case DW_FORM_data16:
23379 result = DW_BLOCK (attr)->data;
23380 *len = DW_BLOCK (attr)->size;
23383 /* The DW_AT_const_value attributes are supposed to carry the
23384 symbol's value "represented as it would be on the target
23385 architecture." By the time we get here, it's already been
23386 converted to host endianness, so we just need to sign- or
23387 zero-extend it as appropriate. */
23388 case DW_FORM_data1:
23389 type = die_type (die, cu);
23390 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23391 if (result == NULL)
23392 result = write_constant_as_bytes (obstack, byte_order,
23395 case DW_FORM_data2:
23396 type = die_type (die, cu);
23397 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23398 if (result == NULL)
23399 result = write_constant_as_bytes (obstack, byte_order,
23402 case DW_FORM_data4:
23403 type = die_type (die, cu);
23404 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23405 if (result == NULL)
23406 result = write_constant_as_bytes (obstack, byte_order,
23409 case DW_FORM_data8:
23410 type = die_type (die, cu);
23411 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23412 if (result == NULL)
23413 result = write_constant_as_bytes (obstack, byte_order,
23417 case DW_FORM_sdata:
23418 case DW_FORM_implicit_const:
23419 type = die_type (die, cu);
23420 result = write_constant_as_bytes (obstack, byte_order,
23421 type, DW_SND (attr), len);
23424 case DW_FORM_udata:
23425 type = die_type (die, cu);
23426 result = write_constant_as_bytes (obstack, byte_order,
23427 type, DW_UNSND (attr), len);
23431 complaint (_("unsupported const value attribute form: '%s'"),
23432 dwarf_form_name (attr->form));
23439 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23440 valid type for this die is found. */
23443 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23444 struct dwarf2_per_cu_data *per_cu)
23446 struct dwarf2_cu *cu;
23447 struct die_info *die;
23449 if (per_cu->cu == NULL)
23450 load_cu (per_cu, false);
23455 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23459 return die_type (die, cu);
23462 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23466 dwarf2_get_die_type (cu_offset die_offset,
23467 struct dwarf2_per_cu_data *per_cu)
23469 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23470 return get_die_type_at_offset (die_offset_sect, per_cu);
23473 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23474 On entry *REF_CU is the CU of SRC_DIE.
23475 On exit *REF_CU is the CU of the result.
23476 Returns NULL if the referenced DIE isn't found. */
23478 static struct die_info *
23479 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23480 struct dwarf2_cu **ref_cu)
23482 struct die_info temp_die;
23483 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23484 struct die_info *die;
23486 /* While it might be nice to assert sig_type->type == NULL here,
23487 we can get here for DW_AT_imported_declaration where we need
23488 the DIE not the type. */
23490 /* If necessary, add it to the queue and load its DIEs. */
23492 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23493 read_signatured_type (sig_type);
23495 sig_cu = sig_type->per_cu.cu;
23496 gdb_assert (sig_cu != NULL);
23497 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23498 temp_die.sect_off = sig_type->type_offset_in_section;
23499 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23500 to_underlying (temp_die.sect_off));
23503 struct dwarf2_per_objfile *dwarf2_per_objfile
23504 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23506 /* For .gdb_index version 7 keep track of included TUs.
23507 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23508 if (dwarf2_per_objfile->index_table != NULL
23509 && dwarf2_per_objfile->index_table->version <= 7)
23511 VEC_safe_push (dwarf2_per_cu_ptr,
23512 (*ref_cu)->per_cu->imported_symtabs,
23518 sig_cu->ancestor = cu;
23526 /* Follow signatured type referenced by ATTR in SRC_DIE.
23527 On entry *REF_CU is the CU of SRC_DIE.
23528 On exit *REF_CU is the CU of the result.
23529 The result is the DIE of the type.
23530 If the referenced type cannot be found an error is thrown. */
23532 static struct die_info *
23533 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23534 struct dwarf2_cu **ref_cu)
23536 ULONGEST signature = DW_SIGNATURE (attr);
23537 struct signatured_type *sig_type;
23538 struct die_info *die;
23540 gdb_assert (attr->form == DW_FORM_ref_sig8);
23542 sig_type = lookup_signatured_type (*ref_cu, signature);
23543 /* sig_type will be NULL if the signatured type is missing from
23545 if (sig_type == NULL)
23547 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23548 " from DIE at %s [in module %s]"),
23549 hex_string (signature), sect_offset_str (src_die->sect_off),
23550 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23553 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23556 dump_die_for_error (src_die);
23557 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23558 " from DIE at %s [in module %s]"),
23559 hex_string (signature), sect_offset_str (src_die->sect_off),
23560 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23566 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23567 reading in and processing the type unit if necessary. */
23569 static struct type *
23570 get_signatured_type (struct die_info *die, ULONGEST signature,
23571 struct dwarf2_cu *cu)
23573 struct dwarf2_per_objfile *dwarf2_per_objfile
23574 = cu->per_cu->dwarf2_per_objfile;
23575 struct signatured_type *sig_type;
23576 struct dwarf2_cu *type_cu;
23577 struct die_info *type_die;
23580 sig_type = lookup_signatured_type (cu, signature);
23581 /* sig_type will be NULL if the signatured type is missing from
23583 if (sig_type == NULL)
23585 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23586 " from DIE at %s [in module %s]"),
23587 hex_string (signature), sect_offset_str (die->sect_off),
23588 objfile_name (dwarf2_per_objfile->objfile));
23589 return build_error_marker_type (cu, die);
23592 /* If we already know the type we're done. */
23593 if (sig_type->type != NULL)
23594 return sig_type->type;
23597 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23598 if (type_die != NULL)
23600 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23601 is created. This is important, for example, because for c++ classes
23602 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23603 type = read_type_die (type_die, type_cu);
23606 complaint (_("Dwarf Error: Cannot build signatured type %s"
23607 " referenced from DIE at %s [in module %s]"),
23608 hex_string (signature), sect_offset_str (die->sect_off),
23609 objfile_name (dwarf2_per_objfile->objfile));
23610 type = build_error_marker_type (cu, die);
23615 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23616 " from DIE at %s [in module %s]"),
23617 hex_string (signature), sect_offset_str (die->sect_off),
23618 objfile_name (dwarf2_per_objfile->objfile));
23619 type = build_error_marker_type (cu, die);
23621 sig_type->type = type;
23626 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23627 reading in and processing the type unit if necessary. */
23629 static struct type *
23630 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23631 struct dwarf2_cu *cu) /* ARI: editCase function */
23633 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23634 if (attr_form_is_ref (attr))
23636 struct dwarf2_cu *type_cu = cu;
23637 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23639 return read_type_die (type_die, type_cu);
23641 else if (attr->form == DW_FORM_ref_sig8)
23643 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23647 struct dwarf2_per_objfile *dwarf2_per_objfile
23648 = cu->per_cu->dwarf2_per_objfile;
23650 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23651 " at %s [in module %s]"),
23652 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23653 objfile_name (dwarf2_per_objfile->objfile));
23654 return build_error_marker_type (cu, die);
23658 /* Load the DIEs associated with type unit PER_CU into memory. */
23661 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23663 struct signatured_type *sig_type;
23665 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23666 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23668 /* We have the per_cu, but we need the signatured_type.
