1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
35 #include "gdbthread.h"
39 #include "python/python.h"
40 #include "python/python-internal.h"
45 /* Non-zero if we want to see trace of varobj level stuff. */
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
72 /* Block for which this expression is valid */
73 struct block *valid_block;
75 /* The frame for this expression. This field is set iff valid_block is
77 struct frame_id frame;
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
101 /* Next root variable */
102 struct varobj_root *next;
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
125 /* Index of this variable in its parent or -1 */
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
139 /* The number of (immediate) children this variable has */
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
145 /* Children of this object. */
146 VEC (varobj_p) *children;
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
152 int children_requested;
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
160 /* Was this variable updated via a varobj_set_value operation */
163 /* Last print value. */
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
184 struct cpstack *next;
187 /* A list of varobjs */
195 /* Private function prototypes */
197 /* Helper functions for the above subcommands. */
199 static int delete_variable (struct cpstack **, struct varobj *, int);
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
204 static int install_variable (struct varobj *);
206 static void uninstall_variable (struct varobj *);
208 static struct varobj *create_child (struct varobj *, int, char *);
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
214 /* Utility routines */
216 static struct varobj *new_variable (void);
218 static struct varobj *new_root_variable (void);
220 static void free_variable (struct varobj *var);
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
224 static struct type *get_type (struct varobj *var);
226 static struct type *get_value_type (struct varobj *var);
228 static struct type *get_target_type (struct type *);
230 static enum varobj_display_formats variable_default_display (struct varobj *);
232 static void cppush (struct cpstack **pstack, char *name);
234 static char *cppop (struct cpstack **pstack);
236 static int install_new_value (struct varobj *var, struct value *value,
239 static void install_default_visualizer (struct varobj *var);
241 /* Language-specific routines. */
243 static enum varobj_languages variable_language (struct varobj *var);
245 static int number_of_children (struct varobj *);
247 static char *name_of_variable (struct varobj *);
249 static char *name_of_child (struct varobj *, int);
251 static struct value *value_of_root (struct varobj **var_handle, int *);
253 static struct value *value_of_child (struct varobj *parent, int index);
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
262 static int varobj_value_is_changeable_p (struct varobj *var);
264 static int is_root_p (struct varobj *var);
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
269 /* C implementation */
271 static int c_number_of_children (struct varobj *var);
273 static char *c_name_of_variable (struct varobj *parent);
275 static char *c_name_of_child (struct varobj *parent, int index);
277 static char *c_path_expr_of_child (struct varobj *child);
279 static struct value *c_value_of_root (struct varobj **var_handle);
281 static struct value *c_value_of_child (struct varobj *parent, int index);
283 static struct type *c_type_of_child (struct varobj *parent, int index);
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
288 /* C++ implementation */
290 static int cplus_number_of_children (struct varobj *var);
292 static void cplus_class_num_children (struct type *type, int children[3]);
294 static char *cplus_name_of_variable (struct varobj *parent);
296 static char *cplus_name_of_child (struct varobj *parent, int index);
298 static char *cplus_path_expr_of_child (struct varobj *child);
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
309 /* Java implementation */
311 static int java_number_of_children (struct varobj *var);
313 static char *java_name_of_variable (struct varobj *parent);
315 static char *java_name_of_child (struct varobj *parent, int index);
317 static char *java_path_expr_of_child (struct varobj *child);
319 static struct value *java_value_of_root (struct varobj **var_handle);
321 static struct value *java_value_of_child (struct varobj *parent, int index);
323 static struct type *java_type_of_child (struct varobj *parent, int index);
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
328 /* The language specific vector */
330 struct language_specific
333 /* The language of this variable */
334 enum varobj_languages language;
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
368 c_number_of_children,
371 c_path_expr_of_child,
380 c_number_of_children,
383 c_path_expr_of_child,
392 cplus_number_of_children,
393 cplus_name_of_variable,
395 cplus_path_expr_of_child,
397 cplus_value_of_child,
399 cplus_value_of_variable}
404 java_number_of_children,
405 java_name_of_variable,
407 java_path_expr_of_child,
411 java_value_of_variable}
414 /* A little convenience enum for dealing with C++/Java */
417 v_public = 0, v_private, v_protected
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
428 /* Prime number indicating the number of buckets in the hash table */
429 /* A prime large enough to avoid too many colisions */
430 #define VAROBJ_TABLE_SIZE 227
432 /* Pointer to the varobj hash table (built at run time) */
433 static struct vlist **varobj_table;
435 /* Is the variable X one of our "fake" children? */
436 #define CPLUS_FAKE_CHILD(x) \
437 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
440 /* API Implementation */
442 is_root_p (struct varobj *var)
444 return (var->root->rootvar == var);
448 /* Helper function to install a Python environment suitable for
449 use during operations on VAR. */
451 varobj_ensure_python_env (struct varobj *var)
453 return ensure_python_env (var->root->exp->gdbarch,
454 var->root->exp->language_defn);
458 /* Creates a varobj (not its children) */
460 /* Return the full FRAME which corresponds to the given CORE_ADDR
461 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
463 static struct frame_info *
464 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
466 struct frame_info *frame = NULL;
468 if (frame_addr == (CORE_ADDR) 0)
471 for (frame = get_current_frame ();
473 frame = get_prev_frame (frame))
475 /* The CORE_ADDR we get as argument was parsed from a string GDB
476 output as $fp. This output got truncated to gdbarch_addr_bit.
477 Truncate the frame base address in the same manner before
478 comparing it against our argument. */
479 CORE_ADDR frame_base = get_frame_base_address (frame);
480 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
481 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
482 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
484 if (frame_base == frame_addr)
492 varobj_create (char *objname,
493 char *expression, CORE_ADDR frame, enum varobj_type type)
496 struct frame_info *fi;
497 struct frame_info *old_fi = NULL;
499 struct cleanup *old_chain;
501 /* Fill out a varobj structure for the (root) variable being constructed. */
502 var = new_root_variable ();
503 old_chain = make_cleanup_free_variable (var);
505 if (expression != NULL)
508 enum varobj_languages lang;
509 struct value *value = NULL;
511 /* Parse and evaluate the expression, filling in as much of the
512 variable's data as possible. */
514 if (has_stack_frames ())
516 /* Allow creator to specify context of variable */
517 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
518 fi = get_selected_frame (NULL);
520 /* FIXME: cagney/2002-11-23: This code should be doing a
521 lookup using the frame ID and not just the frame's
522 ``address''. This, of course, means an interface
523 change. However, with out that interface change ISAs,
524 such as the ia64 with its two stacks, won't work.
525 Similar goes for the case where there is a frameless
527 fi = find_frame_addr_in_frame_chain (frame);
532 /* frame = -2 means always use selected frame */
533 if (type == USE_SELECTED_FRAME)
534 var->root->floating = 1;
538 block = get_frame_block (fi, 0);
541 innermost_block = NULL;
542 /* Wrap the call to parse expression, so we can
543 return a sensible error. */
544 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
549 /* Don't allow variables to be created for types. */
550 if (var->root->exp->elts[0].opcode == OP_TYPE)
552 do_cleanups (old_chain);
553 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
554 " as an expression.\n");
558 var->format = variable_default_display (var);
559 var->root->valid_block = innermost_block;
560 var->name = xstrdup (expression);
561 /* For a root var, the name and the expr are the same. */
562 var->path_expr = xstrdup (expression);
564 /* When the frame is different from the current frame,
565 we must select the appropriate frame before parsing
566 the expression, otherwise the value will not be current.
567 Since select_frame is so benign, just call it for all cases. */
568 if (innermost_block && fi != NULL)
570 var->root->frame = get_frame_id (fi);
571 var->root->thread_id = pid_to_thread_id (inferior_ptid);
572 old_fi = get_selected_frame (NULL);
576 /* We definitely need to catch errors here.
