1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "gdb_string.h"
30 #include "gdb_regex.h"
35 #include "expression.h"
36 #include "parser-defs.h"
42 #include "breakpoint.h"
45 #include "gdb_obstack.h"
47 #include "completer.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 static void extract_string (CORE_ADDR addr, char *buf);
75 static struct type *ada_create_fundamental_type (struct objfile *, int);
77 static void modify_general_field (char *, LONGEST, int, int);
79 static struct type *desc_base_type (struct type *);
81 static struct type *desc_bounds_type (struct type *);
83 static struct value *desc_bounds (struct value *);
85 static int fat_pntr_bounds_bitpos (struct type *);
87 static int fat_pntr_bounds_bitsize (struct type *);
89 static struct type *desc_data_type (struct type *);
91 static struct value *desc_data (struct value *);
93 static int fat_pntr_data_bitpos (struct type *);
95 static int fat_pntr_data_bitsize (struct type *);
97 static struct value *desc_one_bound (struct value *, int, int);
99 static int desc_bound_bitpos (struct type *, int, int);
101 static int desc_bound_bitsize (struct type *, int, int);
103 static struct type *desc_index_type (struct type *, int);
105 static int desc_arity (struct type *);
107 static int ada_type_match (struct type *, struct type *, int);
109 static int ada_args_match (struct symbol *, struct value **, int);
111 static struct value *ensure_lval (struct value *, CORE_ADDR *);
113 static struct value *convert_actual (struct value *, struct type *,
116 static struct value *make_array_descriptor (struct type *, struct value *,
119 static void ada_add_block_symbols (struct obstack *,
120 struct block *, const char *,
121 domain_enum, struct objfile *,
122 struct symtab *, int);
124 static int is_nonfunction (struct ada_symbol_info *, int);
126 static void add_defn_to_vec (struct obstack *, struct symbol *,
127 struct block *, struct symtab *);
129 static int num_defns_collected (struct obstack *);
131 static struct ada_symbol_info *defns_collected (struct obstack *, int);
133 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
134 *, const char *, int,
137 static struct symtab *symtab_for_sym (struct symbol *);
139 static struct value *resolve_subexp (struct expression **, int *, int,
142 static void replace_operator_with_call (struct expression **, int, int, int,
143 struct symbol *, struct block *);
145 static int possible_user_operator_p (enum exp_opcode, struct value **);
147 static char *ada_op_name (enum exp_opcode);
149 static const char *ada_decoded_op_name (enum exp_opcode);
151 static int numeric_type_p (struct type *);
153 static int integer_type_p (struct type *);
155 static int scalar_type_p (struct type *);
157 static int discrete_type_p (struct type *);
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
162 static struct value *evaluate_subexp (struct type *, struct expression *,
165 static struct value *evaluate_subexp_type (struct expression *, int *);
167 static int is_dynamic_field (struct type *, int);
169 static struct type *to_fixed_variant_branch_type (struct type *,
171 CORE_ADDR, struct value *);
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
175 static struct type *to_fixed_range_type (char *, struct value *,
178 static struct type *to_static_fixed_type (struct type *);
180 static struct value *unwrap_value (struct value *);
182 static struct type *packed_array_type (struct type *, long *);
184 static struct type *decode_packed_array_type (struct type *);
186 static struct value *decode_packed_array (struct value *);
188 static struct value *value_subscript_packed (struct value *, int,
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193 static struct value *coerce_unspec_val_to_type (struct value *,
196 static struct value *get_var_value (char *, char *);
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int wild_match (const char *, int, const char *);
206 static struct value *ada_coerce_ref (struct value *);
208 static LONGEST pos_atr (struct value *);
210 static struct value *value_pos_atr (struct value *);
212 static struct value *value_val_atr (struct type *, struct value *);
214 static struct symbol *standard_lookup (const char *, const struct block *,
217 static struct value *ada_search_struct_field (char *, struct value *, int,
220 static struct value *ada_value_primitive_field (struct value *, int, int,
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 static struct value *ada_to_fixed_value (struct value *);
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
235 static struct value *ada_coerce_to_simple_array (struct value *);
237 static int ada_is_direct_array_type (struct type *);
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
242 static void check_size (const struct type *);
244 static struct value *ada_index_struct_field (int, struct value *, int,
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
293 /* The name of the runtime function called when an exception is raised. */
294 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
296 /* The name of the runtime function called when an unhandled exception
298 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
300 /* The name of the runtime function called when an assert failure is
302 static const char raise_assert_sym_name[] =
303 "system__assertions__raise_assert_failure";
305 /* A string that reflects the longest exception expression rewrite,
306 aside from the exception name. */
307 static const char longest_exception_template[] =
308 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
310 /* Limit on the number of warnings to raise per expression evaluation. */
311 static int warning_limit = 2;
313 /* Number of warning messages issued; reset to 0 by cleanups after
314 expression evaluation. */
315 static int warnings_issued = 0;
317 static const char *known_runtime_file_name_patterns[] = {
318 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
321 static const char *known_auxiliary_function_name_patterns[] = {
322 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
325 /* Space for allocating results of ada_lookup_symbol_list. */
326 static struct obstack symbol_list_obstack;
332 ada_get_gdb_completer_word_break_characters (void)
334 return ada_completer_word_break_characters;
337 /* Print an array element index using the Ada syntax. */
340 ada_print_array_index (struct value *index_value, struct ui_file *stream,
341 int format, enum val_prettyprint pretty)
343 LA_VALUE_PRINT (index_value, stream, format, pretty);
344 fprintf_filtered (stream, " => ");
347 /* Read the string located at ADDR from the inferior and store the
351 extract_string (CORE_ADDR addr, char *buf)
355 /* Loop, reading one byte at a time, until we reach the '\000'
356 end-of-string marker. */
359 target_read_memory (addr + char_index * sizeof (char),
360 buf + char_index * sizeof (char), sizeof (char));
363 while (buf[char_index - 1] != '\000');
366 /* Assuming VECT points to an array of *SIZE objects of size
367 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
368 updating *SIZE as necessary and returning the (new) array. */
371 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
373 if (*size < min_size)
376 if (*size < min_size)
378 vect = xrealloc (vect, *size * element_size);
383 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
384 suffix of FIELD_NAME beginning "___". */
387 field_name_match (const char *field_name, const char *target)
389 int len = strlen (target);
391 (strncmp (field_name, target, len) == 0
392 && (field_name[len] == '\0'
393 || (strncmp (field_name + len, "___", 3) == 0
394 && strcmp (field_name + strlen (field_name) - 6,
399 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
400 FIELD_NAME, and return its index. This function also handles fields
401 whose name have ___ suffixes because the compiler sometimes alters
402 their name by adding such a suffix to represent fields with certain
403 constraints. If the field could not be found, return a negative
404 number if MAYBE_MISSING is set. Otherwise raise an error. */
407 ada_get_field_index (const struct type *type, const char *field_name,
411 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
412 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
416 error (_("Unable to find field %s in struct %s. Aborting"),
417 field_name, TYPE_NAME (type));
422 /* The length of the prefix of NAME prior to any "___" suffix. */
425 ada_name_prefix_len (const char *name)
431 const char *p = strstr (name, "___");
433 return strlen (name);
439 /* Return non-zero if SUFFIX is a suffix of STR.
440 Return zero if STR is null. */
443 is_suffix (const char *str, const char *suffix)
449 len2 = strlen (suffix);
450 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
453 /* Create a value of type TYPE whose contents come from VALADDR, if it
454 is non-null, and whose memory address (in the inferior) is
458 value_from_contents_and_address (struct type *type,
459 const gdb_byte *valaddr,
462 struct value *v = allocate_value (type);
464 set_value_lazy (v, 1);
466 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
467 VALUE_ADDRESS (v) = address;
469 VALUE_LVAL (v) = lval_memory;
473 /* The contents of value VAL, treated as a value of type TYPE. The
474 result is an lval in memory if VAL is. */
476 static struct value *
477 coerce_unspec_val_to_type (struct value *val, struct type *type)
479 type = ada_check_typedef (type);
480 if (value_type (val) == type)
484 struct value *result;
486 /* Make sure that the object size is not unreasonable before
487 trying to allocate some memory for it. */
490 result = allocate_value (type);
491 VALUE_LVAL (result) = VALUE_LVAL (val);
492 set_value_bitsize (result, value_bitsize (val));
493 set_value_bitpos (result, value_bitpos (val));
494 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
496 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
497 set_value_lazy (result, 1);
499 memcpy (value_contents_raw (result), value_contents (val),
505 static const gdb_byte *
506 cond_offset_host (const gdb_byte *valaddr, long offset)
511 return valaddr + offset;
515 cond_offset_target (CORE_ADDR address, long offset)
520 return address + offset;
523 /* Issue a warning (as for the definition of warning in utils.c, but
524 with exactly one argument rather than ...), unless the limit on the
525 number of warnings has passed during the evaluation of the current
528 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
529 provided by "complaint". */
530 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
533 lim_warning (const char *format, ...)
536 va_start (args, format);
538 warnings_issued += 1;
539 if (warnings_issued <= warning_limit)
540 vwarning (format, args);
545 /* Issue an error if the size of an object of type T is unreasonable,
546 i.e. if it would be a bad idea to allocate a value of this type in
550 check_size (const struct type *type)
552 if (TYPE_LENGTH (type) > varsize_limit)
553 error (_("object size is larger than varsize-limit"));
557 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
558 gdbtypes.h, but some of the necessary definitions in that file
559 seem to have gone missing. */
561 /* Maximum value of a SIZE-byte signed integer type. */
563 max_of_size (int size)
565 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
566 return top_bit | (top_bit - 1);
569 /* Minimum value of a SIZE-byte signed integer type. */
571 min_of_size (int size)
573 return -max_of_size (size) - 1;
576 /* Maximum value of a SIZE-byte unsigned integer type. */
578 umax_of_size (int size)
580 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
581 return top_bit | (top_bit - 1);
584 /* Maximum value of integral type T, as a signed quantity. */
586 max_of_type (struct type *t)
588 if (TYPE_UNSIGNED (t))
589 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
591 return max_of_size (TYPE_LENGTH (t));
594 /* Minimum value of integral type T, as a signed quantity. */
596 min_of_type (struct type *t)
598 if (TYPE_UNSIGNED (t))
601 return min_of_size (TYPE_LENGTH (t));
604 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
605 static struct value *
606 discrete_type_high_bound (struct type *type)
608 switch (TYPE_CODE (type))
610 case TYPE_CODE_RANGE:
611 return value_from_longest (TYPE_TARGET_TYPE (type),
612 TYPE_HIGH_BOUND (type));
615 value_from_longest (type,
616 TYPE_FIELD_BITPOS (type,
617 TYPE_NFIELDS (type) - 1));
619 return value_from_longest (type, max_of_type (type));
621 error (_("Unexpected type in discrete_type_high_bound."));
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static struct value *
627 discrete_type_low_bound (struct type *type)
629 switch (TYPE_CODE (type))
631 case TYPE_CODE_RANGE:
632 return value_from_longest (TYPE_TARGET_TYPE (type),
633 TYPE_LOW_BOUND (type));
635 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
637 return value_from_longest (type, min_of_type (type));
639 error (_("Unexpected type in discrete_type_low_bound."));
643 /* The identity on non-range types. For range types, the underlying
644 non-range scalar type. */
647 base_type (struct type *type)
649 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
651 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
653 type = TYPE_TARGET_TYPE (type);
659 /* Language Selection */
661 /* If the main program is in Ada, return language_ada, otherwise return LANG
662 (the main program is in Ada iif the adainit symbol is found).
664 MAIN_PST is not used. */
667 ada_update_initial_language (enum language lang,
668 struct partial_symtab *main_pst)
670 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
671 (struct objfile *) NULL) != NULL)
677 /* If the main procedure is written in Ada, then return its name.
678 The result is good until the next call. Return NULL if the main
679 procedure doesn't appear to be in Ada. */
684 struct minimal_symbol *msym;
685 CORE_ADDR main_program_name_addr;
686 static char main_program_name[1024];
688 /* For Ada, the name of the main procedure is stored in a specific
689 string constant, generated by the binder. Look for that symbol,
690 extract its address, and then read that string. If we didn't find
691 that string, then most probably the main procedure is not written
693 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
697 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
698 if (main_program_name_addr == 0)
699 error (_("Invalid address for Ada main program name."));
701 extract_string (main_program_name_addr, main_program_name);
702 return main_program_name;
705 /* The main procedure doesn't seem to be in Ada. */
711 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
714 const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
739 /* Return non-zero if STR should be suppressed in info listings. */
742 is_suppressed_name (const char *str)
744 if (strncmp (str, "_ada_", 5) == 0)
746 if (str[0] == '_' || str[0] == '\000')
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
760 if (p[0] == 'X' && p[-1] != '_')
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
775 /* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
779 ada_encode (const char *decoded)
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
793 for (p = decoded; *p != '\0'; p += 1)
795 if (!ADA_RETAIN_DOTS && *p == '.')
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
802 const struct ada_opname_map *mapping;
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL
806 && strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0; mapping += 1)
809 if (mapping->encoded == NULL)
810 error (_("invalid Ada operator name: %s"), p);
811 strcpy (encoding_buffer + k, mapping->encoded);
812 k += strlen (mapping->encoded);
817 encoding_buffer[k] = *p;
822 encoding_buffer[k] = '\0';
823 return encoding_buffer;
826 /* Return NAME folded to lower case, or, if surrounded by single
827 quotes, unfolded, but with the quotes stripped away. Result good
831 ada_fold_name (const char *name)
833 static char *fold_buffer = NULL;
834 static size_t fold_buffer_size = 0;
836 int len = strlen (name);
837 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
841 strncpy (fold_buffer, name + 1, len - 2);
842 fold_buffer[len - 2] = '\000';
847 for (i = 0; i <= len; i += 1)
848 fold_buffer[i] = tolower (name[i]);
854 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
857 is_lower_alphanum (const char c)
859 return (isdigit (c) || (isalpha (c) && islower (c)));
863 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
864 These are suffixes introduced by GNAT5 to nested subprogram
865 names, and do not serve any purpose for the debugger.
866 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
867 . Discard final N if it follows a lowercase alphanumeric character
868 (protected object subprogram suffix)
869 . Convert other instances of embedded "__" to `.'.
870 . Discard leading _ada_.
871 . Convert operator names to the appropriate quoted symbols.
872 . Remove everything after first ___ if it is followed by
874 . Replace TK__ with __, and a trailing B or TKB with nothing.
875 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
876 . Put symbols that should be suppressed in <...> brackets.
877 . Remove trailing X[bn]* suffix (indicating names in package bodies).
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by demangling, the original string pointer
884 ada_decode (const char *encoded)
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
894 if (strncmp (encoded, "_ada_", 5) == 0)
897 if (encoded[0] == '_' || encoded[0] == '<')
900 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
901 len0 = strlen (encoded);
902 if (len0 > 1 && isdigit (encoded[len0 - 1]))
905 while (i > 0 && isdigit (encoded[i]))
907 if (i >= 0 && encoded[i] == '.')
909 else if (i >= 0 && encoded[i] == '$')
911 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
913 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
917 /* Remove trailing N. */
919 /* Protected entry subprograms are broken into two
920 separate subprograms: The first one is unprotected, and has
921 a 'N' suffix; the second is the protected version, and has
922 the 'P' suffix. The second calls the first one after handling
923 the protection. Since the P subprograms are internally generated,
924 we leave these names undecoded, giving the user a clue that this
925 entity is internal. */
928 && encoded[len0 - 1] == 'N'
929 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
932 /* Remove the ___X.* suffix if present. Do not forget to verify that
933 the suffix is located before the current "end" of ENCODED. We want
934 to avoid re-matching parts of ENCODED that have previously been
935 marked as discarded (by decrementing LEN0). */
936 p = strstr (encoded, "___");
937 if (p != NULL && p - encoded < len0 - 3)
945 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
951 /* Make decoded big enough for possible expansion by operator name. */
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
955 if (len0 > 1 && isdigit (encoded[len0 - 1]))
958 while ((i >= 0 && isdigit (encoded[i]))
959 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
961 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
963 else if (encoded[i] == '$')
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
973 if (at_start_name && encoded[i] == 'O')
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
981 && !isalnum (encoded[i + op_len]))
983 strcpy (decoded + j, ada_opname_table[k].decoded);
986 j += strlen (ada_opname_table[k].decoded);
990 if (ada_opname_table[k].encoded != NULL)
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 /* Remove _E{DIGITS}+[sb] */
1003 /* Just as for protected object subprograms, there are 2 categories
1004 of subprograms created by the compiler for each entry. The first
1005 one implements the actual entry code, and has a suffix following
1006 the convention above; the second one implements the barrier and
1007 uses the same convention as above, except that the 'E' is replaced
1010 Just as above, we do not decode the name of barrier functions
1011 to give the user a clue that the code he is debugging has been
1012 internally generated. */
1014 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1015 && isdigit (encoded[i+2]))
1019 while (k < len0 && isdigit (encoded[k]))
1023 && (encoded[k] == 'b' || encoded[k] == 's'))
1026 /* Just as an extra precaution, make sure that if this
1027 suffix is followed by anything else, it is a '_'.
1028 Otherwise, we matched this sequence by accident. */
1030 || (k < len0 && encoded[k] == '_'))
1035 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1036 the GNAT front-end in protected object subprograms. */
1039 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1041 /* Backtrack a bit up until we reach either the begining of
1042 the encoded name, or "__". Make sure that we only find
1043 digits or lowercase characters. */
1044 const char *ptr = encoded + i - 1;
1046 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1049 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1053 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1057 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1061 else if (!ADA_RETAIN_DOTS
1062 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1071 decoded[j] = encoded[i];
1076 decoded[j] = '\000';
1078 for (i = 0; decoded[i] != '\0'; i += 1)
1079 if (isupper (decoded[i]) || decoded[i] == ' ')
1082 if (strcmp (decoded, encoded) == 0)
1088 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1089 decoded = decoding_buffer;
1090 if (encoded[0] == '<')
1091 strcpy (decoded, encoded);
1093 sprintf (decoded, "<%s>", encoded);
1098 /* Table for keeping permanent unique copies of decoded names. Once
1099 allocated, names in this table are never released. While this is a
1100 storage leak, it should not be significant unless there are massive
1101 changes in the set of decoded names in successive versions of a
1102 symbol table loaded during a single session. */
1103 static struct htab *decoded_names_store;
1105 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1106 in the language-specific part of GSYMBOL, if it has not been
1107 previously computed. Tries to save the decoded name in the same
1108 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1109 in any case, the decoded symbol has a lifetime at least that of
1111 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1112 const, but nevertheless modified to a semantically equivalent form
1113 when a decoded name is cached in it.
1117 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1120 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1121 if (*resultp == NULL)
1123 const char *decoded = ada_decode (gsymbol->name);
1124 if (gsymbol->bfd_section != NULL)
1126 bfd *obfd = gsymbol->bfd_section->owner;
1129 struct objfile *objf;
1132 if (obfd == objf->obfd)
1134 *resultp = obsavestring (decoded, strlen (decoded),
1135 &objf->objfile_obstack);
1141 /* Sometimes, we can't find a corresponding objfile, in which
1142 case, we put the result on the heap. Since we only decode
1143 when needed, we hope this usually does not cause a
1144 significant memory leak (FIXME). */
1145 if (*resultp == NULL)
1147 char **slot = (char **) htab_find_slot (decoded_names_store,
1150 *slot = xstrdup (decoded);
1159 ada_la_decode (const char *encoded, int options)
1161 return xstrdup (ada_decode (encoded));
1164 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1165 suffixes that encode debugging information or leading _ada_ on
1166 SYM_NAME (see is_name_suffix commentary for the debugging
1167 information that is ignored). If WILD, then NAME need only match a
1168 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1169 either argument is NULL. */
1172 ada_match_name (const char *sym_name, const char *name, int wild)
1174 if (sym_name == NULL || name == NULL)
1177 return wild_match (name, strlen (name), sym_name);
1180 int len_name = strlen (name);
1181 return (strncmp (sym_name, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name))
1183 || (strncmp (sym_name, "_ada_", 5) == 0
1184 && strncmp (sym_name + 5, name, len_name) == 0
1185 && is_name_suffix (sym_name + len_name + 5));
1189 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1190 suppressed in info listings. */
1193 ada_suppress_symbol_printing (struct symbol *sym)
1195 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1198 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1204 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1206 static char *bound_name[] = {
1207 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1208 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1211 /* Maximum number of array dimensions we are prepared to handle. */
1213 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1215 /* Like modify_field, but allows bitpos > wordlength. */
1218 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1220 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1224 /* The desc_* routines return primitive portions of array descriptors
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1230 static struct type *
1231 desc_base_type (struct type *type)
1235 type = ada_check_typedef (type);
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1247 is_thin_pntr (struct type *type)
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1254 /* The descriptor type for thin pointer type TYPE. */
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1274 /* A pointer to the array data for thin-pointer value VAL. */
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1279 struct type *type = value_type (val);
1280 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1281 return value_cast (desc_data_type (thin_descriptor_type (type)),
1284 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1285 VALUE_ADDRESS (val) + value_offset (val));
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1291 is_thick_pntr (struct type *type)
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1306 type = desc_base_type (type);
1310 else if (is_thin_pntr (type))
1312 type = thin_descriptor_type (type);
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1317 return ada_check_typedef (r);
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1331 static struct value *
1332 desc_bounds (struct value *arr)
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1341 if (desc_bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1350 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1368 fat_pntr_bounds_bitpos (struct type *type)
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1377 fat_pntr_bounds_bitsize (struct type *type)
1379 type = desc_base_type (type);
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a
1389 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1390 ada_type_of_array to get an array type with bounds data. */
1392 static struct type *
1393 desc_data_type (struct type *type)
1395 type = desc_base_type (type);
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return lookup_pointer_type
1400 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1401 else if (is_thick_pntr (type))
1402 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1407 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1410 static struct value *
1411 desc_data (struct value *arr)
1413 struct type *type = value_type (arr);
1414 if (is_thin_pntr (type))
1415 return thin_data_pntr (arr);
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1418 _("Bad GNAT array descriptor"));
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 position of the field containing the address of the data. */
1428 fat_pntr_data_bitpos (struct type *type)
1430 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1433 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1434 size of the field containing the address of the data. */
1437 fat_pntr_data_bitsize (struct type *type)
1439 type = desc_base_type (type);
1441 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1442 return TYPE_FIELD_BITSIZE (type, 0);
1444 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1447 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1448 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1449 bound, if WHICH is 1. The first bound is I=1. */
1451 static struct value *
1452 desc_one_bound (struct value *bounds, int i, int which)
1454 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1455 _("Bad GNAT array descriptor bounds"));
1458 /* If BOUNDS is an array-bounds structure type, return the bit position
1459 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1463 desc_bound_bitpos (struct type *type, int i, int which)
1465 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1468 /* If BOUNDS is an array-bounds structure type, return the bit field size
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1473 desc_bound_bitsize (struct type *type, int i, int which)
1475 type = desc_base_type (type);
1477 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1478 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1480 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1483 /* If TYPE is the type of an array-bounds structure, the type of its
1484 Ith bound (numbering from 1). Otherwise, NULL. */
1486 static struct type *
1487 desc_index_type (struct type *type, int i)
1489 type = desc_base_type (type);
1491 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1492 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1497 /* The number of index positions in the array-bounds type TYPE.
