1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* A successful ptrace(continue) might return errno != 0 in this particular port
23 of rs6000. I am not sure why. We will use this kludge and ignore it until
24 we figure out the real problem. */
26 #define AIX_BUGGY_PTRACE_CONTINUE \
28 int ret = ptrace (PT_CONTINUE, inferior_pid, \
29 (PTRACE_ARG3_TYPE) 1, signal, 0); \
31 /* printf ("ret: %d, errno: %d, signal: %d\n", ret, errno, signal); */ \
35 extern int symtab_relocated;
37 /* Minimum possible text address in AIX */
39 #define TEXT_SEGMENT_BASE 0x10000000
42 /* text addresses in a core file does not necessarily match to symbol table,
43 if symbol table relocation wasn't done yet. */
45 #define CORE_NEEDS_RELOCATION(PC) \
46 if (!symtab_relocated && !inferior_pid && (PC) > TEXT_SEGMENT_BASE) \
47 (PC) -= ( TEXT_SEGMENT_BASE + text_adjustment (exec_bfd));
49 /* Load segment of a given pc value. */
51 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
54 /* Conversion between a register number in stab string to actual register num. */
56 #define STAB_REG_TO_REGNUM(value) (value)
58 /* return true if a given `pc' value is in `call dummy' function. */
60 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
61 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
63 /* For each symtab, we keep track of which BFD it came from. */
64 #define EXTRA_SYMTAB_INFO \
65 unsigned nonreloc:1; /* TRUE if non relocatable */
67 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
68 symtab->nonreloc = 0; \
70 extern unsigned int text_start, data_start;
71 extern int inferior_pid;
72 extern char *corefile;
74 /* setpgrp() messes up controling terminal. The other version of it
76 #define setpgrp(XX,YY) setpgid (XX, YY)
78 /* We are missing register descriptions in the system header files. Sigh! */
81 int gregs [32]; /* general purpose registers */
82 int pc; /* program conter */
83 int ps; /* processor status, or machine state */
87 double fpregs [32]; /* floating GP registers */
91 /* To be used by function_frame_info. */
93 struct aix_framedata {
94 int offset; /* # of bytes in gpr's and fpr's are saved */
95 int saved_gpr; /* smallest # of saved gpr */
96 int saved_fpr; /* smallest # of saved fpr */
97 int alloca_reg; /* alloca register number (frame ptr) */
98 char frameless; /* true if frameless functions. */
102 function_frame_info PARAMS ((CORE_ADDR, struct aix_framedata *));
104 /* Define the byte order of the machine. */
106 #define TARGET_BYTE_ORDER BIG_ENDIAN
108 /* Define this if the C compiler puts an underscore at the front
109 of external names before giving them to the linker. */
111 #undef NAMES_HAVE_UNDERSCORE
113 /* AIX's assembler doesn't grok dollar signs in identifiers.
114 So we use dots instead. This item must be coordinated with G++. */
116 #define CPLUS_MARKER '.'
118 /* Offset from address of function to start of its code.
119 Zero on most machines. */
121 #define FUNCTION_START_OFFSET 0
123 /* Advance PC across any function entry prologue instructions
124 to reach some "real" code. */
126 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
128 /* If PC is in some function-call trampoline code, return the PC
129 where the function itself actually starts. If not, return NULL. */
131 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
133 /* When a child process is just starting, we sneak in and relocate
134 the symbol table (and other stuff) after the dynamic linker has
135 figured out where they go. But we want to do this relocation just
138 extern int loadinfotextindex;
140 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
142 if (loadinfotextindex == 0) \
143 xcoff_relocate_symtab (PID); \
147 /* Number of trap signals we need to skip over, once the inferior process
150 #define START_INFERIOR_TRAPS_EXPECTED 2
152 /* AIX might return a sigtrap, with a "stop after load" status. It should
153 be ignored by gdb, shouldn't be mixed up with breakpoint traps. */
155 /* Another little glitch in AIX is signal 0. I have no idea why wait(2)
156 returns with this status word. It looks harmless. */
158 #define SIGTRAP_STOP_AFTER_LOAD(W) \
159 if ( (W) == 0x57c || (W) == 0x7f) { \
160 if ((W)==0x57c && breakpoints_inserted) { \
161 mark_breakpoints_out (); \
162 insert_breakpoints (); \
163 insert_step_breakpoint (); \
169 /* In xcoff, we cannot process line numbers when we see them. This is
170 mainly because we don't know the boundaries of the include files. So,
171 we postpone that, and then enter and sort(?) the whole line table at
172 once, when we are closing the current symbol table in end_symtab(). */
174 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
177 /* When a target process or core-file has been attached, we sneak in
178 and figure out where the shared libraries have got to. In case there
179 is no inferior_process exists (e.g. bringing up a core file), we can't
180 attemtp to relocate symbol table, since we don't have information about
183 #define SOLIB_ADD(a, b, c) \
184 if (inferior_pid) xcoff_relocate_symtab (inferior_pid)
186 /* Immediately after a function call, return the saved pc.