577 If evaluate_expression succeeds we got the value we wanted.
578 But if it fails, we still go on with a call to evaluate_type() */
579 if (!gdb_evaluate_expression (var->root->exp, &value))
581 /* Error getting the value. Try to at least get the
583 struct value *type_only_value = evaluate_type (var->root->exp);
584 var->type = value_type (type_only_value);
587 var->type = value_type (value);
589 install_new_value (var, value, 1 /* Initial assignment */);
591 /* Set language info */
592 lang = variable_language (var);
593 var->root->lang = &languages[lang];
595 /* Set ourselves as our root */
596 var->root->rootvar = var;
598 /* Reset the selected frame */
600 select_frame (old_fi);
603 /* If the variable object name is null, that means this
604 is a temporary variable, so don't install it. */
606 if ((var != NULL) && (objname != NULL))
608 var->obj_name = xstrdup (objname);
610 /* If a varobj name is duplicated, the install will fail so
612 if (!install_variable (var))
614 do_cleanups (old_chain);
619 install_default_visualizer (var);
620 discard_cleanups (old_chain);
624 /* Generates an unique name that can be used for a varobj */
627 varobj_gen_name (void)
632 /* generate a name for this object */
634 obj_name = xstrprintf ("var%d", id);
639 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
640 error if OBJNAME cannot be found. */
643 varobj_get_handle (char *objname)
647 unsigned int index = 0;
650 for (chp = objname; *chp; chp++)
652 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
655 cv = *(varobj_table + index);
656 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
660 error (_("Variable object not found"));
665 /* Given the handle, return the name of the object */
668 varobj_get_objname (struct varobj *var)
670 return var->obj_name;
673 /* Given the handle, return the expression represented by the object */
676 varobj_get_expression (struct varobj *var)
678 return name_of_variable (var);
681 /* Deletes a varobj and all its children if only_children == 0,
682 otherwise deletes only the children; returns a malloc'ed list of all the
683 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
686 varobj_delete (struct varobj *var, char ***dellist, int only_children)
690 struct cpstack *result = NULL;
693 /* Initialize a stack for temporary results */
694 cppush (&result, NULL);
697 /* Delete only the variable children */
698 delcount = delete_variable (&result, var, 1 /* only the children */ );
700 /* Delete the variable and all its children */
701 delcount = delete_variable (&result, var, 0 /* parent+children */ );
703 /* We may have been asked to return a list of what has been deleted */
706 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
710 *cp = cppop (&result);
711 while ((*cp != NULL) && (mycount > 0))
715 *cp = cppop (&result);
718 if (mycount || (*cp != NULL))
719 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
726 /* Convenience function for varobj_set_visualizer. Instantiate a
727 pretty-printer for a given value. */
729 instantiate_pretty_printer (PyObject *constructor, struct value *value)
732 PyObject *val_obj = NULL;
734 volatile struct gdb_exception except;
736 TRY_CATCH (except, RETURN_MASK_ALL)
738 value = value_copy (value);
740 GDB_PY_HANDLE_EXCEPTION (except);
741 val_obj = value_to_value_object (value);
746 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
753 /* Set/Get variable object display format */
755 enum varobj_display_formats
756 varobj_set_display_format (struct varobj *var,
757 enum varobj_display_formats format)
764 case FORMAT_HEXADECIMAL:
766 var->format = format;
770 var->format = variable_default_display (var);
773 if (varobj_value_is_changeable_p (var)
774 && var->value && !value_lazy (var->value))
776 xfree (var->print_value);
777 var->print_value = value_get_print_value (var->value, var->format, var);
783 enum varobj_display_formats
784 varobj_get_display_format (struct varobj *var)
790 varobj_get_display_hint (struct varobj *var)
795 struct cleanup *back_to = varobj_ensure_python_env (var);
797 if (var->pretty_printer)
798 result = gdbpy_get_display_hint (var->pretty_printer);
800 do_cleanups (back_to);
806 /* If the variable object is bound to a specific thread, that
807 is its evaluation can always be done in context of a frame
808 inside that thread, returns GDB id of the thread -- which
809 is always positive. Otherwise, returns -1. */
811 varobj_get_thread_id (struct varobj *var)
813 if (var->root->valid_block && var->root->thread_id > 0)
814 return var->root->thread_id;
820 varobj_set_frozen (struct varobj *var, int frozen)
822 /* When a variable is unfrozen, we don't fetch its value.
823 The 'not_fetched' flag remains set, so next -var-update
826 We don't fetch the value, because for structures the client
827 should do -var-update anyway. It would be bad to have different
828 client-size logic for structure and other types. */
829 var->frozen = frozen;
833 varobj_get_frozen (struct varobj *var)
839 update_dynamic_varobj_children (struct varobj *var,
840 VEC (varobj_p) **changed,
841 VEC (varobj_p) **new_and_unchanged,
846 /* FIXME: we *might* want to provide this functionality as
847 a standalone function, so that other interested parties
848 than varobj code can benefit for this. */
849 struct cleanup *back_to;
853 int children_changed = 0;
854 PyObject *printer = var->pretty_printer;
856 back_to = varobj_ensure_python_env (var);
859 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
861 do_cleanups (back_to);
865 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
870 gdbpy_print_stack ();
871 error (_("Null value returned for children"));
874 make_cleanup_py_decref (children);
876 if (!PyIter_Check (children))
877 error (_("Returned value is not iterable"));
879 iterator = PyObject_GetIter (children);
882 gdbpy_print_stack ();
883 error (_("Could not get children iterator"));
885 make_cleanup_py_decref (iterator);
889 PyObject *item = PyIter_Next (iterator);
893 struct cleanup *inner;
897 inner = make_cleanup_py_decref (item);
899 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
900 error (_("Invalid item from the child list"));
902 if (PyObject_TypeCheck (py_v, &value_object_type))
904 /* If we just call convert_value_from_python for this type,
905 we won't know who owns the result. For this one case we
906 need to copy the resulting value. */
907 v = value_object_to_value (py_v);
911 v = convert_value_from_python (py_v);
913 /* TODO: This assume the name of the i-th child never changes. */
915 /* Now see what to do here. */
916 if (VEC_length (varobj_p, var->children) < i + 1)
918 /* There's no child yet. */
919 struct varobj *child = varobj_add_child (var, name, v);
920 if (new_and_unchanged)
921 VEC_safe_push (varobj_p, *new_and_unchanged, child);
922 children_changed = 1;
926 varobj_p existing = VEC_index (varobj_p, var->children, i);
927 if (install_new_value (existing, v, 0) && changed)
930 VEC_safe_push (varobj_p, *changed, existing);
934 if (new_and_unchanged)
935 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
942 if (i < VEC_length (varobj_p, var->children))
945 children_changed = 1;
946 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
947 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
949 VEC_truncate (varobj_p, var->children, i);
950 var->num_children = VEC_length (varobj_p, var->children);
952 do_cleanups (back_to);
954 *cchanged = children_changed;
957 gdb_assert (0 && "should never be called if Python is not enabled");
962 varobj_get_num_children (struct varobj *var)
964 if (var->num_children == -1)
967 if (!var->pretty_printer
968 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
969 var->num_children = number_of_children (var);
972 return var->num_children;
975 /* Creates a list of the immediate children of a variable object;
976 the return code is the number of such children or -1 on error */
979 varobj_list_children (struct varobj *var)
981 struct varobj *child;
983 int i, children_changed;
985 var->children_requested = 1;
987 if (var->pretty_printer
988 /* This, in theory, can result in the number of children changing without
989 frontend noticing. But well, calling -var-list-children on the same
990 varobj twice is not something a sane frontend would do. */
991 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
992 return var->children;
994 if (var->num_children == -1)
995 var->num_children = number_of_children (var);
997 /* If that failed, give up. */
998 if (var->num_children == -1)
999 return var->children;
1001 /* If we're called when the list of children is not yet initialized,
1002 allocate enough elements in it. */
1003 while (VEC_length (varobj_p, var->children) < var->num_children)
1004 VEC_safe_push (varobj_p, var->children, NULL);
1006 for (i = 0; i < var->num_children; i++)
1008 varobj_p existing = VEC_index (varobj_p, var->children, i);
1010 if (existing == NULL)
1012 /* Either it's the first call to varobj_list_children for
1013 this variable object, and the child was never created,
1014 or it was explicitly deleted by the client. */
1015 name = name_of_child (var, i);
1016 existing = create_child (var, i, name);
1017 VEC_replace (varobj_p, var->children, i, existing);
1018 install_default_visualizer (existing);
1022 return var->children;
1025 static struct varobj *
1026 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1028 varobj_p v = create_child_with_value (var,
1029 VEC_length (varobj_p, var->children),
1031 VEC_safe_push (varobj_p, var->children, v);
1032 install_default_visualizer (v);
1036 /* Obtain the type of an object Variable as a string similar to the one gdb
1037 prints on the console */
1040 varobj_get_type (struct varobj *var)
1042 /* For the "fake" variables, do not return a type. (It's type is
1044 Do not return a type for invalid variables as well. */
1045 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1048 return type_to_string (var->type);
1051 /* Obtain the type of an object variable. */
1054 varobj_get_gdb_type (struct varobj *var)
1059 /* Return a pointer to the full rooted expression of varobj VAR.