1498 Return 0 if TYPE is NULL. */
1501 desc_arity (struct type *type)
1503 type = desc_base_type (type);
1506 return TYPE_NFIELDS (type) / 2;
1510 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1511 an array descriptor type (representing an unconstrained array
1515 ada_is_direct_array_type (struct type *type)
1519 type = ada_check_typedef (type);
1520 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 || ada_is_array_descriptor_type (type));
1524 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1528 ada_is_array_type (struct type *type)
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 type = TYPE_TARGET_TYPE (type);
1534 return ada_is_direct_array_type (type);
1537 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1540 ada_is_simple_array_type (struct type *type)
1544 type = ada_check_typedef (type);
1545 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1546 || (TYPE_CODE (type) == TYPE_CODE_PTR
1547 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1550 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1553 ada_is_array_descriptor_type (struct type *type)
1555 struct type *data_type = desc_data_type (type);
1559 type = ada_check_typedef (type);
1562 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1563 && TYPE_TARGET_TYPE (data_type) != NULL
1564 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1565 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1566 && desc_arity (desc_bounds_type (type)) > 0;
1569 /* Non-zero iff type is a partially mal-formed GNAT array
1570 descriptor. FIXME: This is to compensate for some problems with
1571 debugging output from GNAT. Re-examine periodically to see if it
1575 ada_is_bogus_array_descriptor (struct type *type)
1579 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1580 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1581 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1582 && !ada_is_array_descriptor_type (type);
1586 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1587 (fat pointer) returns the type of the array data described---specifically,
1588 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1589 in from the descriptor; otherwise, they are left unspecified. If
1590 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1591 returns NULL. The result is simply the type of ARR if ARR is not
1594 ada_type_of_array (struct value *arr, int bounds)
1596 if (ada_is_packed_array_type (value_type (arr)))
1597 return decode_packed_array_type (value_type (arr));
1599 if (!ada_is_array_descriptor_type (value_type (arr)))
1600 return value_type (arr);
1604 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1607 struct type *elt_type;
1609 struct value *descriptor;
1610 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1623 struct type *range_type = alloc_type (objf);
1624 struct type *array_type = alloc_type (objf);
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1635 return lookup_pointer_type (elt_type);
1639 /* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1645 ada_coerce_to_simple_array_ptr (struct value *arr)
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1660 /* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1664 static struct value *
1665 ada_coerce_to_simple_array (struct value *arr)
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1681 /* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1686 ada_coerce_to_simple_array_type (struct type *type)
1688 struct value *mark = value_mark ();
1689 struct value *dummy = value_from_longest (builtin_type_long, 0);
1690 struct type *result;
1691 deprecated_set_value_type (dummy, type);
1692 result = ada_type_of_array (dummy, 0);
1693 value_free_to_mark (mark);
1697 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1700 ada_is_packed_array_type (struct type *type)
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1711 /* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1720 static struct type *
1721 packed_array_type (struct type *type, long *elt_bits)
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1731 new_type = alloc_type (TYPE_OBJFILE (type));
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1734 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1738 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1750 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1754 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1756 static struct type *
1757 decode_packed_array_type (struct type *type)
1760 struct block **blocks;
1761 const char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name = (char *) alloca (strlen (raw_name) + 1);
1763 char *tail = strstr (raw_name, "___XP");
1764 struct type *shadow_type;
1768 type = desc_base_type (type);
1770 memcpy (name, raw_name, tail - raw_name);
1771 name[tail - raw_name] = '\000';
1773 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1774 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1776 lim_warning (_("could not find bounds information on packed array"));
1779 shadow_type = SYMBOL_TYPE (sym);
1781 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1783 lim_warning (_("could not understand bounds information on packed array"));
1787 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1790 (_("could not understand bit size information on packed array"));
1794 return packed_array_type (shadow_type, &bits);
1797 /* Given that ARR is a struct value *indicating a GNAT packed array,
1798 returns a simple array that denotes that array. Its type is a
1799 standard GDB array type except that the BITSIZEs of the array
1800 target types are set to the number of bits in each element, and the
1801 type length is set appropriately. */
1803 static struct value *
1804 decode_packed_array (struct value *arr)
1808 arr = ada_coerce_ref (arr);
1809 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1810 arr = ada_value_ind (arr);
1812 type = decode_packed_array_type (value_type (arr));
1815 error (_("can't unpack array"));
1819 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1821 /* This is a (right-justified) modular type representing a packed
1822 array with no wrapper. In order to interpret the value through
1823 the (left-justified) packed array type we just built, we must
1824 first left-justify it. */
1825 int bit_size, bit_pos;
1828 mod = ada_modulus (value_type (arr)) - 1;
1835 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1836 arr = ada_value_primitive_packed_val (arr, NULL,
1837 bit_pos / HOST_CHAR_BIT,
1838 bit_pos % HOST_CHAR_BIT,
1843 return coerce_unspec_val_to_type (arr, type);
1847 /* The value of the element of packed array ARR at the ARITY indices
1848 given in IND. ARR must be a simple array. */
1850 static struct value *
1851 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1854 int bits, elt_off, bit_off;
1855 long elt_total_bit_offset;
1856 struct type *elt_type;
1860 elt_total_bit_offset = 0;
1861 elt_type = ada_check_typedef (value_type (arr));
1862 for (i = 0; i < arity; i += 1)
1864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1865 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1867 (_("attempt to do packed indexing of something other than a packed array"));
1870 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1871 LONGEST lowerbound, upperbound;
1874 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1876 lim_warning (_("don't know bounds of array"));
1877 lowerbound = upperbound = 0;
1880 idx = value_as_long (value_pos_atr (ind[i]));
1881 if (idx < lowerbound || idx > upperbound)
1882 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1883 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1884 elt_total_bit_offset += (idx - lowerbound) * bits;
1885 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1888 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1889 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1891 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1896 /* Non-zero iff TYPE includes negative integer values. */
1899 has_negatives (struct type *type)
1901 switch (TYPE_CODE (type))
1906 return !TYPE_UNSIGNED (type);
1907 case TYPE_CODE_RANGE:
1908 return TYPE_LOW_BOUND (type) < 0;
1913 /* Create a new value of type TYPE from the contents of OBJ starting
1914 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1915 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1916 assigning through the result will set the field fetched from.
1917 VALADDR is ignored unless OBJ is NULL, in which case,
1918 VALADDR+OFFSET must address the start of storage containing the
1919 packed value. The value returned in this case is never an lval.
1920 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1923 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1924 long offset, int bit_offset, int bit_size,
1928 int src, /* Index into the source area */
1929 targ, /* Index into the target area */
1930 srcBitsLeft, /* Number of source bits left to move */
1931 nsrc, ntarg, /* Number of source and target bytes */
1932 unusedLS, /* Number of bits in next significant
1933 byte of source that are unused */
1934 accumSize; /* Number of meaningful bits in accum */
1935 unsigned char *bytes; /* First byte containing data to unpack */
1936 unsigned char *unpacked;
1937 unsigned long accum; /* Staging area for bits being transferred */
1939 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1940 /* Transmit bytes from least to most significant; delta is the direction
1941 the indices move. */
1942 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1944 type = ada_check_typedef (type);
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) (valaddr + offset);
1951 else if (value_lazy (obj))
1954 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1955 bytes = (unsigned char *) alloca (len);
1956 read_memory (VALUE_ADDRESS (v), bytes, len);
1960 v = allocate_value (type);
1961 bytes = (unsigned char *) value_contents (obj) + offset;
1966 VALUE_LVAL (v) = VALUE_LVAL (obj);
1967 if (VALUE_LVAL (obj) == lval_internalvar)
1968 VALUE_LVAL (v) = lval_internalvar_component;
1969 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1970 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1971 set_value_bitsize (v, bit_size);
1972 if (value_bitpos (v) >= HOST_CHAR_BIT)
1974 VALUE_ADDRESS (v) += 1;
1975 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1979 set_value_bitsize (v, bit_size);
1980 unpacked = (unsigned char *) value_contents (v);
1982 srcBitsLeft = bit_size;
1984 ntarg = TYPE_LENGTH (type);
1988 memset (unpacked, 0, TYPE_LENGTH (type));
1991 else if (BITS_BIG_ENDIAN)
1994 if (has_negatives (type)
1995 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1999 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2002 switch (TYPE_CODE (type))
2004 case TYPE_CODE_ARRAY:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_STRUCT:
2007 /* Non-scalar values must be aligned at a byte boundary... */
2009 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2010 /* ... And are placed at the beginning (most-significant) bytes
2012 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2016 targ = TYPE_LENGTH (type) - 1;
2022 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2025 unusedLS = bit_offset;
2028 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2035 /* Mask for removing bits of the next source byte that are not
2036 part of the value. */
2037 unsigned int unusedMSMask =
2038 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2040 /* Sign-extend bits for this byte. */
2041 unsigned int signMask = sign & ~unusedMSMask;
2043 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2044 accumSize += HOST_CHAR_BIT - unusedLS;
2045 if (accumSize >= HOST_CHAR_BIT)
2047 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2048 accumSize -= HOST_CHAR_BIT;
2049 accum >>= HOST_CHAR_BIT;
2053 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2060 accum |= sign << accumSize;
2061 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2062 accumSize -= HOST_CHAR_BIT;
2063 accum >>= HOST_CHAR_BIT;
2071 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2072 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2075 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2076 int src_offset, int n)
2078 unsigned int accum, mask;
2079 int accum_bits, chunk_size;
2081 target += targ_offset / HOST_CHAR_BIT;
2082 targ_offset %= HOST_CHAR_BIT;
2083 source += src_offset / HOST_CHAR_BIT;
2084 src_offset %= HOST_CHAR_BIT;
2085 if (BITS_BIG_ENDIAN)
2087 accum = (unsigned char) *source;
2089 accum_bits = HOST_CHAR_BIT - src_offset;
2094 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2095 accum_bits += HOST_CHAR_BIT;
2097 chunk_size = HOST_CHAR_BIT - targ_offset;
2100 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2101 mask = ((1 << chunk_size) - 1) << unused_right;
2104 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2106 accum_bits -= chunk_size;
2113 accum = (unsigned char) *source >> src_offset;
2115 accum_bits = HOST_CHAR_BIT - src_offset;
2119 accum = accum + ((unsigned char) *source << accum_bits);
2120 accum_bits += HOST_CHAR_BIT;
2122 chunk_size = HOST_CHAR_BIT - targ_offset;
2125 mask = ((1 << chunk_size) - 1) << targ_offset;
2126 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2128 accum_bits -= chunk_size;
2129 accum >>= chunk_size;
2136 /* Store the contents of FROMVAL into the location of TOVAL.
2137 Return a new value with the location of TOVAL and contents of
2138 FROMVAL. Handles assignment into packed fields that have
2139 floating-point or non-scalar types. */
2141 static struct value *
2142 ada_value_assign (struct value *toval, struct value *fromval)
2144 struct type *type = value_type (toval);
2145 int bits = value_bitsize (toval);
2147 toval = ada_coerce_ref (toval);
2148 fromval = ada_coerce_ref (fromval);
2150 if (ada_is_direct_array_type (value_type (toval)))
2151 toval = ada_coerce_to_simple_array (toval);
2152 if (ada_is_direct_array_type (value_type (fromval)))
2153 fromval = ada_coerce_to_simple_array (fromval);
2155 if (!deprecated_value_modifiable (toval))
2156 error (_("Left operand of assignment is not a modifiable lvalue."));
2158 if (VALUE_LVAL (toval) == lval_memory
2160 && (TYPE_CODE (type) == TYPE_CODE_FLT
2161 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2163 int len = (value_bitpos (toval)
2164 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2165 char *buffer = (char *) alloca (len);
2167 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2170 fromval = value_cast (type, fromval);
2172 read_memory (to_addr, buffer, len);
2173 if (BITS_BIG_ENDIAN)
2174 move_bits (buffer, value_bitpos (toval),
2175 value_contents (fromval),
2176 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2179 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2181 write_memory (to_addr, buffer, len);
2182 if (deprecated_memory_changed_hook)
2183 deprecated_memory_changed_hook (to_addr, len);
2185 val = value_copy (toval);
2186 memcpy (value_contents_raw (val), value_contents (fromval),
2187 TYPE_LENGTH (type));
2188 deprecated_set_value_type (val, type);
2193 return value_assign (toval, fromval);
2197 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2198 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2199 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2200 * COMPONENT, and not the inferior's memory. The current contents
2201 * of COMPONENT are ignored. */
2203 value_assign_to_component (struct value *container, struct value *component,
2206 LONGEST offset_in_container =
2207 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2208 - VALUE_ADDRESS (container) - value_offset (container));
2209 int bit_offset_in_container =
2210 value_bitpos (component) - value_bitpos (container);
2213 val = value_cast (value_type (component), val);
2215 if (value_bitsize (component) == 0)
2216 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2218 bits = value_bitsize (component);
2220 if (BITS_BIG_ENDIAN)
2221 move_bits (value_contents_writeable (container) + offset_in_container,
2222 value_bitpos (container) + bit_offset_in_container,
2223 value_contents (val),
2224 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2227 move_bits (value_contents_writeable (container) + offset_in_container,
2228 value_bitpos (container) + bit_offset_in_container,
2229 value_contents (val), 0, bits);
2232 /* The value of the element of array ARR at the ARITY indices given in IND.
2233 ARR may be either a simple array, GNAT array descriptor, or pointer
2237 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2241 struct type *elt_type;
2243 elt = ada_coerce_to_simple_array (arr);
2245 elt_type = ada_check_typedef (value_type (elt));
2246 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2247 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2248 return value_subscript_packed (elt, arity, ind);
2250 for (k = 0; k < arity; k += 1)
2252 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2253 error (_("too many subscripts (%d expected)"), k);
2254 elt = value_subscript (elt, value_pos_atr (ind[k]));
2259 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2260 value of the element of *ARR at the ARITY indices given in
2261 IND. Does not read the entire array into memory. */
2264 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2269 for (k = 0; k < arity; k += 1)
2274 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2278 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2279 idx = value_pos_atr (ind[k]);
2281 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2282 arr = value_add (arr, idx);
2283 type = TYPE_TARGET_TYPE (type);
2286 return value_ind (arr);
2289 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2290 actual type of ARRAY_PTR is ignored), returns a reference to
2291 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2292 bound of this array is LOW, as per Ada rules. */
2293 static struct value *
2294 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2297 CORE_ADDR base = value_as_address (array_ptr)
2298 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2299 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2300 struct type *index_type =
2301 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_from_pointer (lookup_reference_type (slice_type), base);
2309 static struct value *
2310 ada_value_slice (struct value *array, int low, int high)
2312 struct type *type = value_type (array);
2313 struct type *index_type =
2314 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2320 /* If type is a record type in the form of a standard GNAT array
2321 descriptor, returns the number of dimensions for type. If arr is a
2322 simple array, returns the number of "array of"s that prefix its
2323 type designation. Otherwise, returns 0. */
2326 ada_array_arity (struct type *type)
2333 type = desc_base_type (type);
2336 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2337 return desc_arity (desc_bounds_type (type));
2339 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2342 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2348 /* If TYPE is a record type in the form of a standard GNAT array
2349 descriptor or a simple array type, returns the element type for
2350 TYPE after indexing by NINDICES indices, or by all indices if
2351 NINDICES is -1. Otherwise, returns NULL. */
2354 ada_array_element_type (struct type *type, int nindices)
2356 type = desc_base_type (type);
2358 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2361 struct type *p_array_type;
2363 p_array_type = desc_data_type (type);
2365 k = ada_array_arity (type);
2369 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2370 if (nindices >= 0 && k > nindices)
2372 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2373 while (k > 0 && p_array_type != NULL)
2375 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2378 return p_array_type;
2380 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2382 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2384 type = TYPE_TARGET_TYPE (type);
2393 /* The type of nth index in arrays of given type (n numbering from 1).
2394 Does not examine memory. */
2397 ada_index_type (struct type *type, int n)
2399 struct type *result_type;
2401 type = desc_base_type (type);
2403 if (n > ada_array_arity (type))
2406 if (ada_is_simple_array_type (type))
2410 for (i = 1; i < n; i += 1)
2411 type = TYPE_TARGET_TYPE (type);
2412 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2413 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2414 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2415 perhaps stabsread.c would make more sense. */
2416 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2417 result_type = builtin_type_int;
2422 return desc_index_type (desc_bounds_type (type), n);
2425 /* Given that arr is an array type, returns the lower bound of the
2426 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2427 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2428 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2429 bounds type. It works for other arrays with bounds supplied by
2430 run-time quantities other than discriminants. */
2433 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2434 struct type ** typep)
2437 struct type *index_type_desc;
2439 if (ada_is_packed_array_type (arr_type))
2440 arr_type = decode_packed_array_type (arr_type);
2442 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2445 *typep = builtin_type_int;
2446 return (LONGEST) - which;
2449 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2450 type = TYPE_TARGET_TYPE (arr_type);
2454 index_type_desc = ada_find_parallel_type (type, "___XA");
2455 if (index_type_desc == NULL)
2457 struct type *range_type;
2458 struct type *index_type;
2462 type = TYPE_TARGET_TYPE (type);
2466 range_type = TYPE_INDEX_TYPE (type);
2467 index_type = TYPE_TARGET_TYPE (range_type);
2468 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2469 index_type = builtin_type_long;
2471 *typep = index_type;
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (range_type)
2475 : TYPE_HIGH_BOUND (range_type));
2479 struct type *index_type =
2480 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2481 NULL, TYPE_OBJFILE (arr_type));
2483 *typep = TYPE_TARGET_TYPE (index_type);
2485 (LONGEST) (which == 0
2486 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type));
2491 /* Given that arr is an array value, returns the lower bound of the
2492 nth index (numbering from 1) if which is 0, and the upper bound if
2493 which is 1. This routine will also work for arrays with bounds
2494 supplied by run-time quantities other than discriminants. */
2497 ada_array_bound (struct value *arr, int n, int which)
2499 struct type *arr_type = value_type (arr);
2501 if (ada_is_packed_array_type (arr_type))
2502 return ada_array_bound (decode_packed_array (arr), n, which);
2503 else if (ada_is_simple_array_type (arr_type))
2506 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2507 return value_from_longest (type, v);
2510 return desc_one_bound (desc_bounds (arr), n, which);
2513 /* Given that arr is an array value, returns the length of the
2514 nth index. This routine will also work for arrays with bounds
2515 supplied by run-time quantities other than discriminants.
2516 Does not work for arrays indexed by enumeration types with representation
2517 clauses at the moment. */
2520 ada_array_length (struct value *arr, int n)
2522 struct type *arr_type = ada_check_typedef (value_type (arr));
2524 if (ada_is_packed_array_type (arr_type))
2525 return ada_array_length (decode_packed_array (arr), n);
2527 if (ada_is_simple_array_type (arr_type))
2531 ada_array_bound_from_type (arr_type, n, 1, &type) -
2532 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2533 return value_from_longest (type, v);
2537 value_from_longest (builtin_type_int,
2538 value_as_long (desc_one_bound (desc_bounds (arr),
2540 - value_as_long (desc_one_bound (desc_bounds (arr),
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2558 /* Name resolution */
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2564 ada_decoded_op_name (enum exp_opcode op)
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2573 error (_("Could not find operator name for opcode"));
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2587 resolve (struct expression **expp, int void_context_p)
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2630 resolve_subexp (expp, pos, 0, NULL);
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2637 resolve_subexp (expp, pos, 0, NULL);
2642 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2645 case OP_ATR_MODULUS:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2662 case OP_DISCRETE_RANGE:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2675 resolve_subexp (expp, pos, 1, NULL);
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2701 case BINOP_NOTEQUAL:
2708 case BINOP_SUBSCRIPT:
2713 case UNOP_LOGICAL_NOT:
2730 case OP_INTERNALVAR:
2739 case STRUCTOP_STRUCT:
2740 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2753 error (_("Unexpected operator during name resolution"));
2756 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2757 for (i = 0; i < nargs; i += 1)
2758 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2762 /* Pass two: perform any resolution on principal operator. */
2769 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2771 struct ada_symbol_info *candidates;
2775 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2776 (exp->elts[pc + 2].symbol),
2777 exp->elts[pc + 1].block, VAR_DOMAIN,
2780 if (n_candidates > 1)
2782 /* Types tend to get re-introduced locally, so if there
2783 are any local symbols that are not types, first filter
2786 for (j = 0; j < n_candidates; j += 1)
2787 switch (SYMBOL_CLASS (candidates[j].sym))
2793 case LOC_REGPARM_ADDR:
2797 case LOC_BASEREG_ARG:
2799 case LOC_COMPUTED_ARG:
2805 if (j < n_candidates)
2808 while (j < n_candidates)
2810 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2812 candidates[j] = candidates[n_candidates - 1];
2821 if (n_candidates == 0)
2822 error (_("No definition found for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 else if (n_candidates == 1)
2826 else if (deprocedure_p
2827 && !is_nonfunction (candidates, n_candidates))
2829 i = ada_resolve_function
2830 (candidates, n_candidates, NULL, 0,
2831 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2834 error (_("Could not find a match for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2839 printf_filtered (_("Multiple matches for %s\n"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 user_select_syms (candidates, n_candidates, 1);
2845 exp->elts[pc + 1].block = candidates[i].block;
2846 exp->elts[pc + 2].symbol = candidates[i].sym;
2847 if (innermost_block == NULL
2848 || contained_in (candidates[i].block, innermost_block))
2849 innermost_block = candidates[i].block;
2853 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2856 replace_operator_with_call (expp, pc, 0, 0,
2857 exp->elts[pc + 2].symbol,
2858 exp->elts[pc + 1].block);
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2868 struct ada_symbol_info *candidates;
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 5].symbol),
2874 exp->elts[pc + 4].block, VAR_DOMAIN,
2876 if (n_candidates == 1)
2880 i = ada_resolve_function
2881 (candidates, n_candidates,
2883 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2886 error (_("Could not find a match for %s"),
2887 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2890 exp->elts[pc + 4].block = candidates[i].block;
2891 exp->elts[pc + 5].symbol = candidates[i].sym;
2892 if (innermost_block == NULL
2893 || contained_in (candidates[i].block, innermost_block))
2894 innermost_block = candidates[i].block;
2905 case BINOP_BITWISE_AND:
2906 case BINOP_BITWISE_IOR:
2907 case BINOP_BITWISE_XOR:
2909 case BINOP_NOTEQUAL:
2917 case UNOP_LOGICAL_NOT:
2919 if (possible_user_operator_p (op, argvec))
2921 struct ada_symbol_info *candidates;
2925 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2926 (struct block *) NULL, VAR_DOMAIN,
2928 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2929 ada_decoded_op_name (op), NULL);
2933 replace_operator_with_call (expp, pc, nargs, 1,
2934 candidates[i].sym, candidates[i].block);
2944 return evaluate_subexp_type (exp, pos);
2947 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2948 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2949 a non-pointer. A type of 'void' (which is never a valid expression type)
2950 by convention matches anything. */
2951 /* The term "match" here is rather loose. The match is heuristic and
2952 liberal. FIXME: TOO liberal, in fact. */
2955 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2957 ftype = ada_check_typedef (ftype);
2958 atype = ada_check_typedef (atype);
2960 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2961 ftype = TYPE_TARGET_TYPE (ftype);
2962 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2963 atype = TYPE_TARGET_TYPE (atype);
2965 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2966 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2969 switch (TYPE_CODE (ftype))
2974 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2975 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2976 TYPE_TARGET_TYPE (atype), 0);
2979 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2981 case TYPE_CODE_ENUM:
2982 case TYPE_CODE_RANGE:
2983 switch (TYPE_CODE (atype))
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2993 case TYPE_CODE_ARRAY:
2994 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2995 || ada_is_array_descriptor_type (atype));
2997 case TYPE_CODE_STRUCT:
2998 if (ada_is_array_descriptor_type (ftype))
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3002 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3003 && !ada_is_array_descriptor_type (atype));
3005 case TYPE_CODE_UNION:
3007 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3011 /* Return non-zero if the formals of FUNC "sufficiently match" the
3012 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3013 may also be an enumeral, in which case it is treated as a 0-
3014 argument function. */
3017 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3020 struct type *func_type = SYMBOL_TYPE (func);
3022 if (SYMBOL_CLASS (func) == LOC_CONST
3023 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3024 return (n_actuals == 0);
3025 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3028 if (TYPE_NFIELDS (func_type) != n_actuals)
3031 for (i = 0; i < n_actuals; i += 1)
3033 if (actuals[i] == NULL)
3037 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3038 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3040 if (!ada_type_match (ftype, atype, 1))
3047 /* False iff function type FUNC_TYPE definitely does not produce a value
3048 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3049 FUNC_TYPE is not a valid function type with a non-null return type
3050 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3053 return_match (struct type *func_type, struct type *context_type)
3055 struct type *return_type;
3057 if (func_type == NULL)
3060 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3061 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3063 return_type = base_type (func_type);
3064 if (return_type == NULL)
3067 context_type = base_type (context_type);
3069 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3070 return context_type == NULL || return_type == context_type;
3071 else if (context_type == NULL)
3072 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3074 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3078 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3079 function (if any) that matches the types of the NARGS arguments in
3080 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3081 that returns that type, then eliminate matches that don't. If
3082 CONTEXT_TYPE is void and there is at least one match that does not
3083 return void, eliminate all matches that do.
