1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
26 #include <sys/param.h>
30 #include <sys/ioctl.h>
33 #include <sys/ptrace.h>
43 extern struct obstack frame_cache_obstack;
47 /* Nonzero if we just simulated a single step break. */
50 /* Breakpoint shadows for the single step instructions will be kept here. */
52 static struct sstep_breaks {
57 /* Static function prototypes */
60 add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr));
63 find_toc_address PARAMS ((CORE_ADDR pc));
66 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
69 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
70 struct aix_framedata *fdatap));
73 * Calculate the destination of a branch/jump. Return -1 if not a branch.
76 branch_dest (opcode, instr, pc, safety)
88 absolute = (int) ((instr >> 1) & 1);
92 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
95 if (opcode != 18) /* br conditional */
96 immediate = ((instr & ~3) << 16) >> 16;
100 dest = pc + immediate;
104 ext_op = (instr>>1) & 0x3ff;
106 if (ext_op == 16) /* br conditional register */
107 dest = read_register (LR_REGNUM) & ~3;
109 else if (ext_op == 528) /* br cond to count reg */
110 dest = read_register (CTR_REGNUM) & ~3;
117 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
122 /* AIX does not support PT_STEP. Simulate it. */
128 #define INSNLEN(OPCODE) 4
130 static char breakp[] = BREAKPOINT;
131 int ii, insn, ret, loc;
132 int breaks[2], opcode;
137 ret = read_memory (loc, &insn, sizeof (int));
139 printf ("Error in single_step()!!\n");
141 breaks[0] = loc + INSNLEN(insn);
143 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
145 /* Don't put two breakpoints on the same address. */
146 if (breaks[1] == breaks[0])
149 stepBreaks[1].address = -1;
151 for (ii=0; ii < 2; ++ii) {
153 /* ignore invalid breakpoint. */
154 if ( breaks[ii] == -1)
157 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
159 ret = write_memory (breaks[ii], breakp, sizeof(int));
160 stepBreaks[ii].address = breaks[ii];
164 ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
168 /* remove step breakpoints. */
169 for (ii=0; ii < 2; ++ii)
170 if (stepBreaks[ii].address != -1)
172 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
181 /* return pc value after skipping a function prologue. */
187 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
189 if (target_read_memory (pc, (char *)&op, sizeof (op)))
190 return pc; /* Can't access it -- assume no prologue. */
191 SWAP_TARGET_AND_HOST (&op, sizeof (op));
193 /* Assume that subsequent fetches can fail with low probability. */
195 if (op == 0x7c0802a6) { /* mflr r0 */
197 op = read_memory_integer (pc, 4);
200 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
202 op = read_memory_integer (pc, 4);
205 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
207 op = read_memory_integer (pc, 4);
209 /* At this point, make sure this is not a trampoline function
210 (a function that simply calls another functions, and nothing else).
211 If the next is not a nop, this branch was part of the function
214 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
216 return pc - 4; /* don't skip over this branch */
219 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
221 op = read_memory_integer (pc, 4);
224 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
225 (tmp == 0x9421) || /* stu r1, NUM(r1) */
226 (op == 0x93e1fffc)) /* st r31,-4(r1) */
229 op = read_memory_integer (pc, 4);
232 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
233 pc += 4; /* l r30, ... */
234 op = read_memory_integer (pc, 4);
237 /* store parameters into stack */
239 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
240 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
241 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
242 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
244 pc += 4; /* store fpr double */
245 op = read_memory_integer (pc, 4);
248 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
249 pc += 4; /* this happens if r31 is used as */
250 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
253 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
254 pc += 4; /* st r4, NUM(r31), ... */
255 op = read_memory_integer (pc, 4);
260 /* I have problems with skipping over __main() that I need to address
261 * sometime. Previously, I used to use misc_function_vector which
262 * didn't work as well as I wanted to be. -MGO */
264 /* If the first thing after skipping a prolog is a branch to a function,
265 this might be a call to an initializer in main(), introduced by gcc2.
