1 /* Intel 386 target-dependent stuff.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 #include "arch-utils.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
30 #include "floatformat.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
40 #include "reggroups.h"
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
56 static char *i386_register_names[] =
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
73 /* Register names for MMX pseudo-registers. */
75 static char *i386_mmx_names[] =
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
104 if (I387_NUM_XMM_REGS == 0)
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
121 if (I387_NUM_XMM_REGS == 0)
124 return (regnum == I387_MXCSR_REGNUM);
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
137 i386_fp_regnum_p (int regnum)
139 if (I387_ST0_REGNUM < 0)
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
146 i386_fpc_regnum_p (int regnum)
148 if (I387_ST0_REGNUM < 0)
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
154 /* Return the name of register REG. */
157 i386_register_name (int reg)
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
172 i386_dbx_reg_to_regnum (int reg)
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
177 if (reg >= 0 && reg <= 7)
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
187 else if (reg >= 12 && reg <= 19)
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
192 else if (reg >= 21 && reg <= 28)
195 return reg - 21 + I387_XMM0_REGNUM;
197 else if (reg >= 29 && reg <= 36)
200 return reg - 29 + I387_MM0_REGNUM;
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
207 /* Convert SVR4 register number REG to the appropriate register number
211 i386_svr4_reg_to_regnum (int reg)
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
220 /* General-purpose registers. */
223 else if (reg >= 11 && reg <= 18)
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
238 #undef I387_ST0_REGNUM
239 #undef I387_MM0_REGNUM
240 #undef I387_NUM_XMM_REGS
243 /* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
245 static const char att_flavor[] = "att";
246 static const char intel_flavor[] = "intel";
247 static const char *valid_flavors[] =
253 static const char *disassembly_flavor = att_flavor;
256 /* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
265 This function is 64-bit safe. */
267 static const unsigned char *
268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
272 *len = sizeof (break_insn);
276 #ifdef I386_REGNO_TO_SYMMETRY
277 #error "The Sequent Symmetry is no longer supported."
280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
284 /* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
286 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
288 struct i386_frame_cache
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
300 /* Stack space reserved for local variables. */
304 /* Allocate and initialize a frame cache. */
306 static struct i386_frame_cache *
307 i386_alloc_frame_cache (void)
309 struct i386_frame_cache *cache;
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
316 cache->sp_offset = -4;
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
324 cache->pc_in_eax = 0;
326 /* Frameless until proven otherwise. */
332 /* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
336 i386_follow_jump (CORE_ADDR pc)
342 op = read_memory_unsigned_integer (pc, 1);
346 op = read_memory_unsigned_integer (pc + 1, 1);
352 /* Relative jump: if data16 == 0, disp32, else disp16. */
355 delta = read_memory_integer (pc + 2, 2);
357 /* Include the size of the jmp instruction (including the
363 delta = read_memory_integer (pc + 1, 4);
365 /* Include the size of the jmp instruction. */
370 /* Relative jump, disp8 (ignore data16). */
371 delta = read_memory_integer (pc + data16 + 1, 1);
380 /* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
390 /* Functions that return a structure or union start with:
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
405 if (current_pc <= pc)
408 op = read_memory_unsigned_integer (pc, 1);
410 if (op != 0x58) /* popl %eax */
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
417 if (current_pc == pc)
419 cache->sp_offset += 4;
423 if (current_pc == pc + 1)
425 cache->pc_in_eax = 1;
429 if (buf[1] == proto1[1])
436 i386_skip_probe (CORE_ADDR pc)
438 /* A function may start with
449 unsigned char buf[8];
452 op = read_memory_unsigned_integer (pc, 1);
454 if (op == 0x68 || op == 0x6a)
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469 pc += delta + sizeof (buf);
475 /* Check whether PC points at a code that sets up a new stack frame.
476 If so, it updates CACHE and returns the address of the first
477 instruction after the sequence that sets removes the "hidden"
478 argument from the stack or CURRENT_PC, whichever is smaller.
479 Otherwise, return PC. */
482 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
483 struct i386_frame_cache *cache)
488 if (current_pc <= pc)
491 op = read_memory_unsigned_integer (pc, 1);
493 if (op == 0x55) /* pushl %ebp */
495 /* Take into account that we've executed the `pushl %ebp' that
496 starts this instruction sequence. */
497 cache->saved_regs[I386_EBP_REGNUM] = 0;
498 cache->sp_offset += 4;
500 /* If that's all, return now. */
501 if (current_pc <= pc + 1)
504 op = read_memory_unsigned_integer (pc + 1, 1);
506 /* Check for some special instructions that might be migrated
507 by GCC into the prologue. We check for
521 Because of the symmetry, there are actually two ways to
522 encode these instructions; with opcode bytes 0x29 and 0x2b
523 for `subl' and opcode bytes 0x31 and 0x33 for `xorl'.
