1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
32 #include "arch-utils.h"
35 #include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
36 #include "coff/internal.h" /* for libcoff.h */
37 #include "bfd/libcoff.h" /* for xcoff_data */
43 /* If the kernel has to deliver a signal, it pushes a sigcontext
44 structure on the stack and then calls the signal handler, passing
45 the address of the sigcontext in an argument register. Usually
46 the signal handler doesn't save this register, so we have to
47 access the sigcontext structure via an offset from the signal handler
49 The following constants were determined by experimentation on AIX 3.2. */
50 #define SIG_FRAME_PC_OFFSET 96
51 #define SIG_FRAME_LR_OFFSET 108
52 #define SIG_FRAME_FP_OFFSET 284
54 /* To be used by skip_prologue. */
56 struct rs6000_framedata
58 int offset; /* total size of frame --- the distance
59 by which we decrement sp to allocate
61 int saved_gpr; /* smallest # of saved gpr */
62 int saved_fpr; /* smallest # of saved fpr */
63 int alloca_reg; /* alloca register number (frame ptr) */
64 char frameless; /* true if frameless functions. */
65 char nosavedpc; /* true if pc not saved. */
66 int gpr_offset; /* offset of saved gprs from prev sp */
67 int fpr_offset; /* offset of saved fprs from prev sp */
68 int lr_offset; /* offset of saved lr */
69 int cr_offset; /* offset of saved cr */
72 /* Description of a single register. */
76 char *name; /* name of register */
77 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
78 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
79 unsigned char fpr; /* whether register is floating-point */
82 /* Private data that this module attaches to struct gdbarch. */
86 int wordsize; /* size in bytes of fixed-point word */
87 int osabi; /* OS / ABI from ELF header */
88 int *regoff; /* byte offsets in register arrays */
89 const struct reg *regs; /* from current variant */
92 /* Return the current architecture's gdbarch_tdep structure. */
94 #define TDEP gdbarch_tdep (current_gdbarch)
96 /* Breakpoint shadows for the single step instructions will be kept here. */
98 static struct sstep_breaks
100 /* Address, or 0 if this is not in use. */
102 /* Shadow contents. */
107 /* Hook for determining the TOC address when calling functions in the
108 inferior under AIX. The initialization code in rs6000-nat.c sets
109 this hook to point to find_toc_address. */
111 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113 /* Hook to set the current architecture when starting a child process.
114 rs6000-nat.c sets this. */
116 void (*rs6000_set_host_arch_hook) (int) = NULL;
118 /* Static function prototypes */
120 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
123 struct rs6000_framedata *);
124 static void frame_get_saved_regs (struct frame_info * fi,
125 struct rs6000_framedata * fdatap);
126 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
128 /* Read a LEN-byte address from debugged memory address MEMADDR. */
131 read_memory_addr (CORE_ADDR memaddr, int len)
133 return read_memory_unsigned_integer (memaddr, len);
137 rs6000_skip_prologue (CORE_ADDR pc)
139 struct rs6000_framedata frame;
140 pc = skip_prologue (pc, 0, &frame);
145 /* Fill in fi->saved_regs */
147 struct frame_extra_info
149 /* Functions calling alloca() change the value of the stack
150 pointer. We need to use initial stack pointer (which is saved in
151 r31 by gcc) in such cases. If a compiler emits traceback table,
152 then we should use the alloca register specified in traceback
154 CORE_ADDR initial_sp; /* initial stack pointer. */
158 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
160 fi->extra_info = (struct frame_extra_info *)
161 frame_obstack_alloc (sizeof (struct frame_extra_info));
162 fi->extra_info->initial_sp = 0;
163 if (fi->next != (CORE_ADDR) 0
164 && fi->pc < TEXT_SEGMENT_BASE)
165 /* We're in get_prev_frame */
166 /* and this is a special signal frame. */
167 /* (fi->pc will be some low address in the kernel, */
168 /* to which the signal handler returns). */
169 fi->signal_handler_caller = 1;
172 /* Put here the code to store, into a struct frame_saved_regs,
173 the addresses of the saved registers of frame described by FRAME_INFO.
174 This includes special registers such as pc and fp saved in special
175 ways in the stack frame. sp is even more special:
176 the address we return for it IS the sp for the next frame. */
178 /* In this implementation for RS/6000, we do *not* save sp. I am
179 not sure if it will be needed. The following function takes care of gpr's
183 rs6000_frame_init_saved_regs (struct frame_info *fi)
185 frame_get_saved_regs (fi, NULL);
189 rs6000_frame_args_address (struct frame_info *fi)
191 if (fi->extra_info->initial_sp != 0)
192 return fi->extra_info->initial_sp;
194 return frame_initial_stack_address (fi);
197 /* Immediately after a function call, return the saved pc.
198 Can't go through the frames for this because on some machines
199 the new frame is not set up until the new function executes
200 some instructions. */
203 rs6000_saved_pc_after_call (struct frame_info *fi)
205 return read_register (PPC_LR_REGNUM);
208 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
211 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
218 absolute = (int) ((instr >> 1) & 1);
223 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
227 dest = pc + immediate;
231 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
235 dest = pc + immediate;
239 ext_op = (instr >> 1) & 0x3ff;
241 if (ext_op == 16) /* br conditional register */
243 dest = read_register (PPC_LR_REGNUM) & ~3;
245 /* If we are about to return from a signal handler, dest is
246 something like 0x3c90. The current frame is a signal handler
247 caller frame, upon completion of the sigreturn system call
248 execution will return to the saved PC in the frame. */
249 if (dest < TEXT_SEGMENT_BASE)
251 struct frame_info *fi;
253 fi = get_current_frame ();
255 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
260 else if (ext_op == 528) /* br cond to count reg */
262 dest = read_register (PPC_CTR_REGNUM) & ~3;
264 /* If we are about to execute a system call, dest is something
265 like 0x22fc or 0x3b00. Upon completion the system call
266 will return to the address in the link register. */
267 if (dest < TEXT_SEGMENT_BASE)
268 dest = read_register (PPC_LR_REGNUM) & ~3;
277 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
281 /* Sequence of bytes for breakpoint instruction. */
283 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
284 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
286 static unsigned char *
287 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
289 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
290 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
292 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
293 return big_breakpoint;
295 return little_breakpoint;
299 /* AIX does not support PT_STEP. Simulate it. */
302 rs6000_software_single_step (unsigned int signal, int insert_breakpoints_p)
304 #define INSNLEN(OPCODE) 4
306 static char le_breakp[] = LITTLE_BREAKPOINT;
307 static char be_breakp[] = BIG_BREAKPOINT;
308 char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
314 if (insert_breakpoints_p)
319 insn = read_memory_integer (loc, 4);
321 breaks[0] = loc + INSNLEN (insn);
323 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
325 /* Don't put two breakpoints on the same address. */
326 if (breaks[1] == breaks[0])
329 stepBreaks[1].address = 0;
331 for (ii = 0; ii < 2; ++ii)
334 /* ignore invalid breakpoint. */
335 if (breaks[ii] == -1)
338 read_memory (breaks[ii], stepBreaks[ii].data, 4);
340 write_memory (breaks[ii], breakp, 4);
341 stepBreaks[ii].address = breaks[ii];
348 /* remove step breakpoints. */
349 for (ii = 0; ii < 2; ++ii)
350 if (stepBreaks[ii].address != 0)
352 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
355 errno = 0; /* FIXME, don't ignore errors! */
356 /* What errors? {read,write}_memory call error(). */
360 /* return pc value after skipping a function prologue and also return
361 information about a function frame.