1060 If it has not been computed yet, compute it. */
1062 varobj_get_path_expr (struct varobj *var)
1064 if (var->path_expr != NULL)
1065 return var->path_expr;
1068 /* For root varobjs, we initialize path_expr
1069 when creating varobj, so here it should be
1071 gdb_assert (!is_root_p (var));
1072 return (*var->root->lang->path_expr_of_child) (var);
1076 enum varobj_languages
1077 varobj_get_language (struct varobj *var)
1079 return variable_language (var);
1083 varobj_get_attributes (struct varobj *var)
1087 if (varobj_editable_p (var))
1088 /* FIXME: define masks for attributes */
1089 attributes |= 0x00000001; /* Editable */
1095 varobj_get_formatted_value (struct varobj *var,
1096 enum varobj_display_formats format)
1098 return my_value_of_variable (var, format);
1102 varobj_get_value (struct varobj *var)
1104 return my_value_of_variable (var, var->format);
1107 /* Set the value of an object variable (if it is editable) to the
1108 value of the given expression */
1109 /* Note: Invokes functions that can call error() */
1112 varobj_set_value (struct varobj *var, char *expression)
1118 /* The argument "expression" contains the variable's new value.
1119 We need to first construct a legal expression for this -- ugh! */
1120 /* Does this cover all the bases? */
1121 struct expression *exp;
1122 struct value *value;
1123 int saved_input_radix = input_radix;
1124 char *s = expression;
1127 gdb_assert (varobj_editable_p (var));
1129 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1130 exp = parse_exp_1 (&s, 0, 0);
1131 if (!gdb_evaluate_expression (exp, &value))
1133 /* We cannot proceed without a valid expression. */
1138 /* All types that are editable must also be changeable. */
1139 gdb_assert (varobj_value_is_changeable_p (var));
1141 /* The value of a changeable variable object must not be lazy. */
1142 gdb_assert (!value_lazy (var->value));
1144 /* Need to coerce the input. We want to check if the
1145 value of the variable object will be different
1146 after assignment, and the first thing value_assign
1147 does is coerce the input.
1148 For example, if we are assigning an array to a pointer variable we
1149 should compare the pointer with the the array's address, not with the
1151 value = coerce_array (value);
1153 /* The new value may be lazy. gdb_value_assign, or
1154 rather value_contents, will take care of this.
1155 If fetching of the new value will fail, gdb_value_assign
1156 with catch the exception. */
1157 if (!gdb_value_assign (var->value, value, &val))
1160 /* If the value has changed, record it, so that next -var-update can
1161 report this change. If a variable had a value of '1', we've set it
1162 to '333' and then set again to '1', when -var-update will report this
1163 variable as changed -- because the first assignment has set the
1164 'updated' flag. There's no need to optimize that, because return value
1165 of -var-update should be considered an approximation. */
1166 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1167 input_radix = saved_input_radix;
1171 /* Assign a new value to a variable object. If INITIAL is non-zero,
1172 this is the first assignement after the variable object was just
1173 created, or changed type. In that case, just assign the value
1175 Otherwise, assign the new value, and return 1 if the value is different
1176 from the current one, 0 otherwise. The comparison is done on textual
1177 representation of value. Therefore, some types need not be compared. E.g.
1178 for structures the reported value is always "{...}", so no comparison is
1179 necessary here. If the old value was NULL and new one is not, or vice versa,
1182 The VALUE parameter should not be released -- the function will
1183 take care of releasing it when needed. */
1185 install_new_value (struct varobj *var, struct value *value, int initial)
1190 int intentionally_not_fetched = 0;
1191 char *print_value = NULL;
1193 /* We need to know the varobj's type to decide if the value should
1194 be fetched or not. C++ fake children (public/protected/private) don't have
1196 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1197 changeable = varobj_value_is_changeable_p (var);
1199 /* If the type has custom visualizer, we consider it to be always
1200 changeable. FIXME: need to make sure this behaviour will not
1201 mess up read-sensitive values. */
1202 if (var->pretty_printer)
1205 need_to_fetch = changeable;
1207 /* We are not interested in the address of references, and given
1208 that in C++ a reference is not rebindable, it cannot
1209 meaningfully change. So, get hold of the real value. */
1212 value = coerce_ref (value);
1213 release_value (value);
1216 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1217 /* For unions, we need to fetch the value implicitly because
1218 of implementation of union member fetch. When gdb
1219 creates a value for a field and the value of the enclosing
1220 structure is not lazy, it immediately copies the necessary
1221 bytes from the enclosing values. If the enclosing value is
1222 lazy, the call to value_fetch_lazy on the field will read
1223 the data from memory. For unions, that means we'll read the
1224 same memory more than once, which is not desirable. So
1228 /* The new value might be lazy. If the type is changeable,
1229 that is we'll be comparing values of this type, fetch the
1230 value now. Otherwise, on the next update the old value
1231 will be lazy, which means we've lost that old value. */
1232 if (need_to_fetch && value && value_lazy (value))
1234 struct varobj *parent = var->parent;
1235 int frozen = var->frozen;
1236 for (; !frozen && parent; parent = parent->parent)
1237 frozen |= parent->frozen;
1239 if (frozen && initial)
1241 /* For variables that are frozen, or are children of frozen
1242 variables, we don't do fetch on initial assignment.
1243 For non-initial assignemnt we do the fetch, since it means we're
1244 explicitly asked to compare the new value with the old one. */
1245 intentionally_not_fetched = 1;
1247 else if (!gdb_value_fetch_lazy (value))
1249 /* Set the value to NULL, so that for the next -var-update,
1250 we don't try to compare the new value with this value,
1251 that we couldn't even read. */
1257 /* Below, we'll be comparing string rendering of old and new
1258 values. Don't get string rendering if the value is
1259 lazy -- if it is, the code above has decided that the value
1260 should not be fetched. */
1261 if (value && !value_lazy (value))
1262 print_value = value_get_print_value (value, var->format, var);
1264 /* If the type is changeable, compare the old and the new values.
1265 If this is the initial assignment, we don't have any old value
1267 if (!initial && changeable)
1269 /* If the value of the varobj was changed by -var-set-value, then the
1270 value in the varobj and in the target is the same. However, that value
1271 is different from the value that the varobj had after the previous
1272 -var-update. So need to the varobj as changed. */
1279 /* Try to compare the values. That requires that both
1280 values are non-lazy. */
1281 if (var->not_fetched && value_lazy (var->value))
1283 /* This is a frozen varobj and the value was never read.