525 Make sure we only skip these instructions if we later see the
526 `movl %esp, %ebp' that actually sets up the frame. */
527 while (op == 0x29 || op == 0x2b || op == 0x31 || op == 0x33)
529 op = read_memory_unsigned_integer (pc + skip + 2, 1);
532 case 0xdb: /* %ebx */
533 case 0xc9: /* %ecx */
534 case 0xd2: /* %edx */
535 case 0xc0: /* %eax */
542 op = read_memory_unsigned_integer (pc + skip + 1, 1);
545 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
549 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
553 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
560 /* OK, we actually have a frame. We just don't know how large
561 it is yet. Set its size to zero. We'll adjust it if
562 necessary. We also now commit to skipping the special
563 instructions mentioned before. */
567 /* If that's all, return now. */
568 if (current_pc <= pc + 3)
571 /* Check for stack adjustment
575 NOTE: You can't subtract a 16-bit immediate from a 32-bit
576 reg, so we don't have to worry about a data16 prefix. */
577 op = read_memory_unsigned_integer (pc + 3, 1);
580 /* `subl' with 8-bit immediate. */
581 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
582 /* Some instruction starting with 0x83 other than `subl'. */
585 /* `subl' with signed byte immediate (though it wouldn't make
586 sense to be negative). */
587 cache->locals = read_memory_integer (pc + 5, 1);
592 /* Maybe it is `subl' with a 32-bit immediate. */
593 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
594 /* Some instruction starting with 0x81 other than `subl'. */
597 /* It is `subl' with a 32-bit immediate. */
598 cache->locals = read_memory_integer (pc + 5, 4);
603 /* Some instruction other than `subl'. */
607 else if (op == 0xc8) /* enter $XXX */
609 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
616 /* Check whether PC points at code that saves registers on the stack.
617 If so, it updates CACHE and returns the address of the first
618 instruction after the register saves or CURRENT_PC, whichever is
619 smaller. Otherwise, return PC. */
622 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
623 struct i386_frame_cache *cache)
625 CORE_ADDR offset = 0;
629 if (cache->locals > 0)
630 offset -= cache->locals;
631 for (i = 0; i < 8 && pc < current_pc; i++)
633 op = read_memory_unsigned_integer (pc, 1);
634 if (op < 0x50 || op > 0x57)
638 cache->saved_regs[op - 0x50] = offset;
639 cache->sp_offset += 4;
646 /* Do a full analysis of the prologue at PC and update CACHE
647 accordingly. Bail out early if CURRENT_PC is reached. Return the
648 address where the analysis stopped.
650 We handle these cases:
652 The startup sequence can be at the start of the function, or the
653 function can start with a branch to startup code at the end.
655 %ebp can be set up with either the 'enter' instruction, or "pushl
656 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
657 once used in the System V compiler).
659 Local space is allocated just below the saved %ebp by either the
660 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
661 16-bit unsigned argument for space to allocate, and the 'addl'
662 instruction could have either a signed byte, or 32-bit immediate.
664 Next, the registers used by this function are pushed. With the
665 System V compiler they will always be in the order: %edi, %esi,
666 %ebx (and sometimes a harmless bug causes it to also save but not
667 restore %eax); however, the code below is willing to see the pushes
668 in any order, and will handle up to 8 of them.
670 If the setup sequence is at the end of the function, then the next
671 instruction will be a branch back to the start. */
674 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
675 struct i386_frame_cache *cache)
677 pc = i386_follow_jump (pc);
678 pc = i386_analyze_struct_return (pc, current_pc, cache);
679 pc = i386_skip_probe (pc);
680 pc = i386_analyze_frame_setup (pc, current_pc, cache);
681 return i386_analyze_register_saves (pc, current_pc, cache);
684 /* Return PC of first real instruction. */
687 i386_skip_prologue (CORE_ADDR start_pc)
689 static unsigned char pic_pat[6] =
691 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
694 struct i386_frame_cache cache;
700 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
701 if (cache.locals < 0)
704 /* Found valid frame setup. */
706 /* The native cc on SVR4 in -K PIC mode inserts the following code
707 to get the address of the global offset table (GOT) into register
712 movl %ebx,x(%ebp) (optional)
715 This code is with the rest of the prologue (at the end of the
716 function), so we have to skip it to get to the first real
717 instruction at the start of the function. */
719 for (i = 0; i < 6; i++)
721 op = read_memory_unsigned_integer (pc + i, 1);
722 if (pic_pat[i] != op)
729 op = read_memory_unsigned_integer (pc + delta, 1);
731 if (op == 0x89) /* movl %ebx, x(%ebp) */
733 op = read_memory_unsigned_integer (pc + delta + 1, 1);
735 if (op == 0x5d) /* One byte offset from %ebp. */
737 else if (op == 0x9d) /* Four byte offset from %ebp. */
739 else /* Unexpected instruction. */
742 op = read_memory_unsigned_integer (pc + delta, 1);
746 if (delta > 0 && op == 0x81
747 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
753 /* If the function starts with a branch (to startup code at the end)
754 the last instruction should bring us back to the first
755 instruction of the real code. */
756 if (i386_follow_jump (start_pc) != start_pc)
757 pc = i386_follow_jump (pc);
762 /* This function is 64-bit safe. */
765 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
769 frame_unwind_register (next_frame, PC_REGNUM, buf);
770 return extract_typed_address (buf, builtin_type_void_func_ptr);
776 static struct i386_frame_cache *
777 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
779 struct i386_frame_cache *cache;
786 cache = i386_alloc_frame_cache ();
789 /* In principle, for normal frames, %ebp holds the frame pointer,
790 which holds the base address for the current stack frame.
791 However, for functions that don't need it, the frame pointer is
792 optional. For these "frameless" functions the frame pointer is
793 actually the frame pointer of the calling frame. Signal
794 trampolines are just a special case of a "frameless" function.
