1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25 #include "ieee-float.h"
28 #include <sys/procfs.h>
30 #include <sys/ptrace.h>
36 extern int stop_after_trap;
40 Error, not_branch, bicc, bicca, ba, baa, ticc, ta
43 /* Simulate single-step ptrace call for sun4. Code written by Gary
46 /* npc4 and next_pc describe the situation at the time that the
47 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
48 static CORE_ADDR next_pc, npc4, target;
49 static int brknpc4, brktrg;
50 typedef char binsn_quantum[BREAKPOINT_MAX];
51 static binsn_quantum break_mem[3];
53 /* Non-zero if we just simulated a single-step ptrace call. This is
54 needed because we cannot remove the breakpoints in the inferior
55 process until after the `wait' in `wait_for_inferior'. Used for
60 /* single_step() is called just before we want to resume the inferior,
61 if we want to single-step it but there is no hardware or kernel single-step
62 support (as on all SPARCs). We find all the possible targets of the
63 coming instruction and breakpoint them.
65 single_step is also called just after the inferior stops. If we had
66 set up a simulated single-step, we undo our damage. */
70 int ignore; /* pid, but we don't need it */
72 branch_type br, isannulled();
78 /* Always set breakpoint for NPC. */
79 next_pc = read_register (NPC_REGNUM);
80 npc4 = next_pc + 4; /* branch not taken */
82 target_insert_breakpoint (next_pc, break_mem[0]);
83 /* printf ("set break at %x\n",next_pc); */
85 pc = read_register (PC_REGNUM);
86 pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
87 br = isannulled (pc_instruction, pc, &target);
92 /* Conditional annulled branch will either end up at
93 npc (if taken) or at npc+4 (if not taken).
96 target_insert_breakpoint (npc4, break_mem[1]);
98 else if (br == baa && target != next_pc)
100 /* Unconditional annulled branch will always end up at
103 target_insert_breakpoint (target, break_mem[2]);
106 /* We are ready to let it go */
112 /* Remove breakpoints */
113 target_remove_breakpoint (next_pc, break_mem[0]);
116 target_remove_breakpoint (npc4, break_mem[1]);
119 target_remove_breakpoint (target, break_mem[2]);
125 #define FRAME_SAVED_L0 0 /* Byte offset from SP */
126 #define FRAME_SAVED_I0 32 /* Byte offset from SP */
129 sparc_frame_chain (thisframe)
136 addr = thisframe->frame + FRAME_SAVED_I0 +
137 REGISTER_RAW_SIZE(FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
138 err = target_read_memory (addr, (char *) &retval, sizeof (CORE_ADDR));
141 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
146 sparc_extract_struct_value_address (regbuf)
147 char regbuf[REGISTER_BYTES];
149 /* FIXME, handle byte swapping */
150 return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4),
154 /* Find the pc saved in frame FRAME. */
157 frame_saved_pc (frame)
162 if (get_current_frame () == frame) /* FIXME, debug check. Remove >=gdb-4.6 */
164 if (read_register (SP_REGNUM) != frame->bottom) abort();
167 read_memory ((CORE_ADDR) (frame->bottom + FRAME_SAVED_I0 +
168 REGISTER_RAW_SIZE(I7_REGNUM) * (I7_REGNUM - I0_REGNUM)),
172 SWAP_TARGET_AND_HOST (&prev_pc, sizeof (prev_pc));
173 return PC_ADJUST (prev_pc);
177 * Since an individual frame in the frame cache is defined by two
178 * arguments (a frame pointer and a stack pointer), we need two
179 * arguments to get info for an arbitrary stack frame. This routine
180 * takes two arguments and makes the cached frames look as if these
181 * two arguments defined a frame on the cache. This allows the rest
182 * of info frame to extract the important arguments without
186 setup_arbitrary_frame (frame, stack)
187 FRAME_ADDR frame, stack;
189 FRAME fid = create_new_frame (frame, 0);
192 fatal ("internal: create_new_frame returned invalid frame id");
195 fid->pc = FRAME_SAVED_PC (fid);
203 * This routine appears to be passed a size by which to increase the
204 * stack. It then executes a save instruction in the inferior to
205 * increase the stack by this amount. Only the register window system
206 * should be affected by this; the program counter & etc. will not be.