1284 Presumably, UI shows some "never read" indicator.
1285 Now that we've fetched the real value, we need to report
1286 this varobj as changed so that UI can show the real
1290 else if (var->value == NULL && value == NULL)
1293 else if (var->value == NULL || value == NULL)
1299 gdb_assert (!value_lazy (var->value));
1300 gdb_assert (!value_lazy (value));
1302 gdb_assert (var->print_value != NULL && print_value != NULL);
1303 if (strcmp (var->print_value, print_value) != 0)
1309 if (!initial && !changeable)
1311 /* For values that are not changeable, we don't compare the values.
1312 However, we want to notice if a value was not NULL and now is NULL,
1313 or vise versa, so that we report when top-level varobjs come in scope
1314 and leave the scope. */
1315 changed = (var->value != NULL) != (value != NULL);
1318 /* We must always keep the new value, since children depend on it. */
1319 if (var->value != NULL && var->value != value)
1320 value_free (var->value);
1322 if (var->print_value)
1323 xfree (var->print_value);
1324 var->print_value = print_value;
1325 if (value && value_lazy (value) && intentionally_not_fetched)
1326 var->not_fetched = 1;
1328 var->not_fetched = 0;
1331 gdb_assert (!var->value || value_type (var->value));
1337 install_visualizer (struct varobj *var, PyObject *visualizer)
1340 /* If there are any children now, wipe them. */
1341 varobj_delete (var, NULL, 1 /* children only */);
1342 var->num_children = -1;
1344 Py_XDECREF (var->pretty_printer);
1345 var->pretty_printer = visualizer;
1347 install_new_value (var, var->value, 1);
1349 /* If we removed the visualizer, and the user ever requested the
1350 object's children, then we must compute the list of children.
1351 Note that we needn't do this when installing a visualizer,
1352 because updating will recompute dynamic children. */
1353 if (!visualizer && var->children_requested)
1354 varobj_list_children (var);
1356 error (_("Python support required"));
1361 install_default_visualizer (struct varobj *var)
1364 struct cleanup *cleanup;
1365 PyObject *pretty_printer = NULL;
1367 cleanup = varobj_ensure_python_env (var);
1371 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1372 if (! pretty_printer)
1374 gdbpy_print_stack ();
1375 error (_("Cannot instantiate printer for default visualizer"));
1379 if (pretty_printer == Py_None)
1381 Py_DECREF (pretty_printer);
1382 pretty_printer = NULL;
1385 install_visualizer (var, pretty_printer);
1386 do_cleanups (cleanup);
1388 /* No error is right as this function is inserted just as a hook. */
1393 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1396 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1397 struct cleanup *back_to, *value;
1399 back_to = varobj_ensure_python_env (var);
1401 mainmod = PyImport_AddModule ("__main__");
1402 globals = PyModule_GetDict (mainmod);
1403 Py_INCREF (globals);
1404 make_cleanup_py_decref (globals);
1406 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1408 /* Do not instantiate NoneType. */
1409 if (constructor == Py_None)
1411 pretty_printer = Py_None;
1412 Py_INCREF (pretty_printer);
1415 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1417 Py_XDECREF (constructor);
1419 if (! pretty_printer)
1421 gdbpy_print_stack ();
1422 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1425 if (pretty_printer == Py_None)
1427 Py_DECREF (pretty_printer);
1428 pretty_printer = NULL;
1431 install_visualizer (var, pretty_printer);
1433 do_cleanups (back_to);
1435 error (_("Python support required"));
1439 /* Update the values for a variable and its children. This is a
1440 two-pronged attack. First, re-parse the value for the root's
1441 expression to see if it's changed. Then go all the way
1442 through its children, reconstructing them and noting if they've
1445 The EXPLICIT parameter specifies if this call is result
1446 of MI request to update this specific variable, or
1447 result of implicit -var-update *. For implicit request, we don't
1448 update frozen variables.
1450 NOTE: This function may delete the caller's varobj. If it
1451 returns TYPE_CHANGED, then it has done this and VARP will be modified
1452 to point to the new varobj. */
1454 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1457 int type_changed = 0;
1462 struct varobj **templist = NULL;
1464 VEC (varobj_update_result) *stack = NULL;
1465 VEC (varobj_update_result) *result = NULL;
1466 struct frame_info *fi;
1468 /* Frozen means frozen -- we don't check for any change in
1469 this varobj, including its going out of scope, or
1470 changing type. One use case for frozen varobjs is
1471 retaining previously evaluated expressions, and we don't
1472 want them to be reevaluated at all. */
1473 if (!explicit && (*varp)->frozen)
1476 if (!(*varp)->root->is_valid)
1478 varobj_update_result r = {*varp};
1479 r.status = VAROBJ_INVALID;
1480 VEC_safe_push (varobj_update_result, result, &r);
1484 if ((*varp)->root->rootvar == *varp)
1486 varobj_update_result r = {*varp};
1487 r.status = VAROBJ_IN_SCOPE;
1489 /* Update the root variable. value_of_root can return NULL
1490 if the variable is no longer around, i.e. we stepped out of
1491 the frame in which a local existed. We are letting the
1492 value_of_root variable dispose of the varobj if the type
1494 new = value_of_root (varp, &type_changed);
1497 r.type_changed = type_changed;
1498 if (install_new_value ((*varp), new, type_changed))
1502 r.status = VAROBJ_NOT_IN_SCOPE;
1503 r.value_installed = 1;
1505 if (r.status == VAROBJ_NOT_IN_SCOPE)
1507 if (r.type_changed || r.changed)
1508 VEC_safe_push (varobj_update_result, result, &r);
1512 VEC_safe_push (varobj_update_result, stack, &r);
1516 varobj_update_result r = {*varp};
1517 VEC_safe_push (varobj_update_result, stack, &r);
1520 /* Walk through the children, reconstructing them all. */
1521 while (!VEC_empty (varobj_update_result, stack))
1523 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1524 struct varobj *v = r.varobj;
1526 VEC_pop (varobj_update_result, stack);
1528 /* Update this variable, unless it's a root, which is already
1530 if (!r.value_installed)
1532 new = value_of_child (v->parent, v->index);
1533 if (install_new_value (v, new, 0 /* type not changed */))
1540 /* We probably should not get children of a varobj that has a
1541 pretty-printer, but for which -var-list-children was never
1542 invoked. Presumably, such varobj is not yet expanded in the
1543 UI, so we need not bother getting it. */
1544 if (v->pretty_printer)
1546 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1547 int i, children_changed;
1550 if (!v->children_requested)
1556 /* If update_dynamic_varobj_children returns 0, then we have
1557 a non-conforming pretty-printer, so we skip it. */
1558 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1561 if (children_changed)
1562 r.children_changed = 1;
1563 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1565 varobj_update_result r = {tmp};
1567 r.value_installed = 1;
1568 VEC_safe_push (varobj_update_result, stack, &r);
1571 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1574 varobj_update_result r = {tmp};
1575 r.value_installed = 1;
1576 VEC_safe_push (varobj_update_result, stack, &r);
1578 if (r.changed || r.children_changed)
1579 VEC_safe_push (varobj_update_result, result, &r);
1584 /* Push any children. Use reverse order so that the first
1585 child is popped from the work stack first, and so
1586 will be added to result first. This does not
1587 affect correctness, just "nicer". */
1588 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1590 varobj_p c = VEC_index (varobj_p, v->children, i);
1591 /* Child may be NULL if explicitly deleted by -var-delete. */
1592 if (c != NULL && !c->frozen)
1594 varobj_update_result r = {c};
1595 VEC_safe_push (varobj_update_result, stack, &r);
1599 if (r.changed || r.type_changed)
1600 VEC_safe_push (varobj_update_result, result, &r);
1603 VEC_free (varobj_update_result, stack);
1609 /* Helper functions */
1612 * Variable object construction/destruction
1616 delete_variable (struct cpstack **resultp, struct varobj *var,
1617 int only_children_p)
1621 delete_variable_1 (resultp, &delcount, var,
1622 only_children_p, 1 /* remove_from_parent_p */ );
1627 /* Delete the variable object VAR and its children */
1628 /* IMPORTANT NOTE: If we delete a variable which is a child
1629 and the parent is not removed we dump core. It must be always