3085 Asks the user if there is more than one match remaining. Returns -1
3086 if there is no such symbol or none is selected. NAME is used
3087 solely for messages. May re-arrange and modify SYMS in
3088 the process; the index returned is for the modified vector. */
3091 ada_resolve_function (struct ada_symbol_info syms[],
3092 int nsyms, struct value **args, int nargs,
3093 const char *name, struct type *context_type)
3096 int m; /* Number of hits */
3097 struct type *fallback;
3098 struct type *return_type;
3100 return_type = context_type;
3101 if (context_type == NULL)
3102 fallback = builtin_type_void;
3109 for (k = 0; k < nsyms; k += 1)
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && return_match (type, return_type))
3120 if (m > 0 || return_type == fallback)
3123 return_type = fallback;
3130 printf_filtered (_("Multiple matches for %s\n"), name);
3131 user_select_syms (syms, m, 1);
3137 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3144 encoded_ordered_before (char *N0, char *N1)
3148 else if (N0 == NULL)
3153 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3155 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3157 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3158 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3170 return (strcmp (N0, N1) < 0);
3174 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3178 sort_choices (struct ada_symbol_info syms[], int nsyms)
3181 for (i = 1; i < nsyms; i += 1)
3183 struct ada_symbol_info sym = syms[i];
3186 for (j = i - 1; j >= 0; j -= 1)
3188 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3189 SYMBOL_LINKAGE_NAME (sym.sym)))
3191 syms[j + 1] = syms[j];
3197 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3198 by asking the user (if necessary), returning the number selected,
3199 and setting the first elements of SYMS items. Error if no symbols
3202 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3203 to be re-integrated one of these days. */
3206 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3209 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3211 int first_choice = (max_results == 1) ? 1 : 2;
3213 if (max_results < 1)
3214 error (_("Request to select 0 symbols!"));
3218 printf_unfiltered (_("[0] cancel\n"));
3219 if (max_results > 1)
3220 printf_unfiltered (_("[1] all\n"));
3222 sort_choices (syms, nsyms);
3224 for (i = 0; i < nsyms; i += 1)
3226 if (syms[i].sym == NULL)
3229 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3231 struct symtab_and_line sal =
3232 find_function_start_sal (syms[i].sym, 1);
3233 if (sal.symtab == NULL)
3234 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3236 SYMBOL_PRINT_NAME (syms[i].sym),
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3240 SYMBOL_PRINT_NAME (syms[i].sym),
3241 sal.symtab->filename, sal.line);
3247 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3248 && SYMBOL_TYPE (syms[i].sym) != NULL
3249 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3250 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3252 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename, SYMBOL_LINE (syms[i].sym));
3257 else if (is_enumeral
3258 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3260 printf_unfiltered (("[%d] "), i + first_choice);
3261 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3263 printf_unfiltered (_("'(%s) (enumeral)\n"),
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3266 else if (symtab != NULL)
3267 printf_unfiltered (is_enumeral
3268 ? _("[%d] %s in %s (enumeral)\n")
3269 : _("[%d] %s at %s:?\n"),
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s (enumeral)\n")
3276 : _("[%d] %s at ?\n"),
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3282 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3285 for (i = 0; i < n_chosen; i += 1)
3286 syms[i] = syms[chosen[i]];
3291 /* Read and validate a set of numeric choices from the user in the
3292 range 0 .. N_CHOICES-1. Place the results in increasing
3293 order in CHOICES[0 .. N-1], and return N.
3295 The user types choices as a sequence of numbers on one line
3296 separated by blanks, encoding them as follows:
3298 + A choice of 0 means to cancel the selection, throwing an error.
3299 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3300 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3302 The user is not allowed to choose more than MAX_RESULTS values.
3304 ANNOTATION_SUFFIX, if present, is used to annotate the input
3305 prompts (for use with the -f switch). */
3308 get_selections (int *choices, int n_choices, int max_results,
3309 int is_all_choice, char *annotation_suffix)
3314 int first_choice = is_all_choice ? 2 : 1;
3316 prompt = getenv ("PS2");
3320 printf_unfiltered (("%s "), prompt);
3321 gdb_flush (gdb_stdout);
3323 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3326 error_no_arg (_("one or more choice numbers"));
3330 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3331 order, as given in args. Choices are validated. */
3337 while (isspace (*args))
3339 if (*args == '\0' && n_chosen == 0)
3340 error_no_arg (_("one or more choice numbers"));
3341 else if (*args == '\0')
3344 choice = strtol (args, &args2, 10);
3345 if (args == args2 || choice < 0
3346 || choice > n_choices + first_choice - 1)
3347 error (_("Argument must be choice number"));
3351 error (_("cancelled"));
3353 if (choice < first_choice)
3355 n_chosen = n_choices;
3356 for (j = 0; j < n_choices; j += 1)
3360 choice -= first_choice;
3362 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3366 if (j < 0 || choice != choices[j])
3369 for (k = n_chosen - 1; k > j; k -= 1)
3370 choices[k + 1] = choices[k];
3371 choices[j + 1] = choice;
3376 if (n_chosen > max_results)
3377 error (_("Select no more than %d of the above"), max_results);
3382 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3383 on the function identified by SYM and BLOCK, and taking NARGS
3384 arguments. Update *EXPP as needed to hold more space. */
3387 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3388 int oplen, struct symbol *sym,
3389 struct block *block)
3391 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3392 symbol, -oplen for operator being replaced). */
3393 struct expression *newexp = (struct expression *)
3394 xmalloc (sizeof (struct expression)
3395 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3396 struct expression *exp = *expp;
3398 newexp->nelts = exp->nelts + 7 - oplen;
3399 newexp->language_defn = exp->language_defn;
3400 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3401 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3402 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3404 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3405 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3407 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3408 newexp->elts[pc + 4].block = block;
3409 newexp->elts[pc + 5].symbol = sym;
3415 /* Type-class predicates */
3417 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3421 numeric_type_p (struct type *type)
3427 switch (TYPE_CODE (type))
3432 case TYPE_CODE_RANGE:
3433 return (type == TYPE_TARGET_TYPE (type)
3434 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3441 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3444 integer_type_p (struct type *type)
3450 switch (TYPE_CODE (type))
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || integer_type_p (TYPE_TARGET_TYPE (type)));
3463 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3466 scalar_type_p (struct type *type)
3472 switch (TYPE_CODE (type))
3475 case TYPE_CODE_RANGE:
3476 case TYPE_CODE_ENUM:
3485 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3488 discrete_type_p (struct type *type)
3494 switch (TYPE_CODE (type))
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3506 /* Returns non-zero if OP with operands in the vector ARGS could be
3507 a user-defined function. Errs on the side of pre-defined operators
3508 (i.e., result 0). */
3511 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3513 struct type *type0 =
3514 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3515 struct type *type1 =
3516 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3530 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 return (!(integer_type_p (type0) && integer_type_p (type1)));
3540 case BINOP_NOTEQUAL:
3545 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3549 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3550 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3551 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3552 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3553 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3554 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3555 != TYPE_CODE_ARRAY))));
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3562 case UNOP_LOGICAL_NOT:
3564 return (!numeric_type_p (type0));
3571 /* NOTE: In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3575 /* If TYPE encodes a renaming, returns the renaming suffix, which
3576 is XR for an object renaming, XRP for a procedure renaming, XRE for
3577 an exception renaming, and XRS for a subprogram renaming. Returns
3578 NULL if NAME encodes none of these. */
3581 ada_renaming_type (struct type *type)
3583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3585 const char *name = type_name_no_tag (type);
3586 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3588 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3597 /* Return non-zero iff SYM encodes an object renaming. */
3600 ada_is_object_renaming (struct symbol *sym)
3602 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3603 return renaming_type != NULL
3604 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3607 /* Assuming that SYM encodes a non-object renaming, returns the original
3608 name of the renamed entity. The name is good until the end of
3612 ada_simple_renamed_entity (struct symbol *sym)
3615 const char *raw_name;
3619 type = SYMBOL_TYPE (sym);
3620 if (type == NULL || TYPE_NFIELDS (type) < 1)
3621 error (_("Improperly encoded renaming."));
3623 raw_name = TYPE_FIELD_NAME (type, 0);
3624 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3626 error (_("Improperly encoded renaming."));
3628 result = xmalloc (len + 1);
3629 strncpy (result, raw_name, len);
3630 result[len] = '\000';
3636 /* Evaluation: Function Calls */
3638 /* Return an lvalue containing the value VAL. This is the identity on
3639 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3640 on the stack, using and updating *SP as the stack pointer, and
3641 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3643 static struct value *
3644 ensure_lval (struct value *val, CORE_ADDR *sp)
3646 if (! VALUE_LVAL (val))
3648 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3650 /* The following is taken from the structure-return code in
3651 call_function_by_hand. FIXME: Therefore, some refactoring seems
3653 if (INNER_THAN (1, 2))
3655 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3656 reserving sufficient space. */
3658 if (gdbarch_frame_align_p (current_gdbarch))
3659 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3660 VALUE_ADDRESS (val) = *sp;
3664 /* Stack grows upward. Align the frame, allocate space, and
3665 then again, re-align the frame. */
3666 if (gdbarch_frame_align_p (current_gdbarch))
3667 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3668 VALUE_ADDRESS (val) = *sp;
3670 if (gdbarch_frame_align_p (current_gdbarch))
3671 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3674 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3680 /* Return the value ACTUAL, converted to be an appropriate value for a
3681 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3682 allocating any necessary descriptors (fat pointers), or copies of
3683 values not residing in memory, updating it as needed. */
3685 static struct value *
3686 convert_actual (struct value *actual, struct type *formal_type0,
3689 struct type *actual_type = ada_check_typedef (value_type (actual));
3690 struct type *formal_type = ada_check_typedef (formal_type0);
3691 struct type *formal_target =
3692 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3693 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3694 struct type *actual_target =
3695 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3696 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3698 if (ada_is_array_descriptor_type (formal_target)
3699 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3700 return make_array_descriptor (formal_type, actual, sp);
3701 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3703 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3704 && ada_is_array_descriptor_type (actual_target))
3705 return desc_data (actual);
3706 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3708 if (VALUE_LVAL (actual) != lval_memory)
3711 actual_type = ada_check_typedef (value_type (actual));
3712 val = allocate_value (actual_type);
3713 memcpy ((char *) value_contents_raw (val),
3714 (char *) value_contents (actual),
3715 TYPE_LENGTH (actual_type));
3716 actual = ensure_lval (val, sp);
3718 return value_addr (actual);
3721 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3722 return ada_value_ind (actual);
3728 /* Push a descriptor of type TYPE for array value ARR on the stack at
3729 *SP, updating *SP to reflect the new descriptor. Return either
3730 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3731 to-descriptor type rather than a descriptor type), a struct value *
3732 representing a pointer to this descriptor. */
3734 static struct value *
3735 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3737 struct type *bounds_type = desc_bounds_type (type);
3738 struct type *desc_type = desc_base_type (type);
3739 struct value *descriptor = allocate_value (desc_type);
3740 struct value *bounds = allocate_value (bounds_type);
3743 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3745 modify_general_field (value_contents_writeable (bounds),
3746 value_as_long (ada_array_bound (arr, i, 0)),
3747 desc_bound_bitpos (bounds_type, i, 0),
3748 desc_bound_bitsize (bounds_type, i, 0));
3749 modify_general_field (value_contents_writeable (bounds),
3750 value_as_long (ada_array_bound (arr, i, 1)),
3751 desc_bound_bitpos (bounds_type, i, 1),
3752 desc_bound_bitsize (bounds_type, i, 1));
3755 bounds = ensure_lval (bounds, sp);
3757 modify_general_field (value_contents_writeable (descriptor),
3758 VALUE_ADDRESS (ensure_lval (arr, sp)),
3759 fat_pntr_data_bitpos (desc_type),
3760 fat_pntr_data_bitsize (desc_type));
3762 modify_general_field (value_contents_writeable (descriptor),
3763 VALUE_ADDRESS (bounds),
3764 fat_pntr_bounds_bitpos (desc_type),
3765 fat_pntr_bounds_bitsize (desc_type));
3767 descriptor = ensure_lval (descriptor, sp);
3769 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3770 return value_addr (descriptor);
3776 /* Assuming a dummy frame has been established on the target, perform any
3777 conversions needed for calling function FUNC on the NARGS actual
3778 parameters in ARGS, other than standard C conversions. Does
3779 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3780 does not match the number of arguments expected. Use *SP as a
3781 stack pointer for additional data that must be pushed, updating its
3785 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3790 if (TYPE_NFIELDS (value_type (func)) == 0
3791 || nargs != TYPE_NFIELDS (value_type (func)))
3794 for (i = 0; i < nargs; i += 1)
3796 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3799 /* Dummy definitions for an experimental caching module that is not
3800 * used in the public sources. */
3803 lookup_cached_symbol (const char *name, domain_enum namespace,
3804 struct symbol **sym, struct block **block,
3805 struct symtab **symtab)
3811 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3812 struct block *block, struct symtab *symtab)
3818 /* Return the result of a standard (literal, C-like) lookup of NAME in
3819 given DOMAIN, visible from lexical block BLOCK. */
3821 static struct symbol *
3822 standard_lookup (const char *name, const struct block *block,
3826 struct symtab *symtab;
3828 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3831 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3832 cache_symbol (name, domain, sym, block_found, symtab);
3837 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3839 since they contend in overloading in the same way. */
3841 is_nonfunction (struct ada_symbol_info syms[], int n)
3845 for (i = 0; i < n; i += 1)
3846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3848 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3854 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3855 struct types. Otherwise, they may not. */
3858 equiv_types (struct type *type0, struct type *type1)
3862 if (type0 == NULL || type1 == NULL
3863 || TYPE_CODE (type0) != TYPE_CODE (type1))
3865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3874 /* True iff SYM0 represents the same entity as SYM1, or one that is
3875 no more defined than that of SYM1. */
3878 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3886 switch (SYMBOL_CLASS (sym0))
3892 struct type *type0 = SYMBOL_TYPE (sym0);
3893 struct type *type1 = SYMBOL_TYPE (sym1);
3894 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3895 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3896 int len0 = strlen (name0);
3898 TYPE_CODE (type0) == TYPE_CODE (type1)
3899 && (equiv_types (type0, type1)
3900 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3901 && strncmp (name1 + len0, "___XV", 5) == 0));
3904 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3905 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3911 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3912 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3915 add_defn_to_vec (struct obstack *obstackp,
3917 struct block *block, struct symtab *symtab)
3921 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3923 /* Do not try to complete stub types, as the debugger is probably
3924 already scanning all symbols matching a certain name at the
3925 time when this function is called. Trying to replace the stub
3926 type by its associated full type will cause us to restart a scan
3927 which may lead to an infinite recursion. Instead, the client
3928 collecting the matching symbols will end up collecting several
3929 matches, with at least one of them complete. It can then filter
3930 out the stub ones if needed. */
3932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3934 if (lesseq_defined_than (sym, prevDefns[i].sym))
3936 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3938 prevDefns[i].sym = sym;
3939 prevDefns[i].block = block;
3940 prevDefns[i].symtab = symtab;
3946 struct ada_symbol_info info;
3950 info.symtab = symtab;
3951 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3955 /* Number of ada_symbol_info structures currently collected in
3956 current vector in *OBSTACKP. */
3959 num_defns_collected (struct obstack *obstackp)
3961 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3964 /* Vector of ada_symbol_info structures currently collected in current
3965 vector in *OBSTACKP. If FINISH, close off the vector and return
3966 its final address. */
3968 static struct ada_symbol_info *
3969 defns_collected (struct obstack *obstackp, int finish)
3972 return obstack_finish (obstackp);
3974 return (struct ada_symbol_info *) obstack_base (obstackp);
3977 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3978 Check the global symbols if GLOBAL, the static symbols if not.
3979 Do wild-card match if WILD. */
3981 static struct partial_symbol *
3982 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3983 int global, domain_enum namespace, int wild)
3985 struct partial_symbol **start;
3986 int name_len = strlen (name);
3987 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3996 pst->objfile->global_psymbols.list + pst->globals_offset :
3997 pst->objfile->static_psymbols.list + pst->statics_offset);
4001 for (i = 0; i < length; i += 1)
4003 struct partial_symbol *psym = start[i];
4005 if (SYMBOL_DOMAIN (psym) == namespace
4006 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4020 int M = (U + i) >> 1;
4021 struct partial_symbol *psym = start[M];
4022 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4024 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4026 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4037 struct partial_symbol *psym = start[i];
4039 if (SYMBOL_DOMAIN (psym) == namespace)
4041 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4049 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4063 int M = (U + i) >> 1;
4064 struct partial_symbol *psym = start[M];
4065 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4067 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4069 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4080 struct partial_symbol *psym = start[i];
4082 if (SYMBOL_DOMAIN (psym) == namespace)
4086 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4089 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4091 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4101 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4111 /* Find a symbol table containing symbol SYM or NULL if none. */
4113 static struct symtab *
4114 symtab_for_sym (struct symbol *sym)
4117 struct objfile *objfile;
4119 struct symbol *tmp_sym;
4120 struct dict_iterator iter;
4123 ALL_PRIMARY_SYMTABS (objfile, s)
4125 switch (SYMBOL_CLASS (sym))
4133 case LOC_CONST_BYTES:
4134 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4135 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4137 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4138 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4144 switch (SYMBOL_CLASS (sym))
4150 case LOC_REGPARM_ADDR:
4155 case LOC_BASEREG_ARG:
4157 case LOC_COMPUTED_ARG:
4158 for (j = FIRST_LOCAL_BLOCK;
4159 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4161 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4162 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4173 /* Return a minimal symbol matching NAME according to Ada decoding
4174 rules. Returns NULL if there is no such minimal symbol. Names
4175 prefixed with "standard__" are handled specially: "standard__" is
4176 first stripped off, and only static and global symbols are searched. */
4178 struct minimal_symbol *
4179 ada_lookup_simple_minsym (const char *name)
4181 struct objfile *objfile;
4182 struct minimal_symbol *msymbol;
4185 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4187 name += sizeof ("standard__") - 1;
4191 wild_match = (strstr (name, "__") == NULL);
4193 ALL_MSYMBOLS (objfile, msymbol)
4195 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4196 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4203 /* For all subprograms that statically enclose the subprogram of the
4204 selected frame, add symbols matching identifier NAME in DOMAIN
4205 and their blocks to the list of data in OBSTACKP, as for
4206 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4210 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4211 const char *name, domain_enum namespace,
4216 /* FIXME: The next two routines belong in symtab.c */
4219 restore_language (void *lang)
4221 set_language ((enum language) lang);
4224 /* As for lookup_symbol, but performed as if the current language
4228 lookup_symbol_in_language (const char *name, const struct block *block,
4229 domain_enum domain, enum language lang,
4230 int *is_a_field_of_this, struct symtab **symtab)
4232 struct cleanup *old_chain
4233 = make_cleanup (restore_language, (void *) current_language->la_language);
4234 struct symbol *result;
4235 set_language (lang);
4236 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4237 do_cleanups (old_chain);
4241 /* True if TYPE is definitely an artificial type supplied to a symbol
4242 for which no debugging information was given in the symbol file. */
4245 is_nondebugging_type (struct type *type)
4247 char *name = ada_type_name (type);
4248 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4251 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4252 duplicate other symbols in the list (The only case I know of where
4253 this happens is when object files containing stabs-in-ecoff are
4254 linked with files containing ordinary ecoff debugging symbols (or no
4255 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4256 Returns the number of items in the modified list. */
4259 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4266 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4267 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4268 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4270 for (j = 0; j < nsyms; j += 1)
4273 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4274 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4275 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4276 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4277 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4278 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4281 for (k = i + 1; k < nsyms; k += 1)
4282 syms[k - 1] = syms[k];
4295 /* Given a type that corresponds to a renaming entity, use the type name
4296 to extract the scope (package name or function name, fully qualified,
4297 and following the GNAT encoding convention) where this renaming has been
4298 defined. The string returned needs to be deallocated after use. */
4301 xget_renaming_scope (struct type *renaming_type)
4303 /* The renaming types adhere to the following convention:
4304 <scope>__<rename>___<XR extension>.
4305 So, to extract the scope, we search for the "___XR" extension,
4306 and then backtrack until we find the first "__". */
4308 const char *name = type_name_no_tag (renaming_type);
4309 char *suffix = strstr (name, "___XR");
4314 /* Now, backtrack a bit until we find the first "__". Start looking
4315 at suffix - 3, as the <rename> part is at least one character long. */
4317 for (last = suffix - 3; last > name; last--)
4318 if (last[0] == '_' && last[1] == '_')
4321 /* Make a copy of scope and return it. */
4323 scope_len = last - name;
4324 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4326 strncpy (scope, name, scope_len);
4327 scope[scope_len] = '\0';
4332 /* Return nonzero if NAME corresponds to a package name. */
4335 is_package_name (const char *name)
4337 /* Here, We take advantage of the fact that no symbols are generated
4338 for packages, while symbols are generated for each function.
4339 So the condition for NAME represent a package becomes equivalent
4340 to NAME not existing in our list of symbols. There is only one
4341 small complication with library-level functions (see below). */
4345 /* If it is a function that has not been defined at library level,
4346 then we should be able to look it up in the symbols. */
4347 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4350 /* Library-level function names start with "_ada_". See if function
4351 "_ada_" followed by NAME can be found. */
4353 /* Do a quick check that NAME does not contain "__", since library-level
4354 functions names cannot contain "__" in them. */
4355 if (strstr (name, "__") != NULL)
4358 fun_name = xstrprintf ("_ada_%s", name);
4360 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4363 /* Return nonzero if SYM corresponds to a renaming entity that is
4364 visible from FUNCTION_NAME. */
4367 renaming_is_visible (const struct symbol *sym, char *function_name)
4369 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4371 make_cleanup (xfree, scope);
4373 /* If the rename has been defined in a package, then it is visible. */
4374 if (is_package_name (scope))
4377 /* Check that the rename is in the current function scope by checking
4378 that its name starts with SCOPE. */
4380 /* If the function name starts with "_ada_", it means that it is
4381 a library-level function. Strip this prefix before doing the
4382 comparison, as the encoding for the renaming does not contain
4384 if (strncmp (function_name, "_ada_", 5) == 0)
4387 return (strncmp (function_name, scope, strlen (scope)) == 0);
4390 /* Iterates over the SYMS list and remove any entry that corresponds to
4391 a renaming entity that is not visible from the function associated
4395 GNAT emits a type following a specified encoding for each renaming
4396 entity. Unfortunately, STABS currently does not support the definition
4397 of types that are local to a given lexical block, so all renamings types
4398 are emitted at library level. As a consequence, if an application
4399 contains two renaming entities using the same name, and a user tries to
4400 print the value of one of these entities, the result of the ada symbol
4401 lookup will also contain the wrong renaming type.
4403 This function partially covers for this limitation by attempting to
4404 remove from the SYMS list renaming symbols that should be visible
4405 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4406 method with the current information available. The implementation
4407 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4409 - When the user tries to print a rename in a function while there
4410 is another rename entity defined in a package: Normally, the
4411 rename in the function has precedence over the rename in the
4412 package, so the latter should be removed from the list. This is
4413 currently not the case.
4415 - This function will incorrectly remove valid renames if
4416 the CURRENT_BLOCK corresponds to a function which symbol name
4417 has been changed by an "Export" pragma. As a consequence,
4418 the user will be unable to print such rename entities. */
4421 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4422 int nsyms, struct block *current_block)
4424 struct symbol *current_function;
4425 char *current_function_name;
4428 /* Extract the function name associated to CURRENT_BLOCK.
4429 Abort if unable to do so. */
4431 if (current_block == NULL)
4434 current_function = block_function (current_block);
4435 if (current_function == NULL)
4438 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4439 if (current_function_name == NULL)
4442 /* Check each of the symbols, and remove it from the list if it is
4443 a type corresponding to a renaming that is out of the scope of
4444 the current block. */
4449 if (ada_is_object_renaming (syms[i].sym)
4450 && !renaming_is_visible (syms[i].sym, current_function_name))
4453 for (j = i + 1; j < nsyms; j++)
4454 syms[j - 1] = syms[j];
4464 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4465 scope and in global scopes, returning the number of matches. Sets
4466 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4467 indicating the symbols found and the blocks and symbol tables (if
4468 any) in which they were found. This vector are transient---good only to
4469 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4470 symbol match within the nest of blocks whose innermost member is BLOCK0,
4471 is the one match returned (no other matches in that or
4472 enclosing blocks is returned). If there are any matches in or
4473 surrounding BLOCK0, then these alone are returned. Otherwise, the
4474 search extends to global and file-scope (static) symbol tables.
4475 Names prefixed with "standard__" are handled specially: "standard__"
4476 is first stripped off, and only static and global symbols are searched. */
4479 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4480 domain_enum namespace,
4481 struct ada_symbol_info **results)
4485 struct partial_symtab *ps;
4486 struct blockvector *bv;
4487 struct objfile *objfile;
4488 struct block *block;
4490 struct minimal_symbol *msymbol;
4496 obstack_free (&symbol_list_obstack, NULL);
4497 obstack_init (&symbol_list_obstack);
4501 /* Search specified block and its superiors. */
4503 wild_match = (strstr (name0, "__") == NULL);
4505 block = (struct block *) block0; /* FIXME: No cast ought to be
4506 needed, but adding const will
4507 have a cascade effect. */
4508 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4512 name = name0 + sizeof ("standard__") - 1;
4516 while (block != NULL)
4519 ada_add_block_symbols (&symbol_list_obstack, block, name,
4520 namespace, NULL, NULL, wild_match);
4522 /* If we found a non-function match, assume that's the one. */
4523 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4524 num_defns_collected (&symbol_list_obstack)))
4527 block = BLOCK_SUPERBLOCK (block);
4530 /* If no luck so far, try to find NAME as a local symbol in some lexically
4531 enclosing subprogram. */
4532 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4533 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4534 name, namespace, wild_match);
4536 /* If we found ANY matches among non-global symbols, we're done. */
4538 if (num_defns_collected (&symbol_list_obstack) > 0)
4542 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4545 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4549 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4550 tables, and psymtab's. */
4552 ALL_PRIMARY_SYMTABS (objfile, s)
4555 bv = BLOCKVECTOR (s);
4556 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4557 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4558 objfile, s, wild_match);
4561 if (namespace == VAR_DOMAIN)
4563 ALL_MSYMBOLS (objfile, msymbol)
4565 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4567 switch (MSYMBOL_TYPE (msymbol))
4569 case mst_solib_trampoline:
4572 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4575 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4577 bv = BLOCKVECTOR (s);
4578 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4579 ada_add_block_symbols (&symbol_list_obstack, block,
4580 SYMBOL_LINKAGE_NAME (msymbol),
4581 namespace, objfile, s, wild_match);
4583 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4585 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4586 ada_add_block_symbols (&symbol_list_obstack, block,
4587 SYMBOL_LINKAGE_NAME (msymbol),
4588 namespace, objfile, s,
4597 ALL_PSYMTABS (objfile, ps)
4601 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4603 s = PSYMTAB_TO_SYMTAB (ps);
4606 bv = BLOCKVECTOR (s);
4607 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4608 ada_add_block_symbols (&symbol_list_obstack, block, name,
4609 namespace, objfile, s, wild_match);
4613 /* Now add symbols from all per-file blocks if we've gotten no hits
4614 (Not strictly correct, but perhaps better than an error).