208 * This instructions used for this purpose are:
210 * sethi %hi(0x0),g1 *
213 * sethi %hi(0x0),g1 *
216 * sethi %hi(0x0),g0 (nop)
218 * I presume that these set g1 to be the negative of the size, do a
219 * save (putting the stack pointer at sp - size) and restore the
220 * original contents of g1. A * indicates that the actual value of
221 * the instruction is modified below.
223 static int save_insn_opcodes[] = {
224 0x03000000, 0x82007ee0, 0x9de38001, 0x03000000,
225 0x82007ee0, 0x91d02001, 0x01000000 };
227 /* Neither do_save_insn or do_restore_insn save stack configuration
228 (current_frame, etc),
229 since the stack is in an indeterminate state through the call to
230 each of them. That responsibility of the routine which calls them. */
236 int g1 = read_register (G1_REGNUM);
237 CORE_ADDR sp = read_register (SP_REGNUM);
238 CORE_ADDR pc = read_register (PC_REGNUM);
239 CORE_ADDR npc = read_register (NPC_REGNUM);
240 CORE_ADDR fake_pc = sp - sizeof (save_insn_opcodes);
241 struct inferior_status inf_status;
243 save_inferior_status (&inf_status, 0); /* Don't restore stack info */
247 save_insn_opcodes[0] = 0x03000000 | ((-size >> 10) & 0x3fffff);
248 save_insn_opcodes[1] = 0x82006000 | (-size & 0x3ff);
249 save_insn_opcodes[3] = 0x03000000 | ((g1 >> 10) & 0x3fffff);
250 save_insn_opcodes[4] = 0x82006000 | (g1 & 0x3ff);
251 write_memory (fake_pc, (char *)save_insn_opcodes, sizeof (save_insn_opcodes));
253 clear_proceed_status ();
255 proceed (fake_pc, 0, 0);
257 write_register (PC_REGNUM, pc);
258 write_register (NPC_REGNUM, npc);
259 restore_inferior_status (&inf_status);
263 * This routine takes a program counter value. It restores the
264 * register window system to the frame above the current one.
265 * THIS ROUTINE CLOBBERS PC AND NPC IN THE TARGET!
268 /* The following insns translate to:
274 static int restore_insn_opcodes[] = { 0x81e80000, 0x91d02001, 0x01000000 };
279 CORE_ADDR sp = read_register (SP_REGNUM);
280 CORE_ADDR fake_pc = sp - sizeof (restore_insn_opcodes);
281 struct inferior_status inf_status;
283 save_inferior_status (&inf_status, 0); /* Don't restore stack info */
285 write_memory (fake_pc, (char *)restore_insn_opcodes,
286 sizeof (restore_insn_opcodes));
288 clear_proceed_status ();
290 proceed (fake_pc, 0, 0);
292 restore_inferior_status (&inf_status);
295 /* Given a pc value, skip it forward past the function prologue by
296 disassembling instructions that appear to be a prologue.
298 If FRAMELESS_P is set, we are only testing to see if the function
299 is frameless. This allows a quicker answer.
301 This routine should be more specific in its actions; making sure
302 that it uses the same register in the initial prologue section. */
304 skip_prologue (start_pc, frameless_p)
310 unsigned long int code;
316 unsigned int imm22:22;
325 unsigned int simm13:13;
330 CORE_ADDR pc = start_pc;
332 x.i = read_memory_integer (pc, 4);
334 /* Recognize the `sethi' insn and record its destination. */
335 if (x.sethi.op == 0 && x.sethi.op2 == 4)
339 x.i = read_memory_integer (pc, 4);
342 /* Recognize an add immediate value to register to either %g1 or
343 the destination register recorded above. Actually, this might
344 well recognize several different arithmetic operations.