1630 initially called with remove_from_parent_p set */
1632 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1633 struct varobj *var, int only_children_p,
1634 int remove_from_parent_p)
1638 /* Delete any children of this variable, too. */
1639 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1641 varobj_p child = VEC_index (varobj_p, var->children, i);
1644 if (!remove_from_parent_p)
1645 child->parent = NULL;
1646 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1648 VEC_free (varobj_p, var->children);
1650 /* if we were called to delete only the children we are done here */
1651 if (only_children_p)
1654 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1655 /* If the name is null, this is a temporary variable, that has not
1656 yet been installed, don't report it, it belongs to the caller... */
1657 if (var->obj_name != NULL)
1659 cppush (resultp, xstrdup (var->obj_name));
1660 *delcountp = *delcountp + 1;
1663 /* If this variable has a parent, remove it from its parent's list */
1664 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1665 (as indicated by remove_from_parent_p) we don't bother doing an
1666 expensive list search to find the element to remove when we are
1667 discarding the list afterwards */
1668 if ((remove_from_parent_p) && (var->parent != NULL))
1670 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1673 if (var->obj_name != NULL)
1674 uninstall_variable (var);
1676 /* Free memory associated with this variable */
1677 free_variable (var);
1680 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1682 install_variable (struct varobj *var)
1685 struct vlist *newvl;
1687 unsigned int index = 0;
1690 for (chp = var->obj_name; *chp; chp++)
1692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1695 cv = *(varobj_table + index);
1696 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1700 error (_("Duplicate variable object name"));
1702 /* Add varobj to hash table */
1703 newvl = xmalloc (sizeof (struct vlist));
1704 newvl->next = *(varobj_table + index);
1706 *(varobj_table + index) = newvl;
1708 /* If root, add varobj to root list */
1709 if (is_root_p (var))
1711 /* Add to list of root variables */
1712 if (rootlist == NULL)
1713 var->root->next = NULL;
1715 var->root->next = rootlist;
1716 rootlist = var->root;
1722 /* Unistall the object VAR. */
1724 uninstall_variable (struct varobj *var)
1728 struct varobj_root *cr;
1729 struct varobj_root *prer;
1731 unsigned int index = 0;
1734 /* Remove varobj from hash table */
1735 for (chp = var->obj_name; *chp; chp++)
1737 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1740 cv = *(varobj_table + index);
1742 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1749 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1754 ("Assertion failed: Could not find variable object \"%s\" to delete",
1760 *(varobj_table + index) = cv->next;
1762 prev->next = cv->next;
1766 /* If root, remove varobj from root list */
1767 if (is_root_p (var))
1769 /* Remove from list of root variables */
1770 if (rootlist == var->root)
1771 rootlist = var->root->next;
1776 while ((cr != NULL) && (cr->rootvar != var))
1784 ("Assertion failed: Could not find varobj \"%s\" in root list",
1791 prer->next = cr->next;
1797 /* Create and install a child of the parent of the given name */
1798 static struct varobj *
1799 create_child (struct varobj *parent, int index, char *name)
1801 return create_child_with_value (parent, index, name,
1802 value_of_child (parent, index));
1805 static struct varobj *
1806 create_child_with_value (struct varobj *parent, int index, const char *name,
1807 struct value *value)
1809 struct varobj *child;
1812 child = new_variable ();
1814 /* name is allocated by name_of_child */
1815 /* FIXME: xstrdup should not be here. */
1816 child->name = xstrdup (name);
1817 child->index = index;
1818 child->parent = parent;
1819 child->root = parent->root;
1820 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1821 child->obj_name = childs_name;
1822 install_variable (child);
1824 /* Compute the type of the child. Must do this before
1825 calling install_new_value. */
1827 /* If the child had no evaluation errors, var->value
1828 will be non-NULL and contain a valid type. */
1829 child->type = value_type (value);
1831 /* Otherwise, we must compute the type. */
1832 child->type = (*child->root->lang->type_of_child) (child->parent,
1834 install_new_value (child, value, 1);
1841 * Miscellaneous utility functions.
1844 /* Allocate memory and initialize a new variable */
1845 static struct varobj *
1850 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1852 var->path_expr = NULL;
1853 var->obj_name = NULL;
1857 var->num_children = -1;
1859 var->children = NULL;
1863 var->print_value = NULL;
1865 var->not_fetched = 0;
1866 var->children_requested = 0;
1867 var->pretty_printer = 0;
1872 /* Allocate memory and initialize a new root variable */
1873 static struct varobj *
1874 new_root_variable (void)
1876 struct varobj *var = new_variable ();
1877 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1878 var->root->lang = NULL;
1879 var->root->exp = NULL;
1880 var->root->valid_block = NULL;
1881 var->root->frame = null_frame_id;
1882 var->root->floating = 0;
1883 var->root->rootvar = NULL;
1884 var->root->is_valid = 1;
1889 /* Free any allocated memory associated with VAR. */
1891 free_variable (struct varobj *var)
1894 if (var->pretty_printer)
1896 struct cleanup *cleanup = varobj_ensure_python_env (var);
1897 Py_DECREF (var->pretty_printer);
1898 do_cleanups (cleanup);
1902 value_free (var->value);
1904 /* Free the expression if this is a root variable. */
1905 if (is_root_p (var))
1907 xfree (var->root->exp);
1912 xfree (var->obj_name);
1913 xfree (var->print_value);
1914 xfree (var->path_expr);
1919 do_free_variable_cleanup (void *var)
1921 free_variable (var);
1924 static struct cleanup *
1925 make_cleanup_free_variable (struct varobj *var)
1927 return make_cleanup (do_free_variable_cleanup, var);
1930 /* This returns the type of the variable. It also skips past typedefs
1931 to return the real type of the variable.
1933 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1934 except within get_target_type and get_type. */
1935 static struct type *
1936 get_type (struct varobj *var)
1942 type = check_typedef (type);
1947 /* Return the type of the value that's stored in VAR,
1948 or that would have being stored there if the
1949 value were accessible.
1951 This differs from VAR->type in that VAR->type is always
1952 the true type of the expession in the source language.
1953 The return value of this function is the type we're
1954 actually storing in varobj, and using for displaying
1955 the values and for comparing previous and new values.
1957 For example, top-level references are always stripped. */
1958 static struct type *
1959 get_value_type (struct varobj *var)
1964 type = value_type (var->value);
1968 type = check_typedef (type);
1970 if (TYPE_CODE (type) == TYPE_CODE_REF)
1971 type = get_target_type (type);
1973 type = check_typedef (type);
1978 /* This returns the target type (or NULL) of TYPE, also skipping
1979 past typedefs, just like get_type ().
1981 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1982 except within get_target_type and get_type. */
1983 static struct type *
1984 get_target_type (struct type *type)
1988 type = TYPE_TARGET_TYPE (type);
1990 type = check_typedef (type);
1996 /* What is the default display for this variable? We assume that
1997 everything is "natural". Any exceptions? */
1998 static enum varobj_display_formats
1999 variable_default_display (struct varobj *var)
2001 return FORMAT_NATURAL;
2004 /* FIXME: The following should be generic for any pointer */
2006 cppush (struct cpstack **pstack, char *name)
2010 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2016 /* FIXME: The following should be generic for any pointer */
2018 cppop (struct cpstack **pstack)
2023 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2028 *pstack = (*pstack)->next;
2035 * Language-dependencies
2038 /* Common entry points */
2040 /* Get the language of variable VAR. */
2041 static enum varobj_languages
2042 variable_language (struct varobj *var)
2044 enum varobj_languages lang;
2046 switch (var->root->exp->language_defn->la_language)
2052 case language_cplus:
2063 /* Return the number of children for a given variable.
