1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
61 #include "typeprint.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
78 static struct type *desc_base_type (struct type *);
80 static struct type *desc_bounds_type (struct type *);
82 static struct value *desc_bounds (struct value *);
84 static int fat_pntr_bounds_bitpos (struct type *);
86 static int fat_pntr_bounds_bitsize (struct type *);
88 static struct type *desc_data_target_type (struct type *);
90 static struct value *desc_data (struct value *);
92 static int fat_pntr_data_bitpos (struct type *);
94 static int fat_pntr_data_bitsize (struct type *);
96 static struct value *desc_one_bound (struct value *, int, int);
98 static int desc_bound_bitpos (struct type *, int, int);
100 static int desc_bound_bitsize (struct type *, int, int);
102 static struct type *desc_index_type (struct type *, int);
104 static int desc_arity (struct type *);
106 static int ada_type_match (struct type *, struct type *, int);
108 static int ada_args_match (struct symbol *, struct value **, int);
110 static int full_match (const char *, const char *);
112 static struct value *make_array_descriptor (struct type *, struct value *);
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
118 static int is_nonfunction (struct ada_symbol_info *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 static int num_defns_collected (struct obstack *);
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (struct expression **, int *, int,
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static struct value *get_var_value (char *, char *);
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
202 static int equiv_types (struct type *, struct type *);
204 static int is_name_suffix (const char *);
206 static int advance_wild_match (const char **, const char *, int);
208 static int wild_match (const char *, const char *);
210 static struct value *ada_coerce_ref (struct value *);
212 static LONGEST pos_atr (struct value *);
214 static struct value *value_pos_atr (struct type *, struct value *);
216 static struct value *value_val_atr (struct type *, struct value *);
218 static struct symbol *standard_lookup (const char *, const struct block *,
221 static struct value *ada_search_struct_field (char *, struct value *, int,
224 static struct value *ada_value_primitive_field (struct value *, int, int,
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
237 static int ada_is_direct_array_type (struct type *);
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
242 static void check_size (const struct type *);
244 static struct value *ada_index_struct_field (int, struct value *, int,
247 static struct value *assign_aggregate (struct value *, struct value *,
251 static void aggregate_assign_from_choices (struct value *, struct value *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
256 static void aggregate_assign_positional (struct value *, struct value *,
258 int *, LONGEST *, int *, int,
262 static void aggregate_assign_others (struct value *, struct value *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
273 static void ada_forward_operator_length (struct expression *, int, int *,
276 static struct type *ada_find_any_type (const char *name);
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
314 /* Inferior-specific data. */
316 /* Per-inferior data for this module. */
318 struct ada_inferior_data
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
329 const struct exception_support_info *exception_info;
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
335 /* A cleanup routine for our inferior data. */
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
339 struct ada_inferior_data *data;
341 data = inferior_data (inf, ada_inferior_data);
346 /* Return our inferior data for the given inferior (INF).
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
357 struct ada_inferior_data *data;
359 data = inferior_data (inf, ada_inferior_data);
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
373 ada_inferior_exit (struct inferior *inf)
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
409 ada_typedef_target_type (struct type *type)
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
421 ada_unqualified_name (const char *decoded_name)
423 const char *result = strrchr (decoded_name, '.');
426 result++; /* Skip the dot... */
428 result = decoded_name;
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
437 add_angle_brackets (const char *str)
439 static char *result = NULL;
442 result = xstrprintf ("<%s>", str);
447 ada_get_gdb_completer_word_break_characters (void)
449 return ada_completer_word_break_characters;
452 /* Print an array element index using the Ada syntax. */
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
469 if (*size < min_size)
472 if (*size < min_size)
474 vect = xrealloc (vect, *size * element_size);
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
483 field_name_match (const char *field_name, const char *target)
485 int len = strlen (target);
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
505 ada_get_field_index (const struct type *type, const char *field_name,
509 struct type *struct_type = check_typedef ((struct type *) type);
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
522 /* The length of the prefix of NAME prior to any "___" suffix. */
525 ada_name_prefix_len (const char *name)
531 const char *p = strstr (name, "___");
534 return strlen (name);
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
544 is_suffix (const char *str, const char *suffix)
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
566 struct value *result;
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out_const (val));
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
596 return valaddr + offset;
600 cond_offset_target (CORE_ADDR address, long offset)
605 return address + offset;
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
618 lim_warning (const char *format, ...)
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
635 check_size (const struct type *type)
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
641 /* Maximum value of a SIZE-byte signed integer type. */
643 max_of_size (int size)
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
647 return top_bit | (top_bit - 1);
650 /* Minimum value of a SIZE-byte signed integer type. */
652 min_of_size (int size)
654 return -max_of_size (size) - 1;
657 /* Maximum value of a SIZE-byte unsigned integer type. */
659 umax_of_size (int size)
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
663 return top_bit | (top_bit - 1);
666 /* Maximum value of integral type T, as a signed quantity. */
668 max_of_type (struct type *t)
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
673 return max_of_size (TYPE_LENGTH (t));
676 /* Minimum value of integral type T, as a signed quantity. */
678 min_of_type (struct type *t)
680 if (TYPE_UNSIGNED (t))
683 return min_of_size (TYPE_LENGTH (t));
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
688 ada_discrete_type_high_bound (struct type *type)
690 switch (TYPE_CODE (type))
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
700 return max_of_type (type);
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
708 ada_discrete_type_low_bound (struct type *type)
710 switch (TYPE_CODE (type))
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
715 return TYPE_FIELD_ENUMVAL (type, 0);
720 return min_of_type (type);
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
730 get_base_type (struct type *type)
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
736 type = TYPE_TARGET_TYPE (type);
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
747 ada_get_decoded_value (struct value *value)
749 struct type *type = ada_check_typedef (value_type (value));
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
758 value = ada_coerce_to_simple_array (value);
761 value = ada_to_fixed_value (value);
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
772 ada_get_decoded_type (struct type *type)
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
782 /* Language Selection */
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
788 ada_update_initial_language (enum language lang)
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
816 CORE_ADDR main_program_name_addr;
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
829 return main_program_name;
832 /* The main procedure doesn't seem to be in Ada. */
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
870 ada_encode (const char *decoded)
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
884 for (p = decoded; *p != '\0'; p += 1)
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
893 const struct ada_opname_map *mapping;
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
908 encoding_buffer[k] = *p;
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
922 ada_fold_name (const char *name)
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
949 is_lower_alphanum (const char c)
951 return (isdigit (c) || (isalpha (c) && islower (c)));
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
967 ada_remove_trailing_digits (const char *encoded, int *len)
969 if (*len > 1 && isdigit (encoded[*len - 1]))
973 while (i > 0 && isdigit (encoded[i]))
975 if (i >= 0 && encoded[i] == '.')
977 else if (i >= 0 && encoded[i] == '$')
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
986 /* Remove the suffix introduced by the compiler for protected object
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
992 /* Remove trailing N. */
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1018 if (encoded[i] != 'X')
1024 if (isalnum (encoded[i-1]))
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1037 ada_decode (const char *encoded)
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1059 len0 = strlen (encoded);
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1097 /* Make decoded big enough for possible expansion by operator name. */
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1112 else if (encoded[i] == '$')
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1135 && !isalnum (encoded[i + op_len]))
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1140 j += strlen (ada_opname_table[k].decoded);
1144 if (ada_opname_table[k].encoded != NULL)
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1174 /* Remove _E{DIGITS}+[sb] */
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1192 while (k < len0 && isdigit (encoded[k]))
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1203 || (k < len0 && encoded[k] == '_'))
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1243 /* Replace '__' by '.'. */
1251 /* It's a character part of the decoded name, so just copy it
1253 decoded[j] = encoded[i];
1258 decoded[j] = '\000';
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1267 if (strcmp (decoded, encoded) == 0)
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1301 ada_decode_symbol (const struct general_symbol_info *arg)
1303 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1304 const char **resultp =
1305 &gsymbol->language_specific.mangled_lang.demangled_name;
1307 if (!gsymbol->ada_mangled)
1309 const char *decoded = ada_decode (gsymbol->name);
1310 struct obstack *obstack = gsymbol->language_specific.obstack;
1312 gsymbol->ada_mangled = 1;
1314 if (obstack != NULL)
1315 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1318 /* Sometimes, we can't find a corresponding objfile, in
1319 which case, we put the result on the heap. Since we only
1320 decode when needed, we hope this usually does not cause a
1321 significant memory leak (FIXME). */
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1327 *slot = xstrdup (decoded);
1336 ada_la_decode (const char *encoded, int options)
1338 return xstrdup (ada_decode (encoded));
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1349 match_name (const char *sym_name, const char *name, int wild)
1351 if (sym_name == NULL || name == NULL)
1354 return wild_match (sym_name, name) == 0;
1357 int len_name = strlen (name);
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1398 if (index_desc_type == NULL)
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1432 /* Maximum number of array dimensions we are prepared to handle. */
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1437 /* The desc_* routines return primitive portions of array descriptors
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1443 static struct type *
1444 desc_base_type (struct type *type)
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1463 is_thin_pntr (struct type *type)
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1470 /* The descriptor type for thin pointer type TYPE. */
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1475 struct type *base_type = desc_base_type (type);
1477 if (base_type == NULL)
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1485 if (alt_type == NULL)
1492 /* A pointer to the array data for thin-pointer value VAL. */
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1500 data_type = lookup_pointer_type (data_type);
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1505 return value_from_longest (data_type, value_address (val));
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1511 is_thick_pntr (struct type *type)
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1526 type = desc_base_type (type);
1530 else if (is_thin_pntr (type))
1532 type = thin_descriptor_type (type);
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1537 return ada_check_typedef (r);
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1551 static struct value *
1552 desc_bounds (struct value *arr)
1554 struct type *type = ada_check_typedef (value_type (arr));
1556 if (is_thin_pntr (type))
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1571 addr = value_address (arr);
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1578 else if (is_thick_pntr (type))
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1595 error (_("Bad GNAT array descriptor"));
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1607 fat_pntr_bounds_bitpos (struct type *type)
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1616 fat_pntr_bounds_bitsize (struct type *type)
1618 type = desc_base_type (type);
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1634 type = desc_base_type (type);
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1654 static struct value *
1655 desc_data (struct value *arr)
1657 struct type *type = value_type (arr);
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1673 fat_pntr_data_bitpos (struct type *type)
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1682 fat_pntr_data_bitsize (struct type *type)
1684 type = desc_base_type (type);
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1708 desc_bound_bitpos (struct type *type, int i, int which)
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1718 desc_bound_bitsize (struct type *type, int i, int which)
1720 type = desc_base_type (type);
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1734 type = desc_base_type (type);
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1746 desc_arity (struct type *type)
1748 type = desc_base_type (type);
1751 return TYPE_NFIELDS (type) / 2;
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1760 ada_is_direct_array_type (struct type *type)
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1773 ada_is_array_type (struct type *type)
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1785 ada_is_simple_array_type (struct type *type)
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1799 ada_is_array_descriptor_type (struct type *type)
1801 struct type *data_type = desc_data_target_type (type);
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1817 ada_is_bogus_array_descriptor (struct type *type)
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1836 ada_type_of_array (struct value *arr, int bounds)
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1857 struct type *elt_type;
1859 struct value *descriptor;
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1905 return lookup_pointer_type (elt_type);
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1919 struct type *arrType = ada_type_of_array (arr, 1);
1921 if (arrType == NULL)
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1936 ada_coerce_to_simple_array (struct value *arr)
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1958 ada_coerce_to_simple_array_type (struct type *type)
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1972 ada_is_packed_array_type (struct type *type)
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1987 ada_is_constrained_packed_array_type (struct type *type)
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2007 decode_packed_array_bitsize (struct type *type)
2009 const char *raw_name;
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2019 raw_name = ada_type_name (ada_check_typedef (type));
2021 raw_name = ada_type_name (desc_base_type (type));
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2032 (_("could not understand bit size information on packed array"));
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2066 index_type = TYPE_INDEX_TYPE (type);
2068 new_type = alloc_type_copy (type);
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2100 struct type *shadow_type;
2104 raw_name = ada_type_name (desc_base_type (type));
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2118 if (shadow_type == NULL)
2120 lim_warning (_("could not find bounds information on packed array"));
2123 CHECK_TYPEDEF (shadow_type);
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2147 arr = ada_coerce_ref (arr);
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2158 type = decode_constrained_packed_array_type (value_type (arr));
2161 error (_("can't unpack array"));
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2175 mod = ada_modulus (value_type (arr)) - 1;
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2190 return coerce_unspec_val_to_type (arr, type);
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2245 /* Non-zero iff TYPE includes negative integer values. */
2248 has_negatives (struct type *type)
2250 switch (TYPE_CODE (type))
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2293 type = ada_check_typedef (type);
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2314 long new_offset = offset;
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2324 set_value_offset (v, new_offset);
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2334 srcBitsLeft = bit_size;
2336 ntarg = TYPE_LENGTH (type);
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2354 switch (TYPE_CODE (type))
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2369 targ = TYPE_LENGTH (type) - 1;
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2378 unusedLS = bit_offset;
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2441 accum = (unsigned char) *source;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 accum_bits -= chunk_size;
2468 accum = (unsigned char) *source >> src_offset;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2513 if (VALUE_LVAL (toval) == lval_memory
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2521 gdb_byte *buffer = alloca (len);
2523 CORE_ADDR to_addr = value_address (toval);
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2548 return value_assign (toval, fromval);
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2558 value_assign_to_component (struct value *container, struct value *component,
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2567 val = value_cast (value_type (component), val);
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 bits = value_bitsize (component);
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2595 struct type *elt_type;
2597 elt = ada_coerce_to_simple_array (arr);
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2604 for (k = 0; k < arity; k += 1)
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2623 for (k = 0; k < arity; k += 1)
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2636 return value_ind (arr);
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2657 return value_at_lazy (slice_type, base);
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2679 ada_array_arity (struct type *type)
2686 type = desc_base_type (type);
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2707 ada_array_element_type (struct type *type, int nindices)
2709 type = desc_base_type (type);
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2714 struct type *p_array_type;
2716 p_array_type = desc_data_target_type (type);
2718 k = ada_array_arity (type);
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2725 while (k > 0 && p_array_type != NULL)
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2730 return p_array_type;
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 type = TYPE_TARGET_TYPE (type);
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2754 struct type *result_type;
2756 type = desc_base_type (type);
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2761 if (ada_is_simple_array_type (type))
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2796 gdb_assert (which == 0 || which == 1);
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2833 ada_array_bound (struct value *arr, int n, int which)
2835 struct type *arr_type = value_type (arr);
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2852 ada_array_length (struct value *arr, int n)
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2883 /* Name resolution */
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2889 ada_decoded_op_name (enum exp_opcode op)
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2898 error (_("Could not find operator name for opcode"));
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2912 resolve (struct expression **expp, int void_context_p)
2914 struct type *context_type = NULL;
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920 resolve_subexp (expp, &pc, 1, context_type);
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2959 resolve_subexp (expp, pos, 0, NULL);
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2966 resolve_subexp (expp, pos, 0, NULL);
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2974 case OP_ATR_MODULUS:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2991 case OP_DISCRETE_RANGE:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 resolve_subexp (expp, pos, 1, NULL);
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3030 case BINOP_NOTEQUAL:
3037 case BINOP_SUBSCRIPT:
3045 case UNOP_LOGICAL_NOT:
3061 case OP_INTERNALVAR:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3088 error (_("Unexpected operator during name resolution"));
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3097 /* Pass two: perform any resolution on principal operator. */
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3106 struct ada_symbol_info *candidates;
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3115 if (n_candidates > 1)
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3127 case LOC_REGPARM_ADDR:
3135 if (j < n_candidates)
3138 while (j < n_candidates)
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 candidates[j] = candidates[n_candidates - 1];
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3198 struct ada_symbol_info *candidates;
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3206 if (n_candidates == 1)
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3239 case BINOP_NOTEQUAL:
3247 case UNOP_LOGICAL_NOT:
3249 if (possible_user_operator_p (op, argvec))
3251 struct ada_symbol_info *candidates;
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3275 return evaluate_subexp_type (exp, pos);
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3281 /* The term "match" here is rather loose. The match is heuristic and
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3295 switch (TYPE_CODE (ftype))
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3331 case TYPE_CODE_UNION:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3346 struct type *func_type = SYMBOL_TYPE (func);
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3357 for (i = 0; i < n_actuals; i += 1)
3359 if (actuals[i] == NULL)
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3367 if (!ada_type_match (ftype, atype, 1))
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3380 return_match (struct type *func_type, struct type *context_type)
3382 struct type *return_type;
3384 if (func_type == NULL)
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3394 context_type = get_base_type (context_type);
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3424 int m; /* Number of hits */
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3432 for (k = 0; k < nsyms; k += 1)
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3463 encoded_ordered_before (const char *N0, const char *N1)
3467 else if (N0 == NULL)
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 return (strcmp (N0, N1) < 0);
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3503 for (i = 1; i < nsyms; i += 1)
3505 struct ada_symbol_info sym = syms[i];
3508 for (j = i - 1; j >= 0; j -= 1)
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 syms[j + 1] = syms[j];
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3541 if (select_mode == multiple_symbols_cancel)
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3556 sort_choices (syms, nsyms);
3558 for (i = 0; i < nsyms; i += 1)
3560 if (syms[i].sym == NULL)
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 symtab_to_filename_for_display (sal.symtab),
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3597 printf_unfiltered (("[%d] "), i + first_choice);
3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3599 gdb_stdout, -1, 0, &type_print_raw_options);
3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
3608 SYMBOL_PRINT_NAME (syms[i].sym),
3609 symtab_to_filename_for_display (symtab));
3611 printf_unfiltered (is_enumeral
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3622 for (i = 0; i < n_chosen; i += 1)
3623 syms[i] = syms[chosen[i]];
3628 /* Read and validate a set of numeric choices from the user in the
3629 range 0 .. N_CHOICES-1. Place the results in increasing
3630 order in CHOICES[0 .. N-1], and return N.
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3635 + A choice of 0 means to cancel the selection, throwing an error.
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3639 The user is not allowed to choose more than MAX_RESULTS values.
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
3642 prompts (for use with the -f switch). */
3645 get_selections (int *choices, int n_choices, int max_results,
3646 int is_all_choice, char *annotation_suffix)
3651 int first_choice = is_all_choice ? 2 : 1;
3653 prompt = getenv ("PS2");
3657 args = command_line_input (prompt, 0, annotation_suffix);
3660 error_no_arg (_("one or more choice numbers"));
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
3671 args = skip_spaces (args);
3672 if (*args == '\0' && n_chosen == 0)
3673 error_no_arg (_("one or more choice numbers"));
3674 else if (*args == '\0')
3677 choice = strtol (args, &args2, 10);
3678 if (args == args2 || choice < 0
3679 || choice > n_choices + first_choice - 1)
3680 error (_("Argument must be choice number"));
3684 error (_("cancelled"));
3686 if (choice < first_choice)
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3693 choice -= first_choice;
3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3699 if (j < 0 || choice != choices[j])
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3710 if (n_chosen > max_results)
3711 error (_("Select no more than %d of the above"), max_results);
3716 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
3721 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3722 int oplen, struct symbol *sym,
3723 const struct block *block)
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3726 symbol, -oplen for operator being replaced). */
3727 struct expression *newexp = (struct expression *)
3728 xzalloc (sizeof (struct expression)
3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3730 struct expression *exp = *expp;
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3734 newexp->gdbarch = exp->gdbarch;
3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3750 /* Type-class predicates */
3752 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3756 numeric_type_p (struct type *type)
3762 switch (TYPE_CODE (type))
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3776 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3779 integer_type_p (struct type *type)
3785 switch (TYPE_CODE (type))
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3798 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3801 scalar_type_p (struct type *type)
3807 switch (TYPE_CODE (type))
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3820 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3823 discrete_type_p (struct type *type)
3829 switch (TYPE_CODE (type))
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_BOOL:
3842 /* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
3847 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3849 struct type *type0 =
3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3851 struct type *type1 =
3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
3876 case BINOP_NOTEQUAL:
3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3891 case UNOP_LOGICAL_NOT:
3893 return (!numeric_type_p (type0));
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3912 /* If SYM encodes a renaming,
3914 <renaming> renames <renamed entity>,
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3931 enum ada_renaming_category
3932 ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3936 enum ada_renaming_category kind;
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
3945 return ADA_NOT_RENAMING;
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3955 return ADA_NOT_RENAMING;
3959 kind = ADA_OBJECT_RENAMING;
3963 kind = ADA_EXCEPTION_RENAMING;
3967 kind = ADA_PACKAGE_RENAMING;
3971 kind = ADA_SUBPROGRAM_RENAMING;
3975 return ADA_NOT_RENAMING;
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3985 *len = strlen (info) - strlen (suffix);
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3992 /* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996 static enum ada_renaming_category
3997 parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4001 enum ada_renaming_category kind;
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
4010 name = type_name_no_tag (type);
4012 return ADA_NOT_RENAMING;
4014 name = strstr (name, "___XR");
4016 return ADA_NOT_RENAMING;
4021 kind = ADA_OBJECT_RENAMING;
4024 kind = ADA_EXCEPTION_RENAMING;
4027 kind = ADA_PACKAGE_RENAMING;
4030 kind = ADA_SUBPROGRAM_RENAMING;
4033 return ADA_NOT_RENAMING;
4036 info = TYPE_FIELD_NAME (type, 0);
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4047 *len = suffix - info;
4051 /* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
4055 static struct value *
4056 ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4059 const char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4064 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 old_chain = make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4069 do_cleanups (old_chain);
4074 /* Evaluation: Function Calls */
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4080 static struct value *
4081 ensure_lval (struct value *val)
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4121 struct value *result;
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4128 if (VALUE_LVAL (actual) != lval_memory)
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4139 result = value_addr (actual);
4143 return value_cast_pointers (formal_type, result, 0);
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4157 value_pointer (struct value *value, struct type *type)
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4199 bounds = ensure_lval (bounds);
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4215 descriptor = ensure_lval (descriptor);
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4248 should_use_wild_match (const char *lookup_name)
4250 return (strstr (lookup_name, "__") == NULL);
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4292 equiv_types (struct type *type0, struct type *type1)
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4320 switch (SYMBOL_CLASS (sym0))
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4350 add_defn_to_vec (struct obstack *obstackp,
4352 struct block *block)
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4379 struct ada_symbol_info info;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4391 num_defns_collected (struct obstack *obstackp)
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4404 return obstack_finish (obstackp);
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4409 /* Return a bound minimal symbol matching NAME according to Ada
4410 decoding rules. Returns an invalid symbol if there is no such
4411 minimal symbol. Names prefixed with "standard__" are handled
4412 specially: "standard__" is first stripped off, and only static and
4413 global symbols are searched. */
4415 struct bound_minimal_symbol
4416 ada_lookup_simple_minsym (const char *name)
4418 struct bound_minimal_symbol result;
4419 struct objfile *objfile;
4420 struct minimal_symbol *msymbol;
4421 const int wild_match_p = should_use_wild_match (name);
4423 memset (&result, 0, sizeof (result));
4425 /* Special case: If the user specifies a symbol name inside package
4426 Standard, do a non-wild matching of the symbol name without
4427 the "standard__" prefix. This was primarily introduced in order
4428 to allow the user to specifically access the standard exceptions
4429 using, for instance, Standard.Constraint_Error when Constraint_Error
4430 is ambiguous (due to the user defining its own Constraint_Error
4431 entity inside its program). */
4432 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4433 name += sizeof ("standard__") - 1;
4435 ALL_MSYMBOLS (objfile, msymbol)
4437 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4438 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4440 result.minsym = msymbol;
4441 result.objfile = objfile;
4449 /* For all subprograms that statically enclose the subprogram of the
4450 selected frame, add symbols matching identifier NAME in DOMAIN
4451 and their blocks to the list of data in OBSTACKP, as for
4452 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4453 with a wildcard prefix. */
4456 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4457 const char *name, domain_enum namespace,
4462 /* True if TYPE is definitely an artificial type supplied to a symbol
4463 for which no debugging information was given in the symbol file. */
4466 is_nondebugging_type (struct type *type)
4468 const char *name = ada_type_name (type);
4470 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4473 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4474 that are deemed "identical" for practical purposes.
4476 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4477 types and that their number of enumerals is identical (in other
4478 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4481 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4485 /* The heuristic we use here is fairly conservative. We consider
4486 that 2 enumerate types are identical if they have the same
4487 number of enumerals and that all enumerals have the same
4488 underlying value and name. */
4490 /* All enums in the type should have an identical underlying value. */
4491 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4492 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4495 /* All enumerals should also have the same name (modulo any numerical
4497 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4499 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4500 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4501 int len_1 = strlen (name_1);
4502 int len_2 = strlen (name_2);
4504 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4505 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4507 || strncmp (TYPE_FIELD_NAME (type1, i),
4508 TYPE_FIELD_NAME (type2, i),
4516 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4517 that are deemed "identical" for practical purposes. Sometimes,
4518 enumerals are not strictly identical, but their types are so similar
4519 that they can be considered identical.
4521 For instance, consider the following code:
4523 type Color is (Black, Red, Green, Blue, White);
4524 type RGB_Color is new Color range Red .. Blue;
4526 Type RGB_Color is a subrange of an implicit type which is a copy
4527 of type Color. If we call that implicit type RGB_ColorB ("B" is
4528 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4529 As a result, when an expression references any of the enumeral
4530 by name (Eg. "print green"), the expression is technically
4531 ambiguous and the user should be asked to disambiguate. But
4532 doing so would only hinder the user, since it wouldn't matter
4533 what choice he makes, the outcome would always be the same.
4534 So, for practical purposes, we consider them as the same. */
4537 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4541 /* Before performing a thorough comparison check of each type,
4542 we perform a series of inexpensive checks. We expect that these
4543 checks will quickly fail in the vast majority of cases, and thus
4544 help prevent the unnecessary use of a more expensive comparison.
4545 Said comparison also expects us to make some of these checks
4546 (see ada_identical_enum_types_p). */
4548 /* Quick check: All symbols should have an enum type. */
4549 for (i = 0; i < nsyms; i++)
4550 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4553 /* Quick check: They should all have the same value. */
4554 for (i = 1; i < nsyms; i++)
4555 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4558 /* Quick check: They should all have the same number of enumerals. */
4559 for (i = 1; i < nsyms; i++)
4560 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4561 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4564 /* All the sanity checks passed, so we might have a set of
4565 identical enumeration types. Perform a more complete
4566 comparison of the type of each symbol. */
4567 for (i = 1; i < nsyms; i++)
4568 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4569 SYMBOL_TYPE (syms[0].sym)))
4575 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4576 duplicate other symbols in the list (The only case I know of where
4577 this happens is when object files containing stabs-in-ecoff are
4578 linked with files containing ordinary ecoff debugging symbols (or no
4579 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4580 Returns the number of items in the modified list. */
4583 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4587 /* We should never be called with less than 2 symbols, as there
4588 cannot be any extra symbol in that case. But it's easy to
4589 handle, since we have nothing to do in that case. */
4598 /* If two symbols have the same name and one of them is a stub type,
4599 the get rid of the stub. */
4601 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4602 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4604 for (j = 0; j < nsyms; j++)
4607 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4608 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4609 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4610 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4615 /* Two symbols with the same name, same class and same address
4616 should be identical. */
4618 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4619 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4620 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4622 for (j = 0; j < nsyms; j += 1)
4625 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4626 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4627 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4628 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4629 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4630 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4637 for (j = i + 1; j < nsyms; j += 1)
4638 syms[j - 1] = syms[j];
4645 /* If all the remaining symbols are identical enumerals, then
4646 just keep the first one and discard the rest.
4648 Unlike what we did previously, we do not discard any entry
4649 unless they are ALL identical. This is because the symbol
4650 comparison is not a strict comparison, but rather a practical
4651 comparison. If all symbols are considered identical, then
4652 we can just go ahead and use the first one and discard the rest.
4653 But if we cannot reduce the list to a single element, we have
4654 to ask the user to disambiguate anyways. And if we have to
4655 present a multiple-choice menu, it's less confusing if the list
4656 isn't missing some choices that were identical and yet distinct. */
4657 if (symbols_are_identical_enums (syms, nsyms))
4663 /* Given a type that corresponds to a renaming entity, use the type name
4664 to extract the scope (package name or function name, fully qualified,
4665 and following the GNAT encoding convention) where this renaming has been
4666 defined. The string returned needs to be deallocated after use. */
4669 xget_renaming_scope (struct type *renaming_type)
4671 /* The renaming types adhere to the following convention:
4672 <scope>__<rename>___<XR extension>.