345 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
346 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
347 I imagine any compiler really does that, however). */
348 if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
351 x.i = read_memory_integer (pc, 4);
354 /* This recognizes any SAVE insn. But why do the XOR and then
355 the compare? That's identical to comparing against 60 (as long
356 as there isn't any sign extension). */
357 if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
360 if (frameless_p) /* If the save is all we care about, */
361 return pc; /* return before doing more work */
362 x.i = read_memory_integer (pc, 4);
366 /* Without a save instruction, it's not a prologue. */
370 /* Now we need to recognize stores into the frame from the input
371 registers. This recognizes all non alternate stores of input
372 register, into a location offset from the frame pointer. */
374 && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */
375 && (x.add.rd & 0x18) == 0x18 /* Input register. */
376 && x.add.i /* Immediate mode. */
377 && x.add.rs1 == 30 /* Off of frame pointer. */
378 /* Into reserved stack space. */
379 && x.add.simm13 >= 0x44
380 && x.add.simm13 < 0x5b)
383 x.i = read_memory_integer (pc, 4);
388 /* Check instruction at ADDR to see if it is an annulled branch.
389 All other instructions will go to NPC or will trap.
390 Set *TARGET if we find a canidate branch; set to zero if not. */
393 isannulled (instruction, addr, target)
395 CORE_ADDR addr, *target;
397 branch_type val = not_branch;
398 long int offset; /* Must be signed for sign-extend. */
401 unsigned long int code;
408 unsigned int disp22:22;
413 insn.code = instruction;
416 && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
418 if (insn.b.cond == 8)
419 val = insn.b.a ? baa : ba;
421 val = insn.b.a ? bicca : bicc;
422 offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
423 *target = addr + offset;
429 /* sparc_frame_find_saved_regs ()
431 Stores, into a struct frame_saved_regs,
432 the addresses of the saved registers of frame described by FRAME_INFO.
433 This includes special registers such as pc and fp saved in special
434 ways in the stack frame. sp is even more special:
435 the address we return for it IS the sp for the next frame.
437 Note that on register window machines, we are currently making the
438 assumption that window registers are being saved somewhere in the
439 frame in which they are being used. If they are stored in an
440 inferior frame, find_saved_register will break.
442 On the Sun 4, the only time all registers are saved is when
443 a dummy frame is involved. Otherwise, the only saved registers
444 are the LOCAL and IN registers which are saved as a result
445 of the "save/restore" opcodes. This condition is determined
446 by address rather than by value.
448 The "pc" is not stored in a frame on the SPARC. (What is stored
449 is a return address minus 8.) sparc_pop_frame knows how to
450 deal with that. Other routines might or might not.
452 See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
453 about how this works. */
456 sparc_frame_find_saved_regs (fi, saved_regs_addr)
457 struct frame_info *fi;
458 struct frame_saved_regs *saved_regs_addr;
461 FRAME_ADDR frame = read_register (FP_REGNUM);
462 FRAME fid = FRAME_INFO_ID (fi);
465 fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
467 (void) memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
470 if (fi->pc >= frame - CALL_DUMMY_LENGTH - 0x140
471 && fi->pc <= frame) */
473 if (fi->pc >= (fi->bottom ? fi->bottom :
474 read_register (SP_REGNUM))
475 && fi->pc <= FRAME_FP(fi))
477 /* Dummy frame. All but the window regs are in there somewhere. */
478 for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
479 saved_regs_addr->regs[regnum] =
480 frame + (regnum - G0_REGNUM) * 4 - 0xa0;
481 for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
482 saved_regs_addr->regs[regnum] =
483 frame + (regnum - I0_REGNUM) * 4 - 0xc0;
484 for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
485 saved_regs_addr->regs[regnum] =
486 frame + (regnum - FP0_REGNUM) * 4 - 0x80;
487 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
488 saved_regs_addr->regs[regnum] =
489 frame + (regnum - Y_REGNUM) * 4 - 0xe0;
491 fi->bottom : read_register (SP_REGNUM);
495 /* Normal frame. Just Local and In registers */
497 fi->bottom : read_register (SP_REGNUM);
498 for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
499 saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4;
503 /* Pull off either the next frame pointer or the stack pointer */
504 FRAME_ADDR next_next_frame =
507 read_register (SP_REGNUM));
508 for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
509 saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4;
511 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
512 saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
515 /* Push an empty stack frame, and record in it the current PC, regs, etc.