187 Can't go through the frames for this because on some machines
188 the new frame is not set up until the new function executes
189 some instructions. */
191 #define SAVED_PC_AFTER_CALL(frame) \
192 (register_valid [LR_REGNUM] ? \
193 (*(int*)®isters[REGISTER_BYTE (LR_REGNUM)]) : \
194 read_register (LR_REGNUM))
196 /*#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call(frame) */
199 /* Address of end of stack space. */
201 #define STACK_END_ADDR 0x2ff80000
203 /* Stack grows downward. */
208 /* No, we shouldn't use this. push_arguments() should leave stack in a
210 /* Stack has strict alignment. */
212 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
215 /* This is how argumets pushed onto stack or passed in registers. */
217 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
218 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
220 /* Sequence of bytes for breakpoint instruction. */
222 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
224 /* Amount PC must be decremented by after a breakpoint.
225 This is often the number of bytes in BREAKPOINT
228 #define DECR_PC_AFTER_BREAK 0
230 /* Nonzero if instruction at PC is a return instruction. */
231 /* Allow any of the return instructions, including a trapv and a return
234 #define ABOUT_TO_RETURN(pc) \
235 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
237 /* Return 1 if P points to an invalid floating point value. */
239 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
241 /* Largest integer type */
245 /* Name of the builtin type for the LONGEST type above. */
247 #define BUILTIN_TYPE_LONGEST builtin_type_long
249 /* Say how long (ordinary) registers are. */
251 #define REGISTER_TYPE long
253 /* Number of machine registers */
257 /* Initializer for an array of names of registers.
258 There should be NUM_REGS strings in this initializer. */
260 #define REGISTER_NAMES \
261 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
262 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
263 "r16","r17","r18","r19","r20","r21","r22","r23", \
264 "r24","r25","r26","r27","r28","r29","r30","r31", \
265 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
266 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
267 "f16","f17","f18","f19","f20","f21","f22","f23", \
268 "f24","f25","f26","f27","f28","f29","f30","f31", \
269 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
271 /* Register numbers of various important registers.
272 Note that some of these values are "real" register numbers,
273 and correspond to the general registers of the machine,
274 and some are "phony" register numbers which are too large
275 to be actual register numbers as far as the user is concerned
276 but do serve to get the desired values when passed to read_register. */
278 #define FP_REGNUM 1 /* Contains address of executing stack frame */
279 #define SP_REGNUM 1 /* Contains address of top of stack */
280 #define TOC_REGNUM 2 /* TOC register */
281 #define FP0_REGNUM 32 /* Floating point register 0 */
282 #define GP0_REGNUM 0 /* GPR register 0 */
283 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
284 #define FPLAST_REGNUM 63 /* Last floating point register */
286 /* Special purpose registers... */
287 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
290 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
291 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
292 #define CR_REGNUM 66 /* Condition register */
293 #define LR_REGNUM 67 /* Link register */
294 #define CTR_REGNUM 68 /* Count register */
295 #define XER_REGNUM 69 /* Fixed point exception registers */
296 #define MQ_REGNUM 70 /* Multiply/quotient register */
298 #define FIRST_SP_REGNUM 64 /* first special register number */
299 #define LAST_SP_REGNUM 70 /* last special register number */
301 /* Total amount of space needed to store our copies of the machine's
302 register state, the array `registers'.
