1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "target-float.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
39 #include "tracepoint.h"
41 #include "user-regs.h"
43 #include "completer.h"
45 /* Definition of a user function. */
46 struct internal_function
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
54 internal_function_fn handler;
56 /* User data for the handler. */
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64 /* Lowest offset in the range. */
67 /* Length of the range. */
71 typedef struct range range_s;
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
95 range_lessthan (const range_s *r1, const range_s *r2)
97 return r1->offset < r2->offset;
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
109 what.offset = offset;
110 what.length = length;
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
122 |---| |---| |------| ... |--|
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
132 Then we need to check if the I range overlaps the I range itself.
137 |---| |---| |-------| ... |--|
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 if (i < VEC_length (range_s, ranges))
155 struct range *r = VEC_index (range_s, ranges, i);
157 if (ranges_overlap (r->offset, r->length, offset, length))
164 static struct cmd_list_element *functionlist;
166 /* Note that the fields in this structure are arranged to save a bit
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
201 /* If the value has been released. */
202 unsigned int released : 1;
204 /* Location of value (if lval). */
207 /* If lval == lval_memory, this is the address in the inferior */
210 /*If lval == lval_register, the value is from a register. */
213 /* Register number. */
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
235 /* Closure for those functions to use. */
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
245 /* Only used for bitfields; number of bits contained in them. */
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
263 struct value *parent;
265 /* Type of the value. */
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
343 get_value_arch (const struct value *value)
345 return get_type_arch (value_type (value));
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
351 gdb_assert (!value->lazy);
353 return !ranges_contain (value->unavailable, offset, length);
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
368 gdb_assert (!value->lazy);
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
374 value_entirely_available (struct value *value)
376 /* We can only tell whether the whole value is available when we try
379 value_fetch_lazy (value);
381 if (VEC_empty (range_s, value->unavailable))
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
397 value_fetch_lazy (value);
399 if (VEC_length (range_s, *ranges) == 1)
401 struct range *t = VEC_index (range_s, *ranges, 0);
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
413 value_entirely_unavailable (struct value *value)
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
419 value_entirely_optimized_out (struct value *value)
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
437 newr.offset = offset;
438 newr.length = length;
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
446 #1 - overlaps with previous
450 |---| |---| |------| ... |--|
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
463 #2 - contiguous with previous
467 |--| |---| |------| ... |--|
472 If there's no overlap with the previous range, as in:
474 #3 - not overlapping and not contiguous
478 |--| |---| |------| ... |--|
485 #4 - R is the range with lowest offset
489 |--| |---| |------| ... |--|
494 ... we just push the new range to I.
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
500 #5 - overlapping following ranges
503 |------------------------|
504 |--| |---| |------| ... |--|
513 |--| |---| |------| ... |--|
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
535 else if (offset == bef->offset + bef->length)
538 bef->length += length;
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
589 VEC_block_remove (range_s, *vectorp, next, removed);
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
651 gdb_byte mask, b1, b2;
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
661 if (length_bits < bits)
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
677 offset1_bits += bits;
678 offset2_bits += bits;
681 if (length_bits % TARGET_CHAR_BIT != 0)
685 gdb_byte mask, b1, b2;
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
725 /* Length is zero, regions match. */
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
733 struct ranges_and_idx
736 VEC(range_s) *ranges;
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
760 if (rp1->idx == -1 && rp2->idx == -1)
766 else if (rp1->idx == -1 || rp2->idx == -1)
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
841 for (i = 0; i < 2; i++)
843 ULONGEST l_tmp, h_tmp;
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
884 /* The value-history records all the values printed by print commands
885 during this session. */
887 static std::vector<value_ref_ptr> value_history;
890 /* List of all value objects currently allocated
891 (except for those released by calls to release_value)
892 This is so they can be freed after each command. */
894 static struct value *all_values;
896 /* Allocate a lazy value for type TYPE. Its actual content is
897 "lazily" allocated too: the content field of the return value is
898 NULL; it will be allocated when it is fetched from the target. */
901 allocate_value_lazy (struct type *type)
905 /* Call check_typedef on our type to make sure that, if TYPE
906 is a TYPE_CODE_TYPEDEF, its length is set to the length
907 of the target type instead of zero. However, we do not
908 replace the typedef type by the target type, because we want
909 to keep the typedef in order to be able to set the VAL's type
910 description correctly. */
911 check_typedef (type);
913 val = XCNEW (struct value);
914 val->contents = NULL;
915 val->next = all_values;
918 val->enclosing_type = type;
919 VALUE_LVAL (val) = not_lval;
920 val->location.address = 0;
925 val->embedded_offset = 0;
926 val->pointed_to_offset = 0;
928 val->initialized = 1; /* Default to initialized. */
930 /* Values start out on the all_values chain. */
931 val->reference_count = 1;
936 /* The maximum size, in bytes, that GDB will try to allocate for a value.
937 The initial value of 64k was not selected for any specific reason, it is
938 just a reasonable starting point. */
940 static int max_value_size = 65536; /* 64k bytes */
942 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
943 LONGEST, otherwise GDB will not be able to parse integer values from the
944 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
945 be unable to parse "set max-value-size 2".
947 As we want a consistent GDB experience across hosts with different sizes
948 of LONGEST, this arbitrary minimum value was selected, so long as this
949 is bigger than LONGEST on all GDB supported hosts we're fine. */
951 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
952 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
954 /* Implement the "set max-value-size" command. */
957 set_max_value_size (const char *args, int from_tty,
958 struct cmd_list_element *c)
960 gdb_assert (max_value_size == -1 || max_value_size >= 0);
962 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
964 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
965 error (_("max-value-size set too low, increasing to %d bytes"),
970 /* Implement the "show max-value-size" command. */
973 show_max_value_size (struct ui_file *file, int from_tty,
974 struct cmd_list_element *c, const char *value)
976 if (max_value_size == -1)
977 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
979 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
983 /* Called before we attempt to allocate or reallocate a buffer for the
984 contents of a value. TYPE is the type of the value for which we are
985 allocating the buffer. If the buffer is too large (based on the user
986 controllable setting) then throw an error. If this function returns
987 then we should attempt to allocate the buffer. */
990 check_type_length_before_alloc (const struct type *type)
992 unsigned int length = TYPE_LENGTH (type);
994 if (max_value_size > -1 && length > max_value_size)
996 if (TYPE_NAME (type) != NULL)
997 error (_("value of type `%s' requires %u bytes, which is more "
998 "than max-value-size"), TYPE_NAME (type), length);
1000 error (_("value requires %u bytes, which is more than "
1001 "max-value-size"), length);
1005 /* Allocate the contents of VAL if it has not been allocated yet. */
1008 allocate_value_contents (struct value *val)
1012 check_type_length_before_alloc (val->enclosing_type);
1014 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1018 /* Allocate a value and its contents for type TYPE. */
1021 allocate_value (struct type *type)
1023 struct value *val = allocate_value_lazy (type);
1025 allocate_value_contents (val);
1030 /* Allocate a value that has the correct length
1031 for COUNT repetitions of type TYPE. */
1034 allocate_repeat_value (struct type *type, int count)
1036 int low_bound = current_language->string_lower_bound; /* ??? */
1037 /* FIXME-type-allocation: need a way to free this type when we are
1039 struct type *array_type
1040 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1042 return allocate_value (array_type);
1046 allocate_computed_value (struct type *type,
1047 const struct lval_funcs *funcs,
1050 struct value *v = allocate_value_lazy (type);
1052 VALUE_LVAL (v) = lval_computed;
1053 v->location.computed.funcs = funcs;
1054 v->location.computed.closure = closure;
1059 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1062 allocate_optimized_out_value (struct type *type)
1064 struct value *retval = allocate_value_lazy (type);
1066 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1067 set_value_lazy (retval, 0);
1071 /* Accessor methods. */
1074 value_next (const struct value *value)
1080 value_type (const struct value *value)
1085 deprecated_set_value_type (struct value *value, struct type *type)
1091 value_offset (const struct value *value)
1093 return value->offset;
1096 set_value_offset (struct value *value, LONGEST offset)
1098 value->offset = offset;
1102 value_bitpos (const struct value *value)
1104 return value->bitpos;
1107 set_value_bitpos (struct value *value, LONGEST bit)
1109 value->bitpos = bit;
1113 value_bitsize (const struct value *value)
1115 return value->bitsize;
1118 set_value_bitsize (struct value *value, LONGEST bit)
1120 value->bitsize = bit;
1124 value_parent (const struct value *value)
1126 return value->parent;
1132 set_value_parent (struct value *value, struct value *parent)
1134 struct value *old = value->parent;
1136 value->parent = parent;
1138 value_incref (parent);
1143 value_contents_raw (struct value *value)
1145 struct gdbarch *arch = get_value_arch (value);
1146 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1148 allocate_value_contents (value);
1149 return value->contents + value->embedded_offset * unit_size;
1153 value_contents_all_raw (struct value *value)
1155 allocate_value_contents (value);
1156 return value->contents;
1160 value_enclosing_type (const struct value *value)
1162 return value->enclosing_type;