517 Note that the write's are of registers in the context of the newly
518 pushed frame. Thus the the fp*'s, the g*'s, the i*'s, and
519 the randoms, of the new frame, are being saved. The locals and outs
520 are new; they don't need to be saved. The i's and l's of
521 the last frame were saved by the do_save_insn in the register
522 file (now on the stack, since a context switch happended imm after).
524 The return pointer register %i7 does not have
525 the pc saved into it (return from this frame will be accomplished
526 by a POP_FRAME). In fact, we must leave it unclobbered, since we
527 must preserve it in the calling routine except across call instructions. */
529 /* Definitely see tm-sparc.h for more doc of the frame format here. */
532 sparc_push_dummy_frame ()
535 char register_temp[REGISTER_BYTES];
537 do_save_insn (0x140); /* FIXME where does this value come from? */
538 fp = read_register (FP_REGNUM);
540 read_register_bytes (REGISTER_BYTE (FP0_REGNUM), register_temp, 32 * 4);
541 write_memory (fp - 0x80, register_temp, 32 * 4);
543 read_register_bytes (REGISTER_BYTE (G0_REGNUM), register_temp, 8 * 4);
544 write_memory (fp - 0xa0, register_temp, 8 * 4);
546 read_register_bytes (REGISTER_BYTE (I0_REGNUM), register_temp, 8 * 4);
547 write_memory (fp - 0xc0, register_temp, 8 * 4);
549 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
550 read_register_bytes (REGISTER_BYTE (Y_REGNUM), register_temp, 8 * 4);
551 write_memory (fp - 0xe0, register_temp, 8 * 4);
554 /* Discard from the stack the innermost frame, restoring all saved registers.
556 Note that the values stored in fsr by get_frame_saved_regs are *in
557 the context of the called frame*. What this means is that the i
558 regs of fsr must be restored into the o regs of the (calling) frame that
559 we pop into. We don't care about the output regs of the calling frame,
560 since unless it's a dummy frame, it won't have any output regs in it.
562 We never have to bother with %l (local) regs, since the called routine's
563 locals get tossed, and the calling routine's locals are already saved
566 /* Definitely see tm-sparc.h for more doc of the frame format here. */
571 register FRAME frame = get_current_frame ();
572 register CORE_ADDR pc;
573 struct frame_saved_regs fsr;
574 struct frame_info *fi;
575 char raw_buffer[REGISTER_BYTES];
577 fi = get_frame_info (frame);
578 get_frame_saved_regs (fi, &fsr);
580 if (fsr.regs[FP0_REGNUM])
582 read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
583 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
585 if (fsr.regs[G1_REGNUM])
587 read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
588 write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
590 if (fsr.regs[I0_REGNUM])
592 read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);
593 write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, 8 * 4);
595 if (fsr.regs[PS_REGNUM])
596 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
597 if (fsr.regs[Y_REGNUM])
598 write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
599 if (fsr.regs[PC_REGNUM])
601 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
602 write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
603 if (fsr.regs[NPC_REGNUM])
604 write_register (NPC_REGNUM,
605 read_memory_integer (fsr.regs[NPC_REGNUM], 4));
607 else if (fsr.regs[I7_REGNUM])
609 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
610 pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
611 write_register (PC_REGNUM, pc);
612 write_register (NPC_REGNUM, pc + 4);
614 flush_cached_frames ();
615 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
619 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
620 encodes the structure size being returned. If we detect such
621 a fake insn, step past it. */
630 err = target_read_memory (pc + 8, (char *)&insn, sizeof(long));
631 SWAP_TARGET_AND_HOST (&insn, sizeof(long));
632 if ((err == 0) && (insn & 0xfffffe00) == 0)
639 /* Structure of SPARC extended floating point numbers.