363 in struct rs6000_framedata fdata:
364 - frameless is TRUE, if function does not have a frame.
365 - nosavedpc is TRUE, if function does not save %pc value in its frame.
366 - offset is the initial size of this stack frame --- the amount by
367 which we decrement the sp to allocate the frame.
368 - saved_gpr is the number of the first saved gpr.
369 - saved_fpr is the number of the first saved fpr.
370 - alloca_reg is the number of the register used for alloca() handling.
372 - gpr_offset is the offset of the first saved gpr from the previous frame.
373 - fpr_offset is the offset of the first saved fpr from the previous frame.
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
378 #define SIGNED_SHORT(x) \
379 ((sizeof (short) == 2) \
380 ? ((int)(short)(x)) \
381 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
383 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
385 /* Limit the number of skipped non-prologue instructions, as the examining
386 of the prologue is expensive. */
387 static int max_skip_non_prologue_insns = 10;
389 /* Given PC representing the starting address of a function, and
390 LIM_PC which is the (sloppy) limit to which to scan when looking
391 for a prologue, attempt to further refine this limit by using
392 the line data in the symbol table. If successful, a better guess
393 on where the prologue ends is returned, otherwise the previous
394 value of lim_pc is returned. */
396 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
398 struct symtab_and_line prologue_sal;
400 prologue_sal = find_pc_line (pc, 0);
401 if (prologue_sal.line != 0)
404 CORE_ADDR addr = prologue_sal.end;
406 /* Handle the case in which compiler's optimizer/scheduler
407 has moved instructions into the prologue. We scan ahead
408 in the function looking for address ranges whose corresponding
409 line number is less than or equal to the first one that we
410 found for the function. (It can be less than when the
411 scheduler puts a body instruction before the first prologue
413 for (i = 2 * max_skip_non_prologue_insns;
414 i > 0 && (lim_pc == 0 || addr < lim_pc);
417 struct symtab_and_line sal;
419 sal = find_pc_line (addr, 0);
422 if (sal.line <= prologue_sal.line
423 && sal.symtab == prologue_sal.symtab)
430 if (lim_pc == 0 || prologue_sal.end < lim_pc)
431 lim_pc = prologue_sal.end;
438 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
440 CORE_ADDR orig_pc = pc;
441 CORE_ADDR last_prologue_pc = pc;
449 int minimal_toc_loaded = 0;
450 int prev_insn_was_prologue_insn = 1;
451 int num_skip_non_prologue_insns = 0;
453 /* Attempt to find the end of the prologue when no limit is specified.
454 Note that refine_prologue_limit() has been written so that it may
455 be used to "refine" the limits of non-zero PC values too, but this
456 is only safe if we 1) trust the line information provided by the
457 compiler and 2) iterate enough to actually find the end of the
460 It may become a good idea at some point (for both performance and
461 accuracy) to unconditionally call refine_prologue_limit(). But,
462 until we can make a clear determination that this is beneficial,
463 we'll play it safe and only use it to obtain a limit when none
464 has been specified. */
466 lim_pc = refine_prologue_limit (pc, lim_pc);
468 memset (fdata, 0, sizeof (struct rs6000_framedata));
469 fdata->saved_gpr = -1;
470 fdata->saved_fpr = -1;
471 fdata->alloca_reg = -1;
472 fdata->frameless = 1;
473 fdata->nosavedpc = 1;
477 /* Sometimes it isn't clear if an instruction is a prologue
478 instruction or not. When we encounter one of these ambiguous
479 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
480 Otherwise, we'll assume that it really is a prologue instruction. */
481 if (prev_insn_was_prologue_insn)
482 last_prologue_pc = pc;
484 /* Stop scanning if we've hit the limit. */
485 if (lim_pc != 0 && pc >= lim_pc)
488 prev_insn_was_prologue_insn = 1;
490 /* Fetch the instruction and convert it to an integer. */
491 if (target_read_memory (pc, buf, 4))
493 op = extract_signed_integer (buf, 4);
495 if ((op & 0xfc1fffff) == 0x7c0802a6)
497 lr_reg = (op & 0x03e00000) | 0x90010000;
501 else if ((op & 0xfc1fffff) == 0x7c000026)
503 cr_reg = (op & 0x03e00000) | 0x90010000;
507 else if ((op & 0xfc1f0000) == 0xd8010000)
508 { /* stfd Rx,NUM(r1) */
509 reg = GET_SRC_REG (op);
510 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
512 fdata->saved_fpr = reg;
513 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
518 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
519 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
520 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
521 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
524 reg = GET_SRC_REG (op);
525 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
527 fdata->saved_gpr = reg;
528 if ((op & 0xfc1f0003) == 0xf8010000)
530 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
535 else if ((op & 0xffff0000) == 0x60000000)
538 /* Allow nops in the prologue, but do not consider them to
539 be part of the prologue unless followed by other prologue
541 prev_insn_was_prologue_insn = 0;
545 else if ((op & 0xffff0000) == 0x3c000000)
546 { /* addis 0,0,NUM, used
548 fdata->offset = (op & 0x0000ffff) << 16;
549 fdata->frameless = 0;
553 else if ((op & 0xffff0000) == 0x60000000)
554 { /* ori 0,0,NUM, 2nd ha
555 lf of >= 32k frames */
556 fdata->offset |= (op & 0x0000ffff);
557 fdata->frameless = 0;
561 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
564 fdata->lr_offset = SIGNED_SHORT (op) + offset;
565 fdata->nosavedpc = 0;
570 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
573 fdata->cr_offset = SIGNED_SHORT (op) + offset;
578 else if (op == 0x48000005)
584 else if (op == 0x48000004)
589 else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
590 in V.4 -mrelocatable */
591 op == 0x7fc0f214) && /* add r30,r0,r30, used
592 in V.4 -mrelocatable */
593 lr_reg == 0x901e0000)
598 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
599 in V.4 -mminimal-toc */
600 (op & 0xffff0000) == 0x3bde0000)
601 { /* addi 30,30,foo@l */
605 else if ((op & 0xfc000001) == 0x48000001)
609 fdata->frameless = 0;
610 /* Don't skip over the subroutine call if it is not within the first
611 three instructions of the prologue. */
612 if ((pc - orig_pc) > 8)
615 op = read_memory_integer (pc + 4, 4);
617 /* At this point, make sure this is not a trampoline function
618 (a function that simply calls another functions, and nothing else).