1165 /* Look at value.h for description. */
1168 value_actual_type (struct value *value, int resolve_simple_types,
1169 int *real_type_found)
1171 struct value_print_options opts;
1172 struct type *result;
1174 get_user_print_options (&opts);
1176 if (real_type_found)
1177 *real_type_found = 0;
1178 result = value_type (value);
1179 if (opts.objectprint)
1181 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1182 fetch its rtti type. */
1183 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1184 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1186 && !value_optimized_out (value))
1188 struct type *real_type;
1190 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1193 if (real_type_found)
1194 *real_type_found = 1;
1198 else if (resolve_simple_types)
1200 if (real_type_found)
1201 *real_type_found = 1;
1202 result = value_enclosing_type (value);
1210 error_value_optimized_out (void)
1212 error (_("value has been optimized out"));
1216 require_not_optimized_out (const struct value *value)
1218 if (!VEC_empty (range_s, value->optimized_out))
1220 if (value->lval == lval_register)
1221 error (_("register has not been saved in frame"));
1223 error_value_optimized_out ();
1228 require_available (const struct value *value)
1230 if (!VEC_empty (range_s, value->unavailable))
1231 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1235 value_contents_for_printing (struct value *value)
1238 value_fetch_lazy (value);
1239 return value->contents;
1243 value_contents_for_printing_const (const struct value *value)
1245 gdb_assert (!value->lazy);
1246 return value->contents;
1250 value_contents_all (struct value *value)
1252 const gdb_byte *result = value_contents_for_printing (value);
1253 require_not_optimized_out (value);
1254 require_available (value);
1258 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1259 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1262 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1263 VEC (range_s) *src_range, int src_bit_offset,
1269 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1273 l = std::max (r->offset, (LONGEST) src_bit_offset);
1274 h = std::min (r->offset + r->length,
1275 (LONGEST) src_bit_offset + bit_length);
1278 insert_into_bit_range_vector (dst_range,
1279 dst_bit_offset + (l - src_bit_offset),
1284 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1285 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1288 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1289 const struct value *src, int src_bit_offset,
1292 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1293 src->unavailable, src_bit_offset,
1295 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1296 src->optimized_out, src_bit_offset,
1300 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1301 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1302 contents, starting at DST_OFFSET. If unavailable contents are
1303 being copied from SRC, the corresponding DST contents are marked
1304 unavailable accordingly. Neither DST nor SRC may be lazy
1307 It is assumed the contents of DST in the [DST_OFFSET,
1308 DST_OFFSET+LENGTH) range are wholly available. */
1311 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1312 struct value *src, LONGEST src_offset, LONGEST length)
1314 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1315 struct gdbarch *arch = get_value_arch (src);
1316 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1318 /* A lazy DST would make that this copy operation useless, since as
1319 soon as DST's contents were un-lazied (by a later value_contents
1320 call, say), the contents would be overwritten. A lazy SRC would
1321 mean we'd be copying garbage. */
1322 gdb_assert (!dst->lazy && !src->lazy);
1324 /* The overwritten DST range gets unavailability ORed in, not
1325 replaced. Make sure to remember to implement replacing if it
1326 turns out actually necessary. */
1327 gdb_assert (value_bytes_available (dst, dst_offset, length));
1328 gdb_assert (!value_bits_any_optimized_out (dst,
1329 TARGET_CHAR_BIT * dst_offset,
1330 TARGET_CHAR_BIT * length));
1332 /* Copy the data. */
1333 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1334 value_contents_all_raw (src) + src_offset * unit_size,
1335 length * unit_size);
1337 /* Copy the meta-data, adjusted. */
1338 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1339 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1340 bit_length = length * unit_size * HOST_CHAR_BIT;
1342 value_ranges_copy_adjusted (dst, dst_bit_offset,
1343 src, src_bit_offset,
1347 /* Copy LENGTH bytes of SRC value's (all) contents
1348 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1349 (all) contents, starting at DST_OFFSET. If unavailable contents
1350 are being copied from SRC, the corresponding DST contents are
1351 marked unavailable accordingly. DST must not be lazy. If SRC is
1352 lazy, it will be fetched now.
1354 It is assumed the contents of DST in the [DST_OFFSET,
1355 DST_OFFSET+LENGTH) range are wholly available. */
1358 value_contents_copy (struct value *dst, LONGEST dst_offset,
1359 struct value *src, LONGEST src_offset, LONGEST length)
1362 value_fetch_lazy (src);
1364 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1368 value_lazy (const struct value *value)
1374 set_value_lazy (struct value *value, int val)
1380 value_stack (const struct value *value)
1382 return value->stack;
1386 set_value_stack (struct value *value, int val)
1392 value_contents (struct value *value)
1394 const gdb_byte *result = value_contents_writeable (value);
1395 require_not_optimized_out (value);
1396 require_available (value);
1401 value_contents_writeable (struct value *value)
1404 value_fetch_lazy (value);
1405 return value_contents_raw (value);
1409 value_optimized_out (struct value *value)
1411 /* We can only know if a value is optimized out once we have tried to
1413 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1417 value_fetch_lazy (value);
1419 CATCH (ex, RETURN_MASK_ERROR)
1421 /* Fall back to checking value->optimized_out. */
1426 return !VEC_empty (range_s, value->optimized_out);
1429 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1430 the following LENGTH bytes. */
1433 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1435 mark_value_bits_optimized_out (value,
1436 offset * TARGET_CHAR_BIT,
1437 length * TARGET_CHAR_BIT);
1443 mark_value_bits_optimized_out (struct value *value,
1444 LONGEST offset, LONGEST length)
1446 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1450 value_bits_synthetic_pointer (const struct value *value,
1451 LONGEST offset, LONGEST length)
1453 if (value->lval != lval_computed
1454 || !value->location.computed.funcs->check_synthetic_pointer)
1456 return value->location.computed.funcs->check_synthetic_pointer (value,
1462 value_embedded_offset (const struct value *value)
1464 return value->embedded_offset;
1468 set_value_embedded_offset (struct value *value, LONGEST val)
1470 value->embedded_offset = val;
1474 value_pointed_to_offset (const struct value *value)
1476 return value->pointed_to_offset;
1480 set_value_pointed_to_offset (struct value *value, LONGEST val)
1482 value->pointed_to_offset = val;
1485 const struct lval_funcs *
1486 value_computed_funcs (const struct value *v)
1488 gdb_assert (value_lval_const (v) == lval_computed);
1490 return v->location.computed.funcs;
1494 value_computed_closure (const struct value *v)
1496 gdb_assert (v->lval == lval_computed);
1498 return v->location.computed.closure;
1502 deprecated_value_lval_hack (struct value *value)
1504 return &value->lval;
1508 value_lval_const (const struct value *value)
1514 value_address (const struct value *value)
1516 if (value->lval != lval_memory)
1518 if (value->parent != NULL)
1519 return value_address (value->parent) + value->offset;
1520 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1522 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1523 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1526 return value->location.address + value->offset;
1530 value_raw_address (const struct value *value)
1532 if (value->lval != lval_memory)
1534 return value->location.address;
1538 set_value_address (struct value *value, CORE_ADDR addr)
1540 gdb_assert (value->lval == lval_memory);
1541 value->location.address = addr;
1544 struct internalvar **
1545 deprecated_value_internalvar_hack (struct value *value)
1547 return &value->location.internalvar;
1551 deprecated_value_next_frame_id_hack (struct value *value)
1553 gdb_assert (value->lval == lval_register);
1554 return &value->location.reg.next_frame_id;
1558 deprecated_value_regnum_hack (struct value *value)
1560 gdb_assert (value->lval == lval_register);
1561 return &value->location.reg.regnum;
1565 deprecated_value_modifiable (const struct value *value)
1567 return value->modifiable;
1570 /* Return a mark in the value chain. All values allocated after the
1571 mark is obtained (except for those released) are subject to being freed
1572 if a subsequent value_free_to_mark is passed the mark. */
1579 /* Take a reference to VAL. VAL will not be deallocated until all
1580 references are released. */
1583 value_incref (struct value *val)
1585 val->reference_count++;
1589 /* Release a reference to VAL, which was acquired with value_incref.
1590 This function is also called to deallocate values from the value
1594 value_decref (struct value *val)
1598 gdb_assert (val->reference_count > 0);
1599 val->reference_count--;
1600 if (val->reference_count > 0)
1603 /* If there's an associated parent value, drop our reference to
1605 if (val->parent != NULL)
1606 value_decref (val->parent);
1608 if (VALUE_LVAL (val) == lval_computed)
1610 const struct lval_funcs *funcs = val->location.computed.funcs;
1612 if (funcs->free_closure)
1613 funcs->free_closure (val);
1615 else if (VALUE_LVAL (val) == lval_xcallable)
1616 delete val->location.xm_worker;
1618 xfree (val->contents);
1619 VEC_free (range_s, val->unavailable);
1624 /* Free all values allocated since MARK was obtained by value_mark
1625 (except for those released). */
1627 value_free_to_mark (const struct value *mark)
1632 for (val = all_values; val && val != mark; val = next)
1641 /* Free all the values that have been allocated (except for those released).
1642 Call after each command, successful or not.
1643 In practice this is called before each command, which is sufficient. */
1646 free_all_values (void)
1651 for (val = all_values; val; val = next)
1661 /* Frees all the elements in a chain of values. */
1664 free_value_chain (struct value *v)
1670 next = value_next (v);
1675 /* Remove VAL from the chain all_values
1676 so it will not be freed automatically. */
1679 release_value (struct value *val)
1682 bool released = false;
1685 return value_ref_ptr ();
1687 if (all_values == val)
1689 all_values = val->next;
1695 for (v = all_values; v; v = v->next)
1699 v->next = val->next;
1709 /* We must always return an owned reference. Normally this
1710 happens because we transfer the reference from the value
1711 chain, but in this case the value was not on the chain. */
1715 return value_ref_ptr (val);
1718 /* Release all values up to mark */
1720 value_release_to_mark (const struct value *mark)
1725 for (val = next = all_values; next; next = next->next)
1727 if (next->next == mark)
1729 all_values = next->next;
1739 /* Return a copy of the value ARG.