2064 The result of this function is defined by the language
2065 implementation. The number of children returned by this function
2066 is the number of children that the user will see in the variable
2069 number_of_children (struct varobj *var)
2071 return (*var->root->lang->number_of_children) (var);;
2074 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2076 name_of_variable (struct varobj *var)
2078 return (*var->root->lang->name_of_variable) (var);
2081 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2083 name_of_child (struct varobj *var, int index)
2085 return (*var->root->lang->name_of_child) (var, index);
2088 /* What is the ``struct value *'' of the root variable VAR?
2089 For floating variable object, evaluation can get us a value
2090 of different type from what is stored in varobj already. In
2092 - *type_changed will be set to 1
2093 - old varobj will be freed, and new one will be
2094 created, with the same name.
2095 - *var_handle will be set to the new varobj
2096 Otherwise, *type_changed will be set to 0. */
2097 static struct value *
2098 value_of_root (struct varobj **var_handle, int *type_changed)
2102 if (var_handle == NULL)
2107 /* This should really be an exception, since this should
2108 only get called with a root variable. */
2110 if (!is_root_p (var))
2113 if (var->root->floating)
2115 struct varobj *tmp_var;
2116 char *old_type, *new_type;
2118 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2119 USE_SELECTED_FRAME);
2120 if (tmp_var == NULL)
2124 old_type = varobj_get_type (var);
2125 new_type = varobj_get_type (tmp_var);
2126 if (strcmp (old_type, new_type) == 0)
2128 /* The expression presently stored inside var->root->exp
2129 remembers the locations of local variables relatively to
2130 the frame where the expression was created (in DWARF location
2131 button, for example). Naturally, those locations are not
2132 correct in other frames, so update the expression. */
2134 struct expression *tmp_exp = var->root->exp;
2135 var->root->exp = tmp_var->root->exp;
2136 tmp_var->root->exp = tmp_exp;
2138 varobj_delete (tmp_var, NULL, 0);
2143 tmp_var->obj_name = xstrdup (var->obj_name);
2144 varobj_delete (var, NULL, 0);
2146 install_variable (tmp_var);
2147 *var_handle = tmp_var;
2159 return (*var->root->lang->value_of_root) (var_handle);
2162 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2163 static struct value *
2164 value_of_child (struct varobj *parent, int index)
2166 struct value *value;
2168 value = (*parent->root->lang->value_of_child) (parent, index);
2173 /* GDB already has a command called "value_of_variable". Sigh. */
2175 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2177 if (var->root->is_valid)
2178 return (*var->root->lang->value_of_variable) (var, format);
2184 value_get_print_value (struct value *value, enum varobj_display_formats format,
2188 struct ui_file *stb;
2189 struct cleanup *old_chain;
2190 gdb_byte *thevalue = NULL;
2191 struct value_print_options opts;
2199 struct cleanup *back_to = varobj_ensure_python_env (var);
2200 PyObject *value_formatter = var->pretty_printer;
2202 if (value_formatter && PyObject_HasAttr (value_formatter,
2203 gdbpy_to_string_cst))
2206 struct value *replacement;
2207 int string_print = 0;
2208 PyObject *output = NULL;
2210 hint = gdbpy_get_display_hint (value_formatter);
2213 if (!strcmp (hint, "string"))
2218 output = apply_varobj_pretty_printer (value_formatter,
2222 PyObject *py_str = python_string_to_target_python_string (output);
2225 char *s = PyString_AsString (py_str);
2226 len = PyString_Size (py_str);
2227 thevalue = xmemdup (s, len + 1, len + 1);
2232 if (thevalue && !string_print)
2234 do_cleanups (back_to);
2238 value = replacement;
2240 do_cleanups (back_to);
2244 stb = mem_fileopen ();
2245 old_chain = make_cleanup_ui_file_delete (stb);
2247 get_formatted_print_options (&opts, format_code[(int) format]);
2252 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2253 make_cleanup (xfree, thevalue);
2254 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
2255 thevalue, len, 0, &opts);
2258 common_val_print (value, stb, 0, &opts, current_language);
2259 thevalue = ui_file_xstrdup (stb, &dummy);
2261 do_cleanups (old_chain);
2266 varobj_editable_p (struct varobj *var)
2269 struct value *value;
2271 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2274 type = get_value_type (var);
2276 switch (TYPE_CODE (type))
2278 case TYPE_CODE_STRUCT:
2279 case TYPE_CODE_UNION:
2280 case TYPE_CODE_ARRAY:
2281 case TYPE_CODE_FUNC:
2282 case TYPE_CODE_METHOD:
2292 /* Return non-zero if changes in value of VAR
2293 must be detected and reported by -var-update.
2294 Return zero is -var-update should never report
2295 changes of such values. This makes sense for structures
2296 (since the changes in children values will be reported separately),
2297 or for artifical objects (like 'public' pseudo-field in C++).
2299 Return value of 0 means that gdb need not call value_fetch_lazy
2300 for the value of this variable object. */
2302 varobj_value_is_changeable_p (struct varobj *var)
2307 if (CPLUS_FAKE_CHILD (var))
2310 type = get_value_type (var);
2312 switch (TYPE_CODE (type))
2314 case TYPE_CODE_STRUCT:
2315 case TYPE_CODE_UNION:
2316 case TYPE_CODE_ARRAY:
2327 /* Return 1 if that varobj is floating, that is is always evaluated in the
2328 selected frame, and not bound to thread/frame. Such variable objects
2329 are created using '@' as frame specifier to -var-create. */
2331 varobj_floating_p (struct varobj *var)
2333 return var->root->floating;
2336 /* Given the value and the type of a variable object,
2337 adjust the value and type to those necessary
2338 for getting children of the variable object.
2339 This includes dereferencing top-level references
2340 to all types and dereferencing pointers to
2343 Both TYPE and *TYPE should be non-null. VALUE
2344 can be null if we want to only translate type.
2345 *VALUE can be null as well -- if the parent
2348 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2349 depending on whether pointer was dereferenced
2350 in this function. */
2352 adjust_value_for_child_access (struct value **value,
2356 gdb_assert (type && *type);
2361 *type = check_typedef (*type);
2363 /* The type of value stored in varobj, that is passed
2364 to us, is already supposed to be
2365 reference-stripped. */
2367 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2369 /* Pointers to structures are treated just like
2370 structures when accessing children. Don't
2371 dererences pointers to other types. */
2372 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2374 struct type *target_type = get_target_type (*type);
2375 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2376 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2378 if (value && *value)
2380 int success = gdb_value_ind (*value, value);
2384 *type = target_type;
2390 /* The 'get_target_type' function calls check_typedef on
2391 result, so we can immediately check type code. No
2392 need to call check_typedef here. */
2397 c_number_of_children (struct varobj *var)
2399 struct type *type = get_value_type (var);
2401 struct type *target;
2403 adjust_value_for_child_access (NULL, &type, NULL);
2404 target = get_target_type (type);
2406 switch (TYPE_CODE (type))
2408 case TYPE_CODE_ARRAY:
2409 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2410 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2411 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2413 /* If we don't know how many elements there are, don't display
2418 case TYPE_CODE_STRUCT:
2419 case TYPE_CODE_UNION:
2420 children = TYPE_NFIELDS (type);
2424 /* The type here is a pointer to non-struct. Typically, pointers
2425 have one child, except for function ptrs, which have no children,
2426 and except for void*, as we don't know what to show.
