1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 Contributed by Steve Chamberlain
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40 #include "arch-utils.h"
48 /* registers numbers shared with the simulator */
49 #include "gdb/sim-sh.h"
52 /* Information that is dependent on the processor variant. */
65 struct sh64_frame_cache
72 /* Flag showing that a frame has been created in the prologue code. */
77 /* Saved registers. */
78 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
82 /* Registers of SH5 */
86 DEFAULT_RETURN_REGNUM = 2,
87 STRUCT_RETURN_REGNUM = 2,
90 FLOAT_ARGLAST_REGNUM = 11,
96 /* FPP stands for Floating Point Pair, to avoid confusion with
97 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
98 point register. Unfortunately on the sh5, the floating point
99 registers are called FR, and the floating point pairs are called FP. */
101 FPP_LAST_REGNUM = 204,
103 FV_LAST_REGNUM = 220,
105 R_LAST_C_REGNUM = 236,
112 FPSCR_C_REGNUM = 243,
115 FP_LAST_C_REGNUM = 260,
117 DR_LAST_C_REGNUM = 268,
119 FV_LAST_C_REGNUM = 272,
120 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
121 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
122 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
123 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
124 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
128 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
130 static char *register_names[] =
132 /* SH MEDIA MODE (ISA 32) */
133 /* general registers (64-bit) 0-63 */
134 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
136 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
137 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
138 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
139 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
140 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
141 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
146 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
149 /* target registers (64-bit) 68-75*/
150 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152 /* floating point state control register (32-bit) 76 */
155 /* single precision floating point registers (32-bit) 77-140*/
156 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
157 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
158 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
159 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
160 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
161 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
162 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
163 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165 /* double precision registers (pseudo) 141-172 */
166 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
167 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
168 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
169 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171 /* floating point pairs (pseudo) 173-204*/
172 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
173 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
174 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
175 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
178 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
179 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
182 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
183 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return register_names[reg_nr];
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
217 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
225 SYMBOL_VALUE_ADDRESS (msym) |= 1;
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236 pc_is_isa32 (bfd_vma memaddr)
238 struct minimal_symbol *sym;
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr))
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
248 sym = lookup_minimal_symbol_by_pc (memaddr);
250 return MSYMBOL_IS_SPECIAL (sym);
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
258 /* The BRK instruction for shmedia is
259 01101111 11110101 11111111 11110000
260 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
261 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263 /* The BRK instruction for shcompact is
265 which translates in big endian mode to 0x0, 0x3b
266 and in little endian mode to 0x3b, 0x0*/
268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
270 if (pc_is_isa32 (*pcptr))
272 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
273 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
274 *lenptr = sizeof (big_breakpoint_media);
275 return big_breakpoint_media;
279 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
280 *lenptr = sizeof (big_breakpoint_compact);
281 return big_breakpoint_compact;
286 if (pc_is_isa32 (*pcptr))
288 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
289 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
290 *lenptr = sizeof (little_breakpoint_media);
291 return little_breakpoint_media;
295 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
296 *lenptr = sizeof (little_breakpoint_compact);
297 return little_breakpoint_compact;
302 /* Prologue looks like
303 [mov.l <regs>,@-r15]...
308 Actually it can be more complicated than this. For instance, with
326 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
327 with l=1 and n = 18 0110101111110001010010100aaa0000 */
328 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
330 /* STS.L PR,@-r0 0100000000100010
331 r0-4-->r0, PR-->(r0) */
332 #define IS_STS_R0(x) ((x) == 0x4022)
334 /* STS PR, Rm 0000mmmm00101010
336 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
338 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
340 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
342 /* MOV.L R14,@(disp,r15) 000111111110dddd
343 R14-->(dispx4+r15) */
344 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
346 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
347 R18-->(dispx8+R14) */
348 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
350 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
351 R18-->(dispx8+R15) */
352 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
354 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
355 R18-->(dispx4+R15) */
356 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
358 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
359 R14-->(dispx8+R15) */
360 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
362 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
363 R14-->(dispx4+R15) */
364 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
366 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
368 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
370 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
372 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
374 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
376 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
378 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
380 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
382 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
384 /* MOV #imm, R0 1110 0000 ssss ssss
386 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
388 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
389 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
391 /* ADD r15,r0 0011 0000 1111 1100
393 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
395 /* MOV.L R14 @-R0 0010 0000 1110 0110
396 R14-->(R0-4), R0-4-->R0 */
397 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
399 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
400 where Rm is one of r2-r9 which are the argument registers. */
401 /* FIXME: Recognize the float and double register moves too! */
402 #define IS_MEDIA_IND_ARG_MOV(x) \
403 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
405 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
406 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
407 where Rm is one of r2-r9 which are the argument registers. */
408 #define IS_MEDIA_ARG_MOV(x) \
409 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
410 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
412 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
413 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
415 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
417 #define IS_MEDIA_MOV_TO_R14(x) \
418 ((((x) & 0xfffffc0f) == 0xa0e00000) \
419 || (((x) & 0xfffffc0f) == 0xa4e00000) \
420 || (((x) & 0xfffffc0f) == 0xa8e00000) \
421 || (((x) & 0xfffffc0f) == 0xb4e00000) \
422 || (((x) & 0xfffffc0f) == 0xbce00000))
424 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
426 #define IS_COMPACT_IND_ARG_MOV(x) \
427 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
429 /* compact direct arg move!
