3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
25 # Make certain that the script is not running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
345 # See also PREDEFAULT and POSTDEFAULT.
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
355 garbage_at_eol ) : ;;
357 # Catches stray fields.
360 echo "Bad field ${field}"
368 # See below (DOCO) for description of each field
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
372 i::int:byte_order:::BFD_ENDIAN_BIG
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 # Number of bits in a short or unsigned short for the target machine.
382 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
389 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
397 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set gdbarch_ptr_bit and TARGET_ADDR_BIT
407 # / addr_bit will be set from it.
409 # If gdbarch_ptr_bit and TARGET_ADDR_BIT are different, you'll probably
410 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
413 # ptr_bit is the size of a pointer on the target
414 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
415 # addr_bit is the size of a target address as represented in gdb
416 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
417 # Number of bits in a BFD_VMA for the target object file format.
418 v::int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v::int:char_signed:::1:-1:1
423 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
424 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
430 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 v::int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v::int:num_pseudo_regs:::0:0::0
440 # GDB's standard (or well known) register numbers. These can map onto
441 # a real register or a pseudo (computed) register or not be defined at
443 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
444 v:=:int:sp_regnum:::-1:-1::0
445 v:=:int:pc_regnum:::-1:-1::0
446 v:=:int:ps_regnum:::-1:-1::0
447 v:=:int:fp0_regnum:::0:-1::0
448 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
449 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
450 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
451 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
452 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
453 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
454 # Convert from an sdb register number to an internal gdb register number.
455 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
456 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
457 f::const char *:register_name:int regnr:regnr
459 # Return the type of a register specified by the architecture. Only
460 # the register cache should call this function directly; others should
461 # use "register_type".
462 M::struct type *:register_type:int reg_nr:reg_nr
464 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
465 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
466 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
467 # DEPRECATED_FP_REGNUM.
468 v:=:int:deprecated_fp_regnum:::-1:-1::0
470 # See gdbint.texinfo. See infcall.c.
471 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
472 # DEPRECATED_REGISTER_SIZE can be deleted.
473 v:=:int:deprecated_register_size
474 v::int:call_dummy_location::::AT_ENTRY_POINT::0
475 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
477 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
478 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
479 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 # MAP a GDB RAW register number onto a simulator register number. See
481 # also include/...-sim.h.
482 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
483 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
484 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
485 # setjmp/longjmp support.
486 F::int:get_longjmp_target:CORE_ADDR *pc:pc
488 v:=:int:believe_pcc_promotion:::::::
490 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
491 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
492 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
493 # Construct a value representing the contents of register REGNUM in
494 # frame FRAME, interpreted as type TYPE. The routine needs to
495 # allocate and return a struct value with all value attributes
496 # (but not the value contents) filled in.
497 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
499 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
500 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
501 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503 # It has been suggested that this, well actually its predecessor,
504 # should take the type/value of the function to be called and not the
505 # return type. This is left as an exercise for the reader.
507 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
508 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
509 # (via legacy_return_value), when a small struct is involved.
511 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
513 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
514 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
515 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
518 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
519 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
520 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
522 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
523 # ABI suitable for the implementation of a robust extract
524 # struct-convention return-value address method (the sparc saves the
525 # address in the callers frame). All the other cases so far examined,
526 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
527 # erreneous - the code was incorrectly assuming that the return-value
528 # address, stored in a register, was preserved across the entire
531 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
532 # the ABIs that are still to be analyzed - perhaps this should simply
533 # be deleted. The commented out extract_returned_value_address method
534 # is provided as a starting point for the 32-bit SPARC. It, or
535 # something like it, along with changes to both infcmd.c and stack.c
536 # will be needed for that case to work. NB: It is passed the callers
537 # frame since it is only after the callee has returned that this
540 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
541 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
544 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
545 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
546 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
547 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
548 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
549 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
550 v::CORE_ADDR:decr_pc_after_break:::0:::0
552 # A function can be addressed by either it's "pointer" (possibly a
553 # descriptor address) or "entry point" (first executable instruction).
554 # The method "convert_from_func_ptr_addr" converting the former to the
555 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
556 # a simplified subset of that functionality - the function's address
557 # corresponds to the "function pointer" and the function's start
558 # corresponds to the "function entry point" - and hence is redundant.
560 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
562 # Return the remote protocol register number associated with this
563 # register. Normally the identity mapping.
564 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
566 # Fetch the target specific address used to represent a load module.
567 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
569 v::CORE_ADDR:frame_args_skip:::0:::0
570 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
571 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
572 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
573 # frame-base. Enable frame-base before frame-unwind.
574 F::int:frame_num_args:struct frame_info *frame:frame
576 M::CORE_ADDR:frame_align:CORE_ADDR address:address
577 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
578 # stabs_argument_has_addr.
579 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
580 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
581 v::int:frame_red_zone_size
583 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
584 # On some machines there are bits in addresses which are not really
585 # part of the address, but are used by the kernel, the hardware, etc.
586 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
587 # we get a "real" address such as one would find in a symbol table.
588 # This is used only for addresses of instructions, and even then I'm
589 # not sure it's used in all contexts. It exists to deal with there
590 # being a few stray bits in the PC which would mislead us, not as some
591 # sort of generic thing to handle alignment or segmentation (it's
592 # possible it should be in TARGET_READ_PC instead).