1740 It contains the same contents, for same memory address,
1741 but it's a different block of storage. */
1744 value_copy (struct value *arg)
1746 struct type *encl_type = value_enclosing_type (arg);
1749 if (value_lazy (arg))
1750 val = allocate_value_lazy (encl_type);
1752 val = allocate_value (encl_type);
1753 val->type = arg->type;
1754 VALUE_LVAL (val) = VALUE_LVAL (arg);
1755 val->location = arg->location;
1756 val->offset = arg->offset;
1757 val->bitpos = arg->bitpos;
1758 val->bitsize = arg->bitsize;
1759 val->lazy = arg->lazy;
1760 val->embedded_offset = value_embedded_offset (arg);
1761 val->pointed_to_offset = arg->pointed_to_offset;
1762 val->modifiable = arg->modifiable;
1763 if (!value_lazy (val))
1765 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1766 TYPE_LENGTH (value_enclosing_type (arg)));
1769 val->unavailable = VEC_copy (range_s, arg->unavailable);
1770 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1771 set_value_parent (val, arg->parent);
1772 if (VALUE_LVAL (val) == lval_computed)
1774 const struct lval_funcs *funcs = val->location.computed.funcs;
1776 if (funcs->copy_closure)
1777 val->location.computed.closure = funcs->copy_closure (val);
1782 /* Return a "const" and/or "volatile" qualified version of the value V.
1783 If CNST is true, then the returned value will be qualified with
1785 if VOLTL is true, then the returned value will be qualified with
1789 make_cv_value (int cnst, int voltl, struct value *v)
1791 struct type *val_type = value_type (v);
1792 struct type *enclosing_type = value_enclosing_type (v);
1793 struct value *cv_val = value_copy (v);
1795 deprecated_set_value_type (cv_val,
1796 make_cv_type (cnst, voltl, val_type, NULL));
1797 set_value_enclosing_type (cv_val,
1798 make_cv_type (cnst, voltl, enclosing_type, NULL));
1803 /* Return a version of ARG that is non-lvalue. */
1806 value_non_lval (struct value *arg)
1808 if (VALUE_LVAL (arg) != not_lval)
1810 struct type *enc_type = value_enclosing_type (arg);
1811 struct value *val = allocate_value (enc_type);
1813 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1814 TYPE_LENGTH (enc_type));
1815 val->type = arg->type;
1816 set_value_embedded_offset (val, value_embedded_offset (arg));
1817 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1823 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1826 value_force_lval (struct value *v, CORE_ADDR addr)
1828 gdb_assert (VALUE_LVAL (v) == not_lval);
1830 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1831 v->lval = lval_memory;
1832 v->location.address = addr;
1836 set_value_component_location (struct value *component,
1837 const struct value *whole)
1841 gdb_assert (whole->lval != lval_xcallable);
1843 if (whole->lval == lval_internalvar)
1844 VALUE_LVAL (component) = lval_internalvar_component;
1846 VALUE_LVAL (component) = whole->lval;
1848 component->location = whole->location;
1849 if (whole->lval == lval_computed)
1851 const struct lval_funcs *funcs = whole->location.computed.funcs;
1853 if (funcs->copy_closure)
1854 component->location.computed.closure = funcs->copy_closure (whole);
1857 /* If type has a dynamic resolved location property
1858 update it's value address. */
1859 type = value_type (whole);
1860 if (NULL != TYPE_DATA_LOCATION (type)
1861 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1862 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1865 /* Access to the value history. */
1867 /* Record a new value in the value history.
1868 Returns the absolute history index of the entry. */
1871 record_latest_value (struct value *val)
1875 /* We don't want this value to have anything to do with the inferior anymore.
1876 In particular, "set $1 = 50" should not affect the variable from which
1877 the value was taken, and fast watchpoints should be able to assume that
1878 a value on the value history never changes. */
1879 if (value_lazy (val))
1880 value_fetch_lazy (val);
1881 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1882 from. This is a bit dubious, because then *&$1 does not just return $1
1883 but the current contents of that location. c'est la vie... */
1884 val->modifiable = 0;
1886 value_history.push_back (release_value (val));
1888 return value_history.size ();
1891 /* Return a copy of the value in the history with sequence number NUM. */
1894 access_value_history (int num)
1900 absnum += value_history.size ();
1905 error (_("The history is empty."));
1907 error (_("There is only one value in the history."));
1909 error (_("History does not go back to $$%d."), -num);
1911 if (absnum > value_history.size ())
1912 error (_("History has not yet reached $%d."), absnum);
1916 return value_copy (value_history[absnum].get ());
1920 show_values (const char *num_exp, int from_tty)
1928 /* "show values +" should print from the stored position.
1929 "show values <exp>" should print around value number <exp>. */
1930 if (num_exp[0] != '+' || num_exp[1] != '\0')
1931 num = parse_and_eval_long (num_exp) - 5;
1935 /* "show values" means print the last 10 values. */
1936 num = value_history.size () - 9;
1942 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1944 struct value_print_options opts;
1946 val = access_value_history (i);
1947 printf_filtered (("$%d = "), i);
1948 get_user_print_options (&opts);
1949 value_print (val, gdb_stdout, &opts);
1950 printf_filtered (("\n"));
1953 /* The next "show values +" should start after what we just printed. */
1956 /* Hitting just return after this command should do the same thing as
1957 "show values +". If num_exp is null, this is unnecessary, since
1958 "show values +" is not useful after "show values". */
1959 if (from_tty && num_exp)
1960 set_repeat_arguments ("+");
1963 enum internalvar_kind
1965 /* The internal variable is empty. */
1968 /* The value of the internal variable is provided directly as
1969 a GDB value object. */
1972 /* A fresh value is computed via a call-back routine on every
1973 access to the internal variable. */
1974 INTERNALVAR_MAKE_VALUE,
1976 /* The internal variable holds a GDB internal convenience function. */
1977 INTERNALVAR_FUNCTION,
1979 /* The variable holds an integer value. */
1980 INTERNALVAR_INTEGER,
1982 /* The variable holds a GDB-provided string. */
1986 union internalvar_data
1988 /* A value object used with INTERNALVAR_VALUE. */
1989 struct value *value;
1991 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1994 /* The functions to call. */
1995 const struct internalvar_funcs *functions;
1997 /* The function's user-data. */
2001 /* The internal function used with INTERNALVAR_FUNCTION. */
2004 struct internal_function *function;
2005 /* True if this is the canonical name for the function. */
2009 /* An integer value used with INTERNALVAR_INTEGER. */
2012 /* If type is non-NULL, it will be used as the type to generate
2013 a value for this internal variable. If type is NULL, a default
2014 integer type for the architecture is used. */
2019 /* A string value used with INTERNALVAR_STRING. */
2023 /* Internal variables. These are variables within the debugger
2024 that hold values assigned by debugger commands.
2025 The user refers to them with a '$' prefix
2026 that does not appear in the variable names stored internally. */
2030 struct internalvar *next;
2033 /* We support various different kinds of content of an internal variable.
2034 enum internalvar_kind specifies the kind, and union internalvar_data
2035 provides the data associated with this particular kind. */
2037 enum internalvar_kind kind;
2039 union internalvar_data u;
2042 static struct internalvar *internalvars;
2044 /* If the variable does not already exist create it and give it the
2045 value given. If no value is given then the default is zero. */
2047 init_if_undefined_command (const char* args, int from_tty)
2049 struct internalvar* intvar;
2051 /* Parse the expression - this is taken from set_command(). */
2052 expression_up expr = parse_expression (args);
2054 /* Validate the expression.
2055 Was the expression an assignment?
2056 Or even an expression at all? */
2057 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2058 error (_("Init-if-undefined requires an assignment expression."));
2060 /* Extract the variable from the parsed expression.
2061 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2062 if (expr->elts[1].opcode != OP_INTERNALVAR)
2063 error (_("The first parameter to init-if-undefined "
2064 "should be a GDB variable."));
2065 intvar = expr->elts[2].internalvar;
2067 /* Only evaluate the expression if the lvalue is void.
2068 This may still fail if the expresssion is invalid. */
2069 if (intvar->kind == INTERNALVAR_VOID)
2070 evaluate_expression (expr.get ());
2074 /* Look up an internal variable with name NAME. NAME should not
2075 normally include a dollar sign.
2077 If the specified internal variable does not exist,
2078 the return value is NULL. */
2080 struct internalvar *
2081 lookup_only_internalvar (const char *name)
2083 struct internalvar *var;
2085 for (var = internalvars; var; var = var->next)
2086 if (strcmp (var->name, name) == 0)
2092 /* Complete NAME by comparing it to the names of internal
2096 complete_internalvar (completion_tracker &tracker, const char *name)
2098 struct internalvar *var;
2101 len = strlen (name);
2103 for (var = internalvars; var; var = var->next)
2104 if (strncmp (var->name, name, len) == 0)
2106 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2108 tracker.add_completion (std::move (copy));
2112 /* Create an internal variable with name NAME and with a void value.