430 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
431 #define IS_COMPACT_ARG_MOV(x) \
432 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
434 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
435 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
436 #define IS_COMPACT_MOV_TO_R14(x) \
437 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
439 #define IS_JSR_R0(x) ((x) == 0x400b)
440 #define IS_NOP(x) ((x) == 0x0009)
443 /* MOV r15,r14 0110111011110011
445 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
447 /* ADD #imm,r15 01111111iiiiiiii
449 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
451 /* Skip any prologue before the guts of a function */
453 /* Skip the prologue using the debug information. If this fails we'll
454 fall back on the 'guess' method below. */
456 after_prologue (CORE_ADDR pc)
458 struct symtab_and_line sal;
459 CORE_ADDR func_addr, func_end;
461 /* If we can not find the symbol in the partial symbol table, then
462 there is no hope we can determine the function's start address
464 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
468 /* Get the line associated with FUNC_ADDR. */
469 sal = find_pc_line (func_addr, 0);
471 /* There are only two cases to consider. First, the end of the source line
472 is within the function bounds. In that case we return the end of the
473 source line. Second is the end of the source line extends beyond the
474 bounds of the current function. We need to use the slow code to
475 examine instructions in that case. */
476 if (sal.end < func_end)
483 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
487 int insn_size = (media_mode ? 4 : 2);
489 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
493 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
495 if (IS_MEDIA_IND_ARG_MOV (w))
497 /* This must be followed by a store to r14, so the argument
498 is where the debug info says it is. This can happen after
499 the SP has been saved, unfortunately. */
501 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
504 if (IS_MEDIA_MOV_TO_R14 (next_insn))
507 else if (IS_MEDIA_ARG_MOV (w))
509 /* These instructions store directly the argument in r14. */
517 w = read_memory_integer (here, insn_size);
520 if (IS_COMPACT_IND_ARG_MOV (w))
522 /* This must be followed by a store to r14, so the argument
523 is where the debug info says it is. This can happen after
524 the SP has been saved, unfortunately. */
526 int next_insn = 0xffff & read_memory_integer (here, insn_size);
528 if (IS_COMPACT_MOV_TO_R14 (next_insn))
531 else if (IS_COMPACT_ARG_MOV (w))
533 /* These instructions store directly the argument in r14. */
536 else if (IS_MOVL_R0 (w))
538 /* There is a function that gcc calls to get the arguments
539 passed correctly to the function. Only after this
540 function call the arguments will be found at the place
541 where they are supposed to be. This happens in case the
542 argument has to be stored into a 64-bit register (for
543 instance doubles, long longs). SHcompact doesn't have
544 access to the full 64-bits, so we store the register in
545 stack slot and store the address of the stack slot in
546 the register, then do a call through a wrapper that
547 loads the memory value into the register. A SHcompact
548 callee calls an argument decoder
549 (GCC_shcompact_incoming_args) that stores the 64-bit
550 value in a stack slot and stores the address of the
551 stack slot in the register. GCC thinks the argument is
552 just passed by transparent reference, but this is only
553 true after the argument decoder is called. Such a call
554 needs to be considered part of the prologue. */
556 /* This must be followed by a JSR @r0 instruction and by
557 a NOP instruction. After these, the prologue is over! */
559 int next_insn = 0xffff & read_memory_integer (here, insn_size);
561 if (IS_JSR_R0 (next_insn))
563 next_insn = 0xffff & read_memory_integer (here, insn_size);
566 if (IS_NOP (next_insn))
579 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
589 if (pc_is_isa32 (start_pc) == 0)
595 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
600 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
602 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
603 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
604 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
608 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
616 /* Don't bail out yet, we may have arguments stored in
617 registers here, according to the debug info, so that
618 gdb can print the frames correctly. */
619 start_pc = look_for_args_moves (here - insn_size, media_mode);
625 int w = 0xffff & read_memory_integer (here, insn_size);
628 if (IS_STS_R0 (w) || IS_STS_PR (w)
629 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
630 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
634 else if (IS_MOV_SP_FP (w))
642 /* Don't bail out yet, we may have arguments stored in
643 registers here, according to the debug info, so that
644 gdb can print the frames correctly. */
645 start_pc = look_for_args_moves (here - insn_size, media_mode);
655 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
657 CORE_ADDR post_prologue_pc;
659 /* See if we can determine the end of the prologue via the symbol table.
660 If so, then return either PC, or the PC after the prologue, whichever
662 post_prologue_pc = after_prologue (pc);
664 /* If after_prologue returned a useful address, then use it. Else
665 fall back on the instruction skipping code. */
666 if (post_prologue_pc != 0)
667 return max (pc, post_prologue_pc);
669 return sh64_skip_prologue_hard_way (pc);
672 /* Should call_function allocate stack space for a struct return? */
674 sh64_use_struct_convention (struct type *type)
676 return (TYPE_LENGTH (type) > 8);
679 /* Disassemble an instruction. */
681 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
683 info->endian = gdbarch_byte_order (current_gdbarch);
684 return print_insn_sh (memaddr, info);
687 /* For vectors of 4 floating point registers. */
689 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
693 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
697 /* For double precision floating point registers, i.e 2 fp regs.*/
699 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
703 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
707 /* For pairs of floating point registers */
709 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
713 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
719 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
720 GDB_REGNUM BASE_REGNUM
780 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
782 int base_regnum = reg_nr;
784 /* general register N maps to general register N */
785 if (reg_nr >= R0_C_REGNUM
786 && reg_nr <= R_LAST_C_REGNUM)
787 base_regnum = reg_nr - R0_C_REGNUM;
789 /* floating point register N maps to floating point register N */
790 else if (reg_nr >= FP0_C_REGNUM
791 && reg_nr <= FP_LAST_C_REGNUM)
792 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
794 /* double prec register N maps to base regnum for double prec register N */
795 else if (reg_nr >= DR0_C_REGNUM
796 && reg_nr <= DR_LAST_C_REGNUM)
797 base_regnum = sh64_dr_reg_base_num (gdbarch,
798 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
800 /* vector N maps to base regnum for vector register N */
801 else if (reg_nr >= FV0_C_REGNUM
802 && reg_nr <= FV_LAST_C_REGNUM)
803 base_regnum = sh64_fv_reg_base_num (gdbarch,
804 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
806 else if (reg_nr == PC_C_REGNUM)
807 base_regnum = gdbarch_pc_regnum (gdbarch);
809 else if (reg_nr == GBR_C_REGNUM)
812 else if (reg_nr == MACH_C_REGNUM
813 || reg_nr == MACL_C_REGNUM)
816 else if (reg_nr == PR_C_REGNUM)
817 base_regnum = PR_REGNUM;
819 else if (reg_nr == T_C_REGNUM)
822 else if (reg_nr == FPSCR_C_REGNUM)
823 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
825 else if (reg_nr == FPUL_C_REGNUM)
826 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
832 sign_extend (int value, int bits)
834 value = value & ((1 << bits) - 1);
835 return (value & (1 << (bits - 1))
836 ? value | (~((1 << bits) - 1))
841 sh64_analyze_prologue (struct gdbarch *gdbarch,
842 struct sh64_frame_cache *cache,
844 CORE_ADDR current_pc)
852 int gdb_register_number;
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
856 cache->sp_offset = 0;
858 /* Loop around examining the prologue insns until we find something
859 that does not appear to be part of the prologue. But give up
860 after 20 of them, since we're getting silly then. */
864 if (cache->media_mode)
869 opc = pc + (insn_size * 28);
870 if (opc > current_pc)
872 for ( ; pc <= opc; pc += insn_size)
874 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
878 if (!cache->media_mode)
880 if (IS_STS_PR (insn))
882 int next_insn = read_memory_integer (pc + insn_size, insn_size);
883 if (IS_MOV_TO_R15 (next_insn))
885 cache->saved_regs[PR_REGNUM] =
886 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
891 else if (IS_MOV_R14 (insn))
892 cache->saved_regs[MEDIA_FP_REGNUM] =
893 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
895 else if (IS_MOV_R0 (insn))
897 /* Put in R0 the offset from SP at which to store some
898 registers. We are interested in this value, because it
899 will tell us where the given registers are stored within
901 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
904 else if (IS_ADD_SP_R0 (insn))
906 /* This instruction still prepares r0, but we don't care.