593 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
594 # It is not at all clear why gdbarch_smash_text_address is not folded into
595 # gdbarch_addr_bits_remove.
596 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
599 # indicates if the target needs software single step. An ISA method to
602 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
603 # breakpoints using the breakpoint system instead of blatting memory directly
606 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
607 # target can single step. If not, then implement single step using breakpoints.
609 # A return value of 1 means that the software_single_step breakpoints
610 # were inserted; 0 means they were not.
611 F:=:int:software_single_step:struct regcache *regcache:regcache
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M::int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f::CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
622 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a funtion's epilogue. in_function_epilogue_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
638 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
639 # Given a vector of command-line arguments, return a newly allocated
640 # string which, when passed to the create_inferior function, will be
641 # parsed (on Unix systems, by the shell) to yield the same vector.
642 # This function should call error() if the argument vector is not
643 # representable for this target or if this target does not support
644 # command-line arguments.
645 # ARGC is the number of elements in the vector.
646 # ARGV is an array of strings, one per argument.
647 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
648 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
649 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
651 v::int:cannot_step_breakpoint:::0:0::0
652 v::int:have_nonsteppable_watchpoint:::0:0::0
653 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
654 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
655 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
656 # Is a register in a group
657 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
658 # Fetch the pointer to the ith function argument.
659 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
661 # Return the appropriate register set for a core file section with
662 # name SECT_NAME and size SECT_SIZE.
663 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
665 # If the elements of C++ vtables are in-place function descriptors rather
666 # than normal function pointers (which may point to code or a descriptor),
668 v::int:vtable_function_descriptors:::0:0::0
670 # Set if the least significant bit of the delta is used instead of the least
671 # significant bit of the pfn for pointers to virtual member functions.
672 v::int:vbit_in_delta:::0:0::0
674 # Advance PC to next instruction in order to skip a permanent breakpoint.
675 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
677 # Refresh overlay mapped state for section OSECT.
678 F::void:overlay_update:struct obj_section *osect:osect
685 exec > new-gdbarch.log
686 function_list | while do_read
689 ${class} ${returntype} ${function} ($formal)
693 eval echo \"\ \ \ \ ${r}=\${${r}}\"
695 if class_is_predicate_p && fallback_default_p
697 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
701 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
703 echo "Error: postdefault is useless when invalid_p=0" 1>&2
707 if class_is_multiarch_p
709 if class_is_predicate_p ; then :
710 elif test "x${predefault}" = "x"
712 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
721 compare_new gdbarch.log
727 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
729 /* Dynamic architecture support for GDB, the GNU debugger.
731 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
732 Free Software Foundation, Inc.
734 This file is part of GDB.
736 This program is free software; you can redistribute it and/or modify
737 it under the terms of the GNU General Public License as published by
738 the Free Software Foundation; either version 2 of the License, or
739 (at your option) any later version.
741 This program is distributed in the hope that it will be useful,
742 but WITHOUT ANY WARRANTY; without even the implied warranty of
743 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
744 GNU General Public License for more details.
746 You should have received a copy of the GNU General Public License
747 along with this program; if not, write to the Free Software
748 Foundation, Inc., 51 Franklin Street, Fifth Floor,
749 Boston, MA 02110-1301, USA. */
751 /* This file was created with the aid of \`\`gdbarch.sh''.
753 The Bourne shell script \`\`gdbarch.sh'' creates the files
754 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
755 against the existing \`\`gdbarch.[hc]''. Any differences found
758 If editing this file, please also run gdbarch.sh and merge any
759 changes into that script. Conversely, when making sweeping changes
760 to this file, modifying gdbarch.sh and using its output may prove
782 struct minimal_symbol;
786 struct disassemble_info;
789 struct bp_target_info;
792 extern struct gdbarch *current_gdbarch;
798 printf "/* The following are pre-initialized by GDBARCH. */\n"
799 function_list | while do_read
804 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
805 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
806 if test -n "${macro}"
808 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
809 printf "#error \"Non multi-arch definition of ${macro}\"\n"
811 printf "#if !defined (${macro})\n"
812 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
821 printf "/* The following are initialized by the target dependent code. */\n"
822 function_list | while do_read
824 if [ -n "${comment}" ]
826 echo "${comment}" | sed \
832 if class_is_predicate_p
834 if test -n "${macro}"
837 printf "#if defined (${macro})\n"
838 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
839 printf "#if !defined (${macro}_P)\n"
840 printf "#define ${macro}_P() (1)\n"
845 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
846 if test -n "${macro}"
848 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#if !defined (${macro}_P)\n"
852 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
856 if class_is_variable_p
859 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
860 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
861 if test -n "${macro}"
863 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
864 printf "#error \"Non multi-arch definition of ${macro}\"\n"
866 printf "#if !defined (${macro})\n"
867 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
871 if class_is_function_p
874 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
877 elif class_is_multiarch_p
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
881 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
883 if [ "x${formal}" = "xvoid" ]
885 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
887 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
889 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
890 if test -n "${macro}"
892 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
893 printf "#error \"Non multi-arch definition of ${macro}\"\n"
895 if [ "x${actual}" = "x" ]
897 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
898 elif [ "x${actual}" = "x-" ]
900 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
902 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
904 printf "#if !defined (${macro})\n"
905 if [ "x${actual}" = "x" ]
907 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
908 elif [ "x${actual}" = "x-" ]
910 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
912 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
922 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
925 /* Mechanism for co-ordinating the selection of a specific
928 GDB targets (*-tdep.c) can register an interest in a specific
929 architecture. Other GDB components can register a need to maintain
930 per-architecture data.