2113 NAME should not normally include a dollar sign. */
2115 struct internalvar *
2116 create_internalvar (const char *name)
2118 struct internalvar *var = XNEW (struct internalvar);
2120 var->name = concat (name, (char *)NULL);
2121 var->kind = INTERNALVAR_VOID;
2122 var->next = internalvars;
2127 /* Create an internal variable with name NAME and register FUN as the
2128 function that value_of_internalvar uses to create a value whenever
2129 this variable is referenced. NAME should not normally include a
2130 dollar sign. DATA is passed uninterpreted to FUN when it is
2131 called. CLEANUP, if not NULL, is called when the internal variable
2132 is destroyed. It is passed DATA as its only argument. */
2134 struct internalvar *
2135 create_internalvar_type_lazy (const char *name,
2136 const struct internalvar_funcs *funcs,
2139 struct internalvar *var = create_internalvar (name);
2141 var->kind = INTERNALVAR_MAKE_VALUE;
2142 var->u.make_value.functions = funcs;
2143 var->u.make_value.data = data;
2147 /* See documentation in value.h. */
2150 compile_internalvar_to_ax (struct internalvar *var,
2151 struct agent_expr *expr,
2152 struct axs_value *value)
2154 if (var->kind != INTERNALVAR_MAKE_VALUE
2155 || var->u.make_value.functions->compile_to_ax == NULL)
2158 var->u.make_value.functions->compile_to_ax (var, expr, value,
2159 var->u.make_value.data);
2163 /* Look up an internal variable with name NAME. NAME should not
2164 normally include a dollar sign.
2166 If the specified internal variable does not exist,
2167 one is created, with a void value. */
2169 struct internalvar *
2170 lookup_internalvar (const char *name)
2172 struct internalvar *var;
2174 var = lookup_only_internalvar (name);
2178 return create_internalvar (name);
2181 /* Return current value of internal variable VAR. For variables that
2182 are not inherently typed, use a value type appropriate for GDBARCH. */
2185 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2188 struct trace_state_variable *tsv;
2190 /* If there is a trace state variable of the same name, assume that
2191 is what we really want to see. */
2192 tsv = find_trace_state_variable (var->name);
2195 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2197 if (tsv->value_known)
2198 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2201 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2207 case INTERNALVAR_VOID:
2208 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2211 case INTERNALVAR_FUNCTION:
2212 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2215 case INTERNALVAR_INTEGER:
2216 if (!var->u.integer.type)
2217 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2218 var->u.integer.val);
2220 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2223 case INTERNALVAR_STRING:
2224 val = value_cstring (var->u.string, strlen (var->u.string),
2225 builtin_type (gdbarch)->builtin_char);
2228 case INTERNALVAR_VALUE:
2229 val = value_copy (var->u.value);
2230 if (value_lazy (val))
2231 value_fetch_lazy (val);
2234 case INTERNALVAR_MAKE_VALUE:
2235 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2236 var->u.make_value.data);
2240 internal_error (__FILE__, __LINE__, _("bad kind"));
2243 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2244 on this value go back to affect the original internal variable.
2246 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2247 no underlying modifyable state in the internal variable.
2249 Likewise, if the variable's value is a computed lvalue, we want
2250 references to it to produce another computed lvalue, where
2251 references and assignments actually operate through the
2252 computed value's functions.
2254 This means that internal variables with computed values
2255 behave a little differently from other internal variables:
2256 assignments to them don't just replace the previous value
2257 altogether. At the moment, this seems like the behavior we
2260 if (var->kind != INTERNALVAR_MAKE_VALUE
2261 && val->lval != lval_computed)
2263 VALUE_LVAL (val) = lval_internalvar;
2264 VALUE_INTERNALVAR (val) = var;
2271 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2273 if (var->kind == INTERNALVAR_INTEGER)
2275 *result = var->u.integer.val;
2279 if (var->kind == INTERNALVAR_VALUE)
2281 struct type *type = check_typedef (value_type (var->u.value));
2283 if (TYPE_CODE (type) == TYPE_CODE_INT)
2285 *result = value_as_long (var->u.value);
2294 get_internalvar_function (struct internalvar *var,
2295 struct internal_function **result)
2299 case INTERNALVAR_FUNCTION:
2300 *result = var->u.fn.function;
2309 set_internalvar_component (struct internalvar *var,
2310 LONGEST offset, LONGEST bitpos,
2311 LONGEST bitsize, struct value *newval)
2314 struct gdbarch *arch;
2319 case INTERNALVAR_VALUE:
2320 addr = value_contents_writeable (var->u.value);
2321 arch = get_value_arch (var->u.value);
2322 unit_size = gdbarch_addressable_memory_unit_size (arch);
2325 modify_field (value_type (var->u.value), addr + offset,
2326 value_as_long (newval), bitpos, bitsize);
2328 memcpy (addr + offset * unit_size, value_contents (newval),
2329 TYPE_LENGTH (value_type (newval)));
2333 /* We can never get a component of any other kind. */
2334 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2339 set_internalvar (struct internalvar *var, struct value *val)
2341 enum internalvar_kind new_kind;
2342 union internalvar_data new_data = { 0 };
2344 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2345 error (_("Cannot overwrite convenience function %s"), var->name);
2347 /* Prepare new contents. */
2348 switch (TYPE_CODE (check_typedef (value_type (val))))
2350 case TYPE_CODE_VOID:
2351 new_kind = INTERNALVAR_VOID;
2354 case TYPE_CODE_INTERNAL_FUNCTION:
2355 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2356 new_kind = INTERNALVAR_FUNCTION;
2357 get_internalvar_function (VALUE_INTERNALVAR (val),
2358 &new_data.fn.function);
2359 /* Copies created here are never canonical. */
2363 new_kind = INTERNALVAR_VALUE;
2364 new_data.value = value_copy (val);
2365 new_data.value->modifiable = 1;
2367 /* Force the value to be fetched from the target now, to avoid problems
2368 later when this internalvar is referenced and the target is gone or
2370 if (value_lazy (new_data.value))
2371 value_fetch_lazy (new_data.value);
2373 /* Release the value from the value chain to prevent it from being
2374 deleted by free_all_values. From here on this function should not
2375 call error () until new_data is installed into the var->u to avoid
2377 release_value (new_data.value).release ();
2379 /* Internal variables which are created from values with a dynamic
2380 location don't need the location property of the origin anymore.
2381 The resolved dynamic location is used prior then any other address
2382 when accessing the value.
2383 If we keep it, we would still refer to the origin value.
2384 Remove the location property in case it exist. */
2385 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2390 /* Clean up old contents. */
2391 clear_internalvar (var);
2394 var->kind = new_kind;
2396 /* End code which must not call error(). */
2400 set_internalvar_integer (struct internalvar *var, LONGEST l)
2402 /* Clean up old contents. */
2403 clear_internalvar (var);
2405 var->kind = INTERNALVAR_INTEGER;
2406 var->u.integer.type = NULL;
2407 var->u.integer.val = l;
2411 set_internalvar_string (struct internalvar *var, const char *string)
2413 /* Clean up old contents. */
2414 clear_internalvar (var);
2416 var->kind = INTERNALVAR_STRING;
2417 var->u.string = xstrdup (string);
2421 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2423 /* Clean up old contents. */
2424 clear_internalvar (var);
2426 var->kind = INTERNALVAR_FUNCTION;
2427 var->u.fn.function = f;
2428 var->u.fn.canonical = 1;
2429 /* Variables installed here are always the canonical version. */
2433 clear_internalvar (struct internalvar *var)
2435 /* Clean up old contents. */
2438 case INTERNALVAR_VALUE:
2439 value_decref (var->u.value);
2442 case INTERNALVAR_STRING:
2443 xfree (var->u.string);
2446 case INTERNALVAR_MAKE_VALUE:
2447 if (var->u.make_value.functions->destroy != NULL)
2448 var->u.make_value.functions->destroy (var->u.make_value.data);
2455 /* Reset to void kind. */
2456 var->kind = INTERNALVAR_VOID;
2460 internalvar_name (const struct internalvar *var)
2465 static struct internal_function *
2466 create_internal_function (const char *name,
2467 internal_function_fn handler, void *cookie)
2469 struct internal_function *ifn = XNEW (struct internal_function);
2471 ifn->name = xstrdup (name);
2472 ifn->handler = handler;
2473 ifn->cookie = cookie;
2478 value_internal_function_name (struct value *val)
2480 struct internal_function *ifn;
2483 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2484 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2485 gdb_assert (result);
2491 call_internal_function (struct gdbarch *gdbarch,
2492 const struct language_defn *language,
2493 struct value *func, int argc, struct value **argv)
2495 struct internal_function *ifn;
2498 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2499 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2500 gdb_assert (result);
2502 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2505 /* The 'function' command. This does nothing -- it is just a
2506 placeholder to let "help function NAME" work. This is also used as
2507 the implementation of the sub-command that is created when
2508 registering an internal function. */
2510 function_command (const char *command, int from_tty)
2515 /* Clean up if an internal function's command is destroyed. */
2517 function_destroyer (struct cmd_list_element *self, void *ignore)
2519 xfree ((char *) self->name);
2520 xfree ((char *) self->doc);
2523 /* Add a new internal function. NAME is the name of the function; DOC
2524 is a documentation string describing the function. HANDLER is
2525 called when the function is invoked. COOKIE is an arbitrary
2526 pointer which is passed to HANDLER and is intended for "user
2529 add_internal_function (const char *name, const char *doc,
2530 internal_function_fn handler, void *cookie)
2532 struct cmd_list_element *cmd;
2533 struct internal_function *ifn;
2534 struct internalvar *var = lookup_internalvar (name);
2536 ifn = create_internal_function (name, handler, cookie);
2537 set_internalvar_function (var, ifn);
2539 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2541 cmd->destroyer = function_destroyer;
2544 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2545 prevent cycles / duplicates. */
2548 preserve_one_value (struct value *value, struct objfile *objfile,
2549 htab_t copied_types)
2551 if (TYPE_OBJFILE (value->type) == objfile)
2552 value->type = copy_type_recursive (objfile, value->type, copied_types);
2554 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2555 value->enclosing_type = copy_type_recursive (objfile,
2556 value->enclosing_type,
2560 /* Likewise for internal variable VAR. */
2563 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2564 htab_t copied_types)
2568 case INTERNALVAR_INTEGER:
2569 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2571 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2574 case INTERNALVAR_VALUE:
2575 preserve_one_value (var->u.value, objfile, copied_types);
2580 /* Update the internal variables and value history when OBJFILE is
2581 discarded; we must copy the types out of the objfile. New global types
2582 will be created for every convenience variable which currently points to
2583 this objfile's types, and the convenience variables will be adjusted to
2584 use the new global types. */
2587 preserve_values (struct objfile *objfile)
2589 htab_t copied_types;
2590 struct internalvar *var;
2593 /* Create the hash table. We allocate on the objfile's obstack, since
2594 it is soon to be deleted. */
2595 copied_types = create_copied_types_hash (objfile);
2597 for (const value_ref_ptr &item : value_history)
2598 preserve_one_value (item.get (), objfile, copied_types);
2600 for (var = internalvars; var; var = var->next)
2601 preserve_one_internalvar (var, objfile, copied_types);
2603 preserve_ext_lang_values (objfile, copied_types);
2605 htab_delete (copied_types);
2609 show_convenience (const char *ignore, int from_tty)
2611 struct gdbarch *gdbarch = get_current_arch ();
2612 struct internalvar *var;
2614 struct value_print_options opts;
2616 get_user_print_options (&opts);
2617 for (var = internalvars; var; var = var->next)
2624 printf_filtered (("$%s = "), var->name);
2630 val = value_of_internalvar (gdbarch, var);
2631 value_print (val, gdb_stdout, &opts);
2633 CATCH (ex, RETURN_MASK_ERROR)
2635 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2639 printf_filtered (("\n"));
2643 /* This text does not mention convenience functions on purpose.