619 If the next is not a nop, this branch was part of the function
622 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
623 break; /* don't skip over
627 /* update stack pointer */
629 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
630 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
632 fdata->frameless = 0;
633 if ((op & 0xffff0003) == 0xf8210001)
635 fdata->offset = SIGNED_SHORT (op);
636 offset = fdata->offset;
640 else if (op == 0x7c21016e)
642 fdata->frameless = 0;
643 offset = fdata->offset;
646 /* Load up minimal toc pointer */
648 else if ((op >> 22) == 0x20f
649 && !minimal_toc_loaded)
650 { /* l r31,... or l r30,... */
651 minimal_toc_loaded = 1;
654 /* move parameters from argument registers to local variable
657 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
658 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
659 (((op >> 21) & 31) <= 10) &&
660 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
664 /* store parameters in stack */
666 else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
667 (op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
669 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
673 /* store parameters in stack via frame pointer */
676 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
677 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
678 (op & 0xfc1f0000) == 0xfc1f0000))
679 { /* frsp, fp?,NUM(r1) */
682 /* Set up frame pointer */
684 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
687 fdata->frameless = 0;
689 fdata->alloca_reg = 31;
692 /* Another way to set up the frame pointer. */
694 else if ((op & 0xfc1fffff) == 0x38010000)
695 { /* addi rX, r1, 0x0 */
696 fdata->frameless = 0;
698 fdata->alloca_reg = (op & ~0x38010000) >> 21;
704 /* Not a recognized prologue instruction.
705 Handle optimizer code motions into the prologue by continuing
706 the search if we have no valid frame yet or if the return
707 address is not yet saved in the frame. */
708 if (fdata->frameless == 0
709 && (lr_reg == -1 || fdata->nosavedpc == 0))
712 if (op == 0x4e800020 /* blr */
713 || op == 0x4e800420) /* bctr */
714 /* Do not scan past epilogue in frameless functions or
717 if ((op & 0xf4000000) == 0x40000000) /* bxx */
718 /* Never skip branches. */
721 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
722 /* Do not scan too many insns, scanning insns is expensive with
726 /* Continue scanning. */
727 prev_insn_was_prologue_insn = 0;
733 /* I have problems with skipping over __main() that I need to address
734 * sometime. Previously, I used to use misc_function_vector which
735 * didn't work as well as I wanted to be. -MGO */
737 /* If the first thing after skipping a prolog is a branch to a function,
738 this might be a call to an initializer in main(), introduced by gcc2.
739 We'd like to skip over it as well. Fortunately, xlc does some extra
740 work before calling a function right after a prologue, thus we can
741 single out such gcc2 behaviour. */
744 if ((op & 0xfc000001) == 0x48000001)
745 { /* bl foo, an initializer function? */
746 op = read_memory_integer (pc + 4, 4);
748 if (op == 0x4def7b82)
749 { /* cror 0xf, 0xf, 0xf (nop) */
751 /* check and see if we are in main. If so, skip over this initializer
754 tmp = find_pc_misc_function (pc);
755 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
761 fdata->offset = -fdata->offset;
762 return last_prologue_pc;
766 /*************************************************************************
767 Support for creating pushing a dummy frame into the stack, and popping
769 *************************************************************************/
772 /* Pop the innermost frame, go back to the caller. */
775 rs6000_pop_frame (void)
777 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
778 struct rs6000_framedata fdata;
779 struct frame_info *frame = get_current_frame ();
783 sp = FRAME_FP (frame);
785 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
787 generic_pop_dummy_frame ();
788 flush_cached_frames ();
792 /* Make sure that all registers are valid. */
793 read_register_bytes (0, NULL, REGISTER_BYTES);
795 /* figure out previous %pc value. If the function is frameless, it is
796 still in the link register, otherwise walk the frames and retrieve the
797 saved %pc value in the previous frame. */
799 addr = get_pc_function_start (frame->pc);
800 (void) skip_prologue (addr, frame->pc, &fdata);
802 wordsize = TDEP->wordsize;
806 prev_sp = read_memory_addr (sp, wordsize);
807 if (fdata.lr_offset == 0)
808 lr = read_register (PPC_LR_REGNUM);
810 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
812 /* reset %pc value. */
813 write_register (PC_REGNUM, lr);
815 /* reset register values if any was saved earlier. */
817 if (fdata.saved_gpr != -1)
819 addr = prev_sp + fdata.gpr_offset;
820 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
822 read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize);
827 if (fdata.saved_fpr != -1)
829 addr = prev_sp + fdata.fpr_offset;
830 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
832 read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
837 write_register (SP_REGNUM, prev_sp);
838 target_store_registers (-1);
839 flush_cached_frames ();
842 /* Fixup the call sequence of a dummy function, with the real function
843 address. Its arguments will be passed by gdb. */
846 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
847 int nargs, value_ptr *args, struct type *type,
850 #define TOC_ADDR_OFFSET 20
851 #define TARGET_ADDR_OFFSET 28
854 CORE_ADDR target_addr;
856 if (rs6000_find_toc_address_hook != NULL)
858 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
859 write_register (PPC_TOC_REGNUM, tocvalue);
863 /* Pass the arguments in either registers, or in the stack. In RS/6000,
864 the first eight words of the argument list (that might be less than
865 eight parameters if some parameters occupy more than one word) are
866 passed in r3..r10 registers. float and double parameters are
867 passed in fpr's, in addition to that. Rest of the parameters if any
868 are passed in user stack. There might be cases in which half of the
869 parameter is copied into registers, the other half is pushed into
872 Stack must be aligned on 64-bit boundaries when synthesizing
875 If the function is returning a structure, then the return address is passed
876 in r3, then the first 7 words of the parameters can be passed in registers,
880 rs6000_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
881 int struct_return, CORE_ADDR struct_addr)
885 int argno; /* current argument number */
886 int argbytes; /* current argument byte */
888 int f_argno = 0; /* current floating point argno */
889 int wordsize = TDEP->wordsize;
896 /* The first eight words of ther arguments are passed in registers. Copy
899 If the function is returning a `struct', then the first word (which
900 will be passed in r3) is used for struct return address. In that
901 case we should advance one word and start from r4 register to copy
904 ii = struct_return ? 1 : 0;
907 effectively indirect call... gcc does...