266 We'd like to skip over it as well. Fortunately, xlc does some extra
267 work before calling a function right after a prologue, thus we can
268 single out such gcc2 behaviour. */
271 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
272 op = read_memory_integer (pc+4, 4);
274 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
276 /* check and see if we are in main. If so, skip over this initializer
279 tmp = find_pc_misc_function (pc);
280 if (tmp >= 0 && !strcmp (misc_function_vector [tmp].name, "main"))
290 /*************************************************************************
291 Support for creating pushind a dummy frame into the stack, and popping
293 *************************************************************************/
295 /* The total size of dummy frame is 436, which is;
300 and 24 extra bytes for the callee's link area. The last 24 bytes
301 for the link area might not be necessary, since it will be taken
302 care of by push_arguments(). */
304 #define DUMMY_FRAME_SIZE 436
306 #define DUMMY_FRAME_ADDR_SIZE 10
308 /* Make sure you initialize these in somewhere, in case gdb gives up what it
309 was debugging and starts debugging something else. FIXMEibm */
311 static int dummy_frame_count = 0;
312 static int dummy_frame_size = 0;
313 static CORE_ADDR *dummy_frame_addr = 0;
315 extern int stop_stack_dummy;
317 /* push a dummy frame into stack, save all register. Currently we are saving
318 only gpr's and fpr's, which is not good enough! FIXMEmgo */
323 int sp, pc; /* stack pointer and link register */
326 fetch_inferior_registers (-1);
328 if (dummy_frame_count >= dummy_frame_size) {
329 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
330 if (dummy_frame_addr)
331 dummy_frame_addr = (CORE_ADDR*) xrealloc
332 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
334 dummy_frame_addr = (CORE_ADDR*)
335 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
338 sp = read_register(SP_REGNUM);
339 pc = read_register(PC_REGNUM);
341 dummy_frame_addr [dummy_frame_count++] = sp;
343 /* Be careful! If the stack pointer is not decremented first, then kernel
344 thinks he is free to use the space underneath it. And kernel actually
345 uses that area for IPC purposes when executing ptrace(2) calls. So
346 before writing register values into the new frame, decrement and update
347 %sp first in order to secure your frame. */
349 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
351 /* gdb relies on the state of current_frame. We'd better update it,
352 otherwise things like do_registers_info() wouldn't work properly! */
354 flush_cached_frames ();
355 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
357 /* save program counter in link register's space. */
358 write_memory (sp+8, &pc, 4);
360 /* save all floating point and general purpose registers here. */
363 for (ii = 0; ii < 32; ++ii)
364 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
367 for (ii=1; ii <=32; ++ii)
368 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
370 /* so far, 32*2 + 32 words = 384 bytes have been written.
371 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
373 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
374 write_memory (sp-384-(ii*4),
375 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
378 /* Save sp or so called back chain right here. */
379 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
380 sp -= DUMMY_FRAME_SIZE;
382 /* And finally, this is the back chain. */
383 write_memory (sp+8, &pc, 4);
387 /* Pop a dummy frame.
389 In rs6000 when we push a dummy frame, we save all of the registers. This
390 is usually done before user calls a function explicitly.
392 After a dummy frame is pushed, some instructions are copied into stack,
393 and stack pointer is decremented even more. Since we don't have a frame
394 pointer to get back to the parent frame of the dummy, we start having
395 trouble poping it. Therefore, we keep a dummy frame stack, keeping
396 addresses of dummy frames as such. When poping happens and when we
397 detect that was a dummy frame, we pop it back to its parent by using
398 dummy frame stack (`dummy_frame_addr' array).
