3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 # Check that macro definition wasn't supplied for multi-arch
98 if test "${macro}" != ""
100 echo "${macro}: Multi-arch yet macro" 1>&2
107 m ) staticdefault="${predefault}" ;;
108 M ) staticdefault="0" ;;
109 * ) test "${staticdefault}" || staticdefault=0 ;;
114 case "${invalid_p}" in
116 if test -n "${predefault}"
118 #invalid_p="gdbarch->${function} == ${predefault}"
119 predicate="gdbarch->${function} != ${predefault}"
120 elif class_is_variable_p
122 predicate="gdbarch->${function} != 0"
123 elif class_is_function_p
125 predicate="gdbarch->${function} != NULL"
129 echo "Predicate function ${function} with invalid_p." 1>&2
136 # PREDEFAULT is a valid fallback definition of MEMBER when
137 # multi-arch is not enabled. This ensures that the
138 # default value, when multi-arch is the same as the
139 # default value when not multi-arch. POSTDEFAULT is
140 # always a valid definition of MEMBER as this again
141 # ensures consistency.
143 if [ -n "${postdefault}" ]
145 fallbackdefault="${postdefault}"
146 elif [ -n "${predefault}" ]
148 fallbackdefault="${predefault}"
153 #NOT YET: See gdbarch.log for basic verification of
168 fallback_default_p ()
170 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
171 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
174 class_is_variable_p ()
182 class_is_function_p ()
185 *f* | *F* | *m* | *M* ) true ;;
190 class_is_multiarch_p ()
198 class_is_predicate_p ()
201 *F* | *V* | *M* ) true ;;
215 # dump out/verify the doco
225 # F -> function + predicate
226 # hiding a function + predicate to test function validity
229 # V -> variable + predicate
230 # hiding a variable + predicate to test variables validity
232 # hiding something from the ``struct info'' object
233 # m -> multi-arch function
234 # hiding a multi-arch function (parameterised with the architecture)
235 # M -> multi-arch function + predicate
236 # hiding a multi-arch function + predicate to test function validity
240 # The name of the MACRO that this method is to be accessed by.
244 # For functions, the return type; for variables, the data type
248 # For functions, the member function name; for variables, the
249 # variable name. Member function names are always prefixed with
250 # ``gdbarch_'' for name-space purity.
254 # The formal argument list. It is assumed that the formal
255 # argument list includes the actual name of each list element.
256 # A function with no arguments shall have ``void'' as the
257 # formal argument list.
261 # The list of actual arguments. The arguments specified shall
262 # match the FORMAL list given above. Functions with out
263 # arguments leave this blank.
267 # Any GCC attributes that should be attached to the function
268 # declaration. At present this field is unused.
272 # To help with the GDB startup a static gdbarch object is
273 # created. STATICDEFAULT is the value to insert into that
274 # static gdbarch object. Since this a static object only
275 # simple expressions can be used.
277 # If STATICDEFAULT is empty, zero is used.
281 # An initial value to assign to MEMBER of the freshly
282 # malloc()ed gdbarch object. After initialization, the
283 # freshly malloc()ed object is passed to the target
284 # architecture code for further updates.
286 # If PREDEFAULT is empty, zero is used.
288 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
289 # INVALID_P are specified, PREDEFAULT will be used as the
290 # default for the non- multi-arch target.
292 # A zero PREDEFAULT function will force the fallback to call
295 # Variable declarations can refer to ``gdbarch'' which will
296 # contain the current architecture. Care should be taken.
300 # A value to assign to MEMBER of the new gdbarch object should
301 # the target architecture code fail to change the PREDEFAULT
304 # If POSTDEFAULT is empty, no post update is performed.
306 # If both INVALID_P and POSTDEFAULT are non-empty then
307 # INVALID_P will be used to determine if MEMBER should be
308 # changed to POSTDEFAULT.
310 # If a non-empty POSTDEFAULT and a zero INVALID_P are
311 # specified, POSTDEFAULT will be used as the default for the
312 # non- multi-arch target (regardless of the value of
315 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
317 # Variable declarations can refer to ``current_gdbarch'' which
318 # will contain the current architecture. Care should be
323 # A predicate equation that validates MEMBER. Non-zero is
324 # returned if the code creating the new architecture failed to
325 # initialize MEMBER or the initialized the member is invalid.
326 # If POSTDEFAULT is non-empty then MEMBER will be updated to
327 # that value. If POSTDEFAULT is empty then internal_error()
330 # If INVALID_P is empty, a check that MEMBER is no longer
331 # equal to PREDEFAULT is used.
333 # The expression ``0'' disables the INVALID_P check making
334 # PREDEFAULT a legitimate value.
336 # See also PREDEFAULT and POSTDEFAULT.
340 # printf style format string that can be used to print out the
341 # MEMBER. Sometimes "%s" is useful. For functions, this is
342 # ignored and the function address is printed.
344 # If FMT is empty, ``%ld'' is used.
348 # An optional equation that casts MEMBER to a value suitable
349 # for formatting by FMT.
351 # If PRINT is empty, ``(long)'' is used.
353 garbage_at_eol ) : ;;
355 # Catches stray fields.
358 echo "Bad field ${field}"
366 # See below (DOCO) for description of each field
368 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
370 i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
372 i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
373 # Number of bits in a char or unsigned char for the target machine.
374 # Just like CHAR_BIT in <limits.h> but describes the target machine.
375 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
377 # Number of bits in a short or unsigned short for the target machine.
378 v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
379 # Number of bits in an int or unsigned int for the target machine.
380 v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
381 # Number of bits in a long or unsigned long for the target machine.
382 v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long long or unsigned long long for the target
385 v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
386 # Number of bits in a float for the target machine.
387 v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
388 # Number of bits in a double for the target machine.
389 v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
390 # Number of bits in a long double for the target machine.
391 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
392 # For most targets, a pointer on the target and its representation as an
393 # address in GDB have the same size and "look the same". For such a
394 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
395 # / addr_bit will be set from it.