909 return_val example( float, int);
912 float in fp0, int in r3
913 offset of stack on overflow 8/16
914 for varargs, must go by type.
916 float in r3&r4, int in r5
917 offset of stack on overflow different
919 return in r3 or f0. If no float, must study how gcc emulates floats;
920 pay attention to arg promotion.
921 User may have to cast\args to handle promotion correctly
922 since gdb won't know if prototype supplied or not.
925 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
927 int reg_size = REGISTER_RAW_SIZE (ii + 3);
930 type = check_typedef (VALUE_TYPE (arg));
931 len = TYPE_LENGTH (type);
933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
936 /* floating point arguments are passed in fpr's, as well as gpr's.
937 There are 13 fpr's reserved for passing parameters. At this point
938 there is no way we would run out of them. */
942 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
944 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
945 VALUE_CONTENTS (arg),
953 /* Argument takes more than one register. */
954 while (argbytes < len)
956 memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
957 memcpy (®isters[REGISTER_BYTE (ii + 3)],
958 ((char *) VALUE_CONTENTS (arg)) + argbytes,
959 (len - argbytes) > reg_size
960 ? reg_size : len - argbytes);
961 ++ii, argbytes += reg_size;
964 goto ran_out_of_registers_for_arguments;
970 { /* Argument can fit in one register. No problem. */
971 int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
972 memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
973 memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
974 VALUE_CONTENTS (arg), len);
979 ran_out_of_registers_for_arguments:
981 saved_sp = read_sp ();
982 #ifndef ELF_OBJECT_FORMAT
983 /* location for 8 parameters are always reserved. */
986 /* another six words for back chain, TOC register, link register, etc. */
989 /* stack pointer must be quadword aligned */
993 /* if there are more arguments, allocate space for them in
994 the stack, then push them starting from the ninth one. */
996 if ((argno < nargs) || argbytes)
1002 space += ((len - argbytes + 3) & -4);
1008 for (; jj < nargs; ++jj)
1010 value_ptr val = args[jj];
1011 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1014 /* add location required for the rest of the parameters */
1015 space = (space + 15) & -16;
1018 /* This is another instance we need to be concerned about securing our
1019 stack space. If we write anything underneath %sp (r1), we might conflict
1020 with the kernel who thinks he is free to use this area. So, update %sp
1021 first before doing anything else. */
1023 write_register (SP_REGNUM, sp);
1025 /* if the last argument copied into the registers didn't fit there
1026 completely, push the rest of it into stack. */
1030 write_memory (sp + 24 + (ii * 4),
1031 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1034 ii += ((len - argbytes + 3) & -4) / 4;
1037 /* push the rest of the arguments into stack. */
1038 for (; argno < nargs; ++argno)
1042 type = check_typedef (VALUE_TYPE (arg));
1043 len = TYPE_LENGTH (type);
1046 /* float types should be passed in fpr's, as well as in the stack. */
1047 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1052 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1054 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1055 VALUE_CONTENTS (arg),
1060 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1061 ii += ((len + 3) & -4) / 4;
1065 /* Secure stack areas first, before doing anything else. */
1066 write_register (SP_REGNUM, sp);
1068 /* set back chain properly */
1069 store_address (tmp_buffer, 4, saved_sp);
1070 write_memory (sp, tmp_buffer, 4);
1072 target_store_registers (-1);
1076 /* Function: ppc_push_return_address (pc, sp)
1077 Set up the return address for the inferior function call. */
1080 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1082 write_register (PPC_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1086 /* Extract a function return value of type TYPE from raw register array
1087 REGBUF, and copy that return value into VALBUF in virtual format. */
1090 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1094 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1099 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1100 We need to truncate the return value into float size (4 byte) if
1103 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1105 ®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
1106 TYPE_LENGTH (valtype));
1109 memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1111 memcpy (valbuf, &ff, sizeof (float));
1116 /* return value is copied starting from r3. */
1117 if (TARGET_BYTE_ORDER == BIG_ENDIAN
1118 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1119 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1122 regbuf + REGISTER_BYTE (3) + offset,
1123 TYPE_LENGTH (valtype));
1127 /* Keep structure return address in this variable.
1128 FIXME: This is a horrid kludge which should not be allowed to continue
1129 living. This only allows a single nested call to a structure-returning
1132 static CORE_ADDR rs6000_struct_return_address;
1134 /* Indirect function calls use a piece of trampoline code to do context
1135 switching, i.e. to set the new TOC table. Skip such code if we are on
1136 its first instruction (as when we have single-stepped to here).
1137 Also skip shared library trampoline code (which is different from
1138 indirect function call trampolines).