932 The mechanisms below ensures that there is only a loose connection
933 between the set-architecture command and the various GDB
934 components. Each component can independently register their need
935 to maintain architecture specific data with gdbarch.
939 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
942 The more traditional mega-struct containing architecture specific
943 data for all the various GDB components was also considered. Since
944 GDB is built from a variable number of (fairly independent)
945 components it was determined that the global aproach was not
949 /* Register a new architectural family with GDB.
951 Register support for the specified ARCHITECTURE with GDB. When
952 gdbarch determines that the specified architecture has been
953 selected, the corresponding INIT function is called.
957 The INIT function takes two parameters: INFO which contains the
958 information available to gdbarch about the (possibly new)
959 architecture; ARCHES which is a list of the previously created
960 \`\`struct gdbarch'' for this architecture.
962 The INFO parameter is, as far as possible, be pre-initialized with
963 information obtained from INFO.ABFD or the global defaults.
965 The ARCHES parameter is a linked list (sorted most recently used)
966 of all the previously created architures for this architecture
967 family. The (possibly NULL) ARCHES->gdbarch can used to access
968 values from the previously selected architecture for this
969 architecture family. The global \`\`current_gdbarch'' shall not be
972 The INIT function shall return any of: NULL - indicating that it
973 doesn't recognize the selected architecture; an existing \`\`struct
974 gdbarch'' from the ARCHES list - indicating that the new
975 architecture is just a synonym for an earlier architecture (see
976 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
977 - that describes the selected architecture (see gdbarch_alloc()).
979 The DUMP_TDEP function shall print out all target specific values.
980 Care should be taken to ensure that the function works in both the
981 multi-arch and non- multi-arch cases. */
985 struct gdbarch *gdbarch;
986 struct gdbarch_list *next;
991 /* Use default: NULL (ZERO). */
992 const struct bfd_arch_info *bfd_arch_info;
994 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
997 /* Use default: NULL (ZERO). */
1000 /* Use default: NULL (ZERO). */
1001 struct gdbarch_tdep_info *tdep_info;
1003 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1004 enum gdb_osabi osabi;
1006 /* Use default: NULL (ZERO). */
1007 const struct target_desc *target_desc;
1010 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1011 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1013 /* DEPRECATED - use gdbarch_register() */
1014 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1016 extern void gdbarch_register (enum bfd_architecture architecture,
1017 gdbarch_init_ftype *,
1018 gdbarch_dump_tdep_ftype *);
1021 /* Return a freshly allocated, NULL terminated, array of the valid
1022 architecture names. Since architectures are registered during the
1023 _initialize phase this function only returns useful information
1024 once initialization has been completed. */
1026 extern const char **gdbarch_printable_names (void);
1029 /* Helper function. Search the list of ARCHES for a GDBARCH that
1030 matches the information provided by INFO. */
1032 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1035 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1036 basic initialization using values obtained from the INFO and TDEP
1037 parameters. set_gdbarch_*() functions are called to complete the
1038 initialization of the object. */
1040 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1043 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1044 It is assumed that the caller freeds the \`\`struct
1047 extern void gdbarch_free (struct gdbarch *);
1050 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1051 obstack. The memory is freed when the corresponding architecture
1054 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1055 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1056 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1059 /* Helper function. Force an update of the current architecture.
1061 The actual architecture selected is determined by INFO, \`\`(gdb) set
1062 architecture'' et.al., the existing architecture and BFD's default
1063 architecture. INFO should be initialized to zero and then selected
1064 fields should be updated.
1066 Returns non-zero if the update succeeds */
1068 extern int gdbarch_update_p (struct gdbarch_info info);
1071 /* Helper function. Find an architecture matching info.
1073 INFO should be initialized using gdbarch_info_init, relevant fields
1074 set, and then finished using gdbarch_info_fill.
1076 Returns the corresponding architecture, or NULL if no matching
1077 architecture was found. "current_gdbarch" is not updated. */
1079 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1082 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1084 FIXME: kettenis/20031124: Of the functions that follow, only
1085 gdbarch_from_bfd is supposed to survive. The others will
1086 dissappear since in the future GDB will (hopefully) be truly
1087 multi-arch. However, for now we're still stuck with the concept of
1088 a single active architecture. */
1090 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1093 /* Register per-architecture data-pointer.
1095 Reserve space for a per-architecture data-pointer. An identifier
1096 for the reserved data-pointer is returned. That identifer should
1097 be saved in a local static variable.
1099 Memory for the per-architecture data shall be allocated using
1100 gdbarch_obstack_zalloc. That memory will be deleted when the
1101 corresponding architecture object is deleted.
1103 When a previously created architecture is re-selected, the
1104 per-architecture data-pointer for that previous architecture is
1105 restored. INIT() is not re-called.
1107 Multiple registrarants for any architecture are allowed (and
1108 strongly encouraged). */
1110 struct gdbarch_data;
1112 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1113 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1114 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1115 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1116 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1117 struct gdbarch_data *data,
1120 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1124 /* Register per-architecture memory region.