2428 We can show char* so we allow it to be dereferenced. If you decide
2429 to test for it, please mind that a little magic is necessary to
2430 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2431 TYPE_NAME == "char" */
2432 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2433 || TYPE_CODE (target) == TYPE_CODE_VOID)
2440 /* Other types have no children */
2448 c_name_of_variable (struct varobj *parent)
2450 return xstrdup (parent->name);
2453 /* Return the value of element TYPE_INDEX of a structure
2454 value VALUE. VALUE's type should be a structure,
2455 or union, or a typedef to struct/union.
2457 Returns NULL if getting the value fails. Never throws. */
2458 static struct value *
2459 value_struct_element_index (struct value *value, int type_index)
2461 struct value *result = NULL;
2462 volatile struct gdb_exception e;
2464 struct type *type = value_type (value);
2465 type = check_typedef (type);
2467 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2468 || TYPE_CODE (type) == TYPE_CODE_UNION);
2470 TRY_CATCH (e, RETURN_MASK_ERROR)
2472 if (field_is_static (&TYPE_FIELD (type, type_index)))
2473 result = value_static_field (type, type_index);
2475 result = value_primitive_field (value, 0, type_index, type);
2487 /* Obtain the information about child INDEX of the variable
2489 If CNAME is not null, sets *CNAME to the name of the child relative
2491 If CVALUE is not null, sets *CVALUE to the value of the child.
2492 If CTYPE is not null, sets *CTYPE to the type of the child.
2494 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2495 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2498 c_describe_child (struct varobj *parent, int index,
2499 char **cname, struct value **cvalue, struct type **ctype,
2500 char **cfull_expression)
2502 struct value *value = parent->value;
2503 struct type *type = get_value_type (parent);
2504 char *parent_expression = NULL;
2513 if (cfull_expression)
2515 *cfull_expression = NULL;
2516 parent_expression = varobj_get_path_expr (parent);
2518 adjust_value_for_child_access (&value, &type, &was_ptr);
2520 switch (TYPE_CODE (type))
2522 case TYPE_CODE_ARRAY:
2524 *cname = xstrprintf ("%d", index
2525 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2527 if (cvalue && value)
2529 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2530 gdb_value_subscript (value, real_index, cvalue);
2534 *ctype = get_target_type (type);
2536 if (cfull_expression)
2537 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2539 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2544 case TYPE_CODE_STRUCT:
2545 case TYPE_CODE_UNION:
2547 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2549 if (cvalue && value)
2551 /* For C, varobj index is the same as type index. */
2552 *cvalue = value_struct_element_index (value, index);
2556 *ctype = TYPE_FIELD_TYPE (type, index);
2558 if (cfull_expression)
2560 char *join = was_ptr ? "->" : ".";
2561 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2562 TYPE_FIELD_NAME (type, index));
2569 *cname = xstrprintf ("*%s", parent->name);
2571 if (cvalue && value)
2573 int success = gdb_value_ind (value, cvalue);
2578 /* Don't use get_target_type because it calls
2579 check_typedef and here, we want to show the true
2580 declared type of the variable. */
2582 *ctype = TYPE_TARGET_TYPE (type);
2584 if (cfull_expression)
2585 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2590 /* This should not happen */
2592 *cname = xstrdup ("???");
2593 if (cfull_expression)
2594 *cfull_expression = xstrdup ("???");
2595 /* Don't set value and type, we don't know then. */
2600 c_name_of_child (struct varobj *parent, int index)
2603 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2608 c_path_expr_of_child (struct varobj *child)
2610 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2612 return child->path_expr;
2615 /* If frame associated with VAR can be found, switch
2616 to it and return 1. Otherwise, return 0. */
2618 check_scope (struct varobj *var)
2620 struct frame_info *fi;
2623 fi = frame_find_by_id (var->root->frame);
2628 CORE_ADDR pc = get_frame_pc (fi);
2629 if (pc < BLOCK_START (var->root->valid_block) ||
2630 pc >= BLOCK_END (var->root->valid_block))
2638 static struct value *
2639 c_value_of_root (struct varobj **var_handle)
2641 struct value *new_val = NULL;
2642 struct varobj *var = *var_handle;
2643 struct frame_info *fi;
2644 int within_scope = 0;
2645 struct cleanup *back_to;
2647 /* Only root variables can be updated... */
2648 if (!is_root_p (var))
2649 /* Not a root var */
2652 back_to = make_cleanup_restore_current_thread ();
2654 /* Determine whether the variable is still around. */
2655 if (var->root->valid_block == NULL || var->root->floating)
2657 else if (var->root->thread_id == 0)
2659 /* The program was single-threaded when the variable object was
2660 created. Technically, it's possible that the program became
2661 multi-threaded since then, but we don't support such
2663 within_scope = check_scope (var);
2667 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2668 if (in_thread_list (ptid))
2670 switch_to_thread (ptid);
2671 within_scope = check_scope (var);
2677 /* We need to catch errors here, because if evaluate
2678 expression fails we want to just return NULL. */
2679 gdb_evaluate_expression (var->root->exp, &new_val);
2683 do_cleanups (back_to);
2688 static struct value *
2689 c_value_of_child (struct varobj *parent, int index)
2691 struct value *value = NULL;
2692 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2697 static struct type *
2698 c_type_of_child (struct varobj *parent, int index)
2700 struct type *type = NULL;
2701 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2706 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2708 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2709 it will print out its children instead of "{...}". So we need to
2710 catch that case explicitly. */
2711 struct type *type = get_type (var);
2713 /* If we have a custom formatter, return whatever string it has
2715 if (var->pretty_printer && var->print_value)
2716 return xstrdup (var->print_value);
2718 /* Strip top-level references. */
2719 while (TYPE_CODE (type) == TYPE_CODE_REF)
2720 type = check_typedef (TYPE_TARGET_TYPE (type));
2722 switch (TYPE_CODE (type))
2724 case TYPE_CODE_STRUCT:
2725 case TYPE_CODE_UNION:
2726 return xstrdup ("{...}");
2729 case TYPE_CODE_ARRAY:
2732 number = xstrprintf ("[%d]", var->num_children);
2739 if (var->value == NULL)
2741 /* This can happen if we attempt to get the value of a struct
2742 member when the parent is an invalid pointer. This is an
2743 error condition, so we should tell the caller. */
2748 if (var->not_fetched && value_lazy (var->value))
2749 /* Frozen variable and no value yet. We don't
2750 implicitly fetch the value. MI response will
2751 use empty string for the value, which is OK. */
2754 gdb_assert (varobj_value_is_changeable_p (var));
2755 gdb_assert (!value_lazy (var->value));
2757 /* If the specified format is the current one,
2758 we can reuse print_value */
2759 if (format == var->format)
2760 return xstrdup (var->print_value);
2762 return value_get_print_value (var->value, format, var);
2772 cplus_number_of_children (struct varobj *var)
2775 int children, dont_know;
2780 if (!CPLUS_FAKE_CHILD (var))
2782 type = get_value_type (var);
2783 adjust_value_for_child_access (NULL, &type, NULL);
2785 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2786 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2790 cplus_class_num_children (type, kids);
2791 if (kids[v_public] != 0)
2793 if (kids[v_private] != 0)
2795 if (kids[v_protected] != 0)
2798 /* Add any baseclasses */
2799 children += TYPE_N_BASECLASSES (type);
2802 /* FIXME: save children in var */
2809 type = get_value_type (var->parent);
2810 adjust_value_for_child_access (NULL, &type, NULL);
2812 cplus_class_num_children (type, kids);
2813 if (strcmp (var->name, "public") == 0)
2814 children = kids[v_public];
2815 else if (strcmp (var->name, "private") == 0)
2816 children = kids[v_private];
2818 children = kids[v_protected];
2823 children = c_number_of_children (var);
2828 /* Compute # of public, private, and protected variables in this class.