4615 Do the symtabs first, then check the psymtabs. */
4617 if (num_defns_collected (&symbol_list_obstack) == 0)
4620 ALL_PRIMARY_SYMTABS (objfile, s)
4623 bv = BLOCKVECTOR (s);
4624 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4625 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4626 objfile, s, wild_match);
4629 ALL_PSYMTABS (objfile, ps)
4633 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4635 s = PSYMTAB_TO_SYMTAB (ps);
4636 bv = BLOCKVECTOR (s);
4639 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4640 ada_add_block_symbols (&symbol_list_obstack, block, name,
4641 namespace, objfile, s, wild_match);
4647 ndefns = num_defns_collected (&symbol_list_obstack);
4648 *results = defns_collected (&symbol_list_obstack, 1);
4650 ndefns = remove_extra_symbols (*results, ndefns);
4653 cache_symbol (name0, namespace, NULL, NULL, NULL);
4655 if (ndefns == 1 && cacheIfUnique)
4656 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4657 (*results)[0].symtab);
4659 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4660 (struct block *) block0);
4665 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4666 scope and in global scopes, or NULL if none. NAME is folded and
4667 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4668 choosing the first symbol if there are multiple choices.
4669 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4670 table in which the symbol was found (in both cases, these
4671 assignments occur only if the pointers are non-null). */
4674 ada_lookup_symbol (const char *name, const struct block *block0,
4675 domain_enum namespace, int *is_a_field_of_this,
4676 struct symtab **symtab)
4678 struct ada_symbol_info *candidates;
4681 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4682 block0, namespace, &candidates);
4684 if (n_candidates == 0)
4687 if (is_a_field_of_this != NULL)
4688 *is_a_field_of_this = 0;
4692 *symtab = candidates[0].symtab;
4693 if (*symtab == NULL && candidates[0].block != NULL)
4695 struct objfile *objfile;
4698 struct blockvector *bv;
4700 /* Search the list of symtabs for one which contains the
4701 address of the start of this block. */
4702 ALL_PRIMARY_SYMTABS (objfile, s)
4704 bv = BLOCKVECTOR (s);
4705 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4706 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4707 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4710 return fixup_symbol_section (candidates[0].sym, objfile);
4713 /* FIXME: brobecker/2004-11-12: I think that we should never
4714 reach this point. I don't see a reason why we would not
4715 find a symtab for a given block, so I suggest raising an
4716 internal_error exception here. Otherwise, we end up
4717 returning a symbol but no symtab, which certain parts of
4718 the code that rely (indirectly) on this function do not
4719 expect, eventually causing a SEGV. */
4720 return fixup_symbol_section (candidates[0].sym, NULL);
4723 return candidates[0].sym;
4726 static struct symbol *
4727 ada_lookup_symbol_nonlocal (const char *name,
4728 const char *linkage_name,
4729 const struct block *block,
4730 const domain_enum domain, struct symtab **symtab)
4732 if (linkage_name == NULL)
4733 linkage_name = name;
4734 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4739 /* True iff STR is a possible encoded suffix of a normal Ada name
4740 that is to be ignored for matching purposes. Suffixes of parallel
4741 names (e.g., XVE) are not included here. Currently, the possible suffixes
4742 are given by either of the regular expression:
4744 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4746 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4747 _E[0-9]+[bs]$ [protected object entry suffixes]
4748 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4752 is_name_suffix (const char *str)
4755 const char *matching;
4756 const int len = strlen (str);
4758 /* (__[0-9]+)?\.[0-9]+ */
4760 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4763 while (isdigit (matching[0]))
4765 if (matching[0] == '\0')
4769 if (matching[0] == '.' || matching[0] == '$')
4772 while (isdigit (matching[0]))
4774 if (matching[0] == '\0')
4779 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4782 while (isdigit (matching[0]))
4784 if (matching[0] == '\0')
4789 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4790 with a N at the end. Unfortunately, the compiler uses the same
4791 convention for other internal types it creates. So treating
4792 all entity names that end with an "N" as a name suffix causes
4793 some regressions. For instance, consider the case of an enumerated
4794 type. To support the 'Image attribute, it creates an array whose
4796 Having a single character like this as a suffix carrying some
4797 information is a bit risky. Perhaps we should change the encoding
4798 to be something like "_N" instead. In the meantime, do not do
4799 the following check. */
4800 /* Protected Object Subprograms */
4801 if (len == 1 && str [0] == 'N')
4806 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4809 while (isdigit (matching[0]))
4811 if ((matching[0] == 'b' || matching[0] == 's')
4812 && matching [1] == '\0')
4816 /* ??? We should not modify STR directly, as we are doing below. This
4817 is fine in this case, but may become problematic later if we find
4818 that this alternative did not work, and want to try matching
4819 another one from the begining of STR. Since we modified it, we
4820 won't be able to find the begining of the string anymore! */
4824 while (str[0] != '_' && str[0] != '\0')
4826 if (str[0] != 'n' && str[0] != 'b')
4831 if (str[0] == '\000')
4835 if (str[1] != '_' || str[2] == '\000')
4839 if (strcmp (str + 3, "JM") == 0)
4841 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4842 the LJM suffix in favor of the JM one. But we will
4843 still accept LJM as a valid suffix for a reasonable
4844 amount of time, just to allow ourselves to debug programs
4845 compiled using an older version of GNAT. */
4846 if (strcmp (str + 3, "LJM") == 0)
4850 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4851 || str[4] == 'U' || str[4] == 'P')
4853 if (str[4] == 'R' && str[5] != 'T')
4857 if (!isdigit (str[2]))
4859 for (k = 3; str[k] != '\0'; k += 1)
4860 if (!isdigit (str[k]) && str[k] != '_')
4864 if (str[0] == '$' && isdigit (str[1]))
4866 for (k = 2; str[k] != '\0'; k += 1)
4867 if (!isdigit (str[k]) && str[k] != '_')
4874 /* Return nonzero if the given string starts with a dot ('.')
4875 followed by zero or more digits.
4877 Note: brobecker/2003-11-10: A forward declaration has not been
4878 added at the begining of this file yet, because this function
4879 is only used to work around a problem found during wild matching
4880 when trying to match minimal symbol names against symbol names
4881 obtained from dwarf-2 data. This function is therefore currently
4882 only used in wild_match() and is likely to be deleted when the
4883 problem in dwarf-2 is fixed. */
4886 is_dot_digits_suffix (const char *str)
4892 while (isdigit (str[0]))
4894 return (str[0] == '\0');
4897 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4898 Certain symbols appear at first to match, except that they turn out
4899 not to follow the Ada encoding and hence should not be used as a wild
4900 match of a given pattern. */
4903 is_valid_name_for_wild_match (const char *name0)
4905 const char *decoded_name = ada_decode (name0);
4908 for (i=0; decoded_name[i] != '\0'; i++)
4909 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4915 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4916 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4917 informational suffixes of NAME (i.e., for which is_name_suffix is
4921 wild_match (const char *patn0, int patn_len, const char *name0)
4927 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4928 stored in the symbol table for nested function names is sometimes
4929 different from the name of the associated entity stored in
4930 the dwarf-2 data: This is the case for nested subprograms, where
4931 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4932 while the symbol name from the dwarf-2 data does not.
4934 Although the DWARF-2 standard documents that entity names stored
4935 in the dwarf-2 data should be identical to the name as seen in
4936 the source code, GNAT takes a different approach as we already use
4937 a special encoding mechanism to convey the information so that
4938 a C debugger can still use the information generated to debug
4939 Ada programs. A corollary is that the symbol names in the dwarf-2
4940 data should match the names found in the symbol table. I therefore
4941 consider this issue as a compiler defect.
4943 Until the compiler is properly fixed, we work-around the problem
4944 by ignoring such suffixes during the match. We do so by making
4945 a copy of PATN0 and NAME0, and then by stripping such a suffix
4946 if present. We then perform the match on the resulting strings. */
4949 name_len = strlen (name0);
4951 name = (char *) alloca ((name_len + 1) * sizeof (char));
4952 strcpy (name, name0);
4953 dot = strrchr (name, '.');
4954 if (dot != NULL && is_dot_digits_suffix (dot))
4957 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4958 strncpy (patn, patn0, patn_len);
4959 patn[patn_len] = '\0';
4960 dot = strrchr (patn, '.');
4961 if (dot != NULL && is_dot_digits_suffix (dot))
4964 patn_len = dot - patn;
4968 /* Now perform the wild match. */
4970 name_len = strlen (name);
4971 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4972 && strncmp (patn, name + 5, patn_len) == 0
4973 && is_name_suffix (name + patn_len + 5))
4976 while (name_len >= patn_len)
4978 if (strncmp (patn, name, patn_len) == 0
4979 && is_name_suffix (name + patn_len))
4980 return (is_valid_name_for_wild_match (name0));
4987 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4992 if (!islower (name[2]))
4999 if (!islower (name[1]))
5010 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5011 vector *defn_symbols, updating the list of symbols in OBSTACKP
5012 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5013 OBJFILE is the section containing BLOCK.
5014 SYMTAB is recorded with each symbol added. */
5017 ada_add_block_symbols (struct obstack *obstackp,
5018 struct block *block, const char *name,
5019 domain_enum domain, struct objfile *objfile,
5020 struct symtab *symtab, int wild)
5022 struct dict_iterator iter;
5023 int name_len = strlen (name);
5024 /* A matching argument symbol, if any. */
5025 struct symbol *arg_sym;
5026 /* Set true when we find a matching non-argument symbol. */
5035 ALL_BLOCK_SYMBOLS (block, iter, sym)
5037 if (SYMBOL_DOMAIN (sym) == domain
5038 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5040 switch (SYMBOL_CLASS (sym))
5046 case LOC_REGPARM_ADDR:
5047 case LOC_BASEREG_ARG:
5048 case LOC_COMPUTED_ARG:
5051 case LOC_UNRESOLVED:
5055 add_defn_to_vec (obstackp,
5056 fixup_symbol_section (sym, objfile),
5065 ALL_BLOCK_SYMBOLS (block, iter, sym)
5067 if (SYMBOL_DOMAIN (sym) == domain)
5069 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5071 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5073 switch (SYMBOL_CLASS (sym))
5079 case LOC_REGPARM_ADDR:
5080 case LOC_BASEREG_ARG:
5081 case LOC_COMPUTED_ARG:
5084 case LOC_UNRESOLVED:
5088 add_defn_to_vec (obstackp,
5089 fixup_symbol_section (sym, objfile),
5098 if (!found_sym && arg_sym != NULL)
5100 add_defn_to_vec (obstackp,
5101 fixup_symbol_section (arg_sym, objfile),
5110 ALL_BLOCK_SYMBOLS (block, iter, sym)
5112 if (SYMBOL_DOMAIN (sym) == domain)
5116 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5119 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5121 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5126 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5128 switch (SYMBOL_CLASS (sym))
5134 case LOC_REGPARM_ADDR:
5135 case LOC_BASEREG_ARG:
5136 case LOC_COMPUTED_ARG:
5139 case LOC_UNRESOLVED:
5143 add_defn_to_vec (obstackp,
5144 fixup_symbol_section (sym, objfile),
5152 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5153 They aren't parameters, right? */
5154 if (!found_sym && arg_sym != NULL)
5156 add_defn_to_vec (obstackp,
5157 fixup_symbol_section (arg_sym, objfile),
5165 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5166 to be invisible to users. */
5169 ada_is_ignored_field (struct type *type, int field_num)
5171 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5175 const char *name = TYPE_FIELD_NAME (type, field_num);
5176 return (name == NULL
5177 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5181 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5182 pointer or reference type whose ultimate target has a tag field. */
5185 ada_is_tagged_type (struct type *type, int refok)
5187 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5190 /* True iff TYPE represents the type of X'Tag */
5193 ada_is_tag_type (struct type *type)
5195 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5199 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5200 return (name != NULL
5201 && strcmp (name, "ada__tags__dispatch_table") == 0);
5205 /* The type of the tag on VAL. */
5208 ada_tag_type (struct value *val)
5210 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5213 /* The value of the tag on VAL. */
5216 ada_value_tag (struct value *val)
5218 return ada_value_struct_elt (val, "_tag", 0);
5221 /* The value of the tag on the object of type TYPE whose contents are
5222 saved at VALADDR, if it is non-null, or is at memory address
5225 static struct value *
5226 value_tag_from_contents_and_address (struct type *type,
5227 const gdb_byte *valaddr,
5230 int tag_byte_offset, dummy1, dummy2;
5231 struct type *tag_type;
5232 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5235 const gdb_byte *valaddr1 = ((valaddr == NULL)
5237 : valaddr + tag_byte_offset);
5238 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5240 return value_from_contents_and_address (tag_type, valaddr1, address1);
5245 static struct type *
5246 type_from_tag (struct value *tag)
5248 const char *type_name = ada_tag_name (tag);
5249 if (type_name != NULL)
5250 return ada_find_any_type (ada_encode (type_name));
5261 static int ada_tag_name_1 (void *);
5262 static int ada_tag_name_2 (struct tag_args *);
5264 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5265 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5266 The value stored in ARGS->name is valid until the next call to
5270 ada_tag_name_1 (void *args0)
5272 struct tag_args *args = (struct tag_args *) args0;
5273 static char name[1024];
5277 val = ada_value_struct_elt (args->tag, "tsd", 1);
5279 return ada_tag_name_2 (args);
5280 val = ada_value_struct_elt (val, "expanded_name", 1);
5283 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5284 for (p = name; *p != '\0'; p += 1)
5291 /* Utility function for ada_tag_name_1 that tries the second
5292 representation for the dispatch table (in which there is no
5293 explicit 'tsd' field in the referent of the tag pointer, and instead
5294 the tsd pointer is stored just before the dispatch table. */
5297 ada_tag_name_2 (struct tag_args *args)
5299 struct type *info_type;
5300 static char name[1024];
5302 struct value *val, *valp;
5305 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5306 if (info_type == NULL)
5308 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5309 valp = value_cast (info_type, args->tag);
5312 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5315 val = ada_value_struct_elt (val, "expanded_name", 1);
5318 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5319 for (p = name; *p != '\0'; p += 1)
5326 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5330 ada_tag_name (struct value *tag)
5332 struct tag_args args;
5333 if (!ada_is_tag_type (value_type (tag)))
5337 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5341 /* The parent type of TYPE, or NULL if none. */
5344 ada_parent_type (struct type *type)
5348 type = ada_check_typedef (type);
5350 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5353 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5354 if (ada_is_parent_field (type, i))
5355 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5360 /* True iff field number FIELD_NUM of structure type TYPE contains the
5361 parent-type (inherited) fields of a derived type. Assumes TYPE is
5362 a structure type with at least FIELD_NUM+1 fields. */
5365 ada_is_parent_field (struct type *type, int field_num)
5367 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5368 return (name != NULL
5369 && (strncmp (name, "PARENT", 6) == 0
5370 || strncmp (name, "_parent", 7) == 0));
5373 /* True iff field number FIELD_NUM of structure type TYPE is a
5374 transparent wrapper field (which should be silently traversed when doing
5375 field selection and flattened when printing). Assumes TYPE is a
5376 structure type with at least FIELD_NUM+1 fields. Such fields are always
5380 ada_is_wrapper_field (struct type *type, int field_num)
5382 const char *name = TYPE_FIELD_NAME (type, field_num);
5383 return (name != NULL
5384 && (strncmp (name, "PARENT", 6) == 0
5385 || strcmp (name, "REP") == 0
5386 || strncmp (name, "_parent", 7) == 0
5387 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5390 /* True iff field number FIELD_NUM of structure or union type TYPE
5391 is a variant wrapper. Assumes TYPE is a structure type with at least
5392 FIELD_NUM+1 fields. */
5395 ada_is_variant_part (struct type *type, int field_num)
5397 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5398 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5399 || (is_dynamic_field (type, field_num)
5400 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5401 == TYPE_CODE_UNION)));
5404 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5405 whose discriminants are contained in the record type OUTER_TYPE,
5406 returns the type of the controlling discriminant for the variant. */
5409 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5411 char *name = ada_variant_discrim_name (var_type);
5413 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5415 return builtin_type_int;
5420 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5421 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5422 represents a 'when others' clause; otherwise 0. */
5425 ada_is_others_clause (struct type *type, int field_num)
5427 const char *name = TYPE_FIELD_NAME (type, field_num);
5428 return (name != NULL && name[0] == 'O');
5431 /* Assuming that TYPE0 is the type of the variant part of a record,
5432 returns the name of the discriminant controlling the variant.
5433 The value is valid until the next call to ada_variant_discrim_name. */
5436 ada_variant_discrim_name (struct type *type0)
5438 static char *result = NULL;
5439 static size_t result_len = 0;
5442 const char *discrim_end;
5443 const char *discrim_start;
5445 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5446 type = TYPE_TARGET_TYPE (type0);
5450 name = ada_type_name (type);
5452 if (name == NULL || name[0] == '\000')
5455 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5458 if (strncmp (discrim_end, "___XVN", 6) == 0)
5461 if (discrim_end == name)
5464 for (discrim_start = discrim_end; discrim_start != name + 3;
5467 if (discrim_start == name + 1)
5469 if ((discrim_start > name + 3
5470 && strncmp (discrim_start - 3, "___", 3) == 0)
5471 || discrim_start[-1] == '.')
5475 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5476 strncpy (result, discrim_start, discrim_end - discrim_start);
5477 result[discrim_end - discrim_start] = '\0';
5481 /* Scan STR for a subtype-encoded number, beginning at position K.
5482 Put the position of the character just past the number scanned in
5483 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5484 Return 1 if there was a valid number at the given position, and 0
5485 otherwise. A "subtype-encoded" number consists of the absolute value
5486 in decimal, followed by the letter 'm' to indicate a negative number.
5487 Assumes 0m does not occur. */
5490 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5494 if (!isdigit (str[k]))
5497 /* Do it the hard way so as not to make any assumption about
5498 the relationship of unsigned long (%lu scan format code) and
5501 while (isdigit (str[k]))
5503 RU = RU * 10 + (str[k] - '0');
5510 *R = (-(LONGEST) (RU - 1)) - 1;
5516 /* NOTE on the above: Technically, C does not say what the results of
5517 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5518 number representable as a LONGEST (although either would probably work
5519 in most implementations). When RU>0, the locution in the then branch
5520 above is always equivalent to the negative of RU. */
5527 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5528 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5529 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5532 ada_in_variant (LONGEST val, struct type *type, int field_num)
5534 const char *name = TYPE_FIELD_NAME (type, field_num);
5547 if (!ada_scan_number (name, p + 1, &W, &p))
5556 if (!ada_scan_number (name, p + 1, &L, &p)
5557 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5559 if (val >= L && val <= U)
5571 /* FIXME: Lots of redundancy below. Try to consolidate. */
5573 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5574 ARG_TYPE, extract and return the value of one of its (non-static)
5575 fields. FIELDNO says which field. Differs from value_primitive_field
5576 only in that it can handle packed values of arbitrary type. */
5578 static struct value *
5579 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5580 struct type *arg_type)
5584 arg_type = ada_check_typedef (arg_type);
5585 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5587 /* Handle packed fields. */
5589 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5591 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5592 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5594 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5595 offset + bit_pos / 8,
5596 bit_pos % 8, bit_size, type);
5599 return value_primitive_field (arg1, offset, fieldno, arg_type);
5602 /* Find field with name NAME in object of type TYPE. If found,
5603 set the following for each argument that is non-null:
5604 - *FIELD_TYPE_P to the field's type;
5605 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5606 an object of that type;
5607 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5608 - *BIT_SIZE_P to its size in bits if the field is packed, and
5610 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5611 fields up to but not including the desired field, or by the total
5612 number of fields if not found. A NULL value of NAME never
5613 matches; the function just counts visible fields in this case.
5615 Returns 1 if found, 0 otherwise. */
5618 find_struct_field (char *name, struct type *type, int offset,
5619 struct type **field_type_p,
5620 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5625 type = ada_check_typedef (type);
5627 if (field_type_p != NULL)
5628 *field_type_p = NULL;
5629 if (byte_offset_p != NULL)
5631 if (bit_offset_p != NULL)
5633 if (bit_size_p != NULL)
5636 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5638 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5639 int fld_offset = offset + bit_pos / 8;
5640 char *t_field_name = TYPE_FIELD_NAME (type, i);
5642 if (t_field_name == NULL)
5645 else if (name != NULL && field_name_match (t_field_name, name))
5647 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5648 if (field_type_p != NULL)
5649 *field_type_p = TYPE_FIELD_TYPE (type, i);
5650 if (byte_offset_p != NULL)
5651 *byte_offset_p = fld_offset;
5652 if (bit_offset_p != NULL)
5653 *bit_offset_p = bit_pos % 8;
5654 if (bit_size_p != NULL)
5655 *bit_size_p = bit_size;
5658 else if (ada_is_wrapper_field (type, i))
5660 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5661 field_type_p, byte_offset_p, bit_offset_p,
5662 bit_size_p, index_p))
5665 else if (ada_is_variant_part (type, i))
5667 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5670 struct type *field_type
5671 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5673 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5675 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5677 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5678 field_type_p, byte_offset_p,
5679 bit_offset_p, bit_size_p, index_p))
5683 else if (index_p != NULL)
5689 /* Number of user-visible fields in record type TYPE. */
5692 num_visible_fields (struct type *type)
5696 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5700 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5701 and search in it assuming it has (class) type TYPE.
5702 If found, return value, else return NULL.
5704 Searches recursively through wrapper fields (e.g., '_parent'). */
5706 static struct value *
5707 ada_search_struct_field (char *name, struct value *arg, int offset,
5711 type = ada_check_typedef (type);
5713 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5715 char *t_field_name = TYPE_FIELD_NAME (type, i);
5717 if (t_field_name == NULL)
5720 else if (field_name_match (t_field_name, name))
5721 return ada_value_primitive_field (arg, offset, i, type);
5723 else if (ada_is_wrapper_field (type, i))
5725 struct value *v = /* Do not let indent join lines here. */
5726 ada_search_struct_field (name, arg,
5727 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5728 TYPE_FIELD_TYPE (type, i));
5733 else if (ada_is_variant_part (type, i))
5735 /* PNH: Do we ever get here? See find_struct_field. */
5737 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5738 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5740 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5742 struct value *v = ada_search_struct_field /* Force line break. */
5744 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5745 TYPE_FIELD_TYPE (field_type, j));
5754 static struct value *ada_index_struct_field_1 (int *, struct value *,
5755 int, struct type *);
5758 /* Return field #INDEX in ARG, where the index is that returned by
5759 * find_struct_field through its INDEX_P argument. Adjust the address
5760 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5761 * If found, return value, else return NULL. */
5763 static struct value *
5764 ada_index_struct_field (int index, struct value *arg, int offset,
5767 return ada_index_struct_field_1 (&index, arg, offset, type);
5771 /* Auxiliary function for ada_index_struct_field. Like
5772 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5775 static struct value *
5776 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5780 type = ada_check_typedef (type);
5782 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5784 if (TYPE_FIELD_NAME (type, i) == NULL)
5786 else if (ada_is_wrapper_field (type, i))
5788 struct value *v = /* Do not let indent join lines here. */
5789 ada_index_struct_field_1 (index_p, arg,
5790 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5791 TYPE_FIELD_TYPE (type, i));
5796 else if (ada_is_variant_part (type, i))
5798 /* PNH: Do we ever get here? See ada_search_struct_field,
5799 find_struct_field. */
5800 error (_("Cannot assign this kind of variant record"));
5802 else if (*index_p == 0)
5803 return ada_value_primitive_field (arg, offset, i, type);
5810 /* Given ARG, a value of type (pointer or reference to a)*
5811 structure/union, extract the component named NAME from the ultimate
5812 target structure/union and return it as a value with its
5813 appropriate type. If ARG is a pointer or reference and the field
5814 is not packed, returns a reference to the field, otherwise the
5815 value of the field (an lvalue if ARG is an lvalue).
