1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 2004-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb/sim-m32c.h"
24 #include "arch-utils.h"
26 #include "frame-unwind.h"
30 #include "reggroups.h"
31 #include "prologue-value.h"
35 /* The m32c tdep structure. */
37 static struct reggroup *m32c_dma_reggroup;
39 /* The type of a function that moves the value of REG between CACHE or
40 BUF --- in either direction. */
41 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
42 struct regcache *cache,
45 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
46 readable_regcache *cache,
51 /* The name of this register. */
57 /* The architecture this register belongs to. */
60 /* Its GDB register number. */
63 /* Its sim register number. */
66 /* Its DWARF register number, or -1 if it doesn't have one. */
69 /* Register group memberships. */
70 unsigned int general_p : 1;
71 unsigned int dma_p : 1;
72 unsigned int system_p : 1;
73 unsigned int save_restore_p : 1;
75 /* Functions to read its value from a regcache, and write its value
77 m32c_read_reg_t *read;
78 m32c_write_reg_t *write;
80 /* Data for READ and WRITE functions. The exact meaning depends on
81 the specific functions selected; see the comments for those
83 struct m32c_reg *rx, *ry;
88 /* An overestimate of the number of raw and pseudoregisters we will
89 have. The exact answer depends on the variant of the architecture
90 at hand, but we can use this to declare statically allocated
91 arrays, and bump it up when needed. */
92 #define M32C_MAX_NUM_REGS (75)
94 /* The largest assigned DWARF register number. */
95 #define M32C_MAX_DWARF_REGNUM (40)
100 /* All the registers for this variant, indexed by GDB register
101 number, and the number of registers present. */
102 struct m32c_reg regs[M32C_MAX_NUM_REGS];
104 /* The number of valid registers. */
107 /* Interesting registers. These are pointers into REGS. */
108 struct m32c_reg *pc, *flg;
109 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
110 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
111 struct m32c_reg *sb, *fb, *sp;
113 /* A table indexed by DWARF register numbers, pointing into
115 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
117 /* Types for this architecture. We can't use the builtin_type_foo
118 types, because they're not initialized when building a gdbarch
120 struct type *voyd, *ptr_voyd, *func_voyd;
121 struct type *uint8, *uint16;
122 struct type *int8, *int16, *int32, *int64;
124 /* The types for data address and code address registers. */
125 struct type *data_addr_reg_type, *code_addr_reg_type;
127 /* The number of bytes a return address pushed by a 'jsr' instruction
128 occupies on the stack. */
131 /* The number of bytes an address register occupies on the stack
132 when saved by an 'enter' or 'pushm' instruction. */
140 make_types (struct gdbarch *arch)
142 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
143 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
144 int data_addr_reg_bits, code_addr_reg_bits;
148 /* This is used to clip CORE_ADDR values, so this value is
149 appropriate both on the m32c, where pointers are 32 bits long,
150 and on the m16c, where pointers are sixteen bits long, but there
151 may be code above the 64k boundary. */
152 set_gdbarch_addr_bit (arch, 24);
154 /* GCC uses 32 bits for addrs in the dwarf info, even though
155 only 16/24 bits are used. Setting addr_bit to 24 causes
156 errors in reading the dwarf addresses. */
157 set_gdbarch_addr_bit (arch, 32);
160 set_gdbarch_int_bit (arch, 16);
164 data_addr_reg_bits = 16;
165 code_addr_reg_bits = 24;
166 set_gdbarch_ptr_bit (arch, 16);
167 tdep->ret_addr_bytes = 3;
168 tdep->push_addr_bytes = 2;
172 data_addr_reg_bits = 24;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 32);
175 tdep->ret_addr_bytes = 4;
176 tdep->push_addr_bytes = 4;
180 gdb_assert_not_reached ("unexpected mach");
183 /* The builtin_type_mumble variables are sometimes uninitialized when
184 this is called, so we avoid using them. */
185 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
187 = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
188 tdep->func_voyd = lookup_function_type (tdep->voyd);
190 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
191 gdbarch_bfd_arch_info (arch)->printable_name);
192 tdep->data_addr_reg_type
193 = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
195 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
196 gdbarch_bfd_arch_info (arch)->printable_name);
197 tdep->code_addr_reg_type
198 = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
200 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
201 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
202 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
203 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
204 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
205 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
213 m32c_register_name (struct gdbarch *gdbarch, int num)
215 return gdbarch_tdep (gdbarch)->regs[num].name;
220 m32c_register_type (struct gdbarch *arch, int reg_nr)
222 return gdbarch_tdep (arch)->regs[reg_nr].type;
227 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
229 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
234 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
238 && tdep->dwarf_regs[reg_nr])
239 return tdep->dwarf_regs[reg_nr]->num;
241 /* The DWARF CFI code expects to see -1 for invalid register
248 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
249 struct reggroup *group)
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252 struct m32c_reg *reg = &tdep->regs[regnum];
254 /* The anonymous raw registers aren't in any groups. */
258 if (group == all_reggroup)
261 if (group == general_reggroup
265 if (group == m32c_dma_reggroup
269 if (group == system_reggroup
273 /* Since the m32c DWARF register numbers refer to cooked registers, not
274 raw registers, and frame_pop depends on the save and restore groups
275 containing registers the DWARF CFI will actually mention, our save
276 and restore groups are cooked registers, not raw registers. (This is
277 why we can't use the default reggroup function.) */
278 if ((group == save_reggroup
279 || group == restore_reggroup)
280 && reg->save_restore_p)
287 /* Register move functions. We declare them here using
288 m32c_{read,write}_reg_t to check the types. */
289 static m32c_read_reg_t m32c_raw_read;
290 static m32c_read_reg_t m32c_banked_read;
291 static m32c_read_reg_t m32c_sb_read;
292 static m32c_read_reg_t m32c_part_read;
293 static m32c_read_reg_t m32c_cat_read;
294 static m32c_read_reg_t m32c_r3r2r1r0_read;
296 static m32c_write_reg_t m32c_raw_write;
297 static m32c_write_reg_t m32c_banked_write;
298 static m32c_write_reg_t m32c_sb_write;
299 static m32c_write_reg_t m32c_part_write;
300 static m32c_write_reg_t m32c_cat_write;
301 static m32c_write_reg_t m32c_r3r2r1r0_write;
303 /* Copy the value of the raw register REG from CACHE to BUF. */
304 static enum register_status
305 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
307 return cache->raw_read (reg->num, buf);
311 /* Copy the value of the raw register REG from BUF to CACHE. */
312 static enum register_status
313 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
316 cache->raw_write (reg->num, buf);
322 /* Return the value of the 'flg' register in CACHE. */
324 m32c_read_flg (readable_regcache *cache)
326 struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
329 cache->raw_read (tdep->flg->num, &flg);
334 /* Evaluate the real register number of a banked register. */
335 static struct m32c_reg *
336 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
338 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
342 /* Move the value of a banked register from CACHE to BUF.
343 If the value of the 'flg' register in CACHE has any of the bits
344 masked in REG->n set, then read REG->ry. Otherwise, read
346 static enum register_status
347 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
349 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
350 return cache->raw_read (bank_reg->num, buf);
354 /* Move the value of a banked register from BUF to CACHE.
355 If the value of the 'flg' register in CACHE has any of the bits
356 masked in REG->n set, then write REG->ry. Otherwise, write
358 static enum register_status
359 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
362 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
363 cache->raw_write (bank_reg->num, buf);
369 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
370 banked register; on bfd_mach_m16c, it's not. */
371 static enum register_status
372 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
374 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
375 return m32c_raw_read (reg->rx, cache, buf);
377 return m32c_banked_read (reg, cache, buf);
381 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
382 banked register; on bfd_mach_m16c, it's not. */
383 static enum register_status
384 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
386 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
387 m32c_raw_write (reg->rx, cache, buf);
389 m32c_banked_write (reg, cache, buf);
395 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
396 and *LEN_P to the offset and length, in bytes, of the part REG
397 occupies in its underlying register. The offset is from the
398 lower-addressed end, regardless of the architecture's endianness.