23669 Fortunately this is an easy translation. */
23670 gdb_assert (per_cu->is_debug_types);
23671 sig_type = (struct signatured_type *) per_cu;
23673 gdb_assert (per_cu->cu == NULL);
23675 read_signatured_type (sig_type);
23677 gdb_assert (per_cu->cu != NULL);
23680 /* die_reader_func for read_signatured_type.
23681 This is identical to load_full_comp_unit_reader,
23682 but is kept separate for now. */
23685 read_signatured_type_reader (const struct die_reader_specs *reader,
23686 const gdb_byte *info_ptr,
23687 struct die_info *comp_unit_die,
23691 struct dwarf2_cu *cu = reader->cu;
23693 gdb_assert (cu->die_hash == NULL);
23695 htab_create_alloc_ex (cu->header.length / 12,
23699 &cu->comp_unit_obstack,
23700 hashtab_obstack_allocate,
23701 dummy_obstack_deallocate);
23704 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23705 &info_ptr, comp_unit_die);
23706 cu->dies = comp_unit_die;
23707 /* comp_unit_die is not stored in die_hash, no need. */
23709 /* We try not to read any attributes in this function, because not
23710 all CUs needed for references have been loaded yet, and symbol
23711 table processing isn't initialized. But we have to set the CU language,
23712 or we won't be able to build types correctly.
23713 Similarly, if we do not read the producer, we can not apply
23714 producer-specific interpretation. */
23715 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23718 /* Read in a signatured type and build its CU and DIEs.
23719 If the type is a stub for the real type in a DWO file,
23720 read in the real type from the DWO file as well. */
23723 read_signatured_type (struct signatured_type *sig_type)
23725 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23727 gdb_assert (per_cu->is_debug_types);
23728 gdb_assert (per_cu->cu == NULL);
23730 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23731 read_signatured_type_reader, NULL);
23732 sig_type->per_cu.tu_read = 1;
23735 /* Decode simple location descriptions.
23736 Given a pointer to a dwarf block that defines a location, compute
23737 the location and return the value.
23739 NOTE drow/2003-11-18: This function is called in two situations
23740 now: for the address of static or global variables (partial symbols
23741 only) and for offsets into structures which are expected to be
23742 (more or less) constant. The partial symbol case should go away,
23743 and only the constant case should remain. That will let this
23744 function complain more accurately. A few special modes are allowed
23745 without complaint for global variables (for instance, global
23746 register values and thread-local values).
23748 A location description containing no operations indicates that the
23749 object is optimized out. The return value is 0 for that case.
23750 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23751 callers will only want a very basic result and this can become a
23754 Note that stack[0] is unused except as a default error return. */
23757 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23759 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23761 size_t size = blk->size;
23762 const gdb_byte *data = blk->data;
23763 CORE_ADDR stack[64];
23765 unsigned int bytes_read, unsnd;
23771 stack[++stacki] = 0;
23810 stack[++stacki] = op - DW_OP_lit0;
23845 stack[++stacki] = op - DW_OP_reg0;
23847 dwarf2_complex_location_expr_complaint ();
23851 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23853 stack[++stacki] = unsnd;
23855 dwarf2_complex_location_expr_complaint ();
23859 stack[++stacki] = read_address (objfile->obfd, &data[i],
23864 case DW_OP_const1u:
23865 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23869 case DW_OP_const1s:
23870 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23874 case DW_OP_const2u:
23875 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23879 case DW_OP_const2s:
23880 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23884 case DW_OP_const4u:
23885 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23889 case DW_OP_const4s:
23890 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23894 case DW_OP_const8u:
23895 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23900 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23906 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23911 stack[stacki + 1] = stack[stacki];
23916 stack[stacki - 1] += stack[stacki];
23920 case DW_OP_plus_uconst:
23921 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23927 stack[stacki - 1] -= stack[stacki];
23932 /* If we're not the last op, then we definitely can't encode
23933 this using GDB's address_class enum. This is valid for partial
23934 global symbols, although the variable's address will be bogus
23937 dwarf2_complex_location_expr_complaint ();
23940 case DW_OP_GNU_push_tls_address:
23941 case DW_OP_form_tls_address:
23942 /* The top of the stack has the offset from the beginning
23943 of the thread control block at which the variable is located. */
23944 /* Nothing should follow this operator, so the top of stack would
23946 /* This is valid for partial global symbols, but the variable's
23947 address will be bogus in the psymtab. Make it always at least
23948 non-zero to not look as a variable garbage collected by linker
23949 which have DW_OP_addr 0. */
23951 dwarf2_complex_location_expr_complaint ();
23955 case DW_OP_GNU_uninit:
23959 case DW_OP_GNU_addr_index:
23960 case DW_OP_GNU_const_index:
23961 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23968 const char *name = get_DW_OP_name (op);
23971 complaint (_("unsupported stack op: '%s'"),
23974 complaint (_("unsupported stack op: '%02x'"),
23978 return (stack[stacki]);
23981 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23982 outside of the allocated space. Also enforce minimum>0. */
23983 if (stacki >= ARRAY_SIZE (stack) - 1)
23985 complaint (_("location description stack overflow"));
23991 complaint (_("location description stack underflow"));
23995 return (stack[stacki]);
23998 /* memory allocation interface */
24000 static struct dwarf_block *
24001 dwarf_alloc_block (struct dwarf2_cu *cu)
24003 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24006 static struct die_info *
24007 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24009 struct die_info *die;
24010 size_t size = sizeof (struct die_info);
24013 size += (num_attrs - 1) * sizeof (struct attribute);
24015 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24016 memset (die, 0, sizeof (struct die_info));
24021 /* Macro support. */
24023 /* Return file name relative to the compilation directory of file number I in
24024 *LH's file name table. The result is allocated using xmalloc; the caller is
24025 responsible for freeing it. */
24028 file_file_name (int file, struct line_header *lh)
24030 /* Is the file number a valid index into the line header's file name
24031 table? Remember that file numbers start with one, not zero. */
24032 if (1 <= file && file <= lh->file_names.size ())
24034 const file_entry &fe = lh->file_names[file - 1];
24036 if (!IS_ABSOLUTE_PATH (fe.name))
24038 const char *dir = fe.include_dir (lh);
24040 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24042 return xstrdup (fe.name);
24046 /* The compiler produced a bogus file number. We can at least
24047 record the macro definitions made in the file, even if we
24048 won't be able to find the file by name. */
24049 char fake_name[80];
24051 xsnprintf (fake_name, sizeof (fake_name),
24052 "<bad macro file number %d>", file);
24054 complaint (_("bad file number in macro information (%d)"),
24057 return xstrdup (fake_name);
24061 /* Return the full name of file number I in *LH's file name table.
