1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
27 #include "xcoffsolib.h"
29 #include <sys/param.h>
33 #include <sys/ioctl.h>
43 extern struct obstack frame_cache_obstack;
47 /* Nonzero if we just simulated a single step break. */
50 /* Breakpoint shadows for the single step instructions will be kept here. */
52 static struct sstep_breaks {
53 /* Address, or 0 if this is not in use. */
55 /* Shadow contents. */
59 /* Static function prototypes */
62 find_toc_address PARAMS ((CORE_ADDR pc));
65 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
68 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
69 struct aix_framedata *fdatap));
72 * Calculate the destination of a branch/jump. Return -1 if not a branch.
75 branch_dest (opcode, instr, pc, safety)
87 absolute = (int) ((instr >> 1) & 1);
91 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
94 if (opcode != 18) /* br conditional */
95 immediate = ((instr & ~3) << 16) >> 16;
99 dest = pc + immediate;
103 ext_op = (instr>>1) & 0x3ff;
105 if (ext_op == 16) /* br conditional register */
106 dest = read_register (LR_REGNUM) & ~3;
108 else if (ext_op == 528) /* br cond to count reg */
110 dest = read_register (CTR_REGNUM) & ~3;
112 /* If we are about to execute a system call, dest is something
113 like 0x22fc or 0x3b00. Upon completion the system call
114 will return to the address in the link register. */
115 if (dest < TEXT_SEGMENT_BASE)
116 dest = read_register (LR_REGNUM) & ~3;
123 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
128 /* AIX does not support PT_STEP. Simulate it. */
134 #define INSNLEN(OPCODE) 4
136 static char breakp[] = BREAKPOINT;
145 read_memory (loc, (char *) &insn, 4);
147 breaks[0] = loc + INSNLEN(insn);
149 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
151 /* Don't put two breakpoints on the same address. */
152 if (breaks[1] == breaks[0])
155 stepBreaks[1].address = 0;
157 for (ii=0; ii < 2; ++ii) {
159 /* ignore invalid breakpoint. */
160 if ( breaks[ii] == -1)
163 read_memory (breaks[ii], stepBreaks[ii].data, 4);
165 write_memory (breaks[ii], breakp, 4);
166 stepBreaks[ii].address = breaks[ii];
172 /* remove step breakpoints. */
173 for (ii=0; ii < 2; ++ii)
174 if (stepBreaks[ii].address != 0)
176 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
180 errno = 0; /* FIXME, don't ignore errors! */
181 /* What errors? {read,write}_memory call error(). */
185 /* return pc value after skipping a function prologue. */
194 if (target_read_memory (pc, buf, 4))
195 return pc; /* Can't access it -- assume no prologue. */
196 op = extract_unsigned_integer (buf, 4);
198 /* Assume that subsequent fetches can fail with low probability. */
200 if (op == 0x7c0802a6) { /* mflr r0 */
202 op = read_memory_integer (pc, 4);
205 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
207 op = read_memory_integer (pc, 4);
210 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
212 op = read_memory_integer (pc, 4);
214 /* At this point, make sure this is not a trampoline function
215 (a function that simply calls another functions, and nothing else).
216 If the next is not a nop, this branch was part of the function
219 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
221 return pc - 4; /* don't skip over this branch */
224 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
225 pc += 4; /* store floating register double */
226 op = read_memory_integer (pc, 4);
229 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
231 op = read_memory_integer (pc, 4);
234 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
235 (tmp == 0x9421) || /* stu r1, NUM(r1) */
236 (tmp == 0x93e1)) /* st r31,NUM(r1) */
239 op = read_memory_integer (pc, 4);
242 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
243 pc += 4; /* l r30, ... */
244 op = read_memory_integer (pc, 4);
247 /* store parameters into stack */
249 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
250 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
251 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
252 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
254 pc += 4; /* store fpr double */
255 op = read_memory_integer (pc, 4);
258 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
259 pc += 4; /* this happens if r31 is used as */
260 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
263 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
264 pc += 4; /* st r4, NUM(r31), ... */
265 op = read_memory_integer (pc, 4);
270 /* I have problems with skipping over __main() that I need to address
271 * sometime. Previously, I used to use misc_function_vector which
272 * didn't work as well as I wanted to be. -MGO */
274 /* If the first thing after skipping a prolog is a branch to a function,
275 this might be a call to an initializer in main(), introduced by gcc2.