795 They (usually) share their frame pointer with the frame that was
796 in progress when the signal occurred. */
798 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
799 cache->base = extract_unsigned_integer (buf, 4);
800 if (cache->base == 0)
803 /* For normal frames, %eip is stored at 4(%ebp). */
804 cache->saved_regs[I386_EIP_REGNUM] = 4;
806 cache->pc = frame_func_unwind (next_frame);
808 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
810 if (cache->locals < 0)
812 /* We didn't find a valid frame, which means that CACHE->base
813 currently holds the frame pointer for our calling frame. If
814 we're at the start of a function, or somewhere half-way its
815 prologue, the function's frame probably hasn't been fully
816 setup yet. Try to reconstruct the base address for the stack
817 frame by looking at the stack pointer. For truly "frameless"
818 functions this might work too. */
820 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
821 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
824 /* Now that we have the base address for the stack frame we can
825 calculate the value of %esp in the calling frame. */
826 cache->saved_sp = cache->base + 8;
828 /* Adjust all the saved registers such that they contain addresses
829 instead of offsets. */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 if (cache->saved_regs[i] != -1)
832 cache->saved_regs[i] += cache->base;
838 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
839 struct frame_id *this_id)
841 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
843 /* This marks the outermost frame. */
844 if (cache->base == 0)
847 /* See the end of i386_push_dummy_call. */
848 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
852 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
853 int regnum, int *optimizedp,
854 enum lval_type *lvalp, CORE_ADDR *addrp,
855 int *realnump, void *valuep)
857 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
859 gdb_assert (regnum >= 0);
861 /* The System V ABI says that:
863 "The flags register contains the system flags, such as the
864 direction flag and the carry flag. The direction flag must be
865 set to the forward (that is, zero) direction before entry and
866 upon exit from a function. Other user flags have no specified
867 role in the standard calling sequence and are not preserved."
869 To guarantee the "upon exit" part of that statement we fake a
870 saved flags register that has its direction flag cleared.
872 Note that GCC doesn't seem to rely on the fact that the direction
873 flag is cleared after a function return; it always explicitly
874 clears the flag before operations where it matters.
876 FIXME: kettenis/20030316: I'm not quite sure whether this is the
877 right thing to do. The way we fake the flags register here makes
878 it impossible to change it. */
880 if (regnum == I386_EFLAGS_REGNUM)
890 /* Clear the direction flag. */
891 val = frame_unwind_register_unsigned (next_frame,
894 store_unsigned_integer (valuep, 4, val);
900 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
902 frame_register_unwind (next_frame, I386_EAX_REGNUM,
903 optimizedp, lvalp, addrp, realnump, valuep);
907 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
915 /* Store the value. */
916 store_unsigned_integer (valuep, 4, cache->saved_sp);
921 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
924 *lvalp = lval_memory;
925 *addrp = cache->saved_regs[regnum];
929 /* Read the value in from memory. */
930 read_memory (*addrp, valuep,
931 register_size (current_gdbarch, regnum));
936 frame_register_unwind (next_frame, regnum,
937 optimizedp, lvalp, addrp, realnump, valuep);
940 static const struct frame_unwind i386_frame_unwind =
944 i386_frame_prev_register
947 static const struct frame_unwind *
948 i386_frame_sniffer (struct frame_info *next_frame)
950 return &i386_frame_unwind;
954 /* Signal trampolines. */
956 static struct i386_frame_cache *
957 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
959 struct i386_frame_cache *cache;
960 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
967 cache = i386_alloc_frame_cache ();
969 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
970 cache->base = extract_unsigned_integer (buf, 4) - 4;
972 addr = tdep->sigcontext_addr (next_frame);
973 if (tdep->sc_reg_offset)
977 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
979 for (i = 0; i < tdep->sc_num_regs; i++)
980 if (tdep->sc_reg_offset[i] != -1)
981 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
985 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
986 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
994 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
995 struct frame_id *this_id)
997 struct i386_frame_cache *cache =
998 i386_sigtramp_frame_cache (next_frame, this_cache);
1000 /* See the end of i386_push_dummy_call. */
1001 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1005 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1007 int regnum, int *optimizedp,
1008 enum lval_type *lvalp, CORE_ADDR *addrp,
1009 int *realnump, void *valuep)
1011 /* Make sure we've initialized the cache. */
1012 i386_sigtramp_frame_cache (next_frame, this_cache);
1014 i386_frame_prev_register (next_frame, this_cache, regnum,
1015 optimizedp, lvalp, addrp, realnump, valuep);
1018 static const struct frame_unwind i386_sigtramp_frame_unwind =
1021 i386_sigtramp_frame_this_id,
1022 i386_sigtramp_frame_prev_register
1025 static const struct frame_unwind *
1026 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1028 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1030 /* We shouldn't even bother if we don't have a sigcontext_addr
1032 if (tdep->sigcontext_addr == NULL)
1035 if (tdep->sigtramp_p != NULL)
1037 if (tdep->sigtramp_p (next_frame))
1038 return &i386_sigtramp_frame_unwind;
1041 if (tdep->sigtramp_start != 0)
1043 CORE_ADDR pc = frame_pc_unwind (next_frame);
1045 gdb_assert (tdep->sigtramp_end != 0);
1046 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1047 return &i386_sigtramp_frame_unwind;
1055 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1057 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1062 static const struct frame_base i386_frame_base =
1065 i386_frame_base_address,
1066 i386_frame_base_address,
1067 i386_frame_base_address
1070 static struct frame_id
1071 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1076 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1077 fp = extract_unsigned_integer (buf, 4);
1079 /* See the end of i386_push_dummy_call. */
1080 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1084 /* Figure out where the longjmp will land. Slurp the args out of the
1085 stack. We expect the first arg to be a pointer to the jmp_buf
1086 structure from which we extract the address that we will land at.