4673 So, to extract the scope, we search for the "___XR" extension,
4674 and then backtrack until we find the first "__". */
4676 const char *name = type_name_no_tag (renaming_type);
4677 char *suffix = strstr (name, "___XR");
4682 /* Now, backtrack a bit until we find the first "__". Start looking
4683 at suffix - 3, as the <rename> part is at least one character long. */
4685 for (last = suffix - 3; last > name; last--)
4686 if (last[0] == '_' && last[1] == '_')
4689 /* Make a copy of scope and return it. */
4691 scope_len = last - name;
4692 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4694 strncpy (scope, name, scope_len);
4695 scope[scope_len] = '\0';
4700 /* Return nonzero if NAME corresponds to a package name. */
4703 is_package_name (const char *name)
4705 /* Here, We take advantage of the fact that no symbols are generated
4706 for packages, while symbols are generated for each function.
4707 So the condition for NAME represent a package becomes equivalent
4708 to NAME not existing in our list of symbols. There is only one
4709 small complication with library-level functions (see below). */
4713 /* If it is a function that has not been defined at library level,
4714 then we should be able to look it up in the symbols. */
4715 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4718 /* Library-level function names start with "_ada_". See if function
4719 "_ada_" followed by NAME can be found. */
4721 /* Do a quick check that NAME does not contain "__", since library-level
4722 functions names cannot contain "__" in them. */
4723 if (strstr (name, "__") != NULL)
4726 fun_name = xstrprintf ("_ada_%s", name);
4728 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4731 /* Return nonzero if SYM corresponds to a renaming entity that is
4732 not visible from FUNCTION_NAME. */
4735 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4738 struct cleanup *old_chain;
4740 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4743 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4744 old_chain = make_cleanup (xfree, scope);
4746 /* If the rename has been defined in a package, then it is visible. */
4747 if (is_package_name (scope))
4749 do_cleanups (old_chain);
4753 /* Check that the rename is in the current function scope by checking
4754 that its name starts with SCOPE. */
4756 /* If the function name starts with "_ada_", it means that it is
4757 a library-level function. Strip this prefix before doing the
4758 comparison, as the encoding for the renaming does not contain
4760 if (strncmp (function_name, "_ada_", 5) == 0)
4764 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4766 do_cleanups (old_chain);
4767 return is_invisible;
4771 /* Remove entries from SYMS that corresponds to a renaming entity that
4772 is not visible from the function associated with CURRENT_BLOCK or
4773 that is superfluous due to the presence of more specific renaming
4774 information. Places surviving symbols in the initial entries of
4775 SYMS and returns the number of surviving symbols.
4778 First, in cases where an object renaming is implemented as a
4779 reference variable, GNAT may produce both the actual reference
4780 variable and the renaming encoding. In this case, we discard the
4783 Second, GNAT emits a type following a specified encoding for each renaming
4784 entity. Unfortunately, STABS currently does not support the definition
4785 of types that are local to a given lexical block, so all renamings types
4786 are emitted at library level. As a consequence, if an application
4787 contains two renaming entities using the same name, and a user tries to
4788 print the value of one of these entities, the result of the ada symbol
4789 lookup will also contain the wrong renaming type.
4791 This function partially covers for this limitation by attempting to
4792 remove from the SYMS list renaming symbols that should be visible
4793 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4794 method with the current information available. The implementation
4795 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4797 - When the user tries to print a rename in a function while there
4798 is another rename entity defined in a package: Normally, the
4799 rename in the function has precedence over the rename in the
4800 package, so the latter should be removed from the list. This is
4801 currently not the case.
4803 - This function will incorrectly remove valid renames if
4804 the CURRENT_BLOCK corresponds to a function which symbol name
4805 has been changed by an "Export" pragma. As a consequence,
4806 the user will be unable to print such rename entities. */
4809 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4810 int nsyms, const struct block *current_block)
4812 struct symbol *current_function;
4813 const char *current_function_name;
4815 int is_new_style_renaming;
4817 /* If there is both a renaming foo___XR... encoded as a variable and
4818 a simple variable foo in the same block, discard the latter.
4819 First, zero out such symbols, then compress. */
4820 is_new_style_renaming = 0;
4821 for (i = 0; i < nsyms; i += 1)
4823 struct symbol *sym = syms[i].sym;
4824 const struct block *block = syms[i].block;
4828 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4830 name = SYMBOL_LINKAGE_NAME (sym);
4831 suffix = strstr (name, "___XR");
4835 int name_len = suffix - name;
4838 is_new_style_renaming = 1;
4839 for (j = 0; j < nsyms; j += 1)
4840 if (i != j && syms[j].sym != NULL
4841 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4843 && block == syms[j].block)
4847 if (is_new_style_renaming)
4851 for (j = k = 0; j < nsyms; j += 1)
4852 if (syms[j].sym != NULL)
4860 /* Extract the function name associated to CURRENT_BLOCK.
4861 Abort if unable to do so. */
4863 if (current_block == NULL)
4866 current_function = block_linkage_function (current_block);
4867 if (current_function == NULL)
4870 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4871 if (current_function_name == NULL)
4874 /* Check each of the symbols, and remove it from the list if it is
4875 a type corresponding to a renaming that is out of the scope of
4876 the current block. */
4881 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4882 == ADA_OBJECT_RENAMING
4883 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4887 for (j = i + 1; j < nsyms; j += 1)
4888 syms[j - 1] = syms[j];
4898 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4899 whose name and domain match NAME and DOMAIN respectively.
4900 If no match was found, then extend the search to "enclosing"
4901 routines (in other words, if we're inside a nested function,
4902 search the symbols defined inside the enclosing functions).
4903 If WILD_MATCH_P is nonzero, perform the naming matching in
4904 "wild" mode (see function "wild_match" for more info).
4906 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4909 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4910 struct block *block, domain_enum domain,
4913 int block_depth = 0;
4915 while (block != NULL)
4918 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4921 /* If we found a non-function match, assume that's the one. */
4922 if (is_nonfunction (defns_collected (obstackp, 0),
4923 num_defns_collected (obstackp)))
4926 block = BLOCK_SUPERBLOCK (block);
4929 /* If no luck so far, try to find NAME as a local symbol in some lexically
4930 enclosing subprogram. */
4931 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4932 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4935 /* An object of this type is used as the user_data argument when
4936 calling the map_matching_symbols method. */
4940 struct objfile *objfile;
4941 struct obstack *obstackp;
4942 struct symbol *arg_sym;
4946 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4947 to a list of symbols. DATA0 is a pointer to a struct match_data *
4948 containing the obstack that collects the symbol list, the file that SYM
4949 must come from, a flag indicating whether a non-argument symbol has
4950 been found in the current block, and the last argument symbol
4951 passed in SYM within the current block (if any). When SYM is null,
4952 marking the end of a block, the argument symbol is added if no
4953 other has been found. */
4956 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4958 struct match_data *data = (struct match_data *) data0;
4962 if (!data->found_sym && data->arg_sym != NULL)
4963 add_defn_to_vec (data->obstackp,
4964 fixup_symbol_section (data->arg_sym, data->objfile),
4966 data->found_sym = 0;
4967 data->arg_sym = NULL;
4971 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4973 else if (SYMBOL_IS_ARGUMENT (sym))
4974 data->arg_sym = sym;
4977 data->found_sym = 1;
4978 add_defn_to_vec (data->obstackp,
4979 fixup_symbol_section (sym, data->objfile),
4986 /* Implements compare_names, but only applying the comparision using
4987 the given CASING. */
4990 compare_names_with_case (const char *string1, const char *string2,
4991 enum case_sensitivity casing)
4993 while (*string1 != '\0' && *string2 != '\0')
4997 if (isspace (*string1) || isspace (*string2))
4998 return strcmp_iw_ordered (string1, string2);
5000 if (casing == case_sensitive_off)
5002 c1 = tolower (*string1);
5003 c2 = tolower (*string2);
5020 return strcmp_iw_ordered (string1, string2);
5022 if (*string2 == '\0')
5024 if (is_name_suffix (string1))
5031 if (*string2 == '(')
5032 return strcmp_iw_ordered (string1, string2);
5035 if (casing == case_sensitive_off)
5036 return tolower (*string1) - tolower (*string2);
5038 return *string1 - *string2;
5043 /* Compare STRING1 to STRING2, with results as for strcmp.
5044 Compatible with strcmp_iw_ordered in that...
5046 strcmp_iw_ordered (STRING1, STRING2) <= 0
5050 compare_names (STRING1, STRING2) <= 0
5052 (they may differ as to what symbols compare equal). */
5055 compare_names (const char *string1, const char *string2)
5059 /* Similar to what strcmp_iw_ordered does, we need to perform
5060 a case-insensitive comparison first, and only resort to
5061 a second, case-sensitive, comparison if the first one was
5062 not sufficient to differentiate the two strings. */
5064 result = compare_names_with_case (string1, string2, case_sensitive_off);
5066 result = compare_names_with_case (string1, string2, case_sensitive_on);
5071 /* Add to OBSTACKP all non-local symbols whose name and domain match
5072 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5073 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5076 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5077 domain_enum domain, int global,
5080 struct objfile *objfile;
5081 struct match_data data;
5083 memset (&data, 0, sizeof data);
5084 data.obstackp = obstackp;
5086 ALL_OBJFILES (objfile)
5088 data.objfile = objfile;
5091 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5092 aux_add_nonlocal_symbols, &data,
5095 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5096 aux_add_nonlocal_symbols, &data,
5097 full_match, compare_names);
5100 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5102 ALL_OBJFILES (objfile)
5104 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5105 strcpy (name1, "_ada_");
5106 strcpy (name1 + sizeof ("_ada_") - 1, name);
5107 data.objfile = objfile;
5108 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5110 aux_add_nonlocal_symbols,
5112 full_match, compare_names);
5117 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5118 non-zero, enclosing scope and in global scopes, returning the number of
5120 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5121 indicating the symbols found and the blocks and symbol tables (if
5122 any) in which they were found. This vector is transient---good only to
5123 the next call of ada_lookup_symbol_list.
5125 When full_search is non-zero, any non-function/non-enumeral
5126 symbol match within the nest of blocks whose innermost member is BLOCK0,
5127 is the one match returned (no other matches in that or
5128 enclosing blocks is returned). If there are any matches in or
5129 surrounding BLOCK0, then these alone are returned.
5131 Names prefixed with "standard__" are handled specially: "standard__"
5132 is first stripped off, and only static and global symbols are searched. */
5135 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5136 domain_enum namespace,
5137 struct ada_symbol_info **results,
5141 struct block *block;
5143 const int wild_match_p = should_use_wild_match (name0);
5147 obstack_free (&symbol_list_obstack, NULL);
5148 obstack_init (&symbol_list_obstack);
5152 /* Search specified block and its superiors. */
5155 block = (struct block *) block0; /* FIXME: No cast ought to be
5156 needed, but adding const will
5157 have a cascade effect. */
5159 /* Special case: If the user specifies a symbol name inside package
5160 Standard, do a non-wild matching of the symbol name without
5161 the "standard__" prefix. This was primarily introduced in order
5162 to allow the user to specifically access the standard exceptions
5163 using, for instance, Standard.Constraint_Error when Constraint_Error
5164 is ambiguous (due to the user defining its own Constraint_Error
5165 entity inside its program). */
5166 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5169 name = name0 + sizeof ("standard__") - 1;
5172 /* Check the non-global symbols. If we have ANY match, then we're done. */
5178 ada_add_local_symbols (&symbol_list_obstack, name, block,
5179 namespace, wild_match_p);
5183 /* In the !full_search case we're are being called by
5184 ada_iterate_over_symbols, and we don't want to search
5186 ada_add_block_symbols (&symbol_list_obstack, block, name,
5187 namespace, NULL, wild_match_p);
5189 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5193 /* No non-global symbols found. Check our cache to see if we have
5194 already performed this search before. If we have, then return
5198 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5201 add_defn_to_vec (&symbol_list_obstack, sym, block);
5205 /* Search symbols from all global blocks. */
5207 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5210 /* Now add symbols from all per-file blocks if we've gotten no hits
5211 (not strictly correct, but perhaps better than an error). */
5213 if (num_defns_collected (&symbol_list_obstack) == 0)
5214 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5218 ndefns = num_defns_collected (&symbol_list_obstack);
5219 *results = defns_collected (&symbol_list_obstack, 1);
5221 ndefns = remove_extra_symbols (*results, ndefns);
5223 if (ndefns == 0 && full_search)
5224 cache_symbol (name0, namespace, NULL, NULL);
5226 if (ndefns == 1 && full_search && cacheIfUnique)
5227 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5229 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5234 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5235 in global scopes, returning the number of matches, and setting *RESULTS
5236 to a vector of (SYM,BLOCK) tuples.
5237 See ada_lookup_symbol_list_worker for further details. */
5240 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5241 domain_enum domain, struct ada_symbol_info **results)
5243 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5246 /* Implementation of the la_iterate_over_symbols method. */
5249 ada_iterate_over_symbols (const struct block *block,
5250 const char *name, domain_enum domain,
5251 symbol_found_callback_ftype *callback,
5255 struct ada_symbol_info *results;
5257 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5258 for (i = 0; i < ndefs; ++i)
5260 if (! (*callback) (results[i].sym, data))
5265 /* If NAME is the name of an entity, return a string that should
5266 be used to look that entity up in Ada units. This string should
5267 be deallocated after use using xfree.
5269 NAME can have any form that the "break" or "print" commands might
5270 recognize. In other words, it does not have to be the "natural"
5271 name, or the "encoded" name. */
5274 ada_name_for_lookup (const char *name)
5277 int nlen = strlen (name);
5279 if (name[0] == '<' && name[nlen - 1] == '>')
5281 canon = xmalloc (nlen - 1);
5282 memcpy (canon, name + 1, nlen - 2);
5283 canon[nlen - 2] = '\0';
5286 canon = xstrdup (ada_encode (ada_fold_name (name)));
5290 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5291 to 1, but choosing the first symbol found if there are multiple
5294 The result is stored in *INFO, which must be non-NULL.
5295 If no match is found, INFO->SYM is set to NULL. */
5298 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5299 domain_enum namespace,
5300 struct ada_symbol_info *info)
5302 struct ada_symbol_info *candidates;
5305 gdb_assert (info != NULL);
5306 memset (info, 0, sizeof (struct ada_symbol_info));
5308 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5309 if (n_candidates == 0)
5312 *info = candidates[0];
5313 info->sym = fixup_symbol_section (info->sym, NULL);
5316 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5317 scope and in global scopes, or NULL if none. NAME is folded and
5318 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5319 choosing the first symbol if there are multiple choices.
5320 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5323 ada_lookup_symbol (const char *name, const struct block *block0,
5324 domain_enum namespace, int *is_a_field_of_this)
5326 struct ada_symbol_info info;
5328 if (is_a_field_of_this != NULL)
5329 *is_a_field_of_this = 0;
5331 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5332 block0, namespace, &info);
5336 static struct symbol *
5337 ada_lookup_symbol_nonlocal (const char *name,
5338 const struct block *block,
5339 const domain_enum domain)
5341 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5345 /* True iff STR is a possible encoded suffix of a normal Ada name
5346 that is to be ignored for matching purposes. Suffixes of parallel
5347 names (e.g., XVE) are not included here. Currently, the possible suffixes
5348 are given by any of the regular expressions:
5350 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5351 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5352 TKB [subprogram suffix for task bodies]
5353 _E[0-9]+[bs]$ [protected object entry suffixes]
5354 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5356 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5357 match is performed. This sequence is used to differentiate homonyms,
5358 is an optional part of a valid name suffix. */
5361 is_name_suffix (const char *str)
5364 const char *matching;
5365 const int len = strlen (str);
5367 /* Skip optional leading __[0-9]+. */
5369 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5372 while (isdigit (str[0]))
5378 if (str[0] == '.' || str[0] == '$')
5381 while (isdigit (matching[0]))
5383 if (matching[0] == '\0')
5389 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5392 while (isdigit (matching[0]))
5394 if (matching[0] == '\0')
5398 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5400 if (strcmp (str, "TKB") == 0)
5404 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5405 with a N at the end. Unfortunately, the compiler uses the same
5406 convention for other internal types it creates. So treating
5407 all entity names that end with an "N" as a name suffix causes
5408 some regressions. For instance, consider the case of an enumerated
5409 type. To support the 'Image attribute, it creates an array whose
5411 Having a single character like this as a suffix carrying some
5412 information is a bit risky. Perhaps we should change the encoding
5413 to be something like "_N" instead. In the meantime, do not do
5414 the following check. */
5415 /* Protected Object Subprograms */
5416 if (len == 1 && str [0] == 'N')
5421 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5424 while (isdigit (matching[0]))
5426 if ((matching[0] == 'b' || matching[0] == 's')
5427 && matching [1] == '\0')
5431 /* ??? We should not modify STR directly, as we are doing below. This
5432 is fine in this case, but may become problematic later if we find
5433 that this alternative did not work, and want to try matching
5434 another one from the begining of STR. Since we modified it, we
5435 won't be able to find the begining of the string anymore! */
5439 while (str[0] != '_' && str[0] != '\0')
5441 if (str[0] != 'n' && str[0] != 'b')
5447 if (str[0] == '\000')
5452 if (str[1] != '_' || str[2] == '\000')
5456 if (strcmp (str + 3, "JM") == 0)
5458 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5459 the LJM suffix in favor of the JM one. But we will
5460 still accept LJM as a valid suffix for a reasonable
5461 amount of time, just to allow ourselves to debug programs
5462 compiled using an older version of GNAT. */
5463 if (strcmp (str + 3, "LJM") == 0)
5467 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5468 || str[4] == 'U' || str[4] == 'P')
5470 if (str[4] == 'R' && str[5] != 'T')
5474 if (!isdigit (str[2]))
5476 for (k = 3; str[k] != '\0'; k += 1)
5477 if (!isdigit (str[k]) && str[k] != '_')
5481 if (str[0] == '$' && isdigit (str[1]))
5483 for (k = 2; str[k] != '\0'; k += 1)
5484 if (!isdigit (str[k]) && str[k] != '_')
5491 /* Return non-zero if the string starting at NAME and ending before
5492 NAME_END contains no capital letters. */
5495 is_valid_name_for_wild_match (const char *name0)
5497 const char *decoded_name = ada_decode (name0);
5500 /* If the decoded name starts with an angle bracket, it means that
5501 NAME0 does not follow the GNAT encoding format. It should then
5502 not be allowed as a possible wild match. */
5503 if (decoded_name[0] == '<')
5506 for (i=0; decoded_name[i] != '\0'; i++)
5507 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5513 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5514 that could start a simple name. Assumes that *NAMEP points into
5515 the string beginning at NAME0. */
5518 advance_wild_match (const char **namep, const char *name0, int target0)
5520 const char *name = *namep;
5530 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5533 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5538 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5539 || name[2] == target0))
5547 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5557 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5558 informational suffixes of NAME (i.e., for which is_name_suffix is
5559 true). Assumes that PATN is a lower-cased Ada simple name. */
5562 wild_match (const char *name, const char *patn)
5565 const char *name0 = name;
5569 const char *match = name;
5573 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5576 if (*p == '\0' && is_name_suffix (name))
5577 return match != name0 && !is_valid_name_for_wild_match (name0);
5579 if (name[-1] == '_')
5582 if (!advance_wild_match (&name, name0, *patn))
5587 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5588 informational suffix. */
5591 full_match (const char *sym_name, const char *search_name)
5593 return !match_name (sym_name, search_name, 0);
5597 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5598 vector *defn_symbols, updating the list of symbols in OBSTACKP
5599 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5600 OBJFILE is the section containing BLOCK. */
5603 ada_add_block_symbols (struct obstack *obstackp,
5604 struct block *block, const char *name,
5605 domain_enum domain, struct objfile *objfile,
5608 struct block_iterator iter;
5609 int name_len = strlen (name);
5610 /* A matching argument symbol, if any. */
5611 struct symbol *arg_sym;
5612 /* Set true when we find a matching non-argument symbol. */
5620 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5621 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5623 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5624 SYMBOL_DOMAIN (sym), domain)
5625 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5627 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5629 else if (SYMBOL_IS_ARGUMENT (sym))
5634 add_defn_to_vec (obstackp,
5635 fixup_symbol_section (sym, objfile),
5643 for (sym = block_iter_match_first (block, name, full_match, &iter);
5644 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5646 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5647 SYMBOL_DOMAIN (sym), domain))
5649 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5651 if (SYMBOL_IS_ARGUMENT (sym))
5656 add_defn_to_vec (obstackp,
5657 fixup_symbol_section (sym, objfile),
5665 if (!found_sym && arg_sym != NULL)
5667 add_defn_to_vec (obstackp,
5668 fixup_symbol_section (arg_sym, objfile),
5677 ALL_BLOCK_SYMBOLS (block, iter, sym)
5679 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5680 SYMBOL_DOMAIN (sym), domain))
5684 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5687 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5689 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5694 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5696 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5698 if (SYMBOL_IS_ARGUMENT (sym))
5703 add_defn_to_vec (obstackp,
5704 fixup_symbol_section (sym, objfile),
5712 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5713 They aren't parameters, right? */
5714 if (!found_sym && arg_sym != NULL)
5716 add_defn_to_vec (obstackp,
5717 fixup_symbol_section (arg_sym, objfile),
5724 /* Symbol Completion */
5726 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5727 name in a form that's appropriate for the completion. The result
5728 does not need to be deallocated, but is only good until the next call.
5730 TEXT_LEN is equal to the length of TEXT.
5731 Perform a wild match if WILD_MATCH_P is set.
5732 ENCODED_P should be set if TEXT represents the start of a symbol name
5733 in its encoded form. */
5736 symbol_completion_match (const char *sym_name,
5737 const char *text, int text_len,
5738 int wild_match_p, int encoded_p)
5740 const int verbatim_match = (text[0] == '<');
5745 /* Strip the leading angle bracket. */
5750 /* First, test against the fully qualified name of the symbol. */
5752 if (strncmp (sym_name, text, text_len) == 0)
5755 if (match && !encoded_p)
5757 /* One needed check before declaring a positive match is to verify
5758 that iff we are doing a verbatim match, the decoded version
5759 of the symbol name starts with '<'. Otherwise, this symbol name
5760 is not a suitable completion. */
5761 const char *sym_name_copy = sym_name;
5762 int has_angle_bracket;
5764 sym_name = ada_decode (sym_name);
5765 has_angle_bracket = (sym_name[0] == '<');
5766 match = (has_angle_bracket == verbatim_match);
5767 sym_name = sym_name_copy;
5770 if (match && !verbatim_match)
5772 /* When doing non-verbatim match, another check that needs to
5773 be done is to verify that the potentially matching symbol name
5774 does not include capital letters, because the ada-mode would
5775 not be able to understand these symbol names without the
5776 angle bracket notation. */
5779 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5784 /* Second: Try wild matching... */
5786 if (!match && wild_match_p)
5788 /* Since we are doing wild matching, this means that TEXT
5789 may represent an unqualified symbol name. We therefore must
5790 also compare TEXT against the unqualified name of the symbol. */
5791 sym_name = ada_unqualified_name (ada_decode (sym_name));
5793 if (strncmp (sym_name, text, text_len) == 0)
5797 /* Finally: If we found a mach, prepare the result to return. */
5803 sym_name = add_angle_brackets (sym_name);
5806 sym_name = ada_decode (sym_name);
5811 /* A companion function to ada_make_symbol_completion_list().
5812 Check if SYM_NAME represents a symbol which name would be suitable
5813 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5814 it is appended at the end of the given string vector SV.
5816 ORIG_TEXT is the string original string from the user command
5817 that needs to be completed. WORD is the entire command on which
5818 completion should be performed. These two parameters are used to
5819 determine which part of the symbol name should be added to the
5821 if WILD_MATCH_P is set, then wild matching is performed.
5822 ENCODED_P should be set if TEXT represents a symbol name in its
5823 encoded formed (in which case the completion should also be
5827 symbol_completion_add (VEC(char_ptr) **sv,
5828 const char *sym_name,
5829 const char *text, int text_len,
5830 const char *orig_text, const char *word,
5831 int wild_match_p, int encoded_p)
5833 const char *match = symbol_completion_match (sym_name, text, text_len,
5834 wild_match_p, encoded_p);
5840 /* We found a match, so add the appropriate completion to the given
5843 if (word == orig_text)
5845 completion = xmalloc (strlen (match) + 5);
5846 strcpy (completion, match);
5848 else if (word > orig_text)
5850 /* Return some portion of sym_name. */
5851 completion = xmalloc (strlen (match) + 5);
5852 strcpy (completion, match + (word - orig_text));
5856 /* Return some of ORIG_TEXT plus sym_name. */
5857 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5858 strncpy (completion, word, orig_text - word);
5859 completion[orig_text - word] = '\0';
5860 strcat (completion, match);
5863 VEC_safe_push (char_ptr, *sv, completion);
5866 /* An object of this type is passed as the user_data argument to the
5867 expand_partial_symbol_names method. */
5868 struct add_partial_datum
5870 VEC(char_ptr) **completions;
5879 /* A callback for expand_partial_symbol_names. */
5881 ada_expand_partial_symbol_name (const char *name, void *user_data)
5883 struct add_partial_datum *data = user_data;
5885 return symbol_completion_match (name, data->text, data->text_len,
5886 data->wild_match, data->encoded) != NULL;
5889 /* Return a list of possible symbol names completing TEXT0. WORD is
5890 the entire command on which completion is made. */
5892 static VEC (char_ptr) *
5893 ada_make_symbol_completion_list (const char *text0, const char *word,
5894 enum type_code code)
5900 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5903 struct minimal_symbol *msymbol;
5904 struct objfile *objfile;
5905 struct block *b, *surrounding_static_block = 0;
5907 struct block_iterator iter;
5908 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5910 gdb_assert (code == TYPE_CODE_UNDEF);
5912 if (text0[0] == '<')
5914 text = xstrdup (text0);
5915 make_cleanup (xfree, text);
5916 text_len = strlen (text);
5922 text = xstrdup (ada_encode (text0));
5923 make_cleanup (xfree, text);
5924 text_len = strlen (text);
5925 for (i = 0; i < text_len; i++)
5926 text[i] = tolower (text[i]);
5928 encoded_p = (strstr (text0, "__") != NULL);
5929 /* If the name contains a ".", then the user is entering a fully
5930 qualified entity name, and the match must not be done in wild
5931 mode. Similarly, if the user wants to complete what looks like
5932 an encoded name, the match must not be done in wild mode. */
5933 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5936 /* First, look at the partial symtab symbols. */
5938 struct add_partial_datum data;
5940 data.completions = &completions;
5942 data.text_len = text_len;
5945 data.wild_match = wild_match_p;
5946 data.encoded = encoded_p;
5947 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5950 /* At this point scan through the misc symbol vectors and add each
5951 symbol you find to the list. Eventually we want to ignore
5952 anything that isn't a text symbol (everything else will be
5953 handled by the psymtab code above). */
5955 ALL_MSYMBOLS (objfile, msymbol)
5958 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5959 text, text_len, text0, word, wild_match_p,
5963 /* Search upwards from currently selected frame (so that we can
5964 complete on local vars. */
5966 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5968 if (!BLOCK_SUPERBLOCK (b))
5969 surrounding_static_block = b; /* For elmin of dups */
5971 ALL_BLOCK_SYMBOLS (b, iter, sym)
5973 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5974 text, text_len, text0, word,
5975 wild_match_p, encoded_p);
5979 /* Go through the symtabs and check the externs and statics for
5980 symbols which match. */
5982 ALL_SYMTABS (objfile, s)
5985 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5986 ALL_BLOCK_SYMBOLS (b, iter, sym)
5988 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5989 text, text_len, text0, word,
5990 wild_match_p, encoded_p);
5994 ALL_SYMTABS (objfile, s)
5997 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5998 /* Don't do this block twice. */
5999 if (b == surrounding_static_block)
6001 ALL_BLOCK_SYMBOLS (b, iter, sym)
6003 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6004 text, text_len, text0, word,
6005 wild_match_p, encoded_p);
6009 do_cleanups (old_chain);
6015 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6016 for tagged types. */
6019 ada_is_dispatch_table_ptr_type (struct type *type)
6023 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6026 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6030 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6033 /* Return non-zero if TYPE is an interface tag. */
6036 ada_is_interface_tag (struct type *type)
6038 const char *name = TYPE_NAME (type);
6043 return (strcmp (name, "ada__tags__interface_tag") == 0);
6046 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6047 to be invisible to users. */
6050 ada_is_ignored_field (struct type *type, int field_num)
6052 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6055 /* Check the name of that field. */
6057 const char *name = TYPE_FIELD_NAME (type, field_num);
6059 /* Anonymous field names should not be printed.