276 We'd like to skip over it as well. Fortunately, xlc does some extra
277 work before calling a function right after a prologue, thus we can
278 single out such gcc2 behaviour. */
281 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
282 op = read_memory_integer (pc+4, 4);
284 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
286 /* check and see if we are in main. If so, skip over this initializer
289 tmp = find_pc_misc_function (pc);
290 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
300 /*************************************************************************
301 Support for creating pushind a dummy frame into the stack, and popping
303 *************************************************************************/
305 /* The total size of dummy frame is 436, which is;
310 and 24 extra bytes for the callee's link area. The last 24 bytes
311 for the link area might not be necessary, since it will be taken
312 care of by push_arguments(). */
314 #define DUMMY_FRAME_SIZE 436
316 #define DUMMY_FRAME_ADDR_SIZE 10
318 /* Make sure you initialize these in somewhere, in case gdb gives up what it
319 was debugging and starts debugging something else. FIXMEibm */
321 static int dummy_frame_count = 0;
322 static int dummy_frame_size = 0;
323 static CORE_ADDR *dummy_frame_addr = 0;
325 extern int stop_stack_dummy;
327 /* push a dummy frame into stack, save all register. Currently we are saving
328 only gpr's and fpr's, which is not good enough! FIXMEmgo */
338 /* Same thing, target byte order. */
343 target_fetch_registers (-1);
345 if (dummy_frame_count >= dummy_frame_size) {
346 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
347 if (dummy_frame_addr)
348 dummy_frame_addr = (CORE_ADDR*) xrealloc
349 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
351 dummy_frame_addr = (CORE_ADDR*)
352 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
355 sp = read_register(SP_REGNUM);
356 pc = read_register(PC_REGNUM);
357 memcpy (pc_targ, (char *) &pc, 4);
359 dummy_frame_addr [dummy_frame_count++] = sp;
361 /* Be careful! If the stack pointer is not decremented first, then kernel
362 thinks he is free to use the space underneath it. And kernel actually
363 uses that area for IPC purposes when executing ptrace(2) calls. So
364 before writing register values into the new frame, decrement and update
365 %sp first in order to secure your frame. */
367 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
369 /* gdb relies on the state of current_frame. We'd better update it,
370 otherwise things like do_registers_info() wouldn't work properly! */
372 flush_cached_frames ();
373 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
375 /* save program counter in link register's space. */
376 write_memory (sp+8, pc_targ, 4);
378 /* save all floating point and general purpose registers here. */
381 for (ii = 0; ii < 32; ++ii)
382 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
385 for (ii=1; ii <=32; ++ii)
386 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
388 /* so far, 32*2 + 32 words = 384 bytes have been written.
389 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
391 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
392 write_memory (sp-384-(ii*4),
393 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
396 /* Save sp or so called back chain right here. */
397 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
398 sp -= DUMMY_FRAME_SIZE;
400 /* And finally, this is the back chain. */
401 write_memory (sp+8, pc_targ, 4);
405 /* Pop a dummy frame.
407 In rs6000 when we push a dummy frame, we save all of the registers. This
408 is usually done before user calls a function explicitly.
410 After a dummy frame is pushed, some instructions are copied into stack,
411 and stack pointer is decremented even more. Since we don't have a frame
412 pointer to get back to the parent frame of the dummy, we start having
413 trouble poping it. Therefore, we keep a dummy frame stack, keeping
414 addresses of dummy frames as such. When poping happens and when we
415 detect that was a dummy frame, we pop it back to its parent by using
416 dummy frame stack (`dummy_frame_addr' array).