1087 This address is copied into PC. This routine returns non-zero on
1090 This function is 64-bit safe. */
1093 i386_get_longjmp_target (CORE_ADDR *pc)
1096 CORE_ADDR sp, jb_addr;
1097 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1098 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1100 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1101 longjmp will land. */
1102 if (jb_pc_offset == -1)
1105 /* Don't use I386_ESP_REGNUM here, since this function is also used
1107 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1108 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1109 if (target_read_memory (sp + len, buf, len))
1112 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1113 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1116 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1122 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1123 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1124 struct value **args, CORE_ADDR sp, int struct_return,
1125 CORE_ADDR struct_addr)
1130 /* Push arguments in reverse order. */
1131 for (i = nargs - 1; i >= 0; i--)
1133 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1135 /* The System V ABI says that:
1137 "An argument's size is increased, if necessary, to make it a
1138 multiple of [32-bit] words. This may require tail padding,
1139 depending on the size of the argument."
1141 This makes sure the stack says word-aligned. */
1142 sp -= (len + 3) & ~3;
1143 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1146 /* Push value address. */
1150 store_unsigned_integer (buf, 4, struct_addr);
1151 write_memory (sp, buf, 4);
1154 /* Store return address. */
1156 store_unsigned_integer (buf, 4, bp_addr);
1157 write_memory (sp, buf, 4);
1159 /* Finally, update the stack pointer... */
1160 store_unsigned_integer (buf, 4, sp);
1161 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1163 /* ...and fake a frame pointer. */
1164 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1166 /* MarkK wrote: This "+ 8" is all over the place:
1167 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1168 i386_unwind_dummy_id). It's there, since all frame unwinders for
1169 a given target have to agree (within a certain margin) on the
1170 definition of the stack address of a frame. Otherwise
1171 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1172 stack address *before* the function call as a frame's CFA. On
1173 the i386, when %ebp is used as a frame pointer, the offset
1174 between the contents %ebp and the CFA as defined by GCC. */
1178 /* These registers are used for returning integers (and on some
1179 targets also for returning `struct' and `union' values when their
1180 size and alignment match an integer type). */
1181 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1182 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1184 /* Read, for architecture GDBARCH, a function return value of TYPE
1185 from REGCACHE, and copy that into VALBUF. */
1188 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1189 struct regcache *regcache, void *valbuf)
1191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1192 int len = TYPE_LENGTH (type);
1193 char buf[I386_MAX_REGISTER_SIZE];
1195 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1197 if (tdep->st0_regnum < 0)
1199 warning ("Cannot find floating-point return value.");
1200 memset (valbuf, 0, len);
1204 /* Floating-point return values can be found in %st(0). Convert
1205 its contents to the desired type. This is probably not
1206 exactly how it would happen on the target itself, but it is
1207 the best we can do. */
1208 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1209 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1213 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1214 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1216 if (len <= low_size)
1218 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1219 memcpy (valbuf, buf, len);
1221 else if (len <= (low_size + high_size))
1223 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1224 memcpy (valbuf, buf, low_size);
1225 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1226 memcpy ((char *) valbuf + low_size, buf, len - low_size);
1229 internal_error (__FILE__, __LINE__,
1230 "Cannot extract return value of %d bytes long.", len);
1234 /* Write, for architecture GDBARCH, a function return value of TYPE
1235 from VALBUF into REGCACHE. */
1238 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1239 struct regcache *regcache, const void *valbuf)
1241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1242 int len = TYPE_LENGTH (type);
1244 /* Define I387_ST0_REGNUM such that we use the proper definitions
1245 for the architecture. */
1246 #define I387_ST0_REGNUM I386_ST0_REGNUM
1248 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1251 char buf[I386_MAX_REGISTER_SIZE];
1253 if (tdep->st0_regnum < 0)
1255 warning ("Cannot set floating-point return value.");
1259 /* Returning floating-point values is a bit tricky. Apart from
1260 storing the return value in %st(0), we have to simulate the
1261 state of the FPU at function return point. */
1263 /* Convert the value found in VALBUF to the extended
1264 floating-point format used by the FPU. This is probably
1265 not exactly how it would happen on the target itself, but
1266 it is the best we can do. */
1267 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1268 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1270 /* Set the top of the floating-point register stack to 7. The
1271 actual value doesn't really matter, but 7 is what a normal
1272 function return would end up with if the program started out
1273 with a freshly initialized FPU. */
1274 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1276 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1278 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1279 the floating-point register stack to 7, the appropriate value
1280 for the tag word is 0x3fff. */
1281 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1285 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1286 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1288 if (len <= low_size)
1289 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1290 else if (len <= (low_size + high_size))
1292 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1293 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1294 len - low_size, (char *) valbuf + low_size);
1297 internal_error (__FILE__, __LINE__,
1298 "Cannot store return value of %d bytes long.", len);
1301 #undef I387_ST0_REGNUM
1305 /* This is the variable that is set with "set struct-convention", and
1306 its legitimate values. */
1307 static const char default_struct_convention[] = "default";
1308 static const char pcc_struct_convention[] = "pcc";
1309 static const char reg_struct_convention[] = "reg";
1310 static const char *valid_conventions[] =
1312 default_struct_convention,
1313 pcc_struct_convention,
1314 reg_struct_convention,
1317 static const char *struct_convention = default_struct_convention;
1319 /* Return non-zero if TYPE, which is assumed to be a structure or
1320 union type, should be returned in registers for architecture
1324 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1327 enum type_code code = TYPE_CODE (type);
1328 int len = TYPE_LENGTH (type);
1330 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1332 if (struct_convention == pcc_struct_convention
1333 || (struct_convention == default_struct_convention
1334 && tdep->struct_return == pcc_struct_return))
1337 return (len == 1 || len == 2 || len == 4 || len == 8);
1340 /* Determine, for architecture GDBARCH, how a return value of TYPE
1341 should be returned. If it is supposed to be returned in registers,
1342 and READBUF is non-zero, read the appropriate value from REGCACHE,
1343 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1344 from WRITEBUF into REGCACHE. */
1346 static enum return_value_convention
1347 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1348 struct regcache *regcache, void *readbuf,
1349 const void *writebuf)
1351 enum type_code code = TYPE_CODE (type);
1353 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1354 && !i386_reg_struct_return_p (gdbarch, type))
1356 /* The System V ABI says that:
1358 "A function that returns a structure or union also sets %eax
1359 to the value of the original address of the caller's area
1360 before it returns. Thus when the caller receives control
1361 again, the address of the returned object resides in register
1362 %eax and can be used to access the object."