399 (The M32C family is always little-endian, but let's keep those
400 assumptions out of here.) */
402 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
404 /* The length of the containing register, of which REG is one part. */
405 int containing_len = TYPE_LENGTH (reg->rx->type);
407 /* The length of one "element" in our imaginary array. */
408 int elt_len = TYPE_LENGTH (reg->type);
410 /* The offset of REG's "element" from the least significant end of
411 the containing register. */
412 int elt_offset = reg->n * elt_len;
414 /* If we extend off the end, trim the length of the element. */
415 if (elt_offset + elt_len > containing_len)
417 elt_len = containing_len - elt_offset;
418 /* We shouldn't be declaring partial registers that go off the
419 end of their containing registers. */
420 gdb_assert (elt_len > 0);
423 /* Flip the offset around if we're big-endian. */
424 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
425 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
427 *offset_p = elt_offset;
432 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
433 to BUF. Treating the value of the register REG->rx as an array of
434 REG->type values, where higher indices refer to more significant
435 bits, read the value of the REG->n'th element. */
436 static enum register_status
437 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
441 memset (buf, 0, TYPE_LENGTH (reg->type));
442 m32c_find_part (reg, &offset, &len);
443 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
447 /* Move the value of a banked register from BUF to CACHE.
448 Treating the value of the register REG->rx as an array of REG->type
449 values, where higher indices refer to more significant bits, write
450 the value of the REG->n'th element. */
451 static enum register_status
452 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
457 m32c_find_part (reg, &offset, &len);
458 cache->cooked_write_part (reg->rx->num, offset, len, buf);
464 /* Move the value of REG from CACHE to BUF. REG's value is the
465 concatenation of the values of the registers REG->rx and REG->ry,
466 with REG->rx contributing the more significant bits. */
467 static enum register_status
468 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
470 int high_bytes = TYPE_LENGTH (reg->rx->type);
471 int low_bytes = TYPE_LENGTH (reg->ry->type);
472 enum register_status status;
474 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
476 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
478 status = cache->cooked_read (reg->rx->num, buf);
479 if (status == REG_VALID)
480 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
484 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
485 if (status == REG_VALID)
486 status = cache->cooked_read (reg->ry->num, buf);
492 /* Move the value of REG from CACHE to BUF. REG's value is the
493 concatenation of the values of the registers REG->rx and REG->ry,
494 with REG->rx contributing the more significant bits. */
495 static enum register_status
496 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
499 int high_bytes = TYPE_LENGTH (reg->rx->type);
500 int low_bytes = TYPE_LENGTH (reg->ry->type);
502 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
504 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
506 cache->cooked_write (reg->rx->num, buf);
507 cache->cooked_write (reg->ry->num, buf + high_bytes);
511 cache->cooked_write (reg->rx->num, buf + low_bytes);
512 cache->cooked_write (reg->ry->num, buf);
519 /* Copy the value of the raw register REG from CACHE to BUF. REG is
520 the concatenation (from most significant to least) of r3, r2, r1,
522 static enum register_status
523 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
525 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
526 int len = TYPE_LENGTH (tdep->r0->type);
527 enum register_status status;
529 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
531 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
532 if (status == REG_VALID)
533 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
534 if (status == REG_VALID)
535 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
536 if (status == REG_VALID)
537 status = cache->cooked_read (tdep->r3->num, buf);
541 status = cache->cooked_read (tdep->r0->num, buf);
542 if (status == REG_VALID)
543 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
544 if (status == REG_VALID)
545 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
546 if (status == REG_VALID)
547 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
554 /* Copy the value of the raw register REG from BUF to CACHE. REG is
555 the concatenation (from most significant to least) of r3, r2, r1,
557 static enum register_status
558 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
561 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
562 int len = TYPE_LENGTH (tdep->r0->type);
564 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
566 cache->cooked_write (tdep->r0->num, buf + len * 3);
567 cache->cooked_write (tdep->r1->num, buf + len * 2);
568 cache->cooked_write (tdep->r2->num, buf + len * 1);
569 cache->cooked_write (tdep->r3->num, buf);
573 cache->cooked_write (tdep->r0->num, buf);
574 cache->cooked_write (tdep->r1->num, buf + len * 1);
575 cache->cooked_write (tdep->r2->num, buf + len * 2);
576 cache->cooked_write (tdep->r3->num, buf + len * 3);
583 static enum register_status
584 m32c_pseudo_register_read (struct gdbarch *arch,
585 readable_regcache *cache,
589 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
590 struct m32c_reg *reg;
592 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
593 gdb_assert (arch == cache->arch ());
594 gdb_assert (arch == tdep->regs[cookednum].arch);
595 reg = &tdep->regs[cookednum];
597 return reg->read (reg, cache, buf);
602 m32c_pseudo_register_write (struct gdbarch *arch,
603 struct regcache *cache,
607 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
608 struct m32c_reg *reg;
610 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
611 gdb_assert (arch == cache->arch ());
612 gdb_assert (arch == tdep->regs[cookednum].arch);
613 reg = &tdep->regs[cookednum];
615 reg->write (reg, cache, buf);
619 /* Add a register with the given fields to the end of ARCH's table.
620 Return a pointer to the newly added register. */
621 static struct m32c_reg *
622 add_reg (struct gdbarch *arch,
626 m32c_read_reg_t *read,
627 m32c_write_reg_t *write,
632 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
633 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
635 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
640 r->num = tdep->num_regs;
641 r->sim_num = sim_num;
646 r->save_restore_p = 0;
659 /* Record NUM as REG's DWARF register number. */
661 set_dwarf_regnum (struct m32c_reg *reg, int num)
663 gdb_assert (num < M32C_MAX_NUM_REGS);
665 /* Update the reg->DWARF mapping. Only count the first number
666 assigned to this register. */
667 if (reg->dwarf_num == -1)
668 reg->dwarf_num = num;
670 /* Update the DWARF->reg mapping. */
671 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
675 /* Mark REG as a general-purpose register, and return it. */
676 static struct m32c_reg *
677 mark_general (struct m32c_reg *reg)
684 /* Mark REG as a DMA register. */
686 mark_dma (struct m32c_reg *reg)
692 /* Mark REG as a SYSTEM register, and return it. */
693 static struct m32c_reg *
694 mark_system (struct m32c_reg *reg)
701 /* Mark REG as a save-restore register, and return it. */
702 static struct m32c_reg *
703 mark_save_restore (struct m32c_reg *reg)
705 reg->save_restore_p = 1;
710 #define FLAGBIT_B 0x0010
711 #define FLAGBIT_U 0x0080
713 /* Handy macros for declaring registers. These all evaluate to
714 pointers to the register declared. Macros that define two
715 registers evaluate to a pointer to the first. */
717 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
718 #define R(name, type, sim_num) \
719 (add_reg (arch, (name), (type), (sim_num), \
720 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
722 /* The simulator register number for a raw register named NAME. */
723 #define SIM(name) (m32c_sim_reg_ ## name)
725 /* A raw unsigned 16-bit data register named NAME.
726 NAME should be an identifier, not a string. */
728 (R(#name, tdep->uint16, SIM (name)))
730 /* A raw data address register named NAME.
731 NAME should be an identifier, not a string. */
733 (R(#name, tdep->data_addr_reg_type, SIM (name)))
735 /* A raw code address register named NAME. NAME should
736 be an identifier, not a string. */
738 (R(#name, tdep->code_addr_reg_type, SIM (name)))
740 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
741 NAME should be an identifier, not a string. */
742 #define RP(name, type) \
743 (R(#name "0", (type), SIM (name ## 0)), \
744 R(#name "1", (type), SIM (name ## 1)) - 1)
746 /* A raw banked general-purpose data register named NAME.