397 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
398 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
400 # ptr_bit is the size of a pointer on the target
401 v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
402 # addr_bit is the size of a target address as represented in gdb
403 v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
404 # Number of bits in a BFD_VMA for the target object file format.
405 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
407 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
408 v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
410 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
411 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
412 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
413 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
414 # Function for getting target's idea of a frame pointer. FIXME: GDB's
415 # whole scheme for dealing with "frames" and "frame pointers" needs a
417 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
419 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
420 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
422 v:NUM_REGS:int:num_regs::::0:-1
423 # This macro gives the number of pseudo-registers that live in the
424 # register namespace but do not get fetched or stored on the target.
425 # These pseudo-registers may be aliases for other registers,
426 # combinations of other registers, or they may be computed by GDB.
427 v:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
429 # GDB's standard (or well known) register numbers. These can map onto
430 # a real register or a pseudo (computed) register or not be defined at
432 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
433 v:SP_REGNUM:int:sp_regnum::::-1:-1::0
434 v:PC_REGNUM:int:pc_regnum::::-1:-1::0
435 v:PS_REGNUM:int:ps_regnum::::-1:-1::0
436 v:FP0_REGNUM:int:fp0_regnum::::0:-1::0
437 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
438 f:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
439 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
440 f:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
441 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
442 f:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
443 # Convert from an sdb register number to an internal gdb register number.
444 f:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
445 f:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
446 f:REGISTER_NAME:const char *:register_name:int regnr:regnr
448 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
449 M::struct type *:register_type:int reg_nr:reg_nr
450 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
451 F:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
452 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
453 # from REGISTER_TYPE.
454 v:DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
455 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
456 # register offsets computed using just REGISTER_TYPE, this can be
457 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
458 # function with predicate has a valid (callable) initial value. As a
459 # consequence, even when the predicate is false, the corresponding
460 # function works. This simplifies the migration process - old code,
461 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
462 F:DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
463 # If all registers have identical raw and virtual sizes and those
464 # sizes agree with the value computed from REGISTER_TYPE,
465 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
467 F:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
468 # If all registers have identical raw and virtual sizes and those
469 # sizes agree with the value computed from REGISTER_TYPE,
470 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
472 F:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
474 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
475 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
476 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
477 # SAVE_DUMMY_FRAME_TOS.
478 F:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
479 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
480 # DEPRECATED_FP_REGNUM.
481 v:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
482 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
483 # DEPRECATED_TARGET_READ_FP.
484 F:DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
486 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
487 # replacement for DEPRECATED_PUSH_ARGUMENTS.
488 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
490 F:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
491 # Implement PUSH_RETURN_ADDRESS, and then merge in
492 # DEPRECATED_PUSH_RETURN_ADDRESS.
493 F:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
494 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
495 F:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
496 # DEPRECATED_REGISTER_SIZE can be deleted.
497 v:DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
498 v:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
499 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
501 F:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
502 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
503 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 # MAP a GDB RAW register number onto a simulator register number. See
506 # also include/...-sim.h.
507 f:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
508 F:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
509 f:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
510 f:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
511 # setjmp/longjmp support.
512 F:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
513 F:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
515 v:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
516 F:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
518 f:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
519 f:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
520 f:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
522 f:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
523 f:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
524 F:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
526 F:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
527 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
528 F:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
530 # It has been suggested that this, well actually its predecessor,
531 # should take the type/value of the function to be called and not the
532 # return type. This is left as an exercise for the reader.
534 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
535 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
536 # (via legacy_return_value), when a small struct is involved.
538 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
540 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
541 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
542 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
545 f:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
546 f:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
547 f:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
548 f:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
549 f:DEPRECATED_USE_STRUCT_CONVENTION:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
551 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
552 # ABI suitable for the implementation of a robust extract
553 # struct-convention return-value address method (the sparc saves the
554 # address in the callers frame). All the other cases so far examined,
555 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
556 # erreneous - the code was incorrectly assuming that the return-value
557 # address, stored in a register, was preserved across the entire
560 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
561 # the ABIs that are still to be analyzed - perhaps this should simply
562 # be deleted. The commented out extract_returned_value_address method
563 # is provided as a starting point for the 32-bit SPARC. It, or
564 # something like it, along with changes to both infcmd.c and stack.c
565 # will be needed for that case to work. NB: It is passed the callers
566 # frame since it is only after the callee has returned that this
569 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
570 F:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
572 F:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
573 F:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
575 f:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
576 f:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
577 f:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
578 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
579 f:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
580 f:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
581 v:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
583 # A function can be addressed by either it's "pointer" (possibly a
584 # descriptor address) or "entry point" (first executable instruction).
585 # The method "convert_from_func_ptr_addr" converting the former to the
586 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
587 # a simplified subset of that functionality - the function's address
588 # corresponds to the "function pointer" and the function's start
589 # corresponds to the "function entry point" - and hence is redundant.
591 v:DEPRECATED_FUNCTION_START_OFFSET:CORE_ADDR:deprecated_function_start_offset::::0:::0
593 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
595 v:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
596 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
597 # frame code works regardless of the type of frame - frameless,
598 # stackless, or normal.
599 F:DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
600 F:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
601 F:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
602 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
603 # note, per UNWIND_PC's doco, that while the two have similar
604 # interfaces they have very different underlying implementations.
605 F:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
606 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
607 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
608 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
609 # frame-base. Enable frame-base before frame-unwind.
610 F:DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
611 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
612 # frame-base. Enable frame-base before frame-unwind.
613 F:DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
614 F:DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
615 F:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
617 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
618 # to frame_align and the requirement that methods such as
619 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
621 F:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
622 M::CORE_ADDR:frame_align:CORE_ADDR address:address
623 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
624 # stabs_argument_has_addr.
625 F:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
626 m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
627 v:FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
629 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
630 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
631 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
632 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
633 # On some machines there are bits in addresses which are not really
634 # part of the address, but are used by the kernel, the hardware, etc.
635 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
636 # we get a "real" address such as one would find in a symbol table.
637 # This is used only for addresses of instructions, and even then I'm
638 # not sure it's used in all contexts. It exists to deal with there
639 # being a few stray bits in the PC which would mislead us, not as some
640 # sort of generic thing to handle alignment or segmentation (it's
641 # possible it should be in TARGET_READ_PC instead).