2829 That means we need to descend into all baseclasses and find out
2830 how many are there, too. */
2832 cplus_class_num_children (struct type *type, int children[3])
2836 children[v_public] = 0;
2837 children[v_private] = 0;
2838 children[v_protected] = 0;
2840 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2842 /* If we have a virtual table pointer, omit it. */
2843 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2846 if (TYPE_FIELD_PROTECTED (type, i))
2847 children[v_protected]++;
2848 else if (TYPE_FIELD_PRIVATE (type, i))
2849 children[v_private]++;
2851 children[v_public]++;
2856 cplus_name_of_variable (struct varobj *parent)
2858 return c_name_of_variable (parent);
2861 enum accessibility { private_field, protected_field, public_field };
2863 /* Check if field INDEX of TYPE has the specified accessibility.
2864 Return 0 if so and 1 otherwise. */
2866 match_accessibility (struct type *type, int index, enum accessibility acc)
2868 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2870 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2872 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2873 && !TYPE_FIELD_PROTECTED (type, index))
2880 cplus_describe_child (struct varobj *parent, int index,
2881 char **cname, struct value **cvalue, struct type **ctype,
2882 char **cfull_expression)
2885 struct value *value;
2888 char *parent_expression = NULL;
2896 if (cfull_expression)
2897 *cfull_expression = NULL;
2899 if (CPLUS_FAKE_CHILD (parent))
2901 value = parent->parent->value;
2902 type = get_value_type (parent->parent);
2903 if (cfull_expression)
2904 parent_expression = varobj_get_path_expr (parent->parent);
2908 value = parent->value;
2909 type = get_value_type (parent);
2910 if (cfull_expression)
2911 parent_expression = varobj_get_path_expr (parent);
2914 adjust_value_for_child_access (&value, &type, &was_ptr);
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2917 || TYPE_CODE (type) == TYPE_CODE_UNION)
2919 char *join = was_ptr ? "->" : ".";
2920 if (CPLUS_FAKE_CHILD (parent))
2922 /* The fields of the class type are ordered as they
2923 appear in the class. We are given an index for a
2924 particular access control type ("public","protected",
2925 or "private"). We must skip over fields that don't
2926 have the access control we are looking for to properly
2927 find the indexed field. */
2928 int type_index = TYPE_N_BASECLASSES (type);
2929 enum accessibility acc = public_field;
2930 if (strcmp (parent->name, "private") == 0)
2931 acc = private_field;
2932 else if (strcmp (parent->name, "protected") == 0)
2933 acc = protected_field;
2937 if (TYPE_VPTR_BASETYPE (type) == type
2938 && type_index == TYPE_VPTR_FIELDNO (type))
2940 else if (match_accessibility (type, type_index, acc))
2947 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2949 if (cvalue && value)
2950 *cvalue = value_struct_element_index (value, type_index);
2953 *ctype = TYPE_FIELD_TYPE (type, type_index);
2955 if (cfull_expression)
2956 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2958 TYPE_FIELD_NAME (type, type_index));
2960 else if (index < TYPE_N_BASECLASSES (type))
2962 /* This is a baseclass. */
2964 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2966 if (cvalue && value)
2968 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2969 release_value (*cvalue);
2974 *ctype = TYPE_FIELD_TYPE (type, index);
2977 if (cfull_expression)
2979 char *ptr = was_ptr ? "*" : "";
2980 /* Cast the parent to the base' type. Note that in gdb,
2983 will create an lvalue, for all appearences, so we don't
2984 need to use more fancy:
2987 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2989 TYPE_FIELD_NAME (type, index),
2996 char *access = NULL;
2998 cplus_class_num_children (type, children);
3000 /* Everything beyond the baseclasses can
3001 only be "public", "private", or "protected"
3003 The special "fake" children are always output by varobj in
3004 this order. So if INDEX == 2, it MUST be "protected". */
3005 index -= TYPE_N_BASECLASSES (type);
3009 if (children[v_public] > 0)
3011 else if (children[v_private] > 0)
3014 access = "protected";
3017 if (children[v_public] > 0)
3019 if (children[v_private] > 0)
3022 access = "protected";
3024 else if (children[v_private] > 0)
3025 access = "protected";
3028 /* Must be protected */
3029 access = "protected";
3036 gdb_assert (access);
3038 *cname = xstrdup (access);
3040 /* Value and type and full expression are null here. */
3045 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3050 cplus_name_of_child (struct varobj *parent, int index)
3053 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3058 cplus_path_expr_of_child (struct varobj *child)
3060 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3062 return child->path_expr;
3065 static struct value *
3066 cplus_value_of_root (struct varobj **var_handle)
3068 return c_value_of_root (var_handle);
3071 static struct value *
3072 cplus_value_of_child (struct varobj *parent, int index)
3074 struct value *value = NULL;
3075 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3079 static struct type *
3080 cplus_type_of_child (struct varobj *parent, int index)
3082 struct type *type = NULL;
3083 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3088 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3091 /* If we have one of our special types, don't print out
3093 if (CPLUS_FAKE_CHILD (var))
3094 return xstrdup ("");
3096 return c_value_of_variable (var, format);
3102 java_number_of_children (struct varobj *var)
3104 return cplus_number_of_children (var);
3108 java_name_of_variable (struct varobj *parent)
3112 name = cplus_name_of_variable (parent);
3113 /* If the name has "-" in it, it is because we
3114 needed to escape periods in the name... */
3117 while (*p != '\000')
3128 java_name_of_child (struct varobj *parent, int index)
3132 name = cplus_name_of_child (parent, index);
3133 /* Escape any periods in the name... */
3136 while (*p != '\000')
3147 java_path_expr_of_child (struct varobj *child)
3152 static struct value *
3153 java_value_of_root (struct varobj **var_handle)
3155 return cplus_value_of_root (var_handle);
3158 static struct value *
3159 java_value_of_child (struct varobj *parent, int index)
3161 return cplus_value_of_child (parent, index);
3164 static struct type *
3165 java_type_of_child (struct varobj *parent, int index)
3167 return cplus_type_of_child (parent, index);
3171 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3173 return cplus_value_of_variable (var, format);
3176 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3177 with an arbitrary caller supplied DATA pointer. */
3180 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3182 struct varobj_root *var_root, *var_root_next;
3184 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3186 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3188 var_root_next = var_root->next;
3190 (*func) (var_root->rootvar, data);
3194 extern void _initialize_varobj (void);
3196 _initialize_varobj (void)
3198 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3200 varobj_table = xmalloc (sizeof_table);
3201 memset (varobj_table, 0, sizeof_table);
3203 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3205 Set varobj debugging."), _("\
3206 Show varobj debugging."), _("\
3207 When non-zero, varobj debugging is enabled."),
3210 &setlist, &showlist);
3213 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3214 defined on globals. It is a helper for varobj_invalidate. */
3217 varobj_invalidate_iter (struct varobj *var, void *unused)
3219 /* Floating varobjs are reparsed on each stop, so we don't care if the
3220 presently parsed expression refers to something that's gone. */
3221 if (var->root->floating)
3224 /* global var must be re-evaluated. */
3225 if (var->root->valid_block == NULL)
3227 struct varobj *tmp_var;
3229 /* Try to create a varobj with same expression. If we succeed
3230 replace the old varobj, otherwise invalidate it. */
3231 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3233 if (tmp_var != NULL)
3235 tmp_var->obj_name = xstrdup (var->obj_name);
3236 varobj_delete (var, NULL, 0);
3237 install_variable (tmp_var);
3240 var->root->is_valid = 0;
3242 else /* locals must be invalidated. */
3243 var->root->is_valid = 0;
3246 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3247 are defined on globals.
3248 Invalidated varobjs will be always printed in_scope="invalid". */
3251 varobj_invalidate (void)
3253 all_root_varobjs (varobj_invalidate_iter, NULL);