418 FIXME: This whole concept is broken. You should be able to detect
419 a dummy stack frame *on the user's stack itself*. When you do,
420 then you know the format of that stack frame -- including its
421 saved SP register! There should *not* be a separate stack in the
429 sp = dummy_frame_addr [--dummy_frame_count];
431 /* restore all fpr's. */
432 for (ii = 1; ii <= 32; ++ii)
433 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
435 /* restore all gpr's */
436 for (ii=1; ii <= 32; ++ii) {
437 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
440 /* restore the rest of the registers. */
441 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
442 read_memory (sp-384-(ii*4),
443 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
445 read_memory (sp-(DUMMY_FRAME_SIZE-8),
446 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
448 /* when a dummy frame was being pushed, we had to decrement %sp first, in
449 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
450 one we should restore. Change it with the one we need. */
452 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
454 /* Now we can restore all registers. */
456 target_store_registers (-1);
458 flush_cached_frames ();
459 set_current_frame (create_new_frame (sp, pc));
463 /* pop the innermost frame, go back to the caller. */
468 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
469 struct aix_framedata fdata;
470 FRAME fr = get_current_frame ();
476 if (stop_stack_dummy && dummy_frame_count) {
481 /* figure out previous %pc value. If the function is frameless, it is
482 still in the link register, otherwise walk the frames and retrieve the
483 saved %pc value in the previous frame. */
485 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
486 function_frame_info (addr, &fdata);
488 prev_sp = read_memory_integer (sp, 4);
490 lr = read_register (LR_REGNUM);
492 lr = read_memory_integer (prev_sp+8, 4);
494 /* reset %pc value. */
495 write_register (PC_REGNUM, lr);
497 /* reset register values if any was saved earlier. */
498 addr = prev_sp - fdata.offset;
500 if (fdata.saved_gpr != -1)
501 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
502 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
506 if (fdata.saved_fpr != -1)
507 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
508 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
512 write_register (SP_REGNUM, prev_sp);
513 target_store_registers (-1);
514 flush_cached_frames ();
515 set_current_frame (create_new_frame (prev_sp, lr));
519 /* fixup the call sequence of a dummy function, with the real function address.
520 its argumets will be passed by gdb. */
523 fix_call_dummy(dummyname, pc, fun, nargs, type)
527 int nargs; /* not used */
528 int type; /* not used */
530 #define TOC_ADDR_OFFSET 20
531 #define TARGET_ADDR_OFFSET 28
534 CORE_ADDR target_addr;
538 tocvalue = find_toc_address (target_addr);
540 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
541 ii = (ii & 0xffff0000) | (tocvalue >> 16);
542 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
544 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
545 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
546 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
548 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
549 ii = (ii & 0xffff0000) | (target_addr >> 16);
550 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
552 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
553 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
554 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
558 /* return information about a function frame.
559 in struct aix_frameinfo fdata:
560 - frameless is TRUE, if function does not have a frame.
561 - nosavedpc is TRUE, if function does not save %pc value in its frame.
562 - offset is the number of bytes used in the frame to save registers.
563 - saved_gpr is the number of the first saved gpr.
564 - saved_fpr is the number of the first saved fpr.
565 - alloca_reg is the number of the register used for alloca() handling.
569 function_frame_info (pc, fdata)
571 struct aix_framedata *fdata;
574 register unsigned int op;
577 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
578 fdata->frameless = 1;
580 op = read_memory_integer (pc, 4);
581 if (op == 0x7c0802a6) { /* mflr r0 */
583 op = read_memory_integer (pc, 4);
584 fdata->nosavedpc = 0;
585 fdata->frameless = 0;
587 else /* else, pc is not saved */
588 fdata->nosavedpc = 1;
590 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
592 op = read_memory_integer (pc, 4);
593 fdata->frameless = 0;
596 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
598 op = read_memory_integer (pc, 4);
599 /* At this point, make sure this is not a trampoline function
600 (a function that simply calls another functions, and nothing else).
601 If the next is not a nop, this branch was part of the function
604 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
606 return; /* prologue is over */
607 fdata->frameless = 0;
610 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
611 pc += 4; /* store floating register double */
612 op = read_memory_integer (pc, 4);
613 fdata->frameless = 0;
616 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
618 fdata->saved_gpr = (op >> 21) & 0x1f;
621 tmp2 = (~0 &~ 0xffff) | tmp2;
625 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
626 if ( fdata->saved_fpr > 0)
627 fdata->saved_fpr = 32 - fdata->saved_fpr;
629 fdata->saved_fpr = -1;
631 fdata->offset = tmp2;
633 op = read_memory_integer (pc, 4);
634 fdata->frameless = 0;
637 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
638 (tmp == 0x9421) || /* stu r1, NUM(r1) */
639 (tmp == 0x93e1)) /* st r31, NUM(r1) */
643 /* gcc takes a short cut and uses this instruction to save r31 only. */
647 /* fatal ("Unrecognized prolog."); */
648 printf ("Unrecognized prolog!\n");
650 fdata->saved_gpr = 31;
653 tmp2 = - ((~0 &~ 0xffff) | tmp2);
654 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
655 if ( fdata->saved_fpr > 0)
656 fdata->saved_fpr = 32 - fdata->saved_fpr;
658 fdata->saved_fpr = -1;
660 fdata->offset = tmp2;
663 op = read_memory_integer (pc, 4);
664 fdata->frameless = 0;
667 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
668 pc += 4; /* l r30, ... */
669 op = read_memory_integer (pc, 4);
670 fdata->frameless = 0;
673 /* store parameters into stack */
675 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
676 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
677 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
678 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
680 pc += 4; /* store fpr double */
681 op = read_memory_integer (pc, 4);
682 fdata->frameless = 0;
685 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
686 fdata->alloca_reg = 31;
687 fdata->frameless = 0;
692 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
693 eight words of the argument list (that might be less than eight parameters if
694 some parameters occupy more than one word) are passed in r3..r11 registers.