642 f:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
643 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
645 f:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
646 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
647 # the target needs software single step. An ISA method to implement it.
649 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
650 # using the breakpoint system instead of blatting memory directly (as with rs6000).
652 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
653 # single step. If not, then implement single step using breakpoints.
654 F:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
655 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
656 # disassembler. Perhaphs objdump can handle it?
657 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
658 f:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
661 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
662 # evaluates non-zero, this is the address where the debugger will place
663 # a step-resume breakpoint to get us past the dynamic linker.
664 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
665 # For SVR4 shared libraries, each call goes through a small piece of
666 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
667 # to nonzero if we are currently stopped in one of these.
668 f:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
670 # Some systems also have trampoline code for returning from shared libs.
671 f:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
673 # A target might have problems with watchpoints as soon as the stack
674 # frame of the current function has been destroyed. This mostly happens
675 # as the first action in a funtion's epilogue. in_function_epilogue_p()
676 # is defined to return a non-zero value if either the given addr is one
677 # instruction after the stack destroying instruction up to the trailing
678 # return instruction or if we can figure out that the stack frame has
679 # already been invalidated regardless of the value of addr. Targets
680 # which don't suffer from that problem could just let this functionality
682 m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
683 # Given a vector of command-line arguments, return a newly allocated
684 # string which, when passed to the create_inferior function, will be
685 # parsed (on Unix systems, by the shell) to yield the same vector.
686 # This function should call error() if the argument vector is not
687 # representable for this target or if this target does not support
688 # command-line arguments.
689 # ARGC is the number of elements in the vector.
690 # ARGV is an array of strings, one per argument.
691 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
692 f:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
693 f:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
694 v:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
695 v:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
696 v:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
697 F:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
698 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
699 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
700 # Is a register in a group
701 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
702 # Fetch the pointer to the ith function argument.
703 F:FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
705 # Return the appropriate register set for a core file section with
706 # name SECT_NAME and size SECT_SIZE.
707 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
714 exec > new-gdbarch.log
715 function_list | while do_read
718 ${class} ${returntype} ${function} ($formal)${attrib}
722 eval echo \"\ \ \ \ ${r}=\${${r}}\"
724 if class_is_predicate_p && fallback_default_p
726 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
730 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
732 echo "Error: postdefault is useless when invalid_p=0" 1>&2
736 if class_is_multiarch_p
738 if class_is_predicate_p ; then :
739 elif test "x${predefault}" = "x"
741 echo "Error: pure multi-arch function must have a predefault" 1>&2
750 compare_new gdbarch.log
756 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
758 /* Dynamic architecture support for GDB, the GNU debugger.
760 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
761 Software Foundation, Inc.
763 This file is part of GDB.
765 This program is free software; you can redistribute it and/or modify
766 it under the terms of the GNU General Public License as published by
767 the Free Software Foundation; either version 2 of the License, or
768 (at your option) any later version.
770 This program is distributed in the hope that it will be useful,
771 but WITHOUT ANY WARRANTY; without even the implied warranty of
772 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
773 GNU General Public License for more details.
775 You should have received a copy of the GNU General Public License
776 along with this program; if not, write to the Free Software
777 Foundation, Inc., 59 Temple Place - Suite 330,
778 Boston, MA 02111-1307, USA. */
780 /* This file was created with the aid of \`\`gdbarch.sh''.
782 The Bourne shell script \`\`gdbarch.sh'' creates the files
783 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
784 against the existing \`\`gdbarch.[hc]''. Any differences found
787 If editing this file, please also run gdbarch.sh and merge any
788 changes into that script. Conversely, when making sweeping changes
789 to this file, modifying gdbarch.sh and using its output may prove
810 struct minimal_symbol;
814 struct disassemble_info;
818 extern struct gdbarch *current_gdbarch;
820 /* If any of the following are defined, the target wasn't correctly
823 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
824 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
831 printf "/* The following are pre-initialized by GDBARCH. */\n"
832 function_list | while do_read
837 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
838 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
839 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
840 printf "#error \"Non multi-arch definition of ${macro}\"\n"
842 printf "#if !defined (${macro})\n"
843 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
851 printf "/* The following are initialized by the target dependent code. */\n"
852 function_list | while do_read
854 if [ -n "${comment}" ]
856 echo "${comment}" | sed \
861 if class_is_multiarch_p
863 if class_is_predicate_p
866 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
869 if class_is_predicate_p
872 printf "#if defined (${macro})\n"
873 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
874 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
875 printf "#if !defined (${macro}_P)\n"
876 printf "#define ${macro}_P() (1)\n"
880 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
881 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
882 printf "#error \"Non multi-arch definition of ${macro}\"\n"
884 printf "#if !defined (${macro}_P)\n"
885 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
889 if class_is_variable_p
892 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
893 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
894 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
895 printf "#error \"Non multi-arch definition of ${macro}\"\n"
897 printf "#if !defined (${macro})\n"
898 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
901 if class_is_function_p
904 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
906 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
907 elif class_is_multiarch_p
909 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
913 if [ "x${formal}" = "xvoid" ]
915 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
919 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
920 if class_is_multiarch_p ; then :
922 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
925 if [ "x${actual}" = "x" ]
927 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
928 elif [ "x${actual}" = "x-" ]
930 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
932 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
934 printf "#if !defined (${macro})\n"
935 if [ "x${actual}" = "x" ]
937 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
938 elif [ "x${actual}" = "x-" ]
940 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
942 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
952 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
955 /* Mechanism for co-ordinating the selection of a specific
958 GDB targets (*-tdep.c) can register an interest in a specific
959 architecture. Other GDB components can register a need to maintain
960 per-architecture data.
962 The mechanisms below ensures that there is only a loose connection
963 between the set-architecture command and the various GDB
964 components. Each component can independently register their need
965 to maintain architecture specific data with gdbarch.