1364 So the ABI guarantees that we can always find the return
1365 value just after the function has returned. */
1371 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1372 read_memory (addr, readbuf, TYPE_LENGTH (type));
1375 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1378 /* This special case is for structures consisting of a single
1379 `float' or `double' member. These structures are returned in
1380 %st(0). For these structures, we call ourselves recursively,
1381 changing TYPE into the type of the first member of the structure.
1382 Since that should work for all structures that have only one
1383 member, we don't bother to check the member's type here. */
1384 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1386 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1387 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1391 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1393 i386_store_return_value (gdbarch, type, regcache, writebuf);
1395 return RETURN_VALUE_REGISTER_CONVENTION;
1399 /* Return the GDB type object for the "standard" data type of data in
1400 register REGNUM. Perhaps %esi and %edi should go here, but
1401 potentially they could be used for things other than address. */
1403 static struct type *
1404 i386_register_type (struct gdbarch *gdbarch, int regnum)
1406 if (regnum == I386_EIP_REGNUM
1407 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1408 return lookup_pointer_type (builtin_type_void);
1410 if (i386_fp_regnum_p (regnum))
1411 return builtin_type_i387_ext;
1413 if (i386_sse_regnum_p (gdbarch, regnum))
1414 return builtin_type_vec128i;
1416 if (i386_mmx_regnum_p (gdbarch, regnum))
1417 return builtin_type_vec64i;
1419 return builtin_type_int;
1422 /* Map a cooked register onto a raw register or memory. For the i386,
1423 the MMX registers need to be mapped onto floating point registers. */
1426 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1428 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1433 /* Define I387_ST0_REGNUM such that we use the proper definitions
1434 for REGCACHE's architecture. */
1435 #define I387_ST0_REGNUM tdep->st0_regnum
1437 mmxreg = regnum - tdep->mm0_regnum;
1438 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1439 tos = (fstat >> 11) & 0x7;
1440 fpreg = (mmxreg + tos) % 8;
1442 return (I387_ST0_REGNUM + fpreg);
1444 #undef I387_ST0_REGNUM
1448 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1449 int regnum, void *buf)
1451 if (i386_mmx_regnum_p (gdbarch, regnum))
1453 char mmx_buf[MAX_REGISTER_SIZE];
1454 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1456 /* Extract (always little endian). */
1457 regcache_raw_read (regcache, fpnum, mmx_buf);
1458 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1461 regcache_raw_read (regcache, regnum, buf);
1465 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1466 int regnum, const void *buf)
1468 if (i386_mmx_regnum_p (gdbarch, regnum))
1470 char mmx_buf[MAX_REGISTER_SIZE];
1471 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1474 regcache_raw_read (regcache, fpnum, mmx_buf);
1475 /* ... Modify ... (always little endian). */
1476 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1478 regcache_raw_write (regcache, fpnum, mmx_buf);
1481 regcache_raw_write (regcache, regnum, buf);
1485 /* Return the register number of the register allocated by GCC after
1486 REGNUM, or -1 if there is no such register. */
1489 i386_next_regnum (int regnum)
1491 /* GCC allocates the registers in the order:
1493 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1495 Since storing a variable in %esp doesn't make any sense we return
1496 -1 for %ebp and for %esp itself. */
1497 static int next_regnum[] =
1499 I386_EDX_REGNUM, /* Slot for %eax. */
1500 I386_EBX_REGNUM, /* Slot for %ecx. */
1501 I386_ECX_REGNUM, /* Slot for %edx. */
1502 I386_ESI_REGNUM, /* Slot for %ebx. */
1503 -1, -1, /* Slots for %esp and %ebp. */
1504 I386_EDI_REGNUM, /* Slot for %esi. */
1505 I386_EBP_REGNUM /* Slot for %edi. */
1508 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1509 return next_regnum[regnum];
1514 /* Return nonzero if a value of type TYPE stored in register REGNUM
1515 needs any special handling. */
1518 i386_convert_register_p (int regnum, struct type *type)
1520 int len = TYPE_LENGTH (type);
1522 /* Values may be spread across multiple registers. Most debugging
1523 formats aren't expressive enough to specify the locations, so
1524 some heuristics is involved. Right now we only handle types that
1525 have a length that is a multiple of the word size, since GCC
1526 doesn't seem to put any other types into registers. */
1527 if (len > 4 && len % 4 == 0)
1529 int last_regnum = regnum;
1533 last_regnum = i386_next_regnum (last_regnum);
1537 if (last_regnum != -1)
1541 return i386_fp_regnum_p (regnum);
1544 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1545 return its contents in TO. */
1548 i386_register_to_value (struct frame_info *frame, int regnum,
1549 struct type *type, void *to)
1551 int len = TYPE_LENGTH (type);
1554 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1555 available in FRAME (i.e. if it wasn't saved)? */
1557 if (i386_fp_regnum_p (regnum))
1559 i387_register_to_value (frame, regnum, type, to);
1563 /* Read a value spread across multiple registers. */
1565 gdb_assert (len > 4 && len % 4 == 0);
1569 gdb_assert (regnum != -1);
1570 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1572 get_frame_register (frame, regnum, buf);
1573 regnum = i386_next_regnum (regnum);
1579 /* Write the contents FROM of a value of type TYPE into register
1580 REGNUM in frame FRAME. */
1583 i386_value_to_register (struct frame_info *frame, int regnum,
1584 struct type *type, const void *from)
1586 int len = TYPE_LENGTH (type);
1587 const char *buf = from;
1589 if (i386_fp_regnum_p (regnum))
1591 i387_value_to_register (frame, regnum, type, from);
1595 /* Write a value spread across multiple registers. */
1597 gdb_assert (len > 4 && len % 4 == 0);
1601 gdb_assert (regnum != -1);
1602 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1604 put_frame_register (frame, regnum, buf);