5817 The routine searches for NAME among all members of the structure itself
5818 and (recursively) among all members of any wrapper members
5821 If NO_ERR, then simply return NULL in case of error, rather than
5825 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5827 struct type *t, *t1;
5831 t1 = t = ada_check_typedef (value_type (arg));
5832 if (TYPE_CODE (t) == TYPE_CODE_REF)
5834 t1 = TYPE_TARGET_TYPE (t);
5837 t1 = ada_check_typedef (t1);
5838 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5840 arg = coerce_ref (arg);
5845 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5847 t1 = TYPE_TARGET_TYPE (t);
5850 t1 = ada_check_typedef (t1);
5851 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5853 arg = value_ind (arg);
5860 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5864 v = ada_search_struct_field (name, arg, 0, t);
5867 int bit_offset, bit_size, byte_offset;
5868 struct type *field_type;
5871 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5872 address = value_as_address (arg);
5874 address = unpack_pointer (t, value_contents (arg));
5876 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5877 if (find_struct_field (name, t1, 0,
5878 &field_type, &byte_offset, &bit_offset,
5883 if (TYPE_CODE (t) == TYPE_CODE_REF)
5884 arg = ada_coerce_ref (arg);
5886 arg = ada_value_ind (arg);
5887 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5888 bit_offset, bit_size,
5892 v = value_from_pointer (lookup_reference_type (field_type),
5893 address + byte_offset);
5897 if (v != NULL || no_err)
5900 error (_("There is no member named %s."), name);
5906 error (_("Attempt to extract a component of a value that is not a record."));
5909 /* Given a type TYPE, look up the type of the component of type named NAME.
5910 If DISPP is non-null, add its byte displacement from the beginning of a
5911 structure (pointed to by a value) of type TYPE to *DISPP (does not
5912 work for packed fields).
5914 Matches any field whose name has NAME as a prefix, possibly
5917 TYPE can be either a struct or union. If REFOK, TYPE may also
5918 be a (pointer or reference)+ to a struct or union, and the
5919 ultimate target type will be searched.
5921 Looks recursively into variant clauses and parent types.
5923 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5924 TYPE is not a type of the right kind. */
5926 static struct type *
5927 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5928 int noerr, int *dispp)
5935 if (refok && type != NULL)
5938 type = ada_check_typedef (type);
5939 if (TYPE_CODE (type) != TYPE_CODE_PTR
5940 && TYPE_CODE (type) != TYPE_CODE_REF)
5942 type = TYPE_TARGET_TYPE (type);
5946 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5947 && TYPE_CODE (type) != TYPE_CODE_UNION))
5953 target_terminal_ours ();
5954 gdb_flush (gdb_stdout);
5956 error (_("Type (null) is not a structure or union type"));
5959 /* XXX: type_sprint */
5960 fprintf_unfiltered (gdb_stderr, _("Type "));
5961 type_print (type, "", gdb_stderr, -1);
5962 error (_(" is not a structure or union type"));
5967 type = to_static_fixed_type (type);
5969 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5971 char *t_field_name = TYPE_FIELD_NAME (type, i);
5975 if (t_field_name == NULL)
5978 else if (field_name_match (t_field_name, name))
5981 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5982 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5985 else if (ada_is_wrapper_field (type, i))
5988 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5993 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5998 else if (ada_is_variant_part (type, i))
6001 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6003 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6006 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6011 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6022 target_terminal_ours ();
6023 gdb_flush (gdb_stdout);
6026 /* XXX: type_sprint */
6027 fprintf_unfiltered (gdb_stderr, _("Type "));
6028 type_print (type, "", gdb_stderr, -1);
6029 error (_(" has no component named <null>"));
6033 /* XXX: type_sprint */
6034 fprintf_unfiltered (gdb_stderr, _("Type "));
6035 type_print (type, "", gdb_stderr, -1);
6036 error (_(" has no component named %s"), name);
6043 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6044 within a value of type OUTER_TYPE that is stored in GDB at
6045 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6046 numbering from 0) is applicable. Returns -1 if none are. */
6049 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6050 const gdb_byte *outer_valaddr)
6055 struct type *discrim_type;
6056 char *discrim_name = ada_variant_discrim_name (var_type);
6057 LONGEST discrim_val;
6061 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6062 if (discrim_type == NULL)
6064 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6067 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6069 if (ada_is_others_clause (var_type, i))
6071 else if (ada_in_variant (discrim_val, var_type, i))
6075 return others_clause;
6080 /* Dynamic-Sized Records */
6082 /* Strategy: The type ostensibly attached to a value with dynamic size
6083 (i.e., a size that is not statically recorded in the debugging
6084 data) does not accurately reflect the size or layout of the value.
6085 Our strategy is to convert these values to values with accurate,
6086 conventional types that are constructed on the fly. */
6088 /* There is a subtle and tricky problem here. In general, we cannot
6089 determine the size of dynamic records without its data. However,
6090 the 'struct value' data structure, which GDB uses to represent
6091 quantities in the inferior process (the target), requires the size
6092 of the type at the time of its allocation in order to reserve space
6093 for GDB's internal copy of the data. That's why the
6094 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6095 rather than struct value*s.
6097 However, GDB's internal history variables ($1, $2, etc.) are
6098 struct value*s containing internal copies of the data that are not, in
6099 general, the same as the data at their corresponding addresses in
6100 the target. Fortunately, the types we give to these values are all
6101 conventional, fixed-size types (as per the strategy described
6102 above), so that we don't usually have to perform the
6103 'to_fixed_xxx_type' conversions to look at their values.
6104 Unfortunately, there is one exception: if one of the internal
6105 history variables is an array whose elements are unconstrained
6106 records, then we will need to create distinct fixed types for each
6107 element selected. */
6109 /* The upshot of all of this is that many routines take a (type, host
6110 address, target address) triple as arguments to represent a value.
6111 The host address, if non-null, is supposed to contain an internal
6112 copy of the relevant data; otherwise, the program is to consult the
6113 target at the target address. */
6115 /* Assuming that VAL0 represents a pointer value, the result of
6116 dereferencing it. Differs from value_ind in its treatment of
6117 dynamic-sized types. */
6120 ada_value_ind (struct value *val0)
6122 struct value *val = unwrap_value (value_ind (val0));
6123 return ada_to_fixed_value (val);
6126 /* The value resulting from dereferencing any "reference to"
6127 qualifiers on VAL0. */
6129 static struct value *
6130 ada_coerce_ref (struct value *val0)
6132 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6134 struct value *val = val0;
6135 val = coerce_ref (val);
6136 val = unwrap_value (val);
6137 return ada_to_fixed_value (val);
6143 /* Return OFF rounded upward if necessary to a multiple of
6144 ALIGNMENT (a power of 2). */
6147 align_value (unsigned int off, unsigned int alignment)
6149 return (off + alignment - 1) & ~(alignment - 1);
6152 /* Return the bit alignment required for field #F of template type TYPE. */
6155 field_alignment (struct type *type, int f)
6157 const char *name = TYPE_FIELD_NAME (type, f);
6158 int len = (name == NULL) ? 0 : strlen (name);
6161 if (!isdigit (name[len - 1]))
6164 if (isdigit (name[len - 2]))
6165 align_offset = len - 2;
6167 align_offset = len - 1;
6169 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6170 return TARGET_CHAR_BIT;
6172 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6175 /* Find a symbol named NAME. Ignores ambiguity. */
6178 ada_find_any_symbol (const char *name)
6182 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6183 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6186 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6190 /* Find a type named NAME. Ignores ambiguity. */
6193 ada_find_any_type (const char *name)
6195 struct symbol *sym = ada_find_any_symbol (name);
6198 return SYMBOL_TYPE (sym);
6203 /* Given a symbol NAME and its associated BLOCK, search all symbols
6204 for its ___XR counterpart, which is the ``renaming'' symbol
6205 associated to NAME. Return this symbol if found, return
6209 ada_find_renaming_symbol (const char *name, struct block *block)
6211 const struct symbol *function_sym = block_function (block);
6214 if (function_sym != NULL)
6216 /* If the symbol is defined inside a function, NAME is not fully
6217 qualified. This means we need to prepend the function name
6218 as well as adding the ``___XR'' suffix to build the name of
6219 the associated renaming symbol. */
6220 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6221 /* Function names sometimes contain suffixes used
6222 for instance to qualify nested subprograms. When building
6223 the XR type name, we need to make sure that this suffix is
6224 not included. So do not include any suffix in the function
6225 name length below. */
6226 const int function_name_len = ada_name_prefix_len (function_name);
6227 const int rename_len = function_name_len + 2 /* "__" */
6228 + strlen (name) + 6 /* "___XR\0" */ ;
6230 /* Strip the suffix if necessary. */
6231 function_name[function_name_len] = '\0';
6233 /* Library-level functions are a special case, as GNAT adds
6234 a ``_ada_'' prefix to the function name to avoid namespace
6235 pollution. However, the renaming symbol themselves do not
6236 have this prefix, so we need to skip this prefix if present. */
6237 if (function_name_len > 5 /* "_ada_" */
6238 && strstr (function_name, "_ada_") == function_name)
6239 function_name = function_name + 5;
6241 rename = (char *) alloca (rename_len * sizeof (char));
6242 sprintf (rename, "%s__%s___XR", function_name, name);
6246 const int rename_len = strlen (name) + 6;
6247 rename = (char *) alloca (rename_len * sizeof (char));
6248 sprintf (rename, "%s___XR", name);
6251 return ada_find_any_symbol (rename);
6254 /* Because of GNAT encoding conventions, several GDB symbols may match a
6255 given type name. If the type denoted by TYPE0 is to be preferred to
6256 that of TYPE1 for purposes of type printing, return non-zero;
6257 otherwise return 0. */
6260 ada_prefer_type (struct type *type0, struct type *type1)
6264 else if (type0 == NULL)
6266 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6268 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6270 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6272 else if (ada_is_packed_array_type (type0))
6274 else if (ada_is_array_descriptor_type (type0)
6275 && !ada_is_array_descriptor_type (type1))
6277 else if (ada_renaming_type (type0) != NULL
6278 && ada_renaming_type (type1) == NULL)
6283 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6284 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6287 ada_type_name (struct type *type)
6291 else if (TYPE_NAME (type) != NULL)
6292 return TYPE_NAME (type);
6294 return TYPE_TAG_NAME (type);
6297 /* Find a parallel type to TYPE whose name is formed by appending
6298 SUFFIX to the name of TYPE. */
6301 ada_find_parallel_type (struct type *type, const char *suffix)
6304 static size_t name_len = 0;
6306 char *typename = ada_type_name (type);
6308 if (typename == NULL)
6311 len = strlen (typename);
6313 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6315 strcpy (name, typename);
6316 strcpy (name + len, suffix);
6318 return ada_find_any_type (name);
6322 /* If TYPE is a variable-size record type, return the corresponding template
6323 type describing its fields. Otherwise, return NULL. */
6325 static struct type *
6326 dynamic_template_type (struct type *type)
6328 type = ada_check_typedef (type);
6330 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6331 || ada_type_name (type) == NULL)
6335 int len = strlen (ada_type_name (type));
6336 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6339 return ada_find_parallel_type (type, "___XVE");
6343 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6344 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6347 is_dynamic_field (struct type *templ_type, int field_num)
6349 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6351 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6352 && strstr (name, "___XVL") != NULL;
6355 /* The index of the variant field of TYPE, or -1 if TYPE does not
6356 represent a variant record type. */
6359 variant_field_index (struct type *type)
6363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6366 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6368 if (ada_is_variant_part (type, f))
6374 /* A record type with no fields. */
6376 static struct type *
6377 empty_record (struct objfile *objfile)
6379 struct type *type = alloc_type (objfile);
6380 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6381 TYPE_NFIELDS (type) = 0;
6382 TYPE_FIELDS (type) = NULL;
6383 TYPE_NAME (type) = "<empty>";
6384 TYPE_TAG_NAME (type) = NULL;
6385 TYPE_FLAGS (type) = 0;
6386 TYPE_LENGTH (type) = 0;
6390 /* An ordinary record type (with fixed-length fields) that describes
6391 the value of type TYPE at VALADDR or ADDRESS (see comments at
6392 the beginning of this section) VAL according to GNAT conventions.
6393 DVAL0 should describe the (portion of a) record that contains any
6394 necessary discriminants. It should be NULL if value_type (VAL) is
6395 an outer-level type (i.e., as opposed to a branch of a variant.) A
6396 variant field (unless unchecked) is replaced by a particular branch
6399 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6400 length are not statically known are discarded. As a consequence,
6401 VALADDR, ADDRESS and DVAL0 are ignored.
6403 NOTE: Limitations: For now, we assume that dynamic fields and
6404 variants occupy whole numbers of bytes. However, they need not be
6408 ada_template_to_fixed_record_type_1 (struct type *type,
6409 const gdb_byte *valaddr,
6410 CORE_ADDR address, struct value *dval0,
6411 int keep_dynamic_fields)
6413 struct value *mark = value_mark ();
6416 int nfields, bit_len;
6419 int fld_bit_len, bit_incr;
6422 /* Compute the number of fields in this record type that are going
6423 to be processed: unless keep_dynamic_fields, this includes only
6424 fields whose position and length are static will be processed. */
6425 if (keep_dynamic_fields)
6426 nfields = TYPE_NFIELDS (type);
6430 while (nfields < TYPE_NFIELDS (type)
6431 && !ada_is_variant_part (type, nfields)
6432 && !is_dynamic_field (type, nfields))
6436 rtype = alloc_type (TYPE_OBJFILE (type));
6437 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6438 INIT_CPLUS_SPECIFIC (rtype);
6439 TYPE_NFIELDS (rtype) = nfields;
6440 TYPE_FIELDS (rtype) = (struct field *)
6441 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6442 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6443 TYPE_NAME (rtype) = ada_type_name (type);
6444 TYPE_TAG_NAME (rtype) = NULL;
6445 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6451 for (f = 0; f < nfields; f += 1)
6453 off = align_value (off, field_alignment (type, f))
6454 + TYPE_FIELD_BITPOS (type, f);
6455 TYPE_FIELD_BITPOS (rtype, f) = off;
6456 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6458 if (ada_is_variant_part (type, f))
6461 fld_bit_len = bit_incr = 0;
6463 else if (is_dynamic_field (type, f))
6466 dval = value_from_contents_and_address (rtype, valaddr, address);
6470 TYPE_FIELD_TYPE (rtype, f) =
6473 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6474 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6475 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6476 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6477 bit_incr = fld_bit_len =
6478 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6482 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6483 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6484 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6485 bit_incr = fld_bit_len =
6486 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6488 bit_incr = fld_bit_len =
6489 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6491 if (off + fld_bit_len > bit_len)
6492 bit_len = off + fld_bit_len;
6494 TYPE_LENGTH (rtype) =
6495 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6498 /* We handle the variant part, if any, at the end because of certain
6499 odd cases in which it is re-ordered so as NOT the last field of
6500 the record. This can happen in the presence of representation
6502 if (variant_field >= 0)
6504 struct type *branch_type;
6506 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6509 dval = value_from_contents_and_address (rtype, valaddr, address);
6514 to_fixed_variant_branch_type
6515 (TYPE_FIELD_TYPE (type, variant_field),
6516 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6517 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6518 if (branch_type == NULL)
6520 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6521 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6522 TYPE_NFIELDS (rtype) -= 1;
6526 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6527 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6529 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6531 if (off + fld_bit_len > bit_len)
6532 bit_len = off + fld_bit_len;
6533 TYPE_LENGTH (rtype) =
6534 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6538 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6539 should contain the alignment of that record, which should be a strictly
6540 positive value. If null or negative, then something is wrong, most
6541 probably in the debug info. In that case, we don't round up the size
6542 of the resulting type. If this record is not part of another structure,
6543 the current RTYPE length might be good enough for our purposes. */
6544 if (TYPE_LENGTH (type) <= 0)
6546 if (TYPE_NAME (rtype))
6547 warning (_("Invalid type size for `%s' detected: %d."),
6548 TYPE_NAME (rtype), TYPE_LENGTH (type));
6550 warning (_("Invalid type size for <unnamed> detected: %d."),
6551 TYPE_LENGTH (type));
6555 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6556 TYPE_LENGTH (type));
6559 value_free_to_mark (mark);
6560 if (TYPE_LENGTH (rtype) > varsize_limit)
6561 error (_("record type with dynamic size is larger than varsize-limit"));
6565 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6568 static struct type *
6569 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6570 CORE_ADDR address, struct value *dval0)
6572 return ada_template_to_fixed_record_type_1 (type, valaddr,
6576 /* An ordinary record type in which ___XVL-convention fields and
6577 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6578 static approximations, containing all possible fields. Uses
6579 no runtime values. Useless for use in values, but that's OK,
6580 since the results are used only for type determinations. Works on both
6581 structs and unions. Representation note: to save space, we memorize
6582 the result of this function in the TYPE_TARGET_TYPE of the
6585 static struct type *
6586 template_to_static_fixed_type (struct type *type0)
6592 if (TYPE_TARGET_TYPE (type0) != NULL)
6593 return TYPE_TARGET_TYPE (type0);
6595 nfields = TYPE_NFIELDS (type0);
6598 for (f = 0; f < nfields; f += 1)
6600 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6601 struct type *new_type;
6603 if (is_dynamic_field (type0, f))
6604 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6606 new_type = to_static_fixed_type (field_type);
6607 if (type == type0 && new_type != field_type)
6609 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6610 TYPE_CODE (type) = TYPE_CODE (type0);
6611 INIT_CPLUS_SPECIFIC (type);
6612 TYPE_NFIELDS (type) = nfields;
6613 TYPE_FIELDS (type) = (struct field *)
6614 TYPE_ALLOC (type, nfields * sizeof (struct field));
6615 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6616 sizeof (struct field) * nfields);
6617 TYPE_NAME (type) = ada_type_name (type0);
6618 TYPE_TAG_NAME (type) = NULL;
6619 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6620 TYPE_LENGTH (type) = 0;
6622 TYPE_FIELD_TYPE (type, f) = new_type;
6623 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6628 /* Given an object of type TYPE whose contents are at VALADDR and
6629 whose address in memory is ADDRESS, returns a revision of TYPE --
6630 a non-dynamic-sized record with a variant part -- in which
6631 the variant part is replaced with the appropriate branch. Looks
6632 for discriminant values in DVAL0, which can be NULL if the record
6633 contains the necessary discriminant values. */
6635 static struct type *
6636 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6637 CORE_ADDR address, struct value *dval0)
6639 struct value *mark = value_mark ();
6642 struct type *branch_type;
6643 int nfields = TYPE_NFIELDS (type);
6644 int variant_field = variant_field_index (type);
6646 if (variant_field == -1)
6650 dval = value_from_contents_and_address (type, valaddr, address);
6654 rtype = alloc_type (TYPE_OBJFILE (type));
6655 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6656 INIT_CPLUS_SPECIFIC (rtype);
6657 TYPE_NFIELDS (rtype) = nfields;
6658 TYPE_FIELDS (rtype) =
6659 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6660 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6661 sizeof (struct field) * nfields);
6662 TYPE_NAME (rtype) = ada_type_name (type);
6663 TYPE_TAG_NAME (rtype) = NULL;
6664 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6665 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6667 branch_type = to_fixed_variant_branch_type
6668 (TYPE_FIELD_TYPE (type, variant_field),
6669 cond_offset_host (valaddr,
6670 TYPE_FIELD_BITPOS (type, variant_field)
6672 cond_offset_target (address,
6673 TYPE_FIELD_BITPOS (type, variant_field)
6674 / TARGET_CHAR_BIT), dval);
6675 if (branch_type == NULL)
6678 for (f = variant_field + 1; f < nfields; f += 1)
6679 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6680 TYPE_NFIELDS (rtype) -= 1;
6684 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6685 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6686 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6687 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6689 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6691 value_free_to_mark (mark);
6695 /* An ordinary record type (with fixed-length fields) that describes
6696 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6697 beginning of this section]. Any necessary discriminants' values
6698 should be in DVAL, a record value; it may be NULL if the object
6699 at ADDR itself contains any necessary discriminant values.
6700 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6701 values from the record are needed. Except in the case that DVAL,
6702 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6703 unchecked) is replaced by a particular branch of the variant.
6705 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6706 is questionable and may be removed. It can arise during the
6707 processing of an unconstrained-array-of-record type where all the
6708 variant branches have exactly the same size. This is because in
6709 such cases, the compiler does not bother to use the XVS convention
6710 when encoding the record. I am currently dubious of this
6711 shortcut and suspect the compiler should be altered. FIXME. */
6713 static struct type *
6714 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6715 CORE_ADDR address, struct value *dval)
6717 struct type *templ_type;
6719 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6722 templ_type = dynamic_template_type (type0);
6724 if (templ_type != NULL)
6725 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6726 else if (variant_field_index (type0) >= 0)
6728 if (dval == NULL && valaddr == NULL && address == 0)
6730 return to_record_with_fixed_variant_part (type0, valaddr, address,
6735 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6741 /* An ordinary record type (with fixed-length fields) that describes
6742 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6743 union type. Any necessary discriminants' values should be in DVAL,
6744 a record value. That is, this routine selects the appropriate
6745 branch of the union at ADDR according to the discriminant value
6746 indicated in the union's type name. */
6748 static struct type *
6749 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6750 CORE_ADDR address, struct value *dval)
6753 struct type *templ_type;
6754 struct type *var_type;
6756 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6757 var_type = TYPE_TARGET_TYPE (var_type0);
6759 var_type = var_type0;
6761 templ_type = ada_find_parallel_type (var_type, "___XVU");
6763 if (templ_type != NULL)
6764 var_type = templ_type;
6767 ada_which_variant_applies (var_type,
6768 value_type (dval), value_contents (dval));
6771 return empty_record (TYPE_OBJFILE (var_type));
6772 else if (is_dynamic_field (var_type, which))
6773 return to_fixed_record_type
6774 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6775 valaddr, address, dval);
6776 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6778 to_fixed_record_type
6779 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6781 return TYPE_FIELD_TYPE (var_type, which);
6784 /* Assuming that TYPE0 is an array type describing the type of a value
6785 at ADDR, and that DVAL describes a record containing any
6786 discriminants used in TYPE0, returns a type for the value that
6787 contains no dynamic components (that is, no components whose sizes
6788 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6789 true, gives an error message if the resulting type's size is over
6792 static struct type *
6793 to_fixed_array_type (struct type *type0, struct value *dval,
6796 struct type *index_type_desc;
6797 struct type *result;
6799 if (ada_is_packed_array_type (type0) /* revisit? */
6800 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6803 index_type_desc = ada_find_parallel_type (type0, "___XA");
6804 if (index_type_desc == NULL)
6806 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6807 /* NOTE: elt_type---the fixed version of elt_type0---should never
6808 depend on the contents of the array in properly constructed
6810 /* Create a fixed version of the array element type.
6811 We're not providing the address of an element here,
6812 and thus the actual object value cannot be inspected to do
6813 the conversion. This should not be a problem, since arrays of
6814 unconstrained objects are not allowed. In particular, all
6815 the elements of an array of a tagged type should all be of
6816 the same type specified in the debugging info. No need to
6817 consult the object tag. */
6818 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6820 if (elt_type0 == elt_type)
6823 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6824 elt_type, TYPE_INDEX_TYPE (type0));
6829 struct type *elt_type0;
6832 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6833 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6835 /* NOTE: result---the fixed version of elt_type0---should never
6836 depend on the contents of the array in properly constructed
6838 /* Create a fixed version of the array element type.