747 NAME should be an identifier, not a string. */
749 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
750 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
752 /* A raw banked data address register named NAME.
753 NAME should be an identifier, not a string. */
755 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
756 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
758 /* A cooked register named NAME referring to a raw banked register
759 from the bank selected by the current value of FLG. RAW_PAIR
760 should be a pointer to the first register in the banked pair.
761 NAME must be an identifier, not a string. */
762 #define CB(name, raw_pair) \
763 (add_reg (arch, #name, (raw_pair)->type, 0, \
764 m32c_banked_read, m32c_banked_write, \
765 (raw_pair), (raw_pair + 1), FLAGBIT_B))
767 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
768 access the top and bottom halves of the register pointed to by
769 NAME. NAME should be an identifier. */
770 #define CHL(name, type) \
771 (add_reg (arch, #name "h", (type), 0, \
772 m32c_part_read, m32c_part_write, name, NULL, 1), \
773 add_reg (arch, #name "l", (type), 0, \
774 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
776 /* A register constructed by concatenating the two registers HIGH and
777 LOW, whose name is HIGHLOW and whose type is TYPE. */
778 #define CCAT(high, low, type) \
779 (add_reg (arch, #high #low, (type), 0, \
780 m32c_cat_read, m32c_cat_write, (high), (low), 0))
782 /* Abbreviations for marking register group membership. */
783 #define G(reg) (mark_general (reg))
784 #define S(reg) (mark_system (reg))
785 #define DMA(reg) (mark_dma (reg))
788 /* Construct the register set for ARCH. */
790 make_regs (struct gdbarch *arch)
792 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
793 int mach = gdbarch_bfd_arch_info (arch)->mach;
806 struct m32c_reg *r0hl;
807 struct m32c_reg *r1hl;
808 struct m32c_reg *r2r0;
809 struct m32c_reg *r3r1;
810 struct m32c_reg *r3r1r2r0;
811 struct m32c_reg *r3r2r1r0;
812 struct m32c_reg *a1a0;
814 struct m32c_reg *raw_r0_pair = RBD (r0);
815 struct m32c_reg *raw_r1_pair = RBD (r1);
816 struct m32c_reg *raw_r2_pair = RBD (r2);
817 struct m32c_reg *raw_r3_pair = RBD (r3);
818 struct m32c_reg *raw_a0_pair = RBA (a0);
819 struct m32c_reg *raw_a1_pair = RBA (a1);
820 struct m32c_reg *raw_fb_pair = RBA (fb);
822 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
823 We always declare both raw registers, and deal with the distinction
824 in the pseudoregister. */
825 struct m32c_reg *raw_sb_pair = RBA (sb);
827 struct m32c_reg *usp = S (RA (usp));
828 struct m32c_reg *isp = S (RA (isp));
829 struct m32c_reg *intb = S (RC (intb));
830 struct m32c_reg *pc = G (RC (pc));
831 struct m32c_reg *flg = G (R16U (flg));
833 if (mach == bfd_mach_m32c)
839 DMA (RP (dmd, tdep->uint8));
840 DMA (RP (dct, tdep->uint16));
841 DMA (RP (drc, tdep->uint16));
842 DMA (RP (dma, tdep->data_addr_reg_type));
843 DMA (RP (dsa, tdep->data_addr_reg_type));
844 DMA (RP (dra, tdep->data_addr_reg_type));
847 num_raw_regs = tdep->num_regs;
849 r0 = G (CB (r0, raw_r0_pair));
850 r1 = G (CB (r1, raw_r1_pair));
851 r2 = G (CB (r2, raw_r2_pair));
852 r3 = G (CB (r3, raw_r3_pair));
853 a0 = G (CB (a0, raw_a0_pair));
854 a1 = G (CB (a1, raw_a1_pair));
855 fb = G (CB (fb, raw_fb_pair));
857 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
858 Specify custom read/write functions that do the right thing. */
859 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
860 m32c_sb_read, m32c_sb_write,
861 raw_sb_pair, raw_sb_pair + 1, 0));
863 /* The current sp is either usp or isp, depending on the value of
864 the FLG register's U bit. */
865 sp = G (add_reg (arch, "sp", usp->type, 0,
866 m32c_banked_read, m32c_banked_write,
867 isp, usp, FLAGBIT_U));
869 r0hl = CHL (r0, tdep->int8);
870 r1hl = CHL (r1, tdep->int8);
871 CHL (r2, tdep->int8);
872 CHL (r3, tdep->int8);
873 CHL (intb, tdep->int16);
875 r2r0 = CCAT (r2, r0, tdep->int32);
876 r3r1 = CCAT (r3, r1, tdep->int32);
877 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
880 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
881 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
883 if (mach == bfd_mach_m16c)
884 a1a0 = CCAT (a1, a0, tdep->int32);
888 num_cooked_regs = tdep->num_regs - num_raw_regs;
897 tdep->r3r2r1r0 = r3r2r1r0;
898 tdep->r3r1r2r0 = r3r1r2r0;
905 /* Set up the DWARF register table. */
906 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
907 set_dwarf_regnum (r0hl + 1, 0x01);
908 set_dwarf_regnum (r0hl + 0, 0x02);
909 set_dwarf_regnum (r1hl + 1, 0x03);
910 set_dwarf_regnum (r1hl + 0, 0x04);
911 set_dwarf_regnum (r0, 0x05);
912 set_dwarf_regnum (r1, 0x06);
913 set_dwarf_regnum (r2, 0x07);
914 set_dwarf_regnum (r3, 0x08);
915 set_dwarf_regnum (a0, 0x09);
916 set_dwarf_regnum (a1, 0x0a);
917 set_dwarf_regnum (fb, 0x0b);
918 set_dwarf_regnum (sp, 0x0c);
919 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
920 set_dwarf_regnum (sb, 0x13);
921 set_dwarf_regnum (r2r0, 0x15);
922 set_dwarf_regnum (r3r1, 0x16);
924 set_dwarf_regnum (a1a0, 0x17);
926 /* Enumerate the save/restore register group.
928 The regcache_save and regcache_restore functions apply their read
929 function to each register in this group.
931 Since frame_pop supplies frame_unwind_register as its read
932 function, the registers meaningful to the Dwarf unwinder need to
935 On the other hand, when we make inferior calls, save_inferior_status
936 and restore_inferior_status use them to preserve the current register
937 values across the inferior call. For this, you'd kind of like to
938 preserve all the raw registers, to protect the interrupted code from
939 any sort of bank switching the callee might have done. But we handle
940 those cases so badly anyway --- for example, it matters whether we
941 restore FLG before or after we restore the general-purpose registers,
942 but there's no way to express that --- that it isn't worth worrying
945 We omit control registers like inthl: if you call a function that
946 changes those, it's probably because you wanted that change to be
947 visible to the interrupted code. */
948 mark_save_restore (r0);
949 mark_save_restore (r1);
950 mark_save_restore (r2);
951 mark_save_restore (r3);
952 mark_save_restore (a0);
953 mark_save_restore (a1);
954 mark_save_restore (sb);
955 mark_save_restore (fb);
956 mark_save_restore (sp);
957 mark_save_restore (pc);
958 mark_save_restore (flg);
960 set_gdbarch_num_regs (arch, num_raw_regs);
961 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
962 set_gdbarch_pc_regnum (arch, pc->num);
963 set_gdbarch_sp_regnum (arch, sp->num);
964 set_gdbarch_register_name (arch, m32c_register_name);
965 set_gdbarch_register_type (arch, m32c_register_type);
966 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
967 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
968 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
969 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
970 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
971 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
973 reggroup_add (arch, general_reggroup);
974 reggroup_add (arch, all_reggroup);
975 reggroup_add (arch, save_reggroup);
976 reggroup_add (arch, restore_reggroup);
977 reggroup_add (arch, system_reggroup);
978 reggroup_add (arch, m32c_dma_reggroup);
984 constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
986 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
989 /* Prologue analysis. */
991 enum m32c_prologue_kind
993 /* This function uses a frame pointer. */
994 prologue_with_frame_ptr,
996 /* This function has no frame pointer. */
997 prologue_sans_frame_ptr,
999 /* This function sets up the stack, so its frame is the first
1000 frame on the stack. */
1001 prologue_first_frame
1004 struct m32c_prologue
1006 /* For consistency with the DWARF 2 .debug_frame info generated by
1007 GCC, a frame's CFA is the address immediately after the saved
1010 /* The architecture for which we generated this prologue info. */
1011 struct gdbarch *arch;
1013 enum m32c_prologue_kind kind;
1015 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016 CFA to where the frame pointer points. This is always zero or
1018 LONGEST frame_ptr_offset;
1020 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021 the stack pointer --- always zero or negative.