2644 The user can't create them except via Python, and if Python support
2645 is installed this message will never be printed ($_streq will
2647 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2648 "Convenience variables have "
2649 "names starting with \"$\";\n"
2650 "use \"set\" as in \"set "
2651 "$foo = 5\" to define them.\n"));
2659 value_from_xmethod (xmethod_worker_up &&worker)
2663 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2664 v->lval = lval_xcallable;
2665 v->location.xm_worker = worker.release ();
2671 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2674 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2676 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2677 && method->lval == lval_xcallable && argc > 0);
2679 return method->location.xm_worker->get_result_type
2680 (argv[0], argv + 1, argc - 1);
2683 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2686 call_xmethod (struct value *method, int argc, struct value **argv)
2688 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2689 && method->lval == lval_xcallable && argc > 0);
2691 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
2694 /* Extract a value as a C number (either long or double).
2695 Knows how to convert fixed values to double, or
2696 floating values to long.
2697 Does not deallocate the value. */
2700 value_as_long (struct value *val)
2702 /* This coerces arrays and functions, which is necessary (e.g.
2703 in disassemble_command). It also dereferences references, which
2704 I suspect is the most logical thing to do. */
2705 val = coerce_array (val);
2706 return unpack_long (value_type (val), value_contents (val));
2709 /* Extract a value as a C pointer. Does not deallocate the value.
2710 Note that val's type may not actually be a pointer; value_as_long
2711 handles all the cases. */
2713 value_as_address (struct value *val)
2715 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2717 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2718 whether we want this to be true eventually. */
2720 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2721 non-address (e.g. argument to "signal", "info break", etc.), or
2722 for pointers to char, in which the low bits *are* significant. */
2723 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2726 /* There are several targets (IA-64, PowerPC, and others) which
2727 don't represent pointers to functions as simply the address of
2728 the function's entry point. For example, on the IA-64, a
2729 function pointer points to a two-word descriptor, generated by
2730 the linker, which contains the function's entry point, and the
2731 value the IA-64 "global pointer" register should have --- to
2732 support position-independent code. The linker generates
2733 descriptors only for those functions whose addresses are taken.
2735 On such targets, it's difficult for GDB to convert an arbitrary
2736 function address into a function pointer; it has to either find
2737 an existing descriptor for that function, or call malloc and
2738 build its own. On some targets, it is impossible for GDB to
2739 build a descriptor at all: the descriptor must contain a jump
2740 instruction; data memory cannot be executed; and code memory
2743 Upon entry to this function, if VAL is a value of type `function'
2744 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2745 value_address (val) is the address of the function. This is what
2746 you'll get if you evaluate an expression like `main'. The call
2747 to COERCE_ARRAY below actually does all the usual unary
2748 conversions, which includes converting values of type `function'
2749 to `pointer to function'. This is the challenging conversion
2750 discussed above. Then, `unpack_long' will convert that pointer
2751 back into an address.
2753 So, suppose the user types `disassemble foo' on an architecture
2754 with a strange function pointer representation, on which GDB
2755 cannot build its own descriptors, and suppose further that `foo'
2756 has no linker-built descriptor. The address->pointer conversion
2757 will signal an error and prevent the command from running, even
2758 though the next step would have been to convert the pointer
2759 directly back into the same address.
2761 The following shortcut avoids this whole mess. If VAL is a
2762 function, just return its address directly. */
2763 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2764 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2765 return value_address (val);
2767 val = coerce_array (val);
2769 /* Some architectures (e.g. Harvard), map instruction and data
2770 addresses onto a single large unified address space. For
2771 instance: An architecture may consider a large integer in the
2772 range 0x10000000 .. 0x1000ffff to already represent a data
2773 addresses (hence not need a pointer to address conversion) while
2774 a small integer would still need to be converted integer to
2775 pointer to address. Just assume such architectures handle all
2776 integer conversions in a single function. */
2780 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2781 must admonish GDB hackers to make sure its behavior matches the
2782 compiler's, whenever possible.
2784 In general, I think GDB should evaluate expressions the same way
2785 the compiler does. When the user copies an expression out of
2786 their source code and hands it to a `print' command, they should
2787 get the same value the compiler would have computed. Any
2788 deviation from this rule can cause major confusion and annoyance,
2789 and needs to be justified carefully. In other words, GDB doesn't
2790 really have the freedom to do these conversions in clever and
2793 AndrewC pointed out that users aren't complaining about how GDB
2794 casts integers to pointers; they are complaining that they can't
2795 take an address from a disassembly listing and give it to `x/i'.
2796 This is certainly important.
2798 Adding an architecture method like integer_to_address() certainly
2799 makes it possible for GDB to "get it right" in all circumstances
2800 --- the target has complete control over how things get done, so
2801 people can Do The Right Thing for their target without breaking
2802 anyone else. The standard doesn't specify how integers get
2803 converted to pointers; usually, the ABI doesn't either, but
2804 ABI-specific code is a more reasonable place to handle it. */
2806 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2807 && !TYPE_IS_REFERENCE (value_type (val))
2808 && gdbarch_integer_to_address_p (gdbarch))
2809 return gdbarch_integer_to_address (gdbarch, value_type (val),
2810 value_contents (val));
2812 return unpack_long (value_type (val), value_contents (val));
2816 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2817 as a long, or as a double, assuming the raw data is described
2818 by type TYPE. Knows how to convert different sizes of values
2819 and can convert between fixed and floating point. We don't assume
2820 any alignment for the raw data. Return value is in host byte order.
2822 If you want functions and arrays to be coerced to pointers, and
2823 references to be dereferenced, call value_as_long() instead.
2825 C++: It is assumed that the front-end has taken care of
2826 all matters concerning pointers to members. A pointer
2827 to member which reaches here is considered to be equivalent
2828 to an INT (or some size). After all, it is only an offset. */
2831 unpack_long (struct type *type, const gdb_byte *valaddr)
2833 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2834 enum type_code code = TYPE_CODE (type);
2835 int len = TYPE_LENGTH (type);
2836 int nosign = TYPE_UNSIGNED (type);
2840 case TYPE_CODE_TYPEDEF:
2841 return unpack_long (check_typedef (type), valaddr);
2842 case TYPE_CODE_ENUM:
2843 case TYPE_CODE_FLAGS:
2844 case TYPE_CODE_BOOL:
2846 case TYPE_CODE_CHAR:
2847 case TYPE_CODE_RANGE:
2848 case TYPE_CODE_MEMBERPTR:
2850 return extract_unsigned_integer (valaddr, len, byte_order);
2852 return extract_signed_integer (valaddr, len, byte_order);
2855 case TYPE_CODE_DECFLOAT:
2856 return target_float_to_longest (valaddr, type);
2860 case TYPE_CODE_RVALUE_REF:
2861 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2862 whether we want this to be true eventually. */
2863 return extract_typed_address (valaddr, type);
2866 error (_("Value can't be converted to integer."));
2868 return 0; /* Placate lint. */
2871 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2872 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2873 We don't assume any alignment for the raw data. Return value is in
2876 If you want functions and arrays to be coerced to pointers, and
2877 references to be dereferenced, call value_as_address() instead.