907 We already have the offset in r0_val. */
910 else if (IS_STS_R0 (insn))
912 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
913 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
917 else if (IS_MOV_R14_R0 (insn))
919 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
920 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
925 else if (IS_ADD_SP (insn))
926 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
928 else if (IS_MOV_SP_FP (insn))
933 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
935 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
937 else if (IS_STQ_R18_R15 (insn))
938 cache->saved_regs[PR_REGNUM] =
939 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
941 else if (IS_STL_R18_R15 (insn))
942 cache->saved_regs[PR_REGNUM] =
943 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
945 else if (IS_STQ_R14_R15 (insn))
946 cache->saved_regs[MEDIA_FP_REGNUM] =
947 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
949 else if (IS_STL_R14_R15 (insn))
950 cache->saved_regs[MEDIA_FP_REGNUM] =
951 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
953 else if (IS_MOV_SP_FP_MEDIA (insn))
958 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
963 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
968 /* Function: push_dummy_call
969 Setup the function arguments for calling a function in the inferior.
971 On the Renesas SH architecture, there are four registers (R4 to R7)
972 which are dedicated for passing function arguments. Up to the first
973 four arguments (depending on size) may go into these registers.
974 The rest go on the stack.
976 Arguments that are smaller than 4 bytes will still take up a whole
977 register or a whole 32-bit word on the stack, and will be
978 right-justified in the register or the stack word. This includes
979 chars, shorts, and small aggregate types.
981 Arguments that are larger than 4 bytes may be split between two or
982 more registers. If there are not enough registers free, an argument
983 may be passed partly in a register (or registers), and partly on the
984 stack. This includes doubles, long longs, and larger aggregates.
985 As far as I know, there is no upper limit to the size of aggregates
986 that will be passed in this way; in other words, the convention of
987 passing a pointer to a large aggregate instead of a copy is not used.
989 An exceptional case exists for struct arguments (and possibly other
990 aggregates such as arrays) if the size is larger than 4 bytes but
991 not a multiple of 4 bytes. In this case the argument is never split
992 between the registers and the stack, but instead is copied in its
993 entirety onto the stack, AND also copied into as many registers as
994 there is room for. In other words, space in registers permitting,
995 two copies of the same argument are passed in. As far as I can tell,
996 only the one on the stack is used, although that may be a function
997 of the level of compiler optimization. I suspect this is a compiler
998 bug. Arguments of these odd sizes are left-justified within the
999 word (as opposed to arguments smaller than 4 bytes, which are
1002 If the function is to return an aggregate type such as a struct, it
1003 is either returned in the normal return value register R0 (if its
1004 size is no greater than one byte), or else the caller must allocate
1005 space into which the callee will copy the return value (if the size
1006 is greater than one byte). In this case, a pointer to the return
1007 value location is passed into the callee in register R2, which does
1008 not displace any of the other arguments passed in via registers R4
1011 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1012 non-scalar (struct, union) elements (even if the elements are
1014 FR0-FR11 for single precision floating point (float)
1015 DR0-DR10 for double precision floating point (double)
1017 If a float is argument number 3 (for instance) and arguments number
1018 1,2, and 4 are integer, the mapping will be:
1019 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1021 If a float is argument number 10 (for instance) and arguments number
1022 1 through 10 are integer, the mapping will be:
1023 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1024 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1025 I.e. there is hole in the stack.
1027 Different rules apply for variable arguments functions, and for functions
1028 for which the prototype is not known. */
1031 sh64_push_dummy_call (struct gdbarch *gdbarch,
1032 struct value *function,
1033 struct regcache *regcache,
1035 int nargs, struct value **args,
1036 CORE_ADDR sp, int struct_return,
1037 CORE_ADDR struct_addr)
1039 int stack_offset, stack_alloc;
1043 int float_arg_index = 0;
1044 int double_arg_index = 0;
1055 memset (fp_args, 0, sizeof (fp_args));
1057 /* first force sp to a 8-byte alignment */
1058 sp = sh64_frame_align (gdbarch, sp);
1060 /* The "struct return pointer" pseudo-argument has its own dedicated
1064 regcache_cooked_write_unsigned (regcache,
1065 STRUCT_RETURN_REGNUM, struct_addr);
1067 /* Now make sure there's space on the stack */
1068 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1069 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1070 sp -= stack_alloc; /* make room on stack for args */
1072 /* Now load as many as possible of the first arguments into
1073 registers, and push the rest onto the stack. There are 64 bytes
1074 in eight registers available. Loop thru args from first to last. */
1076 int_argreg = ARG0_REGNUM;
1077 float_argreg = gdbarch_fp0_regnum (gdbarch);
1078 double_argreg = DR0_REGNUM;
1080 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1082 type = value_type (args[argnum]);
1083 len = TYPE_LENGTH (type);
1084 memset (valbuf, 0, sizeof (valbuf));
1086 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1088 argreg_size = register_size (gdbarch, int_argreg);
1090 if (len < argreg_size)
1092 /* value gets right-justified in the register or stack word */
1093 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1094 memcpy (valbuf + argreg_size - len,
1095 (char *) value_contents (args[argnum]), len);
1097 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1102 val = (char *) value_contents (args[argnum]);
1106 if (int_argreg > ARGLAST_REGNUM)
1108 /* must go on the stack */
1109 write_memory (sp + stack_offset, (const bfd_byte *) val,
1111 stack_offset += 8;/*argreg_size;*/
1113 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1114 That's because some *&^%$ things get passed on the stack
1115 AND in the registers! */
1116 if (int_argreg <= ARGLAST_REGNUM)
1118 /* there's room in a register */
1119 regval = extract_unsigned_integer (val, argreg_size);
1120 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1122 /* Store the value 8 bytes at a time. This means that
1123 things larger than 8 bytes may go partly in registers
1124 and partly on the stack. FIXME: argreg is incremented
1125 before we use its size. */
1133 val = (char *) value_contents (args[argnum]);
1136 /* Where is it going to be stored? */
1137 while (fp_args[float_arg_index])
1140 /* Now float_argreg points to the register where it
1141 should be stored. Are we still within the allowed
1143 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1145 /* Goes in FR0...FR11 */
1146 regcache_cooked_write (regcache,
1147 gdbarch_fp0_regnum (gdbarch)
1150 fp_args[float_arg_index] = 1;
1151 /* Skip the corresponding general argument register. */
1156 /* Store it as the integers, 8 bytes at the time, if
1157 necessary spilling on the stack. */
1162 /* Where is it going to be stored? */
1163 while (fp_args[double_arg_index])
1164 double_arg_index += 2;
1165 /* Now double_argreg points to the register
1166 where it should be stored.