1023 Calling this a "size" is a bit misleading, but given that the
1024 stack grows downwards, using offsets for everything keeps one
1025 from going completely sign-crazy: you never change anything's
1026 sign for an ADD instruction; always change the second operand's
1027 sign for a SUB instruction; and everything takes care of
1030 Functions that use alloca don't have a constant frame size. But
1031 they always have frame pointers, so we must use that to find the
1032 CFA (and perhaps to unwind the stack pointer). */
1035 /* The address of the first instruction at which the frame has been
1036 set up and the arguments are where the debug info says they are
1037 --- as best as we can tell. */
1038 CORE_ADDR prologue_end;
1040 /* reg_offset[R] is the offset from the CFA at which register R is
1041 saved, or 1 if register R has not been saved. (Real values are
1042 always zero or negative.) */
1043 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1047 /* The longest I've seen, anyway. */
1048 #define M32C_MAX_INSN_LEN (9)
1050 /* Processor state, for the prologue analyzer. */
1051 struct m32c_pv_state
1053 struct gdbarch *arch;
1054 pv_t r0, r1, r2, r3;
1058 struct pv_area *stack;
1060 /* Bytes from the current PC, the address they were read from,
1061 and the address of the next unconsumed byte. */
1062 gdb_byte insn[M32C_MAX_INSN_LEN];
1063 CORE_ADDR scan_pc, next_addr;
1067 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1068 all went well, or non-zero if simulating the action would trash our
1071 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1073 if (state->stack->store_would_trash (state->sp))
1076 state->sp = pv_add_constant (state->sp, -size);
1077 state->stack->store (state->sp, size, value);
1086 srcdest_partial_reg,
1090 /* A source or destination location for an m16c or m32c
1094 /* If srcdest_reg, the location is a register pointed to by REG.
1095 If srcdest_partial_reg, the location is part of a register pointed
1096 to by REG. We don't try to handle this too well.
1097 If srcdest_mem, the location is memory whose address is ADDR. */
1098 enum srcdest_kind kind;
1103 /* Return the SIZE-byte value at LOC in STATE. */
1105 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1107 if (loc.kind == srcdest_mem)
1108 return state->stack->fetch (loc.addr, size);
1109 else if (loc.kind == srcdest_partial_reg)
1110 return pv_unknown ();
1116 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1117 all went well, or non-zero if simulating the store would trash our
1120 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1121 pv_t value, int size)
1123 if (loc.kind == srcdest_mem)
1125 if (state->stack->store_would_trash (loc.addr))
1127 state->stack->store (loc.addr, size, value);
1129 else if (loc.kind == srcdest_partial_reg)
1130 *loc.reg = pv_unknown ();
1139 m32c_sign_ext (int v, int bits)
1141 int mask = 1 << (bits - 1);
1142 return (v ^ mask) - mask;
1146 m32c_next_byte (struct m32c_pv_state *st)
1148 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1149 return st->insn[st->next_addr++ - st->scan_pc];
1153 m32c_udisp8 (struct m32c_pv_state *st)
1155 return m32c_next_byte (st);
1160 m32c_sdisp8 (struct m32c_pv_state *st)
1162 return m32c_sign_ext (m32c_next_byte (st), 8);
1167 m32c_udisp16 (struct m32c_pv_state *st)
1169 int low = m32c_next_byte (st);
1170 int high = m32c_next_byte (st);
1172 return low + (high << 8);
1177 m32c_sdisp16 (struct m32c_pv_state *st)
1179 int low = m32c_next_byte (st);
1180 int high = m32c_next_byte (st);
1182 return m32c_sign_ext (low + (high << 8), 16);
1187 m32c_udisp24 (struct m32c_pv_state *st)
1189 int low = m32c_next_byte (st);
1190 int mid = m32c_next_byte (st);
1191 int high = m32c_next_byte (st);
1193 return low + (mid << 8) + (high << 16);
1197 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1199 m32c_get_src23 (unsigned char *i)
1201 return (((i[0] & 0x70) >> 2)
1202 | ((i[1] & 0x30) >> 4));
1206 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1208 m32c_get_dest23 (unsigned char *i)
1210 return (((i[0] & 0x0e) << 1)
1211 | ((i[1] & 0xc0) >> 6));
1215 static struct srcdest
1216 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1222 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1224 sd.kind = srcdest_mem;
1226 sd.addr = pv_unknown ();
1231 case 0x0: sd.reg = &st->r0; break;
1232 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1233 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1234 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1236 case 0x4: sd.reg = &st->a0; break;
1237 case 0x5: sd.reg = &st->a1; break;
1239 case 0x6: sd.addr = st->a0; break;
1240 case 0x7: sd.addr = st->a1; break;
1242 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1243 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1244 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1245 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1247 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1248 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1249 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1250 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1253 gdb_assert_not_reached ("unexpected srcdest4");
1260 static struct srcdest
1261 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1265 sd.addr = pv_unknown ();
1274 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1279 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1283 sd.kind = srcdest_mem;
1290 case 0x12: sd.reg = &st->r0; break;
1291 case 0x13: sd.reg = &st->r1; break;
1292 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1293 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1294 case 0x02: sd.reg = &st->a0; break;
1295 case 0x03: sd.reg = &st->a1; break;
1297 case 0x00: sd.addr = st->a0; break;
1298 case 0x01: sd.addr = st->a1; break;
1299 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1300 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1301 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1302 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1303 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1304 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1305 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1306 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1307 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1308 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1309 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1310 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1312 gdb_assert_not_reached ("unexpected sd23");
1317 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1318 sd.kind = srcdest_mem;
1325 /* The r16c and r32c machines have instructions with similar
1326 semantics, but completely different machine language encodings. So
1327 we break out the semantics into their own functions, and leave
1328 machine-specific decoding in m32c_analyze_prologue.
1330 The following functions all expect their arguments already decoded,
1331 and they all return zero if analysis should continue past this
1332 instruction, or non-zero if analysis should stop. */
1335 /* Simulate an 'enter SIZE' instruction in STATE. */
1337 m32c_pv_enter (struct m32c_pv_state *state, int size)
1339 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1341 /* If simulating this store would require us to forget
1342 everything we know about the stack frame in the name of
1343 accuracy, it would be better to just quit now. */
1344 if (state->stack->store_would_trash (state->sp))
1347 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1349 state->fb = state->sp;
1350 state->sp = pv_add_constant (state->sp, -size);
1357 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1358 int bit, int src, int size)
1362 if (m32c_pv_push (state, reg, size))
1370 /* Simulate a 'pushm SRC' instruction in STATE. */
1372 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1374 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1376 /* The bits in SRC indicating which registers to save are:
1377 r0 r1 r2 r3 a0 a1 sb fb */
1379 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1380 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1381 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1382 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1383 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1384 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1385 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1386 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1389 /* Return non-zero if VALUE is the first incoming argument register. */
1392 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1394 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1395 return (value.kind == pvk_register
1396 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1397 ? (value.reg == tdep->r1->num)
1398 : (value.reg == tdep->r0->num))
1402 /* Return non-zero if VALUE is an incoming argument register. */
1405 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1407 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1408 return (value.kind == pvk_register
1409 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1410 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1411 : (value.reg == tdep->r0->num))
1415 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1416 argument register to its stack slot in STATE. Such instructions
1417 should be included in the prologue, if possible.