6839 We're not providing the address of an element here,
6840 and thus the actual object value cannot be inspected to do
6841 the conversion. This should not be a problem, since arrays of
6842 unconstrained objects are not allowed. In particular, all
6843 the elements of an array of a tagged type should all be of
6844 the same type specified in the debugging info. No need to
6845 consult the object tag. */
6846 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6847 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6849 struct type *range_type =
6850 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6851 dval, TYPE_OBJFILE (type0));
6852 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6853 result, range_type);
6855 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6856 error (_("array type with dynamic size is larger than varsize-limit"));
6859 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6864 /* A standard type (containing no dynamically sized components)
6865 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6866 DVAL describes a record containing any discriminants used in TYPE0,
6867 and may be NULL if there are none, or if the object of type TYPE at
6868 ADDRESS or in VALADDR contains these discriminants.
6870 In the case of tagged types, this function attempts to locate the object's
6871 tag and use it to compute the actual type. However, when ADDRESS is null,
6872 we cannot use it to determine the location of the tag, and therefore
6873 compute the tagged type's actual type. So we return the tagged type
6874 without consulting the tag. */
6877 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6878 CORE_ADDR address, struct value *dval)
6880 type = ada_check_typedef (type);
6881 switch (TYPE_CODE (type))
6885 case TYPE_CODE_STRUCT:
6887 struct type *static_type = to_static_fixed_type (type);
6889 /* If STATIC_TYPE is a tagged type and we know the object's address,
6890 then we can determine its tag, and compute the object's actual
6893 if (address != 0 && ada_is_tagged_type (static_type, 0))
6895 struct type *real_type =
6896 type_from_tag (value_tag_from_contents_and_address (static_type,
6899 if (real_type != NULL)
6902 return to_fixed_record_type (type, valaddr, address, NULL);
6904 case TYPE_CODE_ARRAY:
6905 return to_fixed_array_type (type, dval, 1);
6906 case TYPE_CODE_UNION:
6910 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6914 /* A standard (static-sized) type corresponding as well as possible to
6915 TYPE0, but based on no runtime data. */
6917 static struct type *
6918 to_static_fixed_type (struct type *type0)
6925 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6928 type0 = ada_check_typedef (type0);
6930 switch (TYPE_CODE (type0))
6934 case TYPE_CODE_STRUCT:
6935 type = dynamic_template_type (type0);
6937 return template_to_static_fixed_type (type);
6939 return template_to_static_fixed_type (type0);
6940 case TYPE_CODE_UNION:
6941 type = ada_find_parallel_type (type0, "___XVU");
6943 return template_to_static_fixed_type (type);
6945 return template_to_static_fixed_type (type0);
6949 /* A static approximation of TYPE with all type wrappers removed. */
6951 static struct type *
6952 static_unwrap_type (struct type *type)
6954 if (ada_is_aligner_type (type))
6956 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6957 if (ada_type_name (type1) == NULL)
6958 TYPE_NAME (type1) = ada_type_name (type);
6960 return static_unwrap_type (type1);
6964 struct type *raw_real_type = ada_get_base_type (type);
6965 if (raw_real_type == type)
6968 return to_static_fixed_type (raw_real_type);
6972 /* In some cases, incomplete and private types require
6973 cross-references that are not resolved as records (for example,
6975 type FooP is access Foo;
6977 type Foo is array ...;
6978 ). In these cases, since there is no mechanism for producing
6979 cross-references to such types, we instead substitute for FooP a
6980 stub enumeration type that is nowhere resolved, and whose tag is
6981 the name of the actual type. Call these types "non-record stubs". */
6983 /* A type equivalent to TYPE that is not a non-record stub, if one
6984 exists, otherwise TYPE. */
6987 ada_check_typedef (struct type *type)
6989 CHECK_TYPEDEF (type);
6990 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6991 || !TYPE_STUB (type)
6992 || TYPE_TAG_NAME (type) == NULL)
6996 char *name = TYPE_TAG_NAME (type);
6997 struct type *type1 = ada_find_any_type (name);
6998 return (type1 == NULL) ? type : type1;
7002 /* A value representing the data at VALADDR/ADDRESS as described by
7003 type TYPE0, but with a standard (static-sized) type that correctly
7004 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7005 type, then return VAL0 [this feature is simply to avoid redundant
7006 creation of struct values]. */
7008 static struct value *
7009 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7012 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7013 if (type == type0 && val0 != NULL)
7016 return value_from_contents_and_address (type, 0, address);
7019 /* A value representing VAL, but with a standard (static-sized) type
7020 that correctly describes it. Does not necessarily create a new
7023 static struct value *
7024 ada_to_fixed_value (struct value *val)
7026 return ada_to_fixed_value_create (value_type (val),
7027 VALUE_ADDRESS (val) + value_offset (val),
7031 /* A value representing VAL, but with a standard (static-sized) type
7032 chosen to approximate the real type of VAL as well as possible, but
7033 without consulting any runtime values. For Ada dynamic-sized
7034 types, therefore, the type of the result is likely to be inaccurate. */
7037 ada_to_static_fixed_value (struct value *val)
7040 to_static_fixed_type (static_unwrap_type (value_type (val)));
7041 if (type == value_type (val))
7044 return coerce_unspec_val_to_type (val, type);
7050 /* Table mapping attribute numbers to names.
7051 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7053 static const char *attribute_names[] = {
7071 ada_attribute_name (enum exp_opcode n)
7073 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7074 return attribute_names[n - OP_ATR_FIRST + 1];
7076 return attribute_names[0];
7079 /* Evaluate the 'POS attribute applied to ARG. */
7082 pos_atr (struct value *arg)
7084 struct type *type = value_type (arg);
7086 if (!discrete_type_p (type))
7087 error (_("'POS only defined on discrete types"));
7089 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7092 LONGEST v = value_as_long (arg);
7094 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7096 if (v == TYPE_FIELD_BITPOS (type, i))
7099 error (_("enumeration value is invalid: can't find 'POS"));
7102 return value_as_long (arg);
7105 static struct value *
7106 value_pos_atr (struct value *arg)
7108 return value_from_longest (builtin_type_int, pos_atr (arg));
7111 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7113 static struct value *
7114 value_val_atr (struct type *type, struct value *arg)
7116 if (!discrete_type_p (type))
7117 error (_("'VAL only defined on discrete types"));
7118 if (!integer_type_p (value_type (arg)))
7119 error (_("'VAL requires integral argument"));
7121 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7123 long pos = value_as_long (arg);
7124 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7125 error (_("argument to 'VAL out of range"));
7126 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7129 return value_from_longest (type, value_as_long (arg));
7135 /* True if TYPE appears to be an Ada character type.
7136 [At the moment, this is true only for Character and Wide_Character;
7137 It is a heuristic test that could stand improvement]. */
7140 ada_is_character_type (struct type *type)
7142 const char *name = ada_type_name (type);
7145 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7146 || TYPE_CODE (type) == TYPE_CODE_INT
7147 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7148 && (strcmp (name, "character") == 0
7149 || strcmp (name, "wide_character") == 0
7150 || strcmp (name, "unsigned char") == 0);
7153 /* True if TYPE appears to be an Ada string type. */
7156 ada_is_string_type (struct type *type)
7158 type = ada_check_typedef (type);
7160 && TYPE_CODE (type) != TYPE_CODE_PTR
7161 && (ada_is_simple_array_type (type)
7162 || ada_is_array_descriptor_type (type))
7163 && ada_array_arity (type) == 1)
7165 struct type *elttype = ada_array_element_type (type, 1);
7167 return ada_is_character_type (elttype);
7174 /* True if TYPE is a struct type introduced by the compiler to force the
7175 alignment of a value. Such types have a single field with a
7176 distinctive name. */
7179 ada_is_aligner_type (struct type *type)
7181 type = ada_check_typedef (type);
7183 /* If we can find a parallel XVS type, then the XVS type should
7184 be used instead of this type. And hence, this is not an aligner
7186 if (ada_find_parallel_type (type, "___XVS") != NULL)
7189 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7190 && TYPE_NFIELDS (type) == 1
7191 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7194 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7195 the parallel type. */
7198 ada_get_base_type (struct type *raw_type)
7200 struct type *real_type_namer;
7201 struct type *raw_real_type;
7203 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7206 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7207 if (real_type_namer == NULL
7208 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7209 || TYPE_NFIELDS (real_type_namer) != 1)
7212 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7213 if (raw_real_type == NULL)
7216 return raw_real_type;
7219 /* The type of value designated by TYPE, with all aligners removed. */
7222 ada_aligned_type (struct type *type)
7224 if (ada_is_aligner_type (type))
7225 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7227 return ada_get_base_type (type);
7231 /* The address of the aligned value in an object at address VALADDR
7232 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7235 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7237 if (ada_is_aligner_type (type))
7238 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7240 TYPE_FIELD_BITPOS (type,
7241 0) / TARGET_CHAR_BIT);
7248 /* The printed representation of an enumeration literal with encoded
7249 name NAME. The value is good to the next call of ada_enum_name. */
7251 ada_enum_name (const char *name)
7253 static char *result;
7254 static size_t result_len = 0;
7257 /* First, unqualify the enumeration name:
7258 1. Search for the last '.' character. If we find one, then skip
7259 all the preceeding characters, the unqualified name starts
7260 right after that dot.
7261 2. Otherwise, we may be debugging on a target where the compiler
7262 translates dots into "__". Search forward for double underscores,
7263 but stop searching when we hit an overloading suffix, which is
7264 of the form "__" followed by digits. */
7266 tmp = strrchr (name, '.');
7271 while ((tmp = strstr (name, "__")) != NULL)
7273 if (isdigit (tmp[2]))
7283 if (name[1] == 'U' || name[1] == 'W')
7285 if (sscanf (name + 2, "%x", &v) != 1)
7291 GROW_VECT (result, result_len, 16);
7292 if (isascii (v) && isprint (v))
7293 sprintf (result, "'%c'", v);
7294 else if (name[1] == 'U')
7295 sprintf (result, "[\"%02x\"]", v);
7297 sprintf (result, "[\"%04x\"]", v);
7303 tmp = strstr (name, "__");
7305 tmp = strstr (name, "$");
7308 GROW_VECT (result, result_len, tmp - name + 1);
7309 strncpy (result, name, tmp - name);
7310 result[tmp - name] = '\0';
7318 static struct value *
7319 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7322 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7323 (expect_type, exp, pos, noside);
7326 /* Evaluate the subexpression of EXP starting at *POS as for
7327 evaluate_type, updating *POS to point just past the evaluated
7330 static struct value *
7331 evaluate_subexp_type (struct expression *exp, int *pos)
7333 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7334 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7337 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7340 static struct value *
7341 unwrap_value (struct value *val)
7343 struct type *type = ada_check_typedef (value_type (val));
7344 if (ada_is_aligner_type (type))
7346 struct value *v = value_struct_elt (&val, NULL, "F",
7347 NULL, "internal structure");
7348 struct type *val_type = ada_check_typedef (value_type (v));
7349 if (ada_type_name (val_type) == NULL)
7350 TYPE_NAME (val_type) = ada_type_name (type);
7352 return unwrap_value (v);
7356 struct type *raw_real_type =
7357 ada_check_typedef (ada_get_base_type (type));
7359 if (type == raw_real_type)
7363 coerce_unspec_val_to_type
7364 (val, ada_to_fixed_type (raw_real_type, 0,
7365 VALUE_ADDRESS (val) + value_offset (val),
7370 static struct value *
7371 cast_to_fixed (struct type *type, struct value *arg)
7375 if (type == value_type (arg))
7377 else if (ada_is_fixed_point_type (value_type (arg)))
7378 val = ada_float_to_fixed (type,
7379 ada_fixed_to_float (value_type (arg),
7380 value_as_long (arg)));
7384 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7385 val = ada_float_to_fixed (type, argd);
7388 return value_from_longest (type, val);
7391 static struct value *
7392 cast_from_fixed_to_double (struct value *arg)
7394 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7395 value_as_long (arg));
7396 return value_from_double (builtin_type_double, val);
7399 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7400 return the converted value. */
7402 static struct value *
7403 coerce_for_assign (struct type *type, struct value *val)
7405 struct type *type2 = value_type (val);
7409 type2 = ada_check_typedef (type2);
7410 type = ada_check_typedef (type);
7412 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7413 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7415 val = ada_value_ind (val);
7416 type2 = value_type (val);
7419 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7420 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7422 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7423 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7424 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7425 error (_("Incompatible types in assignment"));
7426 deprecated_set_value_type (val, type);
7431 static struct value *
7432 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7435 struct type *type1, *type2;
7438 arg1 = coerce_ref (arg1);
7439 arg2 = coerce_ref (arg2);
7440 type1 = base_type (ada_check_typedef (value_type (arg1)));
7441 type2 = base_type (ada_check_typedef (value_type (arg2)));
7443 if (TYPE_CODE (type1) != TYPE_CODE_INT
7444 || TYPE_CODE (type2) != TYPE_CODE_INT)
7445 return value_binop (arg1, arg2, op);
7454 return value_binop (arg1, arg2, op);
7457 v2 = value_as_long (arg2);
7459 error (_("second operand of %s must not be zero."), op_string (op));
7461 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7462 return value_binop (arg1, arg2, op);
7464 v1 = value_as_long (arg1);
7469 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7470 v += v > 0 ? -1 : 1;
7478 /* Should not reach this point. */
7482 val = allocate_value (type1);
7483 store_unsigned_integer (value_contents_raw (val),
7484 TYPE_LENGTH (value_type (val)), v);
7489 ada_value_equal (struct value *arg1, struct value *arg2)
7491 if (ada_is_direct_array_type (value_type (arg1))
7492 || ada_is_direct_array_type (value_type (arg2)))
7494 arg1 = ada_coerce_to_simple_array (arg1);
7495 arg2 = ada_coerce_to_simple_array (arg2);
7496 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7497 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7498 error (_("Attempt to compare array with non-array"));
7499 /* FIXME: The following works only for types whose
7500 representations use all bits (no padding or undefined bits)
7501 and do not have user-defined equality. */
7503 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7504 && memcmp (value_contents (arg1), value_contents (arg2),
7505 TYPE_LENGTH (value_type (arg1))) == 0;
7507 return value_equal (arg1, arg2);
7510 /* Total number of component associations in the aggregate starting at
7511 index PC in EXP. Assumes that index PC is the start of an
7515 num_component_specs (struct expression *exp, int pc)
7518 m = exp->elts[pc + 1].longconst;
7521 for (i = 0; i < m; i += 1)
7523 switch (exp->elts[pc].opcode)
7529 n += exp->elts[pc + 1].longconst;
7532 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7537 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7538 component of LHS (a simple array or a record), updating *POS past
7539 the expression, assuming that LHS is contained in CONTAINER. Does
7540 not modify the inferior's memory, nor does it modify LHS (unless
7541 LHS == CONTAINER). */
7544 assign_component (struct value *container, struct value *lhs, LONGEST index,
7545 struct expression *exp, int *pos)
7547 struct value *mark = value_mark ();
7549 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7551 struct value *index_val = value_from_longest (builtin_type_int, index);
7552 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7556 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7557 elt = ada_to_fixed_value (unwrap_value (elt));
7560 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7561 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7563 value_assign_to_component (container, elt,
7564 ada_evaluate_subexp (NULL, exp, pos,
7567 value_free_to_mark (mark);
7570 /* Assuming that LHS represents an lvalue having a record or array
7571 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7572 of that aggregate's value to LHS, advancing *POS past the
7573 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7574 lvalue containing LHS (possibly LHS itself). Does not modify
7575 the inferior's memory, nor does it modify the contents of
7576 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7578 static struct value *
7579 assign_aggregate (struct value *container,
7580 struct value *lhs, struct expression *exp,
7581 int *pos, enum noside noside)
7583 struct type *lhs_type;
7584 int n = exp->elts[*pos+1].longconst;
7585 LONGEST low_index, high_index;
7588 int max_indices, num_indices;
7589 int is_array_aggregate;
7591 struct value *mark = value_mark ();
7594 if (noside != EVAL_NORMAL)
7597 for (i = 0; i < n; i += 1)
7598 ada_evaluate_subexp (NULL, exp, pos, noside);
7602 container = ada_coerce_ref (container);
7603 if (ada_is_direct_array_type (value_type (container)))
7604 container = ada_coerce_to_simple_array (container);
7605 lhs = ada_coerce_ref (lhs);
7606 if (!deprecated_value_modifiable (lhs))
7607 error (_("Left operand of assignment is not a modifiable lvalue."));
7609 lhs_type = value_type (lhs);
7610 if (ada_is_direct_array_type (lhs_type))
7612 lhs = ada_coerce_to_simple_array (lhs);
7613 lhs_type = value_type (lhs);
7614 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7615 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7616 is_array_aggregate = 1;
7618 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7621 high_index = num_visible_fields (lhs_type) - 1;
7622 is_array_aggregate = 0;
7625 error (_("Left-hand side must be array or record."));
7627 num_specs = num_component_specs (exp, *pos - 3);
7628 max_indices = 4 * num_specs + 4;
7629 indices = alloca (max_indices * sizeof (indices[0]));
7630 indices[0] = indices[1] = low_index - 1;
7631 indices[2] = indices[3] = high_index + 1;
7634 for (i = 0; i < n; i += 1)
7636 switch (exp->elts[*pos].opcode)
7639 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7640 &num_indices, max_indices,
7641 low_index, high_index);
7644 aggregate_assign_positional (container, lhs, exp, pos, indices,
7645 &num_indices, max_indices,
7646 low_index, high_index);
7650 error (_("Misplaced 'others' clause"));
7651 aggregate_assign_others (container, lhs, exp, pos, indices,
7652 num_indices, low_index, high_index);
7655 error (_("Internal error: bad aggregate clause"));
7662 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7663 construct at *POS, updating *POS past the construct, given that
7664 the positions are relative to lower bound LOW, where HIGH is the
7665 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7666 updating *NUM_INDICES as needed. CONTAINER is as for
7667 assign_aggregate. */
7669 aggregate_assign_positional (struct value *container,
7670 struct value *lhs, struct expression *exp,
7671 int *pos, LONGEST *indices, int *num_indices,
7672 int max_indices, LONGEST low, LONGEST high)
7674 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7676 if (ind - 1 == high)
7677 warning (_("Extra components in aggregate ignored."));
7680 add_component_interval (ind, ind, indices, num_indices, max_indices);
7682 assign_component (container, lhs, ind, exp, pos);
7685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7688 /* Assign into the components of LHS indexed by the OP_CHOICES
7689 construct at *POS, updating *POS past the construct, given that
7690 the allowable indices are LOW..HIGH. Record the indices assigned
7691 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7692 needed. CONTAINER is as for assign_aggregate. */
7694 aggregate_assign_from_choices (struct value *container,
7695 struct value *lhs, struct expression *exp,
7696 int *pos, LONGEST *indices, int *num_indices,
7697 int max_indices, LONGEST low, LONGEST high)
7700 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7701 int choice_pos, expr_pc;
7702 int is_array = ada_is_direct_array_type (value_type (lhs));
7704 choice_pos = *pos += 3;
7706 for (j = 0; j < n_choices; j += 1)
7707 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7709 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7711 for (j = 0; j < n_choices; j += 1)
7713 LONGEST lower, upper;
7714 enum exp_opcode op = exp->elts[choice_pos].opcode;
7715 if (op == OP_DISCRETE_RANGE)
7718 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7720 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7725 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7736 name = &exp->elts[choice_pos + 2].string;
7739 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7742 error (_("Invalid record component association."));
7744 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7746 if (! find_struct_field (name, value_type (lhs), 0,
7747 NULL, NULL, NULL, NULL, &ind))
7748 error (_("Unknown component name: %s."), name);
7749 lower = upper = ind;
7752 if (lower <= upper && (lower < low || upper > high))
7753 error (_("Index in component association out of bounds."));
7755 add_component_interval (lower, upper, indices, num_indices,
7757 while (lower <= upper)
7761 assign_component (container, lhs, lower, exp, &pos1);
7767 /* Assign the value of the expression in the OP_OTHERS construct in
7768 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7769 have not been previously assigned. The index intervals already assigned
7770 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7771 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7773 aggregate_assign_others (struct value *container,
7774 struct value *lhs, struct expression *exp,
7775 int *pos, LONGEST *indices, int num_indices,
7776 LONGEST low, LONGEST high)
7779 int expr_pc = *pos+1;
7781 for (i = 0; i < num_indices - 2; i += 2)
7784 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7788 assign_component (container, lhs, ind, exp, &pos);
7791 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7794 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7795 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7796 modifying *SIZE as needed. It is an error if *SIZE exceeds
7797 MAX_SIZE. The resulting intervals do not overlap. */
7799 add_component_interval (LONGEST low, LONGEST high,
7800 LONGEST* indices, int *size, int max_size)
7803 for (i = 0; i < *size; i += 2) {
7804 if (high >= indices[i] && low <= indices[i + 1])
7807 for (kh = i + 2; kh < *size; kh += 2)
7808 if (high < indices[kh])
7810 if (low < indices[i])
7812 indices[i + 1] = indices[kh - 1];
7813 if (high > indices[i + 1])
7814 indices[i + 1] = high;
7815 memcpy (indices + i + 2, indices + kh, *size - kh);
7816 *size -= kh - i - 2;
7819 else if (high < indices[i])
7823 if (*size == max_size)
7824 error (_("Internal error: miscounted aggregate components."));
7826 for (j = *size-1; j >= i+2; j -= 1)
7827 indices[j] = indices[j - 2];
7829 indices[i + 1] = high;
7832 static struct value *
7833 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7834 int *pos, enum noside noside)
7837 int tem, tem2, tem3;
7839 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7842 struct value **argvec;
7846 op = exp->elts[pc].opcode;
7853 unwrap_value (evaluate_subexp_standard
7854 (expect_type, exp, pos, noside));
7858 struct value *result;
7860 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7861 /* The result type will have code OP_STRING, bashed there from
7862 OP_ARRAY. Bash it back. */
7863 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7864 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7870 type = exp->elts[pc + 1].type;
7871 arg1 = evaluate_subexp (type, exp, pos, noside);
7872 if (noside == EVAL_SKIP)
7874 if (type != ada_check_typedef (value_type (arg1)))
7876 if (ada_is_fixed_point_type (type))
7877 arg1 = cast_to_fixed (type, arg1);
7878 else if (ada_is_fixed_point_type (value_type (arg1)))
7879 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7880 else if (VALUE_LVAL (arg1) == lval_memory)
7882 /* This is in case of the really obscure (and undocumented,
7883 but apparently expected) case of (Foo) Bar.all, where Bar
7884 is an integer constant and Foo is a dynamic-sized type.