1167 Are we still within the allowed register set? */
1168 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1170 /* Goes in DR0...DR10 */
1171 /* The numbering of the DRi registers is consecutive,
1172 i.e. includes odd numbers. */
1173 int double_register_offset = double_arg_index / 2;
1174 int regnum = DR0_REGNUM + double_register_offset;
1175 regcache_cooked_write (regcache, regnum, val);
1176 fp_args[double_arg_index] = 1;
1177 fp_args[double_arg_index + 1] = 1;
1178 /* Skip the corresponding general argument register. */
1183 /* Store it as the integers, 8 bytes at the time, if
1184 necessary spilling on the stack. */
1188 /* Store return address. */
1189 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1191 /* Update stack pointer. */
1192 regcache_cooked_write_unsigned (regcache,
1193 gdbarch_sp_regnum (gdbarch), sp);
1198 /* Find a function's return value in the appropriate registers (in
1199 regbuf), and copy it into valbuf. Extract from an array REGBUF
1200 containing the (raw) register state a function return value of type
1201 TYPE, and copy that, in virtual format, into VALBUF. */
1203 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1206 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1207 int len = TYPE_LENGTH (type);
1209 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1213 /* Return value stored in gdbarch_fp0_regnum */
1214 regcache_raw_read (regcache,
1215 gdbarch_fp0_regnum (gdbarch), valbuf);
1219 /* return value stored in DR0_REGNUM */
1223 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1225 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1226 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1229 floatformat_to_doublest (&floatformat_ieee_double_big,
1231 store_typed_floating (valbuf, type, val);
1240 /* Result is in register 2. If smaller than 8 bytes, it is padded
1241 at the most significant end. */
1242 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1244 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1245 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1249 memcpy (valbuf, buf + offset, len);
1252 error ("bad size for return value");
1256 /* Write into appropriate registers a function return value
1257 of type TYPE, given in virtual format.
1258 If the architecture is sh4 or sh3e, store a function's return value
1259 in the R0 general register or in the FP0 floating point register,
1260 depending on the type of the return value. In all the other cases
1261 the result is stored in r0, left-justified. */
1264 sh64_store_return_value (struct type *type, struct regcache *regcache,
1267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1268 char buf[64]; /* more than enough... */
1269 int len = TYPE_LENGTH (type);
1271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1273 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1274 for (i = 0; i < len; i += 4)
1275 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1276 regcache_raw_write (regcache, regnum++,
1277 (char *) valbuf + len - 4 - i);
1279 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1283 int return_register = DEFAULT_RETURN_REGNUM;
1286 if (len <= register_size (gdbarch, return_register))
1288 /* Pad with zeros. */
1289 memset (buf, 0, register_size (gdbarch, return_register));
1290 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1291 offset = 0; /*register_size (gdbarch,
1292 return_register) - len;*/
1294 offset = register_size (gdbarch, return_register) - len;
1296 memcpy (buf + offset, valbuf, len);
1297 regcache_raw_write (regcache, return_register, buf);
1300 regcache_raw_write (regcache, return_register, valbuf);
1304 static enum return_value_convention
1305 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1306 struct type *type, struct regcache *regcache,
1307 gdb_byte *readbuf, const gdb_byte *writebuf)
1309 if (sh64_use_struct_convention (type))
1310 return RETURN_VALUE_STRUCT_CONVENTION;
1312 sh64_store_return_value (type, regcache, writebuf);
1314 sh64_extract_return_value (type, regcache, readbuf);
1315 return RETURN_VALUE_REGISTER_CONVENTION;
1319 sh64_show_media_regs (struct frame_info *frame)
1321 struct gdbarch *gdbarch = get_frame_arch (frame);
1325 ("PC=%s SR=%016llx \n",
1326 paddr (get_frame_register_unsigned (frame,
1327 gdbarch_pc_regnum (gdbarch))),
1328 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
1331 ("SSR=%016llx SPC=%016llx \n",
1332 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1333 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1336 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1338 for (i = 0; i < 64; i = i + 4)
1340 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1342 (long long) get_frame_register_unsigned (frame, i + 0),
1343 (long long) get_frame_register_unsigned (frame, i + 1),
1344 (long long) get_frame_register_unsigned (frame, i + 2),
1345 (long long) get_frame_register_unsigned (frame, i + 3));
1347 printf_filtered ("\n");
1349 for (i = 0; i < 64; i = i + 8)
1351 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1353 (long) get_frame_register_unsigned
1354 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1355 (long) get_frame_register_unsigned
1356 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1357 (long) get_frame_register_unsigned
1358 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1359 (long) get_frame_register_unsigned
1360 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1361 (long) get_frame_register_unsigned
1362 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1363 (long) get_frame_register_unsigned
1364 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1365 (long) get_frame_register_unsigned
1366 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1367 (long) get_frame_register_unsigned
1368 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1372 sh64_show_compact_regs (struct frame_info *frame)
1374 struct gdbarch *gdbarch = get_frame_arch (frame);
1379 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1382 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1383 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1384 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1385 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1386 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1387 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1389 ("FPSCR=%08lx FPUL=%08lx\n",
1390 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1391 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1393 for (i = 0; i < 16; i = i + 4)
1395 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1397 (long) get_frame_register_unsigned (frame, i + 0),
1398 (long) get_frame_register_unsigned (frame, i + 1),
1399 (long) get_frame_register_unsigned (frame, i + 2),
1400 (long) get_frame_register_unsigned (frame, i + 3));
1402 printf_filtered ("\n");
1404 for (i = 0; i < 16; i = i + 8)
1406 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1408 (long) get_frame_register_unsigned
1409 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1410 (long) get_frame_register_unsigned
1411 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1412 (long) get_frame_register_unsigned
1413 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1414 (long) get_frame_register_unsigned
1415 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1416 (long) get_frame_register_unsigned
1417 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1418 (long) get_frame_register_unsigned
1419 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1420 (long) get_frame_register_unsigned
1421 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1422 (long) get_frame_register_unsigned
1423 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1426 /* FIXME!!! This only shows the registers for shmedia, excluding the
1427 pseudo registers. */
1429 sh64_show_regs (struct frame_info *frame)
1431 if (pc_is_isa32 (get_frame_pc (frame)))
1432 sh64_show_media_regs (frame);
1434 sh64_show_compact_regs (frame);
1439 SH MEDIA MODE (ISA 32)
1440 general registers (64-bit) 0-63
1441 0 r0, r1, r2, r3, r4, r5, r6, r7,
1442 64 r8, r9, r10, r11, r12, r13, r14, r15,
1443 128 r16, r17, r18, r19, r20, r21, r22, r23,
1444 192 r24, r25, r26, r27, r28, r29, r30, r31,
1445 256 r32, r33, r34, r35, r36, r37, r38, r39,
1446 320 r40, r41, r42, r43, r44, r45, r46, r47,
1447 384 r48, r49, r50, r51, r52, r53, r54, r55,
1448 448 r56, r57, r58, r59, r60, r61, r62, r63,
1453 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1456 target registers (64-bit) 68-75
1457 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1459 floating point state control register (32-bit) 76
1462 single precision floating point registers (32-bit) 77-140
1463 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1464 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1465 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1466 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1467 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1468 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1469 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1470 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1472 TOTAL SPACE FOR REGISTERS: 868 bytes