1419 The store is a spill if:
1420 - the value being stored is the original value of an argument register;
1421 - the value has not already been stored somewhere in STACK; and
1422 - LOC is a stack slot (e.g., a memory location whose address is
1423 relative to the original value of the SP). */
1426 m32c_is_arg_spill (struct m32c_pv_state *st,
1430 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1432 return (m32c_is_arg_reg (st, value)
1433 && loc.kind == srcdest_mem
1434 && pv_is_register (loc.addr, tdep->sp->num)
1435 && ! st->stack->find_reg (st->arch, value.reg, 0));
1438 /* Return non-zero if a store of VALUE to LOC is probably
1439 copying the struct return address into an address register
1440 for immediate use. This is basically a "spill" into the
1441 address register, instead of onto the stack.
1443 The prerequisites are:
1444 - value being stored is original value of the FIRST arg register;
1445 - value has not already been stored on stack; and
1446 - LOC is an address register (a0 or a1). */
1449 m32c_is_struct_return (struct m32c_pv_state *st,
1453 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1455 return (m32c_is_1st_arg_reg (st, value)
1456 && !st->stack->find_reg (st->arch, value.reg, 0)
1457 && loc.kind == srcdest_reg
1458 && (pv_is_register (*loc.reg, tdep->a0->num)
1459 || pv_is_register (*loc.reg, tdep->a1->num)));
1462 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1463 was a register save:
1464 - all the named registers should have their original values, and
1465 - the stack pointer should be at a constant offset from the
1466 original stack pointer. */
1468 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1471 /* The bits in SRC indicating which registers to save are:
1472 r0 r1 r2 r3 a0 a1 sb fb */
1474 (pv_is_register (st->sp, tdep->sp->num)
1475 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1476 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1477 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1478 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1479 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1480 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1481 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1482 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1486 /* Function for finding saved registers in a 'struct pv_area'; we pass
1487 this to pv_area::scan.
1489 If VALUE is a saved register, ADDR says it was saved at a constant
1490 offset from the frame base, and SIZE indicates that the whole
1491 register was saved, record its offset in RESULT_UNTYPED. */
1493 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1495 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1496 struct gdbarch *arch = prologue->arch;
1497 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1499 /* Is this the unchanged value of some register being saved on the
1501 if (value.kind == pvk_register
1503 && pv_is_register (addr, tdep->sp->num))
1505 /* Some registers require special handling: they're saved as a
1506 larger value than the register itself. */
1507 CORE_ADDR saved_size = register_size (arch, value.reg);
1509 if (value.reg == tdep->pc->num)
1510 saved_size = tdep->ret_addr_bytes;
1511 else if (register_type (arch, value.reg)
1512 == tdep->data_addr_reg_type)
1513 saved_size = tdep->push_addr_bytes;
1515 if (size == saved_size)
1517 /* Find which end of the saved value corresponds to our
1519 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1520 prologue->reg_offset[value.reg]
1521 = (addr.k + saved_size - register_size (arch, value.reg));
1523 prologue->reg_offset[value.reg] = addr.k;
1529 /* Analyze the function prologue for ARCH at START, going no further
1530 than LIMIT, and place a description of what we found in
1533 m32c_analyze_prologue (struct gdbarch *arch,
1534 CORE_ADDR start, CORE_ADDR limit,
1535 struct m32c_prologue *prologue)
1537 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1538 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1539 CORE_ADDR after_last_frame_related_insn;
1540 struct m32c_pv_state st;
1543 st.r0 = pv_register (tdep->r0->num, 0);
1544 st.r1 = pv_register (tdep->r1->num, 0);
1545 st.r2 = pv_register (tdep->r2->num, 0);
1546 st.r3 = pv_register (tdep->r3->num, 0);
1547 st.a0 = pv_register (tdep->a0->num, 0);
1548 st.a1 = pv_register (tdep->a1->num, 0);
1549 st.sb = pv_register (tdep->sb->num, 0);
1550 st.fb = pv_register (tdep->fb->num, 0);
1551 st.sp = pv_register (tdep->sp->num, 0);
1552 st.pc = pv_register (tdep->pc->num, 0);
1553 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1556 /* Record that the call instruction has saved the return address on
1558 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1560 memset (prologue, 0, sizeof (*prologue));
1561 prologue->arch = arch;
1564 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1565 prologue->reg_offset[i] = 1;
1568 st.scan_pc = after_last_frame_related_insn = start;
1570 while (st.scan_pc < limit)
1572 pv_t pre_insn_fb = st.fb;
1573 pv_t pre_insn_sp = st.sp;
1575 /* In theory we could get in trouble by trying to read ahead
1576 here, when we only know we're expecting one byte. In
1577 practice I doubt anyone will care, and it makes the rest of
1579 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1580 /* If we can't fetch the instruction from memory, stop here
1581 and hope for the best. */
1583 st.next_addr = st.scan_pc;
1585 /* The assembly instructions are written as they appear in the
1586 section of the processor manuals that describe the
1587 instruction encodings.
1589 When a single assembly language instruction has several
1590 different machine-language encodings, the manual
1591 distinguishes them by a number in parens, before the
1592 mnemonic. Those numbers are included, as well.
1594 The srcdest decoding instructions have the same names as the
1595 analogous functions in the simulator. */
1596 if (mach == bfd_mach_m16c)
1598 /* (1) ENTER #imm8 */
1599 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1601 if (m32c_pv_enter (&st, st.insn[2]))
1606 else if (st.insn[0] == 0xec)
1608 int src = st.insn[1];
1609 if (m32c_pv_pushm (&st, src))
1613 if (m32c_pushm_is_reg_save (&st, src))
1614 after_last_frame_related_insn = st.next_addr;
1617 /* (6) MOV.size:G src, dest */
1618 else if ((st.insn[0] & 0xfe) == 0x72)
1620 int size = (st.insn[0] & 0x01) ? 2 : 1;
1622 struct srcdest dest;
1627 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1629 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1630 src_value = m32c_srcdest_fetch (&st, src, size);
1632 if (m32c_is_arg_spill (&st, dest, src_value))
1633 after_last_frame_related_insn = st.next_addr;
1634 else if (m32c_is_struct_return (&st, dest, src_value))
1635 after_last_frame_related_insn = st.next_addr;
1637 if (m32c_srcdest_store (&st, dest, src_value, size))
1641 /* (1) LDC #IMM16, sp */
1642 else if (st.insn[0] == 0xeb
1643 && st.insn[1] == 0x50)
1646 st.sp = pv_constant (m32c_udisp16 (&st));
1650 /* We've hit some instruction we don't know how to simulate.