2879 C++: It is assumed that the front-end has taken care of
2880 all matters concerning pointers to members. A pointer
2881 to member which reaches here is considered to be equivalent
2882 to an INT (or some size). After all, it is only an offset. */
2885 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2887 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2888 whether we want this to be true eventually. */
2889 return unpack_long (type, valaddr);
2893 is_floating_value (struct value *val)
2895 struct type *type = check_typedef (value_type (val));
2897 if (is_floating_type (type))
2899 if (!target_float_is_valid (value_contents (val), type))
2900 error (_("Invalid floating value found in program."));
2908 /* Get the value of the FIELDNO'th field (which must be static) of
2912 value_static_field (struct type *type, int fieldno)
2914 struct value *retval;
2916 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2918 case FIELD_LOC_KIND_PHYSADDR:
2919 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2920 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2922 case FIELD_LOC_KIND_PHYSNAME:
2924 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2925 /* TYPE_FIELD_NAME (type, fieldno); */
2926 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2928 if (sym.symbol == NULL)
2930 /* With some compilers, e.g. HP aCC, static data members are
2931 reported as non-debuggable symbols. */
2932 struct bound_minimal_symbol msym
2933 = lookup_minimal_symbol (phys_name, NULL, NULL);
2934 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2937 retval = allocate_optimized_out_value (field_type);
2939 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2942 retval = value_of_variable (sym.symbol, sym.block);
2946 gdb_assert_not_reached ("unexpected field location kind");
2952 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2953 You have to be careful here, since the size of the data area for the value
2954 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2955 than the old enclosing type, you have to allocate more space for the
2959 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2961 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2963 check_type_length_before_alloc (new_encl_type);
2965 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2968 val->enclosing_type = new_encl_type;
2971 /* Given a value ARG1 (offset by OFFSET bytes)
2972 of a struct or union type ARG_TYPE,
2973 extract and return the value of one of its (non-static) fields.
2974 FIELDNO says which field. */
2977 value_primitive_field (struct value *arg1, LONGEST offset,
2978 int fieldno, struct type *arg_type)
2982 struct gdbarch *arch = get_value_arch (arg1);
2983 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2985 arg_type = check_typedef (arg_type);
2986 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2988 /* Call check_typedef on our type to make sure that, if TYPE
2989 is a TYPE_CODE_TYPEDEF, its length is set to the length
2990 of the target type instead of zero. However, we do not
2991 replace the typedef type by the target type, because we want
2992 to keep the typedef in order to be able to print the type
2993 description correctly. */
2994 check_typedef (type);
2996 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2998 /* Handle packed fields.
3000 Create a new value for the bitfield, with bitpos and bitsize
3001 set. If possible, arrange offset and bitpos so that we can
3002 do a single aligned read of the size of the containing type.
3003 Otherwise, adjust offset to the byte containing the first
3004 bit. Assume that the address, offset, and embedded offset
3005 are sufficiently aligned. */
3007 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3008 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3010 v = allocate_value_lazy (type);
3011 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3012 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3013 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3014 v->bitpos = bitpos % container_bitsize;
3016 v->bitpos = bitpos % 8;
3017 v->offset = (value_embedded_offset (arg1)
3019 + (bitpos - v->bitpos) / 8);
3020 set_value_parent (v, arg1);
3021 if (!value_lazy (arg1))
3022 value_fetch_lazy (v);
3024 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3026 /* This field is actually a base subobject, so preserve the
3027 entire object's contents for later references to virtual
3031 /* Lazy register values with offsets are not supported. */
3032 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3033 value_fetch_lazy (arg1);
3035 /* We special case virtual inheritance here because this
3036 requires access to the contents, which we would rather avoid
3037 for references to ordinary fields of unavailable values. */
3038 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3039 boffset = baseclass_offset (arg_type, fieldno,
3040 value_contents (arg1),
3041 value_embedded_offset (arg1),
3042 value_address (arg1),
3045 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3047 if (value_lazy (arg1))
3048 v = allocate_value_lazy (value_enclosing_type (arg1));
3051 v = allocate_value (value_enclosing_type (arg1));
3052 value_contents_copy_raw (v, 0, arg1, 0,
3053 TYPE_LENGTH (value_enclosing_type (arg1)));
3056 v->offset = value_offset (arg1);
3057 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3059 else if (NULL != TYPE_DATA_LOCATION (type))
3061 /* Field is a dynamic data member. */
3063 gdb_assert (0 == offset);
3064 /* We expect an already resolved data location. */
3065 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3066 /* For dynamic data types defer memory allocation
3067 until we actual access the value. */
3068 v = allocate_value_lazy (type);
3072 /* Plain old data member */
3073 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3074 / (HOST_CHAR_BIT * unit_size));
3076 /* Lazy register values with offsets are not supported. */
3077 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3078 value_fetch_lazy (arg1);
3080 if (value_lazy (arg1))
3081 v = allocate_value_lazy (type);
3084 v = allocate_value (type);
3085 value_contents_copy_raw (v, value_embedded_offset (v),
3086 arg1, value_embedded_offset (arg1) + offset,
3087 type_length_units (type));
3089 v->offset = (value_offset (arg1) + offset
3090 + value_embedded_offset (arg1));
3092 set_value_component_location (v, arg1);
3096 /* Given a value ARG1 of a struct or union type,
3097 extract and return the value of one of its (non-static) fields.
3098 FIELDNO says which field. */
3101 value_field (struct value *arg1, int fieldno)
3103 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3106 /* Return a non-virtual function as a value.
3107 F is the list of member functions which contains the desired method.
3108 J is an index into F which provides the desired method.
3110 We only use the symbol for its address, so be happy with either a
3111 full symbol or a minimal symbol. */
3114 value_fn_field (struct value **arg1p, struct fn_field *f,
3115 int j, struct type *type,
3119 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3120 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3122 struct bound_minimal_symbol msym;
3124 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3127 memset (&msym, 0, sizeof (msym));
3131 gdb_assert (sym == NULL);
3132 msym = lookup_bound_minimal_symbol (physname);
3133 if (msym.minsym == NULL)
3137 v = allocate_value (ftype);
3138 VALUE_LVAL (v) = lval_memory;
3141 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3145 /* The minimal symbol might point to a function descriptor;
3146 resolve it to the actual code address instead. */
3147 struct objfile *objfile = msym.objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3150 set_value_address (v,
3151 gdbarch_convert_from_func_ptr_addr
3152 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target));
3157 if (type != value_type (*arg1p))
3158 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3159 value_addr (*arg1p)));
3161 /* Move the `this' pointer according to the offset.
3162 VALUE_OFFSET (*arg1p) += offset; */
3170 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3171 VALADDR, and store the result in *RESULT.
3172 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3173 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3175 Extracting bits depends on endianness of the machine. Compute the
3176 number of least significant bits to discard. For big endian machines,
3177 we compute the total number of bits in the anonymous object, subtract
3178 off the bit count from the MSB of the object to the MSB of the
3179 bitfield, then the size of the bitfield, which leaves the LSB discard
3180 count. For little endian machines, the discard count is simply the
3181 number of bits from the LSB of the anonymous object to the LSB of the
3184 If the field is signed, we also do sign extension. */
3187 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3188 LONGEST bitpos, LONGEST bitsize)
3190 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3195 LONGEST read_offset;
3197 /* Read the minimum number of bytes required; there may not be
3198 enough bytes to read an entire ULONGEST. */
3199 field_type = check_typedef (field_type);
3201 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3204 bytes_read = TYPE_LENGTH (field_type);
3205 bitsize = 8 * bytes_read;
3208 read_offset = bitpos / 8;
3210 val = extract_unsigned_integer (valaddr + read_offset,
3211 bytes_read, byte_order);
3213 /* Extract bits. See comment above. */
3215 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3216 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3218 lsbcount = (bitpos % 8);
3221 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3222 If the field is signed, and is negative, then sign extend. */
3224 if (bitsize < 8 * (int) sizeof (val))
3226 valmask = (((ULONGEST) 1) << bitsize) - 1;
3228 if (!TYPE_UNSIGNED (field_type))
3230 if (val & (valmask ^ (valmask >> 1)))
3240 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3241 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3242 ORIGINAL_VALUE, which must not be NULL. See
3243 unpack_value_bits_as_long for more details. */
3246 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3247 LONGEST embedded_offset, int fieldno,
3248 const struct value *val, LONGEST *result)
3250 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3251 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3252 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3255 gdb_assert (val != NULL);
3257 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3258 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3259 || !value_bits_available (val, bit_offset, bitsize))
3262 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3267 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3268 object at VALADDR. See unpack_bits_as_long for more details. */
3271 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3273 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3274 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3275 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3277 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3280 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3281 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3282 the contents in DEST_VAL, zero or sign extending if the type of
3283 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3284 VAL. If the VAL's contents required to extract the bitfield from
3285 are unavailable/optimized out, DEST_VAL is correspondingly
3286 marked unavailable/optimized out. */
3289 unpack_value_bitfield (struct value *dest_val,
3290 LONGEST bitpos, LONGEST bitsize,
3291 const gdb_byte *valaddr, LONGEST embedded_offset,
3292 const struct value *val)
3294 enum bfd_endian byte_order;
3297 struct type *field_type = value_type (dest_val);
3299 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3301 /* First, unpack and sign extend the bitfield as if it was wholly
3302 valid. Optimized out/unavailable bits are read as zero, but
3303 that's OK, as they'll end up marked below. If the VAL is
3304 wholly-invalid we may have skipped allocating its contents,
3305 though. See allocate_optimized_out_value. */
3306 if (valaddr != NULL)
3310 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3312 store_signed_integer (value_contents_raw (dest_val),
3313 TYPE_LENGTH (field_type), byte_order, num);
3316 /* Now copy the optimized out / unavailability ranges to the right
3318 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3319 if (byte_order == BFD_ENDIAN_BIG)
3320 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3323 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3324 val, src_bit_offset, bitsize);
3327 /* Return a new value with type TYPE, which is FIELDNO field of the
3328 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3329 of VAL. If the VAL's contents required to extract the bitfield
3330 from are unavailable/optimized out, the new value is
3331 correspondingly marked unavailable/optimized out. */
3334 value_field_bitfield (struct type *type, int fieldno,
3335 const gdb_byte *valaddr,
3336 LONGEST embedded_offset, const struct value *val)
3338 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3339 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3340 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3342 unpack_value_bitfield (res_val, bitpos, bitsize,
3343 valaddr, embedded_offset, val);
3348 /* Modify the value of a bitfield. ADDR points to a block of memory in
3349 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3350 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3351 indicate which bits (in target bit order) comprise the bitfield.