400 FIXME: This whole concept is broken. You should be able to detect
401 a dummy stack frame *on the user's stack itself*. When you do,
402 then you know the format of that stack frame -- including its
403 saved SP register! There should *not* be a separate stack in the
411 sp = dummy_frame_addr [--dummy_frame_count];
413 /* restore all fpr's. */
414 for (ii = 1; ii <= 32; ++ii)
415 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
417 /* restore all gpr's */
418 for (ii=1; ii <= 32; ++ii) {
419 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
422 /* restore the rest of the registers. */
423 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
424 read_memory (sp-384-(ii*4),
425 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
427 read_memory (sp-(DUMMY_FRAME_SIZE-8),
428 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
430 /* when a dummy frame was being pushed, we had to decrement %sp first, in
431 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
432 one we should restore. Change it with the one we need. */
434 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
436 /* Now we can restore all registers. */
438 store_inferior_registers (-1);
440 flush_cached_frames ();
441 set_current_frame (create_new_frame (sp, pc));
445 /* pop the innermost frame, go back to the caller. */
450 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
451 struct aix_framedata fdata;
452 FRAME fr = get_current_frame ();
458 if (stop_stack_dummy && dummy_frame_count) {
463 /* figure out previous %pc value. If the function is frameless, it is
464 still in the link register, otherwise walk the frames and retrieve the
465 saved %pc value in the previous frame. */
467 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
468 function_frame_info (addr, &fdata);
470 read_memory (sp, &prev_sp, 4);
472 lr = read_register (LR_REGNUM);
474 read_memory (prev_sp+8, &lr, 4);
476 /* reset %pc value. */
477 write_register (PC_REGNUM, lr);
479 /* reset register values if any was saved earlier. */
480 addr = prev_sp - fdata.offset;
482 if (fdata.saved_gpr != -1)
483 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
484 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
485 addr += sizeof (int);
488 if (fdata.saved_fpr != -1)
489 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
490 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
494 write_register (SP_REGNUM, prev_sp);
495 store_inferior_registers (-1);
496 flush_cached_frames ();
497 set_current_frame (create_new_frame (prev_sp, lr));
501 /* fixup the call sequence of a dummy function, with the real function address.
502 its argumets will be passed by gdb. */
505 fix_call_dummy(dummyname, pc, fun, nargs, type)
509 int nargs; /* not used */
510 int type; /* not used */
512 #define TOC_ADDR_OFFSET 20
513 #define TARGET_ADDR_OFFSET 28
516 CORE_ADDR target_addr;
520 tocvalue = find_toc_address (target_addr);
522 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
523 ii = (ii & 0xffff0000) | (tocvalue >> 16);
524 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
526 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
527 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
528 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
530 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
531 ii = (ii & 0xffff0000) | (target_addr >> 16);
532 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
534 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
535 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
536 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
540 /* return information about a function frame.
541 in struct aix_frameinfo fdata:
542 - frameless is TRUE, if function does not save %pc value in its frame.
543 - offset is the number of bytes used in the frame to save registers.
544 - saved_gpr is the number of the first saved gpr.
545 - saved_fpr is the number of the first saved fpr.
546 - alloca_reg is the number of the register used for alloca() handling.
550 function_frame_info (pc, fdata)
552 struct aix_framedata *fdata;
555 register unsigned int op;
558 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
560 op = read_memory_integer (pc, 4);
561 if (op == 0x7c0802a6) { /* mflr r0 */
563 op = read_memory_integer (pc, 4);
564 fdata->frameless = 0;
566 else /* else, this is a frameless invocation */
567 fdata->frameless = 1;
570 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
572 op = read_memory_integer (pc, 4);
575 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
577 op = read_memory_integer (pc, 4);
578 /* At this point, make sure this is not a trampoline function
579 (a function that simply calls another functions, and nothing else).
580 If the next is not a nop, this branch was part of the function
583 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
585 return; /* prologue is over */
588 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
589 pc += 4; /* store floating register double */
590 op = read_memory_integer (pc, 4);
593 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
595 fdata->saved_gpr = (op >> 21) & 0x1f;
598 tmp2 = 0xffff0000 | tmp2;
602 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
603 if ( fdata->saved_fpr > 0)
604 fdata->saved_fpr = 32 - fdata->saved_fpr;
606 fdata->saved_fpr = -1;
608 fdata->offset = tmp2;
610 op = read_memory_integer (pc, 4);
613 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
614 (tmp == 0x9421) || /* stu r1, NUM(r1) */
615 (op == 0x93e1fffc)) /* st r31,-4(r1) */
617 /* gcc takes a short cut and uses this instruction to save r31 only. */
619 if (op == 0x93e1fffc) {
621 /* fatal ("Unrecognized prolog."); */
622 printf ("Unrecognized prolog!\n");
624 fdata->saved_gpr = 31;
628 op = read_memory_integer (pc, 4);
631 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
632 pc += 4; /* l r30, ... */
633 op = read_memory_integer (pc, 4);
636 /* store parameters into stack */
638 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
639 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
640 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
641 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
643 pc += 4; /* store fpr double */
644 op = read_memory_integer (pc, 4);
647 if (op == 0x603f0000) /* oril r31, r1, 0x0 */
648 fdata->alloca_reg = 31;
652 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
653 eight words of the argument list (that might be less than eight parameters if
654 some parameters occupy more than one word) are passed in r3..r11 registers.