6060 brobecker/2007-02-20: I don't think this can actually happen
6061 but we don't want to print the value of annonymous fields anyway. */
6065 /* Normally, fields whose name start with an underscore ("_")
6066 are fields that have been internally generated by the compiler,
6067 and thus should not be printed. The "_parent" field is special,
6068 however: This is a field internally generated by the compiler
6069 for tagged types, and it contains the components inherited from
6070 the parent type. This field should not be printed as is, but
6071 should not be ignored either. */
6072 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6076 /* If this is the dispatch table of a tagged type or an interface tag,
6078 if (ada_is_tagged_type (type, 1)
6079 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6080 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6083 /* Not a special field, so it should not be ignored. */
6087 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6088 pointer or reference type whose ultimate target has a tag field. */
6091 ada_is_tagged_type (struct type *type, int refok)
6093 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6096 /* True iff TYPE represents the type of X'Tag */
6099 ada_is_tag_type (struct type *type)
6101 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6105 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6107 return (name != NULL
6108 && strcmp (name, "ada__tags__dispatch_table") == 0);
6112 /* The type of the tag on VAL. */
6115 ada_tag_type (struct value *val)
6117 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6120 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6121 retired at Ada 05). */
6124 is_ada95_tag (struct value *tag)
6126 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6129 /* The value of the tag on VAL. */
6132 ada_value_tag (struct value *val)
6134 return ada_value_struct_elt (val, "_tag", 0);
6137 /* The value of the tag on the object of type TYPE whose contents are
6138 saved at VALADDR, if it is non-null, or is at memory address
6141 static struct value *
6142 value_tag_from_contents_and_address (struct type *type,
6143 const gdb_byte *valaddr,
6146 int tag_byte_offset;
6147 struct type *tag_type;
6149 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6152 const gdb_byte *valaddr1 = ((valaddr == NULL)
6154 : valaddr + tag_byte_offset);
6155 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6157 return value_from_contents_and_address (tag_type, valaddr1, address1);
6162 static struct type *
6163 type_from_tag (struct value *tag)
6165 const char *type_name = ada_tag_name (tag);
6167 if (type_name != NULL)
6168 return ada_find_any_type (ada_encode (type_name));
6172 /* Given a value OBJ of a tagged type, return a value of this
6173 type at the base address of the object. The base address, as
6174 defined in Ada.Tags, it is the address of the primary tag of
6175 the object, and therefore where the field values of its full
6176 view can be fetched. */
6179 ada_tag_value_at_base_address (struct value *obj)
6181 volatile struct gdb_exception e;
6183 LONGEST offset_to_top = 0;
6184 struct type *ptr_type, *obj_type;
6186 CORE_ADDR base_address;
6188 obj_type = value_type (obj);
6190 /* It is the responsability of the caller to deref pointers. */
6192 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6193 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6196 tag = ada_value_tag (obj);
6200 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6202 if (is_ada95_tag (tag))
6205 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6206 ptr_type = lookup_pointer_type (ptr_type);
6207 val = value_cast (ptr_type, tag);
6211 /* It is perfectly possible that an exception be raised while
6212 trying to determine the base address, just like for the tag;
6213 see ada_tag_name for more details. We do not print the error
6214 message for the same reason. */
6216 TRY_CATCH (e, RETURN_MASK_ERROR)
6218 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6224 /* If offset is null, nothing to do. */
6226 if (offset_to_top == 0)
6229 /* -1 is a special case in Ada.Tags; however, what should be done
6230 is not quite clear from the documentation. So do nothing for
6233 if (offset_to_top == -1)
6236 base_address = value_address (obj) - offset_to_top;
6237 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6239 /* Make sure that we have a proper tag at the new address.
6240 Otherwise, offset_to_top is bogus (which can happen when
6241 the object is not initialized yet). */
6246 obj_type = type_from_tag (tag);
6251 return value_from_contents_and_address (obj_type, NULL, base_address);
6254 /* Return the "ada__tags__type_specific_data" type. */
6256 static struct type *
6257 ada_get_tsd_type (struct inferior *inf)
6259 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6261 if (data->tsd_type == 0)
6262 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6263 return data->tsd_type;
6266 /* Return the TSD (type-specific data) associated to the given TAG.
6267 TAG is assumed to be the tag of a tagged-type entity.
6269 May return NULL if we are unable to get the TSD. */
6271 static struct value *
6272 ada_get_tsd_from_tag (struct value *tag)
6277 /* First option: The TSD is simply stored as a field of our TAG.
6278 Only older versions of GNAT would use this format, but we have
6279 to test it first, because there are no visible markers for
6280 the current approach except the absence of that field. */
6282 val = ada_value_struct_elt (tag, "tsd", 1);
6286 /* Try the second representation for the dispatch table (in which
6287 there is no explicit 'tsd' field in the referent of the tag pointer,
6288 and instead the tsd pointer is stored just before the dispatch
6291 type = ada_get_tsd_type (current_inferior());
6294 type = lookup_pointer_type (lookup_pointer_type (type));
6295 val = value_cast (type, tag);
6298 return value_ind (value_ptradd (val, -1));
6301 /* Given the TSD of a tag (type-specific data), return a string
6302 containing the name of the associated type.
6304 The returned value is good until the next call. May return NULL
6305 if we are unable to determine the tag name. */
6308 ada_tag_name_from_tsd (struct value *tsd)
6310 static char name[1024];
6314 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6317 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6318 for (p = name; *p != '\0'; p += 1)
6324 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6327 Return NULL if the TAG is not an Ada tag, or if we were unable to
6328 determine the name of that tag. The result is good until the next
6332 ada_tag_name (struct value *tag)
6334 volatile struct gdb_exception e;
6337 if (!ada_is_tag_type (value_type (tag)))
6340 /* It is perfectly possible that an exception be raised while trying
6341 to determine the TAG's name, even under normal circumstances:
6342 The associated variable may be uninitialized or corrupted, for
6343 instance. We do not let any exception propagate past this point.
6344 instead we return NULL.
6346 We also do not print the error message either (which often is very
6347 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6348 the caller print a more meaningful message if necessary. */
6349 TRY_CATCH (e, RETURN_MASK_ERROR)
6351 struct value *tsd = ada_get_tsd_from_tag (tag);
6354 name = ada_tag_name_from_tsd (tsd);
6360 /* The parent type of TYPE, or NULL if none. */
6363 ada_parent_type (struct type *type)
6367 type = ada_check_typedef (type);
6369 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6373 if (ada_is_parent_field (type, i))
6375 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6377 /* If the _parent field is a pointer, then dereference it. */
6378 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6379 parent_type = TYPE_TARGET_TYPE (parent_type);
6380 /* If there is a parallel XVS type, get the actual base type. */
6381 parent_type = ada_get_base_type (parent_type);
6383 return ada_check_typedef (parent_type);
6389 /* True iff field number FIELD_NUM of structure type TYPE contains the
6390 parent-type (inherited) fields of a derived type. Assumes TYPE is
6391 a structure type with at least FIELD_NUM+1 fields. */
6394 ada_is_parent_field (struct type *type, int field_num)
6396 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6398 return (name != NULL
6399 && (strncmp (name, "PARENT", 6) == 0
6400 || strncmp (name, "_parent", 7) == 0));
6403 /* True iff field number FIELD_NUM of structure type TYPE is a
6404 transparent wrapper field (which should be silently traversed when doing
6405 field selection and flattened when printing). Assumes TYPE is a
6406 structure type with at least FIELD_NUM+1 fields. Such fields are always
6410 ada_is_wrapper_field (struct type *type, int field_num)
6412 const char *name = TYPE_FIELD_NAME (type, field_num);
6414 return (name != NULL
6415 && (strncmp (name, "PARENT", 6) == 0
6416 || strcmp (name, "REP") == 0
6417 || strncmp (name, "_parent", 7) == 0
6418 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6421 /* True iff field number FIELD_NUM of structure or union type TYPE
6422 is a variant wrapper. Assumes TYPE is a structure type with at least
6423 FIELD_NUM+1 fields. */
6426 ada_is_variant_part (struct type *type, int field_num)
6428 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6430 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6431 || (is_dynamic_field (type, field_num)
6432 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6433 == TYPE_CODE_UNION)));
6436 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6437 whose discriminants are contained in the record type OUTER_TYPE,
6438 returns the type of the controlling discriminant for the variant.
6439 May return NULL if the type could not be found. */
6442 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6444 char *name = ada_variant_discrim_name (var_type);
6446 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6449 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6450 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6451 represents a 'when others' clause; otherwise 0. */
6454 ada_is_others_clause (struct type *type, int field_num)
6456 const char *name = TYPE_FIELD_NAME (type, field_num);
6458 return (name != NULL && name[0] == 'O');
6461 /* Assuming that TYPE0 is the type of the variant part of a record,
6462 returns the name of the discriminant controlling the variant.
6463 The value is valid until the next call to ada_variant_discrim_name. */
6466 ada_variant_discrim_name (struct type *type0)
6468 static char *result = NULL;
6469 static size_t result_len = 0;
6472 const char *discrim_end;
6473 const char *discrim_start;
6475 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6476 type = TYPE_TARGET_TYPE (type0);
6480 name = ada_type_name (type);
6482 if (name == NULL || name[0] == '\000')
6485 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6488 if (strncmp (discrim_end, "___XVN", 6) == 0)
6491 if (discrim_end == name)
6494 for (discrim_start = discrim_end; discrim_start != name + 3;
6497 if (discrim_start == name + 1)
6499 if ((discrim_start > name + 3
6500 && strncmp (discrim_start - 3, "___", 3) == 0)
6501 || discrim_start[-1] == '.')
6505 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6506 strncpy (result, discrim_start, discrim_end - discrim_start);
6507 result[discrim_end - discrim_start] = '\0';
6511 /* Scan STR for a subtype-encoded number, beginning at position K.
6512 Put the position of the character just past the number scanned in
6513 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6514 Return 1 if there was a valid number at the given position, and 0
6515 otherwise. A "subtype-encoded" number consists of the absolute value
6516 in decimal, followed by the letter 'm' to indicate a negative number.
6517 Assumes 0m does not occur. */
6520 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6524 if (!isdigit (str[k]))
6527 /* Do it the hard way so as not to make any assumption about
6528 the relationship of unsigned long (%lu scan format code) and
6531 while (isdigit (str[k]))
6533 RU = RU * 10 + (str[k] - '0');
6540 *R = (-(LONGEST) (RU - 1)) - 1;
6546 /* NOTE on the above: Technically, C does not say what the results of
6547 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6548 number representable as a LONGEST (although either would probably work
6549 in most implementations). When RU>0, the locution in the then branch
6550 above is always equivalent to the negative of RU. */
6557 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6558 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6559 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6562 ada_in_variant (LONGEST val, struct type *type, int field_num)
6564 const char *name = TYPE_FIELD_NAME (type, field_num);
6578 if (!ada_scan_number (name, p + 1, &W, &p))
6588 if (!ada_scan_number (name, p + 1, &L, &p)
6589 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6591 if (val >= L && val <= U)
6603 /* FIXME: Lots of redundancy below. Try to consolidate. */
6605 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6606 ARG_TYPE, extract and return the value of one of its (non-static)
6607 fields. FIELDNO says which field. Differs from value_primitive_field
6608 only in that it can handle packed values of arbitrary type. */
6610 static struct value *
6611 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6612 struct type *arg_type)
6616 arg_type = ada_check_typedef (arg_type);
6617 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6619 /* Handle packed fields. */
6621 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6623 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6624 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6626 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6627 offset + bit_pos / 8,
6628 bit_pos % 8, bit_size, type);
6631 return value_primitive_field (arg1, offset, fieldno, arg_type);
6634 /* Find field with name NAME in object of type TYPE. If found,
6635 set the following for each argument that is non-null:
6636 - *FIELD_TYPE_P to the field's type;
6637 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6638 an object of that type;
6639 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6640 - *BIT_SIZE_P to its size in bits if the field is packed, and
6642 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6643 fields up to but not including the desired field, or by the total
6644 number of fields if not found. A NULL value of NAME never
6645 matches; the function just counts visible fields in this case.
6647 Returns 1 if found, 0 otherwise. */
6650 find_struct_field (const char *name, struct type *type, int offset,
6651 struct type **field_type_p,
6652 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6657 type = ada_check_typedef (type);
6659 if (field_type_p != NULL)
6660 *field_type_p = NULL;
6661 if (byte_offset_p != NULL)
6663 if (bit_offset_p != NULL)
6665 if (bit_size_p != NULL)
6668 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6670 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6671 int fld_offset = offset + bit_pos / 8;
6672 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6674 if (t_field_name == NULL)
6677 else if (name != NULL && field_name_match (t_field_name, name))
6679 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6681 if (field_type_p != NULL)
6682 *field_type_p = TYPE_FIELD_TYPE (type, i);
6683 if (byte_offset_p != NULL)
6684 *byte_offset_p = fld_offset;
6685 if (bit_offset_p != NULL)
6686 *bit_offset_p = bit_pos % 8;
6687 if (bit_size_p != NULL)
6688 *bit_size_p = bit_size;
6691 else if (ada_is_wrapper_field (type, i))
6693 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6694 field_type_p, byte_offset_p, bit_offset_p,
6695 bit_size_p, index_p))
6698 else if (ada_is_variant_part (type, i))
6700 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6703 struct type *field_type
6704 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6706 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6708 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6710 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6711 field_type_p, byte_offset_p,
6712 bit_offset_p, bit_size_p, index_p))
6716 else if (index_p != NULL)
6722 /* Number of user-visible fields in record type TYPE. */
6725 num_visible_fields (struct type *type)
6730 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6734 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6735 and search in it assuming it has (class) type TYPE.
6736 If found, return value, else return NULL.
6738 Searches recursively through wrapper fields (e.g., '_parent'). */
6740 static struct value *
6741 ada_search_struct_field (char *name, struct value *arg, int offset,
6746 type = ada_check_typedef (type);
6747 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6749 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6751 if (t_field_name == NULL)
6754 else if (field_name_match (t_field_name, name))
6755 return ada_value_primitive_field (arg, offset, i, type);
6757 else if (ada_is_wrapper_field (type, i))
6759 struct value *v = /* Do not let indent join lines here. */
6760 ada_search_struct_field (name, arg,
6761 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6762 TYPE_FIELD_TYPE (type, i));
6768 else if (ada_is_variant_part (type, i))
6770 /* PNH: Do we ever get here? See find_struct_field. */
6772 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6774 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6776 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6778 struct value *v = ada_search_struct_field /* Force line
6781 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6782 TYPE_FIELD_TYPE (field_type, j));
6792 static struct value *ada_index_struct_field_1 (int *, struct value *,
6793 int, struct type *);
6796 /* Return field #INDEX in ARG, where the index is that returned by
6797 * find_struct_field through its INDEX_P argument. Adjust the address
6798 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6799 * If found, return value, else return NULL. */
6801 static struct value *
6802 ada_index_struct_field (int index, struct value *arg, int offset,
6805 return ada_index_struct_field_1 (&index, arg, offset, type);
6809 /* Auxiliary function for ada_index_struct_field. Like
6810 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6813 static struct value *
6814 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6818 type = ada_check_typedef (type);
6820 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6822 if (TYPE_FIELD_NAME (type, i) == NULL)
6824 else if (ada_is_wrapper_field (type, i))
6826 struct value *v = /* Do not let indent join lines here. */
6827 ada_index_struct_field_1 (index_p, arg,
6828 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6829 TYPE_FIELD_TYPE (type, i));
6835 else if (ada_is_variant_part (type, i))
6837 /* PNH: Do we ever get here? See ada_search_struct_field,
6838 find_struct_field. */
6839 error (_("Cannot assign this kind of variant record"));
6841 else if (*index_p == 0)
6842 return ada_value_primitive_field (arg, offset, i, type);
6849 /* Given ARG, a value of type (pointer or reference to a)*
6850 structure/union, extract the component named NAME from the ultimate
6851 target structure/union and return it as a value with its
6854 The routine searches for NAME among all members of the structure itself
6855 and (recursively) among all members of any wrapper members
6858 If NO_ERR, then simply return NULL in case of error, rather than
6862 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6864 struct type *t, *t1;
6868 t1 = t = ada_check_typedef (value_type (arg));
6869 if (TYPE_CODE (t) == TYPE_CODE_REF)
6871 t1 = TYPE_TARGET_TYPE (t);
6874 t1 = ada_check_typedef (t1);
6875 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6877 arg = coerce_ref (arg);
6882 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6884 t1 = TYPE_TARGET_TYPE (t);
6887 t1 = ada_check_typedef (t1);
6888 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6890 arg = value_ind (arg);
6897 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6901 v = ada_search_struct_field (name, arg, 0, t);
6904 int bit_offset, bit_size, byte_offset;
6905 struct type *field_type;
6908 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6909 address = value_address (ada_value_ind (arg));
6911 address = value_address (ada_coerce_ref (arg));
6913 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6914 if (find_struct_field (name, t1, 0,
6915 &field_type, &byte_offset, &bit_offset,
6920 if (TYPE_CODE (t) == TYPE_CODE_REF)
6921 arg = ada_coerce_ref (arg);
6923 arg = ada_value_ind (arg);
6924 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6925 bit_offset, bit_size,
6929 v = value_at_lazy (field_type, address + byte_offset);
6933 if (v != NULL || no_err)
6936 error (_("There is no member named %s."), name);
6942 error (_("Attempt to extract a component of "
6943 "a value that is not a record."));
6946 /* Given a type TYPE, look up the type of the component of type named NAME.
6947 If DISPP is non-null, add its byte displacement from the beginning of a
6948 structure (pointed to by a value) of type TYPE to *DISPP (does not
6949 work for packed fields).
6951 Matches any field whose name has NAME as a prefix, possibly
6954 TYPE can be either a struct or union. If REFOK, TYPE may also
6955 be a (pointer or reference)+ to a struct or union, and the
6956 ultimate target type will be searched.
6958 Looks recursively into variant clauses and parent types.
6960 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6961 TYPE is not a type of the right kind. */
6963 static struct type *
6964 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6965 int noerr, int *dispp)
6972 if (refok && type != NULL)
6975 type = ada_check_typedef (type);
6976 if (TYPE_CODE (type) != TYPE_CODE_PTR
6977 && TYPE_CODE (type) != TYPE_CODE_REF)
6979 type = TYPE_TARGET_TYPE (type);
6983 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6984 && TYPE_CODE (type) != TYPE_CODE_UNION))
6990 target_terminal_ours ();
6991 gdb_flush (gdb_stdout);
6993 error (_("Type (null) is not a structure or union type"));
6996 /* XXX: type_sprint */
6997 fprintf_unfiltered (gdb_stderr, _("Type "));
6998 type_print (type, "", gdb_stderr, -1);
6999 error (_(" is not a structure or union type"));
7004 type = to_static_fixed_type (type);
7006 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7008 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7012 if (t_field_name == NULL)
7015 else if (field_name_match (t_field_name, name))
7018 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7019 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7022 else if (ada_is_wrapper_field (type, i))
7025 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7030 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7035 else if (ada_is_variant_part (type, i))
7038 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7041 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7043 /* FIXME pnh 2008/01/26: We check for a field that is
7044 NOT wrapped in a struct, since the compiler sometimes
7045 generates these for unchecked variant types. Revisit
7046 if the compiler changes this practice. */
7047 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7049 if (v_field_name != NULL
7050 && field_name_match (v_field_name, name))
7051 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7053 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7060 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7071 target_terminal_ours ();
7072 gdb_flush (gdb_stdout);
7075 /* XXX: type_sprint */
7076 fprintf_unfiltered (gdb_stderr, _("Type "));
7077 type_print (type, "", gdb_stderr, -1);
7078 error (_(" has no component named <null>"));
7082 /* XXX: type_sprint */
7083 fprintf_unfiltered (gdb_stderr, _("Type "));
7084 type_print (type, "", gdb_stderr, -1);
7085 error (_(" has no component named %s"), name);
7092 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7093 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7094 represents an unchecked union (that is, the variant part of a
7095 record that is named in an Unchecked_Union pragma). */
7098 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7100 char *discrim_name = ada_variant_discrim_name (var_type);
7102 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7107 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7108 within a value of type OUTER_TYPE that is stored in GDB at
7109 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7110 numbering from 0) is applicable. Returns -1 if none are. */
7113 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7114 const gdb_byte *outer_valaddr)
7118 char *discrim_name = ada_variant_discrim_name (var_type);
7119 struct value *outer;
7120 struct value *discrim;
7121 LONGEST discrim_val;
7123 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7124 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7125 if (discrim == NULL)
7127 discrim_val = value_as_long (discrim);
7130 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7132 if (ada_is_others_clause (var_type, i))
7134 else if (ada_in_variant (discrim_val, var_type, i))
7138 return others_clause;
7143 /* Dynamic-Sized Records */
7145 /* Strategy: The type ostensibly attached to a value with dynamic size
7146 (i.e., a size that is not statically recorded in the debugging
7147 data) does not accurately reflect the size or layout of the value.
7148 Our strategy is to convert these values to values with accurate,
7149 conventional types that are constructed on the fly. */
7151 /* There is a subtle and tricky problem here. In general, we cannot
7152 determine the size of dynamic records without its data. However,
7153 the 'struct value' data structure, which GDB uses to represent
7154 quantities in the inferior process (the target), requires the size
7155 of the type at the time of its allocation in order to reserve space
7156 for GDB's internal copy of the data. That's why the
7157 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7158 rather than struct value*s.
7160 However, GDB's internal history variables ($1, $2, etc.) are
7161 struct value*s containing internal copies of the data that are not, in
7162 general, the same as the data at their corresponding addresses in
7163 the target. Fortunately, the types we give to these values are all
7164 conventional, fixed-size types (as per the strategy described
7165 above), so that we don't usually have to perform the
7166 'to_fixed_xxx_type' conversions to look at their values.
7167 Unfortunately, there is one exception: if one of the internal
7168 history variables is an array whose elements are unconstrained
7169 records, then we will need to create distinct fixed types for each
7170 element selected. */
7172 /* The upshot of all of this is that many routines take a (type, host
7173 address, target address) triple as arguments to represent a value.
7174 The host address, if non-null, is supposed to contain an internal
7175 copy of the relevant data; otherwise, the program is to consult the
7176 target at the target address. */
7178 /* Assuming that VAL0 represents a pointer value, the result of
7179 dereferencing it. Differs from value_ind in its treatment of
7180 dynamic-sized types. */
7183 ada_value_ind (struct value *val0)
7185 struct value *val = value_ind (val0);
7187 if (ada_is_tagged_type (value_type (val), 0))
7188 val = ada_tag_value_at_base_address (val);
7190 return ada_to_fixed_value (val);
7193 /* The value resulting from dereferencing any "reference to"
7194 qualifiers on VAL0. */
7196 static struct value *
7197 ada_coerce_ref (struct value *val0)
7199 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7201 struct value *val = val0;
7203 val = coerce_ref (val);
7205 if (ada_is_tagged_type (value_type (val), 0))
7206 val = ada_tag_value_at_base_address (val);
7208 return ada_to_fixed_value (val);
7214 /* Return OFF rounded upward if necessary to a multiple of
7215 ALIGNMENT (a power of 2). */
7218 align_value (unsigned int off, unsigned int alignment)
7220 return (off + alignment - 1) & ~(alignment - 1);
7223 /* Return the bit alignment required for field #F of template type TYPE. */
7226 field_alignment (struct type *type, int f)
7228 const char *name = TYPE_FIELD_NAME (type, f);
7232 /* The field name should never be null, unless the debugging information
7233 is somehow malformed. In this case, we assume the field does not
7234 require any alignment. */
7238 len = strlen (name);
7240 if (!isdigit (name[len - 1]))
7243 if (isdigit (name[len - 2]))
7244 align_offset = len - 2;
7246 align_offset = len - 1;
7248 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7249 return TARGET_CHAR_BIT;
7251 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7254 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7256 static struct symbol *
7257 ada_find_any_type_symbol (const char *name)
7261 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7262 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7265 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7269 /* Find a type named NAME. Ignores ambiguity. This routine will look
7270 solely for types defined by debug info, it will not search the GDB
7273 static struct type *
7274 ada_find_any_type (const char *name)
7276 struct symbol *sym = ada_find_any_type_symbol (name);
7279 return SYMBOL_TYPE (sym);
7284 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7285 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7286 symbol, in which case it is returned. Otherwise, this looks for
7287 symbols whose name is that of NAME_SYM suffixed with "___XR".
7288 Return symbol if found, and NULL otherwise. */
7291 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7293 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7296 if (strstr (name, "___XR") != NULL)
7299 sym = find_old_style_renaming_symbol (name, block);
7304 /* Not right yet. FIXME pnh 7/20/2007. */
7305 sym = ada_find_any_type_symbol (name);
7306 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7312 static struct symbol *
7313 find_old_style_renaming_symbol (const char *name, const struct block *block)
7315 const struct symbol *function_sym = block_linkage_function (block);
7318 if (function_sym != NULL)
7320 /* If the symbol is defined inside a function, NAME is not fully
7321 qualified. This means we need to prepend the function name
7322 as well as adding the ``___XR'' suffix to build the name of
7323 the associated renaming symbol. */
7324 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7325 /* Function names sometimes contain suffixes used
7326 for instance to qualify nested subprograms. When building
7327 the XR type name, we need to make sure that this suffix is
7328 not included. So do not include any suffix in the function
7329 name length below. */
7330 int function_name_len = ada_name_prefix_len (function_name);
7331 const int rename_len = function_name_len + 2 /* "__" */
7332 + strlen (name) + 6 /* "___XR\0" */ ;
7334 /* Strip the suffix if necessary. */
7335 ada_remove_trailing_digits (function_name, &function_name_len);
7336 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7337 ada_remove_Xbn_suffix (function_name, &function_name_len);
7339 /* Library-level functions are a special case, as GNAT adds
7340 a ``_ada_'' prefix to the function name to avoid namespace
7341 pollution. However, the renaming symbols themselves do not
7342 have this prefix, so we need to skip this prefix if present. */
7343 if (function_name_len > 5 /* "_ada_" */
7344 && strstr (function_name, "_ada_") == function_name)
7347 function_name_len -= 5;
7350 rename = (char *) alloca (rename_len * sizeof (char));
7351 strncpy (rename, function_name, function_name_len);
7352 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7357 const int rename_len = strlen (name) + 6;
7359 rename = (char *) alloca (rename_len * sizeof (char));
7360 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7363 return ada_find_any_type_symbol (rename);
7366 /* Because of GNAT encoding conventions, several GDB symbols may match a
7367 given type name. If the type denoted by TYPE0 is to be preferred to
7368 that of TYPE1 for purposes of type printing, return non-zero;
7369 otherwise return 0. */
7372 ada_prefer_type (struct type *type0, struct type *type1)
7376 else if (type0 == NULL)
7378 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7380 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7382 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7384 else if (ada_is_constrained_packed_array_type (type0))
7386 else if (ada_is_array_descriptor_type (type0)
7387 && !ada_is_array_descriptor_type (type1))
7391 const char *type0_name = type_name_no_tag (type0);
7392 const char *type1_name = type_name_no_tag (type1);
7394 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7395 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7401 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7402 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7405 ada_type_name (struct type *type)
7409 else if (TYPE_NAME (type) != NULL)
7410 return TYPE_NAME (type);
7412 return TYPE_TAG_NAME (type);
7415 /* Search the list of "descriptive" types associated to TYPE for a type
7416 whose name is NAME. */
7418 static struct type *
7419 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7421 struct type *result;
7423 /* If there no descriptive-type info, then there is no parallel type
7425 if (!HAVE_GNAT_AUX_INFO (type))
7428 result = TYPE_DESCRIPTIVE_TYPE (type);
7429 while (result != NULL)
7431 const char *result_name = ada_type_name (result);
7433 if (result_name == NULL)
7435 warning (_("unexpected null name on descriptive type"));
7439 /* If the names match, stop. */
7440 if (strcmp (result_name, name) == 0)
7443 /* Otherwise, look at the next item on the list, if any. */
7444 if (HAVE_GNAT_AUX_INFO (result))
7445 result = TYPE_DESCRIPTIVE_TYPE (result);
7450 /* If we didn't find a match, see whether this is a packed array. With
7451 older compilers, the descriptive type information is either absent or
7452 irrelevant when it comes to packed arrays so the above lookup fails.