695 float and double parameters are passed in fpr's, in addition to that. Rest of
696 the parameters if any are passed in user stack. There might be cases in which
697 half of the parameter is copied into registers, the other half is pushed into
700 If the function is returning a structure, then the return address is passed
701 in r3, then the first 7 words of the parametes can be passed in registers,
705 push_arguments (nargs, args, sp, struct_return, struct_addr)
710 CORE_ADDR struct_addr;
713 int argno; /* current argument number */
714 int argbytes; /* current argument byte */
715 char tmp_buffer [50];
717 int f_argno = 0; /* current floating point argno */
719 CORE_ADDR saved_sp, pc;
721 if ( dummy_frame_count <= 0)
722 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
724 /* The first eight words of ther arguments are passed in registers. Copy
727 If the function is returning a `struct', then the first word (which
728 will be passed in r3) is used for struct return address. In that
729 case we should advance one word and start from r4 register to copy
732 ii = struct_return ? 1 : 0;
734 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
736 arg = value_arg_coerce (args[argno]);
737 len = TYPE_LENGTH (VALUE_TYPE (arg));
739 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
741 /* floating point arguments are passed in fpr's, as well as gpr's.
742 There are 13 fpr's reserved for passing parameters. At this point
743 there is no way we would run out of them. */
747 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
749 memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
756 /* Argument takes more than one register. */
757 while (argbytes < len) {
759 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
760 memcpy (®isters[REGISTER_BYTE(ii+3)],
761 ((char*)VALUE_CONTENTS (arg))+argbytes,
762 (len - argbytes) > 4 ? 4 : len - argbytes);
766 goto ran_out_of_registers_for_arguments;
771 else { /* Argument can fit in one register. No problem. */
772 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
773 memcpy (®isters[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
778 ran_out_of_registers_for_arguments:
780 /* location for 8 parameters are always reserved. */
783 /* another six words for back chain, TOC register, link register, etc. */
786 /* if there are more arguments, allocate space for them in
787 the stack, then push them starting from the ninth one. */
789 if ((argno < nargs) || argbytes) {
794 space += ((len - argbytes + 3) & -4);
800 for (; jj < nargs; ++jj) {
801 val = value_arg_coerce (args[jj]);
802 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
805 /* add location required for the rest of the parameters */
806 space = (space + 7) & -8;
809 /* This is another instance we need to be concerned about securing our
810 stack space. If we write anything underneath %sp (r1), we might conflict
811 with the kernel who thinks he is free to use this area. So, update %sp
812 first before doing anything else. */
814 write_register (SP_REGNUM, sp);
816 /* if the last argument copied into the registers didn't fit there
817 completely, push the rest of it into stack. */
821 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
823 ii += ((len - argbytes + 3) & -4) / 4;
826 /* push the rest of the arguments into stack. */
827 for (; argno < nargs; ++argno) {
829 arg = value_arg_coerce (args[argno]);
830 len = TYPE_LENGTH (VALUE_TYPE (arg));
833 /* float types should be passed in fpr's, as well as in the stack. */
834 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
838 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
840 memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
845 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
846 ii += ((len + 3) & -4) / 4;
850 /* Secure stack areas first, before doing anything else. */
851 write_register (SP_REGNUM, sp);
853 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
854 read_memory (saved_sp, tmp_buffer, 24);
855 write_memory (sp, tmp_buffer, 24);
857 write_memory (sp, &saved_sp, 4); /* set back chain properly */
859 target_store_registers (-1);
863 /* a given return value in `regbuf' with a type `valtype', extract and copy its
864 value into `valbuf' */
867 extract_return_value (valtype, regbuf, valbuf)
868 struct type *valtype;
869 char regbuf[REGISTER_BYTES];
873 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
876 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
877 We need to truncate the return value into float size (4 byte) if
880 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
881 memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
882 TYPE_LENGTH (valtype));
884 memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
886 memcpy (valbuf, &ff, sizeof(float));
890 /* return value is copied starting from r3. */
891 memcpy (valbuf, ®buf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
895 /* keep structure return address in this variable.