1605 regnum = i386_next_regnum (regnum);
1611 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1612 in the general-purpose register set REGSET to register cache
1613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1616 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1617 int regnum, const void *gregs, size_t len)
1619 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1620 const char *regs = gregs;
1623 gdb_assert (len == tdep->sizeof_gregset);
1625 for (i = 0; i < tdep->gregset_num_regs; i++)
1627 if ((regnum == i || regnum == -1)
1628 && tdep->gregset_reg_offset[i] != -1)
1629 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1633 /* Collect register REGNUM from the register cache REGCACHE and store
1634 it in the buffer specified by GREGS and LEN as described by the
1635 general-purpose register set REGSET. If REGNUM is -1, do this for
1636 all registers in REGSET. */
1639 i386_collect_gregset (const struct regset *regset,
1640 const struct regcache *regcache,
1641 int regnum, void *gregs, size_t len)
1643 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1647 gdb_assert (len == tdep->sizeof_gregset);
1649 for (i = 0; i < tdep->gregset_num_regs; i++)
1651 if ((regnum == i || regnum == -1)
1652 && tdep->gregset_reg_offset[i] != -1)
1653 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1657 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1658 in the floating-point register set REGSET to register cache
1659 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1662 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1663 int regnum, const void *fpregs, size_t len)
1665 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1667 if (len == I387_SIZEOF_FXSAVE)
1669 i387_supply_fxsave (regcache, regnum, fpregs);
1673 gdb_assert (len == tdep->sizeof_fpregset);
1674 i387_supply_fsave (regcache, regnum, fpregs);
1677 /* Collect register REGNUM from the register cache REGCACHE and store
1678 it in the buffer specified by FPREGS and LEN as described by the
1679 floating-point register set REGSET. If REGNUM is -1, do this for
1680 all registers in REGSET. */
1683 i386_collect_fpregset (const struct regset *regset,
1684 const struct regcache *regcache,
1685 int regnum, void *fpregs, size_t len)
1687 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1689 if (len == I387_SIZEOF_FXSAVE)
1691 i387_collect_fxsave (regcache, regnum, fpregs);
1695 gdb_assert (len == tdep->sizeof_fpregset);
1696 i387_collect_fsave (regcache, regnum, fpregs);
1699 /* Return the appropriate register set for the core section identified
1700 by SECT_NAME and SECT_SIZE. */
1702 const struct regset *
1703 i386_regset_from_core_section (struct gdbarch *gdbarch,
1704 const char *sect_name, size_t sect_size)
1706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1708 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1710 if (tdep->gregset == NULL)
1711 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1712 i386_collect_gregset);
1713 return tdep->gregset;
1716 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1717 || (strcmp (sect_name, ".reg-xfp") == 0
1718 && sect_size == I387_SIZEOF_FXSAVE))
1720 if (tdep->fpregset == NULL)
1721 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1722 i386_collect_fpregset);
1723 return tdep->fpregset;
1730 #ifdef STATIC_TRANSFORM_NAME
1731 /* SunPRO encodes the static variables. This is not related to C++
1732 mangling, it is done for C too. */
1735 sunpro_static_transform_name (char *name)
1738 if (IS_STATIC_TRANSFORM_NAME (name))
1740 /* For file-local statics there will be a period, a bunch of
1741 junk (the contents of which match a string given in the
1742 N_OPT), a period and the name. For function-local statics
1743 there will be a bunch of junk (which seems to change the
1744 second character from 'A' to 'B'), a period, the name of the
1745 function, and the name. So just skip everything before the
1747 p = strrchr (name, '.');
1753 #endif /* STATIC_TRANSFORM_NAME */
1756 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1759 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1761 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1763 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1764 struct minimal_symbol *indsym =
1765 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1766 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1770 if (strncmp (symname, "__imp_", 6) == 0
1771 || strncmp (symname, "_imp_", 5) == 0)
1772 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1775 return 0; /* Not a trampoline. */
1779 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1780 sigtramp routine. */
1783 i386_sigtramp_p (struct frame_info *next_frame)
1785 CORE_ADDR pc = frame_pc_unwind (next_frame);
1788 find_pc_partial_function (pc, &name, NULL, NULL);
1789 return (name && strcmp ("_sigtramp", name) == 0);
1793 /* We have two flavours of disassembly. The machinery on this page
1794 deals with switching between those. */
1797 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1799 gdb_assert (disassembly_flavor == att_flavor
1800 || disassembly_flavor == intel_flavor);
1802 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1803 constified, cast to prevent a compiler warning. */
1804 info->disassembler_options = (char *) disassembly_flavor;
1805 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1807 return print_insn_i386 (pc, info);
1811 /* There are a few i386 architecture variants that differ only
1812 slightly from the generic i386 target. For now, we don't give them
1813 their own source file, but include them here. As a consequence,
1814 they'll always be included. */
1816 /* System V Release 4 (SVR4). */
1818 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1819 sigtramp routine. */
1822 i386_svr4_sigtramp_p (struct frame_info *next_frame)
1824 CORE_ADDR pc = frame_pc_unwind (next_frame);
1827 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1828 currently unknown. */
1829 find_pc_partial_function (pc, &name, NULL, NULL);
1830 return (name && (strcmp ("_sigreturn", name) == 0
1831 || strcmp ("_sigacthandler", name) == 0
1832 || strcmp ("sigvechandler", name) == 0));