7453 Fall back to using a parallel lookup by name in this case. */
7454 if (result == NULL && ada_is_constrained_packed_array_type (type))
7455 return ada_find_any_type (name);
7460 /* Find a parallel type to TYPE with the specified NAME, using the
7461 descriptive type taken from the debugging information, if available,
7462 and otherwise using the (slower) name-based method. */
7464 static struct type *
7465 ada_find_parallel_type_with_name (struct type *type, const char *name)
7467 struct type *result = NULL;
7469 if (HAVE_GNAT_AUX_INFO (type))
7470 result = find_parallel_type_by_descriptive_type (type, name);
7472 result = ada_find_any_type (name);
7477 /* Same as above, but specify the name of the parallel type by appending
7478 SUFFIX to the name of TYPE. */
7481 ada_find_parallel_type (struct type *type, const char *suffix)
7484 const char *typename = ada_type_name (type);
7487 if (typename == NULL)
7490 len = strlen (typename);
7492 name = (char *) alloca (len + strlen (suffix) + 1);
7494 strcpy (name, typename);
7495 strcpy (name + len, suffix);
7497 return ada_find_parallel_type_with_name (type, name);
7500 /* If TYPE is a variable-size record type, return the corresponding template
7501 type describing its fields. Otherwise, return NULL. */
7503 static struct type *
7504 dynamic_template_type (struct type *type)
7506 type = ada_check_typedef (type);
7508 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7509 || ada_type_name (type) == NULL)
7513 int len = strlen (ada_type_name (type));
7515 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7518 return ada_find_parallel_type (type, "___XVE");
7522 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7523 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7526 is_dynamic_field (struct type *templ_type, int field_num)
7528 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7531 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7532 && strstr (name, "___XVL") != NULL;
7535 /* The index of the variant field of TYPE, or -1 if TYPE does not
7536 represent a variant record type. */
7539 variant_field_index (struct type *type)
7543 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7546 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7548 if (ada_is_variant_part (type, f))
7554 /* A record type with no fields. */
7556 static struct type *
7557 empty_record (struct type *template)
7559 struct type *type = alloc_type_copy (template);
7561 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7562 TYPE_NFIELDS (type) = 0;
7563 TYPE_FIELDS (type) = NULL;
7564 INIT_CPLUS_SPECIFIC (type);
7565 TYPE_NAME (type) = "<empty>";
7566 TYPE_TAG_NAME (type) = NULL;
7567 TYPE_LENGTH (type) = 0;
7571 /* An ordinary record type (with fixed-length fields) that describes
7572 the value of type TYPE at VALADDR or ADDRESS (see comments at
7573 the beginning of this section) VAL according to GNAT conventions.
7574 DVAL0 should describe the (portion of a) record that contains any
7575 necessary discriminants. It should be NULL if value_type (VAL) is
7576 an outer-level type (i.e., as opposed to a branch of a variant.) A
7577 variant field (unless unchecked) is replaced by a particular branch
7580 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7581 length are not statically known are discarded. As a consequence,
7582 VALADDR, ADDRESS and DVAL0 are ignored.
7584 NOTE: Limitations: For now, we assume that dynamic fields and
7585 variants occupy whole numbers of bytes. However, they need not be
7589 ada_template_to_fixed_record_type_1 (struct type *type,
7590 const gdb_byte *valaddr,
7591 CORE_ADDR address, struct value *dval0,
7592 int keep_dynamic_fields)
7594 struct value *mark = value_mark ();
7597 int nfields, bit_len;
7603 /* Compute the number of fields in this record type that are going
7604 to be processed: unless keep_dynamic_fields, this includes only
7605 fields whose position and length are static will be processed. */
7606 if (keep_dynamic_fields)
7607 nfields = TYPE_NFIELDS (type);
7611 while (nfields < TYPE_NFIELDS (type)
7612 && !ada_is_variant_part (type, nfields)
7613 && !is_dynamic_field (type, nfields))
7617 rtype = alloc_type_copy (type);
7618 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7619 INIT_CPLUS_SPECIFIC (rtype);
7620 TYPE_NFIELDS (rtype) = nfields;
7621 TYPE_FIELDS (rtype) = (struct field *)
7622 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7623 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7624 TYPE_NAME (rtype) = ada_type_name (type);
7625 TYPE_TAG_NAME (rtype) = NULL;
7626 TYPE_FIXED_INSTANCE (rtype) = 1;
7632 for (f = 0; f < nfields; f += 1)
7634 off = align_value (off, field_alignment (type, f))
7635 + TYPE_FIELD_BITPOS (type, f);
7636 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7637 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7639 if (ada_is_variant_part (type, f))
7644 else if (is_dynamic_field (type, f))
7646 const gdb_byte *field_valaddr = valaddr;
7647 CORE_ADDR field_address = address;
7648 struct type *field_type =
7649 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7653 /* rtype's length is computed based on the run-time
7654 value of discriminants. If the discriminants are not
7655 initialized, the type size may be completely bogus and
7656 GDB may fail to allocate a value for it. So check the
7657 size first before creating the value. */
7659 dval = value_from_contents_and_address (rtype, valaddr, address);
7664 /* If the type referenced by this field is an aligner type, we need
7665 to unwrap that aligner type, because its size might not be set.
7666 Keeping the aligner type would cause us to compute the wrong
7667 size for this field, impacting the offset of the all the fields
7668 that follow this one. */
7669 if (ada_is_aligner_type (field_type))
7671 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7673 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7674 field_address = cond_offset_target (field_address, field_offset);
7675 field_type = ada_aligned_type (field_type);
7678 field_valaddr = cond_offset_host (field_valaddr,
7679 off / TARGET_CHAR_BIT);
7680 field_address = cond_offset_target (field_address,
7681 off / TARGET_CHAR_BIT);
7683 /* Get the fixed type of the field. Note that, in this case,
7684 we do not want to get the real type out of the tag: if
7685 the current field is the parent part of a tagged record,
7686 we will get the tag of the object. Clearly wrong: the real
7687 type of the parent is not the real type of the child. We
7688 would end up in an infinite loop. */
7689 field_type = ada_get_base_type (field_type);
7690 field_type = ada_to_fixed_type (field_type, field_valaddr,
7691 field_address, dval, 0);
7692 /* If the field size is already larger than the maximum
7693 object size, then the record itself will necessarily
7694 be larger than the maximum object size. We need to make
7695 this check now, because the size might be so ridiculously
7696 large (due to an uninitialized variable in the inferior)
7697 that it would cause an overflow when adding it to the
7699 check_size (field_type);
7701 TYPE_FIELD_TYPE (rtype, f) = field_type;
7702 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7703 /* The multiplication can potentially overflow. But because
7704 the field length has been size-checked just above, and
7705 assuming that the maximum size is a reasonable value,
7706 an overflow should not happen in practice. So rather than
7707 adding overflow recovery code to this already complex code,
7708 we just assume that it's not going to happen. */
7710 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7714 /* Note: If this field's type is a typedef, it is important
7715 to preserve the typedef layer.
7717 Otherwise, we might be transforming a typedef to a fat
7718 pointer (encoding a pointer to an unconstrained array),
7719 into a basic fat pointer (encoding an unconstrained
7720 array). As both types are implemented using the same
7721 structure, the typedef is the only clue which allows us
7722 to distinguish between the two options. Stripping it
7723 would prevent us from printing this field appropriately. */
7724 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7725 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7726 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7728 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7731 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7733 /* We need to be careful of typedefs when computing
7734 the length of our field. If this is a typedef,
7735 get the length of the target type, not the length
7737 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7738 field_type = ada_typedef_target_type (field_type);
7741 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7744 if (off + fld_bit_len > bit_len)
7745 bit_len = off + fld_bit_len;
7747 TYPE_LENGTH (rtype) =
7748 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7751 /* We handle the variant part, if any, at the end because of certain
7752 odd cases in which it is re-ordered so as NOT to be the last field of
7753 the record. This can happen in the presence of representation
7755 if (variant_field >= 0)
7757 struct type *branch_type;
7759 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7762 dval = value_from_contents_and_address (rtype, valaddr, address);
7767 to_fixed_variant_branch_type
7768 (TYPE_FIELD_TYPE (type, variant_field),
7769 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7770 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7771 if (branch_type == NULL)
7773 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7774 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7775 TYPE_NFIELDS (rtype) -= 1;
7779 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7780 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7782 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7784 if (off + fld_bit_len > bit_len)
7785 bit_len = off + fld_bit_len;
7786 TYPE_LENGTH (rtype) =
7787 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7791 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7792 should contain the alignment of that record, which should be a strictly
7793 positive value. If null or negative, then something is wrong, most
7794 probably in the debug info. In that case, we don't round up the size
7795 of the resulting type. If this record is not part of another structure,
7796 the current RTYPE length might be good enough for our purposes. */
7797 if (TYPE_LENGTH (type) <= 0)
7799 if (TYPE_NAME (rtype))
7800 warning (_("Invalid type size for `%s' detected: %d."),
7801 TYPE_NAME (rtype), TYPE_LENGTH (type));
7803 warning (_("Invalid type size for <unnamed> detected: %d."),
7804 TYPE_LENGTH (type));
7808 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7809 TYPE_LENGTH (type));
7812 value_free_to_mark (mark);
7813 if (TYPE_LENGTH (rtype) > varsize_limit)
7814 error (_("record type with dynamic size is larger than varsize-limit"));
7818 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7821 static struct type *
7822 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7823 CORE_ADDR address, struct value *dval0)
7825 return ada_template_to_fixed_record_type_1 (type, valaddr,
7829 /* An ordinary record type in which ___XVL-convention fields and
7830 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7831 static approximations, containing all possible fields. Uses
7832 no runtime values. Useless for use in values, but that's OK,
7833 since the results are used only for type determinations. Works on both
7834 structs and unions. Representation note: to save space, we memorize
7835 the result of this function in the TYPE_TARGET_TYPE of the
7838 static struct type *
7839 template_to_static_fixed_type (struct type *type0)
7845 if (TYPE_TARGET_TYPE (type0) != NULL)
7846 return TYPE_TARGET_TYPE (type0);
7848 nfields = TYPE_NFIELDS (type0);
7851 for (f = 0; f < nfields; f += 1)
7853 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7854 struct type *new_type;
7856 if (is_dynamic_field (type0, f))
7857 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7859 new_type = static_unwrap_type (field_type);
7860 if (type == type0 && new_type != field_type)
7862 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7863 TYPE_CODE (type) = TYPE_CODE (type0);
7864 INIT_CPLUS_SPECIFIC (type);
7865 TYPE_NFIELDS (type) = nfields;
7866 TYPE_FIELDS (type) = (struct field *)
7867 TYPE_ALLOC (type, nfields * sizeof (struct field));
7868 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7869 sizeof (struct field) * nfields);
7870 TYPE_NAME (type) = ada_type_name (type0);
7871 TYPE_TAG_NAME (type) = NULL;
7872 TYPE_FIXED_INSTANCE (type) = 1;
7873 TYPE_LENGTH (type) = 0;
7875 TYPE_FIELD_TYPE (type, f) = new_type;
7876 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7881 /* Given an object of type TYPE whose contents are at VALADDR and
7882 whose address in memory is ADDRESS, returns a revision of TYPE,
7883 which should be a non-dynamic-sized record, in which the variant
7884 part, if any, is replaced with the appropriate branch. Looks
7885 for discriminant values in DVAL0, which can be NULL if the record
7886 contains the necessary discriminant values. */
7888 static struct type *
7889 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7890 CORE_ADDR address, struct value *dval0)
7892 struct value *mark = value_mark ();
7895 struct type *branch_type;
7896 int nfields = TYPE_NFIELDS (type);
7897 int variant_field = variant_field_index (type);
7899 if (variant_field == -1)
7903 dval = value_from_contents_and_address (type, valaddr, address);
7907 rtype = alloc_type_copy (type);
7908 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7909 INIT_CPLUS_SPECIFIC (rtype);
7910 TYPE_NFIELDS (rtype) = nfields;
7911 TYPE_FIELDS (rtype) =
7912 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7913 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7914 sizeof (struct field) * nfields);
7915 TYPE_NAME (rtype) = ada_type_name (type);
7916 TYPE_TAG_NAME (rtype) = NULL;
7917 TYPE_FIXED_INSTANCE (rtype) = 1;
7918 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7920 branch_type = to_fixed_variant_branch_type
7921 (TYPE_FIELD_TYPE (type, variant_field),
7922 cond_offset_host (valaddr,
7923 TYPE_FIELD_BITPOS (type, variant_field)
7925 cond_offset_target (address,
7926 TYPE_FIELD_BITPOS (type, variant_field)
7927 / TARGET_CHAR_BIT), dval);
7928 if (branch_type == NULL)
7932 for (f = variant_field + 1; f < nfields; f += 1)
7933 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7934 TYPE_NFIELDS (rtype) -= 1;
7938 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7939 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7940 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7941 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7943 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7945 value_free_to_mark (mark);
7949 /* An ordinary record type (with fixed-length fields) that describes
7950 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7951 beginning of this section]. Any necessary discriminants' values
7952 should be in DVAL, a record value; it may be NULL if the object
7953 at ADDR itself contains any necessary discriminant values.
7954 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7955 values from the record are needed. Except in the case that DVAL,
7956 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7957 unchecked) is replaced by a particular branch of the variant.
7959 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7960 is questionable and may be removed. It can arise during the
7961 processing of an unconstrained-array-of-record type where all the
7962 variant branches have exactly the same size. This is because in
7963 such cases, the compiler does not bother to use the XVS convention
7964 when encoding the record. I am currently dubious of this
7965 shortcut and suspect the compiler should be altered. FIXME. */
7967 static struct type *
7968 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7969 CORE_ADDR address, struct value *dval)
7971 struct type *templ_type;
7973 if (TYPE_FIXED_INSTANCE (type0))
7976 templ_type = dynamic_template_type (type0);
7978 if (templ_type != NULL)
7979 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7980 else if (variant_field_index (type0) >= 0)
7982 if (dval == NULL && valaddr == NULL && address == 0)
7984 return to_record_with_fixed_variant_part (type0, valaddr, address,
7989 TYPE_FIXED_INSTANCE (type0) = 1;
7995 /* An ordinary record type (with fixed-length fields) that describes
7996 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7997 union type. Any necessary discriminants' values should be in DVAL,
7998 a record value. That is, this routine selects the appropriate
7999 branch of the union at ADDR according to the discriminant value
8000 indicated in the union's type name. Returns VAR_TYPE0 itself if
8001 it represents a variant subject to a pragma Unchecked_Union. */
8003 static struct type *
8004 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8005 CORE_ADDR address, struct value *dval)
8008 struct type *templ_type;
8009 struct type *var_type;
8011 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8012 var_type = TYPE_TARGET_TYPE (var_type0);
8014 var_type = var_type0;
8016 templ_type = ada_find_parallel_type (var_type, "___XVU");
8018 if (templ_type != NULL)
8019 var_type = templ_type;
8021 if (is_unchecked_variant (var_type, value_type (dval)))
8024 ada_which_variant_applies (var_type,
8025 value_type (dval), value_contents (dval));
8028 return empty_record (var_type);
8029 else if (is_dynamic_field (var_type, which))
8030 return to_fixed_record_type
8031 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8032 valaddr, address, dval);
8033 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8035 to_fixed_record_type
8036 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8038 return TYPE_FIELD_TYPE (var_type, which);
8041 /* Assuming that TYPE0 is an array type describing the type of a value
8042 at ADDR, and that DVAL describes a record containing any
8043 discriminants used in TYPE0, returns a type for the value that
8044 contains no dynamic components (that is, no components whose sizes
8045 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8046 true, gives an error message if the resulting type's size is over
8049 static struct type *
8050 to_fixed_array_type (struct type *type0, struct value *dval,
8053 struct type *index_type_desc;
8054 struct type *result;
8055 int constrained_packed_array_p;
8057 type0 = ada_check_typedef (type0);
8058 if (TYPE_FIXED_INSTANCE (type0))
8061 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8062 if (constrained_packed_array_p)
8063 type0 = decode_constrained_packed_array_type (type0);
8065 index_type_desc = ada_find_parallel_type (type0, "___XA");
8066 ada_fixup_array_indexes_type (index_type_desc);
8067 if (index_type_desc == NULL)
8069 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8071 /* NOTE: elt_type---the fixed version of elt_type0---should never
8072 depend on the contents of the array in properly constructed
8074 /* Create a fixed version of the array element type.
8075 We're not providing the address of an element here,
8076 and thus the actual object value cannot be inspected to do
8077 the conversion. This should not be a problem, since arrays of
8078 unconstrained objects are not allowed. In particular, all
8079 the elements of an array of a tagged type should all be of
8080 the same type specified in the debugging info. No need to
8081 consult the object tag. */
8082 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8084 /* Make sure we always create a new array type when dealing with
8085 packed array types, since we're going to fix-up the array
8086 type length and element bitsize a little further down. */
8087 if (elt_type0 == elt_type && !constrained_packed_array_p)
8090 result = create_array_type (alloc_type_copy (type0),
8091 elt_type, TYPE_INDEX_TYPE (type0));
8096 struct type *elt_type0;
8099 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8100 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8102 /* NOTE: result---the fixed version of elt_type0---should never
8103 depend on the contents of the array in properly constructed
8105 /* Create a fixed version of the array element type.
8106 We're not providing the address of an element here,
8107 and thus the actual object value cannot be inspected to do
8108 the conversion. This should not be a problem, since arrays of
8109 unconstrained objects are not allowed. In particular, all
8110 the elements of an array of a tagged type should all be of
8111 the same type specified in the debugging info. No need to
8112 consult the object tag. */
8114 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8117 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8119 struct type *range_type =
8120 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8122 result = create_array_type (alloc_type_copy (elt_type0),
8123 result, range_type);
8124 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8126 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8127 error (_("array type with dynamic size is larger than varsize-limit"));
8130 /* We want to preserve the type name. This can be useful when
8131 trying to get the type name of a value that has already been
8132 printed (for instance, if the user did "print VAR; whatis $". */
8133 TYPE_NAME (result) = TYPE_NAME (type0);
8135 if (constrained_packed_array_p)
8137 /* So far, the resulting type has been created as if the original
8138 type was a regular (non-packed) array type. As a result, the
8139 bitsize of the array elements needs to be set again, and the array
8140 length needs to be recomputed based on that bitsize. */
8141 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8142 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8144 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8145 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8146 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8147 TYPE_LENGTH (result)++;
8150 TYPE_FIXED_INSTANCE (result) = 1;
8155 /* A standard type (containing no dynamically sized components)
8156 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8157 DVAL describes a record containing any discriminants used in TYPE0,
8158 and may be NULL if there are none, or if the object of type TYPE at
8159 ADDRESS or in VALADDR contains these discriminants.
8161 If CHECK_TAG is not null, in the case of tagged types, this function
8162 attempts to locate the object's tag and use it to compute the actual
8163 type. However, when ADDRESS is null, we cannot use it to determine the
8164 location of the tag, and therefore compute the tagged type's actual type.
8165 So we return the tagged type without consulting the tag. */
8167 static struct type *
8168 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8169 CORE_ADDR address, struct value *dval, int check_tag)
8171 type = ada_check_typedef (type);
8172 switch (TYPE_CODE (type))
8176 case TYPE_CODE_STRUCT:
8178 struct type *static_type = to_static_fixed_type (type);
8179 struct type *fixed_record_type =
8180 to_fixed_record_type (type, valaddr, address, NULL);
8182 /* If STATIC_TYPE is a tagged type and we know the object's address,
8183 then we can determine its tag, and compute the object's actual
8184 type from there. Note that we have to use the fixed record
8185 type (the parent part of the record may have dynamic fields
8186 and the way the location of _tag is expressed may depend on
8189 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8192 value_tag_from_contents_and_address
8196 struct type *real_type = type_from_tag (tag);
8198 value_from_contents_and_address (fixed_record_type,
8201 if (real_type != NULL)
8202 return to_fixed_record_type
8204 value_address (ada_tag_value_at_base_address (obj)), NULL);
8207 /* Check to see if there is a parallel ___XVZ variable.
8208 If there is, then it provides the actual size of our type. */
8209 else if (ada_type_name (fixed_record_type) != NULL)
8211 const char *name = ada_type_name (fixed_record_type);
8212 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8216 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8217 size = get_int_var_value (xvz_name, &xvz_found);
8218 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8220 fixed_record_type = copy_type (fixed_record_type);
8221 TYPE_LENGTH (fixed_record_type) = size;
8223 /* The FIXED_RECORD_TYPE may have be a stub. We have
8224 observed this when the debugging info is STABS, and
8225 apparently it is something that is hard to fix.
8227 In practice, we don't need the actual type definition
8228 at all, because the presence of the XVZ variable allows us
8229 to assume that there must be a XVS type as well, which we
8230 should be able to use later, when we need the actual type
8233 In the meantime, pretend that the "fixed" type we are
8234 returning is NOT a stub, because this can cause trouble
8235 when using this type to create new types targeting it.
8236 Indeed, the associated creation routines often check
8237 whether the target type is a stub and will try to replace
8238 it, thus using a type with the wrong size. This, in turn,
8239 might cause the new type to have the wrong size too.
8240 Consider the case of an array, for instance, where the size
8241 of the array is computed from the number of elements in
8242 our array multiplied by the size of its element. */
8243 TYPE_STUB (fixed_record_type) = 0;
8246 return fixed_record_type;
8248 case TYPE_CODE_ARRAY:
8249 return to_fixed_array_type (type, dval, 1);
8250 case TYPE_CODE_UNION:
8254 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8258 /* The same as ada_to_fixed_type_1, except that it preserves the type
8259 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8261 The typedef layer needs be preserved in order to differentiate between
8262 arrays and array pointers when both types are implemented using the same
8263 fat pointer. In the array pointer case, the pointer is encoded as
8264 a typedef of the pointer type. For instance, considering:
8266 type String_Access is access String;
8267 S1 : String_Access := null;
8269 To the debugger, S1 is defined as a typedef of type String. But
8270 to the user, it is a pointer. So if the user tries to print S1,
8271 we should not dereference the array, but print the array address
8274 If we didn't preserve the typedef layer, we would lose the fact that
8275 the type is to be presented as a pointer (needs de-reference before
8276 being printed). And we would also use the source-level type name. */
8279 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8280 CORE_ADDR address, struct value *dval, int check_tag)
8283 struct type *fixed_type =
8284 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8286 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8287 then preserve the typedef layer.
8289 Implementation note: We can only check the main-type portion of
8290 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8291 from TYPE now returns a type that has the same instance flags
8292 as TYPE. For instance, if TYPE is a "typedef const", and its
8293 target type is a "struct", then the typedef elimination will return
8294 a "const" version of the target type. See check_typedef for more
8295 details about how the typedef layer elimination is done.
8297 brobecker/2010-11-19: It seems to me that the only case where it is
8298 useful to preserve the typedef layer is when dealing with fat pointers.
8299 Perhaps, we could add a check for that and preserve the typedef layer
8300 only in that situation. But this seems unecessary so far, probably
8301 because we call check_typedef/ada_check_typedef pretty much everywhere.
8303 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8304 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8305 == TYPE_MAIN_TYPE (fixed_type)))
8311 /* A standard (static-sized) type corresponding as well as possible to
8312 TYPE0, but based on no runtime data. */
8314 static struct type *
8315 to_static_fixed_type (struct type *type0)
8322 if (TYPE_FIXED_INSTANCE (type0))
8325 type0 = ada_check_typedef (type0);
8327 switch (TYPE_CODE (type0))
8331 case TYPE_CODE_STRUCT:
8332 type = dynamic_template_type (type0);
8334 return template_to_static_fixed_type (type);
8336 return template_to_static_fixed_type (type0);
8337 case TYPE_CODE_UNION:
8338 type = ada_find_parallel_type (type0, "___XVU");
8340 return template_to_static_fixed_type (type);
8342 return template_to_static_fixed_type (type0);
8346 /* A static approximation of TYPE with all type wrappers removed. */
8348 static struct type *
8349 static_unwrap_type (struct type *type)
8351 if (ada_is_aligner_type (type))
8353 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8354 if (ada_type_name (type1) == NULL)
8355 TYPE_NAME (type1) = ada_type_name (type);
8357 return static_unwrap_type (type1);
8361 struct type *raw_real_type = ada_get_base_type (type);
8363 if (raw_real_type == type)
8366 return to_static_fixed_type (raw_real_type);
8370 /* In some cases, incomplete and private types require
8371 cross-references that are not resolved as records (for example,
8373 type FooP is access Foo;
8375 type Foo is array ...;
8376 ). In these cases, since there is no mechanism for producing
8377 cross-references to such types, we instead substitute for FooP a
8378 stub enumeration type that is nowhere resolved, and whose tag is
8379 the name of the actual type. Call these types "non-record stubs". */
8381 /* A type equivalent to TYPE that is not a non-record stub, if one
8382 exists, otherwise TYPE. */
8385 ada_check_typedef (struct type *type)
8390 /* If our type is a typedef type of a fat pointer, then we're done.
8391 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8392 what allows us to distinguish between fat pointers that represent
8393 array types, and fat pointers that represent array access types
8394 (in both cases, the compiler implements them as fat pointers). */
8395 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8396 && is_thick_pntr (ada_typedef_target_type (type)))
8399 CHECK_TYPEDEF (type);
8400 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8401 || !TYPE_STUB (type)
8402 || TYPE_TAG_NAME (type) == NULL)
8406 const char *name = TYPE_TAG_NAME (type);
8407 struct type *type1 = ada_find_any_type (name);
8412 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8413 stubs pointing to arrays, as we don't create symbols for array
8414 types, only for the typedef-to-array types). If that's the case,
8415 strip the typedef layer. */
8416 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8417 type1 = ada_check_typedef (type1);
8423 /* A value representing the data at VALADDR/ADDRESS as described by
8424 type TYPE0, but with a standard (static-sized) type that correctly
8425 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8426 type, then return VAL0 [this feature is simply to avoid redundant
8427 creation of struct values]. */
8429 static struct value *
8430 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8433 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8435 if (type == type0 && val0 != NULL)
8438 return value_from_contents_and_address (type, 0, address);
8441 /* A value representing VAL, but with a standard (static-sized) type
8442 that correctly describes it. Does not necessarily create a new
8446 ada_to_fixed_value (struct value *val)
8448 val = unwrap_value (val);
8449 val = ada_to_fixed_value_create (value_type (val),
8450 value_address (val),
8458 /* Table mapping attribute numbers to names.
8459 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8461 static const char *attribute_names[] = {
8479 ada_attribute_name (enum exp_opcode n)
8481 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8482 return attribute_names[n - OP_ATR_FIRST + 1];
8484 return attribute_names[0];
8487 /* Evaluate the 'POS attribute applied to ARG. */
8490 pos_atr (struct value *arg)
8492 struct value *val = coerce_ref (arg);
8493 struct type *type = value_type (val);
8495 if (!discrete_type_p (type))
8496 error (_("'POS only defined on discrete types"));
8498 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8501 LONGEST v = value_as_long (val);
8503 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8505 if (v == TYPE_FIELD_ENUMVAL (type, i))
8508 error (_("enumeration value is invalid: can't find 'POS"));
8511 return value_as_long (val);
8514 static struct value *
8515 value_pos_atr (struct type *type, struct value *arg)
8517 return value_from_longest (type, pos_atr (arg));
8520 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8522 static struct value *
8523 value_val_atr (struct type *type, struct value *arg)
8525 if (!discrete_type_p (type))
8526 error (_("'VAL only defined on discrete types"));
8527 if (!integer_type_p (value_type (arg)))
8528 error (_("'VAL requires integral argument"));
8530 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8532 long pos = value_as_long (arg);
8534 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8535 error (_("argument to 'VAL out of range"));
8536 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8539 return value_from_longest (type, value_as_long (arg));
8545 /* True if TYPE appears to be an Ada character type.