1139 Result is desired PC to step until, or NULL if we are not in
1143 rs6000_skip_trampoline_code (CORE_ADDR pc)
1145 register unsigned int ii, op;
1146 CORE_ADDR solib_target_pc;
1148 static unsigned trampoline_code[] =
1150 0x800b0000, /* l r0,0x0(r11) */
1151 0x90410014, /* st r2,0x14(r1) */
1152 0x7c0903a6, /* mtctr r0 */
1153 0x804b0004, /* l r2,0x4(r11) */
1154 0x816b0008, /* l r11,0x8(r11) */
1155 0x4e800420, /* bctr */
1156 0x4e800020, /* br */
1160 /* If pc is in a shared library trampoline, return its target. */
1161 solib_target_pc = find_solib_trampoline_target (pc);
1162 if (solib_target_pc)
1163 return solib_target_pc;
1165 for (ii = 0; trampoline_code[ii]; ++ii)
1167 op = read_memory_integer (pc + (ii * 4), 4);
1168 if (op != trampoline_code[ii])
1171 ii = read_register (11); /* r11 holds destination addr */
1172 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1176 /* Determines whether the function FI has a frame on the stack or not. */
1179 rs6000_frameless_function_invocation (struct frame_info *fi)
1181 CORE_ADDR func_start;
1182 struct rs6000_framedata fdata;
1184 /* Don't even think about framelessness except on the innermost frame
1185 or if the function was interrupted by a signal. */
1186 if (fi->next != NULL && !fi->next->signal_handler_caller)
1189 func_start = get_pc_function_start (fi->pc);
1191 /* If we failed to find the start of the function, it is a mistake
1192 to inspect the instructions. */
1196 /* A frame with a zero PC is usually created by dereferencing a NULL
1197 function pointer, normally causing an immediate core dump of the
1198 inferior. Mark function as frameless, as the inferior has no chance
1199 of setting up a stack frame. */
1206 (void) skip_prologue (func_start, fi->pc, &fdata);
1207 return fdata.frameless;
1210 /* Return the PC saved in a frame */
1213 rs6000_frame_saved_pc (struct frame_info *fi)
1215 CORE_ADDR func_start;
1216 struct rs6000_framedata fdata;
1217 int wordsize = TDEP->wordsize;
1219 if (fi->signal_handler_caller)
1220 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1222 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1223 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1225 func_start = get_pc_function_start (fi->pc);
1227 /* If we failed to find the start of the function, it is a mistake
1228 to inspect the instructions. */
1232 (void) skip_prologue (func_start, fi->pc, &fdata);
1234 if (fdata.lr_offset == 0 && fi->next != NULL)
1236 if (fi->next->signal_handler_caller)
1237 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1240 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1244 if (fdata.lr_offset == 0)
1245 return read_register (PPC_LR_REGNUM);
1247 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1250 /* If saved registers of frame FI are not known yet, read and cache them.
1251 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1252 in which case the framedata are read. */
1255 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1257 CORE_ADDR frame_addr;
1258 struct rs6000_framedata work_fdata;
1259 int wordsize = TDEP->wordsize;
1266 fdatap = &work_fdata;
1267 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1270 frame_saved_regs_zalloc (fi);
1272 /* If there were any saved registers, figure out parent's stack
1274 /* The following is true only if the frame doesn't have a call to
1277 if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
1278 && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
1280 else if (fi->prev && fi->prev->frame)
1281 frame_addr = fi->prev->frame;
1283 frame_addr = read_memory_addr (fi->frame, wordsize);
1285 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1286 All fpr's from saved_fpr to fp31 are saved. */
1288 if (fdatap->saved_fpr >= 0)
1291 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1292 for (i = fdatap->saved_fpr; i < 32; i++)
1294 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1299 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1300 All gpr's from saved_gpr to gpr31 are saved. */
1302 if (fdatap->saved_gpr >= 0)
1305 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1306 for (i = fdatap->saved_gpr; i < 32; i++)
1308 fi->saved_regs[i] = gpr_addr;
1309 gpr_addr += wordsize;
1313 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1315 if (fdatap->cr_offset != 0)
1316 fi->saved_regs[PPC_CR_REGNUM] = frame_addr + fdatap->cr_offset;
1318 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1320 if (fdatap->lr_offset != 0)
1321 fi->saved_regs[PPC_LR_REGNUM] = frame_addr + fdatap->lr_offset;
1324 /* Return the address of a frame. This is the inital %sp value when the frame
1325 was first allocated. For functions calling alloca(), it might be saved in
1326 an alloca register. */
1329 frame_initial_stack_address (struct frame_info *fi)
1332 struct rs6000_framedata fdata;
1333 struct frame_info *callee_fi;
1335 /* if the initial stack pointer (frame address) of this frame is known,
1338 if (fi->extra_info->initial_sp)
1339 return fi->extra_info->initial_sp;
1341 /* find out if this function is using an alloca register.. */
1343 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1345 /* if saved registers of this frame are not known yet, read and cache them. */
1347 if (!fi->saved_regs)
1348 frame_get_saved_regs (fi, &fdata);
1350 /* If no alloca register used, then fi->frame is the value of the %sp for
1351 this frame, and it is good enough. */
1353 if (fdata.alloca_reg < 0)
1355 fi->extra_info->initial_sp = fi->frame;
1356 return fi->extra_info->initial_sp;
1359 /* This function has an alloca register. If this is the top-most frame
1360 (with the lowest address), the value in alloca register is good. */
1363 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1365 /* Otherwise, this is a caller frame. Callee has usually already saved
1366 registers, but there are exceptions (such as when the callee
1367 has no parameters). Find the address in which caller's alloca
1368 register is saved. */
1370 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1373 if (!callee_fi->saved_regs)
1374 frame_get_saved_regs (callee_fi, NULL);
1376 /* this is the address in which alloca register is saved. */
1378 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1381 fi->extra_info->initial_sp =