1835 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1836 routine, return the address of the associated sigcontext (ucontext)
1840 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1845 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1846 sp = extract_unsigned_integer (buf, 4);
1848 return read_memory_unsigned_integer (sp + 8, 4);
1855 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1857 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1858 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
1861 /* System V Release 4 (SVR4). */
1864 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1868 /* System V Release 4 uses ELF. */
1869 i386_elf_init_abi (info, gdbarch);
1871 /* System V Release 4 has shared libraries. */
1872 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1873 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1875 tdep->sigtramp_p = i386_svr4_sigtramp_p;
1876 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1877 tdep->sc_pc_offset = 36 + 14 * 4;
1878 tdep->sc_sp_offset = 36 + 17 * 4;
1880 tdep->jb_pc_offset = 20;
1886 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1890 /* DJGPP doesn't have any special frames for signal handlers. */
1891 tdep->sigtramp_p = NULL;
1893 tdep->jb_pc_offset = 36;
1899 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1903 tdep->jb_pc_offset = 24;
1907 /* i386 register groups. In addition to the normal groups, add "mmx"
1910 static struct reggroup *i386_sse_reggroup;
1911 static struct reggroup *i386_mmx_reggroup;
1914 i386_init_reggroups (void)
1916 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1917 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1921 i386_add_reggroups (struct gdbarch *gdbarch)
1923 reggroup_add (gdbarch, i386_sse_reggroup);
1924 reggroup_add (gdbarch, i386_mmx_reggroup);
1925 reggroup_add (gdbarch, general_reggroup);
1926 reggroup_add (gdbarch, float_reggroup);
1927 reggroup_add (gdbarch, all_reggroup);
1928 reggroup_add (gdbarch, save_reggroup);
1929 reggroup_add (gdbarch, restore_reggroup);
1930 reggroup_add (gdbarch, vector_reggroup);
1931 reggroup_add (gdbarch, system_reggroup);
1935 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1936 struct reggroup *group)
1938 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1939 || i386_mxcsr_regnum_p (gdbarch, regnum));
1940 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1941 || i386_fpc_regnum_p (regnum));
1942 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
1944 if (group == i386_mmx_reggroup)
1945 return mmx_regnum_p;
1946 if (group == i386_sse_reggroup)
1947 return sse_regnum_p;
1948 if (group == vector_reggroup)
1949 return (mmx_regnum_p || sse_regnum_p);
1950 if (group == float_reggroup)
1952 if (group == general_reggroup)
1953 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1955 return default_register_reggroup_p (gdbarch, regnum, group);
1959 /* Get the ARGIth function argument for the current function. */
1962 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1965 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1966 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
1970 static struct gdbarch *
1971 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1973 struct gdbarch_tdep *tdep;
1974 struct gdbarch *gdbarch;
1976 /* If there is already a candidate, use it. */
1977 arches = gdbarch_list_lookup_by_info (arches, &info);
1979 return arches->gdbarch;
1981 /* Allocate space for the new architecture. */
1982 tdep = XMALLOC (struct gdbarch_tdep);
1983 gdbarch = gdbarch_alloc (&info, tdep);
1985 /* General-purpose registers. */
1986 tdep->gregset = NULL;
1987 tdep->gregset_reg_offset = NULL;
1988 tdep->gregset_num_regs = I386_NUM_GREGS;
1989 tdep->sizeof_gregset = 0;
1991 /* Floating-point registers. */
1992 tdep->fpregset = NULL;
1993 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1995 /* The default settings include the FPU registers, the MMX registers
1996 and the SSE registers. This can be overridden for a specific ABI
1997 by adjusting the members `st0_regnum', `mm0_regnum' and
1998 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1999 will show up in the output of "info all-registers". Ideally we
2000 should try to autodetect whether they are available, such that we
2001 can prevent "info all-registers" from displaying registers that
2004 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2005 [the SSE registers] always (even when they don't exist) or never
2006 showing them to the user (even when they do exist), I prefer the
2007 former over the latter. */
2009 tdep->st0_regnum = I386_ST0_REGNUM;
2011 /* The MMX registers are implemented as pseudo-registers. Put off
2012 calculating the register number for %mm0 until we know the number
2013 of raw registers. */
2014 tdep->mm0_regnum = 0;
2016 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2017 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2019 tdep->jb_pc_offset = -1;
2020 tdep->struct_return = pcc_struct_return;
2021 tdep->sigtramp_start = 0;
2022 tdep->sigtramp_end = 0;
2023 tdep->sigtramp_p = i386_sigtramp_p;
2024 tdep->sigcontext_addr = NULL;
2025 tdep->sc_reg_offset = NULL;
2026 tdep->sc_pc_offset = -1;
2027 tdep->sc_sp_offset = -1;
2029 /* The format used for `long double' on almost all i386 targets is
2030 the i387 extended floating-point format. In fact, of all targets
2031 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2032 on having a `long double' that's not `long' at all. */
2033 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2035 /* Although the i387 extended floating-point has only 80 significant
2036 bits, a `long double' actually takes up 96, probably to enforce
2038 set_gdbarch_long_double_bit (gdbarch, 96);
2040 /* The default ABI includes general-purpose registers,
2041 floating-point registers, and the SSE registers. */
2042 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2043 set_gdbarch_register_name (gdbarch, i386_register_name);
2044 set_gdbarch_register_type (gdbarch, i386_register_type);
2046 /* Register numbers of various important registers. */