1126 Provide a memory-region swap mechanism. Per-architecture memory
1127 region are created. These memory regions are swapped whenever the
1128 architecture is changed. For a new architecture, the memory region
1129 is initialized with zero (0) and the INIT function is called.
1131 Memory regions are swapped / initialized in the order that they are
1132 registered. NULL DATA and/or INIT values can be specified.
1134 New code should use gdbarch_data_register_*(). */
1136 typedef void (gdbarch_swap_ftype) (void);
1137 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1138 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1142 /* Set the dynamic target-system-dependent parameters (architecture,
1143 byte-order, ...) using information found in the BFD */
1145 extern void set_gdbarch_from_file (bfd *);
1148 /* Initialize the current architecture to the "first" one we find on
1151 extern void initialize_current_architecture (void);
1153 /* gdbarch trace variable */
1154 extern int gdbarch_debug;
1156 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1161 #../move-if-change new-gdbarch.h gdbarch.h
1162 compare_new gdbarch.h
1169 exec > new-gdbarch.c
1174 #include "arch-utils.h"
1177 #include "inferior.h"
1180 #include "floatformat.h"
1182 #include "gdb_assert.h"
1183 #include "gdb_string.h"
1184 #include "gdb-events.h"
1185 #include "reggroups.h"
1187 #include "gdb_obstack.h"
1189 /* Static function declarations */
1191 static void alloc_gdbarch_data (struct gdbarch *);
1193 /* Non-zero if we want to trace architecture code. */
1195 #ifndef GDBARCH_DEBUG
1196 #define GDBARCH_DEBUG 0
1198 int gdbarch_debug = GDBARCH_DEBUG;
1200 show_gdbarch_debug (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c, const char *value)
1203 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1207 pformat (const struct floatformat **format)
1212 /* Just print out one of them - this is only for diagnostics. */
1213 return format[0]->name;
1218 # gdbarch open the gdbarch object
1220 printf "/* Maintain the struct gdbarch object */\n"
1222 printf "struct gdbarch\n"
1224 printf " /* Has this architecture been fully initialized? */\n"
1225 printf " int initialized_p;\n"
1227 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1228 printf " struct obstack *obstack;\n"
1230 printf " /* basic architectural information */\n"
1231 function_list | while do_read
1235 printf " ${returntype} ${function};\n"
1239 printf " /* target specific vector. */\n"
1240 printf " struct gdbarch_tdep *tdep;\n"
1241 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1243 printf " /* per-architecture data-pointers */\n"
1244 printf " unsigned nr_data;\n"
1245 printf " void **data;\n"
1247 printf " /* per-architecture swap-regions */\n"
1248 printf " struct gdbarch_swap *swap;\n"
1251 /* Multi-arch values.
1253 When extending this structure you must:
1255 Add the field below.
1257 Declare set/get functions and define the corresponding
1260 gdbarch_alloc(): If zero/NULL is not a suitable default,
1261 initialize the new field.
1263 verify_gdbarch(): Confirm that the target updated the field
1266 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1269 \`\`startup_gdbarch()'': Append an initial value to the static
1270 variable (base values on the host's c-type system).
1272 get_gdbarch(): Implement the set/get functions (probably using
1273 the macro's as shortcuts).
1278 function_list | while do_read
1280 if class_is_variable_p
1282 printf " ${returntype} ${function};\n"
1283 elif class_is_function_p
1285 printf " gdbarch_${function}_ftype *${function};\n"
1290 # A pre-initialized vector
1294 /* The default architecture uses host values (for want of a better
1298 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1300 printf "struct gdbarch startup_gdbarch =\n"
1302 printf " 1, /* Always initialized. */\n"
1303 printf " NULL, /* The obstack. */\n"
1304 printf " /* basic architecture information */\n"
1305 function_list | while do_read
1309 printf " ${staticdefault}, /* ${function} */\n"
1313 /* target specific vector and its dump routine */
1315 /*per-architecture data-pointers and swap regions */
1317 /* Multi-arch values */
1319 function_list | while do_read
1321 if class_is_function_p || class_is_variable_p
1323 printf " ${staticdefault}, /* ${function} */\n"
1327 /* startup_gdbarch() */
1330 struct gdbarch *current_gdbarch = &startup_gdbarch;
1333 # Create a new gdbarch struct
1336 /* Create a new \`\`struct gdbarch'' based on information provided by
1337 \`\`struct gdbarch_info''. */
1342 gdbarch_alloc (const struct gdbarch_info *info,
1343 struct gdbarch_tdep *tdep)
1345 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1346 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1347 the current local architecture and not the previous global
1348 architecture. This ensures that the new architectures initial
1349 values are not influenced by the previous architecture. Once
1350 everything is parameterised with gdbarch, this will go away. */
1351 struct gdbarch *current_gdbarch;
1353 /* Create an obstack for allocating all the per-architecture memory,
1354 then use that to allocate the architecture vector. */
1355 struct obstack *obstack = XMALLOC (struct obstack);
1356 obstack_init (obstack);
1357 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1358 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1359 current_gdbarch->obstack = obstack;
1361 alloc_gdbarch_data (current_gdbarch);
1363 current_gdbarch->tdep = tdep;
1366 function_list | while do_read
1370 printf " current_gdbarch->${function} = info->${function};\n"
1374 printf " /* Force the explicit initialization of these. */\n"
1375 function_list | while do_read
1377 if class_is_function_p || class_is_variable_p
1379 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1381 printf " current_gdbarch->${function} = ${predefault};\n"
1386 /* gdbarch_alloc() */
1388 return current_gdbarch;
1392 # Free a gdbarch struct.