24062 Use COMP_DIR as the name of the current directory of the
24063 compilation. The result is allocated using xmalloc; the caller is
24064 responsible for freeing it. */
24066 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24068 /* Is the file number a valid index into the line header's file name
24069 table? Remember that file numbers start with one, not zero. */
24070 if (1 <= file && file <= lh->file_names.size ())
24072 char *relative = file_file_name (file, lh);
24074 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24076 return reconcat (relative, comp_dir, SLASH_STRING,
24077 relative, (char *) NULL);
24080 return file_file_name (file, lh);
24084 static struct macro_source_file *
24085 macro_start_file (struct dwarf2_cu *cu,
24086 int file, int line,
24087 struct macro_source_file *current_file,
24088 struct line_header *lh)
24090 /* File name relative to the compilation directory of this source file. */
24091 char *file_name = file_file_name (file, lh);
24093 if (! current_file)
24095 /* Note: We don't create a macro table for this compilation unit
24096 at all until we actually get a filename. */
24097 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24099 /* If we have no current file, then this must be the start_file
24100 directive for the compilation unit's main source file. */
24101 current_file = macro_set_main (macro_table, file_name);
24102 macro_define_special (macro_table);
24105 current_file = macro_include (current_file, line, file_name);
24109 return current_file;
24112 static const char *
24113 consume_improper_spaces (const char *p, const char *body)
24117 complaint (_("macro definition contains spaces "
24118 "in formal argument list:\n`%s'"),
24130 parse_macro_definition (struct macro_source_file *file, int line,
24135 /* The body string takes one of two forms. For object-like macro
24136 definitions, it should be:
24138 <macro name> " " <definition>
24140 For function-like macro definitions, it should be:
24142 <macro name> "() " <definition>
24144 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24146 Spaces may appear only where explicitly indicated, and in the
24149 The Dwarf 2 spec says that an object-like macro's name is always
24150 followed by a space, but versions of GCC around March 2002 omit
24151 the space when the macro's definition is the empty string.
24153 The Dwarf 2 spec says that there should be no spaces between the
24154 formal arguments in a function-like macro's formal argument list,
24155 but versions of GCC around March 2002 include spaces after the
24159 /* Find the extent of the macro name. The macro name is terminated
24160 by either a space or null character (for an object-like macro) or
24161 an opening paren (for a function-like macro). */
24162 for (p = body; *p; p++)
24163 if (*p == ' ' || *p == '(')
24166 if (*p == ' ' || *p == '\0')
24168 /* It's an object-like macro. */
24169 int name_len = p - body;
24170 char *name = savestring (body, name_len);
24171 const char *replacement;
24174 replacement = body + name_len + 1;
24177 dwarf2_macro_malformed_definition_complaint (body);
24178 replacement = body + name_len;
24181 macro_define_object (file, line, name, replacement);
24185 else if (*p == '(')
24187 /* It's a function-like macro. */
24188 char *name = savestring (body, p - body);
24191 char **argv = XNEWVEC (char *, argv_size);
24195 p = consume_improper_spaces (p, body);
24197 /* Parse the formal argument list. */
24198 while (*p && *p != ')')
24200 /* Find the extent of the current argument name. */
24201 const char *arg_start = p;
24203 while (*p && *p != ',' && *p != ')' && *p != ' ')
24206 if (! *p || p == arg_start)
24207 dwarf2_macro_malformed_definition_complaint (body);
24210 /* Make sure argv has room for the new argument. */
24211 if (argc >= argv_size)
24214 argv = XRESIZEVEC (char *, argv, argv_size);
24217 argv[argc++] = savestring (arg_start, p - arg_start);
24220 p = consume_improper_spaces (p, body);
24222 /* Consume the comma, if present. */
24227 p = consume_improper_spaces (p, body);
24236 /* Perfectly formed definition, no complaints. */
24237 macro_define_function (file, line, name,
24238 argc, (const char **) argv,
24240 else if (*p == '\0')
24242 /* Complain, but do define it. */
24243 dwarf2_macro_malformed_definition_complaint (body);
24244 macro_define_function (file, line, name,
24245 argc, (const char **) argv,
24249 /* Just complain. */
24250 dwarf2_macro_malformed_definition_complaint (body);
24253 /* Just complain. */
24254 dwarf2_macro_malformed_definition_complaint (body);
24260 for (i = 0; i < argc; i++)
24266 dwarf2_macro_malformed_definition_complaint (body);
24269 /* Skip some bytes from BYTES according to the form given in FORM.
24270 Returns the new pointer. */
24272 static const gdb_byte *
24273 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24274 enum dwarf_form form,
24275 unsigned int offset_size,
24276 struct dwarf2_section_info *section)
24278 unsigned int bytes_read;
24282 case DW_FORM_data1:
24287 case DW_FORM_data2:
24291 case DW_FORM_data4:
24295 case DW_FORM_data8:
24299 case DW_FORM_data16:
24303 case DW_FORM_string:
24304 read_direct_string (abfd, bytes, &bytes_read);
24305 bytes += bytes_read;
24308 case DW_FORM_sec_offset:
24310 case DW_FORM_GNU_strp_alt:
24311 bytes += offset_size;
24314 case DW_FORM_block:
24315 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24316 bytes += bytes_read;
24319 case DW_FORM_block1:
24320 bytes += 1 + read_1_byte (abfd, bytes);
24322 case DW_FORM_block2:
24323 bytes += 2 + read_2_bytes (abfd, bytes);
24325 case DW_FORM_block4:
24326 bytes += 4 + read_4_bytes (abfd, bytes);
24329 case DW_FORM_addrx:
24330 case DW_FORM_sdata:
24332 case DW_FORM_udata:
24333 case DW_FORM_GNU_addr_index:
24334 case DW_FORM_GNU_str_index:
24335 bytes = gdb_skip_leb128 (bytes, buffer_end);
24338 dwarf2_section_buffer_overflow_complaint (section);
24343 case DW_FORM_implicit_const:
24348 complaint (_("invalid form 0x%x in `%s'"),
24349 form, get_section_name (section));
24357 /* A helper for dwarf_decode_macros that handles skipping an unknown
24358 opcode. Returns an updated pointer to the macro data buffer; or,
24359 on error, issues a complaint and returns NULL. */
24361 static const gdb_byte *
24362 skip_unknown_opcode (unsigned int opcode,
24363 const gdb_byte **opcode_definitions,
24364 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24366 unsigned int offset_size,
24367 struct dwarf2_section_info *section)
24369 unsigned int bytes_read, i;
24371 const gdb_byte *defn;
24373 if (opcode_definitions[opcode] == NULL)
24375 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24380 defn = opcode_definitions[opcode];
24381 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24382 defn += bytes_read;
24384 for (i = 0; i < arg; ++i)
24386 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24387 (enum dwarf_form) defn[i], offset_size,
24389 if (mac_ptr == NULL)
24391 /* skip_form_bytes already issued the complaint. */
24399 /* A helper function which parses the header of a macro section.