7885 If we don't do this, ARG1 will simply be relabeled with
7887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7888 return value_zero (to_static_fixed_type (type), not_lval);
7890 ada_to_fixed_value_create
7891 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7894 arg1 = value_cast (type, arg1);
7900 type = exp->elts[pc + 1].type;
7901 return ada_evaluate_subexp (type, exp, pos, noside);
7904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7905 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7907 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7908 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7910 return ada_value_assign (arg1, arg1);
7912 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7913 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7915 if (ada_is_fixed_point_type (value_type (arg1)))
7916 arg2 = cast_to_fixed (value_type (arg1), arg2);
7917 else if (ada_is_fixed_point_type (value_type (arg2)))
7919 (_("Fixed-point values must be assigned to fixed-point variables"));
7921 arg2 = coerce_for_assign (value_type (arg1), arg2);
7922 return ada_value_assign (arg1, arg2);
7925 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7926 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7927 if (noside == EVAL_SKIP)
7929 if ((ada_is_fixed_point_type (value_type (arg1))
7930 || ada_is_fixed_point_type (value_type (arg2)))
7931 && value_type (arg1) != value_type (arg2))
7932 error (_("Operands of fixed-point addition must have the same type"));
7933 return value_cast (value_type (arg1), value_add (arg1, arg2));
7936 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7937 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7938 if (noside == EVAL_SKIP)
7940 if ((ada_is_fixed_point_type (value_type (arg1))
7941 || ada_is_fixed_point_type (value_type (arg2)))
7942 && value_type (arg1) != value_type (arg2))
7943 error (_("Operands of fixed-point subtraction must have the same type"));
7944 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7948 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7949 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7950 if (noside == EVAL_SKIP)
7952 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7953 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7954 return value_zero (value_type (arg1), not_lval);
7957 if (ada_is_fixed_point_type (value_type (arg1)))
7958 arg1 = cast_from_fixed_to_double (arg1);
7959 if (ada_is_fixed_point_type (value_type (arg2)))
7960 arg2 = cast_from_fixed_to_double (arg2);
7961 return ada_value_binop (arg1, arg2, op);
7966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7967 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7968 if (noside == EVAL_SKIP)
7970 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7971 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7972 return value_zero (value_type (arg1), not_lval);
7974 return ada_value_binop (arg1, arg2, op);
7977 case BINOP_NOTEQUAL:
7978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7979 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7980 if (noside == EVAL_SKIP)
7982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7985 tem = ada_value_equal (arg1, arg2);
7986 if (op == BINOP_NOTEQUAL)
7988 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7992 if (noside == EVAL_SKIP)
7994 else if (ada_is_fixed_point_type (value_type (arg1)))
7995 return value_cast (value_type (arg1), value_neg (arg1));
7997 return value_neg (arg1);
8001 if (noside == EVAL_SKIP)
8006 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8007 /* Only encountered when an unresolved symbol occurs in a
8008 context other than a function call, in which case, it is
8010 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8011 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8012 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8016 (to_static_fixed_type
8017 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8023 unwrap_value (evaluate_subexp_standard
8024 (expect_type, exp, pos, noside));
8025 return ada_to_fixed_value (arg1);
8031 /* Allocate arg vector, including space for the function to be
8032 called in argvec[0] and a terminating NULL. */
8033 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8035 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8037 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8038 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8039 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8040 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8043 for (tem = 0; tem <= nargs; tem += 1)
8044 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8047 if (noside == EVAL_SKIP)
8051 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8052 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8053 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8054 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8055 && VALUE_LVAL (argvec[0]) == lval_memory))
8056 argvec[0] = value_addr (argvec[0]);
8058 type = ada_check_typedef (value_type (argvec[0]));
8059 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8061 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8063 case TYPE_CODE_FUNC:
8064 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8066 case TYPE_CODE_ARRAY:
8068 case TYPE_CODE_STRUCT:
8069 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8070 argvec[0] = ada_value_ind (argvec[0]);
8071 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8074 error (_("cannot subscript or call something of type `%s'"),
8075 ada_type_name (value_type (argvec[0])));
8080 switch (TYPE_CODE (type))
8082 case TYPE_CODE_FUNC:
8083 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8084 return allocate_value (TYPE_TARGET_TYPE (type));
8085 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8086 case TYPE_CODE_STRUCT:
8090 arity = ada_array_arity (type);
8091 type = ada_array_element_type (type, nargs);
8093 error (_("cannot subscript or call a record"));
8095 error (_("wrong number of subscripts; expecting %d"), arity);
8096 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8097 return allocate_value (ada_aligned_type (type));
8099 unwrap_value (ada_value_subscript
8100 (argvec[0], nargs, argvec + 1));
8102 case TYPE_CODE_ARRAY:
8103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8105 type = ada_array_element_type (type, nargs);
8107 error (_("element type of array unknown"));
8109 return allocate_value (ada_aligned_type (type));
8112 unwrap_value (ada_value_subscript
8113 (ada_coerce_to_simple_array (argvec[0]),
8114 nargs, argvec + 1));
8115 case TYPE_CODE_PTR: /* Pointer to array */
8116 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8117 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8119 type = ada_array_element_type (type, nargs);
8121 error (_("element type of array unknown"));
8123 return allocate_value (ada_aligned_type (type));
8126 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8127 nargs, argvec + 1));
8130 error (_("Attempt to index or call something other than an "
8131 "array or function"));
8136 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8137 struct value *low_bound_val =
8138 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8139 struct value *high_bound_val =
8140 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8143 low_bound_val = coerce_ref (low_bound_val);
8144 high_bound_val = coerce_ref (high_bound_val);
8145 low_bound = pos_atr (low_bound_val);
8146 high_bound = pos_atr (high_bound_val);
8148 if (noside == EVAL_SKIP)
8151 /* If this is a reference to an aligner type, then remove all
8153 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8154 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8155 TYPE_TARGET_TYPE (value_type (array)) =
8156 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8158 if (ada_is_packed_array_type (value_type (array)))
8159 error (_("cannot slice a packed array"));
8161 /* If this is a reference to an array or an array lvalue,
8162 convert to a pointer. */
8163 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8164 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8165 && VALUE_LVAL (array) == lval_memory))
8166 array = value_addr (array);
8168 if (noside == EVAL_AVOID_SIDE_EFFECTS
8169 && ada_is_array_descriptor_type (ada_check_typedef
8170 (value_type (array))))
8171 return empty_array (ada_type_of_array (array, 0), low_bound);
8173 array = ada_coerce_to_simple_array_ptr (array);
8175 /* If we have more than one level of pointer indirection,
8176 dereference the value until we get only one level. */
8177 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8178 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8180 array = value_ind (array);
8182 /* Make sure we really do have an array type before going further,
8183 to avoid a SEGV when trying to get the index type or the target
8184 type later down the road if the debug info generated by
8185 the compiler is incorrect or incomplete. */
8186 if (!ada_is_simple_array_type (value_type (array)))
8187 error (_("cannot take slice of non-array"));
8189 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8191 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8192 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8196 struct type *arr_type0 =
8197 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8199 return ada_value_slice_ptr (array, arr_type0,
8200 longest_to_int (low_bound),
8201 longest_to_int (high_bound));
8204 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8206 else if (high_bound < low_bound)
8207 return empty_array (value_type (array), low_bound);
8209 return ada_value_slice (array, longest_to_int (low_bound),
8210 longest_to_int (high_bound));
8215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8216 type = exp->elts[pc + 1].type;
8218 if (noside == EVAL_SKIP)
8221 switch (TYPE_CODE (type))
8224 lim_warning (_("Membership test incompletely implemented; "
8225 "always returns true"));
8226 return value_from_longest (builtin_type_int, (LONGEST) 1);
8228 case TYPE_CODE_RANGE:
8229 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8230 arg3 = value_from_longest (builtin_type_int,
8231 TYPE_HIGH_BOUND (type));
8233 value_from_longest (builtin_type_int,
8234 (value_less (arg1, arg3)
8235 || value_equal (arg1, arg3))
8236 && (value_less (arg2, arg1)
8237 || value_equal (arg2, arg1)));
8240 case BINOP_IN_BOUNDS:
8242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8245 if (noside == EVAL_SKIP)
8248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8249 return value_zero (builtin_type_int, not_lval);
8251 tem = longest_to_int (exp->elts[pc + 1].longconst);
8253 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8254 error (_("invalid dimension number to 'range"));
8256 arg3 = ada_array_bound (arg2, tem, 1);
8257 arg2 = ada_array_bound (arg2, tem, 0);
8260 value_from_longest (builtin_type_int,
8261 (value_less (arg1, arg3)
8262 || value_equal (arg1, arg3))
8263 && (value_less (arg2, arg1)
8264 || value_equal (arg2, arg1)));
8266 case TERNOP_IN_RANGE:
8267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8268 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8269 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8271 if (noside == EVAL_SKIP)
8275 value_from_longest (builtin_type_int,
8276 (value_less (arg1, arg3)
8277 || value_equal (arg1, arg3))
8278 && (value_less (arg2, arg1)
8279 || value_equal (arg2, arg1)));
8285 struct type *type_arg;
8286 if (exp->elts[*pos].opcode == OP_TYPE)
8288 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8290 type_arg = exp->elts[pc + 2].type;
8294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8298 if (exp->elts[*pos].opcode != OP_LONG)
8299 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8300 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8303 if (noside == EVAL_SKIP)
8306 if (type_arg == NULL)
8308 arg1 = ada_coerce_ref (arg1);
8310 if (ada_is_packed_array_type (value_type (arg1)))
8311 arg1 = ada_coerce_to_simple_array (arg1);
8313 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8314 error (_("invalid dimension number to '%s"),
8315 ada_attribute_name (op));
8317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8319 type = ada_index_type (value_type (arg1), tem);
8322 (_("attempt to take bound of something that is not an array"));
8323 return allocate_value (type);
8328 default: /* Should never happen. */
8329 error (_("unexpected attribute encountered"));
8331 return ada_array_bound (arg1, tem, 0);
8333 return ada_array_bound (arg1, tem, 1);
8335 return ada_array_length (arg1, tem);
8338 else if (discrete_type_p (type_arg))
8340 struct type *range_type;
8341 char *name = ada_type_name (type_arg);
8343 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8345 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8346 if (range_type == NULL)
8347 range_type = type_arg;
8351 error (_("unexpected attribute encountered"));
8353 return discrete_type_low_bound (range_type);
8355 return discrete_type_high_bound (range_type);
8357 error (_("the 'length attribute applies only to array types"));
8360 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8361 error (_("unimplemented type attribute"));
8366 if (ada_is_packed_array_type (type_arg))
8367 type_arg = decode_packed_array_type (type_arg);
8369 if (tem < 1 || tem > ada_array_arity (type_arg))
8370 error (_("invalid dimension number to '%s"),
8371 ada_attribute_name (op));
8373 type = ada_index_type (type_arg, tem);
8376 (_("attempt to take bound of something that is not an array"));
8377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8378 return allocate_value (type);
8383 error (_("unexpected attribute encountered"));
8385 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8386 return value_from_longest (type, low);
8388 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8389 return value_from_longest (type, high);
8391 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8392 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8393 return value_from_longest (type, high - low + 1);
8399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8400 if (noside == EVAL_SKIP)
8403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8404 return value_zero (ada_tag_type (arg1), not_lval);
8406 return ada_value_tag (arg1);
8410 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8412 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8413 if (noside == EVAL_SKIP)
8415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8416 return value_zero (value_type (arg1), not_lval);
8418 return value_binop (arg1, arg2,
8419 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8421 case OP_ATR_MODULUS:
8423 struct type *type_arg = exp->elts[pc + 2].type;
8424 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8426 if (noside == EVAL_SKIP)
8429 if (!ada_is_modular_type (type_arg))
8430 error (_("'modulus must be applied to modular type"));
8432 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8433 ada_modulus (type_arg));
8438 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8440 if (noside == EVAL_SKIP)
8442 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8443 return value_zero (builtin_type_int, not_lval);
8445 return value_pos_atr (arg1);
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8451 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8452 return value_zero (builtin_type_int, not_lval);
8454 return value_from_longest (builtin_type_int,
8456 * TYPE_LENGTH (value_type (arg1)));
8459 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8461 type = exp->elts[pc + 2].type;
8462 if (noside == EVAL_SKIP)
8464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 return value_zero (type, not_lval);
8467 return value_val_atr (type, arg1);
8470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8471 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8472 if (noside == EVAL_SKIP)
8474 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8475 return value_zero (value_type (arg1), not_lval);
8477 return value_binop (arg1, arg2, op);
8480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8481 if (noside == EVAL_SKIP)
8487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8488 if (noside == EVAL_SKIP)
8490 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8491 return value_neg (arg1);
8496 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8497 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8498 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8499 if (noside == EVAL_SKIP)
8501 type = ada_check_typedef (value_type (arg1));
8502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8504 if (ada_is_array_descriptor_type (type))
8505 /* GDB allows dereferencing GNAT array descriptors. */
8507 struct type *arrType = ada_type_of_array (arg1, 0);
8508 if (arrType == NULL)
8509 error (_("Attempt to dereference null array pointer."));
8510 return value_at_lazy (arrType, 0);
8512 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8513 || TYPE_CODE (type) == TYPE_CODE_REF
8514 /* In C you can dereference an array to get the 1st elt. */
8515 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8517 type = to_static_fixed_type
8519 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8521 return value_zero (type, lval_memory);
8523 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8524 /* GDB allows dereferencing an int. */
8525 return value_zero (builtin_type_int, lval_memory);
8527 error (_("Attempt to take contents of a non-pointer value."));
8529 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8530 type = ada_check_typedef (value_type (arg1));
8532 if (ada_is_array_descriptor_type (type))
8533 /* GDB allows dereferencing GNAT array descriptors. */
8534 return ada_coerce_to_simple_array (arg1);
8536 return ada_value_ind (arg1);
8538 case STRUCTOP_STRUCT:
8539 tem = longest_to_int (exp->elts[pc + 1].longconst);
8540 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
8544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8546 struct type *type1 = value_type (arg1);
8547 if (ada_is_tagged_type (type1, 1))
8549 type = ada_lookup_struct_elt_type (type1,
8550 &exp->elts[pc + 2].string,
8553 /* In this case, we assume that the field COULD exist
8554 in some extension of the type. Return an object of
8555 "type" void, which will match any formal
8556 (see ada_type_match). */
8557 return value_zero (builtin_type_void, lval_memory);
8561 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8564 return value_zero (ada_aligned_type (type), lval_memory);
8568 ada_to_fixed_value (unwrap_value
8569 (ada_value_struct_elt
8570 (arg1, &exp->elts[pc + 2].string, 0)));
8572 /* The value is not supposed to be used. This is here to make it
8573 easier to accommodate expressions that contain types. */
8575 if (noside == EVAL_SKIP)
8577 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8578 return allocate_value (exp->elts[pc + 1].type);
8580 error (_("Attempt to use a type name as an expression"));
8585 case OP_DISCRETE_RANGE:
8588 if (noside == EVAL_NORMAL)
8592 error (_("Undefined name, ambiguous name, or renaming used in "
8593 "component association: %s."), &exp->elts[pc+2].string);
8595 error (_("Aggregates only allowed on the right of an assignment"));
8597 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8600 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8602 for (tem = 0; tem < nargs; tem += 1)
8603 ada_evaluate_subexp (NULL, exp, pos, noside);
8608 return value_from_longest (builtin_type_long, (LONGEST) 1);
8614 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8615 type name that encodes the 'small and 'delta information.
8616 Otherwise, return NULL. */
8619 fixed_type_info (struct type *type)
8621 const char *name = ada_type_name (type);
8622 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8624 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8626 const char *tail = strstr (name, "___XF_");
8632 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8633 return fixed_type_info (TYPE_TARGET_TYPE (type));
8638 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8641 ada_is_fixed_point_type (struct type *type)
8643 return fixed_type_info (type) != NULL;
8646 /* Return non-zero iff TYPE represents a System.Address type. */
8649 ada_is_system_address_type (struct type *type)
8651 return (TYPE_NAME (type)
8652 && strcmp (TYPE_NAME (type), "system__address") == 0);
8655 /* Assuming that TYPE is the representation of an Ada fixed-point
8656 type, return its delta, or -1 if the type is malformed and the
8657 delta cannot be determined. */
8660 ada_delta (struct type *type)
8662 const char *encoding = fixed_type_info (type);
8665 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8668 return (DOUBLEST) num / (DOUBLEST) den;
8671 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8672 factor ('SMALL value) associated with the type. */
8675 scaling_factor (struct type *type)
8677 const char *encoding = fixed_type_info (type);
8678 unsigned long num0, den0, num1, den1;
8681 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8686 return (DOUBLEST) num1 / (DOUBLEST) den1;
8688 return (DOUBLEST) num0 / (DOUBLEST) den0;
8692 /* Assuming that X is the representation of a value of fixed-point
8693 type TYPE, return its floating-point equivalent. */
8696 ada_fixed_to_float (struct type *type, LONGEST x)
8698 return (DOUBLEST) x *scaling_factor (type);
8701 /* The representation of a fixed-point value of type TYPE
8702 corresponding to the value X. */
8705 ada_float_to_fixed (struct type *type, DOUBLEST x)
8707 return (LONGEST) (x / scaling_factor (type) + 0.5);
8711 /* VAX floating formats */
8713 /* Non-zero iff TYPE represents one of the special VAX floating-point
8717 ada_is_vax_floating_type (struct type *type)
8720 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8723 && (TYPE_CODE (type) == TYPE_CODE_INT
8724 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8725 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8728 /* The type of special VAX floating-point type this is, assuming
8729 ada_is_vax_floating_point. */
8732 ada_vax_float_type_suffix (struct type *type)
8734 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8737 /* A value representing the special debugging function that outputs
8738 VAX floating-point values of the type represented by TYPE. Assumes
8739 ada_is_vax_floating_type (TYPE). */
8742 ada_vax_float_print_function (struct type *type)
8744 switch (ada_vax_float_type_suffix (type))
8747 return get_var_value ("DEBUG_STRING_F", 0);
8749 return get_var_value ("DEBUG_STRING_D", 0);
8751 return get_var_value ("DEBUG_STRING_G", 0);
8753 error (_("invalid VAX floating-point type"));
8760 /* Scan STR beginning at position K for a discriminant name, and
8761 return the value of that discriminant field of DVAL in *PX. If
8762 PNEW_K is not null, put the position of the character beyond the
8763 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8764 not alter *PX and *PNEW_K if unsuccessful. */
8767 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8770 static char *bound_buffer = NULL;
8771 static size_t bound_buffer_len = 0;
8774 struct value *bound_val;
8776 if (dval == NULL || str == NULL || str[k] == '\0')
8779 pend = strstr (str + k, "__");
8783 k += strlen (bound);
8787 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8788 bound = bound_buffer;
8789 strncpy (bound_buffer, str + k, pend - (str + k));
8790 bound[pend - (str + k)] = '\0';
8794 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8795 if (bound_val == NULL)
8798 *px = value_as_long (bound_val);
8804 /* Value of variable named NAME in the current environment. If
8805 no such variable found, then if ERR_MSG is null, returns 0, and
8806 otherwise causes an error with message ERR_MSG. */
8808 static struct value *
8809 get_var_value (char *name, char *err_msg)
8811 struct ada_symbol_info *syms;
8814 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8819 if (err_msg == NULL)
8822 error (("%s"), err_msg);
8825 return value_of_variable (syms[0].sym, syms[0].block);
8828 /* Value of integer variable named NAME in the current environment. If
8829 no such variable found, returns 0, and sets *FLAG to 0. If
8830 successful, sets *FLAG to 1. */
8833 get_int_var_value (char *name, int *flag)
8835 struct value *var_val = get_var_value (name, 0);
8847 return value_as_long (var_val);
8852 /* Return a range type whose base type is that of the range type named
8853 NAME in the current environment, and whose bounds are calculated
8854 from NAME according to the GNAT range encoding conventions.
8855 Extract discriminant values, if needed, from DVAL. If a new type
8856 must be created, allocate in OBJFILE's space. The bounds
8857 information, in general, is encoded in NAME, the base type given in
8858 the named range type. */
8860 static struct type *
8861 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8863 struct type *raw_type = ada_find_any_type (name);
8864 struct type *base_type;
8867 if (raw_type == NULL)
8868 base_type = builtin_type_int;
8869 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8870 base_type = TYPE_TARGET_TYPE (raw_type);
8872 base_type = raw_type;
8874 subtype_info = strstr (name, "___XD");
8875 if (subtype_info == NULL)
8879 static char *name_buf = NULL;
8880 static size_t name_len = 0;
8881 int prefix_len = subtype_info - name;
8887 GROW_VECT (name_buf, name_len, prefix_len + 5);
8888 strncpy (name_buf, name, prefix_len);
8889 name_buf[prefix_len] = '\0';
8892 bounds_str = strchr (subtype_info, '_');
8895 if (*subtype_info == 'L')
8897 if (!ada_scan_number (bounds_str, n, &L, &n)
8898 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8900 if (bounds_str[n] == '_')
8902 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8909 strcpy (name_buf + prefix_len, "___L");
8910 L = get_int_var_value (name_buf, &ok);
8913 lim_warning (_("Unknown lower bound, using 1."));
8918 if (*subtype_info == 'U')
8920 if (!ada_scan_number (bounds_str, n, &U, &n)
8921 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8927 strcpy (name_buf + prefix_len, "___U");
8928 U = get_int_var_value (name_buf, &ok);
8931 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8936 if (objfile == NULL)
8937 objfile = TYPE_OBJFILE (base_type);
8938 type = create_range_type (alloc_type (objfile), base_type, L, U);
8939 TYPE_NAME (type) = name;
8944 /* True iff NAME is the name of a range type. */
8947 ada_is_range_type_name (const char *name)
8949 return (name != NULL && strstr (name, "___XD"));
8955 /* True iff TYPE is an Ada modular type. */
8958 ada_is_modular_type (struct type *type)
8960 struct type *subranged_type = base_type (type);
8962 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8963 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8964 && TYPE_UNSIGNED (subranged_type));
8967 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8970 ada_modulus (struct type * type)
8972 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8976 /* Ada exception catchpoint support:
8977 ---------------------------------
8979 We support 3 kinds of exception catchpoints:
8980 . catchpoints on Ada exceptions
8981 . catchpoints on unhandled Ada exceptions
8982 . catchpoints on failed assertions
8984 Exceptions raised during failed assertions, or unhandled exceptions
8985 could perfectly be caught with the general catchpoint on Ada exceptions.
8986 However, we can easily differentiate these two special cases, and having
8987 the option to distinguish these two cases from the rest can be useful
8988 to zero-in on certain situations.
8990 Exception catchpoints are a specialized form of breakpoint,
8991 since they rely on inserting breakpoints inside known routines
8992 of the GNAT runtime. The implementation therefore uses a standard
8993 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8996 At this time, we do not support the use of conditions on Ada exception
8997 catchpoints. The COND and COND_STRING fields are therefore set
8998 to NULL (most of the time, see below).
9000 Conditions where EXP_STRING, COND, and COND_STRING are used:
9002 When a user specifies the name of a specific exception in the case
9003 of catchpoints on Ada exceptions, we store the name of that exception
9004 in the EXP_STRING. We then translate this request into an actual
9005 condition stored in COND_STRING, and then parse it into an expression
9008 /* The different types of catchpoints that we introduced for catching
9011 enum exception_catchpoint_kind
9014 ex_catch_exception_unhandled,
9018 /* Return the name of the function at PC, NULL if could not find it.
9019 This function only checks the debugging information, not the symbol
9023 function_name_from_pc (CORE_ADDR pc)
9027 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9033 /* True iff FRAME is very likely to be that of a function that is
9034 part of the runtime system. This is all very heuristic, but is
9035 intended to be used as advice as to what frames are uninteresting
9039 is_known_support_routine (struct frame_info *frame)
9041 struct symtab_and_line sal;
9045 /* If this code does not have any debugging information (no symtab),
9046 This cannot be any user code. */
9048 find_frame_sal (frame, &sal);
9049 if (sal.symtab == NULL)
9052 /* If there is a symtab, but the associated source file cannot be
9053 located, then assume this is not user code: Selecting a frame
9054 for which we cannot display the code would not be very helpful
9055 for the user. This should also take care of case such as VxWorks
9056 where the kernel has some debugging info provided for a few units. */
9058 if (symtab_to_fullname (sal.symtab) == NULL)
9061 /* Check the unit filename againt the Ada runtime file naming.
9062 We also check the name of the objfile against the name of some
9063 known system libraries that sometimes come with debugging info
9066 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9068 re_comp (known_runtime_file_name_patterns[i]);
9069 if (re_exec (sal.symtab->filename))
9071 if (sal.symtab->objfile != NULL
9072 && re_exec (sal.symtab->objfile->name))
9076 /* Check whether the function is a GNAT-generated entity. */
9078 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9079 if (func_name == NULL)
9082 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9084 re_comp (known_auxiliary_function_name_patterns[i]);
9085 if (re_exec (func_name))
9092 /* Find the first frame that contains debugging information and that is not
9093 part of the Ada run-time, starting from FI and moving upward. */
9096 ada_find_printable_frame (struct frame_info *fi)
9098 for (; fi != NULL; fi = get_prev_frame (fi))
9100 if (!is_known_support_routine (fi))
9109 /* Assuming that the inferior just triggered an unhandled exception
9110 catchpoint, return the address in inferior memory where the name
9111 of the exception is stored.
9113 Return zero if the address could not be computed. */
9116 ada_unhandled_exception_name_addr (void)
9119 struct frame_info *fi;
9121 /* To determine the name of this exception, we need to select
9122 the frame corresponding to RAISE_SYM_NAME. This frame is
9123 at least 3 levels up, so we simply skip the first 3 frames
9124 without checking the name of their associated function. */
9125 fi = get_current_frame ();
9126 for (frame_level = 0; frame_level < 3; frame_level += 1)
9128 fi = get_prev_frame (fi);
9132 const char *func_name =
9133 function_name_from_pc (get_frame_address_in_block (fi));
9134 if (func_name != NULL
9135 && strcmp (func_name, raise_sym_name) == 0)
9136 break; /* We found the frame we were looking for... */
9137 fi = get_prev_frame (fi);
9144 return parse_and_eval_address ("id.full_name");
9147 /* Assuming the inferior just triggered an Ada exception catchpoint
9148 (of any type), return the address in inferior memory where the name
9149 of the exception is stored, if applicable.
9151 Return zero if the address could not be computed, or if not relevant. */
9154 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9155 struct breakpoint *b)
9159 case ex_catch_exception:
9160 return (parse_and_eval_address ("e.full_name"));
9163 case ex_catch_exception_unhandled:
9164 return ada_unhandled_exception_name_addr ();
9167 case ex_catch_assert:
9168 return 0; /* Exception name is not relevant in this case. */
9172 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9176 return 0; /* Should never be reached. */
9179 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9180 any error that ada_exception_name_addr_1 might cause to be thrown.