896 FIXME: This is a horrid kludge which should not be allowed to continue
897 living. This only allows a single nested call to a structure-returning
900 CORE_ADDR rs6000_struct_return_address;
903 /* Indirect function calls use a piece of trampoline code to do context
904 switching, i.e. to set the new TOC table. Skip such code if we are on
905 its first instruction (as when we have single-stepped to here).
906 Result is desired PC to step until, or NULL if we are not in
910 skip_trampoline_code (pc)
913 register unsigned int ii, op;
915 static unsigned trampoline_code[] = {
916 0x800b0000, /* l r0,0x0(r11) */
917 0x90410014, /* st r2,0x14(r1) */
918 0x7c0903a6, /* mtctr r0 */
919 0x804b0004, /* l r2,0x4(r11) */
920 0x816b0008, /* l r11,0x8(r11) */
921 0x4e800420, /* bctr */
926 for (ii=0; trampoline_code[ii]; ++ii) {
927 op = read_memory_integer (pc + (ii*4), 4);
928 if (op != trampoline_code [ii])
931 ii = read_register (11); /* r11 holds destination addr */
932 pc = read_memory_integer (ii, 4); /* (r11) value */
937 /* Determines whether the function FI has a frame on the stack or not.
938 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
939 second argument of 0, and from the FRAME_SAVED_PC macro with a
940 second argument of 1. */
943 frameless_function_invocation (fi, pcsaved)
944 struct frame_info *fi;
947 CORE_ADDR func_start;
948 struct aix_framedata fdata;
950 if (fi->next != NULL)
951 /* Don't even think about framelessness except on the innermost frame. */
954 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
956 /* If we failed to find the start of the function, it is a mistake
957 to inspect the instructions. */
962 function_frame_info (func_start, &fdata);
963 return pcsaved ? fdata.nosavedpc : fdata.frameless;
967 /* If saved registers of frame FI are not known yet, read and cache them.
968 &FDATAP contains aix_framedata; TDATAP can be NULL,
969 in which case the framedata are read. */
972 frame_get_cache_fsr (fi, fdatap)
973 struct frame_info *fi;
974 struct aix_framedata *fdatap;
977 CORE_ADDR frame_addr;
978 struct aix_framedata work_fdata;
983 if (fdatap == NULL) {
984 fdatap = &work_fdata;
985 function_frame_info (get_pc_function_start (fi->pc), fdatap);
988 fi->cache_fsr = (struct frame_saved_regs *)
989 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
990 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
992 if (fi->prev && fi->prev->frame)
993 frame_addr = fi->prev->frame;
995 frame_addr = read_memory_integer (fi->frame, 4);
997 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
998 All fpr's from saved_fpr to fp31 are saved right underneath caller
999 stack pointer, starting from fp31 first. */
1001 if (fdatap->saved_fpr >= 0) {
1002 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1003 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1004 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1007 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1008 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1009 starting from r31 first. */
1011 if (fdatap->saved_gpr >= 0)
1012 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1013 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1016 /* Return the address of a frame. This is the inital %sp value when the frame
1017 was first allocated. For functions calling alloca(), it might be saved in
1018 an alloca register. */
1021 frame_initial_stack_address (fi)
1022 struct frame_info *fi;
1025 struct aix_framedata fdata;
1026 struct frame_info *callee_fi;
1028 /* if the initial stack pointer (frame address) of this frame is known,
1032 return fi->initial_sp;
1034 /* find out if this function is using an alloca register.. */
1036 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1038 /* if saved registers of this frame are not known yet, read and cache them. */
1041 frame_get_cache_fsr (fi, &fdata);
1043 /* If no alloca register used, then fi->frame is the value of the %sp for
1044 this frame, and it is good enough. */
1046 if (fdata.alloca_reg < 0) {
1047 fi->initial_sp = fi->frame;
1048 return fi->initial_sp;
1051 /* This function has an alloca register. If this is the top-most frame
1052 (with the lowest address), the value in alloca register is good. */
1055 return fi->initial_sp = read_register (fdata.alloca_reg);
1057 /* Otherwise, this is a caller frame. Callee has usually already saved
1058 registers, but there are exceptions (such as when the callee