24400 If the macro section is the extended (for now called "GNU") type,
24401 then this updates *OFFSET_SIZE. Returns a pointer to just after
24402 the header, or issues a complaint and returns NULL on error. */
24404 static const gdb_byte *
24405 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24407 const gdb_byte *mac_ptr,
24408 unsigned int *offset_size,
24409 int section_is_gnu)
24411 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24413 if (section_is_gnu)
24415 unsigned int version, flags;
24417 version = read_2_bytes (abfd, mac_ptr);
24418 if (version != 4 && version != 5)
24420 complaint (_("unrecognized version `%d' in .debug_macro section"),
24426 flags = read_1_byte (abfd, mac_ptr);
24428 *offset_size = (flags & 1) ? 8 : 4;
24430 if ((flags & 2) != 0)
24431 /* We don't need the line table offset. */
24432 mac_ptr += *offset_size;
24434 /* Vendor opcode descriptions. */
24435 if ((flags & 4) != 0)
24437 unsigned int i, count;
24439 count = read_1_byte (abfd, mac_ptr);
24441 for (i = 0; i < count; ++i)
24443 unsigned int opcode, bytes_read;
24446 opcode = read_1_byte (abfd, mac_ptr);
24448 opcode_definitions[opcode] = mac_ptr;
24449 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24450 mac_ptr += bytes_read;
24459 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24460 including DW_MACRO_import. */
24463 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24465 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24466 struct macro_source_file *current_file,
24467 struct line_header *lh,
24468 struct dwarf2_section_info *section,
24469 int section_is_gnu, int section_is_dwz,
24470 unsigned int offset_size,
24471 htab_t include_hash)
24473 struct dwarf2_per_objfile *dwarf2_per_objfile
24474 = cu->per_cu->dwarf2_per_objfile;
24475 struct objfile *objfile = dwarf2_per_objfile->objfile;
24476 enum dwarf_macro_record_type macinfo_type;
24477 int at_commandline;
24478 const gdb_byte *opcode_definitions[256];
24480 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24481 &offset_size, section_is_gnu);
24482 if (mac_ptr == NULL)
24484 /* We already issued a complaint. */
24488 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24489 GDB is still reading the definitions from command line. First
24490 DW_MACINFO_start_file will need to be ignored as it was already executed
24491 to create CURRENT_FILE for the main source holding also the command line
24492 definitions. On first met DW_MACINFO_start_file this flag is reset to
24493 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24495 at_commandline = 1;
24499 /* Do we at least have room for a macinfo type byte? */
24500 if (mac_ptr >= mac_end)
24502 dwarf2_section_buffer_overflow_complaint (section);
24506 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24509 /* Note that we rely on the fact that the corresponding GNU and
24510 DWARF constants are the same. */
24512 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24513 switch (macinfo_type)
24515 /* A zero macinfo type indicates the end of the macro
24520 case DW_MACRO_define:
24521 case DW_MACRO_undef:
24522 case DW_MACRO_define_strp:
24523 case DW_MACRO_undef_strp:
24524 case DW_MACRO_define_sup:
24525 case DW_MACRO_undef_sup:
24527 unsigned int bytes_read;
24532 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24533 mac_ptr += bytes_read;
24535 if (macinfo_type == DW_MACRO_define
24536 || macinfo_type == DW_MACRO_undef)
24538 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24539 mac_ptr += bytes_read;
24543 LONGEST str_offset;
24545 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24546 mac_ptr += offset_size;
24548 if (macinfo_type == DW_MACRO_define_sup
24549 || macinfo_type == DW_MACRO_undef_sup
24552 struct dwz_file *dwz
24553 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24555 body = read_indirect_string_from_dwz (objfile,
24559 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24563 is_define = (macinfo_type == DW_MACRO_define
24564 || macinfo_type == DW_MACRO_define_strp
24565 || macinfo_type == DW_MACRO_define_sup);
24566 if (! current_file)
24568 /* DWARF violation as no main source is present. */
24569 complaint (_("debug info with no main source gives macro %s "
24571 is_define ? _("definition") : _("undefinition"),
24575 if ((line == 0 && !at_commandline)
24576 || (line != 0 && at_commandline))
24577 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24578 at_commandline ? _("command-line") : _("in-file"),
24579 is_define ? _("definition") : _("undefinition"),
24580 line == 0 ? _("zero") : _("non-zero"), line, body);
24584 /* Fedora's rpm-build's "debugedit" binary
24585 corrupted .debug_macro sections.
24588 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24589 complaint (_("debug info gives %s invalid macro %s "
24590 "without body (corrupted?) at line %d "
24592 at_commandline ? _("command-line") : _("in-file"),
24593 is_define ? _("definition") : _("undefinition"),
24594 line, current_file->filename);
24596 else if (is_define)
24597 parse_macro_definition (current_file, line, body);
24600 gdb_assert (macinfo_type == DW_MACRO_undef
24601 || macinfo_type == DW_MACRO_undef_strp
24602 || macinfo_type == DW_MACRO_undef_sup);
24603 macro_undef (current_file, line, body);
24608 case DW_MACRO_start_file:
24610 unsigned int bytes_read;
24613 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24615 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24616 mac_ptr += bytes_read;
24618 if ((line == 0 && !at_commandline)
24619 || (line != 0 && at_commandline))
24620 complaint (_("debug info gives source %d included "
24621 "from %s at %s line %d"),
24622 file, at_commandline ? _("command-line") : _("file"),
24623 line == 0 ? _("zero") : _("non-zero"), line);
24625 if (at_commandline)
24627 /* This DW_MACRO_start_file was executed in the
24629 at_commandline = 0;
24632 current_file = macro_start_file (cu, file, line, current_file,
24637 case DW_MACRO_end_file:
24638 if (! current_file)
24639 complaint (_("macro debug info has an unmatched "
24640 "`close_file' directive"));
24643 current_file = current_file->included_by;
24644 if (! current_file)
24646 enum dwarf_macro_record_type next_type;
24648 /* GCC circa March 2002 doesn't produce the zero
24649 type byte marking the end of the compilation
24650 unit. Complain if it's not there, but exit no
24653 /* Do we at least have room for a macinfo type byte? */
24654 if (mac_ptr >= mac_end)
24656 dwarf2_section_buffer_overflow_complaint (section);
24660 /* We don't increment mac_ptr here, so this is just
24663 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24665 if (next_type != 0)
24666 complaint (_("no terminating 0-type entry for "
24667 "macros in `.debug_macinfo' section"));
24674 case DW_MACRO_import:
24675 case DW_MACRO_import_sup:
24679 bfd *include_bfd = abfd;
24680 struct dwarf2_section_info *include_section = section;
24681 const gdb_byte *include_mac_end = mac_end;
24682 int is_dwz = section_is_dwz;
24683 const gdb_byte *new_mac_ptr;
24685 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24686 mac_ptr += offset_size;
24688 if (macinfo_type == DW_MACRO_import_sup)
24690 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24692 dwarf2_read_section (objfile, &dwz->macro);
24694 include_section = &dwz->macro;
24695 include_bfd = get_section_bfd_owner (include_section);