1474 From here on they are all pseudo registers: no memory allocated.
1475 REGISTER_BYTE returns the register byte for the base register.
1477 double precision registers (pseudo) 141-172
1478 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1479 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1480 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1481 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1483 floating point pairs (pseudo) 173-204
1484 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1485 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1486 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1487 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1489 floating point vectors (4 floating point regs) (pseudo) 205-220
1490 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1491 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1493 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1494 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1495 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1497 gbr_c, mach_c, macl_c, pr_c, t_c,
1499 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1500 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1501 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1502 fv0_c, fv4_c, fv8_c, fv12_c
1505 static struct type *
1506 sh64_build_float_register_type (int high)
1510 temp = create_range_type (NULL, builtin_type_int, 0, high);
1511 return create_array_type (NULL, builtin_type_float, temp);
1514 /* Return the GDB type object for the "standard" data type
1515 of data in register REG_NR. */
1516 static struct type *
1517 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1519 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1520 && reg_nr <= FP_LAST_REGNUM)
1521 || (reg_nr >= FP0_C_REGNUM
1522 && reg_nr <= FP_LAST_C_REGNUM))
1523 return builtin_type_float;
1524 else if ((reg_nr >= DR0_REGNUM
1525 && reg_nr <= DR_LAST_REGNUM)
1526 || (reg_nr >= DR0_C_REGNUM
1527 && reg_nr <= DR_LAST_C_REGNUM))
1528 return builtin_type_double;
1529 else if (reg_nr >= FPP0_REGNUM
1530 && reg_nr <= FPP_LAST_REGNUM)
1531 return sh64_build_float_register_type (1);
1532 else if ((reg_nr >= FV0_REGNUM
1533 && reg_nr <= FV_LAST_REGNUM)
1534 ||(reg_nr >= FV0_C_REGNUM
1535 && reg_nr <= FV_LAST_C_REGNUM))
1536 return sh64_build_float_register_type (3);
1537 else if (reg_nr == FPSCR_REGNUM)
1538 return builtin_type_int;
1539 else if (reg_nr >= R0_C_REGNUM
1540 && reg_nr < FP0_C_REGNUM)
1541 return builtin_type_int;
1543 return builtin_type_long_long;
1547 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1548 struct type *type, char *from, char *to)
1550 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1552 /* It is a no-op. */
1553 memcpy (to, from, register_size (gdbarch, regnum));
1557 if ((regnum >= DR0_REGNUM
1558 && regnum <= DR_LAST_REGNUM)
1559 || (regnum >= DR0_C_REGNUM
1560 && regnum <= DR_LAST_C_REGNUM))
1563 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1565 store_typed_floating (to, type, val);
1568 error ("sh64_register_convert_to_virtual called with non DR register number");
1572 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1573 int regnum, const void *from, void *to)
1575 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1577 /* It is a no-op. */
1578 memcpy (to, from, register_size (gdbarch, regnum));
1582 if ((regnum >= DR0_REGNUM
1583 && regnum <= DR_LAST_REGNUM)
1584 || (regnum >= DR0_C_REGNUM
1585 && regnum <= DR_LAST_C_REGNUM))
1587 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1588 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1592 error ("sh64_register_convert_to_raw called with non DR register number");
1596 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1597 int reg_nr, gdb_byte *buffer)
1602 char temp_buffer[MAX_REGISTER_SIZE];
1604 if (reg_nr >= DR0_REGNUM
1605 && reg_nr <= DR_LAST_REGNUM)
1607 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1609 /* Build the value in the provided buffer. */
1610 /* DR regs are double precision registers obtained by
1611 concatenating 2 single precision floating point registers. */
1612 for (portion = 0; portion < 2; portion++)
1613 regcache_raw_read (regcache, base_regnum + portion,
1615 + register_size (gdbarch, base_regnum) * portion));
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1619 register_type (gdbarch, reg_nr),
1620 temp_buffer, buffer);
1624 else if (reg_nr >= FPP0_REGNUM
1625 && reg_nr <= FPP_LAST_REGNUM)
1627 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1629 /* Build the value in the provided buffer. */
1630 /* FPP regs are pairs of single precision registers obtained by
1631 concatenating 2 single precision floating point registers. */
1632 for (portion = 0; portion < 2; portion++)
1633 regcache_raw_read (regcache, base_regnum + portion,
1635 + register_size (gdbarch, base_regnum) * portion));
1638 else if (reg_nr >= FV0_REGNUM
1639 && reg_nr <= FV_LAST_REGNUM)
1641 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1643 /* Build the value in the provided buffer. */
1644 /* FV regs are vectors of single precision registers obtained by
1645 concatenating 4 single precision floating point registers. */
1646 for (portion = 0; portion < 4; portion++)
1647 regcache_raw_read (regcache, base_regnum + portion,
1649 + register_size (gdbarch, base_regnum) * portion));
1652 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1653 else if (reg_nr >= R0_C_REGNUM
1654 && reg_nr <= T_C_REGNUM)
1656 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1658 /* Build the value in the provided buffer. */
1659 regcache_raw_read (regcache, base_regnum, temp_buffer);
1660 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1662 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1665 else if (reg_nr >= FP0_C_REGNUM
1666 && reg_nr <= FP_LAST_C_REGNUM)
1668 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1670 /* Build the value in the provided buffer. */
1671 /* Floating point registers map 1-1 to the media fp regs,
1672 they have the same size and endianness. */
1673 regcache_raw_read (regcache, base_regnum, buffer);
1676 else if (reg_nr >= DR0_C_REGNUM
1677 && reg_nr <= DR_LAST_C_REGNUM)