1382 read_memory_addr (tmpaddr, TDEP->wordsize);
1383 return fi->extra_info->initial_sp;
1386 /* Go look into deeper levels of the frame chain to see if any one of
1387 the callees has saved alloca register. */
1390 /* If alloca register was not saved, by the callee (or any of its callees)
1391 then the value in the register is still good. */
1393 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1394 return fi->extra_info->initial_sp;
1397 /* Describe the pointer in each stack frame to the previous stack frame
1400 /* FRAME_CHAIN takes a frame's nominal address
1401 and produces the frame's chain-pointer. */
1403 /* In the case of the RS/6000, the frame's nominal address
1404 is the address of a 4-byte word containing the calling frame's address. */
1407 rs6000_frame_chain (struct frame_info *thisframe)
1409 CORE_ADDR fp, fpp, lr;
1410 int wordsize = TDEP->wordsize;
1412 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1413 return thisframe->frame; /* dummy frame same as caller's frame */
1415 if (inside_entry_file (thisframe->pc) ||
1416 thisframe->pc == entry_point_address ())
1419 if (thisframe->signal_handler_caller)
1420 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1422 else if (thisframe->next != NULL
1423 && thisframe->next->signal_handler_caller
1424 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1425 /* A frameless function interrupted by a signal did not change the
1427 fp = FRAME_FP (thisframe);
1429 fp = read_memory_addr ((thisframe)->frame, wordsize);
1431 lr = read_register (PPC_LR_REGNUM);
1432 if (lr == entry_point_address ())
1433 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1434 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1440 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1441 isn't available with that word size, return 0. */
1444 regsize (const struct reg *reg, int wordsize)
1446 return wordsize == 8 ? reg->sz64 : reg->sz32;
1449 /* Return the name of register number N, or null if no such register exists
1450 in the current architecture. */
1453 rs6000_register_name (int n)
1455 struct gdbarch_tdep *tdep = TDEP;
1456 const struct reg *reg = tdep->regs + n;
1458 if (!regsize (reg, tdep->wordsize))
1463 /* Index within `registers' of the first byte of the space for
1467 rs6000_register_byte (int n)
1469 return TDEP->regoff[n];
1472 /* Return the number of bytes of storage in the actual machine representation
1473 for register N if that register is available, else return 0. */
1476 rs6000_register_raw_size (int n)
1478 struct gdbarch_tdep *tdep = TDEP;
1479 const struct reg *reg = tdep->regs + n;
1480 return regsize (reg, tdep->wordsize);
1483 /* Number of bytes of storage in the program's representation
1487 rs6000_register_virtual_size (int n)
1489 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (n));
1492 /* Return the GDB type object for the "standard" data type
1493 of data in register N. */
1495 static struct type *
1496 rs6000_register_virtual_type (int n)
1498 struct gdbarch_tdep *tdep = TDEP;
1499 const struct reg *reg = tdep->regs + n;
1501 return reg->fpr ? builtin_type_double :
1502 regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 :
1506 /* For the PowerPC, it appears that the debug info marks float parameters as
1507 floats regardless of whether the function is prototyped, but the actual
1508 values are always passed in as doubles. Tell gdb to always assume that
1509 floats are passed as doubles and then converted in the callee. */
1512 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1517 /* Return whether register N requires conversion when moving from raw format
1520 The register format for RS/6000 floating point registers is always
1521 double, we need a conversion if the memory format is float. */
1524 rs6000_register_convertible (int n)
1526 const struct reg *reg = TDEP->regs + n;
1530 /* Convert data from raw format for register N in buffer FROM
1531 to virtual format with type TYPE in buffer TO. */
1534 rs6000_register_convert_to_virtual (int n, struct type *type,
1535 char *from, char *to)
1537 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1539 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1540 store_floating (to, TYPE_LENGTH (type), val);
1543 memcpy (to, from, REGISTER_RAW_SIZE (n));
1546 /* Convert data from virtual format with type TYPE in buffer FROM
1547 to raw format for register N in buffer TO. */
1550 rs6000_register_convert_to_raw (struct type *type, int n,
1551 char *from, char *to)
1553 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1555 double val = extract_floating (from, TYPE_LENGTH (type));
1556 store_floating (to, REGISTER_RAW_SIZE (n), val);
1559 memcpy (to, from, REGISTER_RAW_SIZE (n));
1562 /* Store the address of the place in which to copy the structure the
1563 subroutine will return. This is called from call_function.
1565 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1566 In function return, callee is not responsible of returning this address
1567 back. Since gdb needs to find it, we will store in a designated variable
1568 `rs6000_struct_return_address'. */
1571 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1573 write_register (3, addr);
1574 rs6000_struct_return_address = addr;
1577 /* Write into appropriate registers a function return value
1578 of type TYPE, given in virtual format. */
1581 rs6000_store_return_value (struct type *type, char *valbuf)
1583 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1585 /* Floating point values are returned starting from FPR1 and up.
1586 Say a double_double_double type could be returned in
1587 FPR1/FPR2/FPR3 triple. */
1589 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1590 TYPE_LENGTH (type));
1592 /* Everything else is returned in GPR3 and up. */
1593 write_register_bytes (REGISTER_BYTE (PPC_GP0_REGNUM + 3), valbuf,
1594 TYPE_LENGTH (type));
1597 /* Extract from an array REGBUF containing the (raw) register state
1598 the address in which a function should return its structure value,
1599 as a CORE_ADDR (or an expression that can be used as one). */
1602 rs6000_extract_struct_value_address (char *regbuf)
1604 return rs6000_struct_return_address;
1607 /* Return whether PC is in a dummy function call.