24696 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24700 new_mac_ptr = include_section->buffer + offset;
24701 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24705 /* This has actually happened; see
24706 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24707 complaint (_("recursive DW_MACRO_import in "
24708 ".debug_macro section"));
24712 *slot = (void *) new_mac_ptr;
24714 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24715 include_mac_end, current_file, lh,
24716 section, section_is_gnu, is_dwz,
24717 offset_size, include_hash);
24719 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24724 case DW_MACINFO_vendor_ext:
24725 if (!section_is_gnu)
24727 unsigned int bytes_read;
24729 /* This reads the constant, but since we don't recognize
24730 any vendor extensions, we ignore it. */
24731 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733 read_direct_string (abfd, mac_ptr, &bytes_read);
24734 mac_ptr += bytes_read;
24736 /* We don't recognize any vendor extensions. */
24742 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24743 mac_ptr, mac_end, abfd, offset_size,
24745 if (mac_ptr == NULL)
24750 } while (macinfo_type != 0);
24754 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24755 int section_is_gnu)
24757 struct dwarf2_per_objfile *dwarf2_per_objfile
24758 = cu->per_cu->dwarf2_per_objfile;
24759 struct objfile *objfile = dwarf2_per_objfile->objfile;
24760 struct line_header *lh = cu->line_header;
24762 const gdb_byte *mac_ptr, *mac_end;
24763 struct macro_source_file *current_file = 0;
24764 enum dwarf_macro_record_type macinfo_type;
24765 unsigned int offset_size = cu->header.offset_size;
24766 const gdb_byte *opcode_definitions[256];
24768 struct dwarf2_section_info *section;
24769 const char *section_name;
24771 if (cu->dwo_unit != NULL)
24773 if (section_is_gnu)
24775 section = &cu->dwo_unit->dwo_file->sections.macro;
24776 section_name = ".debug_macro.dwo";
24780 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24781 section_name = ".debug_macinfo.dwo";
24786 if (section_is_gnu)
24788 section = &dwarf2_per_objfile->macro;
24789 section_name = ".debug_macro";
24793 section = &dwarf2_per_objfile->macinfo;
24794 section_name = ".debug_macinfo";
24798 dwarf2_read_section (objfile, section);
24799 if (section->buffer == NULL)
24801 complaint (_("missing %s section"), section_name);
24804 abfd = get_section_bfd_owner (section);
24806 /* First pass: Find the name of the base filename.
24807 This filename is needed in order to process all macros whose definition
24808 (or undefinition) comes from the command line. These macros are defined
24809 before the first DW_MACINFO_start_file entry, and yet still need to be
24810 associated to the base file.
24812 To determine the base file name, we scan the macro definitions until we
24813 reach the first DW_MACINFO_start_file entry. We then initialize
24814 CURRENT_FILE accordingly so that any macro definition found before the
24815 first DW_MACINFO_start_file can still be associated to the base file. */
24817 mac_ptr = section->buffer + offset;
24818 mac_end = section->buffer + section->size;
24820 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24821 &offset_size, section_is_gnu);
24822 if (mac_ptr == NULL)
24824 /* We already issued a complaint. */
24830 /* Do we at least have room for a macinfo type byte? */
24831 if (mac_ptr >= mac_end)
24833 /* Complaint is printed during the second pass as GDB will probably
24834 stop the first pass earlier upon finding
24835 DW_MACINFO_start_file. */
24839 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24842 /* Note that we rely on the fact that the corresponding GNU and
24843 DWARF constants are the same. */
24845 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24846 switch (macinfo_type)
24848 /* A zero macinfo type indicates the end of the macro
24853 case DW_MACRO_define:
24854 case DW_MACRO_undef:
24855 /* Only skip the data by MAC_PTR. */
24857 unsigned int bytes_read;
24859 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24860 mac_ptr += bytes_read;
24861 read_direct_string (abfd, mac_ptr, &bytes_read);
24862 mac_ptr += bytes_read;
24866 case DW_MACRO_start_file:
24868 unsigned int bytes_read;
24871 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24872 mac_ptr += bytes_read;
24873 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24874 mac_ptr += bytes_read;
24876 current_file = macro_start_file (cu, file, line, current_file, lh);
24880 case DW_MACRO_end_file:
24881 /* No data to skip by MAC_PTR. */
24884 case DW_MACRO_define_strp:
24885 case DW_MACRO_undef_strp:
24886 case DW_MACRO_define_sup:
24887 case DW_MACRO_undef_sup:
24889 unsigned int bytes_read;
24891 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24892 mac_ptr += bytes_read;
24893 mac_ptr += offset_size;
24897 case DW_MACRO_import:
24898 case DW_MACRO_import_sup:
24899 /* Note that, according to the spec, a transparent include
24900 chain cannot call DW_MACRO_start_file. So, we can just
24901 skip this opcode. */
24902 mac_ptr += offset_size;
24905 case DW_MACINFO_vendor_ext:
24906 /* Only skip the data by MAC_PTR. */
24907 if (!section_is_gnu)
24909 unsigned int bytes_read;
24911 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24912 mac_ptr += bytes_read;
24913 read_direct_string (abfd, mac_ptr, &bytes_read);
24914 mac_ptr += bytes_read;
24919 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24920 mac_ptr, mac_end, abfd, offset_size,
24922 if (mac_ptr == NULL)
24927 } while (macinfo_type != 0 && current_file == NULL);
24929 /* Second pass: Process all entries.
24931 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24932 command-line macro definitions/undefinitions. This flag is unset when we
24933 reach the first DW_MACINFO_start_file entry. */
24935 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24937 NULL, xcalloc, xfree));
24938 mac_ptr = section->buffer + offset;
24939 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24940 *slot = (void *) mac_ptr;
24941 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24942 current_file, lh, section,
24943 section_is_gnu, 0, offset_size,
24944 include_hash.get ());
24947 /* Check if the attribute's form is a DW_FORM_block*
24948 if so return true else false. */
24951 attr_form_is_block (const struct attribute *attr)
24953 return (attr == NULL ? 0 :
24954 attr->form == DW_FORM_block1
24955 || attr->form == DW_FORM_block2
24956 || attr->form == DW_FORM_block4
24957 || attr->form == DW_FORM_block
24958 || attr->form == DW_FORM_exprloc);
24961 /* Return non-zero if ATTR's value is a section offset --- classes
24962 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24963 You may use DW_UNSND (attr) to retrieve such offsets.
24965 Section 7.5.4, "Attribute Encodings", explains that no attribute
24966 may have a value that belongs to more than one of these classes; it
24967 would be ambiguous if we did, because we use the same forms for all
24971 attr_form_is_section_offset (const struct attribute *attr)
24973 return (attr->form == DW_FORM_data4
24974 || attr->form == DW_FORM_data8
24975 || attr->form == DW_FORM_sec_offset);
24978 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24979 zero otherwise. When this function returns true, you can apply
24980 dwarf2_get_attr_constant_value to it.