2047 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2048 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2049 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2050 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2052 /* NOTE: kettenis/20040418: GCC does have two possible register
2053 numbering schemes on the i386: dbx and SVR4. These schemes
2054 differ in how they number %ebp, %esp, %eflags, and the
2055 floating-point registers, and are implemented by the arrays
2056 dbx_register_map[] and svr4_dbx_register_map in
2057 gcc/config/i386.c. GCC also defines a third numbering scheme in
2058 gcc/config/i386.c, which it designates as the "default" register
2059 map used in 64bit mode. This last register numbering scheme is
2060 implemented in dbx64_register_map, and is used for AMD64; see
2063 Currently, each GCC i386 target always uses the same register
2064 numbering scheme across all its supported debugging formats
2065 i.e. SDB (COFF), stabs and DWARF 2. This is because
2066 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2067 DBX_REGISTER_NUMBER macro which is defined by each target's
2068 respective config header in a manner independent of the requested
2069 output debugging format.
2071 This does not match the arrangement below, which presumes that
2072 the SDB and stabs numbering schemes differ from the DWARF and
2073 DWARF 2 ones. The reason for this arrangement is that it is
2074 likely to get the numbering scheme for the target's
2075 default/native debug format right. For targets where GCC is the
2076 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2077 targets where the native toolchain uses a different numbering
2078 scheme for a particular debug format (stabs-in-ELF on Solaris)
2079 the defaults below will have to be overridden, like
2080 i386_elf_init_abi() does. */
2082 /* Use the dbx register numbering scheme for stabs and COFF. */
2083 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2084 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2086 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2087 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2090 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2091 be in use on any of the supported i386 targets. */
2093 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2095 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2097 /* Call dummy code. */
2098 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2100 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2101 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2102 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2104 set_gdbarch_return_value (gdbarch, i386_return_value);
2106 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2108 /* Stack grows downward. */
2109 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2111 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2112 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2114 set_gdbarch_frame_args_skip (gdbarch, 8);
2116 /* Wire in the MMX registers. */
2117 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2118 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2119 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2121 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2123 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2125 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2127 /* Add the i386 register groups. */
2128 i386_add_reggroups (gdbarch);
2129 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2131 /* Helper for function argument information. */
2132 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2134 /* Hook in the DWARF CFI frame unwinder. */
2135 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2137 frame_base_set_default (gdbarch, &i386_frame_base);
2139 /* Hook in ABI-specific overrides, if they have been registered. */
2140 gdbarch_init_osabi (info, gdbarch);
2142 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2143 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2145 /* If we have a register mapping, enable the generic core file
2146 support, unless it has already been enabled. */
2147 if (tdep->gregset_reg_offset
2148 && !gdbarch_regset_from_core_section_p (gdbarch))
2149 set_gdbarch_regset_from_core_section (gdbarch,
2150 i386_regset_from_core_section);
2152 /* Unless support for MMX has been disabled, make %mm0 the first
2154 if (tdep->mm0_regnum == 0)
2155 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2160 static enum gdb_osabi
2161 i386_coff_osabi_sniffer (bfd *abfd)
2163 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2164 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2165 return GDB_OSABI_GO32;
2167 return GDB_OSABI_UNKNOWN;
2170 static enum gdb_osabi
2171 i386_nlm_osabi_sniffer (bfd *abfd)
2173 return GDB_OSABI_NETWARE;
2177 /* Provide a prototype to silence -Wmissing-prototypes. */
2178 void _initialize_i386_tdep (void);
2181 _initialize_i386_tdep (void)
2183 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2185 /* Add the variable that controls the disassembly flavor. */
2187 struct cmd_list_element *new_cmd;
2189 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2191 &disassembly_flavor,
2193 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
2194 and the default value is \"att\".",
2196 add_show_from_set (new_cmd, &showlist);
2199 /* Add the variable that controls the convention for returning
2202 struct cmd_list_element *new_cmd;
2204 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
2206 &struct_convention, "\
2207 Set the convention for returning small structs, valid values \
2208 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2210 add_show_from_set (new_cmd, &showlist);
2213 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2214 i386_coff_osabi_sniffer);
2215 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2216 i386_nlm_osabi_sniffer);
2218 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2219 i386_svr4_init_abi);
2220 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2221 i386_go32_init_abi);
2222 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2225 /* Initialize the i386 specific register groups. */
2226 i386_init_reggroups ();