969 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
972 The more traditional mega-struct containing architecture specific
973 data for all the various GDB components was also considered. Since
974 GDB is built from a variable number of (fairly independent)
975 components it was determined that the global aproach was not
979 /* Register a new architectural family with GDB.
981 Register support for the specified ARCHITECTURE with GDB. When
982 gdbarch determines that the specified architecture has been
983 selected, the corresponding INIT function is called.
987 The INIT function takes two parameters: INFO which contains the
988 information available to gdbarch about the (possibly new)
989 architecture; ARCHES which is a list of the previously created
990 \`\`struct gdbarch'' for this architecture.
992 The INFO parameter is, as far as possible, be pre-initialized with
993 information obtained from INFO.ABFD or the previously selected
996 The ARCHES parameter is a linked list (sorted most recently used)
997 of all the previously created architures for this architecture
998 family. The (possibly NULL) ARCHES->gdbarch can used to access
999 values from the previously selected architecture for this
1000 architecture family. The global \`\`current_gdbarch'' shall not be
1003 The INIT function shall return any of: NULL - indicating that it
1004 doesn't recognize the selected architecture; an existing \`\`struct
1005 gdbarch'' from the ARCHES list - indicating that the new
1006 architecture is just a synonym for an earlier architecture (see
1007 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1008 - that describes the selected architecture (see gdbarch_alloc()).
1010 The DUMP_TDEP function shall print out all target specific values.
1011 Care should be taken to ensure that the function works in both the
1012 multi-arch and non- multi-arch cases. */
1016 struct gdbarch *gdbarch;
1017 struct gdbarch_list *next;
1022 /* Use default: NULL (ZERO). */
1023 const struct bfd_arch_info *bfd_arch_info;
1025 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1028 /* Use default: NULL (ZERO). */
1031 /* Use default: NULL (ZERO). */
1032 struct gdbarch_tdep_info *tdep_info;
1034 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1035 enum gdb_osabi osabi;
1038 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1039 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1041 /* DEPRECATED - use gdbarch_register() */
1042 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1044 extern void gdbarch_register (enum bfd_architecture architecture,
1045 gdbarch_init_ftype *,
1046 gdbarch_dump_tdep_ftype *);
1049 /* Return a freshly allocated, NULL terminated, array of the valid
1050 architecture names. Since architectures are registered during the
1051 _initialize phase this function only returns useful information
1052 once initialization has been completed. */
1054 extern const char **gdbarch_printable_names (void);
1057 /* Helper function. Search the list of ARCHES for a GDBARCH that
1058 matches the information provided by INFO. */
1060 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1063 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1064 basic initialization using values obtained from the INFO andTDEP
1065 parameters. set_gdbarch_*() functions are called to complete the
1066 initialization of the object. */
1068 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1071 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1072 It is assumed that the caller freeds the \`\`struct
1075 extern void gdbarch_free (struct gdbarch *);
1078 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1079 obstack. The memory is freed when the corresponding architecture
1082 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1083 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1084 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1087 /* Helper function. Force an update of the current architecture.
1089 The actual architecture selected is determined by INFO, \`\`(gdb) set
1090 architecture'' et.al., the existing architecture and BFD's default
1091 architecture. INFO should be initialized to zero and then selected
1092 fields should be updated.
1094 Returns non-zero if the update succeeds */
1096 extern int gdbarch_update_p (struct gdbarch_info info);
1099 /* Helper function. Find an architecture matching info.
1101 INFO should be initialized using gdbarch_info_init, relevant fields
1102 set, and then finished using gdbarch_info_fill.
1104 Returns the corresponding architecture, or NULL if no matching
1105 architecture was found. "current_gdbarch" is not updated. */
1107 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1110 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1112 FIXME: kettenis/20031124: Of the functions that follow, only
1113 gdbarch_from_bfd is supposed to survive. The others will
1114 dissappear since in the future GDB will (hopefully) be truly
1115 multi-arch. However, for now we're still stuck with the concept of
1116 a single active architecture. */
1118 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1121 /* Register per-architecture data-pointer.
1123 Reserve space for a per-architecture data-pointer. An identifier
1124 for the reserved data-pointer is returned. That identifer should
1125 be saved in a local static variable.
1127 Memory for the per-architecture data shall be allocated using
1128 gdbarch_obstack_zalloc. That memory will be deleted when the
1129 corresponding architecture object is deleted.
1131 When a previously created architecture is re-selected, the
1132 per-architecture data-pointer for that previous architecture is
1133 restored. INIT() is not re-called.
1135 Multiple registrarants for any architecture are allowed (and
1136 strongly encouraged). */
1138 struct gdbarch_data;
1140 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1141 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1142 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1143 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1144 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1145 struct gdbarch_data *data,
1148 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1152 /* Register per-architecture memory region.
1154 Provide a memory-region swap mechanism. Per-architecture memory
1155 region are created. These memory regions are swapped whenever the
1156 architecture is changed. For a new architecture, the memory region
1157 is initialized with zero (0) and the INIT function is called.
1159 Memory regions are swapped / initialized in the order that they are
1160 registered. NULL DATA and/or INIT values can be specified.
1162 New code should use gdbarch_data_register_*(). */
1164 typedef void (gdbarch_swap_ftype) (void);
1165 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1166 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1170 /* Set the dynamic target-system-dependent parameters (architecture,
1171 byte-order, ...) using information found in the BFD */
1173 extern void set_gdbarch_from_file (bfd *);
1176 /* Initialize the current architecture to the "first" one we find on
1179 extern void initialize_current_architecture (void);
1181 /* gdbarch trace variable */
1182 extern int gdbarch_debug;
1184 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1189 #../move-if-change new-gdbarch.h gdbarch.h
1190 compare_new gdbarch.h
1197 exec > new-gdbarch.c
1202 #include "arch-utils.h"
1205 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1208 #include "floatformat.h"
1210 #include "gdb_assert.h"
1211 #include "gdb_string.h"
1212 #include "gdb-events.h"
1213 #include "reggroups.h"
1215 #include "gdb_obstack.h"
1217 /* Static function declarations */
1219 static void alloc_gdbarch_data (struct gdbarch *);
1221 /* Non-zero if we want to trace architecture code. */
1223 #ifndef GDBARCH_DEBUG
1224 #define GDBARCH_DEBUG 0
1226 int gdbarch_debug = GDBARCH_DEBUG;
1230 # gdbarch open the gdbarch object
1232 printf "/* Maintain the struct gdbarch object */\n"
1234 printf "struct gdbarch\n"
1236 printf " /* Has this architecture been fully initialized? */\n"
1237 printf " int initialized_p;\n"
1239 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1240 printf " struct obstack *obstack;\n"
1242 printf " /* basic architectural information */\n"
1243 function_list | while do_read
1247 printf " ${returntype} ${function};\n"
1251 printf " /* target specific vector. */\n"
1252 printf " struct gdbarch_tdep *tdep;\n"
1253 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1255 printf " /* per-architecture data-pointers */\n"
1256 printf " unsigned nr_data;\n"
1257 printf " void **data;\n"
1259 printf " /* per-architecture swap-regions */\n"
1260 printf " struct gdbarch_swap *swap;\n"
1263 /* Multi-arch values.