1396 /* Allocate extra space using the per-architecture obstack. */
1399 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1401 void *data = obstack_alloc (arch->obstack, size);
1402 memset (data, 0, size);
1407 /* Free a gdbarch struct. This should never happen in normal
1408 operation --- once you've created a gdbarch, you keep it around.
1409 However, if an architecture's init function encounters an error
1410 building the structure, it may need to clean up a partially
1411 constructed gdbarch. */
1414 gdbarch_free (struct gdbarch *arch)
1416 struct obstack *obstack;
1417 gdb_assert (arch != NULL);
1418 gdb_assert (!arch->initialized_p);
1419 obstack = arch->obstack;
1420 obstack_free (obstack, 0); /* Includes the ARCH. */
1425 # verify a new architecture
1429 /* Ensure that all values in a GDBARCH are reasonable. */
1431 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1432 just happens to match the global variable \`\`current_gdbarch''. That
1433 way macros refering to that variable get the local and not the global
1434 version - ulgh. Once everything is parameterised with gdbarch, this
1438 verify_gdbarch (struct gdbarch *current_gdbarch)
1440 struct ui_file *log;
1441 struct cleanup *cleanups;
1444 log = mem_fileopen ();
1445 cleanups = make_cleanup_ui_file_delete (log);
1447 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1448 fprintf_unfiltered (log, "\n\tbyte-order");
1449 if (current_gdbarch->bfd_arch_info == NULL)
1450 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1451 /* Check those that need to be defined for the given multi-arch level. */
1453 function_list | while do_read
1455 if class_is_function_p || class_is_variable_p
1457 if [ "x${invalid_p}" = "x0" ]
1459 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1460 elif class_is_predicate_p
1462 printf " /* Skip verify of ${function}, has predicate */\n"
1463 # FIXME: See do_read for potential simplification
1464 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1466 printf " if (${invalid_p})\n"
1467 printf " current_gdbarch->${function} = ${postdefault};\n"
1468 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1470 printf " if (current_gdbarch->${function} == ${predefault})\n"
1471 printf " current_gdbarch->${function} = ${postdefault};\n"
1472 elif [ -n "${postdefault}" ]
1474 printf " if (current_gdbarch->${function} == 0)\n"
1475 printf " current_gdbarch->${function} = ${postdefault};\n"
1476 elif [ -n "${invalid_p}" ]
1478 printf " if (${invalid_p})\n"
1479 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1480 elif [ -n "${predefault}" ]
1482 printf " if (current_gdbarch->${function} == ${predefault})\n"
1483 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1488 buf = ui_file_xstrdup (log, &dummy);
1489 make_cleanup (xfree, buf);
1490 if (strlen (buf) > 0)
1491 internal_error (__FILE__, __LINE__,
1492 _("verify_gdbarch: the following are invalid ...%s"),
1494 do_cleanups (cleanups);
1498 # dump the structure
1502 /* Print out the details of the current architecture. */
1504 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1505 just happens to match the global variable \`\`current_gdbarch''. That
1506 way macros refering to that variable get the local and not the global
1507 version - ulgh. Once everything is parameterised with gdbarch, this
1511 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1513 const char *gdb_xm_file = "<not-defined>";
1514 const char *gdb_nm_file = "<not-defined>";
1515 const char *gdb_tm_file = "<not-defined>";
1516 #if defined (GDB_XM_FILE)
1517 gdb_xm_file = GDB_XM_FILE;
1519 fprintf_unfiltered (file,
1520 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1522 #if defined (GDB_NM_FILE)
1523 gdb_nm_file = GDB_NM_FILE;
1525 fprintf_unfiltered (file,
1526 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1528 #if defined (GDB_TM_FILE)
1529 gdb_tm_file = GDB_TM_FILE;
1531 fprintf_unfiltered (file,
1532 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1535 function_list | sort -t: -k 4 | while do_read
1537 # First the predicate
1538 if class_is_predicate_p
1540 if test -n "${macro}"
1542 printf "#ifdef ${macro}_P\n"
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1545 printf " \"${macro}_P()\",\n"
1546 printf " XSTRING (${macro}_P ()));\n"
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1551 printf " gdbarch_${function}_p (current_gdbarch));\n"
1553 # Print the macro definition.
1554 if test -n "${macro}"
1556 printf "#ifdef ${macro}\n"
1557 if class_is_function_p
1559 printf " fprintf_unfiltered (file,\n"
1560 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1561 printf " \"${macro}(${actual})\",\n"
1562 printf " XSTRING (${macro} (${actual})));\n"
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1566 printf " XSTRING (${macro}));\n"
1570 # Print the corresponding value.