1651 Strictly speaking, we should set every value we're
1652 tracking to "unknown". But we'll be optimistic, assume
1653 that we have enough information already, and stop
1659 int src_indirect = 0;
1660 int dest_indirect = 0;
1663 gdb_assert (mach == bfd_mach_m32c);
1665 /* Check for prefix bytes indicating indirect addressing. */
1666 if (st.insn[0] == 0x41)
1671 else if (st.insn[0] == 0x09)
1676 else if (st.insn[0] == 0x49)
1678 src_indirect = dest_indirect = 1;
1682 /* (1) ENTER #imm8 */
1683 if (st.insn[i] == 0xec)
1685 if (m32c_pv_enter (&st, st.insn[i + 1]))
1691 else if (st.insn[i] == 0x8f)
1693 int src = st.insn[i + 1];
1694 if (m32c_pv_pushm (&st, src))
1698 if (m32c_pushm_is_reg_save (&st, src))
1699 after_last_frame_related_insn = st.next_addr;
1702 /* (7) MOV.size:G src, dest */
1703 else if ((st.insn[i] & 0x80) == 0x80
1704 && (st.insn[i + 1] & 0x0f) == 0x0b
1705 && m32c_get_src23 (&st.insn[i]) < 20
1706 && m32c_get_dest23 (&st.insn[i]) < 20)
1709 struct srcdest dest;
1711 int bw = st.insn[i] & 0x01;
1712 int size = bw ? 2 : 1;
1716 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1717 size, src_indirect);
1719 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1720 size, dest_indirect);
1721 src_value = m32c_srcdest_fetch (&st, src, size);
1723 if (m32c_is_arg_spill (&st, dest, src_value))
1724 after_last_frame_related_insn = st.next_addr;
1726 if (m32c_srcdest_store (&st, dest, src_value, size))
1729 /* (2) LDC #IMM24, sp */
1730 else if (st.insn[i] == 0xd5
1731 && st.insn[i + 1] == 0x29)
1734 st.sp = pv_constant (m32c_udisp24 (&st));
1737 /* We've hit some instruction we don't know how to simulate.
1738 Strictly speaking, we should set every value we're
1739 tracking to "unknown". But we'll be optimistic, assume
1740 that we have enough information already, and stop
1745 /* If this instruction changed the FB or decreased the SP (i.e.,
1746 allocated more stack space), then this may be a good place to
1747 declare the prologue finished. However, there are some
1750 - If the instruction just changed the FB back to its original
1751 value, then that's probably a restore instruction. The
1752 prologue should definitely end before that.
1754 - If the instruction increased the value of the SP (that is,
1755 shrunk the frame), then it's probably part of a frame
1756 teardown sequence, and the prologue should end before
1759 if (! pv_is_identical (st.fb, pre_insn_fb))
1761 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1762 after_last_frame_related_insn = st.next_addr;
1764 else if (! pv_is_identical (st.sp, pre_insn_sp))
1766 /* The comparison of the constants looks odd, there, because
1767 .k is unsigned. All it really means is that the SP is
1768 lower than it was before the instruction. */
1769 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1770 && pv_is_register (st.sp, tdep->sp->num)
1771 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1772 after_last_frame_related_insn = st.next_addr;
1775 st.scan_pc = st.next_addr;
1778 /* Did we load a constant value into the stack pointer? */
1779 if (pv_is_constant (st.sp))
1780 prologue->kind = prologue_first_frame;
1782 /* Alternatively, did we initialize the frame pointer? Remember
1783 that the CFA is the address after the return address. */
1784 if (pv_is_register (st.fb, tdep->sp->num))
1786 prologue->kind = prologue_with_frame_ptr;
1787 prologue->frame_ptr_offset = st.fb.k;
1790 /* Is the frame size a known constant? Remember that frame_size is
1791 actually the offset from the CFA to the SP (i.e., a negative
1793 else if (pv_is_register (st.sp, tdep->sp->num))
1795 prologue->kind = prologue_sans_frame_ptr;
1796 prologue->frame_size = st.sp.k;
1799 /* We haven't been able to make sense of this function's frame. Treat
1800 it as the first frame. */
1802 prologue->kind = prologue_first_frame;
1804 /* Record where all the registers were saved. */
1805 st.stack->scan (check_for_saved, (void *) prologue);
1807 prologue->prologue_end = after_last_frame_related_insn;
1812 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1815 CORE_ADDR func_addr, func_end, sal_end;
1816 struct m32c_prologue p;
1818 /* Try to find the extent of the function that contains IP. */
1819 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1822 /* Find end by prologue analysis. */
1823 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1824 /* Find end by line info. */
1825 sal_end = skip_prologue_using_sal (gdbarch, ip);
1826 /* Return whichever is lower. */
1827 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1830 return p.prologue_end;
1835 /* Stack unwinding. */
1837 static struct m32c_prologue *
1838 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1839 void **this_prologue_cache)
1841 if (! *this_prologue_cache)
1843 CORE_ADDR func_start = get_frame_func (this_frame);
1844 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1846 /* If we couldn't find any function containing the PC, then
1847 just initialize the prologue cache, but don't do anything. */
1849 stop_addr = func_start;
1851 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1852 m32c_analyze_prologue (get_frame_arch (this_frame),
1853 func_start, stop_addr,
1854 (struct m32c_prologue *) *this_prologue_cache);
1857 return (struct m32c_prologue *) *this_prologue_cache;
1862 m32c_frame_base (struct frame_info *this_frame,
1863 void **this_prologue_cache)
1865 struct m32c_prologue *p
1866 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1867 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1869 /* In functions that use alloca, the distance between the stack
1870 pointer and the frame base varies dynamically, so we can't use
1871 the SP plus static information like prologue analysis to find the
1872 frame base. However, such functions must have a frame pointer,
1873 to be able to restore the SP on exit. So whenever we do have a
1874 frame pointer, use that to find the base. */
1877 case prologue_with_frame_ptr:
1880 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1881 return fb - p->frame_ptr_offset;
1884 case prologue_sans_frame_ptr:
1887 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1888 return sp - p->frame_size;
1891 case prologue_first_frame:
1895 gdb_assert_not_reached ("unexpected prologue kind");
1901 m32c_this_id (struct frame_info *this_frame,
1902 void **this_prologue_cache,
1903 struct frame_id *this_id)
1905 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1908 *this_id = frame_id_build (base, get_frame_func (this_frame));
1909 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1913 static struct value *
1914 m32c_prev_register (struct frame_info *this_frame,
1915 void **this_prologue_cache, int regnum)
1917 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1918 struct m32c_prologue *p
1919 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1920 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1922 if (regnum == tdep->sp->num)
1923 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1925 /* If prologue analysis says we saved this register somewhere,
1926 return a description of the stack slot holding it. */
1927 if (p->reg_offset[regnum] != 1)
1928 return frame_unwind_got_memory (this_frame, regnum,
1929 frame_base + p->reg_offset[regnum]);
1931 /* Otherwise, presume we haven't changed the value of this
1932 register, and get it from the next frame. */
1933 return frame_unwind_got_register (this_frame, regnum, regnum);
1937 static const struct frame_unwind m32c_unwind = {
1939 default_frame_unwind_stop_reason,
1943 default_frame_sniffer
1947 /* Inferior calls. */
1949 /* The calling conventions, according to GCC:
1953 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1954 HImode), (2) is named, and (3) is an integer or pointer type (no
1955 structs, floats, etc). Otherwise, it's passed on the stack.
1957 Second arg may be passed in r2, same restrictions (but not QImode),
1958 even if the first arg is passed on the stack.
1960 Third and further args are passed on the stack. No padding is
1961 used, stack "alignment" is 8 bits.