306 7 4-byte special purpose registers,
308 total 416 bytes. Keep some extra space for now, in case to add more. */
310 #define REGISTER_BYTES 420
313 /* Index within `registers' of the first byte of the space for
316 #define REGISTER_BYTE(N) \
318 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
319 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
322 /* Number of bytes of storage in the actual machine representation
324 /* Note that the unsigned cast here forces the result of the
325 subtractiion to very high positive values if N < FP0_REGNUM */
327 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
329 /* Number of bytes of storage in the program's representation
330 for register N. On the RS6000, all regs are 4 bytes
331 except the floating point regs which are 8-byte doubles. */
333 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
335 /* Largest value REGISTER_RAW_SIZE can have. */
337 #define MAX_REGISTER_RAW_SIZE 8
339 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
341 #define MAX_REGISTER_VIRTUAL_SIZE 8
343 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
345 #define STAB_REG_TO_REGNUM(value) (value)
347 /* Nonzero if register N requires conversion
348 from raw format to virtual format. */
350 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
352 /* Convert data from raw format for register REGNUM
353 to virtual format for register REGNUM. */
355 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
356 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
358 /* Convert data from virtual format for register REGNUM
359 to raw format for register REGNUM. */
361 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
362 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
364 /* Return the GDB type object for the "standard" data type
365 of data in register N. */
367 #define REGISTER_VIRTUAL_TYPE(N) \
368 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
370 /* Store the address of the place in which to copy the structure the
371 subroutine will return. This is called from call_function. */
372 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
373 In function return, callee is not responsible of returning this address back.
374 Since gdb needs to find it, we will store in a designated variable
375 `rs6000_struct_return_address'. */
377 extern unsigned int rs6000_struct_return_address;
379 #define STORE_STRUCT_RETURN(ADDR, SP) \
380 { write_register (3, (ADDR)); \
381 rs6000_struct_return_address = (unsigned int)(ADDR); }
383 /* Extract from an array REGBUF containing the (raw) register state
384 a function return value of type TYPE, and copy that, in virtual format,
387 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
388 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
390 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
391 extract_return_value(TYPE,REGBUF,VALBUF)
393 /* Write into appropriate registers a function return value
394 of type TYPE, given in virtual format. */
396 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
398 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
400 /* Floating point values are returned starting from FPR1 and up. \
401 Say a double_double_double type could be returned in \
402 FPR1/FPR2/FPR3 triple. */ \
404 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
405 TYPE_LENGTH (TYPE)); \
407 /* Everything else is returned in GPR3 and up. */ \
408 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
409 TYPE_LENGTH (TYPE)); \
413 /* Extract from an array REGBUF containing the (raw) register state
414 the address in which a function should return its structure value,
415 as a CORE_ADDR (or an expression that can be used as one). */
417 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
419 /* Describe the pointer in each stack frame to the previous stack frame
422 /* FRAME_CHAIN takes a frame's nominal address
423 and produces the frame's chain-pointer. */
425 /* In the case of the RS6000, the frame's nominal address
426 is the address of a 4-byte word containing the calling frame's address. */
428 #define FRAME_CHAIN(thisframe) \
429 (!inside_entry_file ((thisframe)->pc) ? \
430 read_memory_integer ((thisframe)->frame, 4) :\
433 /* Define other aspects of the stack frame. */
435 /* A macro that tells us whether the function invocation represented
436 by FI does not have a frame on the stack associated with it. If it
437 does not, FRAMELESS is set to 1, else 0. */
439 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
440 FRAMELESS = frameless_function_invocation (FI)
442 /* Functions calling alloca() change the value of the stack pointer. We
443 need to use initial stack pointer (which is saved in r31 by gcc) in
444 such cases. If a compiler emits traceback table, then we should use the
445 alloca register specified in traceback table. FIXME. */
446 /* Also, it is a good idea to cache information about frame's saved registers
447 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
449 #define EXTRA_FRAME_INFO \
450 CORE_ADDR initial_sp; /* initial stack pointer. */ \
451 struct frame_saved_regs *cache_fsr; /* saved registers */
453 /* Frameless function invocation in IBM RS/6000 is half-done. It perfectly
454 sets up a new frame, e.g. a new frame (in fact stack) pointer, etc, but it
455 doesn't save the %pc. In the following, even though it is considered a
456 frameless invocation, we still need to walk one frame up. */
458 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
459 fi->initial_sp = 0; \
462 #define FRAME_SAVED_PC(FRAME) \
463 read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4)
465 #define FRAME_ARGS_ADDRESS(FI) \
466 (((struct frame_info*)(FI))->initial_sp ? \
467 ((struct frame_info*)(FI))->initial_sp : \
468 frame_initial_stack_address (FI))
470 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
473 /* Set VAL to the number of args passed to frame described by FI.