1571 if class_is_function_p
1573 printf " fprintf_unfiltered (file,\n"
1574 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1575 printf " (long) current_gdbarch->${function});\n"
1578 case "${print}:${returntype}" in
1581 print="paddr_nz (current_gdbarch->${function})"
1585 print="paddr_d (current_gdbarch->${function})"
1591 printf " fprintf_unfiltered (file,\n"
1592 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1593 printf " ${print});\n"
1597 if (current_gdbarch->dump_tdep != NULL)
1598 current_gdbarch->dump_tdep (current_gdbarch, file);
1606 struct gdbarch_tdep *
1607 gdbarch_tdep (struct gdbarch *gdbarch)
1609 if (gdbarch_debug >= 2)
1610 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1611 return gdbarch->tdep;
1615 function_list | while do_read
1617 if class_is_predicate_p
1621 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1623 printf " gdb_assert (gdbarch != NULL);\n"
1624 printf " return ${predicate};\n"
1627 if class_is_function_p
1630 printf "${returntype}\n"
1631 if [ "x${formal}" = "xvoid" ]
1633 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1635 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1638 printf " gdb_assert (gdbarch != NULL);\n"
1639 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1640 if class_is_predicate_p && test -n "${predefault}"
1642 # Allow a call to a function with a predicate.
1643 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1645 printf " if (gdbarch_debug >= 2)\n"
1646 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1647 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1649 if class_is_multiarch_p
1656 if class_is_multiarch_p
1658 params="gdbarch, ${actual}"
1663 if [ "x${returntype}" = "xvoid" ]
1665 printf " gdbarch->${function} (${params});\n"
1667 printf " return gdbarch->${function} (${params});\n"
1672 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1673 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1675 printf " gdbarch->${function} = ${function};\n"
1677 elif class_is_variable_p
1680 printf "${returntype}\n"
1681 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1683 printf " gdb_assert (gdbarch != NULL);\n"
1684 if [ "x${invalid_p}" = "x0" ]
1686 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1687 elif [ -n "${invalid_p}" ]
1689 printf " /* Check variable is valid. */\n"
1690 printf " gdb_assert (!(${invalid_p}));\n"
1691 elif [ -n "${predefault}" ]
1693 printf " /* Check variable changed from pre-default. */\n"
1694 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1696 printf " if (gdbarch_debug >= 2)\n"
1697 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1698 printf " return gdbarch->${function};\n"
1702 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1703 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1705 printf " gdbarch->${function} = ${function};\n"
1707 elif class_is_info_p
1710 printf "${returntype}\n"
1711 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1713 printf " gdb_assert (gdbarch != NULL);\n"
1714 printf " if (gdbarch_debug >= 2)\n"
1715 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1716 printf " return gdbarch->${function};\n"
1721 # All the trailing guff
1725 /* Keep a registry of per-architecture data-pointers required by GDB
1732 gdbarch_data_pre_init_ftype *pre_init;
1733 gdbarch_data_post_init_ftype *post_init;
1736 struct gdbarch_data_registration
1738 struct gdbarch_data *data;
1739 struct gdbarch_data_registration *next;
1742 struct gdbarch_data_registry
1745 struct gdbarch_data_registration *registrations;
1748 struct gdbarch_data_registry gdbarch_data_registry =
1753 static struct gdbarch_data *
1754 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1755 gdbarch_data_post_init_ftype *post_init)
1757 struct gdbarch_data_registration **curr;
1758 /* Append the new registraration. */
1759 for (curr = &gdbarch_data_registry.registrations;
1761 curr = &(*curr)->next);
1762 (*curr) = XMALLOC (struct gdbarch_data_registration);
1763 (*curr)->next = NULL;
1764 (*curr)->data = XMALLOC (struct gdbarch_data);
1765 (*curr)->data->index = gdbarch_data_registry.nr++;
1766 (*curr)->data->pre_init = pre_init;
1767 (*curr)->data->post_init = post_init;
1768 (*curr)->data->init_p = 1;
1769 return (*curr)->data;
1772 struct gdbarch_data *
1773 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1775 return gdbarch_data_register (pre_init, NULL);
1778 struct gdbarch_data *
1779 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1781 return gdbarch_data_register (NULL, post_init);
1784 /* Create/delete the gdbarch data vector. */
1787 alloc_gdbarch_data (struct gdbarch *gdbarch)
1789 gdb_assert (gdbarch->data == NULL);
1790 gdbarch->nr_data = gdbarch_data_registry.nr;
1791 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1794 /* Initialize the current value of the specified per-architecture
1798 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1799 struct gdbarch_data *data,
1802 gdb_assert (data->index < gdbarch->nr_data);
1803 gdb_assert (gdbarch->data[data->index] == NULL);
1804 gdb_assert (data->pre_init == NULL);
1805 gdbarch->data[data->index] = pointer;
1808 /* Return the current value of the specified per-architecture
1812 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1814 gdb_assert (data->index < gdbarch->nr_data);
1815 if (gdbarch->data[data->index] == NULL)
1817 /* The data-pointer isn't initialized, call init() to get a
1819 if (data->pre_init != NULL)
1820 /* Mid architecture creation: pass just the obstack, and not