1679 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1681 /* DR_C regs are double precision registers obtained by
1682 concatenating 2 single precision floating point registers. */
1683 for (portion = 0; portion < 2; portion++)
1684 regcache_raw_read (regcache, base_regnum + portion,
1686 + register_size (gdbarch, base_regnum) * portion));
1688 /* We must pay attention to the endianness. */
1689 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1690 register_type (gdbarch, reg_nr),
1691 temp_buffer, buffer);
1694 else if (reg_nr >= FV0_C_REGNUM
1695 && reg_nr <= FV_LAST_C_REGNUM)
1697 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1699 /* Build the value in the provided buffer. */
1700 /* FV_C regs are vectors of single precision registers obtained by
1701 concatenating 4 single precision floating point registers. */
1702 for (portion = 0; portion < 4; portion++)
1703 regcache_raw_read (regcache, base_regnum + portion,
1705 + register_size (gdbarch, base_regnum) * portion));
1708 else if (reg_nr == FPSCR_C_REGNUM)
1710 int fpscr_base_regnum;
1712 unsigned int fpscr_value;
1713 unsigned int sr_value;
1714 unsigned int fpscr_c_value;
1715 unsigned int fpscr_c_part1_value;
1716 unsigned int fpscr_c_part2_value;
1718 fpscr_base_regnum = FPSCR_REGNUM;
1719 sr_base_regnum = SR_REGNUM;
1721 /* Build the value in the provided buffer. */
1722 /* FPSCR_C is a very weird register that contains sparse bits
1723 from the FPSCR and the SR architectural registers.
1730 2-17 Bit 2-18 of FPSCR
1731 18-20 Bits 12,13,14 of SR
1735 /* Get FPSCR into a local buffer */
1736 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1737 /* Get value as an int. */
1738 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1739 /* Get SR into a local buffer */
1740 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1741 /* Get value as an int. */
1742 sr_value = extract_unsigned_integer (temp_buffer, 4);
1743 /* Build the new value. */
1744 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1745 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1746 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1747 /* Store that in out buffer!!! */
1748 store_unsigned_integer (buffer, 4, fpscr_c_value);
1749 /* FIXME There is surely an endianness gotcha here. */
1752 else if (reg_nr == FPUL_C_REGNUM)
1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1756 /* FPUL_C register is floating point register 32,
1757 same size, same endianness. */
1758 regcache_raw_read (regcache, base_regnum, buffer);
1763 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1764 int reg_nr, const gdb_byte *buffer)
1766 int base_regnum, portion;
1768 char temp_buffer[MAX_REGISTER_SIZE];
1770 if (reg_nr >= DR0_REGNUM
1771 && reg_nr <= DR_LAST_REGNUM)
1773 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1774 /* We must pay attention to the endianness. */
1775 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1777 buffer, temp_buffer);
1779 /* Write the real regs for which this one is an alias. */
1780 for (portion = 0; portion < 2; portion++)
1781 regcache_raw_write (regcache, base_regnum + portion,
1783 + register_size (gdbarch,
1784 base_regnum) * portion));
1787 else if (reg_nr >= FPP0_REGNUM
1788 && reg_nr <= FPP_LAST_REGNUM)
1790 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1792 /* Write the real regs for which this one is an alias. */
1793 for (portion = 0; portion < 2; portion++)
1794 regcache_raw_write (regcache, base_regnum + portion,
1796 + register_size (gdbarch,
1797 base_regnum) * portion));
1800 else if (reg_nr >= FV0_REGNUM
1801 && reg_nr <= FV_LAST_REGNUM)
1803 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1805 /* Write the real regs for which this one is an alias. */
1806 for (portion = 0; portion < 4; portion++)
1807 regcache_raw_write (regcache, base_regnum + portion,
1809 + register_size (gdbarch,
1810 base_regnum) * portion));
1813 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1814 register but only 4 bytes of it. */
1815 else if (reg_nr >= R0_C_REGNUM
1816 && reg_nr <= T_C_REGNUM)
1818 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1819 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1820 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1824 /* Let's read the value of the base register into a temporary
1825 buffer, so that overwriting the last four bytes with the new
1826 value of the pseudo will leave the upper 4 bytes unchanged. */
1827 regcache_raw_read (regcache, base_regnum, temp_buffer);
1828 /* Write as an 8 byte quantity */
1829 memcpy (temp_buffer + offset, buffer, 4);
1830 regcache_raw_write (regcache, base_regnum, temp_buffer);
1833 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1834 registers. Both are 4 bytes. */
1835 else if (reg_nr >= FP0_C_REGNUM
1836 && reg_nr <= FP_LAST_C_REGNUM)
1838 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1839 regcache_raw_write (regcache, base_regnum, buffer);
1842 else if (reg_nr >= DR0_C_REGNUM
1843 && reg_nr <= DR_LAST_C_REGNUM)
1845 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1846 for (portion = 0; portion < 2; portion++)
1848 /* We must pay attention to the endianness. */
1849 sh64_register_convert_to_raw (gdbarch,
1850 register_type (gdbarch, reg_nr),
1852 buffer, temp_buffer);
1854 regcache_raw_write (regcache, base_regnum + portion,
1856 + register_size (gdbarch,
1857 base_regnum) * portion));
1861 else if (reg_nr >= FV0_C_REGNUM
1862 && reg_nr <= FV_LAST_C_REGNUM)
1864 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1866 for (portion = 0; portion < 4; portion++)
1868 regcache_raw_write (regcache, base_regnum + portion,
1870 + register_size (gdbarch,
1871 base_regnum) * portion));
1875 else if (reg_nr == FPSCR_C_REGNUM)
1877 int fpscr_base_regnum;
1879 unsigned int fpscr_value;
1880 unsigned int sr_value;
1881 unsigned int old_fpscr_value;
1882 unsigned int old_sr_value;
1883 unsigned int fpscr_c_value;
1884 unsigned int fpscr_mask;
1885 unsigned int sr_mask;
1887 fpscr_base_regnum = FPSCR_REGNUM;
1888 sr_base_regnum = SR_REGNUM;
1890 /* FPSCR_C is a very weird register that contains sparse bits
1891 from the FPSCR and the SR architectural registers.