640 This information is not currently used by GDB, since no current SPARC
641 implementations support extended float. */
643 const struct ext_format ext_format_sparc = {
644 /* tot sbyte smask expbyte manbyte */
645 16, 0, 0x80, 0,1, 4,8, /* sparc */
648 #ifdef USE_PROC_FS /* Target dependent support for /proc */
650 /* The /proc interface divides the target machine's register set up into
651 two different sets, the general register set (gregset) and the floating
652 point register set (fpregset). For each set, there is an ioctl to get
653 the current register set and another ioctl to set the current values.
655 The actual structure passed through the ioctl interface is, of course,
656 naturally machine dependent, and is different for each set of registers.
657 For the sparc for example, the general register set is typically defined
660 typedef int gregset_t[38];
666 and the floating point set by:
668 typedef struct prfpregset {
676 u_char pr_q_entrysize;
681 These routines provide the packing and unpacking of gregset_t and
682 fpregset_t formatted data.
687 /* Given a pointer to a general register set in /proc format (gregset_t *),
688 unpack the register contents and supply them as gdb's idea of the current
692 supply_gregset (gregsetp)
693 prgregset_t *gregsetp;
696 register prgreg_t *regp = (prgreg_t *) gregsetp;
698 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
699 for (regno = G0_REGNUM ; regno <= I7_REGNUM ; regno++)
701 supply_register (regno, (char *) (regp + regno));
704 /* These require a bit more care. */
705 supply_register (PS_REGNUM, (char *) (regp + R_PS));
706 supply_register (PC_REGNUM, (char *) (regp + R_PC));
707 supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
708 supply_register (Y_REGNUM, (char *) (regp + R_Y));
712 fill_gregset (gregsetp, regno)
713 prgregset_t *gregsetp;
717 register prgreg_t *regp = (prgreg_t *) gregsetp;
718 extern char registers[];
720 for (regi = 0 ; regi <= R_I7 ; regi++)
722 if ((regno == -1) || (regno == regi))
724 *(regp + regno) = *(int *) ®isters[REGISTER_BYTE (regi)];
727 if ((regno == -1) || (regno == PS_REGNUM))
729 *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
731 if ((regno == -1) || (regno == PC_REGNUM))
733 *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
735 if ((regno == -1) || (regno == NPC_REGNUM))
737 *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
739 if ((regno == -1) || (regno == Y_REGNUM))
741 *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
745 #if defined (FP0_REGNUM)
747 /* Given a pointer to a floating point register set in /proc format
748 (fpregset_t *), unpack the register contents and supply them as gdb's
749 idea of the current floating point register values. */
752 supply_fpregset (fpregsetp)
753 prfpregset_t *fpregsetp;
758 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
760 from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
761 supply_register (regi, from);
763 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
766 /* Given a pointer to a floating point register set in /proc format
767 (fpregset_t *), update the register specified by REGNO from gdb's idea
768 of the current floating point register set. If REGNO is -1, update
772 fill_fpregset (fpregsetp, regno)
773 prfpregset_t *fpregsetp;
779 extern char registers[];
781 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
783 if ((regno == -1) || (regno == regi))
785 from = (char *) ®isters[REGISTER_BYTE (regi)];
786 to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
787 bcopy (from, to, REGISTER_RAW_SIZE (regno));
790 if ((regno == -1) || (regno == FPS_REGNUM))
792 fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
796 #endif /* defined (FP0_REGNUM) */
798 #endif /* USE_PROC_FS */
801 #ifdef GET_LONGJMP_TARGET
803 /* Figure out where the longjmp will land. We expect that we have just entered
804 longjmp and haven't yet setup the stack frame, so the args are still in the
805 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
806 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
807 This routine returns true on success */
810 get_longjmp_target(pc)
815 jb_addr = read_register(O0_REGNUM);
817 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) pc,
821 SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));
825 #endif /* GET_LONGJMP_TARGET */