3352 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3353 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3356 modify_field (struct type *type, gdb_byte *addr,
3357 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3359 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3361 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3364 /* Normalize BITPOS. */
3368 /* If a negative fieldval fits in the field in question, chop
3369 off the sign extension bits. */
3370 if ((~fieldval & ~(mask >> 1)) == 0)
3373 /* Warn if value is too big to fit in the field in question. */
3374 if (0 != (fieldval & ~mask))
3376 /* FIXME: would like to include fieldval in the message, but
3377 we don't have a sprintf_longest. */
3378 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3380 /* Truncate it, otherwise adjoining fields may be corrupted. */
3384 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3385 false valgrind reports. */
3387 bytesize = (bitpos + bitsize + 7) / 8;
3388 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3390 /* Shifting for bit field depends on endianness of the target machine. */
3391 if (gdbarch_bits_big_endian (get_type_arch (type)))
3392 bitpos = bytesize * 8 - bitpos - bitsize;
3394 oword &= ~(mask << bitpos);
3395 oword |= fieldval << bitpos;
3397 store_unsigned_integer (addr, bytesize, byte_order, oword);
3400 /* Pack NUM into BUF using a target format of TYPE. */
3403 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3405 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3408 type = check_typedef (type);
3409 len = TYPE_LENGTH (type);
3411 switch (TYPE_CODE (type))
3414 case TYPE_CODE_CHAR:
3415 case TYPE_CODE_ENUM:
3416 case TYPE_CODE_FLAGS:
3417 case TYPE_CODE_BOOL:
3418 case TYPE_CODE_RANGE:
3419 case TYPE_CODE_MEMBERPTR:
3420 store_signed_integer (buf, len, byte_order, num);
3424 case TYPE_CODE_RVALUE_REF:
3426 store_typed_address (buf, type, (CORE_ADDR) num);
3430 case TYPE_CODE_DECFLOAT:
3431 target_float_from_longest (buf, type, num);
3435 error (_("Unexpected type (%d) encountered for integer constant."),
3441 /* Pack NUM into BUF using a target format of TYPE. */
3444 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3447 enum bfd_endian byte_order;
3449 type = check_typedef (type);
3450 len = TYPE_LENGTH (type);
3451 byte_order = gdbarch_byte_order (get_type_arch (type));
3453 switch (TYPE_CODE (type))
3456 case TYPE_CODE_CHAR:
3457 case TYPE_CODE_ENUM:
3458 case TYPE_CODE_FLAGS:
3459 case TYPE_CODE_BOOL:
3460 case TYPE_CODE_RANGE:
3461 case TYPE_CODE_MEMBERPTR:
3462 store_unsigned_integer (buf, len, byte_order, num);
3466 case TYPE_CODE_RVALUE_REF:
3468 store_typed_address (buf, type, (CORE_ADDR) num);
3472 case TYPE_CODE_DECFLOAT:
3473 target_float_from_ulongest (buf, type, num);
3477 error (_("Unexpected type (%d) encountered "
3478 "for unsigned integer constant."),
3484 /* Convert C numbers into newly allocated values. */
3487 value_from_longest (struct type *type, LONGEST num)
3489 struct value *val = allocate_value (type);
3491 pack_long (value_contents_raw (val), type, num);
3496 /* Convert C unsigned numbers into newly allocated values. */
3499 value_from_ulongest (struct type *type, ULONGEST num)
3501 struct value *val = allocate_value (type);
3503 pack_unsigned_long (value_contents_raw (val), type, num);
3509 /* Create a value representing a pointer of type TYPE to the address
3513 value_from_pointer (struct type *type, CORE_ADDR addr)
3515 struct value *val = allocate_value (type);
3517 store_typed_address (value_contents_raw (val),
3518 check_typedef (type), addr);
3523 /* Create a value of type TYPE whose contents come from VALADDR, if it
3524 is non-null, and whose memory address (in the inferior) is
3525 ADDRESS. The type of the created value may differ from the passed
3526 type TYPE. Make sure to retrieve values new type after this call.
3527 Note that TYPE is not passed through resolve_dynamic_type; this is
3528 a special API intended for use only by Ada. */
3531 value_from_contents_and_address_unresolved (struct type *type,
3532 const gdb_byte *valaddr,
3537 if (valaddr == NULL)
3538 v = allocate_value_lazy (type);
3540 v = value_from_contents (type, valaddr);
3541 VALUE_LVAL (v) = lval_memory;
3542 set_value_address (v, address);
3546 /* Create a value of type TYPE whose contents come from VALADDR, if it
3547 is non-null, and whose memory address (in the inferior) is
3548 ADDRESS. The type of the created value may differ from the passed
3549 type TYPE. Make sure to retrieve values new type after this call. */
3552 value_from_contents_and_address (struct type *type,
3553 const gdb_byte *valaddr,
3556 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3557 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3560 if (valaddr == NULL)
3561 v = allocate_value_lazy (resolved_type);
3563 v = value_from_contents (resolved_type, valaddr);
3564 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3565 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3566 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3567 VALUE_LVAL (v) = lval_memory;
3568 set_value_address (v, address);
3572 /* Create a value of type TYPE holding the contents CONTENTS.
3573 The new value is `not_lval'. */
3576 value_from_contents (struct type *type, const gdb_byte *contents)
3578 struct value *result;
3580 result = allocate_value (type);
3581 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3585 /* Extract a value from the history file. Input will be of the form
3586 $digits or $$digits. See block comment above 'write_dollar_variable'
3590 value_from_history_ref (const char *h, const char **endp)
3602 /* Find length of numeral string. */
3603 for (; isdigit (h[len]); len++)
3606 /* Make sure numeral string is not part of an identifier. */
3607 if (h[len] == '_' || isalpha (h[len]))
3610 /* Now collect the index value. */
3615 /* For some bizarre reason, "$$" is equivalent to "$$1",
3616 rather than to "$$0" as it ought to be! */
3624 index = -strtol (&h[2], &local_end, 10);
3632 /* "$" is equivalent to "$0". */
3640 index = strtol (&h[1], &local_end, 10);
3645 return access_value_history (index);
3648 /* Get the component value (offset by OFFSET bytes) of a struct or
3649 union WHOLE. Component's type is TYPE. */
3652 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3656 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3657 v = allocate_value_lazy (type);
3660 v = allocate_value (type);
3661 value_contents_copy (v, value_embedded_offset (v),
3662 whole, value_embedded_offset (whole) + offset,
3663 type_length_units (type));
3665 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3666 set_value_component_location (v, whole);
3672 coerce_ref_if_computed (const struct value *arg)
3674 const struct lval_funcs *funcs;
3676 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3679 if (value_lval_const (arg) != lval_computed)
3682 funcs = value_computed_funcs (arg);
3683 if (funcs->coerce_ref == NULL)
3686 return funcs->coerce_ref (arg);
3689 /* Look at value.h for description. */
3692 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3693 const struct type *original_type,
3694 const struct value *original_value)
3696 /* Re-adjust type. */
3697 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3699 /* Add embedding info. */
3700 set_value_enclosing_type (value, enc_type);
3701 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3703 /* We may be pointing to an object of some derived type. */
3704 return value_full_object (value, NULL, 0, 0, 0);
3708 coerce_ref (struct value *arg)
3710 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3711 struct value *retval;
3712 struct type *enc_type;
3714 retval = coerce_ref_if_computed (arg);
3718 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3721 enc_type = check_typedef (value_enclosing_type (arg));
3722 enc_type = TYPE_TARGET_TYPE (enc_type);
3724 retval = value_at_lazy (enc_type,
3725 unpack_pointer (value_type (arg),
3726 value_contents (arg)));
3727 enc_type = value_type (retval);
3728 return readjust_indirect_value_type (retval, enc_type,
3729 value_type_arg_tmp, arg);
3733 coerce_array (struct value *arg)
3737 arg = coerce_ref (arg);
3738 type = check_typedef (value_type (arg));
3740 switch (TYPE_CODE (type))
3742 case TYPE_CODE_ARRAY:
3743 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3744 arg = value_coerce_array (arg);
3746 case TYPE_CODE_FUNC:
3747 arg = value_coerce_function (arg);
3754 /* Return the return value convention that will be used for the
3757 enum return_value_convention
3758 struct_return_convention (struct gdbarch *gdbarch,
3759 struct value *function, struct type *value_type)
3761 enum type_code code = TYPE_CODE (value_type);
3763 if (code == TYPE_CODE_ERROR)
3764 error (_("Function return type unknown."));
3766 /* Probe the architecture for the return-value convention. */
3767 return gdbarch_return_value (gdbarch, function, value_type,
3771 /* Return true if the function returning the specified type is using
3772 the convention of returning structures in memory (passing in the
3773 address as a hidden first parameter). */
3776 using_struct_return (struct gdbarch *gdbarch,
3777 struct value *function, struct type *value_type)
3779 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3780 /* A void return value is never in memory. See also corresponding
3781 code in "print_return_value". */
3784 return (struct_return_convention (gdbarch, function, value_type)
3785 != RETURN_VALUE_REGISTER_CONVENTION);
3788 /* Set the initialized field in a value struct. */
3791 set_value_initialized (struct value *val, int status)
3793 val->initialized = status;
3796 /* Return the initialized field in a value struct. */
3799 value_initialized (const struct value *val)
3801 return val->initialized;
3804 /* Load the actual content of a lazy value. Fetch the data from the
3805 user's process and clear the lazy flag to indicate that the data in
3806 the buffer is valid.