1265 When extending this structure you must:
1267 Add the field below.
1269 Declare set/get functions and define the corresponding
1272 gdbarch_alloc(): If zero/NULL is not a suitable default,
1273 initialize the new field.
1275 verify_gdbarch(): Confirm that the target updated the field
1278 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1281 \`\`startup_gdbarch()'': Append an initial value to the static
1282 variable (base values on the host's c-type system).
1284 get_gdbarch(): Implement the set/get functions (probably using
1285 the macro's as shortcuts).
1290 function_list | while do_read
1292 if class_is_variable_p
1294 printf " ${returntype} ${function};\n"
1295 elif class_is_function_p
1297 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1302 # A pre-initialized vector
1306 /* The default architecture uses host values (for want of a better
1310 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1312 printf "struct gdbarch startup_gdbarch =\n"
1314 printf " 1, /* Always initialized. */\n"
1315 printf " NULL, /* The obstack. */\n"
1316 printf " /* basic architecture information */\n"
1317 function_list | while do_read
1321 printf " ${staticdefault}, /* ${function} */\n"
1325 /* target specific vector and its dump routine */
1327 /*per-architecture data-pointers and swap regions */
1329 /* Multi-arch values */
1331 function_list | while do_read
1333 if class_is_function_p || class_is_variable_p
1335 printf " ${staticdefault}, /* ${function} */\n"
1339 /* startup_gdbarch() */
1342 struct gdbarch *current_gdbarch = &startup_gdbarch;
1345 # Create a new gdbarch struct
1348 /* Create a new \`\`struct gdbarch'' based on information provided by
1349 \`\`struct gdbarch_info''. */
1354 gdbarch_alloc (const struct gdbarch_info *info,
1355 struct gdbarch_tdep *tdep)
1357 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1358 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1359 the current local architecture and not the previous global
1360 architecture. This ensures that the new architectures initial
1361 values are not influenced by the previous architecture. Once
1362 everything is parameterised with gdbarch, this will go away. */
1363 struct gdbarch *current_gdbarch;
1365 /* Create an obstack for allocating all the per-architecture memory,
1366 then use that to allocate the architecture vector. */
1367 struct obstack *obstack = XMALLOC (struct obstack);
1368 obstack_init (obstack);
1369 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1370 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1371 current_gdbarch->obstack = obstack;
1373 alloc_gdbarch_data (current_gdbarch);
1375 current_gdbarch->tdep = tdep;
1378 function_list | while do_read
1382 printf " current_gdbarch->${function} = info->${function};\n"
1386 printf " /* Force the explicit initialization of these. */\n"
1387 function_list | while do_read
1389 if class_is_function_p || class_is_variable_p
1391 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1393 printf " current_gdbarch->${function} = ${predefault};\n"
1398 /* gdbarch_alloc() */
1400 return current_gdbarch;
1404 # Free a gdbarch struct.
1408 /* Allocate extra space using the per-architecture obstack. */
1411 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1413 void *data = obstack_alloc (arch->obstack, size);
1414 memset (data, 0, size);
1419 /* Free a gdbarch struct. This should never happen in normal
1420 operation --- once you've created a gdbarch, you keep it around.
1421 However, if an architecture's init function encounters an error
1422 building the structure, it may need to clean up a partially
1423 constructed gdbarch. */
1426 gdbarch_free (struct gdbarch *arch)
1428 struct obstack *obstack;
1429 gdb_assert (arch != NULL);
1430 gdb_assert (!arch->initialized_p);
1431 obstack = arch->obstack;
1432 obstack_free (obstack, 0); /* Includes the ARCH. */
1437 # verify a new architecture
1441 /* Ensure that all values in a GDBARCH are reasonable. */
1443 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1444 just happens to match the global variable \`\`current_gdbarch''. That
1445 way macros refering to that variable get the local and not the global
1446 version - ulgh. Once everything is parameterised with gdbarch, this
1450 verify_gdbarch (struct gdbarch *current_gdbarch)
1452 struct ui_file *log;
1453 struct cleanup *cleanups;
1456 log = mem_fileopen ();
1457 cleanups = make_cleanup_ui_file_delete (log);
1459 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1460 fprintf_unfiltered (log, "\n\tbyte-order");
1461 if (current_gdbarch->bfd_arch_info == NULL)
1462 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1463 /* Check those that need to be defined for the given multi-arch level. */
1465 function_list | while do_read
1467 if class_is_function_p || class_is_variable_p
1469 if [ "x${invalid_p}" = "x0" ]
1471 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1472 elif class_is_predicate_p
1474 printf " /* Skip verify of ${function}, has predicate */\n"
1475 # FIXME: See do_read for potential simplification
1476 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1478 printf " if (${invalid_p})\n"
1479 printf " current_gdbarch->${function} = ${postdefault};\n"
1480 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1482 printf " if (current_gdbarch->${function} == ${predefault})\n"
1483 printf " current_gdbarch->${function} = ${postdefault};\n"
1484 elif [ -n "${postdefault}" ]
1486 printf " if (current_gdbarch->${function} == 0)\n"
1487 printf " current_gdbarch->${function} = ${postdefault};\n"
1488 elif [ -n "${invalid_p}" ]
1490 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1491 printf " && (${invalid_p}))\n"
1492 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1493 elif [ -n "${predefault}" ]
1495 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1496 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1497 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1502 buf = ui_file_xstrdup (log, &dummy);
1503 make_cleanup (xfree, buf);
1504 if (strlen (buf) > 0)
1505 internal_error (__FILE__, __LINE__,
1506 "verify_gdbarch: the following are invalid ...%s",
1508 do_cleanups (cleanups);
1512 # dump the structure
1516 /* Print out the details of the current architecture. */
1518 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1519 just happens to match the global variable \`\`current_gdbarch''. That
1520 way macros refering to that variable get the local and not the global
1521 version - ulgh. Once everything is parameterised with gdbarch, this
1525 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1527 fprintf_unfiltered (file,
1528 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1531 function_list | sort -t: -k 4 | while do_read
1533 # First the predicate
1534 if class_is_predicate_p
1536 if test -n "${macro}"
1538 printf "#ifdef ${macro}_P\n"
1539 printf " fprintf_unfiltered (file,\n"
1540 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1541 printf " \"${macro}_P()\",\n"
1542 printf " XSTRING (${macro}_P ()));\n"
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1547 printf " gdbarch_${function}_p (current_gdbarch));\n"
1549 # Print the macro definition.