1966 First arg may be passed in r0l or r0, same restrictions as above.
1968 Second and further args are passed on the stack. Padding is used
1969 after QImode parameters (i.e. lower-addressed byte is the value,
1970 higher-addressed byte is the padding), stack "alignment" is 16
1974 /* Return true if TYPE is a type that can be passed in registers. (We
1975 ignore the size, and pay attention only to the type code;
1976 acceptable sizes depends on which register is being considered to
1979 m32c_reg_arg_type (struct type *type)
1981 enum type_code code = type->code ();
1983 return (code == TYPE_CODE_INT
1984 || code == TYPE_CODE_ENUM
1985 || code == TYPE_CODE_PTR
1986 || TYPE_IS_REFERENCE (type)
1987 || code == TYPE_CODE_BOOL
1988 || code == TYPE_CODE_CHAR);
1993 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1994 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1995 struct value **args, CORE_ADDR sp,
1996 function_call_return_method return_method,
1997 CORE_ADDR struct_addr)
1999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2000 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2001 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2005 /* The number of arguments given in this function's prototype, or
2006 zero if it has a non-prototyped function type. The m32c ABI
2007 passes arguments mentioned in the prototype differently from
2008 those in the ellipsis of a varargs function, or from those passed
2009 to a non-prototyped function. */
2010 int num_prototyped_args = 0;
2013 struct type *func_type = value_type (function);
2015 /* Dereference function pointer types. */
2016 if (func_type->code () == TYPE_CODE_PTR)
2017 func_type = TYPE_TARGET_TYPE (func_type);
2019 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2020 func_type->code () == TYPE_CODE_METHOD);
2023 /* The ABI description in gcc/config/m32c/m32c.abi says that
2024 we need to handle prototyped and non-prototyped functions
2025 separately, but the code in GCC doesn't actually do so. */
2026 if (TYPE_PROTOTYPED (func_type))
2028 num_prototyped_args = func_type->num_fields ();
2031 /* First, if the function returns an aggregate by value, push a
2032 pointer to a buffer for it. This doesn't affect the way
2033 subsequent arguments are allocated to registers. */
2034 if (return_method == return_method_struct)
2036 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2038 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2041 /* Push the arguments. */
2042 for (i = nargs - 1; i >= 0; i--)
2044 struct value *arg = args[i];
2045 const gdb_byte *arg_bits = value_contents (arg);
2046 struct type *arg_type = value_type (arg);
2047 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2049 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2052 && i < num_prototyped_args
2053 && m32c_reg_arg_type (arg_type))
2055 /* Extract and re-store as an integer as a terse way to make
2056 sure it ends up in the least significant end of r1. (GDB
2057 should avoid assuming endianness, even on uni-endian
2059 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2061 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2062 regcache_cooked_write_unsigned (regcache, reg->num, u);
2065 /* Can it go in r2? */
2066 else if (mach == bfd_mach_m16c
2069 && i < num_prototyped_args
2070 && m32c_reg_arg_type (arg_type))
2071 regcache->cooked_write (tdep->r2->num, arg_bits);
2073 /* Everything else goes on the stack. */
2078 /* Align the stack. */
2079 if (mach == bfd_mach_m32c)
2082 write_memory (sp, arg_bits, arg_size);
2086 /* This is the CFA we use to identify the dummy frame. */
2089 /* Push the return address. */
2090 sp -= tdep->ret_addr_bytes;
2091 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2094 /* Update the stack pointer. */
2095 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2097 /* We need to borrow an odd trick from the i386 target here.
2099 The value we return from this function gets used as the stack
2100 address (the CFA) for the dummy frame's ID. The obvious thing is
2101 to return the new TOS. However, that points at the return
2102 address, saved on the stack, which is inconsistent with the CFA's
2103 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2104 .debug_frame info uses the address immediately after the saved
2105 return address. So you end up with a dummy frame whose CFA
2106 points at the return address, but the frame for the function
2107 being called has a CFA pointing after the return address: the
2108 younger CFA is *greater than* the older CFA. The sanity checks
2109 in frame.c don't like that.
2111 So we try to be consistent with the CFA's used by DWARF 2.
2112 Having a dummy frame and a real frame with the *same* CFA is
2119 /* Return values. */
2121 /* Return value conventions, according to GCC:
2132 Aggregate values (regardless of size) are returned by pushing a
2133 pointer to a temporary area on the stack after the args are pushed.
2134 The function fills in this area with the value. Note that this
2135 pointer on the stack does not affect how register arguments, if any,
2142 /* Return non-zero if values of type TYPE are returned by storing them
2143 in a buffer whose address is passed on the stack, ahead of the
2146 m32c_return_by_passed_buf (struct type *type)
2148 enum type_code code = type->code ();
2150 return (code == TYPE_CODE_STRUCT
2151 || code == TYPE_CODE_UNION);
2154 static enum return_value_convention
2155 m32c_return_value (struct gdbarch *gdbarch,
2156 struct value *function,
2157 struct type *valtype,
2158 struct regcache *regcache,
2160 const gdb_byte *writebuf)
2162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2164 enum return_value_convention conv;
2165 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2167 if (m32c_return_by_passed_buf (valtype))
2168 conv = RETURN_VALUE_STRUCT_CONVENTION;
2170 conv = RETURN_VALUE_REGISTER_CONVENTION;
2174 /* We should never be called to find values being returned by
2175 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2176 unless we made the call ourselves. */
2177 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2179 gdb_assert (valtype_len <= 8);
2181 /* Anything that fits in r0 is returned there. */
2182 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2185 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2186 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2190 /* Everything else is passed in mem0, using as many bytes as
2191 needed. This is not what the Renesas tools do, but it's
2192 what GCC does at the moment. */
2193 struct bound_minimal_symbol mem0
2194 = lookup_minimal_symbol ("mem0", NULL, NULL);
2197 error (_("The return value is stored in memory at 'mem0', "
2198 "but GDB cannot find\n"
2200 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2206 /* We should never be called to store values to be returned
2207 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2208 finding the buffer, unless we made the call ourselves. */
2209 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2211 gdb_assert (valtype_len <= 8);
2213 /* Anything that fits in r0 is returned there. */
2214 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2216 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2218 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2222 /* Everything else is passed in mem0, using as many bytes as
2223 needed. This is not what the Renesas tools do, but it's
2224 what GCC does at the moment. */
2225 struct bound_minimal_symbol mem0
2226 = lookup_minimal_symbol ("mem0", NULL, NULL);
2229 error (_("The return value is stored in memory at 'mem0', "
2230 "but GDB cannot find\n"
2232 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2243 /* The m16c and m32c use a trampoline function for indirect function
2244 calls. An indirect call looks like this:
2246 ... push arguments ...
2247 ... push target function address ...
2250 The code for m32c_jsri16 looks like this:
2254 # Save return address.
2256 pop.b m32c_jsri_ret+2
2258 # Store target function address.
2259 pop.w m32c_jsri_addr
2261 # Re-push return address.
2262 push.b m32c_jsri_ret+2
2263 push.w m32c_jsri_ret
2265 # Call the target function.
2266 jmpi.a m32c_jsri_addr
2268 Without further information, GDB will treat calls to m32c_jsri16
2269 like calls to any other function. Since m32c_jsri16 doesn't have
2270 debugging information, that normally means that GDB sets a step-
2271 resume breakpoint and lets the program continue --- which is not
2272 what the user wanted. (Giving the trampoline debugging info
2273 doesn't help: the user expects the program to stop in the function
2274 their program is calling, not in some trampoline code they've never
2277 The gdbarch_skip_trampoline_code method tells GDB how to step
2278 through such trampoline functions transparently to the user. When
2279 given the address of a trampoline function's first instruction,
2280 gdbarch_skip_trampoline_code should return the address of the first
2281 instruction of the function really being called. If GDB decides it
2282 wants to step into that function, it will set a breakpoint there
2283 and silently continue to it.
2285 We recognize the trampoline by name, and extract the target address
2286 directly from the stack. This isn't great, but recognizing by its
2287 code sequence seems more fragile. */
2290 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2292 struct gdbarch *gdbarch = get_frame_arch (frame);
2293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2296 /* It would be nicer to simply look up the addresses of known
2297 trampolines once, and then compare stop_pc with them. However,
2298 we'd need to ensure that that cached address got invalidated when
2299 someone loaded a new executable, and I'm not quite sure of the
2300 best way to do that. find_pc_partial_function does do some
2301 caching, so we'll see how this goes. */
2303 CORE_ADDR start, end;
2305 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2307 /* Are we stopped at the beginning of the trampoline function? */
2308 if (strcmp (name, "m32c_jsri16") == 0
2309 && stop_pc == start)
2311 /* Get the stack pointer. The return address is at the top,
2312 and the target function's address is just below that. We
2313 know it's a two-byte address, since the trampoline is
2315 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2317 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2320 /* What we have now is the address of a jump instruction.