24982 However, note that for some attributes you must check
24983 attr_form_is_section_offset before using this test. DW_FORM_data4
24984 and DW_FORM_data8 are members of both the constant class, and of
24985 the classes that contain offsets into other debug sections
24986 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24987 that, if an attribute's can be either a constant or one of the
24988 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24989 taken as section offsets, not constants.
24991 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24992 cannot handle that. */
24995 attr_form_is_constant (const struct attribute *attr)
24997 switch (attr->form)
24999 case DW_FORM_sdata:
25000 case DW_FORM_udata:
25001 case DW_FORM_data1:
25002 case DW_FORM_data2:
25003 case DW_FORM_data4:
25004 case DW_FORM_data8:
25005 case DW_FORM_implicit_const:
25013 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25014 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25017 attr_form_is_ref (const struct attribute *attr)
25019 switch (attr->form)
25021 case DW_FORM_ref_addr:
25026 case DW_FORM_ref_udata:
25027 case DW_FORM_GNU_ref_alt:
25034 /* Return the .debug_loc section to use for CU.
25035 For DWO files use .debug_loc.dwo. */
25037 static struct dwarf2_section_info *
25038 cu_debug_loc_section (struct dwarf2_cu *cu)
25040 struct dwarf2_per_objfile *dwarf2_per_objfile
25041 = cu->per_cu->dwarf2_per_objfile;
25045 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25047 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
25049 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25050 : &dwarf2_per_objfile->loc);
25053 /* A helper function that fills in a dwarf2_loclist_baton. */
25056 fill_in_loclist_baton (struct dwarf2_cu *cu,
25057 struct dwarf2_loclist_baton *baton,
25058 const struct attribute *attr)
25060 struct dwarf2_per_objfile *dwarf2_per_objfile
25061 = cu->per_cu->dwarf2_per_objfile;
25062 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25064 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25066 baton->per_cu = cu->per_cu;
25067 gdb_assert (baton->per_cu);
25068 /* We don't know how long the location list is, but make sure we
25069 don't run off the edge of the section. */
25070 baton->size = section->size - DW_UNSND (attr);
25071 baton->data = section->buffer + DW_UNSND (attr);
25072 baton->base_address = cu->base_address;
25073 baton->from_dwo = cu->dwo_unit != NULL;
25077 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25078 struct dwarf2_cu *cu, int is_block)
25080 struct dwarf2_per_objfile *dwarf2_per_objfile
25081 = cu->per_cu->dwarf2_per_objfile;
25082 struct objfile *objfile = dwarf2_per_objfile->objfile;
25083 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25085 if (attr_form_is_section_offset (attr)
25086 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25087 the section. If so, fall through to the complaint in the
25089 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25091 struct dwarf2_loclist_baton *baton;
25093 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25095 fill_in_loclist_baton (cu, baton, attr);
25097 if (cu->base_known == 0)
25098 complaint (_("Location list used without "
25099 "specifying the CU base address."));
25101 SYMBOL_ACLASS_INDEX (sym) = (is_block
25102 ? dwarf2_loclist_block_index
25103 : dwarf2_loclist_index);
25104 SYMBOL_LOCATION_BATON (sym) = baton;
25108 struct dwarf2_locexpr_baton *baton;
25110 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25111 baton->per_cu = cu->per_cu;
25112 gdb_assert (baton->per_cu);
25114 if (attr_form_is_block (attr))
25116 /* Note that we're just copying the block's data pointer
25117 here, not the actual data. We're still pointing into the
25118 info_buffer for SYM's objfile; right now we never release
25119 that buffer, but when we do clean up properly this may
25121 baton->size = DW_BLOCK (attr)->size;
25122 baton->data = DW_BLOCK (attr)->data;
25126 dwarf2_invalid_attrib_class_complaint ("location description",
25127 SYMBOL_NATURAL_NAME (sym));
25131 SYMBOL_ACLASS_INDEX (sym) = (is_block
25132 ? dwarf2_locexpr_block_index
25133 : dwarf2_locexpr_index);
25134 SYMBOL_LOCATION_BATON (sym) = baton;
25138 /* Return the OBJFILE associated with the compilation unit CU. If CU
25139 came from a separate debuginfo file, then the master objfile is
25143 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25145 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25147 /* Return the master objfile, so that we can report and look up the
25148 correct file containing this variable. */
25149 if (objfile->separate_debug_objfile_backlink)
25150 objfile = objfile->separate_debug_objfile_backlink;
25155 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25156 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25157 CU_HEADERP first. */
25159 static const struct comp_unit_head *
25160 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25161 struct dwarf2_per_cu_data *per_cu)
25163 const gdb_byte *info_ptr;
25166 return &per_cu->cu->header;
25168 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25170 memset (cu_headerp, 0, sizeof (*cu_headerp));
25171 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25172 rcuh_kind::COMPILE);
25177 /* Return the address size given in the compilation unit header for CU. */
25180 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25182 struct comp_unit_head cu_header_local;
25183 const struct comp_unit_head *cu_headerp;
25185 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25187 return cu_headerp->addr_size;
25190 /* Return the offset size given in the compilation unit header for CU. */
25193 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25195 struct comp_unit_head cu_header_local;
25196 const struct comp_unit_head *cu_headerp;
25198 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25200 return cu_headerp->offset_size;
25203 /* See its dwarf2loc.h declaration. */
25206 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25208 struct comp_unit_head cu_header_local;
25209 const struct comp_unit_head *cu_headerp;
25211 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25213 if (cu_headerp->version == 2)
25214 return cu_headerp->addr_size;
25216 return cu_headerp->offset_size;
25219 /* Return the text offset of the CU. The returned offset comes from
25220 this CU's objfile. If this objfile came from a separate debuginfo
25221 file, then the offset may be different from the corresponding
25222 offset in the parent objfile. */
25225 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25227 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25229 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25232 /* Return DWARF version number of PER_CU. */
25235 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25237 return per_cu->dwarf_version;
25240 /* Locate the .debug_info compilation unit from CU's objfile which contains
25241 the DIE at OFFSET. Raises an error on failure. */
25243 static struct dwarf2_per_cu_data *