1898 2-17 Bit 2-18 of FPSCR
1899 18-20 Bits 12,13,14 of SR
1903 /* Get value as an int. */
1904 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1906 /* Build the new values. */
1907 fpscr_mask = 0x0003fffd;
1908 sr_mask = 0x001c0000;
1910 fpscr_value = fpscr_c_value & fpscr_mask;
1911 sr_value = (fpscr_value & sr_mask) >> 6;
1913 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1914 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1915 old_fpscr_value &= 0xfffc0002;
1916 fpscr_value |= old_fpscr_value;
1917 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1918 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1920 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1921 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1922 old_sr_value &= 0xffff8fff;
1923 sr_value |= old_sr_value;
1924 store_unsigned_integer (temp_buffer, 4, sr_value);
1925 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1928 else if (reg_nr == FPUL_C_REGNUM)
1930 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1931 regcache_raw_write (regcache, base_regnum, buffer);
1935 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1936 shmedia REGISTERS. */
1937 /* Control registers, compact mode. */
1939 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1942 switch (cr_c_regnum)
1945 fprintf_filtered (file, "pc_c\t0x%08x\n",
1946 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1949 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1950 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1953 fprintf_filtered (file, "mach_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1957 fprintf_filtered (file, "macl_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1961 fprintf_filtered (file, "pr_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1965 fprintf_filtered (file, "t_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1968 case FPSCR_C_REGNUM:
1969 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1973 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1980 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1981 struct frame_info *frame, int regnum)
1982 { /* do values for FP (float) regs */
1983 unsigned char *raw_buffer;
1984 double flt; /* double extracted from raw hex data */
1988 /* Allocate space for the float. */
1989 raw_buffer = (unsigned char *) alloca
1990 (register_size (gdbarch,
1994 /* Get the data in raw format. */
1995 if (!frame_register_read (frame, regnum, raw_buffer))
1996 error ("can't read register %d (%s)",
1997 regnum, gdbarch_register_name (gdbarch, regnum));
1999 /* Get the register as a number */
2000 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2002 /* Print the name and some spaces. */
2003 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2004 print_spaces_filtered (15 - strlen (gdbarch_register_name
2005 (gdbarch, regnum)), file);
2007 /* Print the value. */
2009 fprintf_filtered (file, "<invalid float>");
2011 fprintf_filtered (file, "%-10.9g", flt);
2013 /* Print the fp register as hex. */
2014 fprintf_filtered (file, "\t(raw 0x");
2015 for (j = 0; j < register_size (gdbarch, regnum); j++)
2017 int idx = gdbarch_byte_order (gdbarch)
2018 == BFD_ENDIAN_BIG ? j : register_size
2019 (gdbarch, regnum) - 1 - j;
2020 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2022 fprintf_filtered (file, ")");
2023 fprintf_filtered (file, "\n");
2027 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2028 struct frame_info *frame, int regnum)
2030 /* All the sh64-compact mode registers are pseudo registers. */
2032 if (regnum < gdbarch_num_regs (gdbarch)
2033 || regnum >= gdbarch_num_regs (gdbarch)
2034 + NUM_PSEUDO_REGS_SH_MEDIA
2035 + NUM_PSEUDO_REGS_SH_COMPACT)
2036 internal_error (__FILE__, __LINE__,
2037 _("Invalid pseudo register number %d\n"), regnum);
2039 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2041 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2042 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2043 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2047 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2049 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2050 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2055 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2057 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2058 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2059 regnum - FV0_REGNUM,
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2061 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2062 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2063 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2066 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2068 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2069 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2070 regnum - FV0_C_REGNUM,
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2074 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2077 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2079 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2080 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2085 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2087 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2088 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2091 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2092 /* This should work also for pseudoregs. */
2093 sh64_do_fp_register (gdbarch, file, frame, regnum);
2094 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2095 sh64_do_cr_c_register_info (file, frame, regnum);
2099 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2100 struct frame_info *frame, int regnum)
2102 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2104 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2105 print_spaces_filtered (15 - strlen (gdbarch_register_name
2106 (gdbarch, regnum)), file);
2108 /* Get the data in raw format. */
2109 if (!frame_register_read (frame, regnum, raw_buffer))
2110 fprintf_filtered (file, "*value not available*\n");
2112 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2113 file, 'x', 1, 0, Val_pretty_default, current_language);
2114 fprintf_filtered (file, "\t");
2115 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2116 file, 0, 1, 0, Val_pretty_default, current_language);
2117 fprintf_filtered (file, "\n");
2121 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2122 struct frame_info *frame, int regnum)
2124 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2125 + gdbarch_num_pseudo_regs (gdbarch))
2126 internal_error (__FILE__, __LINE__,
2127 _("Invalid register number %d\n"), regnum);
2129 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2131 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2132 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2134 sh64_do_register (gdbarch, file, frame, regnum);
2137 else if (regnum < gdbarch_num_regs (gdbarch)
2138 + gdbarch_num_pseudo_regs (gdbarch))
2139 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2143 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2144 struct frame_info *frame, int regnum,
2147 if (regnum != -1) /* do one specified register */
2149 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2150 error ("Not a valid register for the current processor type");
2152 sh64_print_register (gdbarch, file, frame, regnum);
2155 /* do all (or most) registers */
2158 while (regnum < gdbarch_num_regs (gdbarch))
2160 /* If the register name is empty, it is undefined for this
2161 processor, so don't display anything. */
2162 if (gdbarch_register_name (gdbarch, regnum) == NULL
2163 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2169 if (TYPE_CODE (register_type (gdbarch, regnum))
2174 /* true for "INFO ALL-REGISTERS" command */
2175 sh64_do_fp_register (gdbarch, file, frame, regnum);
2179 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2184 sh64_do_register (gdbarch, file, frame, regnum);
2190 while (regnum < gdbarch_num_regs (gdbarch)
2191 + gdbarch_num_pseudo_regs (gdbarch))
2193 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2200 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2201 struct ui_file *file,
2202 struct frame_info *frame, int regnum,
2205 if (regnum != -1) /* do one specified register */
2207 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2208 error ("Not a valid register for the current processor type");
2210 if (regnum >= 0 && regnum < R0_C_REGNUM)
2211 error ("Not a valid register for the current processor mode.");
2213 sh64_print_register (gdbarch, file, frame, regnum);
2216 /* do all compact registers */
2218 regnum = R0_C_REGNUM;
2219 while (regnum < gdbarch_num_regs (gdbarch)
2220 + gdbarch_num_pseudo_regs (gdbarch))
2222 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2229 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2230 struct frame_info *frame, int regnum, int fpregs)
2232 if (pc_is_isa32 (get_frame_pc (frame)))
2233 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2235 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2238 static struct sh64_frame_cache *
2239 sh64_alloc_frame_cache (void)
2241 struct sh64_frame_cache *cache;
2244 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2248 cache->saved_sp = 0;
2249 cache->sp_offset = 0;
2252 /* Frameless until proven otherwise. */
2255 /* Saved registers. We initialize these to -1 since zero is a valid
2256 offset (that's where fp is supposed to be stored). */
2257 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2259 cache->saved_regs[i] = -1;
2265 static struct sh64_frame_cache *
2266 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2268 struct gdbarch *gdbarch;
2269 struct sh64_frame_cache *cache;
2270 CORE_ADDR current_pc;
2276 gdbarch = get_frame_arch (next_frame);
2277 cache = sh64_alloc_frame_cache ();
2278 *this_cache = cache;
2280 current_pc = frame_pc_unwind (next_frame);
2281 cache->media_mode = pc_is_isa32 (current_pc);
2283 /* In principle, for normal frames, fp holds the frame pointer,
2284 which holds the base address for the current stack frame.