1550 if test -n "${macro}"
1552 printf "#ifdef ${macro}\n"
1553 if class_is_function_p
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1557 printf " \"${macro}(${actual})\",\n"
1558 printf " XSTRING (${macro} (${actual})));\n"
1560 printf " fprintf_unfiltered (file,\n"
1561 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1562 printf " XSTRING (${macro}));\n"
1566 # Print the corresponding value.
1567 if class_is_function_p
1569 printf " fprintf_unfiltered (file,\n"
1570 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1571 printf " (long) current_gdbarch->${function});\n"
1574 case "${fmt}:${print}:${returntype}" in
1577 print="paddr_nz (current_gdbarch->${function})"
1581 print="paddr_d (current_gdbarch->${function})"
1584 test "${fmt}" || fmt="%ld"
1585 test "${print}" || print="(long) (current_gdbarch->${function})"
1588 printf " fprintf_unfiltered (file,\n"
1589 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1590 printf " ${print});\n"
1594 if (current_gdbarch->dump_tdep != NULL)
1595 current_gdbarch->dump_tdep (current_gdbarch, file);
1603 struct gdbarch_tdep *
1604 gdbarch_tdep (struct gdbarch *gdbarch)
1606 if (gdbarch_debug >= 2)
1607 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1608 return gdbarch->tdep;
1612 function_list | while do_read
1614 if class_is_predicate_p
1618 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1620 printf " gdb_assert (gdbarch != NULL);\n"
1621 printf " return ${predicate};\n"
1624 if class_is_function_p
1627 printf "${returntype}\n"
1628 if [ "x${formal}" = "xvoid" ]
1630 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1632 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1635 printf " gdb_assert (gdbarch != NULL);\n"
1636 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1637 if class_is_predicate_p && test -n "${predefault}"
1639 # Allow a call to a function with a predicate.
1640 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1642 printf " if (gdbarch_debug >= 2)\n"
1643 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1644 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1646 if class_is_multiarch_p
1653 if class_is_multiarch_p
1655 params="gdbarch, ${actual}"
1660 if [ "x${returntype}" = "xvoid" ]
1662 printf " gdbarch->${function} (${params});\n"
1664 printf " return gdbarch->${function} (${params});\n"
1669 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1670 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1672 printf " gdbarch->${function} = ${function};\n"
1674 elif class_is_variable_p
1677 printf "${returntype}\n"
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1680 printf " gdb_assert (gdbarch != NULL);\n"
1681 if [ "x${invalid_p}" = "x0" ]
1683 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1684 elif [ -n "${invalid_p}" ]
1686 printf " /* Check variable is valid. */\n"
1687 printf " gdb_assert (!(${invalid_p}));\n"
1688 elif [ -n "${predefault}" ]
1690 printf " /* Check variable changed from pre-default. */\n"
1691 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1699 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1700 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1702 printf " gdbarch->${function} = ${function};\n"
1704 elif class_is_info_p
1707 printf "${returntype}\n"
1708 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 printf " if (gdbarch_debug >= 2)\n"
1712 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1713 printf " return gdbarch->${function};\n"
1718 # All the trailing guff
1722 /* Keep a registry of per-architecture data-pointers required by GDB
1729 gdbarch_data_pre_init_ftype *pre_init;
1730 gdbarch_data_post_init_ftype *post_init;
1733 struct gdbarch_data_registration
1735 struct gdbarch_data *data;
1736 struct gdbarch_data_registration *next;
1739 struct gdbarch_data_registry
1742 struct gdbarch_data_registration *registrations;
1745 struct gdbarch_data_registry gdbarch_data_registry =
1750 static struct gdbarch_data *
1751 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1752 gdbarch_data_post_init_ftype *post_init)
1754 struct gdbarch_data_registration **curr;
1755 /* Append the new registraration. */
1756 for (curr = &gdbarch_data_registry.registrations;
1758 curr = &(*curr)->next);
1759 (*curr) = XMALLOC (struct gdbarch_data_registration);
1760 (*curr)->next = NULL;
1761 (*curr)->data = XMALLOC (struct gdbarch_data);
1762 (*curr)->data->index = gdbarch_data_registry.nr++;
1763 (*curr)->data->pre_init = pre_init;
1764 (*curr)->data->post_init = post_init;
1765 (*curr)->data->init_p = 1;
1766 return (*curr)->data;
1769 struct gdbarch_data *
1770 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1772 return gdbarch_data_register (pre_init, NULL);
1775 struct gdbarch_data *
1776 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1778 return gdbarch_data_register (NULL, post_init);
1781 /* Create/delete the gdbarch data vector. */
1784 alloc_gdbarch_data (struct gdbarch *gdbarch)
1786 gdb_assert (gdbarch->data == NULL);
1787 gdbarch->nr_data = gdbarch_data_registry.nr;
1788 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1791 /* Initialize the current value of the specified per-architecture
1795 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1796 struct gdbarch_data *data,
1799 gdb_assert (data->index < gdbarch->nr_data);
1800 gdb_assert (gdbarch->data[data->index] == NULL);
1801 gdb_assert (data->pre_init == NULL);
1802 gdbarch->data[data->index] = pointer;
1805 /* Return the current value of the specified per-architecture
1809 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1811 gdb_assert (data->index < gdbarch->nr_data);
1812 if (gdbarch->data[data->index] == NULL)