1609 FIXME: This just checks for the end of the stack, which is broken
1610 for things like stepping through gcc nested function stubs. */
1613 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1615 return sp < pc && pc < fp;
1618 /* Hook called when a new child process is started. */
1621 rs6000_create_inferior (int pid)
1623 if (rs6000_set_host_arch_hook)
1624 rs6000_set_host_arch_hook (pid);
1627 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1629 Usually a function pointer's representation is simply the address
1630 of the function. On the RS/6000 however, a function pointer is
1631 represented by a pointer to a TOC entry. This TOC entry contains
1632 three words, the first word is the address of the function, the
1633 second word is the TOC pointer (r2), and the third word is the
1634 static chain value. Throughout GDB it is currently assumed that a
1635 function pointer contains the address of the function, which is not
1636 easy to fix. In addition, the conversion of a function address to
1637 a function pointer would require allocation of a TOC entry in the
1638 inferior's memory space, with all its drawbacks. To be able to
1639 call C++ virtual methods in the inferior (which are called via
1640 function pointers), find_function_addr uses this function to get the
1641 function address from a function pointer. */
1643 /* Return real function address if ADDR (a function pointer) is in the data
1644 space and is therefore a special function pointer. */
1647 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1649 struct obj_section *s;
1651 s = find_pc_section (addr);
1652 if (s && s->the_bfd_section->flags & SEC_CODE)
1655 /* ADDR is in the data space, so it's a special function pointer. */
1656 return read_memory_addr (addr, TDEP->wordsize);
1660 /* Handling the various POWER/PowerPC variants. */
1663 /* The arrays here called registers_MUMBLE hold information about available
1666 For each family of PPC variants, I've tried to isolate out the
1667 common registers and put them up front, so that as long as you get
1668 the general family right, GDB will correctly identify the registers
1669 common to that family. The common register sets are:
1671 For the 60x family: hid0 hid1 iabr dabr pir
1673 For the 505 and 860 family: eie eid nri
1675 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1676 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1679 Most of these register groups aren't anything formal. I arrived at
1680 them by looking at the registers that occurred in more than one
1683 /* Convenience macros for populating register arrays. */
1685 /* Within another macro, convert S to a string. */
1689 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1690 and 64 bits on 64-bit systems. */
1691 #define R(name) { STR(name), 4, 8, 0 }
1693 /* Return a struct reg defining register NAME that's 32 bits on all
1695 #define R4(name) { STR(name), 4, 4, 0 }
1697 /* Return a struct reg defining register NAME that's 64 bits on all
1699 #define R8(name) { STR(name), 8, 8, 0 }
1701 /* Return a struct reg defining floating-point register NAME. */
1702 #define F(name) { STR(name), 8, 8, 1 }
1704 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1705 systems and that doesn't exist on 64-bit systems. */
1706 #define R32(name) { STR(name), 4, 0, 0 }
1708 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1709 systems and that doesn't exist on 32-bit systems. */
1710 #define R64(name) { STR(name), 0, 8, 0 }
1712 /* Return a struct reg placeholder for a register that doesn't exist. */
1713 #define R0 { 0, 0, 0, 0 }
1715 /* UISA registers common across all architectures, including POWER. */
1717 #define COMMON_UISA_REGS \
1718 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1719 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1720 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1721 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1722 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1723 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1724 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1725 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1726 /* 64 */ R(pc), R(ps)
1728 /* UISA-level SPRs for PowerPC. */
1729 #define PPC_UISA_SPRS \
1730 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
1732 /* Segment registers, for PowerPC. */
1733 #define PPC_SEGMENT_REGS \
1734 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1735 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1736 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1737 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1739 /* OEA SPRs for PowerPC. */
1740 #define PPC_OEA_SPRS \
1742 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1743 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1744 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1745 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1746 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1747 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1748 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1749 /* 116 */ R4(dec), R(dabr), R4(ear)
1751 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
1752 user-level SPR's. */
1753 static const struct reg registers_power[] =
1756 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
1759 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
1760 view of the PowerPC. */
1761 static const struct reg registers_powerpc[] =
1767 /* IBM PowerPC 403. */
1768 static const struct reg registers_403[] =
1774 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
1775 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
1776 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
1777 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
1778 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
1779 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
1782 /* IBM PowerPC 403GC. */
1783 static const struct reg registers_403GC[] =
1789 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
1790 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
1791 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
1792 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
1793 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
1794 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
1795 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
1796 /* 147 */ R(tbhu), R(tblu)
1799 /* Motorola PowerPC 505. */
1800 static const struct reg registers_505[] =
1806 /* 119 */ R(eie), R(eid), R(nri)
1809 /* Motorola PowerPC 860 or 850. */
1810 static const struct reg registers_860[] =
1816 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
1817 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
1818 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
1819 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
1820 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
1821 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
1822 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
1823 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
1824 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
1825 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
1826 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
1827 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
1830 /* Motorola PowerPC 601. Note that the 601 has different register numbers
1831 for reading and writing RTCU and RTCL. However, how one reads and writes a
1832 register is the stub's problem. */
1833 static const struct reg registers_601[] =
1839 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
1840 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
1843 /* Motorola PowerPC 602. */
1844 static const struct reg registers_602[] =
1850 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
1851 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
1852 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
1855 /* Motorola/IBM PowerPC 603 or 603e. */
1856 static const struct reg registers_603[] =
1862 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
1863 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
1864 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
1867 /* Motorola PowerPC 604 or 604e. */
1868 static const struct reg registers_604[] =
1874 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
1875 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
1876 /* 127 */ R(sia), R(sda)
1879 /* Motorola/IBM PowerPC 750 or 740. */
1880 static const struct reg registers_750[] =
1886 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
1887 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
1888 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
1889 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
1890 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
1891 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
1895 /* Information about a particular processor variant. */
1899 /* Name of this variant. */
1902 /* English description of the variant. */
1905 /* bfd_arch_info.arch corresponding to variant. */
1906 enum bfd_architecture arch;
1908 /* bfd_arch_info.mach corresponding to variant. */
1911 /* Table of register names; registers[R] is the name of the register
1914 const struct reg *regs;
1917 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
1920 /* Information in this table comes from the following web sites:
1921 IBM: http://www.chips.ibm.com:80/products/embedded/
1922 Motorola: http://www.mot.com/SPS/PowerPC/
1924 I'm sure I've got some of the variant descriptions not quite right.
1925 Please report any inaccuracies you find to GDB's maintainer.
1927 If you add entries to this table, please be sure to allow the new
1928 value as an argument to the --with-cpu flag, in configure.in. */
1930 static const struct variant variants[] =
1932 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
1933 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
1934 {"power", "POWER user-level", bfd_arch_rs6000,
1935 bfd_mach_rs6k, num_registers (registers_power), registers_power},
1936 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
1937 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
1938 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
1939 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
1940 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
1941 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
1942 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
1943 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
1944 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
1945 604, num_registers (registers_604), registers_604},
1946 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
1947 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
1948 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
1949 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
1950 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
1951 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
1952 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
1953 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
1955 /* FIXME: I haven't checked the register sets of the following. */
1956 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
1957 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
1958 {"a35", "PowerPC A35", bfd_arch_powerpc,
1959 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
1960 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
1961 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
1962 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
1963 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
1964 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
1965 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
1970 #undef num_registers
1972 /* Look up the variant named NAME in the `variants' table. Return a
1973 pointer to the struct variant, or null if we couldn't find it. */
1975 static const struct variant *
1976 find_variant_by_name (char *name)
1978 const struct variant *v;
1980 for (v = variants; v->name; v++)
1981 if (!strcmp (name, v->name))
1987 /* Return the variant corresponding to architecture ARCH and machine number
1988 MACH. If no such variant exists, return null. */
1990 static const struct variant *
1991 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
1993 const struct variant *v;
1995 for (v = variants; v->name; v++)
1996 if (arch == v->arch && mach == v->mach)
2006 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2008 int *os_ident_ptr = obj;
2010 unsigned int sectsize;
2012 name = bfd_get_section_name (abfd, sect);
2013 sectsize = bfd_section_size (abfd, sect);
2014 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2016 unsigned int name_length, data_length, note_type;
2017 char *note = alloca (sectsize);
2019 bfd_get_section_contents (abfd, sect, note,
2020 (file_ptr) 0, (bfd_size_type) sectsize);
2022 name_length = bfd_h_get_32 (abfd, note);
2023 data_length = bfd_h_get_32 (abfd, note + 4);
2024 note_type = bfd_h_get_32 (abfd, note + 8);
2026 if (name_length == 4 && data_length == 16 && note_type == 1
2027 && strcmp (note + 12, "GNU") == 0)
2029 int os_number = bfd_h_get_32 (abfd, note + 16);
2031 /* The case numbers are from abi-tags in glibc */
2035 *os_ident_ptr = ELFOSABI_LINUX;
2038 *os_ident_ptr = ELFOSABI_HURD;
2041 *os_ident_ptr = ELFOSABI_SOLARIS;
2044 internal_error (__FILE__, __LINE__,
2045 "process_note_abi_sections: unknown OS number %d",
2053 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2054 executables. If it's not an ELF executable or if the OS/ABI couldn't
2055 be determined, simply return -1. */
2058 get_elfosabi (bfd *abfd)
2062 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2064 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2066 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2067 that we're on a SYSV system. However, GNU/Linux uses a note section
2068 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2069 have to check the note sections too. */
2072 bfd_map_over_sections (abfd,
2073 process_note_abi_tag_sections,
2083 /* Initialize the current architecture based on INFO. If possible, re-use an
2084 architecture from ARCHES, which is a list of architectures already created
2085 during this debugging session.