25244 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25245 unsigned int offset_in_dwz,
25246 struct dwarf2_per_objfile *dwarf2_per_objfile)
25248 struct dwarf2_per_cu_data *this_cu;
25252 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25255 struct dwarf2_per_cu_data *mid_cu;
25256 int mid = low + (high - low) / 2;
25258 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25259 if (mid_cu->is_dwz > offset_in_dwz
25260 || (mid_cu->is_dwz == offset_in_dwz
25261 && mid_cu->sect_off + mid_cu->length >= sect_off))
25266 gdb_assert (low == high);
25267 this_cu = dwarf2_per_objfile->all_comp_units[low];
25268 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25270 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25271 error (_("Dwarf Error: could not find partial DIE containing "
25272 "offset %s [in module %s]"),
25273 sect_offset_str (sect_off),
25274 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25276 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25278 return dwarf2_per_objfile->all_comp_units[low-1];
25282 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25283 && sect_off >= this_cu->sect_off + this_cu->length)
25284 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25285 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25290 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25292 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25293 : per_cu (per_cu_),
25295 has_loclist (false),
25296 checked_producer (false),
25297 producer_is_gxx_lt_4_6 (false),
25298 producer_is_gcc_lt_4_3 (false),
25299 producer_is_icc (false),
25300 producer_is_icc_lt_14 (false),
25301 producer_is_codewarrior (false),
25302 processing_has_namespace_info (false)
25307 /* Destroy a dwarf2_cu. */
25309 dwarf2_cu::~dwarf2_cu ()
25314 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25317 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25318 enum language pretend_language)
25320 struct attribute *attr;
25322 /* Set the language we're debugging. */
25323 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25325 set_cu_language (DW_UNSND (attr), cu);
25328 cu->language = pretend_language;
25329 cu->language_defn = language_def (cu->language);
25332 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25335 /* Increase the age counter on each cached compilation unit, and free
25336 any that are too old. */
25339 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25341 struct dwarf2_per_cu_data *per_cu, **last_chain;
25343 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25344 per_cu = dwarf2_per_objfile->read_in_chain;
25345 while (per_cu != NULL)
25347 per_cu->cu->last_used ++;
25348 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25349 dwarf2_mark (per_cu->cu);
25350 per_cu = per_cu->cu->read_in_chain;
25353 per_cu = dwarf2_per_objfile->read_in_chain;
25354 last_chain = &dwarf2_per_objfile->read_in_chain;
25355 while (per_cu != NULL)
25357 struct dwarf2_per_cu_data *next_cu;
25359 next_cu = per_cu->cu->read_in_chain;
25361 if (!per_cu->cu->mark)
25364 *last_chain = next_cu;
25367 last_chain = &per_cu->cu->read_in_chain;
25373 /* Remove a single compilation unit from the cache. */
25376 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25378 struct dwarf2_per_cu_data *per_cu, **last_chain;
25379 struct dwarf2_per_objfile *dwarf2_per_objfile
25380 = target_per_cu->dwarf2_per_objfile;
25382 per_cu = dwarf2_per_objfile->read_in_chain;
25383 last_chain = &dwarf2_per_objfile->read_in_chain;
25384 while (per_cu != NULL)
25386 struct dwarf2_per_cu_data *next_cu;
25388 next_cu = per_cu->cu->read_in_chain;
25390 if (per_cu == target_per_cu)
25394 *last_chain = next_cu;
25398 last_chain = &per_cu->cu->read_in_chain;
25404 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25405 We store these in a hash table separate from the DIEs, and preserve them
25406 when the DIEs are flushed out of cache.
25408 The CU "per_cu" pointer is needed because offset alone is not enough to
25409 uniquely identify the type. A file may have multiple .debug_types sections,
25410 or the type may come from a DWO file. Furthermore, while it's more logical
25411 to use per_cu->section+offset, with Fission the section with the data is in
25412 the DWO file but we don't know that section at the point we need it.
25413 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25414 because we can enter the lookup routine, get_die_type_at_offset, from
25415 outside this file, and thus won't necessarily have PER_CU->cu.
25416 Fortunately, PER_CU is stable for the life of the objfile. */
25418 struct dwarf2_per_cu_offset_and_type
25420 const struct dwarf2_per_cu_data *per_cu;
25421 sect_offset sect_off;
25425 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25428 per_cu_offset_and_type_hash (const void *item)
25430 const struct dwarf2_per_cu_offset_and_type *ofs
25431 = (const struct dwarf2_per_cu_offset_and_type *) item;
25433 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25436 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25439 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25441 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25442 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25443 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25444 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25446 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25447 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25450 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25451 table if necessary. For convenience, return TYPE.
25453 The DIEs reading must have careful ordering to:
25454 * Not cause infite loops trying to read in DIEs as a prerequisite for
25455 reading current DIE.
25456 * Not trying to dereference contents of still incompletely read in types
25457 while reading in other DIEs.
25458 * Enable referencing still incompletely read in types just by a pointer to
25459 the type without accessing its fields.
25461 Therefore caller should follow these rules:
25462 * Try to fetch any prerequisite types we may need to build this DIE type
25463 before building the type and calling set_die_type.
25464 * After building type call set_die_type for current DIE as soon as
25465 possible before fetching more types to complete the current type.
25466 * Make the type as complete as possible before fetching more types. */
25468 static struct type *
25469 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25471 struct dwarf2_per_objfile *dwarf2_per_objfile
25472 = cu->per_cu->dwarf2_per_objfile;
25473 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25474 struct objfile *objfile = dwarf2_per_objfile->objfile;
25475 struct attribute *attr;
25476 struct dynamic_prop prop;
25478 /* For Ada types, make sure that the gnat-specific data is always
25479 initialized (if not already set). There are a few types where
25480 we should not be doing so, because the type-specific area is
25481 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25482 where the type-specific area is used to store the floatformat).