1821 the entire architecture, as that way it isn't possible for
1822 pre-init code to refer to undefined architecture
1824 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1825 else if (gdbarch->initialized_p
1826 && data->post_init != NULL)
1827 /* Post architecture creation: pass the entire architecture
1828 (as all fields are valid), but be careful to also detect
1829 recursive references. */
1831 gdb_assert (data->init_p);
1833 gdbarch->data[data->index] = data->post_init (gdbarch);
1837 /* The architecture initialization hasn't completed - punt -
1838 hope that the caller knows what they are doing. Once
1839 deprecated_set_gdbarch_data has been initialized, this can be
1840 changed to an internal error. */
1842 gdb_assert (gdbarch->data[data->index] != NULL);
1844 return gdbarch->data[data->index];
1849 /* Keep a registry of swapped data required by GDB modules. */
1854 struct gdbarch_swap_registration *source;
1855 struct gdbarch_swap *next;
1858 struct gdbarch_swap_registration
1861 unsigned long sizeof_data;
1862 gdbarch_swap_ftype *init;
1863 struct gdbarch_swap_registration *next;
1866 struct gdbarch_swap_registry
1869 struct gdbarch_swap_registration *registrations;
1872 struct gdbarch_swap_registry gdbarch_swap_registry =
1878 deprecated_register_gdbarch_swap (void *data,
1879 unsigned long sizeof_data,
1880 gdbarch_swap_ftype *init)
1882 struct gdbarch_swap_registration **rego;
1883 for (rego = &gdbarch_swap_registry.registrations;
1885 rego = &(*rego)->next);
1886 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1887 (*rego)->next = NULL;
1888 (*rego)->init = init;
1889 (*rego)->data = data;
1890 (*rego)->sizeof_data = sizeof_data;
1894 current_gdbarch_swap_init_hack (void)
1896 struct gdbarch_swap_registration *rego;
1897 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1898 for (rego = gdbarch_swap_registry.registrations;
1902 if (rego->data != NULL)
1904 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1905 struct gdbarch_swap);
1906 (*curr)->source = rego;
1907 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1909 (*curr)->next = NULL;
1910 curr = &(*curr)->next;
1912 if (rego->init != NULL)
1917 static struct gdbarch *
1918 current_gdbarch_swap_out_hack (void)
1920 struct gdbarch *old_gdbarch = current_gdbarch;
1921 struct gdbarch_swap *curr;
1923 gdb_assert (old_gdbarch != NULL);
1924 for (curr = old_gdbarch->swap;
1928 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1929 memset (curr->source->data, 0, curr->source->sizeof_data);
1931 current_gdbarch = NULL;
1936 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1938 struct gdbarch_swap *curr;
1940 gdb_assert (current_gdbarch == NULL);
1941 for (curr = new_gdbarch->swap;
1944 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1945 current_gdbarch = new_gdbarch;
1949 /* Keep a registry of the architectures known by GDB. */
1951 struct gdbarch_registration
1953 enum bfd_architecture bfd_architecture;
1954 gdbarch_init_ftype *init;
1955 gdbarch_dump_tdep_ftype *dump_tdep;
1956 struct gdbarch_list *arches;
1957 struct gdbarch_registration *next;
1960 static struct gdbarch_registration *gdbarch_registry = NULL;
1963 append_name (const char ***buf, int *nr, const char *name)
1965 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1971 gdbarch_printable_names (void)
1973 /* Accumulate a list of names based on the registed list of
1975 enum bfd_architecture a;
1977 const char **arches = NULL;
1978 struct gdbarch_registration *rego;
1979 for (rego = gdbarch_registry;
1983 const struct bfd_arch_info *ap;
1984 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1986 internal_error (__FILE__, __LINE__,
1987 _("gdbarch_architecture_names: multi-arch unknown"));
1990 append_name (&arches, &nr_arches, ap->printable_name);
1995 append_name (&arches, &nr_arches, NULL);
2001 gdbarch_register (enum bfd_architecture bfd_architecture,
2002 gdbarch_init_ftype *init,
2003 gdbarch_dump_tdep_ftype *dump_tdep)
2005 struct gdbarch_registration **curr;
2006 const struct bfd_arch_info *bfd_arch_info;
2007 /* Check that BFD recognizes this architecture */
2008 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2009 if (bfd_arch_info == NULL)
2011 internal_error (__FILE__, __LINE__,
2012 _("gdbarch: Attempt to register unknown architecture (%d)"),
2015 /* Check that we haven't seen this architecture before */
2016 for (curr = &gdbarch_registry;
2018 curr = &(*curr)->next)
2020 if (bfd_architecture == (*curr)->bfd_architecture)
2021 internal_error (__FILE__, __LINE__,
2022 _("gdbarch: Duplicate registraration of architecture (%s)"),
2023 bfd_arch_info->printable_name);
2027 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2028 bfd_arch_info->printable_name,
2031 (*curr) = XMALLOC (struct gdbarch_registration);
2032 (*curr)->bfd_architecture = bfd_architecture;
2033 (*curr)->init = init;
2034 (*curr)->dump_tdep = dump_tdep;
2035 (*curr)->arches = NULL;
2036 (*curr)->next = NULL;
2040 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2041 gdbarch_init_ftype *init)
2043 gdbarch_register (bfd_architecture, init, NULL);
2047 /* Look for an architecture using gdbarch_info. */
2049 struct gdbarch_list *
2050 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2051 const struct gdbarch_info *info)
2053 for (; arches != NULL; arches = arches->next)
2055 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2057 if (info->byte_order != arches->gdbarch->byte_order)
2059 if (info->osabi != arches->gdbarch->osabi)
2061 if (info->target_desc != arches->gdbarch->target_desc)