2087 Called e.g. at program startup, when reading a core file, and when reading
2090 static struct gdbarch *
2091 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2093 struct gdbarch *gdbarch;
2094 struct gdbarch_tdep *tdep;
2095 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2097 const struct variant *v;
2098 enum bfd_architecture arch;
2101 int osabi, sysv_abi;
2103 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2104 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2106 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2107 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2109 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2111 osabi = get_elfosabi (info.abfd);
2113 /* Check word size. If INFO is from a binary file, infer it from that,
2114 else use the previously-inferred size. */
2115 if (from_xcoff_exec)
2117 if (xcoff_data (info.abfd)->xcoff64)
2122 else if (from_elf_exec)
2124 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2133 wordsize = tdep->wordsize;
2138 /* Find a candidate among extant architectures. */
2139 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2141 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2143 /* Word size in the various PowerPC bfd_arch_info structs isn't
2144 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2145 separate word size check. */
2146 tdep = gdbarch_tdep (arches->gdbarch);
2147 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2148 return arches->gdbarch;
2151 /* None found, create a new architecture from INFO, whose bfd_arch_info
2152 validity depends on the source:
2153 - executable useless
2154 - rs6000_host_arch() good
2156 - "set arch" trust blindly
2157 - GDB startup useless but harmless */
2159 if (!from_xcoff_exec)
2161 arch = info.bfd_architecture;
2162 mach = info.bfd_arch_info->mach;
2166 arch = bfd_arch_powerpc;
2168 bfd_default_set_arch_mach (&abfd, arch, mach);
2169 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2171 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2172 tdep->wordsize = wordsize;
2173 tdep->osabi = osabi;
2174 gdbarch = gdbarch_alloc (&info, tdep);
2175 power = arch == bfd_arch_rs6000;
2177 /* Select instruction printer. */
2178 tm_print_insn = arch == power ? print_insn_rs6000 :
2179 info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
2180 print_insn_little_powerpc;
2182 /* Choose variant. */
2183 v = find_variant_by_arch (arch, mach);
2185 v = find_variant_by_name (power ? "power" : "powerpc");
2186 tdep->regs = v->regs;
2188 /* Calculate byte offsets in raw register array. */
2189 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2190 for (i = off = 0; i < v->nregs; i++)
2192 tdep->regoff[i] = off;
2193 off += regsize (v->regs + i, wordsize);
2196 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2197 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2198 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2199 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2200 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2201 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2203 set_gdbarch_num_regs (gdbarch, v->nregs);
2204 set_gdbarch_sp_regnum (gdbarch, 1);
2205 set_gdbarch_fp_regnum (gdbarch, 1);
2206 set_gdbarch_pc_regnum (gdbarch, 64);
2207 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2208 set_gdbarch_register_size (gdbarch, wordsize);
2209 set_gdbarch_register_bytes (gdbarch, off);
2210 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2211 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2212 set_gdbarch_max_register_raw_size (gdbarch, 8);
2213 set_gdbarch_register_virtual_size (gdbarch, rs6000_register_virtual_size);
2214 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2215 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2217 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2218 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2219 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2220 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2221 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2222 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2223 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2224 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2226 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2227 set_gdbarch_call_dummy_length (gdbarch, 0);
2228 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2229 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2230 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2231 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2232 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2233 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2234 set_gdbarch_call_dummy_p (gdbarch, 1);
2235 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2236 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2237 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2238 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2239 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2240 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2241 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2242 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2244 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2245 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2246 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2248 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2251 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2253 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2255 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2256 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2257 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2258 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
2260 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2262 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2263 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2264 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2265 set_gdbarch_function_start_offset (gdbarch, 0);
2266 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2268 /* Not sure on this. FIXMEmgo */
2269 set_gdbarch_frame_args_skip (gdbarch, 8);
2271 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2272 if (osabi == ELFOSABI_LINUX)
2274 set_gdbarch_frameless_function_invocation (gdbarch,
2275 ppc_linux_frameless_function_invocation);
2276 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2277 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2279 set_gdbarch_frame_init_saved_regs (gdbarch,
2280 ppc_linux_frame_init_saved_regs);
2281 set_gdbarch_init_extra_frame_info (gdbarch,
2282 ppc_linux_init_extra_frame_info);
2284 set_gdbarch_memory_remove_breakpoint (gdbarch,
2285 ppc_linux_memory_remove_breakpoint);
2289 set_gdbarch_frameless_function_invocation (gdbarch,
2290 rs6000_frameless_function_invocation);
2291 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2292 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2294 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2295 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2297 /* Handle RS/6000 function pointers. */
2298 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2299 rs6000_convert_from_func_ptr_addr);
2301 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2302 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2303 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2305 /* We can't tell how many args there are
2306 now that the C compiler delays popping them. */
2307 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2312 /* Initialization code. */
2315 _initialize_rs6000_tdep (void)
2317 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2318 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);