8546 [At the moment, this is true only for Character and Wide_Character;
8547 It is a heuristic test that could stand improvement]. */
8550 ada_is_character_type (struct type *type)
8554 /* If the type code says it's a character, then assume it really is,
8555 and don't check any further. */
8556 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8559 /* Otherwise, assume it's a character type iff it is a discrete type
8560 with a known character type name. */
8561 name = ada_type_name (type);
8562 return (name != NULL
8563 && (TYPE_CODE (type) == TYPE_CODE_INT
8564 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8565 && (strcmp (name, "character") == 0
8566 || strcmp (name, "wide_character") == 0
8567 || strcmp (name, "wide_wide_character") == 0
8568 || strcmp (name, "unsigned char") == 0));
8571 /* True if TYPE appears to be an Ada string type. */
8574 ada_is_string_type (struct type *type)
8576 type = ada_check_typedef (type);
8578 && TYPE_CODE (type) != TYPE_CODE_PTR
8579 && (ada_is_simple_array_type (type)
8580 || ada_is_array_descriptor_type (type))
8581 && ada_array_arity (type) == 1)
8583 struct type *elttype = ada_array_element_type (type, 1);
8585 return ada_is_character_type (elttype);
8591 /* The compiler sometimes provides a parallel XVS type for a given
8592 PAD type. Normally, it is safe to follow the PAD type directly,
8593 but older versions of the compiler have a bug that causes the offset
8594 of its "F" field to be wrong. Following that field in that case
8595 would lead to incorrect results, but this can be worked around
8596 by ignoring the PAD type and using the associated XVS type instead.
8598 Set to True if the debugger should trust the contents of PAD types.
8599 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8600 static int trust_pad_over_xvs = 1;
8602 /* True if TYPE is a struct type introduced by the compiler to force the
8603 alignment of a value. Such types have a single field with a
8604 distinctive name. */
8607 ada_is_aligner_type (struct type *type)
8609 type = ada_check_typedef (type);
8611 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8614 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8615 && TYPE_NFIELDS (type) == 1
8616 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8619 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8620 the parallel type. */
8623 ada_get_base_type (struct type *raw_type)
8625 struct type *real_type_namer;
8626 struct type *raw_real_type;
8628 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8631 if (ada_is_aligner_type (raw_type))
8632 /* The encoding specifies that we should always use the aligner type.
8633 So, even if this aligner type has an associated XVS type, we should
8636 According to the compiler gurus, an XVS type parallel to an aligner
8637 type may exist because of a stabs limitation. In stabs, aligner
8638 types are empty because the field has a variable-sized type, and
8639 thus cannot actually be used as an aligner type. As a result,
8640 we need the associated parallel XVS type to decode the type.
8641 Since the policy in the compiler is to not change the internal
8642 representation based on the debugging info format, we sometimes
8643 end up having a redundant XVS type parallel to the aligner type. */
8646 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8647 if (real_type_namer == NULL
8648 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8649 || TYPE_NFIELDS (real_type_namer) != 1)
8652 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8654 /* This is an older encoding form where the base type needs to be
8655 looked up by name. We prefer the newer enconding because it is
8657 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8658 if (raw_real_type == NULL)
8661 return raw_real_type;
8664 /* The field in our XVS type is a reference to the base type. */
8665 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8668 /* The type of value designated by TYPE, with all aligners removed. */
8671 ada_aligned_type (struct type *type)
8673 if (ada_is_aligner_type (type))
8674 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8676 return ada_get_base_type (type);
8680 /* The address of the aligned value in an object at address VALADDR
8681 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8684 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8686 if (ada_is_aligner_type (type))
8687 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8689 TYPE_FIELD_BITPOS (type,
8690 0) / TARGET_CHAR_BIT);
8697 /* The printed representation of an enumeration literal with encoded
8698 name NAME. The value is good to the next call of ada_enum_name. */
8700 ada_enum_name (const char *name)
8702 static char *result;
8703 static size_t result_len = 0;
8706 /* First, unqualify the enumeration name:
8707 1. Search for the last '.' character. If we find one, then skip
8708 all the preceding characters, the unqualified name starts
8709 right after that dot.
8710 2. Otherwise, we may be debugging on a target where the compiler
8711 translates dots into "__". Search forward for double underscores,
8712 but stop searching when we hit an overloading suffix, which is
8713 of the form "__" followed by digits. */
8715 tmp = strrchr (name, '.');
8720 while ((tmp = strstr (name, "__")) != NULL)
8722 if (isdigit (tmp[2]))
8733 if (name[1] == 'U' || name[1] == 'W')
8735 if (sscanf (name + 2, "%x", &v) != 1)
8741 GROW_VECT (result, result_len, 16);
8742 if (isascii (v) && isprint (v))
8743 xsnprintf (result, result_len, "'%c'", v);
8744 else if (name[1] == 'U')
8745 xsnprintf (result, result_len, "[\"%02x\"]", v);
8747 xsnprintf (result, result_len, "[\"%04x\"]", v);
8753 tmp = strstr (name, "__");
8755 tmp = strstr (name, "$");
8758 GROW_VECT (result, result_len, tmp - name + 1);
8759 strncpy (result, name, tmp - name);
8760 result[tmp - name] = '\0';
8768 /* Evaluate the subexpression of EXP starting at *POS as for
8769 evaluate_type, updating *POS to point just past the evaluated
8772 static struct value *
8773 evaluate_subexp_type (struct expression *exp, int *pos)
8775 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8778 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8781 static struct value *
8782 unwrap_value (struct value *val)
8784 struct type *type = ada_check_typedef (value_type (val));
8786 if (ada_is_aligner_type (type))
8788 struct value *v = ada_value_struct_elt (val, "F", 0);
8789 struct type *val_type = ada_check_typedef (value_type (v));
8791 if (ada_type_name (val_type) == NULL)
8792 TYPE_NAME (val_type) = ada_type_name (type);
8794 return unwrap_value (v);
8798 struct type *raw_real_type =
8799 ada_check_typedef (ada_get_base_type (type));
8801 /* If there is no parallel XVS or XVE type, then the value is
8802 already unwrapped. Return it without further modification. */
8803 if ((type == raw_real_type)
8804 && ada_find_parallel_type (type, "___XVE") == NULL)
8808 coerce_unspec_val_to_type
8809 (val, ada_to_fixed_type (raw_real_type, 0,
8810 value_address (val),
8815 static struct value *
8816 cast_to_fixed (struct type *type, struct value *arg)
8820 if (type == value_type (arg))
8822 else if (ada_is_fixed_point_type (value_type (arg)))
8823 val = ada_float_to_fixed (type,
8824 ada_fixed_to_float (value_type (arg),
8825 value_as_long (arg)));
8828 DOUBLEST argd = value_as_double (arg);
8830 val = ada_float_to_fixed (type, argd);
8833 return value_from_longest (type, val);
8836 static struct value *
8837 cast_from_fixed (struct type *type, struct value *arg)
8839 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8840 value_as_long (arg));
8842 return value_from_double (type, val);
8845 /* Given two array types T1 and T2, return nonzero iff both arrays
8846 contain the same number of elements. */
8849 ada_same_array_size_p (struct type *t1, struct type *t2)
8851 LONGEST lo1, hi1, lo2, hi2;
8853 /* Get the array bounds in order to verify that the size of
8854 the two arrays match. */
8855 if (!get_array_bounds (t1, &lo1, &hi1)
8856 || !get_array_bounds (t2, &lo2, &hi2))
8857 error (_("unable to determine array bounds"));
8859 /* To make things easier for size comparison, normalize a bit
8860 the case of empty arrays by making sure that the difference
8861 between upper bound and lower bound is always -1. */
8867 return (hi1 - lo1 == hi2 - lo2);
8870 /* Assuming that VAL is an array of integrals, and TYPE represents
8871 an array with the same number of elements, but with wider integral
8872 elements, return an array "casted" to TYPE. In practice, this
8873 means that the returned array is built by casting each element
8874 of the original array into TYPE's (wider) element type. */
8876 static struct value *
8877 ada_promote_array_of_integrals (struct type *type, struct value *val)
8879 struct type *elt_type = TYPE_TARGET_TYPE (type);
8884 /* Verify that both val and type are arrays of scalars, and
8885 that the size of val's elements is smaller than the size
8886 of type's element. */
8887 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8888 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8889 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8890 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8891 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8892 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8894 if (!get_array_bounds (type, &lo, &hi))
8895 error (_("unable to determine array bounds"));
8897 res = allocate_value (type);
8899 /* Promote each array element. */
8900 for (i = 0; i < hi - lo + 1; i++)
8902 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8904 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8905 value_contents_all (elt), TYPE_LENGTH (elt_type));
8911 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8912 return the converted value. */
8914 static struct value *
8915 coerce_for_assign (struct type *type, struct value *val)
8917 struct type *type2 = value_type (val);
8922 type2 = ada_check_typedef (type2);
8923 type = ada_check_typedef (type);
8925 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8926 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8928 val = ada_value_ind (val);
8929 type2 = value_type (val);
8932 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8933 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8935 if (!ada_same_array_size_p (type, type2))
8936 error (_("cannot assign arrays of different length"));
8938 if (is_integral_type (TYPE_TARGET_TYPE (type))
8939 && is_integral_type (TYPE_TARGET_TYPE (type2))
8940 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8941 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8943 /* Allow implicit promotion of the array elements to
8945 return ada_promote_array_of_integrals (type, val);
8948 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8949 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8950 error (_("Incompatible types in assignment"));
8951 deprecated_set_value_type (val, type);
8956 static struct value *
8957 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8960 struct type *type1, *type2;
8963 arg1 = coerce_ref (arg1);
8964 arg2 = coerce_ref (arg2);
8965 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8966 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8968 if (TYPE_CODE (type1) != TYPE_CODE_INT
8969 || TYPE_CODE (type2) != TYPE_CODE_INT)
8970 return value_binop (arg1, arg2, op);
8979 return value_binop (arg1, arg2, op);
8982 v2 = value_as_long (arg2);
8984 error (_("second operand of %s must not be zero."), op_string (op));
8986 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8987 return value_binop (arg1, arg2, op);
8989 v1 = value_as_long (arg1);
8994 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8995 v += v > 0 ? -1 : 1;
9003 /* Should not reach this point. */
9007 val = allocate_value (type1);
9008 store_unsigned_integer (value_contents_raw (val),
9009 TYPE_LENGTH (value_type (val)),
9010 gdbarch_byte_order (get_type_arch (type1)), v);
9015 ada_value_equal (struct value *arg1, struct value *arg2)
9017 if (ada_is_direct_array_type (value_type (arg1))
9018 || ada_is_direct_array_type (value_type (arg2)))
9020 /* Automatically dereference any array reference before
9021 we attempt to perform the comparison. */
9022 arg1 = ada_coerce_ref (arg1);
9023 arg2 = ada_coerce_ref (arg2);
9025 arg1 = ada_coerce_to_simple_array (arg1);
9026 arg2 = ada_coerce_to_simple_array (arg2);
9027 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9028 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9029 error (_("Attempt to compare array with non-array"));
9030 /* FIXME: The following works only for types whose
9031 representations use all bits (no padding or undefined bits)
9032 and do not have user-defined equality. */
9034 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9035 && memcmp (value_contents (arg1), value_contents (arg2),
9036 TYPE_LENGTH (value_type (arg1))) == 0;
9038 return value_equal (arg1, arg2);
9041 /* Total number of component associations in the aggregate starting at
9042 index PC in EXP. Assumes that index PC is the start of an
9046 num_component_specs (struct expression *exp, int pc)
9050 m = exp->elts[pc + 1].longconst;
9053 for (i = 0; i < m; i += 1)
9055 switch (exp->elts[pc].opcode)
9061 n += exp->elts[pc + 1].longconst;
9064 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9069 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9070 component of LHS (a simple array or a record), updating *POS past
9071 the expression, assuming that LHS is contained in CONTAINER. Does
9072 not modify the inferior's memory, nor does it modify LHS (unless
9073 LHS == CONTAINER). */
9076 assign_component (struct value *container, struct value *lhs, LONGEST index,
9077 struct expression *exp, int *pos)
9079 struct value *mark = value_mark ();
9082 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9084 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9085 struct value *index_val = value_from_longest (index_type, index);
9087 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9091 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9092 elt = ada_to_fixed_value (elt);
9095 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9096 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9098 value_assign_to_component (container, elt,
9099 ada_evaluate_subexp (NULL, exp, pos,
9102 value_free_to_mark (mark);
9105 /* Assuming that LHS represents an lvalue having a record or array
9106 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9107 of that aggregate's value to LHS, advancing *POS past the
9108 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9109 lvalue containing LHS (possibly LHS itself). Does not modify
9110 the inferior's memory, nor does it modify the contents of
9111 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9113 static struct value *
9114 assign_aggregate (struct value *container,
9115 struct value *lhs, struct expression *exp,
9116 int *pos, enum noside noside)
9118 struct type *lhs_type;
9119 int n = exp->elts[*pos+1].longconst;
9120 LONGEST low_index, high_index;
9123 int max_indices, num_indices;
9127 if (noside != EVAL_NORMAL)
9129 for (i = 0; i < n; i += 1)
9130 ada_evaluate_subexp (NULL, exp, pos, noside);
9134 container = ada_coerce_ref (container);
9135 if (ada_is_direct_array_type (value_type (container)))
9136 container = ada_coerce_to_simple_array (container);
9137 lhs = ada_coerce_ref (lhs);
9138 if (!deprecated_value_modifiable (lhs))
9139 error (_("Left operand of assignment is not a modifiable lvalue."));
9141 lhs_type = value_type (lhs);
9142 if (ada_is_direct_array_type (lhs_type))
9144 lhs = ada_coerce_to_simple_array (lhs);
9145 lhs_type = value_type (lhs);
9146 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9147 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9149 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9152 high_index = num_visible_fields (lhs_type) - 1;
9155 error (_("Left-hand side must be array or record."));
9157 num_specs = num_component_specs (exp, *pos - 3);
9158 max_indices = 4 * num_specs + 4;
9159 indices = alloca (max_indices * sizeof (indices[0]));
9160 indices[0] = indices[1] = low_index - 1;
9161 indices[2] = indices[3] = high_index + 1;
9164 for (i = 0; i < n; i += 1)
9166 switch (exp->elts[*pos].opcode)
9169 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9170 &num_indices, max_indices,
9171 low_index, high_index);
9174 aggregate_assign_positional (container, lhs, exp, pos, indices,
9175 &num_indices, max_indices,
9176 low_index, high_index);
9180 error (_("Misplaced 'others' clause"));
9181 aggregate_assign_others (container, lhs, exp, pos, indices,
9182 num_indices, low_index, high_index);
9185 error (_("Internal error: bad aggregate clause"));
9192 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9193 construct at *POS, updating *POS past the construct, given that
9194 the positions are relative to lower bound LOW, where HIGH is the
9195 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9196 updating *NUM_INDICES as needed. CONTAINER is as for
9197 assign_aggregate. */
9199 aggregate_assign_positional (struct value *container,
9200 struct value *lhs, struct expression *exp,
9201 int *pos, LONGEST *indices, int *num_indices,
9202 int max_indices, LONGEST low, LONGEST high)
9204 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9206 if (ind - 1 == high)
9207 warning (_("Extra components in aggregate ignored."));
9210 add_component_interval (ind, ind, indices, num_indices, max_indices);
9212 assign_component (container, lhs, ind, exp, pos);
9215 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9218 /* Assign into the components of LHS indexed by the OP_CHOICES
9219 construct at *POS, updating *POS past the construct, given that
9220 the allowable indices are LOW..HIGH. Record the indices assigned
9221 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9222 needed. CONTAINER is as for assign_aggregate. */
9224 aggregate_assign_from_choices (struct value *container,
9225 struct value *lhs, struct expression *exp,
9226 int *pos, LONGEST *indices, int *num_indices,
9227 int max_indices, LONGEST low, LONGEST high)
9230 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9231 int choice_pos, expr_pc;
9232 int is_array = ada_is_direct_array_type (value_type (lhs));
9234 choice_pos = *pos += 3;
9236 for (j = 0; j < n_choices; j += 1)
9237 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9239 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9241 for (j = 0; j < n_choices; j += 1)
9243 LONGEST lower, upper;
9244 enum exp_opcode op = exp->elts[choice_pos].opcode;
9246 if (op == OP_DISCRETE_RANGE)
9249 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9251 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9256 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9268 name = &exp->elts[choice_pos + 2].string;
9271 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9274 error (_("Invalid record component association."));
9276 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9278 if (! find_struct_field (name, value_type (lhs), 0,
9279 NULL, NULL, NULL, NULL, &ind))
9280 error (_("Unknown component name: %s."), name);
9281 lower = upper = ind;
9284 if (lower <= upper && (lower < low || upper > high))
9285 error (_("Index in component association out of bounds."));
9287 add_component_interval (lower, upper, indices, num_indices,
9289 while (lower <= upper)
9294 assign_component (container, lhs, lower, exp, &pos1);
9300 /* Assign the value of the expression in the OP_OTHERS construct in
9301 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9302 have not been previously assigned. The index intervals already assigned
9303 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9304 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9306 aggregate_assign_others (struct value *container,
9307 struct value *lhs, struct expression *exp,
9308 int *pos, LONGEST *indices, int num_indices,
9309 LONGEST low, LONGEST high)
9312 int expr_pc = *pos + 1;
9314 for (i = 0; i < num_indices - 2; i += 2)
9318 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9323 assign_component (container, lhs, ind, exp, &localpos);
9326 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9329 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9330 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9331 modifying *SIZE as needed. It is an error if *SIZE exceeds
9332 MAX_SIZE. The resulting intervals do not overlap. */
9334 add_component_interval (LONGEST low, LONGEST high,
9335 LONGEST* indices, int *size, int max_size)
9339 for (i = 0; i < *size; i += 2) {
9340 if (high >= indices[i] && low <= indices[i + 1])
9344 for (kh = i + 2; kh < *size; kh += 2)
9345 if (high < indices[kh])
9347 if (low < indices[i])
9349 indices[i + 1] = indices[kh - 1];
9350 if (high > indices[i + 1])
9351 indices[i + 1] = high;
9352 memcpy (indices + i + 2, indices + kh, *size - kh);
9353 *size -= kh - i - 2;
9356 else if (high < indices[i])
9360 if (*size == max_size)
9361 error (_("Internal error: miscounted aggregate components."));
9363 for (j = *size-1; j >= i+2; j -= 1)
9364 indices[j] = indices[j - 2];
9366 indices[i + 1] = high;
9369 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9372 static struct value *
9373 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9375 if (type == ada_check_typedef (value_type (arg2)))
9378 if (ada_is_fixed_point_type (type))
9379 return (cast_to_fixed (type, arg2));
9381 if (ada_is_fixed_point_type (value_type (arg2)))
9382 return cast_from_fixed (type, arg2);
9384 return value_cast (type, arg2);
9387 /* Evaluating Ada expressions, and printing their result.
9388 ------------------------------------------------------
9393 We usually evaluate an Ada expression in order to print its value.
9394 We also evaluate an expression in order to print its type, which
9395 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9396 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9397 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9398 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9401 Evaluating expressions is a little more complicated for Ada entities
9402 than it is for entities in languages such as C. The main reason for
9403 this is that Ada provides types whose definition might be dynamic.
9404 One example of such types is variant records. Or another example
9405 would be an array whose bounds can only be known at run time.
9407 The following description is a general guide as to what should be
9408 done (and what should NOT be done) in order to evaluate an expression
9409 involving such types, and when. This does not cover how the semantic
9410 information is encoded by GNAT as this is covered separatly. For the
9411 document used as the reference for the GNAT encoding, see exp_dbug.ads
9412 in the GNAT sources.
9414 Ideally, we should embed each part of this description next to its
9415 associated code. Unfortunately, the amount of code is so vast right
9416 now that it's hard to see whether the code handling a particular
9417 situation might be duplicated or not. One day, when the code is
9418 cleaned up, this guide might become redundant with the comments
9419 inserted in the code, and we might want to remove it.
9421 2. ``Fixing'' an Entity, the Simple Case:
9422 -----------------------------------------
9424 When evaluating Ada expressions, the tricky issue is that they may
9425 reference entities whose type contents and size are not statically
9426 known. Consider for instance a variant record:
9428 type Rec (Empty : Boolean := True) is record
9431 when False => Value : Integer;
9434 Yes : Rec := (Empty => False, Value => 1);
9435 No : Rec := (empty => True);
9437 The size and contents of that record depends on the value of the
9438 descriminant (Rec.Empty). At this point, neither the debugging
9439 information nor the associated type structure in GDB are able to
9440 express such dynamic types. So what the debugger does is to create
9441 "fixed" versions of the type that applies to the specific object.
9442 We also informally refer to this opperation as "fixing" an object,
9443 which means creating its associated fixed type.
9445 Example: when printing the value of variable "Yes" above, its fixed
9446 type would look like this:
9453 On the other hand, if we printed the value of "No", its fixed type
9460 Things become a little more complicated when trying to fix an entity
9461 with a dynamic type that directly contains another dynamic type,
9462 such as an array of variant records, for instance. There are
9463 two possible cases: Arrays, and records.
9465 3. ``Fixing'' Arrays:
9466 ---------------------
9468 The type structure in GDB describes an array in terms of its bounds,
9469 and the type of its elements. By design, all elements in the array
9470 have the same type and we cannot represent an array of variant elements
9471 using the current type structure in GDB. When fixing an array,
9472 we cannot fix the array element, as we would potentially need one
9473 fixed type per element of the array. As a result, the best we can do
9474 when fixing an array is to produce an array whose bounds and size
9475 are correct (allowing us to read it from memory), but without having
9476 touched its element type. Fixing each element will be done later,
9477 when (if) necessary.
9479 Arrays are a little simpler to handle than records, because the same
9480 amount of memory is allocated for each element of the array, even if
9481 the amount of space actually used by each element differs from element
9482 to element. Consider for instance the following array of type Rec:
9484 type Rec_Array is array (1 .. 2) of Rec;
9486 The actual amount of memory occupied by each element might be different
9487 from element to element, depending on the value of their discriminant.
9488 But the amount of space reserved for each element in the array remains
9489 fixed regardless. So we simply need to compute that size using
9490 the debugging information available, from which we can then determine
9491 the array size (we multiply the number of elements of the array by
9492 the size of each element).
9494 The simplest case is when we have an array of a constrained element
9495 type. For instance, consider the following type declarations:
9497 type Bounded_String (Max_Size : Integer) is
9499 Buffer : String (1 .. Max_Size);
9501 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9503 In this case, the compiler describes the array as an array of
9504 variable-size elements (identified by its XVS suffix) for which
9505 the size can be read in the parallel XVZ variable.
9507 In the case of an array of an unconstrained element type, the compiler
9508 wraps the array element inside a private PAD type. This type should not
9509 be shown to the user, and must be "unwrap"'ed before printing. Note
9510 that we also use the adjective "aligner" in our code to designate
9511 these wrapper types.
9513 In some cases, the size allocated for each element is statically
9514 known. In that case, the PAD type already has the correct size,
9515 and the array element should remain unfixed.
9517 But there are cases when this size is not statically known.
9518 For instance, assuming that "Five" is an integer variable:
9520 type Dynamic is array (1 .. Five) of Integer;
9521 type Wrapper (Has_Length : Boolean := False) is record
9524 when True => Length : Integer;
9528 type Wrapper_Array is array (1 .. 2) of Wrapper;
9530 Hello : Wrapper_Array := (others => (Has_Length => True,
9531 Data => (others => 17),
9535 The debugging info would describe variable Hello as being an
9536 array of a PAD type. The size of that PAD type is not statically
9537 known, but can be determined using a parallel XVZ variable.
9538 In that case, a copy of the PAD type with the correct size should
9539 be used for the fixed array.
9541 3. ``Fixing'' record type objects:
9542 ----------------------------------
9544 Things are slightly different from arrays in the case of dynamic
9545 record types. In this case, in order to compute the associated
9546 fixed type, we need to determine the size and offset of each of
9547 its components. This, in turn, requires us to compute the fixed
9548 type of each of these components.
9550 Consider for instance the example:
9552 type Bounded_String (Max_Size : Natural) is record
9553 Str : String (1 .. Max_Size);
9556 My_String : Bounded_String (Max_Size => 10);
9558 In that case, the position of field "Length" depends on the size
9559 of field Str, which itself depends on the value of the Max_Size
9560 discriminant. In order to fix the type of variable My_String,
9561 we need to fix the type of field Str. Therefore, fixing a variant
9562 record requires us to fix each of its components.
9564 However, if a component does not have a dynamic size, the component
9565 should not be fixed. In particular, fields that use a PAD type
9566 should not fixed. Here is an example where this might happen
9567 (assuming type Rec above):
9569 type Container (Big : Boolean) is record
9573 when True => Another : Integer;
9577 My_Container : Container := (Big => False,
9578 First => (Empty => True),
9581 In that example, the compiler creates a PAD type for component First,
9582 whose size is constant, and then positions the component After just
9583 right after it. The offset of component After is therefore constant
9586 The debugger computes the position of each field based on an algorithm
9587 that uses, among other things, the actual position and size of the field
9588 preceding it. Let's now imagine that the user is trying to print
9589 the value of My_Container. If the type fixing was recursive, we would
9590 end up computing the offset of field After based on the size of the
9591 fixed version of field First. And since in our example First has
9592 only one actual field, the size of the fixed type is actually smaller
9593 than the amount of space allocated to that field, and thus we would
9594 compute the wrong offset of field After.
9596 To make things more complicated, we need to watch out for dynamic
9597 components of variant records (identified by the ___XVL suffix in
9598 the component name). Even if the target type is a PAD type, the size
9599 of that type might not be statically known. So the PAD type needs
9600 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9601 we might end up with the wrong size for our component. This can be
9602 observed with the following type declarations:
9604 type Octal is new Integer range 0 .. 7;
9605 type Octal_Array is array (Positive range <>) of Octal;
9606 pragma Pack (Octal_Array);
9608 type Octal_Buffer (Size : Positive) is record
9609 Buffer : Octal_Array (1 .. Size);
9613 In that case, Buffer is a PAD type whose size is unset and needs
9614 to be computed by fixing the unwrapped type.
9616 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9617 ----------------------------------------------------------
9619 Lastly, when should the sub-elements of an entity that remained unfixed
9620 thus far, be actually fixed?
9622 The answer is: Only when referencing that element. For instance
9623 when selecting one component of a record, this specific component
9624 should be fixed at that point in time. Or when printing the value
9625 of a record, each component should be fixed before its value gets
9626 printed. Similarly for arrays, the element of the array should be
9627 fixed when printing each element of the array, or when extracting
9628 one element out of that array. On the other hand, fixing should
9629 not be performed on the elements when taking a slice of an array!
9631 Note that one of the side-effects of miscomputing the offset and
9632 size of each field is that we end up also miscomputing the size
9633 of the containing type. This can have adverse results when computing
9634 the value of an entity. GDB fetches the value of an entity based
9635 on the size of its type, and thus a wrong size causes GDB to fetch
9636 the wrong amount of memory. In the case where the computed size is
9637 too small, GDB fetches too little data to print the value of our
9638 entiry. Results in this case as unpredicatble, as we usually read
9639 past the buffer containing the data =:-o. */
9641 /* Implement the evaluate_exp routine in the exp_descriptor structure
9642 for the Ada language. */
9644 static struct value *
9645 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9646 int *pos, enum noside noside)
9651 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9654 struct value **argvec;
9658 op = exp->elts[pc].opcode;
9664 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9666 if (noside == EVAL_NORMAL)
9667 arg1 = unwrap_value (arg1);
9669 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9670 then we need to perform the conversion manually, because
9671 evaluate_subexp_standard doesn't do it. This conversion is
9672 necessary in Ada because the different kinds of float/fixed
9673 types in Ada have different representations.