2285 However, for functions that don't need it, the frame pointer is
2286 optional. For these "frameless" functions the frame pointer is
2287 actually the frame pointer of the calling frame. */
2288 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2289 if (cache->base == 0)
2292 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2294 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2296 if (!cache->uses_fp)
2298 /* We didn't find a valid frame, which means that CACHE->base
2299 currently holds the frame pointer for our calling frame. If
2300 we're at the start of a function, or somewhere half-way its
2301 prologue, the function's frame probably hasn't been fully
2302 setup yet. Try to reconstruct the base address for the stack
2303 frame by looking at the stack pointer. For truly "frameless"
2304 functions this might work too. */
2305 cache->base = frame_unwind_register_unsigned
2306 (next_frame, gdbarch_sp_regnum (gdbarch));
2309 /* Now that we have the base address for the stack frame we can
2310 calculate the value of sp in the calling frame. */
2311 cache->saved_sp = cache->base + cache->sp_offset;
2313 /* Adjust all the saved registers such that they contain addresses
2314 instead of offsets. */
2315 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2316 if (cache->saved_regs[i] != -1)
2317 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2323 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2324 int regnum, int *optimizedp,
2325 enum lval_type *lvalp, CORE_ADDR *addrp,
2326 int *realnump, gdb_byte *valuep)
2328 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2329 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2331 gdb_assert (regnum >= 0);
2333 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2341 /* Store the value. */
2342 store_unsigned_integer (valuep,
2343 register_size (gdbarch,
2344 gdbarch_sp_regnum (gdbarch)),
2350 /* The PC of the previous frame is stored in the PR register of
2351 the current frame. Frob regnum so that we pull the value from
2352 the correct place. */
2353 if (regnum == gdbarch_pc_regnum (gdbarch))
2356 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2358 int reg_size = register_size (gdbarch, regnum);
2362 *lvalp = lval_memory;
2363 *addrp = cache->saved_regs[regnum];
2365 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2366 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2372 memset (valuep, 0, reg_size);
2373 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
2374 read_memory (*addrp, valuep, size);
2376 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2382 *lvalp = lval_register;
2386 frame_unwind_register (next_frame, (*realnump), valuep);
2390 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2391 struct frame_id *this_id)
2393 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2395 /* This marks the outermost frame. */
2396 if (cache->base == 0)
2399 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2402 static const struct frame_unwind sh64_frame_unwind = {
2405 sh64_frame_prev_register
2408 static const struct frame_unwind *
2409 sh64_frame_sniffer (struct frame_info *next_frame)
2411 return &sh64_frame_unwind;
2415 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2417 return frame_unwind_register_unsigned (next_frame,
2418 gdbarch_sp_regnum (gdbarch));
2422 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2424 return frame_unwind_register_unsigned (next_frame,
2425 gdbarch_pc_regnum (gdbarch));
2428 static struct frame_id
2429 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2431 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2432 frame_pc_unwind (next_frame));
2436 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2438 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2443 static const struct frame_base sh64_frame_base = {
2445 sh64_frame_base_address,
2446 sh64_frame_base_address,
2447 sh64_frame_base_address
2452 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2454 struct gdbarch *gdbarch;
2455 struct gdbarch_tdep *tdep;
2457 /* If there is already a candidate, use it. */
2458 arches = gdbarch_list_lookup_by_info (arches, &info);
2460 return arches->gdbarch;
2462 /* None found, create a new architecture from the information
2464 tdep = XMALLOC (struct gdbarch_tdep);
2465 gdbarch = gdbarch_alloc (&info, tdep);
2467 /* Determine the ABI */
2468 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2470 /* If the ABI is the 64-bit one, it can only be sh-media. */
2471 tdep->sh_abi = SH_ABI_64;
2472 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2473 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2477 /* If the ABI is the 32-bit one it could be either media or
2479 tdep->sh_abi = SH_ABI_32;
2480 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2481 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2484 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2485 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2486 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2487 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2488 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2489 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2490 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2492 /* The number of real registers is the same whether we are in
2493 ISA16(compact) or ISA32(media). */
2494 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2495 set_gdbarch_sp_regnum (gdbarch, 15);
2496 set_gdbarch_pc_regnum (gdbarch, 64);
2497 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2498 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2499 + NUM_PSEUDO_REGS_SH_COMPACT);
2501 set_gdbarch_register_name (gdbarch, sh64_register_name);
2502 set_gdbarch_register_type (gdbarch, sh64_register_type);
2504 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2505 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2507 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2509 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2510 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2512 set_gdbarch_return_value (gdbarch, sh64_return_value);
2514 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2517 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2519 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2521 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2522 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2523 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2524 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2525 frame_base_set_default (gdbarch, &sh64_frame_base);
2527 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2529 set_gdbarch_elf_make_msymbol_special (gdbarch,
2530 sh64_elf_make_msymbol_special);
2532 /* Hook in ABI-specific overrides, if they have been registered. */
2533 gdbarch_init_osabi (info, gdbarch);
2535 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2536 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);