2069 /* Find an architecture that matches the specified INFO. Create a new
2070 architecture if needed. Return that new architecture. Assumes
2071 that there is no current architecture. */
2073 static struct gdbarch *
2074 find_arch_by_info (struct gdbarch_info info)
2076 struct gdbarch *new_gdbarch;
2077 struct gdbarch_registration *rego;
2079 /* The existing architecture has been swapped out - all this code
2080 works from a clean slate. */
2081 gdb_assert (current_gdbarch == NULL);
2083 /* Fill in missing parts of the INFO struct using a number of
2084 sources: "set ..."; INFOabfd supplied; and the global
2086 gdbarch_info_fill (&info);
2088 /* Must have found some sort of architecture. */
2089 gdb_assert (info.bfd_arch_info != NULL);
2093 fprintf_unfiltered (gdb_stdlog,
2094 "find_arch_by_info: info.bfd_arch_info %s\n",
2095 (info.bfd_arch_info != NULL
2096 ? info.bfd_arch_info->printable_name
2098 fprintf_unfiltered (gdb_stdlog,
2099 "find_arch_by_info: info.byte_order %d (%s)\n",
2101 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2102 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2104 fprintf_unfiltered (gdb_stdlog,
2105 "find_arch_by_info: info.osabi %d (%s)\n",
2106 info.osabi, gdbarch_osabi_name (info.osabi));
2107 fprintf_unfiltered (gdb_stdlog,
2108 "find_arch_by_info: info.abfd 0x%lx\n",
2110 fprintf_unfiltered (gdb_stdlog,
2111 "find_arch_by_info: info.tdep_info 0x%lx\n",
2112 (long) info.tdep_info);
2115 /* Find the tdep code that knows about this architecture. */
2116 for (rego = gdbarch_registry;
2119 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2124 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2125 "No matching architecture\n");
2129 /* Ask the tdep code for an architecture that matches "info". */
2130 new_gdbarch = rego->init (info, rego->arches);
2132 /* Did the tdep code like it? No. Reject the change and revert to
2133 the old architecture. */
2134 if (new_gdbarch == NULL)
2137 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2138 "Target rejected architecture\n");
2142 /* Is this a pre-existing architecture (as determined by already
2143 being initialized)? Move it to the front of the architecture
2144 list (keeping the list sorted Most Recently Used). */
2145 if (new_gdbarch->initialized_p)
2147 struct gdbarch_list **list;
2148 struct gdbarch_list *this;
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "Previous architecture 0x%08lx (%s) selected\n",
2153 new_gdbarch->bfd_arch_info->printable_name);
2154 /* Find the existing arch in the list. */
2155 for (list = ®o->arches;
2156 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2157 list = &(*list)->next);
2158 /* It had better be in the list of architectures. */
2159 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2162 (*list) = this->next;
2163 /* Insert THIS at the front. */
2164 this->next = rego->arches;
2165 rego->arches = this;
2170 /* It's a new architecture. */
2172 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2173 "New architecture 0x%08lx (%s) selected\n",
2175 new_gdbarch->bfd_arch_info->printable_name);
2177 /* Insert the new architecture into the front of the architecture
2178 list (keep the list sorted Most Recently Used). */
2180 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2181 this->next = rego->arches;
2182 this->gdbarch = new_gdbarch;
2183 rego->arches = this;
2186 /* Check that the newly installed architecture is valid. Plug in
2187 any post init values. */
2188 new_gdbarch->dump_tdep = rego->dump_tdep;
2189 verify_gdbarch (new_gdbarch);
2190 new_gdbarch->initialized_p = 1;
2192 /* Initialize any per-architecture swap areas. This phase requires
2193 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2194 swap the entire architecture out. */
2195 current_gdbarch = new_gdbarch;
2196 current_gdbarch_swap_init_hack ();
2197 current_gdbarch_swap_out_hack ();
2200 gdbarch_dump (new_gdbarch, gdb_stdlog);
2206 gdbarch_find_by_info (struct gdbarch_info info)
2208 /* Save the previously selected architecture, setting the global to
2209 NULL. This stops things like gdbarch->init() trying to use the
2210 previous architecture's configuration. The previous architecture
2211 may not even be of the same architecture family. The most recent
2212 architecture of the same family is found at the head of the
2213 rego->arches list. */
2214 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2216 /* Find the specified architecture. */
2217 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2219 /* Restore the existing architecture. */
2220 gdb_assert (current_gdbarch == NULL);
2221 current_gdbarch_swap_in_hack (old_gdbarch);
2226 /* Make the specified architecture current, swapping the existing one
2230 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2232 gdb_assert (new_gdbarch != NULL);
2233 gdb_assert (current_gdbarch != NULL);
2234 gdb_assert (new_gdbarch->initialized_p);
2235 current_gdbarch_swap_out_hack ();
2236 current_gdbarch_swap_in_hack (new_gdbarch);
2237 architecture_changed_event ();
2238 reinit_frame_cache ();
2241 extern void _initialize_gdbarch (void);
2244 _initialize_gdbarch (void)
2246 struct cmd_list_element *c;
2248 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2249 Set architecture debugging."), _("\\
2250 Show architecture debugging."), _("\\
2251 When non-zero, architecture debugging is enabled."),
2254 &setdebuglist, &showdebuglist);
2260 #../move-if-change new-gdbarch.c gdbarch.c
2261 compare_new gdbarch.c