9675 Similarly, we need to perform the conversion from OP_LONG
9677 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9678 arg1 = ada_value_cast (expect_type, arg1, noside);
9684 struct value *result;
9687 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9688 /* The result type will have code OP_STRING, bashed there from
9689 OP_ARRAY. Bash it back. */
9690 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9691 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9697 type = exp->elts[pc + 1].type;
9698 arg1 = evaluate_subexp (type, exp, pos, noside);
9699 if (noside == EVAL_SKIP)
9701 arg1 = ada_value_cast (type, arg1, noside);
9706 type = exp->elts[pc + 1].type;
9707 return ada_evaluate_subexp (type, exp, pos, noside);
9710 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9711 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9713 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9714 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9716 return ada_value_assign (arg1, arg1);
9718 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9719 except if the lhs of our assignment is a convenience variable.
9720 In the case of assigning to a convenience variable, the lhs
9721 should be exactly the result of the evaluation of the rhs. */
9722 type = value_type (arg1);
9723 if (VALUE_LVAL (arg1) == lval_internalvar)
9725 arg2 = evaluate_subexp (type, exp, pos, noside);
9726 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9728 if (ada_is_fixed_point_type (value_type (arg1)))
9729 arg2 = cast_to_fixed (value_type (arg1), arg2);
9730 else if (ada_is_fixed_point_type (value_type (arg2)))
9732 (_("Fixed-point values must be assigned to fixed-point variables"));
9734 arg2 = coerce_for_assign (value_type (arg1), arg2);
9735 return ada_value_assign (arg1, arg2);
9738 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9739 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9740 if (noside == EVAL_SKIP)
9742 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9743 return (value_from_longest
9745 value_as_long (arg1) + value_as_long (arg2)));
9746 if ((ada_is_fixed_point_type (value_type (arg1))
9747 || ada_is_fixed_point_type (value_type (arg2)))
9748 && value_type (arg1) != value_type (arg2))
9749 error (_("Operands of fixed-point addition must have the same type"));
9750 /* Do the addition, and cast the result to the type of the first
9751 argument. We cannot cast the result to a reference type, so if
9752 ARG1 is a reference type, find its underlying type. */
9753 type = value_type (arg1);
9754 while (TYPE_CODE (type) == TYPE_CODE_REF)
9755 type = TYPE_TARGET_TYPE (type);
9756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9757 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9760 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9761 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9762 if (noside == EVAL_SKIP)
9764 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9765 return (value_from_longest
9767 value_as_long (arg1) - value_as_long (arg2)));
9768 if ((ada_is_fixed_point_type (value_type (arg1))
9769 || ada_is_fixed_point_type (value_type (arg2)))
9770 && value_type (arg1) != value_type (arg2))
9771 error (_("Operands of fixed-point subtraction "
9772 "must have the same type"));
9773 /* Do the substraction, and cast the result to the type of the first
9774 argument. We cannot cast the result to a reference type, so if
9775 ARG1 is a reference type, find its underlying type. */
9776 type = value_type (arg1);
9777 while (TYPE_CODE (type) == TYPE_CODE_REF)
9778 type = TYPE_TARGET_TYPE (type);
9779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9780 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9786 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9787 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9788 if (noside == EVAL_SKIP)
9790 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9793 return value_zero (value_type (arg1), not_lval);
9797 type = builtin_type (exp->gdbarch)->builtin_double;
9798 if (ada_is_fixed_point_type (value_type (arg1)))
9799 arg1 = cast_from_fixed (type, arg1);
9800 if (ada_is_fixed_point_type (value_type (arg2)))
9801 arg2 = cast_from_fixed (type, arg2);
9802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9803 return ada_value_binop (arg1, arg2, op);
9807 case BINOP_NOTEQUAL:
9808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9809 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9810 if (noside == EVAL_SKIP)
9812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9816 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9817 tem = ada_value_equal (arg1, arg2);
9819 if (op == BINOP_NOTEQUAL)
9821 type = language_bool_type (exp->language_defn, exp->gdbarch);
9822 return value_from_longest (type, (LONGEST) tem);
9825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9826 if (noside == EVAL_SKIP)
9828 else if (ada_is_fixed_point_type (value_type (arg1)))
9829 return value_cast (value_type (arg1), value_neg (arg1));
9832 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9833 return value_neg (arg1);
9836 case BINOP_LOGICAL_AND:
9837 case BINOP_LOGICAL_OR:
9838 case UNOP_LOGICAL_NOT:
9843 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9844 type = language_bool_type (exp->language_defn, exp->gdbarch);
9845 return value_cast (type, val);
9848 case BINOP_BITWISE_AND:
9849 case BINOP_BITWISE_IOR:
9850 case BINOP_BITWISE_XOR:
9854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9856 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9858 return value_cast (value_type (arg1), val);
9864 if (noside == EVAL_SKIP)
9869 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9870 /* Only encountered when an unresolved symbol occurs in a
9871 context other than a function call, in which case, it is
9873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9874 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9875 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9877 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9878 /* Check to see if this is a tagged type. We also need to handle
9879 the case where the type is a reference to a tagged type, but
9880 we have to be careful to exclude pointers to tagged types.
9881 The latter should be shown as usual (as a pointer), whereas
9882 a reference should mostly be transparent to the user. */
9883 if (ada_is_tagged_type (type, 0)
9884 || (TYPE_CODE(type) == TYPE_CODE_REF
9885 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9887 /* Tagged types are a little special in the fact that the real
9888 type is dynamic and can only be determined by inspecting the
9889 object's tag. This means that we need to get the object's
9890 value first (EVAL_NORMAL) and then extract the actual object
9893 Note that we cannot skip the final step where we extract
9894 the object type from its tag, because the EVAL_NORMAL phase
9895 results in dynamic components being resolved into fixed ones.
9896 This can cause problems when trying to print the type
9897 description of tagged types whose parent has a dynamic size:
9898 We use the type name of the "_parent" component in order
9899 to print the name of the ancestor type in the type description.
9900 If that component had a dynamic size, the resolution into
9901 a fixed type would result in the loss of that type name,
9902 thus preventing us from printing the name of the ancestor
9903 type in the type description. */
9904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9906 if (TYPE_CODE (type) != TYPE_CODE_REF)
9908 struct type *actual_type;
9910 actual_type = type_from_tag (ada_value_tag (arg1));
9911 if (actual_type == NULL)
9912 /* If, for some reason, we were unable to determine
9913 the actual type from the tag, then use the static
9914 approximation that we just computed as a fallback.
9915 This can happen if the debugging information is
9916 incomplete, for instance. */
9918 return value_zero (actual_type, not_lval);
9922 /* In the case of a ref, ada_coerce_ref takes care
9923 of determining the actual type. But the evaluation
9924 should return a ref as it should be valid to ask
9925 for its address; so rebuild a ref after coerce. */
9926 arg1 = ada_coerce_ref (arg1);
9927 return value_ref (arg1);
9933 (to_static_fixed_type
9934 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9939 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9940 return ada_to_fixed_value (arg1);
9946 /* Allocate arg vector, including space for the function to be
9947 called in argvec[0] and a terminating NULL. */
9948 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9950 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9952 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9954 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9955 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9958 for (tem = 0; tem <= nargs; tem += 1)
9959 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9962 if (noside == EVAL_SKIP)
9966 if (ada_is_constrained_packed_array_type
9967 (desc_base_type (value_type (argvec[0]))))
9968 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9969 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9970 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9971 /* This is a packed array that has already been fixed, and
9972 therefore already coerced to a simple array. Nothing further
9975 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9976 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9977 && VALUE_LVAL (argvec[0]) == lval_memory))
9978 argvec[0] = value_addr (argvec[0]);
9980 type = ada_check_typedef (value_type (argvec[0]));
9982 /* Ada allows us to implicitly dereference arrays when subscripting
9983 them. So, if this is an array typedef (encoding use for array
9984 access types encoded as fat pointers), strip it now. */
9985 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9986 type = ada_typedef_target_type (type);
9988 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9990 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9992 case TYPE_CODE_FUNC:
9993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9995 case TYPE_CODE_ARRAY:
9997 case TYPE_CODE_STRUCT:
9998 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9999 argvec[0] = ada_value_ind (argvec[0]);
10000 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10003 error (_("cannot subscript or call something of type `%s'"),
10004 ada_type_name (value_type (argvec[0])));
10009 switch (TYPE_CODE (type))
10011 case TYPE_CODE_FUNC:
10012 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10014 struct type *rtype = TYPE_TARGET_TYPE (type);
10016 if (TYPE_GNU_IFUNC (type))
10017 return allocate_value (TYPE_TARGET_TYPE (rtype));
10018 return allocate_value (rtype);
10020 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10021 case TYPE_CODE_INTERNAL_FUNCTION:
10022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10023 /* We don't know anything about what the internal
10024 function might return, but we have to return
10026 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10029 return call_internal_function (exp->gdbarch, exp->language_defn,
10030 argvec[0], nargs, argvec + 1);
10032 case TYPE_CODE_STRUCT:
10036 arity = ada_array_arity (type);
10037 type = ada_array_element_type (type, nargs);
10039 error (_("cannot subscript or call a record"));
10040 if (arity != nargs)
10041 error (_("wrong number of subscripts; expecting %d"), arity);
10042 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10043 return value_zero (ada_aligned_type (type), lval_memory);
10045 unwrap_value (ada_value_subscript
10046 (argvec[0], nargs, argvec + 1));
10048 case TYPE_CODE_ARRAY:
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10051 type = ada_array_element_type (type, nargs);
10053 error (_("element type of array unknown"));
10055 return value_zero (ada_aligned_type (type), lval_memory);
10058 unwrap_value (ada_value_subscript
10059 (ada_coerce_to_simple_array (argvec[0]),
10060 nargs, argvec + 1));
10061 case TYPE_CODE_PTR: /* Pointer to array */
10062 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10065 type = ada_array_element_type (type, nargs);
10067 error (_("element type of array unknown"));
10069 return value_zero (ada_aligned_type (type), lval_memory);
10072 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10073 nargs, argvec + 1));
10076 error (_("Attempt to index or call something other than an "
10077 "array or function"));
10082 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10083 struct value *low_bound_val =
10084 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10085 struct value *high_bound_val =
10086 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 LONGEST high_bound;
10090 low_bound_val = coerce_ref (low_bound_val);
10091 high_bound_val = coerce_ref (high_bound_val);
10092 low_bound = pos_atr (low_bound_val);
10093 high_bound = pos_atr (high_bound_val);
10095 if (noside == EVAL_SKIP)
10098 /* If this is a reference to an aligner type, then remove all
10100 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10101 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10102 TYPE_TARGET_TYPE (value_type (array)) =
10103 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10105 if (ada_is_constrained_packed_array_type (value_type (array)))
10106 error (_("cannot slice a packed array"));
10108 /* If this is a reference to an array or an array lvalue,
10109 convert to a pointer. */
10110 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10111 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10112 && VALUE_LVAL (array) == lval_memory))
10113 array = value_addr (array);
10115 if (noside == EVAL_AVOID_SIDE_EFFECTS
10116 && ada_is_array_descriptor_type (ada_check_typedef
10117 (value_type (array))))
10118 return empty_array (ada_type_of_array (array, 0), low_bound);
10120 array = ada_coerce_to_simple_array_ptr (array);
10122 /* If we have more than one level of pointer indirection,
10123 dereference the value until we get only one level. */
10124 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10125 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10127 array = value_ind (array);
10129 /* Make sure we really do have an array type before going further,
10130 to avoid a SEGV when trying to get the index type or the target
10131 type later down the road if the debug info generated by
10132 the compiler is incorrect or incomplete. */
10133 if (!ada_is_simple_array_type (value_type (array)))
10134 error (_("cannot take slice of non-array"));
10136 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10139 struct type *type0 = ada_check_typedef (value_type (array));
10141 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10142 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10145 struct type *arr_type0 =
10146 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10148 return ada_value_slice_from_ptr (array, arr_type0,
10149 longest_to_int (low_bound),
10150 longest_to_int (high_bound));
10153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10155 else if (high_bound < low_bound)
10156 return empty_array (value_type (array), low_bound);
10158 return ada_value_slice (array, longest_to_int (low_bound),
10159 longest_to_int (high_bound));
10162 case UNOP_IN_RANGE:
10164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165 type = check_typedef (exp->elts[pc + 1].type);
10167 if (noside == EVAL_SKIP)
10170 switch (TYPE_CODE (type))
10173 lim_warning (_("Membership test incompletely implemented; "
10174 "always returns true"));
10175 type = language_bool_type (exp->language_defn, exp->gdbarch);
10176 return value_from_longest (type, (LONGEST) 1);
10178 case TYPE_CODE_RANGE:
10179 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10180 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10183 type = language_bool_type (exp->language_defn, exp->gdbarch);
10185 value_from_longest (type,
10186 (value_less (arg1, arg3)
10187 || value_equal (arg1, arg3))
10188 && (value_less (arg2, arg1)
10189 || value_equal (arg2, arg1)));
10192 case BINOP_IN_BOUNDS:
10194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10197 if (noside == EVAL_SKIP)
10200 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10202 type = language_bool_type (exp->language_defn, exp->gdbarch);
10203 return value_zero (type, not_lval);
10206 tem = longest_to_int (exp->elts[pc + 1].longconst);
10208 type = ada_index_type (value_type (arg2), tem, "range");
10210 type = value_type (arg1);
10212 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10213 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10217 type = language_bool_type (exp->language_defn, exp->gdbarch);
10219 value_from_longest (type,
10220 (value_less (arg1, arg3)
10221 || value_equal (arg1, arg3))
10222 && (value_less (arg2, arg1)
10223 || value_equal (arg2, arg1)));
10225 case TERNOP_IN_RANGE:
10226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10227 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10228 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10230 if (noside == EVAL_SKIP)
10233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10234 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10235 type = language_bool_type (exp->language_defn, exp->gdbarch);
10237 value_from_longest (type,
10238 (value_less (arg1, arg3)
10239 || value_equal (arg1, arg3))
10240 && (value_less (arg2, arg1)
10241 || value_equal (arg2, arg1)));
10245 case OP_ATR_LENGTH:
10247 struct type *type_arg;
10249 if (exp->elts[*pos].opcode == OP_TYPE)
10251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10253 type_arg = check_typedef (exp->elts[pc + 2].type);
10257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10261 if (exp->elts[*pos].opcode != OP_LONG)
10262 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10263 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10266 if (noside == EVAL_SKIP)
10269 if (type_arg == NULL)
10271 arg1 = ada_coerce_ref (arg1);
10273 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10274 arg1 = ada_coerce_to_simple_array (arg1);
10276 type = ada_index_type (value_type (arg1), tem,
10277 ada_attribute_name (op));
10279 type = builtin_type (exp->gdbarch)->builtin_int;
10281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10282 return allocate_value (type);
10286 default: /* Should never happen. */
10287 error (_("unexpected attribute encountered"));
10289 return value_from_longest
10290 (type, ada_array_bound (arg1, tem, 0));
10292 return value_from_longest
10293 (type, ada_array_bound (arg1, tem, 1));
10294 case OP_ATR_LENGTH:
10295 return value_from_longest
10296 (type, ada_array_length (arg1, tem));
10299 else if (discrete_type_p (type_arg))
10301 struct type *range_type;
10302 const char *name = ada_type_name (type_arg);
10305 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10306 range_type = to_fixed_range_type (type_arg, NULL);
10307 if (range_type == NULL)
10308 range_type = type_arg;
10312 error (_("unexpected attribute encountered"));
10314 return value_from_longest
10315 (range_type, ada_discrete_type_low_bound (range_type));
10317 return value_from_longest
10318 (range_type, ada_discrete_type_high_bound (range_type));
10319 case OP_ATR_LENGTH:
10320 error (_("the 'length attribute applies only to array types"));
10323 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10324 error (_("unimplemented type attribute"));
10329 if (ada_is_constrained_packed_array_type (type_arg))
10330 type_arg = decode_constrained_packed_array_type (type_arg);
10332 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10334 type = builtin_type (exp->gdbarch)->builtin_int;
10336 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10337 return allocate_value (type);
10342 error (_("unexpected attribute encountered"));
10344 low = ada_array_bound_from_type (type_arg, tem, 0);
10345 return value_from_longest (type, low);
10347 high = ada_array_bound_from_type (type_arg, tem, 1);
10348 return value_from_longest (type, high);
10349 case OP_ATR_LENGTH:
10350 low = ada_array_bound_from_type (type_arg, tem, 0);
10351 high = ada_array_bound_from_type (type_arg, tem, 1);
10352 return value_from_longest (type, high - low + 1);
10358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10359 if (noside == EVAL_SKIP)
10362 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10363 return value_zero (ada_tag_type (arg1), not_lval);
10365 return ada_value_tag (arg1);
10369 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 if (noside == EVAL_SKIP)
10374 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10375 return value_zero (value_type (arg1), not_lval);
10378 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10379 return value_binop (arg1, arg2,
10380 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10383 case OP_ATR_MODULUS:
10385 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10387 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10388 if (noside == EVAL_SKIP)
10391 if (!ada_is_modular_type (type_arg))
10392 error (_("'modulus must be applied to modular type"));
10394 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10395 ada_modulus (type_arg));
10400 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
10404 type = builtin_type (exp->gdbarch)->builtin_int;
10405 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10406 return value_zero (type, not_lval);
10408 return value_pos_atr (type, arg1);
10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 type = value_type (arg1);
10414 /* If the argument is a reference, then dereference its type, since
10415 the user is really asking for the size of the actual object,
10416 not the size of the pointer. */
10417 if (TYPE_CODE (type) == TYPE_CODE_REF)
10418 type = TYPE_TARGET_TYPE (type);
10420 if (noside == EVAL_SKIP)
10422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10423 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10425 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10426 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10429 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10431 type = exp->elts[pc + 2].type;
10432 if (noside == EVAL_SKIP)
10434 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10435 return value_zero (type, not_lval);
10437 return value_val_atr (type, arg1);
10440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10441 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10442 if (noside == EVAL_SKIP)
10444 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10445 return value_zero (value_type (arg1), not_lval);
10448 /* For integer exponentiation operations,
10449 only promote the first argument. */
10450 if (is_integral_type (value_type (arg2)))
10451 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10453 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10455 return value_binop (arg1, arg2, op);
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 if (noside == EVAL_SKIP)
10466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 if (noside == EVAL_SKIP)
10469 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10470 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10471 return value_neg (arg1);
10476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10477 if (noside == EVAL_SKIP)
10479 type = ada_check_typedef (value_type (arg1));
10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10482 if (ada_is_array_descriptor_type (type))
10483 /* GDB allows dereferencing GNAT array descriptors. */
10485 struct type *arrType = ada_type_of_array (arg1, 0);
10487 if (arrType == NULL)
10488 error (_("Attempt to dereference null array pointer."));
10489 return value_at_lazy (arrType, 0);
10491 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10492 || TYPE_CODE (type) == TYPE_CODE_REF
10493 /* In C you can dereference an array to get the 1st elt. */
10494 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10496 type = to_static_fixed_type
10498 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10500 return value_zero (type, lval_memory);
10502 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10504 /* GDB allows dereferencing an int. */
10505 if (expect_type == NULL)
10506 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10511 to_static_fixed_type (ada_aligned_type (expect_type));
10512 return value_zero (expect_type, lval_memory);
10516 error (_("Attempt to take contents of a non-pointer value."));
10518 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10519 type = ada_check_typedef (value_type (arg1));
10521 if (TYPE_CODE (type) == TYPE_CODE_INT)
10522 /* GDB allows dereferencing an int. If we were given
10523 the expect_type, then use that as the target type.
10524 Otherwise, assume that the target type is an int. */
10526 if (expect_type != NULL)
10527 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10530 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10531 (CORE_ADDR) value_as_address (arg1));
10534 if (ada_is_array_descriptor_type (type))
10535 /* GDB allows dereferencing GNAT array descriptors. */
10536 return ada_coerce_to_simple_array (arg1);
10538 return ada_value_ind (arg1);
10540 case STRUCTOP_STRUCT:
10541 tem = longest_to_int (exp->elts[pc + 1].longconst);
10542 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10544 if (noside == EVAL_SKIP)
10546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10548 struct type *type1 = value_type (arg1);
10550 if (ada_is_tagged_type (type1, 1))
10552 type = ada_lookup_struct_elt_type (type1,
10553 &exp->elts[pc + 2].string,
10556 /* In this case, we assume that the field COULD exist
10557 in some extension of the type. Return an object of
10558 "type" void, which will match any formal
10559 (see ada_type_match). */
10560 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10565 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10568 return value_zero (ada_aligned_type (type), lval_memory);
10571 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10572 arg1 = unwrap_value (arg1);
10573 return ada_to_fixed_value (arg1);
10576 /* The value is not supposed to be used. This is here to make it
10577 easier to accommodate expressions that contain types. */
10579 if (noside == EVAL_SKIP)
10581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10582 return allocate_value (exp->elts[pc + 1].type);
10584 error (_("Attempt to use a type name as an expression"));
10589 case OP_DISCRETE_RANGE:
10590 case OP_POSITIONAL:
10592 if (noside == EVAL_NORMAL)
10596 error (_("Undefined name, ambiguous name, or renaming used in "
10597 "component association: %s."), &exp->elts[pc+2].string);
10599 error (_("Aggregates only allowed on the right of an assignment"));
10601 internal_error (__FILE__, __LINE__,
10602 _("aggregate apparently mangled"));
10605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10607 for (tem = 0; tem < nargs; tem += 1)
10608 ada_evaluate_subexp (NULL, exp, pos, noside);
10613 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10619 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10620 type name that encodes the 'small and 'delta information.
10621 Otherwise, return NULL. */
10623 static const char *
10624 fixed_type_info (struct type *type)
10626 const char *name = ada_type_name (type);
10627 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10629 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10631 const char *tail = strstr (name, "___XF_");
10638 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10639 return fixed_type_info (TYPE_TARGET_TYPE (type));
10644 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10647 ada_is_fixed_point_type (struct type *type)
10649 return fixed_type_info (type) != NULL;
10652 /* Return non-zero iff TYPE represents a System.Address type. */
10655 ada_is_system_address_type (struct type *type)
10657 return (TYPE_NAME (type)
10658 && strcmp (TYPE_NAME (type), "system__address") == 0);
10661 /* Assuming that TYPE is the representation of an Ada fixed-point
10662 type, return its delta, or -1 if the type is malformed and the
10663 delta cannot be determined. */
10666 ada_delta (struct type *type)
10668 const char *encoding = fixed_type_info (type);
10671 /* Strictly speaking, num and den are encoded as integer. However,
10672 they may not fit into a long, and they will have to be converted
10673 to DOUBLEST anyway. So scan them as DOUBLEST. */
10674 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10681 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10682 factor ('SMALL value) associated with the type. */
10685 scaling_factor (struct type *type)
10687 const char *encoding = fixed_type_info (type);
10688 DOUBLEST num0, den0, num1, den1;
10691 /* Strictly speaking, num's and den's are encoded as integer. However,
10692 they may not fit into a long, and they will have to be converted
10693 to DOUBLEST anyway. So scan them as DOUBLEST. */
10694 n = sscanf (encoding,
10695 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10696 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10697 &num0, &den0, &num1, &den1);
10702 return num1 / den1;
10704 return num0 / den0;
10708 /* Assuming that X is the representation of a value of fixed-point
10709 type TYPE, return its floating-point equivalent. */
10712 ada_fixed_to_float (struct type *type, LONGEST x)
10714 return (DOUBLEST) x *scaling_factor (type);
10717 /* The representation of a fixed-point value of type TYPE
10718 corresponding to the value X. */
10721 ada_float_to_fixed (struct type *type, DOUBLEST x)
10723 return (LONGEST) (x / scaling_factor (type) + 0.5);
10730 /* Scan STR beginning at position K for a discriminant name, and
10731 return the value of that discriminant field of DVAL in *PX. If
10732 PNEW_K is not null, put the position of the character beyond the
10733 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10734 not alter *PX and *PNEW_K if unsuccessful. */
10737 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10740 static char *bound_buffer = NULL;
10741 static size_t bound_buffer_len = 0;
10744 struct value *bound_val;
10746 if (dval == NULL || str == NULL || str[k] == '\0')
10749 pend = strstr (str + k, "__");
10753 k += strlen (bound);
10757 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10758 bound = bound_buffer;
10759 strncpy (bound_buffer, str + k, pend - (str + k));
10760 bound[pend - (str + k)] = '\0';
10764 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10765 if (bound_val == NULL)
10768 *px = value_as_long (bound_val);
10769 if (pnew_k != NULL)
10774 /* Value of variable named NAME in the current environment. If
10775 no such variable found, then if ERR_MSG is null, returns 0, and
10776 otherwise causes an error with message ERR_MSG. */
10778 static struct value *
10779 get_var_value (char *name, char *err_msg)
10781 struct ada_symbol_info *syms;
10784 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10789 if (err_msg == NULL)
10792 error (("%s"), err_msg);
10795 return value_of_variable (syms[0].sym, syms[0].block);
10798 /* Value of integer variable named NAME in the current environment. If
10799 no such variable found, returns 0, and sets *FLAG to 0. If
10800 successful, sets *FLAG to 1. */
10803 get_int_var_value (char *name, int *flag)
10805 struct value *var_val = get_var_value (name, 0);
10817 return value_as_long (var_val);
10822 /* Return a range type whose base type is that of the range type named
10823 NAME in the current environment, and whose bounds are calculated
10824 from NAME according to the GNAT range encoding conventions.
10825 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10826 corresponding range type from debug information; fall back to using it
10827 if symbol lookup fails. If a new type must be created, allocate it
10828 like ORIG_TYPE was. The bounds information, in general, is encoded
10829 in NAME, the base type given in the named range type. */
10831 static struct type *
10832 to_fixed_range_type (struct type *raw_type, struct value *dval)
10835 struct type *base_type;
10836 char *subtype_info;
10838 gdb_assert (raw_type != NULL);
10839 gdb_assert (TYPE_NAME (raw_type) != NULL);
10841 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10842 base_type = TYPE_TARGET_TYPE (raw_type);
10844 base_type = raw_type;
10846 name = TYPE_NAME (raw_type);
10847 subtype_info = strstr (name, "___XD");
10848 if (subtype_info == NULL)
10850 LONGEST L = ada_discrete_type_low_bound (raw_type);
10851 LONGEST U = ada_discrete_type_high_bound (raw_type);
10853 if (L < INT_MIN || U > INT_MAX)
10856 return create_range_type (alloc_type_copy (raw_type), raw_type,
10857 ada_discrete_type_low_bound (raw_type),
10858 ada_discrete_type_high_bound (raw_type));
10862 static char *name_buf = NULL;
10863 static size_t name_len = 0;
10864 int prefix_len = subtype_info - name;
10870 GROW_VECT (name_buf, name_len, prefix_len + 5);
10871 strncpy (name_buf, name, prefix_len);
10872 name_buf[prefix_len] = '\0';
10875 bounds_str = strchr (subtype_info, '_');
10878 if (*subtype_info == 'L')
10880 if (!ada_scan_number (bounds_str, n, &L, &n)
10881 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10883 if (bounds_str[n] == '_')
10885 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10893 strcpy (name_buf + prefix_len, "___L");
10894 L = get_int_var_value (name_buf, &ok);
10897 lim_warning (_("Unknown lower bound, using 1."));
10902 if (*subtype_info == 'U')
10904 if (!ada_scan_number (bounds_str, n, &U, &n)
10905 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10912 strcpy (name_buf + prefix_len, "___U");
10913 U = get_int_var_value (name_buf, &ok);
10916 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10921 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10922 TYPE_NAME (type) = name;
10927 /* True iff NAME is the name of a range type. */
10930 ada_is_range_type_name (const char *name)
10932 return (name != NULL && strstr (name, "___XD"));
10936 /* Modular types */
10938 /* True iff TYPE is an Ada modular type. */
10941 ada_is_modular_type (struct type *type)
10943 struct type *subranged_type = get_base_type (type);
10945 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10946 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10947 && TYPE_UNSIGNED (subranged_type));
10950 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10953 ada_modulus (struct type *type)
10955 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10959 /* Ada exception catchpoint support:
10960 ---------------------------------
10962 We support 3 kinds of exception catchpoints:
10963 . catchpoints on Ada exceptions
10964 . catchpoints on unhandled Ada exceptions
10965 . catchpoints on failed assertions
10967 Exceptions raised during failed assertions, or unhandled exceptions
10968 could perfectly be caught with the general catchpoint on Ada exceptions.