1059 has no parameters). Find the address in which caller's alloca
1060 register is saved. */
1062 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1064 if (!callee_fi->cache_fsr)
1065 frame_get_cache_fsr (callee_fi, NULL);
1067 /* this is the address in which alloca register is saved. */
1069 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1071 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1072 return fi->initial_sp;
1075 /* Go look into deeper levels of the frame chain to see if any one of
1076 the callees has saved alloca register. */
1079 /* If alloca register was not saved, by the callee (or any of its callees)
1080 then the value in the register is still good. */
1082 return fi->initial_sp = read_register (fdata.alloca_reg);
1086 rs6000_frame_chain (thisframe)
1087 struct frame_info *thisframe;
1090 if (inside_entry_file ((thisframe)->pc))
1092 if (thisframe->signal_handler_caller)
1094 /* This was determined by experimentation on AIX 3.2. Perhaps
1095 it corresponds to some offset in /usr/include/sys/user.h or
1096 something like that. Using some system include file would
1097 have the advantage of probably being more robust in the face
1098 of OS upgrades, but the disadvantage of being wrong for
1101 #define SIG_FRAME_FP_OFFSET 284
1102 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1105 fp = read_memory_integer ((thisframe)->frame, 4);
1111 /* xcoff_relocate_symtab - hook for symbol table relocation.
1112 also reads shared libraries.. */
1114 xcoff_relocate_symtab (pid)
1117 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1119 struct ld_info *ldi;
1122 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1124 /* According to my humble theory, AIX has some timing problems and
1125 when the user stack grows, kernel doesn't update stack info in time
1126 and ptrace calls step on user stack. That is why we sleep here a little,
1127 and give kernel to update its internals. */
1132 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1133 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1135 perror_with_name ("ptrace ldinfo");
1142 /* We are allowed to assume CORE_ADDR == pointer. This code is
1144 add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg,
1145 (CORE_ADDR) ldi->ldinfo_dataorg);
1146 } while (ldi->ldinfo_next
1147 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1150 /* Now that we've jumbled things around, re-sort them. */
1151 sort_minimal_symbols ();
1154 /* relocate the exec and core sections as well. */
1158 /* Keep an array of load segment information and their TOC table addresses.
1159 This info will be useful when calling a shared library function by hand. */
1162 CORE_ADDR textorg, dataorg;
1163 unsigned long toc_offset;
1166 #define LOADINFOLEN 10
1168 static struct loadinfo *loadinfo = NULL;
1169 static int loadinfolen = 0;
1170 static int loadinfotocindex = 0;
1171 static int loadinfotextindex = 0;
1175 xcoff_init_loadinfo ()
1177 loadinfotocindex = 0;
1178 loadinfotextindex = 0;
1180 if (loadinfolen == 0) {
1181 loadinfo = (struct loadinfo *)
1182 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1183 loadinfolen = LOADINFOLEN;
1188 /* FIXME -- this is never called! */
1196 loadinfotocindex = 0;
1197 loadinfotextindex = 0;
1200 /* this is called from xcoffread.c */
1203 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1205 while (loadinfotocindex >= loadinfolen) {
1206 loadinfolen += LOADINFOLEN;
1207 loadinfo = (struct loadinfo *)
1208 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1210 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1215 add_text_to_loadinfo (textaddr, dataaddr)
1219 while (loadinfotextindex >= loadinfolen) {
1220 loadinfolen += LOADINFOLEN;
1221 loadinfo = (struct loadinfo *)
1222 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1224 loadinfo [loadinfotextindex].textorg = textaddr;
1225 loadinfo [loadinfotextindex].dataorg = dataaddr;
1226 ++loadinfotextindex;
1230 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1231 of a member of this array are correlated with the "toc_offset"
1232 element of the same member. But they are sequentially assigned in wildly
1233 different places, and probably there is no correlation. FIXME! */
1236 find_toc_address (pc)
1239 int ii, toc_entry, tocbase = 0;
1241 for (ii=0; ii < loadinfotextindex; ++ii)
1242 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1244 tocbase = loadinfo[ii].textorg;
1247 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;