3808 If the value is zero-length, we avoid calling read_memory, which
3809 would abort. We mark the value as fetched anyway -- all 0 bytes of
3813 value_fetch_lazy (struct value *val)
3815 gdb_assert (value_lazy (val));
3816 allocate_value_contents (val);
3817 /* A value is either lazy, or fully fetched. The
3818 availability/validity is only established as we try to fetch a
3820 gdb_assert (VEC_empty (range_s, val->optimized_out));
3821 gdb_assert (VEC_empty (range_s, val->unavailable));
3822 if (value_bitsize (val))
3824 /* To read a lazy bitfield, read the entire enclosing value. This
3825 prevents reading the same block of (possibly volatile) memory once
3826 per bitfield. It would be even better to read only the containing
3827 word, but we have no way to record that just specific bits of a
3828 value have been fetched. */
3829 struct type *type = check_typedef (value_type (val));
3830 struct value *parent = value_parent (val);
3832 if (value_lazy (parent))
3833 value_fetch_lazy (parent);
3835 unpack_value_bitfield (val,
3836 value_bitpos (val), value_bitsize (val),
3837 value_contents_for_printing (parent),
3838 value_offset (val), parent);
3840 else if (VALUE_LVAL (val) == lval_memory)
3842 CORE_ADDR addr = value_address (val);
3843 struct type *type = check_typedef (value_enclosing_type (val));
3845 if (TYPE_LENGTH (type))
3846 read_value_memory (val, 0, value_stack (val),
3847 addr, value_contents_all_raw (val),
3848 type_length_units (type));
3850 else if (VALUE_LVAL (val) == lval_register)
3852 struct frame_info *next_frame;
3854 struct type *type = check_typedef (value_type (val));
3855 struct value *new_val = val, *mark = value_mark ();
3857 /* Offsets are not supported here; lazy register values must
3858 refer to the entire register. */
3859 gdb_assert (value_offset (val) == 0);
3861 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3863 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3865 next_frame = frame_find_by_id (next_frame_id);
3866 regnum = VALUE_REGNUM (new_val);
3868 gdb_assert (next_frame != NULL);
3870 /* Convertible register routines are used for multi-register
3871 values and for interpretation in different types
3872 (e.g. float or int from a double register). Lazy
3873 register values should have the register's natural type,
3874 so they do not apply. */
3875 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3878 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3879 Since a "->next" operation was performed when setting
3880 this field, we do not need to perform a "next" operation
3881 again when unwinding the register. That's why
3882 frame_unwind_register_value() is called here instead of
3883 get_frame_register_value(). */
3884 new_val = frame_unwind_register_value (next_frame, regnum);
3886 /* If we get another lazy lval_register value, it means the
3887 register is found by reading it from NEXT_FRAME's next frame.
3888 frame_unwind_register_value should never return a value with
3889 the frame id pointing to NEXT_FRAME. If it does, it means we
3890 either have two consecutive frames with the same frame id
3891 in the frame chain, or some code is trying to unwind
3892 behind get_prev_frame's back (e.g., a frame unwind
3893 sniffer trying to unwind), bypassing its validations. In
3894 any case, it should always be an internal error to end up
3895 in this situation. */
3896 if (VALUE_LVAL (new_val) == lval_register
3897 && value_lazy (new_val)
3898 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3899 internal_error (__FILE__, __LINE__,
3900 _("infinite loop while fetching a register"));
3903 /* If it's still lazy (for instance, a saved register on the
3904 stack), fetch it. */
3905 if (value_lazy (new_val))
3906 value_fetch_lazy (new_val);
3908 /* Copy the contents and the unavailability/optimized-out
3909 meta-data from NEW_VAL to VAL. */
3910 set_value_lazy (val, 0);
3911 value_contents_copy (val, value_embedded_offset (val),
3912 new_val, value_embedded_offset (new_val),
3913 type_length_units (type));
3917 struct gdbarch *gdbarch;
3918 struct frame_info *frame;
3919 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3920 so that the frame level will be shown correctly. */
3921 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3922 regnum = VALUE_REGNUM (val);
3923 gdbarch = get_frame_arch (frame);
3925 fprintf_unfiltered (gdb_stdlog,
3926 "{ value_fetch_lazy "
3927 "(frame=%d,regnum=%d(%s),...) ",
3928 frame_relative_level (frame), regnum,
3929 user_reg_map_regnum_to_name (gdbarch, regnum));
3931 fprintf_unfiltered (gdb_stdlog, "->");
3932 if (value_optimized_out (new_val))
3934 fprintf_unfiltered (gdb_stdlog, " ");
3935 val_print_optimized_out (new_val, gdb_stdlog);
3940 const gdb_byte *buf = value_contents (new_val);
3942 if (VALUE_LVAL (new_val) == lval_register)
3943 fprintf_unfiltered (gdb_stdlog, " register=%d",
3944 VALUE_REGNUM (new_val));
3945 else if (VALUE_LVAL (new_val) == lval_memory)
3946 fprintf_unfiltered (gdb_stdlog, " address=%s",
3948 value_address (new_val)));
3950 fprintf_unfiltered (gdb_stdlog, " computed");
3952 fprintf_unfiltered (gdb_stdlog, " bytes=");
3953 fprintf_unfiltered (gdb_stdlog, "[");
3954 for (i = 0; i < register_size (gdbarch, regnum); i++)
3955 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3956 fprintf_unfiltered (gdb_stdlog, "]");
3959 fprintf_unfiltered (gdb_stdlog, " }\n");
3962 /* Dispose of the intermediate values. This prevents
3963 watchpoints from trying to watch the saved frame pointer. */
3964 value_free_to_mark (mark);
3966 else if (VALUE_LVAL (val) == lval_computed
3967 && value_computed_funcs (val)->read != NULL)
3968 value_computed_funcs (val)->read (val);
3970 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3972 set_value_lazy (val, 0);
3975 /* Implementation of the convenience function $_isvoid. */
3977 static struct value *
3978 isvoid_internal_fn (struct gdbarch *gdbarch,
3979 const struct language_defn *language,
3980 void *cookie, int argc, struct value **argv)
3985 error (_("You must provide one argument for $_isvoid."));
3987 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3989 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3993 _initialize_values (void)
3995 add_cmd ("convenience", no_class, show_convenience, _("\
3996 Debugger convenience (\"$foo\") variables and functions.\n\
3997 Convenience variables are created when you assign them values;\n\
3998 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4000 A few convenience variables are given values automatically:\n\
4001 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4002 \"$__\" holds the contents of the last address examined with \"x\"."
4005 Convenience functions are defined via the Python API."
4008 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4010 add_cmd ("values", no_set_class, show_values, _("\
4011 Elements of value history around item number IDX (or last ten)."),
4014 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4015 Initialize a convenience variable if necessary.\n\
4016 init-if-undefined VARIABLE = EXPRESSION\n\
4017 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4018 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4019 VARIABLE is already initialized."));
4021 add_prefix_cmd ("function", no_class, function_command, _("\
4022 Placeholder command for showing help on convenience functions."),
4023 &functionlist, "function ", 0, &cmdlist);
4025 add_internal_function ("_isvoid", _("\
4026 Check whether an expression is void.\n\
4027 Usage: $_isvoid (expression)\n\
4028 Return 1 if the expression is void, zero otherwise."),
4029 isvoid_internal_fn, NULL);
4031 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4032 class_support, &max_value_size, _("\
4033 Set maximum sized value gdb will load from the inferior."), _("\
4034 Show maximum sized value gdb will load from the inferior."), _("\
4035 Use this to control the maximum size, in bytes, of a value that gdb\n\
4036 will load from the inferior. Setting this value to 'unlimited'\n\
4037 disables checking.\n\
4038 Setting this does not invalidate already allocated values, it only\n\
4039 prevents future values, larger than this size, from being allocated."),
4041 show_max_value_size,
4042 &setlist, &showlist);