474 Can set VAL to -1, meaning no way to tell. */
476 /* We can't tell how many args there are
477 now that the C compiler delays popping them. */
479 #define FRAME_NUM_ARGS(val,fi) (val = -1)
481 /* Return number of bytes at start of arglist that are not really args. */
483 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
485 /* Put here the code to store, into a struct frame_saved_regs,
486 the addresses of the saved registers of frame described by FRAME_INFO.
487 This includes special registers such as pc and fp saved in special
488 ways in the stack frame. sp is even more special:
489 the address we return for it IS the sp for the next frame. */
490 /* In the following implementation for RS6000, we did *not* save sp. I am
491 not sure if it will be needed. The following macro takes care of gpr's
494 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
497 CORE_ADDR frame_addr, func_start; \
498 struct aix_framedata fdata; \
500 /* find the start of the function and collect info about its frame. */\
502 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET; \
503 function_frame_info (func_start, &fdata); \
504 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
506 /* if there were any saved registers, figure out parent's stack pointer. */ \
508 /* the following is true only if the frame doesn't have a call to alloca(), \
510 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
511 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
512 frame_addr = (FRAME_INFO)->prev->frame; \
514 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
517 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
518 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
519 starting from fp31 first. */ \
521 if (fdata.saved_fpr >= 0) { \
522 for (ii=31; ii >= fdata.saved_fpr; --ii) \
523 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
524 frame_addr -= (32 - fdata.saved_fpr) * 8; \
527 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
528 from saved_gpr to gpr31 are saved right under saved fprs, starting \
531 if (fdata.saved_gpr >= 0) \
532 for (ii=31; ii >= fdata.saved_gpr; --ii) \
533 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
537 /* Things needed for making the inferior call functions. */
539 /* Push an empty stack frame, to record the current PC, etc. */
540 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
542 #define PUSH_DUMMY_FRAME push_dummy_frame ()
544 /* Discard from the stack the innermost frame,
545 restoring all saved registers. */
547 #define POP_FRAME pop_frame ()
549 /* This sequence of words is the instructions:
551 mflr r0 // 0x7c0802a6
553 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
555 stm r0, num(r1) // 0xbc010000
556 stu r1, num(r1) // 0x94210000
558 // the function we want to branch might be in a different load
559 // segment. reset the toc register. Note that the actual toc address
560 // will be fix by fix_call_dummy () along with function address.
562 st r2, 0x14(r1) // 0x90410014 save toc register
563 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
564 oril r2, r2,0x5678 // 0x60425678
566 // load absolute address 0x12345678 to r0
567 liu r0, 0x1234 // 0x3c001234
568 oril r0, r0,0x5678 // 0x60005678
569 mtctr r0 // 0x7c0903a6 ctr <- r0
570 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
571 cror 0xf, 0xf, 0xf // 0x4def7b82
572 brpt // 0x7d821008, breakpoint
573 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
576 We actually start executing by saving the toc register first, since the pushing
577 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
578 the arguments for the function called by the `bctrl' would be pushed
579 between the `stu' and the `bctrl', and we could allow it to execute through.
580 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
581 and we cannot allow to push the registers again.
584 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
585 0x90410014, 0x3c401234, 0x60425678, \
586 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
587 0x4def7b82, 0x7d821008, 0x4def7b82 }
590 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
591 #define CALL_DUMMY_LENGTH 56
593 #define CALL_DUMMY_START_OFFSET 16
595 /* Insert the specified number of args and function address
596 into a call sequence of the above form stored at DUMMYNAME. */
598 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
599 fix_call_dummy(dummyname, pc, fun, nargs, type)
602 /* Signal handler for SIGWINCH `window size changed'. */
604 #define SIGWINCH_HANDLER aix_resizewindow
605 extern void aix_resizewindow ();
607 /* `lines_per_page' and `chars_per_line' are local to utils.c. Rectify this. */
609 #define SIGWINCH_HANDLER_BODY \
611 /* Respond to SIGWINCH `window size changed' signal, and reset GDB's \
612 window settings approproatelt. */ \
615 aix_resizewindow () \
617 int fd = fileno (stdout); \
621 val = atoi (termdef (fd, 'l')); \
623 lines_per_page = val; \
624 val = atoi (termdef (fd, 'c')); \
626 chars_per_line = val; \
631 /* Flag for machine-specific stuff in shared files. FIXME */
632 #define IBM6000_TARGET
634 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
636 #define NO_SINGLE_STEP