655 float and double parameters are passed in fpr's, in addition to that. Rest of
656 the parameters if any are passed in user stack. There might be cases in which
657 half of the parameter is copied into registers, the other half is pushed into
660 If the function is returning a structure, then the return address is passed
661 in r3, then the first 7 words of the parametes can be passed in registers,
665 push_arguments (nargs, args, sp, struct_return, struct_addr)
670 CORE_ADDR struct_addr;
673 int argno; /* current argument number */
674 int argbytes; /* current argument byte */
675 char tmp_buffer [50];
677 int f_argno = 0; /* current floating point argno */
679 CORE_ADDR saved_sp, pc;
681 if ( dummy_frame_count <= 0)
682 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
684 /* The first eight words of ther arguments are passed in registers. Copy
687 If the function is returning a `struct', then the first word (which
688 will be passed in r3) is used for struct return address. In that
689 case we should advance one word and start from r4 register to copy
692 ii = struct_return ? 1 : 0;
694 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
696 arg = value_arg_coerce (args[argno]);
697 len = TYPE_LENGTH (VALUE_TYPE (arg));
699 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
701 /* floating point arguments are passed in fpr's, as well as gpr's.
702 There are 13 fpr's reserved for passing parameters. At this point
703 there is no way we would run out of them. */
707 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
709 bcopy (VALUE_CONTENTS (arg),
710 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
716 /* Argument takes more than one register. */
717 while (argbytes < len) {
719 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
720 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
721 ®isters[REGISTER_BYTE(ii+3)],
722 (len - argbytes) > 4 ? 4 : len - argbytes);
726 goto ran_out_of_registers_for_arguments;
731 else { /* Argument can fit in one register. No problem. */
732 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
733 bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len);
738 ran_out_of_registers_for_arguments:
740 /* location for 8 parameters are always reserved. */
743 /* another six words for back chain, TOC register, link register, etc. */
746 /* if there are more arguments, allocate space for them in
747 the stack, then push them starting from the ninth one. */
749 if ((argno < nargs) || argbytes) {
754 space += ((len - argbytes + 3) & -4);
760 for (; jj < nargs; ++jj) {
761 val = value_arg_coerce (args[jj]);
762 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
765 /* add location required for the rest of the parameters */
766 space = (space + 7) & -8;
769 /* This is another instance we need to be concerned about securing our
770 stack space. If we write anything underneath %sp (r1), we might conflict
771 with the kernel who thinks he is free to use this area. So, update %sp
772 first before doing anything else. */
774 write_register (SP_REGNUM, sp);
776 /* if the last argument copied into the registers didn't fit there
777 completely, push the rest of it into stack. */
781 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
783 ii += ((len - argbytes + 3) & -4) / 4;
786 /* push the rest of the arguments into stack. */
787 for (; argno < nargs; ++argno) {
789 arg = value_arg_coerce (args[argno]);
790 len = TYPE_LENGTH (VALUE_TYPE (arg));
793 /* float types should be passed in fpr's, as well as in the stack. */
794 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
798 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
800 bcopy (VALUE_CONTENTS (arg),
801 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
805 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
806 ii += ((len + 3) & -4) / 4;
810 /* Secure stack areas first, before doing anything else. */
811 write_register (SP_REGNUM, sp);
813 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
814 read_memory (saved_sp, tmp_buffer, 24);
815 write_memory (sp, tmp_buffer, 24);
817 write_memory (sp, &saved_sp, 4); /* set back chain properly */
819 store_inferior_registers (-1);
823 /* a given return value in `regbuf' with a type `valtype', extract and copy its
824 value into `valbuf' */
827 extract_return_value (valtype, regbuf, valbuf)
828 struct type *valtype;
829 char regbuf[REGISTER_BYTES];
833 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
836 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
837 We need to truncate the return value into float size (4 byte) if
840 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
841 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
842 TYPE_LENGTH (valtype));
844 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
846 bcopy (&ff, valbuf, sizeof(float));
850 /* return value is copied starting from r3. */
851 bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
855 /* keep structure return address in this variable.