25483 But this is not a problem, because the gnat-specific information
25484 is actually not needed for these types. */
25485 if (need_gnat_info (cu)
25486 && TYPE_CODE (type) != TYPE_CODE_FUNC
25487 && TYPE_CODE (type) != TYPE_CODE_FLT
25488 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25489 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25490 && TYPE_CODE (type) != TYPE_CODE_METHOD
25491 && !HAVE_GNAT_AUX_INFO (type))
25492 INIT_GNAT_SPECIFIC (type);
25494 /* Read DW_AT_allocated and set in type. */
25495 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25496 if (attr_form_is_block (attr))
25498 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25499 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25501 else if (attr != NULL)
25503 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25504 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25505 sect_offset_str (die->sect_off));
25508 /* Read DW_AT_associated and set in type. */
25509 attr = dwarf2_attr (die, DW_AT_associated, cu);
25510 if (attr_form_is_block (attr))
25512 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25513 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25515 else if (attr != NULL)
25517 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25518 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25519 sect_offset_str (die->sect_off));
25522 /* Read DW_AT_data_location and set in type. */
25523 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25524 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25525 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25527 if (dwarf2_per_objfile->die_type_hash == NULL)
25529 dwarf2_per_objfile->die_type_hash =
25530 htab_create_alloc_ex (127,
25531 per_cu_offset_and_type_hash,
25532 per_cu_offset_and_type_eq,
25534 &objfile->objfile_obstack,
25535 hashtab_obstack_allocate,
25536 dummy_obstack_deallocate);
25539 ofs.per_cu = cu->per_cu;
25540 ofs.sect_off = die->sect_off;
25542 slot = (struct dwarf2_per_cu_offset_and_type **)
25543 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25545 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25546 sect_offset_str (die->sect_off));
25547 *slot = XOBNEW (&objfile->objfile_obstack,
25548 struct dwarf2_per_cu_offset_and_type);
25553 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25554 or return NULL if the die does not have a saved type. */
25556 static struct type *
25557 get_die_type_at_offset (sect_offset sect_off,
25558 struct dwarf2_per_cu_data *per_cu)
25560 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25561 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25563 if (dwarf2_per_objfile->die_type_hash == NULL)
25566 ofs.per_cu = per_cu;
25567 ofs.sect_off = sect_off;
25568 slot = ((struct dwarf2_per_cu_offset_and_type *)
25569 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25576 /* Look up the type for DIE in CU in die_type_hash,
25577 or return NULL if DIE does not have a saved type. */
25579 static struct type *
25580 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25582 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25585 /* Add a dependence relationship from CU to REF_PER_CU. */
25588 dwarf2_add_dependence (struct dwarf2_cu *cu,
25589 struct dwarf2_per_cu_data *ref_per_cu)
25593 if (cu->dependencies == NULL)
25595 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25596 NULL, &cu->comp_unit_obstack,
25597 hashtab_obstack_allocate,
25598 dummy_obstack_deallocate);
25600 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25602 *slot = ref_per_cu;
25605 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25606 Set the mark field in every compilation unit in the
25607 cache that we must keep because we are keeping CU. */
25610 dwarf2_mark_helper (void **slot, void *data)
25612 struct dwarf2_per_cu_data *per_cu;
25614 per_cu = (struct dwarf2_per_cu_data *) *slot;
25616 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25617 reading of the chain. As such dependencies remain valid it is not much
25618 useful to track and undo them during QUIT cleanups. */
25619 if (per_cu->cu == NULL)
25622 if (per_cu->cu->mark)
25624 per_cu->cu->mark = true;
25626 if (per_cu->cu->dependencies != NULL)
25627 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25632 /* Set the mark field in CU and in every other compilation unit in the
25633 cache that we must keep because we are keeping CU. */
25636 dwarf2_mark (struct dwarf2_cu *cu)
25641 if (cu->dependencies != NULL)
25642 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25646 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25650 per_cu->cu->mark = false;
25651 per_cu = per_cu->cu->read_in_chain;
25655 /* Trivial hash function for partial_die_info: the hash value of a DIE
25656 is its offset in .debug_info for this objfile. */
25659 partial_die_hash (const void *item)
25661 const struct partial_die_info *part_die
25662 = (const struct partial_die_info *) item;
25664 return to_underlying (part_die->sect_off);
25667 /* Trivial comparison function for partial_die_info structures: two DIEs
25668 are equal if they have the same offset. */
25671 partial_die_eq (const void *item_lhs, const void *item_rhs)
25673 const struct partial_die_info *part_die_lhs
25674 = (const struct partial_die_info *) item_lhs;
25675 const struct partial_die_info *part_die_rhs
25676 = (const struct partial_die_info *) item_rhs;
25678 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25681 struct cmd_list_element *set_dwarf_cmdlist;
25682 struct cmd_list_element *show_dwarf_cmdlist;
25685 set_dwarf_cmd (const char *args, int from_tty)
25687 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25692 show_dwarf_cmd (const char *args, int from_tty)
25694 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25697 int dwarf_always_disassemble;
25700 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25701 struct cmd_list_element *c, const char *value)
25703 fprintf_filtered (file,
25704 _("Whether to always disassemble "
25705 "DWARF expressions is %s.\n"),
25710 show_check_physname (struct ui_file *file, int from_tty,
25711 struct cmd_list_element *c, const char *value)
25713 fprintf_filtered (file,
25714 _("Whether to check \"physname\" is %s.\n"),
25719 _initialize_dwarf2_read (void)
25721 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25722 Set DWARF specific variables.\n\
25723 Configure DWARF variables such as the cache size"),
25724 &set_dwarf_cmdlist, "maintenance set dwarf ",
25725 0/*allow-unknown*/, &maintenance_set_cmdlist);
25727 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25728 Show DWARF specific variables\n\
25729 Show DWARF variables such as the cache size"),
25730 &show_dwarf_cmdlist, "maintenance show dwarf ",
25731 0/*allow-unknown*/, &maintenance_show_cmdlist);
25733 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25734 &dwarf_max_cache_age, _("\
25735 Set the upper bound on the age of cached DWARF compilation units."), _("\
25736 Show the upper bound on the age of cached DWARF compilation units."), _("\
25737 A higher limit means that cached compilation units will be stored\n\
25738 in memory longer, and more total memory will be used. Zero disables\n\
25739 caching, which can slow down startup."),
25741 show_dwarf_max_cache_age,
25742 &set_dwarf_cmdlist,
25743 &show_dwarf_cmdlist);
25745 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25746 &dwarf_always_disassemble, _("\
25747 Set whether `info address' always disassembles DWARF expressions."), _("\
25748 Show whether `info address' always disassembles DWARF expressions."), _("\
25749 When enabled, DWARF expressions are always printed in an assembly-like\n\
25750 syntax. When disabled, expressions will be printed in a more\n\
25751 conversational style, when possible."),
25753 show_dwarf_always_disassemble,
25754 &set_dwarf_cmdlist,
25755 &show_dwarf_cmdlist);
25757 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25758 Set debugging of the DWARF reader."), _("\
25759 Show debugging of the DWARF reader."), _("\
25760 When enabled (non-zero), debugging messages are printed during DWARF\n\
25761 reading and symtab expansion. A value of 1 (one) provides basic\n\
25762 information. A value greater than 1 provides more verbose information."),
25765 &setdebuglist, &showdebuglist);
25767 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25768 Set debugging of the DWARF DIE reader."), _("\
25769 Show debugging of the DWARF DIE reader."), _("\
25770 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25771 The value is the maximum depth to print."),
25774 &setdebuglist, &showdebuglist);
25776 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25777 Set debugging of the dwarf line reader."), _("\
25778 Show debugging of the dwarf line reader."), _("\
25779 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25780 A value of 1 (one) provides basic information.\n\
25781 A value greater than 1 provides more verbose information."),
25784 &setdebuglist, &showdebuglist);
25786 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25787 Set cross-checking of \"physname\" code against demangler."), _("\
25788 Show cross-checking of \"physname\" code against demangler."), _("\
25789 When enabled, GDB's internal \"physname\" code is checked against\n\
25791 NULL, show_check_physname,
25792 &setdebuglist, &showdebuglist);
25794 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25795 no_class, &use_deprecated_index_sections, _("\
25796 Set whether to use deprecated gdb_index sections."), _("\
25797 Show whether to use deprecated gdb_index sections."), _("\
25798 When enabled, deprecated .gdb_index sections are used anyway.\n\
25799 Normally they are ignored either because of a missing feature or\n\
25800 performance issue.\n\
25801 Warning: This option must be enabled before gdb reads the file."),
25804 &setlist, &showlist);
25806 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25807 &dwarf2_locexpr_funcs);
25808 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25809 &dwarf2_loclist_funcs);
25811 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25812 &dwarf2_block_frame_base_locexpr_funcs);
25813 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25814 &dwarf2_block_frame_base_loclist_funcs);
25817 selftests::register_test ("dw2_expand_symtabs_matching",
25818 selftests::dw2_expand_symtabs_matching::run_test);