10969 However, we can easily differentiate these two special cases, and having
10970 the option to distinguish these two cases from the rest can be useful
10971 to zero-in on certain situations.
10973 Exception catchpoints are a specialized form of breakpoint,
10974 since they rely on inserting breakpoints inside known routines
10975 of the GNAT runtime. The implementation therefore uses a standard
10976 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10979 Support in the runtime for exception catchpoints have been changed
10980 a few times already, and these changes affect the implementation
10981 of these catchpoints. In order to be able to support several
10982 variants of the runtime, we use a sniffer that will determine
10983 the runtime variant used by the program being debugged. */
10985 /* Ada's standard exceptions. */
10987 static char *standard_exc[] = {
10988 "constraint_error",
10994 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10996 /* A structure that describes how to support exception catchpoints
10997 for a given executable. */
10999 struct exception_support_info
11001 /* The name of the symbol to break on in order to insert
11002 a catchpoint on exceptions. */
11003 const char *catch_exception_sym;
11005 /* The name of the symbol to break on in order to insert
11006 a catchpoint on unhandled exceptions. */
11007 const char *catch_exception_unhandled_sym;
11009 /* The name of the symbol to break on in order to insert
11010 a catchpoint on failed assertions. */
11011 const char *catch_assert_sym;
11013 /* Assuming that the inferior just triggered an unhandled exception
11014 catchpoint, this function is responsible for returning the address
11015 in inferior memory where the name of that exception is stored.
11016 Return zero if the address could not be computed. */
11017 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11020 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11021 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11023 /* The following exception support info structure describes how to
11024 implement exception catchpoints with the latest version of the
11025 Ada runtime (as of 2007-03-06). */
11027 static const struct exception_support_info default_exception_support_info =
11029 "__gnat_debug_raise_exception", /* catch_exception_sym */
11030 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11031 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11032 ada_unhandled_exception_name_addr
11035 /* The following exception support info structure describes how to
11036 implement exception catchpoints with a slightly older version
11037 of the Ada runtime. */
11039 static const struct exception_support_info exception_support_info_fallback =
11041 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11042 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11043 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11044 ada_unhandled_exception_name_addr_from_raise
11047 /* Return nonzero if we can detect the exception support routines
11048 described in EINFO.
11050 This function errors out if an abnormal situation is detected
11051 (for instance, if we find the exception support routines, but
11052 that support is found to be incomplete). */
11055 ada_has_this_exception_support (const struct exception_support_info *einfo)
11057 struct symbol *sym;
11059 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11060 that should be compiled with debugging information. As a result, we
11061 expect to find that symbol in the symtabs. */
11063 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11066 /* Perhaps we did not find our symbol because the Ada runtime was
11067 compiled without debugging info, or simply stripped of it.
11068 It happens on some GNU/Linux distributions for instance, where
11069 users have to install a separate debug package in order to get
11070 the runtime's debugging info. In that situation, let the user
11071 know why we cannot insert an Ada exception catchpoint.
11073 Note: Just for the purpose of inserting our Ada exception
11074 catchpoint, we could rely purely on the associated minimal symbol.
11075 But we would be operating in degraded mode anyway, since we are
11076 still lacking the debugging info needed later on to extract
11077 the name of the exception being raised (this name is printed in
11078 the catchpoint message, and is also used when trying to catch
11079 a specific exception). We do not handle this case for now. */
11080 struct minimal_symbol *msym
11081 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11083 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11084 error (_("Your Ada runtime appears to be missing some debugging "
11085 "information.\nCannot insert Ada exception catchpoint "
11086 "in this configuration."));
11091 /* Make sure that the symbol we found corresponds to a function. */
11093 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11094 error (_("Symbol \"%s\" is not a function (class = %d)"),
11095 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11100 /* Inspect the Ada runtime and determine which exception info structure
11101 should be used to provide support for exception catchpoints.
11103 This function will always set the per-inferior exception_info,
11104 or raise an error. */
11107 ada_exception_support_info_sniffer (void)
11109 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11111 /* If the exception info is already known, then no need to recompute it. */
11112 if (data->exception_info != NULL)
11115 /* Check the latest (default) exception support info. */
11116 if (ada_has_this_exception_support (&default_exception_support_info))
11118 data->exception_info = &default_exception_support_info;
11122 /* Try our fallback exception suport info. */
11123 if (ada_has_this_exception_support (&exception_support_info_fallback))
11125 data->exception_info = &exception_support_info_fallback;
11129 /* Sometimes, it is normal for us to not be able to find the routine
11130 we are looking for. This happens when the program is linked with
11131 the shared version of the GNAT runtime, and the program has not been
11132 started yet. Inform the user of these two possible causes if
11135 if (ada_update_initial_language (language_unknown) != language_ada)
11136 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11138 /* If the symbol does not exist, then check that the program is
11139 already started, to make sure that shared libraries have been
11140 loaded. If it is not started, this may mean that the symbol is
11141 in a shared library. */
11143 if (ptid_get_pid (inferior_ptid) == 0)
11144 error (_("Unable to insert catchpoint. Try to start the program first."));
11146 /* At this point, we know that we are debugging an Ada program and
11147 that the inferior has been started, but we still are not able to
11148 find the run-time symbols. That can mean that we are in
11149 configurable run time mode, or that a-except as been optimized
11150 out by the linker... In any case, at this point it is not worth
11151 supporting this feature. */
11153 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11156 /* True iff FRAME is very likely to be that of a function that is
11157 part of the runtime system. This is all very heuristic, but is
11158 intended to be used as advice as to what frames are uninteresting
11162 is_known_support_routine (struct frame_info *frame)
11164 struct symtab_and_line sal;
11166 enum language func_lang;
11168 const char *fullname;
11170 /* If this code does not have any debugging information (no symtab),
11171 This cannot be any user code. */
11173 find_frame_sal (frame, &sal);
11174 if (sal.symtab == NULL)
11177 /* If there is a symtab, but the associated source file cannot be
11178 located, then assume this is not user code: Selecting a frame
11179 for which we cannot display the code would not be very helpful
11180 for the user. This should also take care of case such as VxWorks
11181 where the kernel has some debugging info provided for a few units. */
11183 fullname = symtab_to_fullname (sal.symtab);
11184 if (access (fullname, R_OK) != 0)
11187 /* Check the unit filename againt the Ada runtime file naming.
11188 We also check the name of the objfile against the name of some
11189 known system libraries that sometimes come with debugging info
11192 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11194 re_comp (known_runtime_file_name_patterns[i]);
11195 if (re_exec (lbasename (sal.symtab->filename)))
11197 if (sal.symtab->objfile != NULL
11198 && re_exec (objfile_name (sal.symtab->objfile)))
11202 /* Check whether the function is a GNAT-generated entity. */
11204 find_frame_funname (frame, &func_name, &func_lang, NULL);
11205 if (func_name == NULL)
11208 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11210 re_comp (known_auxiliary_function_name_patterns[i]);
11211 if (re_exec (func_name))
11222 /* Find the first frame that contains debugging information and that is not
11223 part of the Ada run-time, starting from FI and moving upward. */
11226 ada_find_printable_frame (struct frame_info *fi)
11228 for (; fi != NULL; fi = get_prev_frame (fi))
11230 if (!is_known_support_routine (fi))
11239 /* Assuming that the inferior just triggered an unhandled exception
11240 catchpoint, return the address in inferior memory where the name
11241 of the exception is stored.
11243 Return zero if the address could not be computed. */
11246 ada_unhandled_exception_name_addr (void)
11248 return parse_and_eval_address ("e.full_name");
11251 /* Same as ada_unhandled_exception_name_addr, except that this function
11252 should be used when the inferior uses an older version of the runtime,
11253 where the exception name needs to be extracted from a specific frame
11254 several frames up in the callstack. */
11257 ada_unhandled_exception_name_addr_from_raise (void)
11260 struct frame_info *fi;
11261 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11262 struct cleanup *old_chain;
11264 /* To determine the name of this exception, we need to select
11265 the frame corresponding to RAISE_SYM_NAME. This frame is
11266 at least 3 levels up, so we simply skip the first 3 frames
11267 without checking the name of their associated function. */
11268 fi = get_current_frame ();
11269 for (frame_level = 0; frame_level < 3; frame_level += 1)
11271 fi = get_prev_frame (fi);
11273 old_chain = make_cleanup (null_cleanup, NULL);
11277 enum language func_lang;
11279 find_frame_funname (fi, &func_name, &func_lang, NULL);
11280 if (func_name != NULL)
11282 make_cleanup (xfree, func_name);
11284 if (strcmp (func_name,
11285 data->exception_info->catch_exception_sym) == 0)
11286 break; /* We found the frame we were looking for... */
11287 fi = get_prev_frame (fi);
11290 do_cleanups (old_chain);
11296 return parse_and_eval_address ("id.full_name");
11299 /* Assuming the inferior just triggered an Ada exception catchpoint
11300 (of any type), return the address in inferior memory where the name
11301 of the exception is stored, if applicable.
11303 Return zero if the address could not be computed, or if not relevant. */
11306 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11307 struct breakpoint *b)
11309 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11313 case ada_catch_exception:
11314 return (parse_and_eval_address ("e.full_name"));
11317 case ada_catch_exception_unhandled:
11318 return data->exception_info->unhandled_exception_name_addr ();
11321 case ada_catch_assert:
11322 return 0; /* Exception name is not relevant in this case. */
11326 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11330 return 0; /* Should never be reached. */
11333 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11334 any error that ada_exception_name_addr_1 might cause to be thrown.
11335 When an error is intercepted, a warning with the error message is printed,
11336 and zero is returned. */
11339 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11340 struct breakpoint *b)
11342 volatile struct gdb_exception e;
11343 CORE_ADDR result = 0;
11345 TRY_CATCH (e, RETURN_MASK_ERROR)
11347 result = ada_exception_name_addr_1 (ex, b);
11352 warning (_("failed to get exception name: %s"), e.message);
11359 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11361 /* Ada catchpoints.
11363 In the case of catchpoints on Ada exceptions, the catchpoint will
11364 stop the target on every exception the program throws. When a user
11365 specifies the name of a specific exception, we translate this
11366 request into a condition expression (in text form), and then parse
11367 it into an expression stored in each of the catchpoint's locations.
11368 We then use this condition to check whether the exception that was
11369 raised is the one the user is interested in. If not, then the
11370 target is resumed again. We store the name of the requested
11371 exception, in order to be able to re-set the condition expression
11372 when symbols change. */
11374 /* An instance of this type is used to represent an Ada catchpoint
11375 breakpoint location. It includes a "struct bp_location" as a kind
11376 of base class; users downcast to "struct bp_location *" when
11379 struct ada_catchpoint_location
11381 /* The base class. */
11382 struct bp_location base;
11384 /* The condition that checks whether the exception that was raised
11385 is the specific exception the user specified on catchpoint
11387 struct expression *excep_cond_expr;
11390 /* Implement the DTOR method in the bp_location_ops structure for all
11391 Ada exception catchpoint kinds. */
11394 ada_catchpoint_location_dtor (struct bp_location *bl)
11396 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11398 xfree (al->excep_cond_expr);
11401 /* The vtable to be used in Ada catchpoint locations. */
11403 static const struct bp_location_ops ada_catchpoint_location_ops =
11405 ada_catchpoint_location_dtor
11408 /* An instance of this type is used to represent an Ada catchpoint.
11409 It includes a "struct breakpoint" as a kind of base class; users
11410 downcast to "struct breakpoint *" when needed. */
11412 struct ada_catchpoint
11414 /* The base class. */
11415 struct breakpoint base;
11417 /* The name of the specific exception the user specified. */
11418 char *excep_string;
11421 /* Parse the exception condition string in the context of each of the
11422 catchpoint's locations, and store them for later evaluation. */
11425 create_excep_cond_exprs (struct ada_catchpoint *c)
11427 struct cleanup *old_chain;
11428 struct bp_location *bl;
11431 /* Nothing to do if there's no specific exception to catch. */
11432 if (c->excep_string == NULL)
11435 /* Same if there are no locations... */
11436 if (c->base.loc == NULL)
11439 /* Compute the condition expression in text form, from the specific
11440 expection we want to catch. */
11441 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11442 old_chain = make_cleanup (xfree, cond_string);
11444 /* Iterate over all the catchpoint's locations, and parse an
11445 expression for each. */
11446 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11448 struct ada_catchpoint_location *ada_loc
11449 = (struct ada_catchpoint_location *) bl;
11450 struct expression *exp = NULL;
11452 if (!bl->shlib_disabled)
11454 volatile struct gdb_exception e;
11458 TRY_CATCH (e, RETURN_MASK_ERROR)
11460 exp = parse_exp_1 (&s, bl->address,
11461 block_for_pc (bl->address), 0);
11464 warning (_("failed to reevaluate internal exception condition "
11465 "for catchpoint %d: %s"),
11466 c->base.number, e.message);
11469 ada_loc->excep_cond_expr = exp;
11472 do_cleanups (old_chain);
11475 /* Implement the DTOR method in the breakpoint_ops structure for all
11476 exception catchpoint kinds. */
11479 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11481 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11483 xfree (c->excep_string);
11485 bkpt_breakpoint_ops.dtor (b);
11488 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11489 structure for all exception catchpoint kinds. */
11491 static struct bp_location *
11492 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11493 struct breakpoint *self)
11495 struct ada_catchpoint_location *loc;
11497 loc = XNEW (struct ada_catchpoint_location);
11498 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11499 loc->excep_cond_expr = NULL;
11503 /* Implement the RE_SET method in the breakpoint_ops structure for all
11504 exception catchpoint kinds. */
11507 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11509 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11511 /* Call the base class's method. This updates the catchpoint's
11513 bkpt_breakpoint_ops.re_set (b);
11515 /* Reparse the exception conditional expressions. One for each
11517 create_excep_cond_exprs (c);
11520 /* Returns true if we should stop for this breakpoint hit. If the
11521 user specified a specific exception, we only want to cause a stop
11522 if the program thrown that exception. */
11525 should_stop_exception (const struct bp_location *bl)
11527 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11528 const struct ada_catchpoint_location *ada_loc
11529 = (const struct ada_catchpoint_location *) bl;
11530 volatile struct gdb_exception ex;
11533 /* With no specific exception, should always stop. */
11534 if (c->excep_string == NULL)
11537 if (ada_loc->excep_cond_expr == NULL)
11539 /* We will have a NULL expression if back when we were creating
11540 the expressions, this location's had failed to parse. */
11545 TRY_CATCH (ex, RETURN_MASK_ALL)
11547 struct value *mark;
11549 mark = value_mark ();
11550 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11551 value_free_to_mark (mark);
11554 exception_fprintf (gdb_stderr, ex,
11555 _("Error in testing exception condition:\n"));
11559 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11560 for all exception catchpoint kinds. */
11563 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11565 bs->stop = should_stop_exception (bs->bp_location_at);
11568 /* Implement the PRINT_IT method in the breakpoint_ops structure
11569 for all exception catchpoint kinds. */
11571 static enum print_stop_action
11572 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11574 struct ui_out *uiout = current_uiout;
11575 struct breakpoint *b = bs->breakpoint_at;
11577 annotate_catchpoint (b->number);
11579 if (ui_out_is_mi_like_p (uiout))
11581 ui_out_field_string (uiout, "reason",
11582 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11583 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11586 ui_out_text (uiout,
11587 b->disposition == disp_del ? "\nTemporary catchpoint "
11588 : "\nCatchpoint ");
11589 ui_out_field_int (uiout, "bkptno", b->number);
11590 ui_out_text (uiout, ", ");
11594 case ada_catch_exception:
11595 case ada_catch_exception_unhandled:
11597 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11598 char exception_name[256];
11602 read_memory (addr, (gdb_byte *) exception_name,
11603 sizeof (exception_name) - 1);
11604 exception_name [sizeof (exception_name) - 1] = '\0';
11608 /* For some reason, we were unable to read the exception
11609 name. This could happen if the Runtime was compiled
11610 without debugging info, for instance. In that case,
11611 just replace the exception name by the generic string
11612 "exception" - it will read as "an exception" in the
11613 notification we are about to print. */
11614 memcpy (exception_name, "exception", sizeof ("exception"));
11616 /* In the case of unhandled exception breakpoints, we print
11617 the exception name as "unhandled EXCEPTION_NAME", to make
11618 it clearer to the user which kind of catchpoint just got
11619 hit. We used ui_out_text to make sure that this extra
11620 info does not pollute the exception name in the MI case. */
11621 if (ex == ada_catch_exception_unhandled)
11622 ui_out_text (uiout, "unhandled ");
11623 ui_out_field_string (uiout, "exception-name", exception_name);
11626 case ada_catch_assert:
11627 /* In this case, the name of the exception is not really
11628 important. Just print "failed assertion" to make it clearer
11629 that his program just hit an assertion-failure catchpoint.
11630 We used ui_out_text because this info does not belong in
11632 ui_out_text (uiout, "failed assertion");
11635 ui_out_text (uiout, " at ");
11636 ada_find_printable_frame (get_current_frame ());
11638 return PRINT_SRC_AND_LOC;
11641 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11642 for all exception catchpoint kinds. */
11645 print_one_exception (enum ada_exception_catchpoint_kind ex,
11646 struct breakpoint *b, struct bp_location **last_loc)
11648 struct ui_out *uiout = current_uiout;
11649 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11650 struct value_print_options opts;
11652 get_user_print_options (&opts);
11653 if (opts.addressprint)
11655 annotate_field (4);
11656 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11659 annotate_field (5);
11660 *last_loc = b->loc;
11663 case ada_catch_exception:
11664 if (c->excep_string != NULL)
11666 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11668 ui_out_field_string (uiout, "what", msg);
11672 ui_out_field_string (uiout, "what", "all Ada exceptions");
11676 case ada_catch_exception_unhandled:
11677 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11680 case ada_catch_assert:
11681 ui_out_field_string (uiout, "what", "failed Ada assertions");
11685 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11690 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11691 for all exception catchpoint kinds. */
11694 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11695 struct breakpoint *b)
11697 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11698 struct ui_out *uiout = current_uiout;
11700 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11701 : _("Catchpoint "));
11702 ui_out_field_int (uiout, "bkptno", b->number);
11703 ui_out_text (uiout, ": ");
11707 case ada_catch_exception:
11708 if (c->excep_string != NULL)
11710 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11711 struct cleanup *old_chain = make_cleanup (xfree, info);
11713 ui_out_text (uiout, info);
11714 do_cleanups (old_chain);
11717 ui_out_text (uiout, _("all Ada exceptions"));
11720 case ada_catch_exception_unhandled:
11721 ui_out_text (uiout, _("unhandled Ada exceptions"));
11724 case ada_catch_assert:
11725 ui_out_text (uiout, _("failed Ada assertions"));
11729 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11734 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11735 for all exception catchpoint kinds. */
11738 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11739 struct breakpoint *b, struct ui_file *fp)
11741 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11745 case ada_catch_exception:
11746 fprintf_filtered (fp, "catch exception");
11747 if (c->excep_string != NULL)
11748 fprintf_filtered (fp, " %s", c->excep_string);
11751 case ada_catch_exception_unhandled:
11752 fprintf_filtered (fp, "catch exception unhandled");
11755 case ada_catch_assert:
11756 fprintf_filtered (fp, "catch assert");
11760 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11762 print_recreate_thread (b, fp);
11765 /* Virtual table for "catch exception" breakpoints. */
11768 dtor_catch_exception (struct breakpoint *b)
11770 dtor_exception (ada_catch_exception, b);
11773 static struct bp_location *
11774 allocate_location_catch_exception (struct breakpoint *self)
11776 return allocate_location_exception (ada_catch_exception, self);
11780 re_set_catch_exception (struct breakpoint *b)
11782 re_set_exception (ada_catch_exception, b);
11786 check_status_catch_exception (bpstat bs)
11788 check_status_exception (ada_catch_exception, bs);
11791 static enum print_stop_action
11792 print_it_catch_exception (bpstat bs)
11794 return print_it_exception (ada_catch_exception, bs);
11798 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11800 print_one_exception (ada_catch_exception, b, last_loc);
11804 print_mention_catch_exception (struct breakpoint *b)
11806 print_mention_exception (ada_catch_exception, b);
11810 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11812 print_recreate_exception (ada_catch_exception, b, fp);
11815 static struct breakpoint_ops catch_exception_breakpoint_ops;
11817 /* Virtual table for "catch exception unhandled" breakpoints. */
11820 dtor_catch_exception_unhandled (struct breakpoint *b)
11822 dtor_exception (ada_catch_exception_unhandled, b);
11825 static struct bp_location *
11826 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11828 return allocate_location_exception (ada_catch_exception_unhandled, self);
11832 re_set_catch_exception_unhandled (struct breakpoint *b)
11834 re_set_exception (ada_catch_exception_unhandled, b);
11838 check_status_catch_exception_unhandled (bpstat bs)
11840 check_status_exception (ada_catch_exception_unhandled, bs);
11843 static enum print_stop_action
11844 print_it_catch_exception_unhandled (bpstat bs)
11846 return print_it_exception (ada_catch_exception_unhandled, bs);
11850 print_one_catch_exception_unhandled (struct breakpoint *b,
11851 struct bp_location **last_loc)
11853 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
11857 print_mention_catch_exception_unhandled (struct breakpoint *b)
11859 print_mention_exception (ada_catch_exception_unhandled, b);
11863 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11864 struct ui_file *fp)
11866 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
11869 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11871 /* Virtual table for "catch assert" breakpoints. */
11874 dtor_catch_assert (struct breakpoint *b)
11876 dtor_exception (ada_catch_assert, b);
11879 static struct bp_location *
11880 allocate_location_catch_assert (struct breakpoint *self)
11882 return allocate_location_exception (ada_catch_assert, self);
11886 re_set_catch_assert (struct breakpoint *b)
11888 re_set_exception (ada_catch_assert, b);
11892 check_status_catch_assert (bpstat bs)
11894 check_status_exception (ada_catch_assert, bs);
11897 static enum print_stop_action
11898 print_it_catch_assert (bpstat bs)
11900 return print_it_exception (ada_catch_assert, bs);
11904 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11906 print_one_exception (ada_catch_assert, b, last_loc);
11910 print_mention_catch_assert (struct breakpoint *b)
11912 print_mention_exception (ada_catch_assert, b);
11916 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11918 print_recreate_exception (ada_catch_assert, b, fp);
11921 static struct breakpoint_ops catch_assert_breakpoint_ops;
11923 /* Return a newly allocated copy of the first space-separated token
11924 in ARGSP, and then adjust ARGSP to point immediately after that
11927 Return NULL if ARGPS does not contain any more tokens. */
11930 ada_get_next_arg (char **argsp)
11932 char *args = *argsp;
11936 args = skip_spaces (args);
11937 if (args[0] == '\0')
11938 return NULL; /* No more arguments. */
11940 /* Find the end of the current argument. */
11942 end = skip_to_space (args);
11944 /* Adjust ARGSP to point to the start of the next argument. */
11948 /* Make a copy of the current argument and return it. */
11950 result = xmalloc (end - args + 1);
11951 strncpy (result, args, end - args);
11952 result[end - args] = '\0';
11957 /* Split the arguments specified in a "catch exception" command.
11958 Set EX to the appropriate catchpoint type.
11959 Set EXCEP_STRING to the name of the specific exception if
11960 specified by the user.
11961 If a condition is found at the end of the arguments, the condition
11962 expression is stored in COND_STRING (memory must be deallocated
11963 after use). Otherwise COND_STRING is set to NULL. */
11966 catch_ada_exception_command_split (char *args,
11967 enum ada_exception_catchpoint_kind *ex,
11968 char **excep_string,
11969 char **cond_string)
11971 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11972 char *exception_name;
11975 exception_name = ada_get_next_arg (&args);
11976 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11978 /* This is not an exception name; this is the start of a condition
11979 expression for a catchpoint on all exceptions. So, "un-get"
11980 this token, and set exception_name to NULL. */
11981 xfree (exception_name);
11982 exception_name = NULL;
11985 make_cleanup (xfree, exception_name);
11987 /* Check to see if we have a condition. */
11989 args = skip_spaces (args);
11990 if (strncmp (args, "if", 2) == 0
11991 && (isspace (args[2]) || args[2] == '\0'))
11994 args = skip_spaces (args);
11996 if (args[0] == '\0')
11997 error (_("Condition missing after `if' keyword"));
11998 cond = xstrdup (args);
11999 make_cleanup (xfree, cond);
12001 args += strlen (args);
12004 /* Check that we do not have any more arguments. Anything else
12007 if (args[0] != '\0')
12008 error (_("Junk at end of expression"));
12010 discard_cleanups (old_chain);
12012 if (exception_name == NULL)
12014 /* Catch all exceptions. */
12015 *ex = ada_catch_exception;
12016 *excep_string = NULL;
12018 else if (strcmp (exception_name, "unhandled") == 0)
12020 /* Catch unhandled exceptions. */
12021 *ex = ada_catch_exception_unhandled;
12022 *excep_string = NULL;
12026 /* Catch a specific exception. */
12027 *ex = ada_catch_exception;
12028 *excep_string = exception_name;
12030 *cond_string = cond;
12033 /* Return the name of the symbol on which we should break in order to
12034 implement a catchpoint of the EX kind. */
12036 static const char *
12037 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12039 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12041 gdb_assert (data->exception_info != NULL);
12045 case ada_catch_exception:
12046 return (data->exception_info->catch_exception_sym);
12048 case ada_catch_exception_unhandled:
12049 return (data->exception_info->catch_exception_unhandled_sym);
12051 case ada_catch_assert:
12052 return (data->exception_info->catch_assert_sym);
12055 internal_error (__FILE__, __LINE__,
12056 _("unexpected catchpoint kind (%d)"), ex);
12060 /* Return the breakpoint ops "virtual table" used for catchpoints
12063 static const struct breakpoint_ops *
12064 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12068 case ada_catch_exception:
12069 return (&catch_exception_breakpoint_ops);
12071 case ada_catch_exception_unhandled:
12072 return (&catch_exception_unhandled_breakpoint_ops);
12074 case ada_catch_assert:
12075 return (&catch_assert_breakpoint_ops);
12078 internal_error (__FILE__, __LINE__,
12079 _("unexpected catchpoint kind (%d)"), ex);
12083 /* Return the condition that will be used to match the current exception
12084 being raised with the exception that the user wants to catch. This
12085 assumes that this condition is used when the inferior just triggered
12086 an exception catchpoint.
12088 The string returned is a newly allocated string that needs to be
12089 deallocated later. */
12092 ada_exception_catchpoint_cond_string (const char *excep_string)
12096 /* The standard exceptions are a special case. They are defined in
12097 runtime units that have been compiled without debugging info; if
12098 EXCEP_STRING is the not-fully-qualified name of a standard
12099 exception (e.g. "constraint_error") then, during the evaluation
12100 of the condition expression, the symbol lookup on this name would
12101 *not* return this standard exception. The catchpoint condition
12102 may then be set only on user-defined exceptions which have the
12103 same not-fully-qualified name (e.g. my_package.constraint_error).
12105 To avoid this unexcepted behavior, these standard exceptions are
12106 systematically prefixed by "standard". This means that "catch
12107 exception constraint_error" is rewritten into "catch exception
12108 standard.constraint_error".
12110 If an exception named contraint_error is defined in another package of
12111 the inferior program, then the only way to specify this exception as a
12112 breakpoint condition is to use its fully-qualified named:
12113 e.g. my_package.constraint_error. */
12115 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12117 if (strcmp (standard_exc [i], excep_string) == 0)
12119 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12123 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12126 /* Return the symtab_and_line that should be used to insert an exception
12127 catchpoint of the TYPE kind.
12129 EXCEP_STRING should contain the name of a specific exception that
12130 the catchpoint should catch, or NULL otherwise.
12132 ADDR_STRING returns the name of the function where the real
12133 breakpoint that implements the catchpoints is set, depending on the
12134 type of catchpoint we need to create. */
12136 static struct symtab_and_line
12137 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12138 char **addr_string, const struct breakpoint_ops **ops)
12140 const char *sym_name;
12141 struct symbol *sym;
12143 /* First, find out which exception support info to use. */
12144 ada_exception_support_info_sniffer ();
12146 /* Then lookup the function on which we will break in order to catch
12147 the Ada exceptions requested by the user. */
12148 sym_name = ada_exception_sym_name (ex);
12149 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12151 /* We can assume that SYM is not NULL at this stage. If the symbol
12152 did not exist, ada_exception_support_info_sniffer would have
12153 raised an exception.