2321 What we need is the destination of that jump.
2322 The opcode is 1 byte, and the destination is the next 3 bytes. */
2324 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2333 /* Address/pointer conversions. */
2335 /* On the m16c, there is a 24-bit address space, but only a very few
2336 instructions can generate addresses larger than 0xffff: jumps,
2337 jumps to subroutines, and the lde/std (load/store extended)
2340 Since GCC can only support one size of pointer, we can't have
2341 distinct 'near' and 'far' pointer types; we have to pick one size
2342 for everything. If we wanted to use 24-bit pointers, then GCC
2343 would have to use lde and ste for all memory references, which
2344 would be terrible for performance and code size. So the GNU
2345 toolchain uses 16-bit pointers for everything, and gives up the
2346 ability to have pointers point outside the first 64k of memory.
2348 However, as a special hack, we let the linker place functions at
2349 addresses above 0xffff, as long as it also places a trampoline in
2350 the low 64k for every function whose address is taken. Each
2351 trampoline consists of a single jmp.a instruction that jumps to the
2352 function's real entry point. Pointers to functions can be 16 bits
2353 long, even though the functions themselves are at higher addresses:
2354 the pointers refer to the trampolines, not the functions.
2356 This complicates things for GDB, however: given the address of a
2357 function (from debug info or linker symbols, say) which could be
2358 anywhere in the 24-bit address space, how can we find an
2359 appropriate 16-bit value to use as a pointer to it?
2361 If the linker has not generated a trampoline for the function,
2362 we're out of luck. Well, I guess we could malloc some space and
2363 write a jmp.a instruction to it, but I'm not going to get into that
2366 If the linker has generated a trampoline for the function, then it
2367 also emitted a symbol for the trampoline: if the function's linker
2368 symbol is named NAME, then the function's trampoline's linker
2369 symbol is named NAME.plt.
2371 So, given a code address:
2372 - We try to find a linker symbol at that address.
2373 - If we find such a symbol named NAME, we look for a linker symbol
2375 - If we find such a symbol, we assume it is a trampoline, and use
2376 its address as the pointer value.
2378 And, given a function pointer:
2379 - We try to find a linker symbol at that address named NAME.plt.
2380 - If we find such a symbol, we look for a linker symbol named NAME.
2381 - If we find that, we provide that as the function's address.
2382 - If any of the above steps fail, we return the original address
2383 unchanged; it might really be a function in the low 64k.
2385 See? You *knew* there was a reason you wanted to be a computer
2389 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2390 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2392 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2393 enum type_code target_code;
2394 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2396 target_code = TYPE_TARGET_TYPE (type)->code ();
2398 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2400 const char *func_name;
2402 struct bound_minimal_symbol tramp_msym;
2404 /* Try to find a linker symbol at this address. */
2405 struct bound_minimal_symbol func_msym
2406 = lookup_minimal_symbol_by_pc (addr);
2408 if (! func_msym.minsym)
2409 error (_("Cannot convert code address %s to function pointer:\n"
2410 "couldn't find a symbol at that address, to find trampoline."),
2411 paddress (gdbarch, addr));
2413 func_name = func_msym.minsym->linkage_name ();
2414 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2415 strcpy (tramp_name, func_name);
2416 strcat (tramp_name, ".plt");
2418 /* Try to find a linker symbol for the trampoline. */
2419 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2421 /* We've either got another copy of the name now, or don't need
2422 the name any more. */
2425 if (! tramp_msym.minsym)
2429 /* No PLT entry found. Mask off the upper bits of the address
2430 to make a pointer. As noted in the warning to the user
2431 below, this value might be useful if converted back into
2432 an address by GDB, but will otherwise, almost certainly,
2435 Using this masked result does seem to be useful
2436 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2437 PASSes. These results appear to be correct as well.
2439 We print a warning here so that the user can make a
2440 determination about whether the result is useful or not. */
2441 ptrval = addr & 0xffff;
2443 warning (_("Cannot convert code address %s to function pointer:\n"
2444 "couldn't find trampoline named '%s.plt'.\n"
2445 "Returning pointer value %s instead; this may produce\n"
2446 "a useful result if converted back into an address by GDB,\n"
2447 "but will most likely not be useful otherwise."),
2448 paddress (gdbarch, addr), func_name,
2449 paddress (gdbarch, ptrval));
2456 /* The trampoline's address is our pointer. */
2457 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2461 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2466 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2467 struct type *type, const gdb_byte *buf)
2469 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2471 enum type_code target_code;
2473 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2475 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2477 target_code = TYPE_TARGET_TYPE (type)->code ();
2479 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2481 /* See if there is a minimal symbol at that address whose name is
2483 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2485 if (ptr_msym.minsym)
2487 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2488 int len = strlen (ptr_msym_name);
2491 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2493 struct bound_minimal_symbol func_msym;
2494 /* We have a .plt symbol; try to find the symbol for the
2495 corresponding function.
2497 Since the trampoline contains a jump instruction, we
2498 could also just extract the jump's target address. I
2499 don't see much advantage one way or the other. */
2500 char *func_name = (char *) xmalloc (len - 4 + 1);
2501 memcpy (func_name, ptr_msym_name, len - 4);
2502 func_name[len - 4] = '\0';
2504 = lookup_minimal_symbol (func_name, NULL, NULL);
2506 /* If we do have such a symbol, return its value as the
2507 function's true address. */
2508 if (func_msym.minsym)
2509 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2516 for (aspace = 1; aspace <= 15; aspace++)
2518 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2520 if (ptr_msym.minsym)
2521 ptr |= aspace << 16;
2530 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2532 LONGEST *frame_offset)
2535 CORE_ADDR func_addr, func_end;
2536 struct m32c_prologue p;
2538 struct regcache *regcache = get_current_regcache ();
2539 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2541 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2542 internal_error (__FILE__, __LINE__,
2543 _("No virtual frame pointer available"));
2545 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2548 case prologue_with_frame_ptr:
2549 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2550 *frame_offset = p.frame_ptr_offset;
2552 case prologue_sans_frame_ptr:
2553 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2554 *frame_offset = p.frame_size;
2557 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2562 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2563 internal_error (__FILE__, __LINE__,
2564 _("No virtual frame pointer available"));
2568 /* Initialization. */
2570 static struct gdbarch *
2571 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2573 struct gdbarch *gdbarch;
2574 struct gdbarch_tdep *tdep;
2575 unsigned long mach = info.bfd_arch_info->mach;
2577 /* Find a candidate among the list of architectures we've created
2579 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2581 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2582 return arches->gdbarch;
2584 tdep = XCNEW (struct gdbarch_tdep);
2585 gdbarch = gdbarch_alloc (&info, tdep);
2587 /* Essential types. */
2588 make_types (gdbarch);
2590 /* Address/pointer conversions. */
2591 if (mach == bfd_mach_m16c)
2593 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2594 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2598 make_regs (gdbarch);
2601 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2602 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2604 /* Prologue analysis and unwinding. */
2605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2606 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2608 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2609 They may be in the dwarf2 cfi code in GDB, or they may be in
2610 the debug info emitted by the upstream toolchain. I don't
2611 know which, but I do know that the prologue analyzer works better.
2613 dwarf2_append_sniffers (gdbarch);
2615 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2617 /* Inferior calls. */
2618 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2619 set_gdbarch_return_value (gdbarch, m32c_return_value);
2622 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2624 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2626 /* m32c function boundary addresses are not necessarily even.
2627 Therefore, the `vbit', which indicates a pointer to a virtual
2628 member function, is stored in the delta field, rather than as
2629 the low bit of a function pointer address.
2631 In order to verify this, see the definition of
2632 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2633 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2634 set_gdbarch_vbit_in_delta (gdbarch, 1);
2639 void _initialize_m32c_tdep ();
2641 _initialize_m32c_tdep ()
2643 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2645 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);