856 FIXME: This is a horrid kludge which should not be allowed to continue
857 living. This only allows a single nested call to a structure-returning
860 CORE_ADDR rs6000_struct_return_address;
863 /* Throw away this debugging code. FIXMEmgo. */
869 for (ii=0; ii<40; ++ii) {
872 val = read_memory_integer (fram + ii * 4, 4);
873 printf ("0x%08x\t", val);
880 /* Indirect function calls use a piece of trampoline code to do context
881 switching, i.e. to set the new TOC table. Skip such code if we are on
882 its first instruction (as when we have single-stepped to here).
883 Result is desired PC to step until, or NULL if we are not in
887 skip_trampoline_code (pc)
890 register unsigned int ii, op;
892 static unsigned trampoline_code[] = {
893 0x800b0000, /* l r0,0x0(r11) */
894 0x90410014, /* st r2,0x14(r1) */
895 0x7c0903a6, /* mtctr r0 */
896 0x804b0004, /* l r2,0x4(r11) */
897 0x816b0008, /* l r11,0x8(r11) */
898 0x4e800420, /* bctr */
903 for (ii=0; trampoline_code[ii]; ++ii) {
904 op = read_memory_integer (pc + (ii*4), 4);
905 if (op != trampoline_code [ii])
908 ii = read_register (11); /* r11 holds destination addr */
909 pc = read_memory_integer (ii, 4); /* (r11) value */
914 /* Determines whether the function FI has a frame on the stack or not.
915 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h. */
918 frameless_function_invocation (fi)
919 struct frame_info *fi;
921 CORE_ADDR func_start;
922 struct aix_framedata fdata;
924 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
926 /* If we failed to find the start of the function, it is a mistake
927 to inspect the instructions. */
932 function_frame_info (func_start, &fdata);
933 return fdata.frameless;
937 /* If saved registers of frame FI are not known yet, read and cache them.
938 &FDATAP contains aix_framedata; TDATAP can be NULL,
939 in which case the framedata are read. */
942 frame_get_cache_fsr (fi, fdatap)
943 struct frame_info *fi;
944 struct aix_framedata *fdatap;
947 CORE_ADDR frame_addr;
948 struct aix_framedata work_fdata;
953 if (fdatap == NULL) {
954 fdatap = &work_fdata;
955 function_frame_info (get_pc_function_start (fi->pc), fdatap);
958 fi->cache_fsr = (struct frame_saved_regs *)
959 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
960 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
962 if (fi->prev && fi->prev->frame)
963 frame_addr = fi->prev->frame;
965 frame_addr = read_memory_integer (fi->frame, 4);
967 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
968 All fpr's from saved_fpr to fp31 are saved right underneath caller
969 stack pointer, starting from fp31 first. */
971 if (fdatap->saved_fpr >= 0) {
972 for (ii=31; ii >= fdatap->saved_fpr; --ii)
973 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
974 frame_addr -= (32 - fdatap->saved_fpr) * 8;
977 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
978 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
979 starting from r31 first. */
981 if (fdatap->saved_gpr >= 0)
982 for (ii=31; ii >= fdatap->saved_gpr; --ii)
983 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
986 /* Return the address of a frame. This is the inital %sp value when the frame
987 was first allocated. For functions calling alloca(), it might be saved in
988 an alloca register. */
991 frame_initial_stack_address (fi)
992 struct frame_info *fi;
995 struct aix_framedata fdata;
996 struct frame_info *callee_fi;
998 /* if the initial stack pointer (frame address) of this frame is known,
1002 return fi->initial_sp;
1004 /* find out if this function is using an alloca register.. */
1006 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1008 /* if saved registers of this frame are not known yet, read and cache them. */
1011 frame_get_cache_fsr (fi, &fdata);
1013 /* If no alloca register used, then fi->frame is the value of the %sp for
1014 this frame, and it is good enough. */
1016 if (fdata.alloca_reg < 0) {
1017 fi->initial_sp = fi->frame;
1018 return fi->initial_sp;
1021 /* This function has an alloca register. If this is the top-most frame