12155 Also, ada_exception_support_info_sniffer should have already
12156 verified that SYM is a function symbol. */
12157 gdb_assert (sym != NULL);
12158 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12160 /* Set ADDR_STRING. */
12161 *addr_string = xstrdup (sym_name);
12164 *ops = ada_exception_breakpoint_ops (ex);
12166 return find_function_start_sal (sym, 1);
12169 /* Create an Ada exception catchpoint.
12171 EX_KIND is the kind of exception catchpoint to be created.
12173 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12174 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12175 of the exception to which this catchpoint applies. When not NULL,
12176 the string must be allocated on the heap, and its deallocation
12177 is no longer the responsibility of the caller.
12179 COND_STRING, if not NULL, is the catchpoint condition. This string
12180 must be allocated on the heap, and its deallocation is no longer
12181 the responsibility of the caller.
12183 TEMPFLAG, if nonzero, means that the underlying breakpoint
12184 should be temporary.
12186 FROM_TTY is the usual argument passed to all commands implementations. */
12189 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12190 enum ada_exception_catchpoint_kind ex_kind,
12191 char *excep_string,
12197 struct ada_catchpoint *c;
12198 char *addr_string = NULL;
12199 const struct breakpoint_ops *ops = NULL;
12200 struct symtab_and_line sal
12201 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12203 c = XNEW (struct ada_catchpoint);
12204 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12205 ops, tempflag, disabled, from_tty);
12206 c->excep_string = excep_string;
12207 create_excep_cond_exprs (c);
12208 if (cond_string != NULL)
12209 set_breakpoint_condition (&c->base, cond_string, from_tty);
12210 install_breakpoint (0, &c->base, 1);
12213 /* Implement the "catch exception" command. */
12216 catch_ada_exception_command (char *arg, int from_tty,
12217 struct cmd_list_element *command)
12219 struct gdbarch *gdbarch = get_current_arch ();
12221 enum ada_exception_catchpoint_kind ex_kind;
12222 char *excep_string = NULL;
12223 char *cond_string = NULL;
12225 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12229 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12231 create_ada_exception_catchpoint (gdbarch, ex_kind,
12232 excep_string, cond_string,
12233 tempflag, 1 /* enabled */,
12237 /* Split the arguments specified in a "catch assert" command.
12239 ARGS contains the command's arguments (or the empty string if
12240 no arguments were passed).
12242 If ARGS contains a condition, set COND_STRING to that condition
12243 (the memory needs to be deallocated after use). */
12246 catch_ada_assert_command_split (char *args, char **cond_string)
12248 args = skip_spaces (args);
12250 /* Check whether a condition was provided. */
12251 if (strncmp (args, "if", 2) == 0
12252 && (isspace (args[2]) || args[2] == '\0'))
12255 args = skip_spaces (args);
12256 if (args[0] == '\0')
12257 error (_("condition missing after `if' keyword"));
12258 *cond_string = xstrdup (args);
12261 /* Otherwise, there should be no other argument at the end of
12263 else if (args[0] != '\0')
12264 error (_("Junk at end of arguments."));
12267 /* Implement the "catch assert" command. */
12270 catch_assert_command (char *arg, int from_tty,
12271 struct cmd_list_element *command)
12273 struct gdbarch *gdbarch = get_current_arch ();
12275 char *cond_string = NULL;
12277 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12281 catch_ada_assert_command_split (arg, &cond_string);
12282 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12284 tempflag, 1 /* enabled */,
12288 /* Return non-zero if the symbol SYM is an Ada exception object. */
12291 ada_is_exception_sym (struct symbol *sym)
12293 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12295 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12296 && SYMBOL_CLASS (sym) != LOC_BLOCK
12297 && SYMBOL_CLASS (sym) != LOC_CONST
12298 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12299 && type_name != NULL && strcmp (type_name, "exception") == 0);
12302 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12303 Ada exception object. This matches all exceptions except the ones
12304 defined by the Ada language. */
12307 ada_is_non_standard_exception_sym (struct symbol *sym)
12311 if (!ada_is_exception_sym (sym))
12314 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12315 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12316 return 0; /* A standard exception. */
12318 /* Numeric_Error is also a standard exception, so exclude it.
12319 See the STANDARD_EXC description for more details as to why
12320 this exception is not listed in that array. */
12321 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12327 /* A helper function for qsort, comparing two struct ada_exc_info
12330 The comparison is determined first by exception name, and then
12331 by exception address. */
12334 compare_ada_exception_info (const void *a, const void *b)
12336 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12337 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12340 result = strcmp (exc_a->name, exc_b->name);
12344 if (exc_a->addr < exc_b->addr)
12346 if (exc_a->addr > exc_b->addr)
12352 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12353 routine, but keeping the first SKIP elements untouched.
12355 All duplicates are also removed. */
12358 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12361 struct ada_exc_info *to_sort
12362 = VEC_address (ada_exc_info, *exceptions) + skip;
12364 = VEC_length (ada_exc_info, *exceptions) - skip;
12367 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12368 compare_ada_exception_info);
12370 for (i = 1, j = 1; i < to_sort_len; i++)
12371 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12372 to_sort[j++] = to_sort[i];
12374 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12377 /* A function intended as the "name_matcher" callback in the struct
12378 quick_symbol_functions' expand_symtabs_matching method.
12380 SEARCH_NAME is the symbol's search name.
12382 If USER_DATA is not NULL, it is a pointer to a regext_t object
12383 used to match the symbol (by natural name). Otherwise, when USER_DATA
12384 is null, no filtering is performed, and all symbols are a positive
12388 ada_exc_search_name_matches (const char *search_name, void *user_data)
12390 regex_t *preg = user_data;
12395 /* In Ada, the symbol "search name" is a linkage name, whereas
12396 the regular expression used to do the matching refers to
12397 the natural name. So match against the decoded name. */
12398 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12401 /* Add all exceptions defined by the Ada standard whose name match
12402 a regular expression.
12404 If PREG is not NULL, then this regexp_t object is used to
12405 perform the symbol name matching. Otherwise, no name-based
12406 filtering is performed.
12408 EXCEPTIONS is a vector of exceptions to which matching exceptions
12412 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12416 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12419 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12421 struct bound_minimal_symbol msymbol
12422 = ada_lookup_simple_minsym (standard_exc[i]);
12424 if (msymbol.minsym != NULL)
12426 struct ada_exc_info info
12427 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12429 VEC_safe_push (ada_exc_info, *exceptions, &info);
12435 /* Add all Ada exceptions defined locally and accessible from the given
12438 If PREG is not NULL, then this regexp_t object is used to
12439 perform the symbol name matching. Otherwise, no name-based
12440 filtering is performed.
12442 EXCEPTIONS is a vector of exceptions to which matching exceptions
12446 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12447 VEC(ada_exc_info) **exceptions)
12449 struct block *block = get_frame_block (frame, 0);
12453 struct block_iterator iter;
12454 struct symbol *sym;
12456 ALL_BLOCK_SYMBOLS (block, iter, sym)
12458 switch (SYMBOL_CLASS (sym))
12465 if (ada_is_exception_sym (sym))
12467 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12468 SYMBOL_VALUE_ADDRESS (sym)};
12470 VEC_safe_push (ada_exc_info, *exceptions, &info);
12474 if (BLOCK_FUNCTION (block) != NULL)
12476 block = BLOCK_SUPERBLOCK (block);
12480 /* Add all exceptions defined globally whose name name match
12481 a regular expression, excluding standard exceptions.
12483 The reason we exclude standard exceptions is that they need
12484 to be handled separately: Standard exceptions are defined inside
12485 a runtime unit which is normally not compiled with debugging info,
12486 and thus usually do not show up in our symbol search. However,
12487 if the unit was in fact built with debugging info, we need to
12488 exclude them because they would duplicate the entry we found
12489 during the special loop that specifically searches for those
12490 standard exceptions.
12492 If PREG is not NULL, then this regexp_t object is used to
12493 perform the symbol name matching. Otherwise, no name-based
12494 filtering is performed.
12496 EXCEPTIONS is a vector of exceptions to which matching exceptions
12500 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12502 struct objfile *objfile;
12505 ALL_OBJFILES (objfile)
12507 objfile->sf->qf->expand_symtabs_matching
12508 (objfile, NULL, ada_exc_search_name_matches,
12509 VARIABLES_DOMAIN, preg);
12511 ALL_PRIMARY_SYMTABS (objfile, s)
12513 struct blockvector *bv = BLOCKVECTOR (s);
12516 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12518 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12519 struct block_iterator iter;
12520 struct symbol *sym;
12522 ALL_BLOCK_SYMBOLS (b, iter, sym)
12523 if (ada_is_non_standard_exception_sym (sym)
12525 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12528 struct ada_exc_info info
12529 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12531 VEC_safe_push (ada_exc_info, *exceptions, &info);
12537 /* Implements ada_exceptions_list with the regular expression passed
12538 as a regex_t, rather than a string.
12540 If not NULL, PREG is used to filter out exceptions whose names
12541 do not match. Otherwise, all exceptions are listed. */
12543 static VEC(ada_exc_info) *
12544 ada_exceptions_list_1 (regex_t *preg)
12546 VEC(ada_exc_info) *result = NULL;
12547 struct cleanup *old_chain
12548 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12551 /* First, list the known standard exceptions. These exceptions
12552 need to be handled separately, as they are usually defined in
12553 runtime units that have been compiled without debugging info. */
12555 ada_add_standard_exceptions (preg, &result);
12557 /* Next, find all exceptions whose scope is local and accessible
12558 from the currently selected frame. */
12560 if (has_stack_frames ())
12562 prev_len = VEC_length (ada_exc_info, result);
12563 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12565 if (VEC_length (ada_exc_info, result) > prev_len)
12566 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12569 /* Add all exceptions whose scope is global. */
12571 prev_len = VEC_length (ada_exc_info, result);
12572 ada_add_global_exceptions (preg, &result);
12573 if (VEC_length (ada_exc_info, result) > prev_len)
12574 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12576 discard_cleanups (old_chain);
12580 /* Return a vector of ada_exc_info.
12582 If REGEXP is NULL, all exceptions are included in the result.
12583 Otherwise, it should contain a valid regular expression,
12584 and only the exceptions whose names match that regular expression
12585 are included in the result.
12587 The exceptions are sorted in the following order:
12588 - Standard exceptions (defined by the Ada language), in
12589 alphabetical order;
12590 - Exceptions only visible from the current frame, in
12591 alphabetical order;
12592 - Exceptions whose scope is global, in alphabetical order. */
12594 VEC(ada_exc_info) *
12595 ada_exceptions_list (const char *regexp)
12597 VEC(ada_exc_info) *result = NULL;
12598 struct cleanup *old_chain = NULL;
12601 if (regexp != NULL)
12602 old_chain = compile_rx_or_error (®, regexp,
12603 _("invalid regular expression"));
12605 result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL);
12607 if (old_chain != NULL)
12608 do_cleanups (old_chain);
12612 /* Implement the "info exceptions" command. */
12615 info_exceptions_command (char *regexp, int from_tty)
12617 VEC(ada_exc_info) *exceptions;
12618 struct cleanup *cleanup;
12619 struct gdbarch *gdbarch = get_current_arch ();
12621 struct ada_exc_info *info;
12623 exceptions = ada_exceptions_list (regexp);
12624 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12626 if (regexp != NULL)
12628 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12630 printf_filtered (_("All defined Ada exceptions:\n"));
12632 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12633 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12635 do_cleanups (cleanup);
12639 /* Information about operators given special treatment in functions
12641 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12643 #define ADA_OPERATORS \
12644 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12645 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12646 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12647 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12648 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12649 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12650 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12651 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12652 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12653 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12654 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12655 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12656 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12657 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12658 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12659 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12660 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12661 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12662 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12665 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12668 switch (exp->elts[pc - 1].opcode)
12671 operator_length_standard (exp, pc, oplenp, argsp);
12674 #define OP_DEFN(op, len, args, binop) \
12675 case op: *oplenp = len; *argsp = args; break;
12681 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12686 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12691 /* Implementation of the exp_descriptor method operator_check. */
12694 ada_operator_check (struct expression *exp, int pos,
12695 int (*objfile_func) (struct objfile *objfile, void *data),
12698 const union exp_element *const elts = exp->elts;
12699 struct type *type = NULL;
12701 switch (elts[pos].opcode)
12703 case UNOP_IN_RANGE:
12705 type = elts[pos + 1].type;
12709 return operator_check_standard (exp, pos, objfile_func, data);
12712 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12714 if (type && TYPE_OBJFILE (type)
12715 && (*objfile_func) (TYPE_OBJFILE (type), data))
12722 ada_op_name (enum exp_opcode opcode)
12727 return op_name_standard (opcode);
12729 #define OP_DEFN(op, len, args, binop) case op: return #op;
12734 return "OP_AGGREGATE";
12736 return "OP_CHOICES";
12742 /* As for operator_length, but assumes PC is pointing at the first
12743 element of the operator, and gives meaningful results only for the
12744 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12747 ada_forward_operator_length (struct expression *exp, int pc,
12748 int *oplenp, int *argsp)
12750 switch (exp->elts[pc].opcode)
12753 *oplenp = *argsp = 0;
12756 #define OP_DEFN(op, len, args, binop) \
12757 case op: *oplenp = len; *argsp = args; break;
12763 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12768 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12774 int len = longest_to_int (exp->elts[pc + 1].longconst);
12776 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12784 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12786 enum exp_opcode op = exp->elts[elt].opcode;
12791 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12795 /* Ada attributes ('Foo). */
12798 case OP_ATR_LENGTH:
12802 case OP_ATR_MODULUS:
12809 case UNOP_IN_RANGE:
12811 /* XXX: gdb_sprint_host_address, type_sprint */
12812 fprintf_filtered (stream, _("Type @"));
12813 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12814 fprintf_filtered (stream, " (");
12815 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12816 fprintf_filtered (stream, ")");
12818 case BINOP_IN_BOUNDS:
12819 fprintf_filtered (stream, " (%d)",
12820 longest_to_int (exp->elts[pc + 2].longconst));
12822 case TERNOP_IN_RANGE:
12827 case OP_DISCRETE_RANGE:
12828 case OP_POSITIONAL:
12835 char *name = &exp->elts[elt + 2].string;
12836 int len = longest_to_int (exp->elts[elt + 1].longconst);
12838 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12843 return dump_subexp_body_standard (exp, stream, elt);
12847 for (i = 0; i < nargs; i += 1)
12848 elt = dump_subexp (exp, stream, elt);
12853 /* The Ada extension of print_subexp (q.v.). */
12856 ada_print_subexp (struct expression *exp, int *pos,
12857 struct ui_file *stream, enum precedence prec)
12859 int oplen, nargs, i;
12861 enum exp_opcode op = exp->elts[pc].opcode;
12863 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12870 print_subexp_standard (exp, pos, stream, prec);
12874 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12877 case BINOP_IN_BOUNDS:
12878 /* XXX: sprint_subexp */
12879 print_subexp (exp, pos, stream, PREC_SUFFIX);
12880 fputs_filtered (" in ", stream);
12881 print_subexp (exp, pos, stream, PREC_SUFFIX);
12882 fputs_filtered ("'range", stream);
12883 if (exp->elts[pc + 1].longconst > 1)
12884 fprintf_filtered (stream, "(%ld)",
12885 (long) exp->elts[pc + 1].longconst);
12888 case TERNOP_IN_RANGE:
12889 if (prec >= PREC_EQUAL)
12890 fputs_filtered ("(", stream);
12891 /* XXX: sprint_subexp */
12892 print_subexp (exp, pos, stream, PREC_SUFFIX);
12893 fputs_filtered (" in ", stream);
12894 print_subexp (exp, pos, stream, PREC_EQUAL);
12895 fputs_filtered (" .. ", stream);
12896 print_subexp (exp, pos, stream, PREC_EQUAL);
12897 if (prec >= PREC_EQUAL)
12898 fputs_filtered (")", stream);
12903 case OP_ATR_LENGTH:
12907 case OP_ATR_MODULUS:
12912 if (exp->elts[*pos].opcode == OP_TYPE)
12914 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12915 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12916 &type_print_raw_options);
12920 print_subexp (exp, pos, stream, PREC_SUFFIX);
12921 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12926 for (tem = 1; tem < nargs; tem += 1)
12928 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12929 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12931 fputs_filtered (")", stream);
12936 type_print (exp->elts[pc + 1].type, "", stream, 0);
12937 fputs_filtered ("'(", stream);
12938 print_subexp (exp, pos, stream, PREC_PREFIX);
12939 fputs_filtered (")", stream);
12942 case UNOP_IN_RANGE:
12943 /* XXX: sprint_subexp */
12944 print_subexp (exp, pos, stream, PREC_SUFFIX);
12945 fputs_filtered (" in ", stream);
12946 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12947 &type_print_raw_options);
12950 case OP_DISCRETE_RANGE:
12951 print_subexp (exp, pos, stream, PREC_SUFFIX);
12952 fputs_filtered ("..", stream);
12953 print_subexp (exp, pos, stream, PREC_SUFFIX);
12957 fputs_filtered ("others => ", stream);
12958 print_subexp (exp, pos, stream, PREC_SUFFIX);
12962 for (i = 0; i < nargs-1; i += 1)
12965 fputs_filtered ("|", stream);
12966 print_subexp (exp, pos, stream, PREC_SUFFIX);
12968 fputs_filtered (" => ", stream);
12969 print_subexp (exp, pos, stream, PREC_SUFFIX);
12972 case OP_POSITIONAL:
12973 print_subexp (exp, pos, stream, PREC_SUFFIX);
12977 fputs_filtered ("(", stream);
12978 for (i = 0; i < nargs; i += 1)
12981 fputs_filtered (", ", stream);
12982 print_subexp (exp, pos, stream, PREC_SUFFIX);
12984 fputs_filtered (")", stream);
12989 /* Table mapping opcodes into strings for printing operators
12990 and precedences of the operators. */
12992 static const struct op_print ada_op_print_tab[] = {
12993 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12994 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12995 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12996 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12997 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12998 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12999 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13000 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13001 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13002 {">=", BINOP_GEQ, PREC_ORDER, 0},
13003 {">", BINOP_GTR, PREC_ORDER, 0},
13004 {"<", BINOP_LESS, PREC_ORDER, 0},
13005 {">>", BINOP_RSH, PREC_SHIFT, 0},
13006 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13007 {"+", BINOP_ADD, PREC_ADD, 0},
13008 {"-", BINOP_SUB, PREC_ADD, 0},
13009 {"&", BINOP_CONCAT, PREC_ADD, 0},
13010 {"*", BINOP_MUL, PREC_MUL, 0},
13011 {"/", BINOP_DIV, PREC_MUL, 0},
13012 {"rem", BINOP_REM, PREC_MUL, 0},
13013 {"mod", BINOP_MOD, PREC_MUL, 0},
13014 {"**", BINOP_EXP, PREC_REPEAT, 0},
13015 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13016 {"-", UNOP_NEG, PREC_PREFIX, 0},
13017 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13018 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13019 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13020 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13021 {".all", UNOP_IND, PREC_SUFFIX, 1},
13022 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13023 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13027 enum ada_primitive_types {
13028 ada_primitive_type_int,
13029 ada_primitive_type_long,
13030 ada_primitive_type_short,
13031 ada_primitive_type_char,
13032 ada_primitive_type_float,
13033 ada_primitive_type_double,
13034 ada_primitive_type_void,
13035 ada_primitive_type_long_long,
13036 ada_primitive_type_long_double,
13037 ada_primitive_type_natural,
13038 ada_primitive_type_positive,
13039 ada_primitive_type_system_address,
13040 nr_ada_primitive_types
13044 ada_language_arch_info (struct gdbarch *gdbarch,
13045 struct language_arch_info *lai)
13047 const struct builtin_type *builtin = builtin_type (gdbarch);
13049 lai->primitive_type_vector
13050 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13053 lai->primitive_type_vector [ada_primitive_type_int]
13054 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13056 lai->primitive_type_vector [ada_primitive_type_long]
13057 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13058 0, "long_integer");
13059 lai->primitive_type_vector [ada_primitive_type_short]
13060 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13061 0, "short_integer");
13062 lai->string_char_type
13063 = lai->primitive_type_vector [ada_primitive_type_char]
13064 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13065 lai->primitive_type_vector [ada_primitive_type_float]
13066 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13068 lai->primitive_type_vector [ada_primitive_type_double]
13069 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13070 "long_float", NULL);
13071 lai->primitive_type_vector [ada_primitive_type_long_long]
13072 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13073 0, "long_long_integer");
13074 lai->primitive_type_vector [ada_primitive_type_long_double]
13075 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13076 "long_long_float", NULL);
13077 lai->primitive_type_vector [ada_primitive_type_natural]
13078 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13080 lai->primitive_type_vector [ada_primitive_type_positive]
13081 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13083 lai->primitive_type_vector [ada_primitive_type_void]
13084 = builtin->builtin_void;
13086 lai->primitive_type_vector [ada_primitive_type_system_address]
13087 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13088 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13089 = "system__address";
13091 lai->bool_type_symbol = NULL;
13092 lai->bool_type_default = builtin->builtin_bool;
13095 /* Language vector */
13097 /* Not really used, but needed in the ada_language_defn. */
13100 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13102 ada_emit_char (c, type, stream, quoter, 1);
13108 warnings_issued = 0;
13109 return ada_parse ();
13112 static const struct exp_descriptor ada_exp_descriptor = {
13114 ada_operator_length,
13115 ada_operator_check,
13117 ada_dump_subexp_body,
13118 ada_evaluate_subexp
13121 /* Implement the "la_get_symbol_name_cmp" language_defn method
13124 static symbol_name_cmp_ftype
13125 ada_get_symbol_name_cmp (const char *lookup_name)
13127 if (should_use_wild_match (lookup_name))
13130 return compare_names;
13133 /* Implement the "la_read_var_value" language_defn method for Ada. */
13135 static struct value *
13136 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13138 struct block *frame_block = NULL;
13139 struct symbol *renaming_sym = NULL;
13141 /* The only case where default_read_var_value is not sufficient
13142 is when VAR is a renaming... */
13144 frame_block = get_frame_block (frame, NULL);
13146 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13147 if (renaming_sym != NULL)
13148 return ada_read_renaming_var_value (renaming_sym, frame_block);
13150 /* This is a typical case where we expect the default_read_var_value
13151 function to work. */
13152 return default_read_var_value (var, frame);
13155 const struct language_defn ada_language_defn = {
13156 "ada", /* Language name */
13160 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13161 that's not quite what this means. */
13163 macro_expansion_no,
13164 &ada_exp_descriptor,
13168 ada_printchar, /* Print a character constant */
13169 ada_printstr, /* Function to print string constant */
13170 emit_char, /* Function to print single char (not used) */
13171 ada_print_type, /* Print a type using appropriate syntax */
13172 ada_print_typedef, /* Print a typedef using appropriate syntax */
13173 ada_val_print, /* Print a value using appropriate syntax */
13174 ada_value_print, /* Print a top-level value */
13175 ada_read_var_value, /* la_read_var_value */
13176 NULL, /* Language specific skip_trampoline */
13177 NULL, /* name_of_this */
13178 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13179 basic_lookup_transparent_type, /* lookup_transparent_type */
13180 ada_la_decode, /* Language specific symbol demangler */
13181 NULL, /* Language specific
13182 class_name_from_physname */
13183 ada_op_print_tab, /* expression operators for printing */
13184 0, /* c-style arrays */
13185 1, /* String lower bound */
13186 ada_get_gdb_completer_word_break_characters,
13187 ada_make_symbol_completion_list,
13188 ada_language_arch_info,
13189 ada_print_array_index,
13190 default_pass_by_reference,
13192 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13193 ada_iterate_over_symbols,
13198 /* Provide a prototype to silence -Wmissing-prototypes. */
13199 extern initialize_file_ftype _initialize_ada_language;
13201 /* Command-list for the "set/show ada" prefix command. */
13202 static struct cmd_list_element *set_ada_list;
13203 static struct cmd_list_element *show_ada_list;
13205 /* Implement the "set ada" prefix command. */
13208 set_ada_command (char *arg, int from_tty)
13210 printf_unfiltered (_(\
13211 "\"set ada\" must be followed by the name of a setting.\n"));
13212 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13215 /* Implement the "show ada" prefix command. */
13218 show_ada_command (char *args, int from_tty)
13220 cmd_show_list (show_ada_list, from_tty, "");
13224 initialize_ada_catchpoint_ops (void)
13226 struct breakpoint_ops *ops;
13228 initialize_breakpoint_ops ();
13230 ops = &catch_exception_breakpoint_ops;
13231 *ops = bkpt_breakpoint_ops;
13232 ops->dtor = dtor_catch_exception;
13233 ops->allocate_location = allocate_location_catch_exception;
13234 ops->re_set = re_set_catch_exception;
13235 ops->check_status = check_status_catch_exception;
13236 ops->print_it = print_it_catch_exception;
13237 ops->print_one = print_one_catch_exception;
13238 ops->print_mention = print_mention_catch_exception;
13239 ops->print_recreate = print_recreate_catch_exception;
13241 ops = &catch_exception_unhandled_breakpoint_ops;
13242 *ops = bkpt_breakpoint_ops;
13243 ops->dtor = dtor_catch_exception_unhandled;
13244 ops->allocate_location = allocate_location_catch_exception_unhandled;
13245 ops->re_set = re_set_catch_exception_unhandled;
13246 ops->check_status = check_status_catch_exception_unhandled;
13247 ops->print_it = print_it_catch_exception_unhandled;
13248 ops->print_one = print_one_catch_exception_unhandled;
13249 ops->print_mention = print_mention_catch_exception_unhandled;
13250 ops->print_recreate = print_recreate_catch_exception_unhandled;
13252 ops = &catch_assert_breakpoint_ops;
13253 *ops = bkpt_breakpoint_ops;
13254 ops->dtor = dtor_catch_assert;
13255 ops->allocate_location = allocate_location_catch_assert;
13256 ops->re_set = re_set_catch_assert;
13257 ops->check_status = check_status_catch_assert;
13258 ops->print_it = print_it_catch_assert;
13259 ops->print_one = print_one_catch_assert;
13260 ops->print_mention = print_mention_catch_assert;
13261 ops->print_recreate = print_recreate_catch_assert;
13265 _initialize_ada_language (void)
13267 add_language (&ada_language_defn);
13269 initialize_ada_catchpoint_ops ();
13271 add_prefix_cmd ("ada", no_class, set_ada_command,
13272 _("Prefix command for changing Ada-specfic settings"),
13273 &set_ada_list, "set ada ", 0, &setlist);
13275 add_prefix_cmd ("ada", no_class, show_ada_command,
13276 _("Generic command for showing Ada-specific settings."),
13277 &show_ada_list, "show ada ", 0, &showlist);
13279 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13280 &trust_pad_over_xvs, _("\
13281 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13282 Show whether an optimization trusting PAD types over XVS types is activated"),
13284 This is related to the encoding used by the GNAT compiler. The debugger\n\
13285 should normally trust the contents of PAD types, but certain older versions\n\
13286 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13287 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13288 work around this bug. It is always safe to turn this option \"off\", but\n\
13289 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13290 this option to \"off\" unless necessary."),
13291 NULL, NULL, &set_ada_list, &show_ada_list);
13293 add_catch_command ("exception", _("\
13294 Catch Ada exceptions, when raised.\n\
13295 With an argument, catch only exceptions with the given name."),
13296 catch_ada_exception_command,
13300 add_catch_command ("assert", _("\
13301 Catch failed Ada assertions, when raised.\n\
13302 With an argument, catch only exceptions with the given name."),
13303 catch_assert_command,
13308 varsize_limit = 65536;
13310 add_info ("exceptions", info_exceptions_command,
13312 List all Ada exception names.\n\
13313 If a regular expression is passed as an argument, only those matching\n\
13314 the regular expression are listed."));
13316 obstack_init (&symbol_list_obstack);
13318 decoded_names_store = htab_create_alloc
13319 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13320 NULL, xcalloc, xfree);
13322 /* Setup per-inferior data. */
13323 observer_attach_inferior_exit (ada_inferior_exit);
13325 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);