9181 When an error is intercepted, a warning with the error message is printed,
9182 and zero is returned. */
9185 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9186 struct breakpoint *b)
9188 struct gdb_exception e;
9189 CORE_ADDR result = 0;
9191 TRY_CATCH (e, RETURN_MASK_ERROR)
9193 result = ada_exception_name_addr_1 (ex, b);
9198 warning (_("failed to get exception name: %s"), e.message);
9205 /* Implement the PRINT_IT method in the breakpoint_ops structure
9206 for all exception catchpoint kinds. */
9208 static enum print_stop_action
9209 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9211 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9212 char exception_name[256];
9216 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9217 exception_name [sizeof (exception_name) - 1] = '\0';
9220 ada_find_printable_frame (get_current_frame ());
9222 annotate_catchpoint (b->number);
9225 case ex_catch_exception:
9227 printf_filtered (_("\nCatchpoint %d, %s at "),
9228 b->number, exception_name);
9230 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9232 case ex_catch_exception_unhandled:
9234 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9235 b->number, exception_name);
9237 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9240 case ex_catch_assert:
9241 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9246 return PRINT_SRC_AND_LOC;
9249 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9250 for all exception catchpoint kinds. */
9253 print_one_exception (enum exception_catchpoint_kind ex,
9254 struct breakpoint *b, CORE_ADDR *last_addr)
9259 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9263 *last_addr = b->loc->address;
9266 case ex_catch_exception:
9267 if (b->exp_string != NULL)
9269 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9271 ui_out_field_string (uiout, "what", msg);
9275 ui_out_field_string (uiout, "what", "all Ada exceptions");
9279 case ex_catch_exception_unhandled:
9280 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9283 case ex_catch_assert:
9284 ui_out_field_string (uiout, "what", "failed Ada assertions");
9288 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9293 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9294 for all exception catchpoint kinds. */
9297 print_mention_exception (enum exception_catchpoint_kind ex,
9298 struct breakpoint *b)
9302 case ex_catch_exception:
9303 if (b->exp_string != NULL)
9304 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9305 b->number, b->exp_string);
9307 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9311 case ex_catch_exception_unhandled:
9312 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9316 case ex_catch_assert:
9317 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9321 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9326 /* Virtual table for "catch exception" breakpoints. */
9328 static enum print_stop_action
9329 print_it_catch_exception (struct breakpoint *b)
9331 return print_it_exception (ex_catch_exception, b);
9335 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9337 print_one_exception (ex_catch_exception, b, last_addr);
9341 print_mention_catch_exception (struct breakpoint *b)
9343 print_mention_exception (ex_catch_exception, b);
9346 static struct breakpoint_ops catch_exception_breakpoint_ops =
9348 print_it_catch_exception,
9349 print_one_catch_exception,
9350 print_mention_catch_exception
9353 /* Virtual table for "catch exception unhandled" breakpoints. */
9355 static enum print_stop_action
9356 print_it_catch_exception_unhandled (struct breakpoint *b)
9358 return print_it_exception (ex_catch_exception_unhandled, b);
9362 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9364 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9368 print_mention_catch_exception_unhandled (struct breakpoint *b)
9370 print_mention_exception (ex_catch_exception_unhandled, b);
9373 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9374 print_it_catch_exception_unhandled,
9375 print_one_catch_exception_unhandled,
9376 print_mention_catch_exception_unhandled
9379 /* Virtual table for "catch assert" breakpoints. */
9381 static enum print_stop_action
9382 print_it_catch_assert (struct breakpoint *b)
9384 return print_it_exception (ex_catch_assert, b);
9388 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9390 print_one_exception (ex_catch_assert, b, last_addr);
9394 print_mention_catch_assert (struct breakpoint *b)
9396 print_mention_exception (ex_catch_assert, b);
9399 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9400 print_it_catch_assert,
9401 print_one_catch_assert,
9402 print_mention_catch_assert
9405 /* Return non-zero if B is an Ada exception catchpoint. */
9408 ada_exception_catchpoint_p (struct breakpoint *b)
9410 return (b->ops == &catch_exception_breakpoint_ops
9411 || b->ops == &catch_exception_unhandled_breakpoint_ops
9412 || b->ops == &catch_assert_breakpoint_ops);
9415 /* Cause the appropriate error if no appropriate runtime symbol is
9416 found to set a breakpoint, using ERR_DESC to describe the
9420 error_breakpoint_runtime_sym_not_found (const char *err_desc)
9422 /* If we are not debugging an Ada program, we cannot put exception
9425 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9426 error (_("Unable to break on %s. Is this an Ada main program?"),
9429 /* If the symbol does not exist, then check that the program is
9430 already started, to make sure that shared libraries have been
9431 loaded. If it is not started, this may mean that the symbol is
9432 in a shared library. */
9434 if (ptid_get_pid (inferior_ptid) == 0)
9435 error (_("Unable to break on %s. Try to start the program first."),
9438 /* At this point, we know that we are debugging an Ada program and
9439 that the inferior has been started, but we still are not able to
9440 find the run-time symbols. That can mean that we are in
9441 configurable run time mode, or that a-except as been optimized
9442 out by the linker... In any case, at this point it is not worth
9443 supporting this feature. */
9445 error (_("Cannot break on %s in this configuration."), err_desc);
9448 /* Return a newly allocated copy of the first space-separated token
9449 in ARGSP, and then adjust ARGSP to point immediately after that
9452 Return NULL if ARGPS does not contain any more tokens. */
9455 ada_get_next_arg (char **argsp)
9457 char *args = *argsp;
9461 /* Skip any leading white space. */
9463 while (isspace (*args))
9466 if (args[0] == '\0')
9467 return NULL; /* No more arguments. */
9469 /* Find the end of the current argument. */
9472 while (*end != '\0' && !isspace (*end))
9475 /* Adjust ARGSP to point to the start of the next argument. */
9479 /* Make a copy of the current argument and return it. */
9481 result = xmalloc (end - args + 1);
9482 strncpy (result, args, end - args);
9483 result[end - args] = '\0';
9488 /* Split the arguments specified in a "catch exception" command.
9489 Set EX to the appropriate catchpoint type.
9490 Set EXP_STRING to the name of the specific exception if
9491 specified by the user. */
9494 catch_ada_exception_command_split (char *args,
9495 enum exception_catchpoint_kind *ex,
9498 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9499 char *exception_name;
9501 exception_name = ada_get_next_arg (&args);
9502 make_cleanup (xfree, exception_name);
9504 /* Check that we do not have any more arguments. Anything else
9507 while (isspace (*args))
9510 if (args[0] != '\0')
9511 error (_("Junk at end of expression"));
9513 discard_cleanups (old_chain);
9515 if (exception_name == NULL)
9517 /* Catch all exceptions. */
9518 *ex = ex_catch_exception;
9521 else if (strcmp (exception_name, "unhandled") == 0)
9523 /* Catch unhandled exceptions. */
9524 *ex = ex_catch_exception_unhandled;
9529 /* Catch a specific exception. */
9530 *ex = ex_catch_exception;
9531 *exp_string = exception_name;
9535 /* Return the name of the symbol on which we should break in order to
9536 implement a catchpoint of the EX kind. */
9539 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9543 case ex_catch_exception:
9544 return (raise_sym_name);
9546 case ex_catch_exception_unhandled:
9547 return (raise_unhandled_sym_name);
9549 case ex_catch_assert:
9550 return (raise_assert_sym_name);
9553 internal_error (__FILE__, __LINE__,
9554 _("unexpected catchpoint kind (%d)"), ex);
9558 /* Return the breakpoint ops "virtual table" used for catchpoints
9561 static struct breakpoint_ops *
9562 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9566 case ex_catch_exception:
9567 return (&catch_exception_breakpoint_ops);
9569 case ex_catch_exception_unhandled:
9570 return (&catch_exception_unhandled_breakpoint_ops);
9572 case ex_catch_assert:
9573 return (&catch_assert_breakpoint_ops);
9576 internal_error (__FILE__, __LINE__,
9577 _("unexpected catchpoint kind (%d)"), ex);
9581 /* Return the condition that will be used to match the current exception
9582 being raised with the exception that the user wants to catch. This
9583 assumes that this condition is used when the inferior just triggered
9584 an exception catchpoint.
9586 The string returned is a newly allocated string that needs to be
9587 deallocated later. */
9590 ada_exception_catchpoint_cond_string (const char *exp_string)
9592 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9595 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9597 static struct expression *
9598 ada_parse_catchpoint_condition (char *cond_string,
9599 struct symtab_and_line sal)
9601 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9604 /* Return the symtab_and_line that should be used to insert an exception
9605 catchpoint of the TYPE kind.
9607 EX_STRING should contain the name of a specific exception
9608 that the catchpoint should catch, or NULL otherwise.
9610 The idea behind all the remaining parameters is that their names match
9611 the name of certain fields in the breakpoint structure that are used to
9612 handle exception catchpoints. This function returns the value to which
9613 these fields should be set, depending on the type of catchpoint we need
9616 If COND and COND_STRING are both non-NULL, any value they might
9617 hold will be free'ed, and then replaced by newly allocated ones.
9618 These parameters are left untouched otherwise. */
9620 static struct symtab_and_line
9621 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9622 char **addr_string, char **cond_string,
9623 struct expression **cond, struct breakpoint_ops **ops)
9625 const char *sym_name;
9627 struct symtab_and_line sal;
9629 /* First lookup the function on which we will break in order to catch
9630 the Ada exceptions requested by the user. */
9632 sym_name = ada_exception_sym_name (ex);
9633 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9635 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9636 that should be compiled with debugging information. As a result, we
9637 expect to find that symbol in the symtabs. If we don't find it, then
9638 the target most likely does not support Ada exceptions, or we cannot
9639 insert exception breakpoints yet, because the GNAT runtime hasn't been
9642 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9643 in such a way that no debugging information is produced for the symbol
9644 we are looking for. In this case, we could search the minimal symbols
9645 as a fall-back mechanism. This would still be operating in degraded
9646 mode, however, as we would still be missing the debugging information
9647 that is needed in order to extract the name of the exception being
9648 raised (this name is printed in the catchpoint message, and is also
9649 used when trying to catch a specific exception). We do not handle
9650 this case for now. */
9653 error_breakpoint_runtime_sym_not_found (sym_name);
9655 /* Make sure that the symbol we found corresponds to a function. */
9656 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9657 error (_("Symbol \"%s\" is not a function (class = %d)"),
9658 sym_name, SYMBOL_CLASS (sym));
9660 sal = find_function_start_sal (sym, 1);
9662 /* Set ADDR_STRING. */
9664 *addr_string = xstrdup (sym_name);
9666 /* Set the COND and COND_STRING (if not NULL). */
9668 if (cond_string != NULL && cond != NULL)
9670 if (*cond_string != NULL)
9672 xfree (*cond_string);
9673 *cond_string = NULL;
9680 if (exp_string != NULL)
9682 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9683 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9688 *ops = ada_exception_breakpoint_ops (ex);
9693 /* Parse the arguments (ARGS) of the "catch exception" command.
9695 Set TYPE to the appropriate exception catchpoint type.
9696 If the user asked the catchpoint to catch only a specific
9697 exception, then save the exception name in ADDR_STRING.
9699 See ada_exception_sal for a description of all the remaining
9700 function arguments of this function. */
9702 struct symtab_and_line
9703 ada_decode_exception_location (char *args, char **addr_string,
9704 char **exp_string, char **cond_string,
9705 struct expression **cond,
9706 struct breakpoint_ops **ops)
9708 enum exception_catchpoint_kind ex;
9710 catch_ada_exception_command_split (args, &ex, exp_string);
9711 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9715 struct symtab_and_line
9716 ada_decode_assert_location (char *args, char **addr_string,
9717 struct breakpoint_ops **ops)
9719 /* Check that no argument where provided at the end of the command. */
9723 while (isspace (*args))
9726 error (_("Junk at end of arguments."));
9729 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9734 /* Information about operators given special treatment in functions
9736 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9738 #define ADA_OPERATORS \
9739 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9740 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9741 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9742 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9743 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9744 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9745 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9746 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9747 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9748 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9749 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9750 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9751 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9752 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9753 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9754 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9755 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9756 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9757 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9760 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9762 switch (exp->elts[pc - 1].opcode)
9765 operator_length_standard (exp, pc, oplenp, argsp);
9768 #define OP_DEFN(op, len, args, binop) \
9769 case op: *oplenp = len; *argsp = args; break;
9775 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9780 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9786 ada_op_name (enum exp_opcode opcode)
9791 return op_name_standard (opcode);
9793 #define OP_DEFN(op, len, args, binop) case op: return #op;
9798 return "OP_AGGREGATE";
9800 return "OP_CHOICES";
9806 /* As for operator_length, but assumes PC is pointing at the first
9807 element of the operator, and gives meaningful results only for the
9808 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9811 ada_forward_operator_length (struct expression *exp, int pc,
9812 int *oplenp, int *argsp)
9814 switch (exp->elts[pc].opcode)
9817 *oplenp = *argsp = 0;
9820 #define OP_DEFN(op, len, args, binop) \
9821 case op: *oplenp = len; *argsp = args; break;
9827 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9832 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9838 int len = longest_to_int (exp->elts[pc + 1].longconst);
9839 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9847 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9849 enum exp_opcode op = exp->elts[elt].opcode;
9854 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9858 /* Ada attributes ('Foo). */
9865 case OP_ATR_MODULUS:
9874 /* XXX: gdb_sprint_host_address, type_sprint */
9875 fprintf_filtered (stream, _("Type @"));
9876 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9877 fprintf_filtered (stream, " (");
9878 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9879 fprintf_filtered (stream, ")");
9881 case BINOP_IN_BOUNDS:
9882 fprintf_filtered (stream, " (%d)",
9883 longest_to_int (exp->elts[pc + 2].longconst));
9885 case TERNOP_IN_RANGE:
9890 case OP_DISCRETE_RANGE:
9898 char *name = &exp->elts[elt + 2].string;
9899 int len = longest_to_int (exp->elts[elt + 1].longconst);
9900 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9905 return dump_subexp_body_standard (exp, stream, elt);
9909 for (i = 0; i < nargs; i += 1)
9910 elt = dump_subexp (exp, stream, elt);
9915 /* The Ada extension of print_subexp (q.v.). */
9918 ada_print_subexp (struct expression *exp, int *pos,
9919 struct ui_file *stream, enum precedence prec)
9921 int oplen, nargs, i;
9923 enum exp_opcode op = exp->elts[pc].opcode;
9925 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9932 print_subexp_standard (exp, pos, stream, prec);
9936 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9939 case BINOP_IN_BOUNDS:
9940 /* XXX: sprint_subexp */
9941 print_subexp (exp, pos, stream, PREC_SUFFIX);
9942 fputs_filtered (" in ", stream);
9943 print_subexp (exp, pos, stream, PREC_SUFFIX);
9944 fputs_filtered ("'range", stream);
9945 if (exp->elts[pc + 1].longconst > 1)
9946 fprintf_filtered (stream, "(%ld)",
9947 (long) exp->elts[pc + 1].longconst);
9950 case TERNOP_IN_RANGE:
9951 if (prec >= PREC_EQUAL)
9952 fputs_filtered ("(", stream);
9953 /* XXX: sprint_subexp */
9954 print_subexp (exp, pos, stream, PREC_SUFFIX);
9955 fputs_filtered (" in ", stream);
9956 print_subexp (exp, pos, stream, PREC_EQUAL);
9957 fputs_filtered (" .. ", stream);
9958 print_subexp (exp, pos, stream, PREC_EQUAL);
9959 if (prec >= PREC_EQUAL)
9960 fputs_filtered (")", stream);
9969 case OP_ATR_MODULUS:
9974 if (exp->elts[*pos].opcode == OP_TYPE)
9976 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9977 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9981 print_subexp (exp, pos, stream, PREC_SUFFIX);
9982 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9986 for (tem = 1; tem < nargs; tem += 1)
9988 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
9989 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9991 fputs_filtered (")", stream);
9996 type_print (exp->elts[pc + 1].type, "", stream, 0);
9997 fputs_filtered ("'(", stream);
9998 print_subexp (exp, pos, stream, PREC_PREFIX);
9999 fputs_filtered (")", stream);
10002 case UNOP_IN_RANGE:
10003 /* XXX: sprint_subexp */
10004 print_subexp (exp, pos, stream, PREC_SUFFIX);
10005 fputs_filtered (" in ", stream);
10006 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10009 case OP_DISCRETE_RANGE:
10010 print_subexp (exp, pos, stream, PREC_SUFFIX);
10011 fputs_filtered ("..", stream);
10012 print_subexp (exp, pos, stream, PREC_SUFFIX);
10016 fputs_filtered ("others => ", stream);
10017 print_subexp (exp, pos, stream, PREC_SUFFIX);
10021 for (i = 0; i < nargs-1; i += 1)
10024 fputs_filtered ("|", stream);
10025 print_subexp (exp, pos, stream, PREC_SUFFIX);
10027 fputs_filtered (" => ", stream);
10028 print_subexp (exp, pos, stream, PREC_SUFFIX);
10031 case OP_POSITIONAL:
10032 print_subexp (exp, pos, stream, PREC_SUFFIX);
10036 fputs_filtered ("(", stream);
10037 for (i = 0; i < nargs; i += 1)
10040 fputs_filtered (", ", stream);
10041 print_subexp (exp, pos, stream, PREC_SUFFIX);
10043 fputs_filtered (")", stream);
10048 /* Table mapping opcodes into strings for printing operators
10049 and precedences of the operators. */
10051 static const struct op_print ada_op_print_tab[] = {
10052 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10053 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10054 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10055 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10056 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10057 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10058 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10059 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10060 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10061 {">=", BINOP_GEQ, PREC_ORDER, 0},
10062 {">", BINOP_GTR, PREC_ORDER, 0},
10063 {"<", BINOP_LESS, PREC_ORDER, 0},
10064 {">>", BINOP_RSH, PREC_SHIFT, 0},
10065 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10066 {"+", BINOP_ADD, PREC_ADD, 0},
10067 {"-", BINOP_SUB, PREC_ADD, 0},
10068 {"&", BINOP_CONCAT, PREC_ADD, 0},
10069 {"*", BINOP_MUL, PREC_MUL, 0},
10070 {"/", BINOP_DIV, PREC_MUL, 0},
10071 {"rem", BINOP_REM, PREC_MUL, 0},
10072 {"mod", BINOP_MOD, PREC_MUL, 0},
10073 {"**", BINOP_EXP, PREC_REPEAT, 0},
10074 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10075 {"-", UNOP_NEG, PREC_PREFIX, 0},
10076 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10077 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10078 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10079 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10080 {".all", UNOP_IND, PREC_SUFFIX, 1},
10081 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10082 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10086 /* Fundamental Ada Types */
10088 /* Create a fundamental Ada type using default reasonable for the current
10091 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10092 define fundamental types such as "int" or "double". Others (stabs or
10093 DWARF version 2, etc) do define fundamental types. For the formats which
10094 don't provide fundamental types, gdb can create such types using this
10097 FIXME: Some compilers distinguish explicitly signed integral types
10098 (signed short, signed int, signed long) from "regular" integral types
10099 (short, int, long) in the debugging information. There is some dis-
10100 agreement as to how useful this feature is. In particular, gcc does
10101 not support this. Also, only some debugging formats allow the
10102 distinction to be passed on to a debugger. For now, we always just
10103 use "short", "int", or "long" as the type name, for both the implicit
10104 and explicitly signed types. This also makes life easier for the
10105 gdb test suite since we don't have to account for the differences
10106 in output depending upon what the compiler and debugging format
10107 support. We will probably have to re-examine the issue when gdb
10108 starts taking it's fundamental type information directly from the
10111 static struct type *
10112 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10114 struct type *type = NULL;
10119 /* FIXME: For now, if we are asked to produce a type not in this
10120 language, create the equivalent of a C integer type with the
10121 name "<?type?>". When all the dust settles from the type
10122 reconstruction work, this should probably become an error. */
10123 type = init_type (TYPE_CODE_INT,
10124 TARGET_INT_BIT / TARGET_CHAR_BIT,
10125 0, "<?type?>", objfile);
10126 warning (_("internal error: no Ada fundamental type %d"), typeid);
10129 type = init_type (TYPE_CODE_VOID,
10130 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10131 0, "void", objfile);
10134 type = init_type (TYPE_CODE_INT,
10135 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10136 0, "character", objfile);
10138 case FT_SIGNED_CHAR:
10139 type = init_type (TYPE_CODE_INT,
10140 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10141 0, "signed char", objfile);
10143 case FT_UNSIGNED_CHAR:
10144 type = init_type (TYPE_CODE_INT,
10145 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10146 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10149 type = init_type (TYPE_CODE_INT,
10150 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10151 0, "short_integer", objfile);
10153 case FT_SIGNED_SHORT:
10154 type = init_type (TYPE_CODE_INT,
10155 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10156 0, "short_integer", objfile);
10158 case FT_UNSIGNED_SHORT:
10159 type = init_type (TYPE_CODE_INT,
10160 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10161 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10164 type = init_type (TYPE_CODE_INT,
10165 TARGET_INT_BIT / TARGET_CHAR_BIT,
10166 0, "integer", objfile);
10168 case FT_SIGNED_INTEGER:
10169 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10171 0, "integer", objfile); /* FIXME -fnf */
10173 case FT_UNSIGNED_INTEGER:
10174 type = init_type (TYPE_CODE_INT,
10175 TARGET_INT_BIT / TARGET_CHAR_BIT,
10176 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10179 type = init_type (TYPE_CODE_INT,
10180 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10181 0, "long_integer", objfile);
10183 case FT_SIGNED_LONG:
10184 type = init_type (TYPE_CODE_INT,
10185 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10186 0, "long_integer", objfile);
10188 case FT_UNSIGNED_LONG:
10189 type = init_type (TYPE_CODE_INT,
10190 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10191 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10194 type = init_type (TYPE_CODE_INT,
10195 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10196 0, "long_long_integer", objfile);
10198 case FT_SIGNED_LONG_LONG:
10199 type = init_type (TYPE_CODE_INT,
10200 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10201 0, "long_long_integer", objfile);
10203 case FT_UNSIGNED_LONG_LONG:
10204 type = init_type (TYPE_CODE_INT,
10205 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10206 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10209 type = init_type (TYPE_CODE_FLT,
10210 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10211 0, "float", objfile);
10213 case FT_DBL_PREC_FLOAT:
10214 type = init_type (TYPE_CODE_FLT,
10215 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10216 0, "long_float", objfile);
10218 case FT_EXT_PREC_FLOAT:
10219 type = init_type (TYPE_CODE_FLT,
10220 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10221 0, "long_long_float", objfile);
10227 enum ada_primitive_types {
10228 ada_primitive_type_int,
10229 ada_primitive_type_long,
10230 ada_primitive_type_short,
10231 ada_primitive_type_char,
10232 ada_primitive_type_float,
10233 ada_primitive_type_double,
10234 ada_primitive_type_void,
10235 ada_primitive_type_long_long,
10236 ada_primitive_type_long_double,
10237 ada_primitive_type_natural,
10238 ada_primitive_type_positive,
10239 ada_primitive_type_system_address,
10240 nr_ada_primitive_types
10244 ada_language_arch_info (struct gdbarch *current_gdbarch,
10245 struct language_arch_info *lai)
10247 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10248 lai->primitive_type_vector
10249 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10251 lai->primitive_type_vector [ada_primitive_type_int] =
10252 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10253 0, "integer", (struct objfile *) NULL);
10254 lai->primitive_type_vector [ada_primitive_type_long] =
10255 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10256 0, "long_integer", (struct objfile *) NULL);
10257 lai->primitive_type_vector [ada_primitive_type_short] =
10258 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10259 0, "short_integer", (struct objfile *) NULL);
10260 lai->string_char_type =
10261 lai->primitive_type_vector [ada_primitive_type_char] =
10262 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10263 0, "character", (struct objfile *) NULL);
10264 lai->primitive_type_vector [ada_primitive_type_float] =
10265 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10266 0, "float", (struct objfile *) NULL);
10267 lai->primitive_type_vector [ada_primitive_type_double] =
10268 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10269 0, "long_float", (struct objfile *) NULL);
10270 lai->primitive_type_vector [ada_primitive_type_long_long] =
10271 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10272 0, "long_long_integer", (struct objfile *) NULL);
10273 lai->primitive_type_vector [ada_primitive_type_long_double] =
10274 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10275 0, "long_long_float", (struct objfile *) NULL);
10276 lai->primitive_type_vector [ada_primitive_type_natural] =
10277 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10278 0, "natural", (struct objfile *) NULL);
10279 lai->primitive_type_vector [ada_primitive_type_positive] =
10280 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10281 0, "positive", (struct objfile *) NULL);
10282 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10284 lai->primitive_type_vector [ada_primitive_type_system_address] =
10285 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10286 (struct objfile *) NULL));
10287 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10288 = "system__address";
10291 /* Language vector */
10293 /* Not really used, but needed in the ada_language_defn. */
10296 emit_char (int c, struct ui_file *stream, int quoter)
10298 ada_emit_char (c, stream, quoter, 1);
10304 warnings_issued = 0;
10305 return ada_parse ();
10308 static const struct exp_descriptor ada_exp_descriptor = {
10310 ada_operator_length,
10312 ada_dump_subexp_body,
10313 ada_evaluate_subexp
10316 const struct language_defn ada_language_defn = {
10317 "ada", /* Language name */
10322 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10323 that's not quite what this means. */
10325 &ada_exp_descriptor,
10329 ada_printchar, /* Print a character constant */
10330 ada_printstr, /* Function to print string constant */
10331 emit_char, /* Function to print single char (not used) */
10332 ada_create_fundamental_type, /* Create fundamental type in this language */
10333 ada_print_type, /* Print a type using appropriate syntax */
10334 ada_val_print, /* Print a value using appropriate syntax */
10335 ada_value_print, /* Print a top-level value */
10336 NULL, /* Language specific skip_trampoline */
10337 NULL, /* value_of_this */
10338 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10339 basic_lookup_transparent_type, /* lookup_transparent_type */
10340 ada_la_decode, /* Language specific symbol demangler */
10341 NULL, /* Language specific class_name_from_physname */
10342 ada_op_print_tab, /* expression operators for printing */
10343 0, /* c-style arrays */
10344 1, /* String lower bound */
10346 ada_get_gdb_completer_word_break_characters,
10347 ada_language_arch_info,
10348 ada_print_array_index,
10353 _initialize_ada_language (void)
10355 add_language (&ada_language_defn);
10357 varsize_limit = 65536;
10359 obstack_init (&symbol_list_obstack);
10361 decoded_names_store = htab_create_alloc
10362 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10363 NULL, xcalloc, xfree);