1022 (with the lowest address), the value in alloca register is good. */
1025 return fi->initial_sp = read_register (fdata.alloca_reg);
1027 /* Otherwise, this is a caller frame. Callee has usually already saved
1028 registers, but there are exceptions (such as when the callee
1029 has no parameters). Find the address in which caller's alloca
1030 register is saved. */
1032 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1034 if (!callee_fi->cache_fsr)
1035 frame_get_cache_fsr (fi, NULL);
1037 /* this is the address in which alloca register is saved. */
1039 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1041 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1042 return fi->initial_sp;
1045 /* Go look into deeper levels of the frame chain to see if any one of
1046 the callees has saved alloca register. */
1049 /* If alloca register was not saved, by the callee (or any of its callees)
1050 then the value in the register is still good. */
1052 return fi->initial_sp = read_register (fdata.alloca_reg);
1055 /* xcoff_relocate_symtab - hook for symbol table relocation.
1056 also reads shared libraries.. */
1058 xcoff_relocate_symtab (pid)
1061 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1063 struct ld_info *ldi;
1066 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1068 /* According to my humble theory, AIX has some timing problems and
1069 when the user stack grows, kernel doesn't update stack info in time
1070 and ptrace calls step on user stack. That is why we sleep here a little,
1071 and give kernel to update its internals. */
1076 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1077 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1079 perror_with_name ("ptrace ldinfo");
1086 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1087 } while (ldi->ldinfo_next
1088 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1091 /* Now that we've jumbled things around, re-sort them. */
1092 sort_minimal_symbols ();
1095 /* relocate the exec and core sections as well. */
1099 /* Keep an array of load segment information and their TOC table addresses.
1100 This info will be useful when calling a shared library function by hand. */
1103 CORE_ADDR textorg, dataorg;
1104 unsigned long toc_offset;
1107 #define LOADINFOLEN 10
1109 /* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1112 static struct loadinfo *loadinfo = NULL;
1113 static int loadinfolen = 0;
1114 static int loadinfotocindex = 0;
1115 int loadinfotextindex = 0;
1119 xcoff_init_loadinfo ()
1121 loadinfotocindex = 0;
1122 loadinfotextindex = 0;
1124 if (loadinfolen == 0) {
1125 loadinfo = (struct loadinfo *)
1126 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1127 loadinfolen = LOADINFOLEN;
1132 /* FIXME -- this is never called! */
1140 loadinfotocindex = 0;
1141 loadinfotextindex = 0;
1144 /* this is called from xcoffread.c */
1147 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1149 while (loadinfotocindex >= loadinfolen) {
1150 loadinfolen += LOADINFOLEN;
1151 loadinfo = (struct loadinfo *)
1152 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1154 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1159 add_text_to_loadinfo (textaddr, dataaddr)
1163 while (loadinfotextindex >= loadinfolen) {
1164 loadinfolen += LOADINFOLEN;
1165 loadinfo = (struct loadinfo *)
1166 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1168 loadinfo [loadinfotextindex].textorg = textaddr;
1169 loadinfo [loadinfotextindex].dataorg = dataaddr;
1170 ++loadinfotextindex;
1174 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1175 of a member of this array are correlated with the "toc_offset"
1176 element of the same member. But they are sequentially assigned in wildly
1177 different places, and probably there is no correlation. FIXME! */
1180 find_toc_address (pc)
1183 int ii, toc_entry, tocbase = 0;
1185 for (ii=0; ii < loadinfotextindex; ++ii)
1186 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1188 tocbase = loadinfo[ii].textorg;
1191 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;