1814 /* The data-pointer isn't initialized, call init() to get a
1816 if (data->pre_init != NULL)
1817 /* Mid architecture creation: pass just the obstack, and not
1818 the entire architecture, as that way it isn't possible for
1819 pre-init code to refer to undefined architecture
1821 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1822 else if (gdbarch->initialized_p
1823 && data->post_init != NULL)
1824 /* Post architecture creation: pass the entire architecture
1825 (as all fields are valid), but be careful to also detect
1826 recursive references. */
1828 gdb_assert (data->init_p);
1830 gdbarch->data[data->index] = data->post_init (gdbarch);
1834 /* The architecture initialization hasn't completed - punt -
1835 hope that the caller knows what they are doing. Once
1836 deprecated_set_gdbarch_data has been initialized, this can be
1837 changed to an internal error. */
1839 gdb_assert (gdbarch->data[data->index] != NULL);
1841 return gdbarch->data[data->index];
1846 /* Keep a registry of swapped data required by GDB modules. */
1851 struct gdbarch_swap_registration *source;
1852 struct gdbarch_swap *next;
1855 struct gdbarch_swap_registration
1858 unsigned long sizeof_data;
1859 gdbarch_swap_ftype *init;
1860 struct gdbarch_swap_registration *next;
1863 struct gdbarch_swap_registry
1866 struct gdbarch_swap_registration *registrations;
1869 struct gdbarch_swap_registry gdbarch_swap_registry =
1875 deprecated_register_gdbarch_swap (void *data,
1876 unsigned long sizeof_data,
1877 gdbarch_swap_ftype *init)
1879 struct gdbarch_swap_registration **rego;
1880 for (rego = &gdbarch_swap_registry.registrations;
1882 rego = &(*rego)->next);
1883 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1884 (*rego)->next = NULL;
1885 (*rego)->init = init;
1886 (*rego)->data = data;
1887 (*rego)->sizeof_data = sizeof_data;
1891 current_gdbarch_swap_init_hack (void)
1893 struct gdbarch_swap_registration *rego;
1894 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1895 for (rego = gdbarch_swap_registry.registrations;
1899 if (rego->data != NULL)
1901 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1902 struct gdbarch_swap);
1903 (*curr)->source = rego;
1904 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1906 (*curr)->next = NULL;
1907 curr = &(*curr)->next;
1909 if (rego->init != NULL)
1914 static struct gdbarch *
1915 current_gdbarch_swap_out_hack (void)
1917 struct gdbarch *old_gdbarch = current_gdbarch;
1918 struct gdbarch_swap *curr;
1920 gdb_assert (old_gdbarch != NULL);
1921 for (curr = old_gdbarch->swap;
1925 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1926 memset (curr->source->data, 0, curr->source->sizeof_data);
1928 current_gdbarch = NULL;
1933 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1935 struct gdbarch_swap *curr;
1937 gdb_assert (current_gdbarch == NULL);
1938 for (curr = new_gdbarch->swap;
1941 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1942 current_gdbarch = new_gdbarch;
1946 /* Keep a registry of the architectures known by GDB. */
1948 struct gdbarch_registration
1950 enum bfd_architecture bfd_architecture;
1951 gdbarch_init_ftype *init;
1952 gdbarch_dump_tdep_ftype *dump_tdep;
1953 struct gdbarch_list *arches;
1954 struct gdbarch_registration *next;
1957 static struct gdbarch_registration *gdbarch_registry = NULL;
1960 append_name (const char ***buf, int *nr, const char *name)
1962 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1968 gdbarch_printable_names (void)
1970 /* Accumulate a list of names based on the registed list of
1972 enum bfd_architecture a;
1974 const char **arches = NULL;
1975 struct gdbarch_registration *rego;
1976 for (rego = gdbarch_registry;
1980 const struct bfd_arch_info *ap;
1981 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1983 internal_error (__FILE__, __LINE__,
1984 "gdbarch_architecture_names: multi-arch unknown");
1987 append_name (&arches, &nr_arches, ap->printable_name);
1992 append_name (&arches, &nr_arches, NULL);
1998 gdbarch_register (enum bfd_architecture bfd_architecture,
1999 gdbarch_init_ftype *init,
2000 gdbarch_dump_tdep_ftype *dump_tdep)
2002 struct gdbarch_registration **curr;
2003 const struct bfd_arch_info *bfd_arch_info;
2004 /* Check that BFD recognizes this architecture */
2005 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2006 if (bfd_arch_info == NULL)
2008 internal_error (__FILE__, __LINE__,
2009 "gdbarch: Attempt to register unknown architecture (%d)",
2012 /* Check that we haven't seen this architecture before */
2013 for (curr = &gdbarch_registry;
2015 curr = &(*curr)->next)
2017 if (bfd_architecture == (*curr)->bfd_architecture)
2018 internal_error (__FILE__, __LINE__,
2019 "gdbarch: Duplicate registraration of architecture (%s)",
2020 bfd_arch_info->printable_name);
2024 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2025 bfd_arch_info->printable_name,
2028 (*curr) = XMALLOC (struct gdbarch_registration);
2029 (*curr)->bfd_architecture = bfd_architecture;
2030 (*curr)->init = init;
2031 (*curr)->dump_tdep = dump_tdep;
2032 (*curr)->arches = NULL;
2033 (*curr)->next = NULL;
2037 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2038 gdbarch_init_ftype *init)
2040 gdbarch_register (bfd_architecture, init, NULL);
2044 /* Look for an architecture using gdbarch_info. Base search on only
2045 BFD_ARCH_INFO and BYTE_ORDER. */
2047 struct gdbarch_list *
2048 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2049 const struct gdbarch_info *info)
2051 for (; arches != NULL; arches = arches->next)
2053 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2055 if (info->byte_order != arches->gdbarch->byte_order)
2057 if (info->osabi != arches->gdbarch->osabi)
2065 /* Find an architecture that matches the specified INFO. Create a new
2066 architecture if needed. Return that new architecture. Assumes
2067 that there is no current architecture. */
2069 static struct gdbarch *
2070 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2072 struct gdbarch *new_gdbarch;
2073 struct gdbarch_registration *rego;
2075 /* The existing architecture has been swapped out - all this code
2076 works from a clean slate. */
2077 gdb_assert (current_gdbarch == NULL);
2079 /* Fill in missing parts of the INFO struct using a number of
2080 sources: "set ..."; INFOabfd supplied; and the existing
2082 gdbarch_info_fill (old_gdbarch, &info);
2084 /* Must have found some sort of architecture. */
2085 gdb_assert (info.bfd_arch_info != NULL);
2089 fprintf_unfiltered (gdb_stdlog,
2090 "find_arch_by_info: info.bfd_arch_info %s\n",
2091 (info.bfd_arch_info != NULL
2092 ? info.bfd_arch_info->printable_name
2094 fprintf_unfiltered (gdb_stdlog,
2095 "find_arch_by_info: info.byte_order %d (%s)\n",
2097 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2098 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2100 fprintf_unfiltered (gdb_stdlog,
2101 "find_arch_by_info: info.osabi %d (%s)\n",
2102 info.osabi, gdbarch_osabi_name (info.osabi));
2103 fprintf_unfiltered (gdb_stdlog,
2104 "find_arch_by_info: info.abfd 0x%lx\n",
2106 fprintf_unfiltered (gdb_stdlog,
2107 "find_arch_by_info: info.tdep_info 0x%lx\n",
2108 (long) info.tdep_info);
2111 /* Find the tdep code that knows about this architecture. */
2112 for (rego = gdbarch_registry;
2115 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2120 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2121 "No matching architecture\n");
2125 /* Ask the tdep code for an architecture that matches "info". */
2126 new_gdbarch = rego->init (info, rego->arches);
2128 /* Did the tdep code like it? No. Reject the change and revert to
2129 the old architecture. */
2130 if (new_gdbarch == NULL)
2133 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2134 "Target rejected architecture\n");
2138 /* Is this a pre-existing architecture (as determined by already
2139 being initialized)? Move it to the front of the architecture
2140 list (keeping the list sorted Most Recently Used). */
2141 if (new_gdbarch->initialized_p)
2143 struct gdbarch_list **list;
2144 struct gdbarch_list *this;
2146 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2147 "Previous architecture 0x%08lx (%s) selected\n",
2149 new_gdbarch->bfd_arch_info->printable_name);
2150 /* Find the existing arch in the list. */
2151 for (list = ®o->arches;
2152 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2153 list = &(*list)->next);
2154 /* It had better be in the list of architectures. */
2155 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2158 (*list) = this->next;
2159 /* Insert THIS at the front. */
2160 this->next = rego->arches;
2161 rego->arches = this;
2166 /* It's a new architecture. */
2168 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2169 "New architecture 0x%08lx (%s) selected\n",
2171 new_gdbarch->bfd_arch_info->printable_name);
2173 /* Insert the new architecture into the front of the architecture
2174 list (keep the list sorted Most Recently Used). */
2176 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2177 this->next = rego->arches;
2178 this->gdbarch = new_gdbarch;
2179 rego->arches = this;
2182 /* Check that the newly installed architecture is valid. Plug in
2183 any post init values. */
2184 new_gdbarch->dump_tdep = rego->dump_tdep;
2185 verify_gdbarch (new_gdbarch);
2186 new_gdbarch->initialized_p = 1;
2188 /* Initialize any per-architecture swap areas. This phase requires
2189 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2190 swap the entire architecture out. */
2191 current_gdbarch = new_gdbarch;
2192 current_gdbarch_swap_init_hack ();
2193 current_gdbarch_swap_out_hack ();
2196 gdbarch_dump (new_gdbarch, gdb_stdlog);
2202 gdbarch_find_by_info (struct gdbarch_info info)
2204 /* Save the previously selected architecture, setting the global to
2205 NULL. This stops things like gdbarch->init() trying to use the
2206 previous architecture's configuration. The previous architecture
2207 may not even be of the same architecture family. The most recent
2208 architecture of the same family is found at the head of the
2209 rego->arches list. */
2210 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2212 /* Find the specified architecture. */
2213 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2215 /* Restore the existing architecture. */
2216 gdb_assert (current_gdbarch == NULL);
2217 current_gdbarch_swap_in_hack (old_gdbarch);
2222 /* Make the specified architecture current, swapping the existing one
2226 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2228 gdb_assert (new_gdbarch != NULL);
2229 gdb_assert (current_gdbarch != NULL);
2230 gdb_assert (new_gdbarch->initialized_p);
2231 current_gdbarch_swap_out_hack ();
2232 current_gdbarch_swap_in_hack (new_gdbarch);
2233 architecture_changed_event ();
2236 extern void _initialize_gdbarch (void);
2239 _initialize_gdbarch (void)
2241 struct cmd_list_element *c;
2243 add_show_from_set (add_set_cmd ("arch",
2246 (char *)&gdbarch_debug,
2247 "Set architecture debugging.\\n\\
2248 When non-zero, architecture debugging is enabled.", &setdebuglist),
2250 c = add_set_cmd ("archdebug",
2253 (char *)&gdbarch_debug,
2254 "Set architecture debugging.\\n\\
2255 When non-zero, architecture debugging is enabled.", &setlist);
2257 deprecate_cmd (c, "set debug arch");
2258 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2264 #../move-if-change new-gdbarch.c gdbarch.c
2265 compare_new gdbarch.c